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1 Introduction

Electronic systems intermediate between the macroscopic and microscopic regimes are
referred to as “mesoscopic”. Mesoscopic systems are so small, that a complete quantum-
mechanical treatment of the electrons is required if one wants to describe its transport
properties. On the other hand, they are so large, that an exact microscopic description,
starting from the precise location of impurities and sample boundaries, is not useful, since
only the slightest change of the microscopic details will completely change the result. In-
stead, in mesoscopic physics, a statistical approach is taken: one considers an average over
an ensemble of macroscopically equivalent, but microscopically different samples. An ex-
ample of such an ensemble is a set of dirty wires with the same density of impurities, but
with different impurity configurations.

This thesis is about the random matrix theory of quantum transport through mesoscopic
systems. The adjective “quantum” indicates that the quantummechanical motion of the e-
lectrons is essential. Transport properties of a mesoscopic system can differ significantly
from what one would expect on the basis of a classical description. Well-known exam-
ples are universal conductance fluctuations and weak localization in disordered wires. The
signatures of phase-coherent transport exhibit a high degree of universality. They are inde-
pendent of sample size or disorder strength and depend entirely on the dimension and the
fundamental symmetries of the system (time-reversal symmetry, spin-rotation symmetry).
Random matrix theory, originally introduced by Wigner and Dyson to describe the fluctu-
ation properties of resonance spectra of heavy nuclei, provides a natural tool for the study
of mesoscopic physics, the universality of quantum interference phenomena in mesoscopic
systems being intimately connected to the universality of the statistical properties of the
eigenvalues and eigenvectors of large random matrices. For a review of quantum transport
in mesoscopic systems, the reader is referred to Refs. [1–3]. The random matrix theory of
quantum transport of reviewed in Ref. [4,5].

In this thesis we establish the relation between random matrix theory of quantum trans-
port and a microscopic description, we discuss how to include deviations from the universal
behavior due to the presence of tunnel barriers or dephasing into the random matrix theory,
and we consider the dependence of transport properties on an external parameter (Fermi
energy, magnetic field). Special attention is paid to normal-metal–superconductor junc-
tions, where the interplay between the phase coherent motion in the normal metal and the
superconductivity gives rise to a wide variety of unusual quantum interference phenomena.
The present chapter contains background material and a brief introduction to these topics.
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1.1 Scattering theory

The scattering matrix represents the solution of the Schr¨odinger equation for a sample that
is connected to semi-infinite leads, in a way that is appropriate for a theory of quantum
transport. Below we recall the definition of the scattering matrix and its relation to the
conductance via the Landauer formula.

1.1.1 Definition of the scattering matrix

In Fig. 1-1 a mesoscopic sample connected to two ideal leads is shown. For simplicity
we assume that the leads are two-dimensional with the same widthW. We consider non-
interacting spinless “electrons” that are described by a Schr¨odinger equation

1

2m

[
i h̄ E∇ + e

c
EA(Er )

]2
ψ(Er )+ V(Er )ψ(Er ) = Eψ(Er ), (1.1.1)

whereV(Er ) is the impurity potential,EA(Er ) the vector potential, and the boundary conditions
are such that the wavefunctionψ(Er ) vanishes outside the sample and the leads. Inside the
ideal leads, the potentialV(Er ) and the magnetic field vanish. Hence the solution of the
Schrödinger equation is a combination of plane waves moving to and from the sample,

ψ(Er ) = (kxW)−1/2 cos(kyy) e±ikxx, k2
x + k2

y = k2 ≡ 2mE

h̄2
. (1.1.2)

The coordinatesx and y refer to the longitudinal and transversal directions, respectively
(see Fig. 1-1), and the wavefunctions in Eq. (1.1.2) are normalized such that they carry unit
flux. Because of the boundary conditionψ(x,±W/2) = 0, the transversal momentumky is
quantized. It can takeN = int(kW/π) different valuesky = nπ/W with n = 1, 2, . . . , N,
and thus definesN propagating modes in the lead. Sometimes, these modes are referred to
as “channels”. We denote the modes in the left (right) lead byψ i L

n (ψ i R
n ) andψoL

n (ψoR
n ),

where the superscripti (o) is for waves moving towards (from) the sample.
Inside the leads, every solution of the Schr¨odinger equation (1.1.1) can be written as

a sum of ingoing and outgoing propagating waves and evanescent waves [solutions of the
form (1.1.2) with imaginarykx]. Far from the sample, the evanescent waves play no role,
and only the propagating waves remain,

ψ(Er ) =
N∑

n=1

[
ci L

n ψ
i L
n (Er )+ coL

n ψoL
n (Er )] if x → −∞, (1.1.3)

ψ(Er ) =
N∑

n=1

[
ci R

n ψ
i R
n (Er )+ coR

n ψoR
n (Er )] if x → ∞. (1.1.4)

The solution of the Schr¨odinger equation provides a linear relation between coefficients
ci L , ci R, coL, andcoR, which we write as(

coL

coR

)
= S(E)

(
ci L

ci R

)
. (1.1.5)
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x

y

ψiL ψoR

ψiLψoL

Figure 1-1. Mesoscopic sample (dotted) connected to two semi-infinite ideal leads. The leads have

width W and the sample is located between x = −L/2 and x = L/2.

(Hereci L is the column vector of the coefficientsci L
n etc. . . ) By definition, the 2N × 2N

matrix S is the scattering matrix. It is convenient to decomposeS into N × N transmission
and reflection matricesr , r ′, t , andt ′,

S =
(

r t ′

t r ′

)
. (1.1.6)

For a wave approaching the sample through the left lead, the reflection matrixr describes
the reflected wave exiting through the left lead, and the transmission matrixt describes the
transmitted wave in the right lead. Similarly,r ′ andt ′ describe reflection and transmission
for waves coming from the right lead.

Flux conservation requires that the scattering matrix is unitary

SS† = 11. (1.1.7)

If the Hamiltonian preserves time-reversal symmetry [i.e. if there is no vector potentialEA
in Eq. (1.1.1)], we find that for every solutionψ(Er ), the time-reversed wave functionψ∗(Er )
is a solution of the Schr¨odinger equation as well. Under the operation of time-reversal, the
coefficientsci

n (co
m) map to the complex conjugatesco∗

n (ci∗
m ). Hence we have

(
ci L

ci R

)∗
= S

(
coL

coR

)∗
. (1.1.8)

It follows that the scattering matrixSobeysSS∗ = 11. In combination with flux conserva-
tion [Eq. (1.1.7)], we find that the scattering matrixS is symmetric,S = ST (the superscript
T indicates the transpose of a matrix).

For particles with spin 1/2, the wave functionψ(Er ) in Eq. (1.1.1) is a spinor,

ψ(Er ) =
(
ψ↑(Er )
ψ↓(Er )

)
. (1.1.9)

Describing the scattering states in the leads by spinor coefficientsci
m andco

n as well, we
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S
1

S
2

Figure 1-2. Two mesoscopic samples in series. The samples are connected by an ideal lead, so

that a scattering approach is appropriate. The left sample has scattering matrix S1, the right sample

has scattering matrix S2.

arrive at a scattering matrixS that consists of complex quaternions1. As in the case of
spinless particles, flux conservation requires that thatS is unitary, SS† = 11. Under the
operation of time-reversal, the spinor coefficientsci

n (co
m) map toiσyco∗

n (iσyci∗
m), whereσy

is the second Pauli matrix. It follows that the scattering matrixS obeysSS∗ = 11, where
S∗ is the quaternion complex conjugate.

Let us now consider the scattering matrix of two mesoscopic samples in series (see
Fig. 1-2). We assume, that the two samples are connected by an ideal lead, so that their
scattering matricesS1 and S2 are well defined. By elimination of the amplitudes of the
propagating waves in the lead connecting the two samples, we find the scattering matrixS
of the complete system. It has reflection and transmission matrices

r = r1 + t ′1(1 − r ′
1r2)

−1r2t1,

t = t2(1 − r ′
1r2)

−1t1,

t ′ = t ′1(1 − r2r ′
1)

−1t2,

r ′ = r ′
2 + t2(1 − r2r ′

1)
−1r ′

1t ′2.

(1.1.10)

A more convenient way to find the scattering properties of two samples in a series is the
use of a transfer matrixM. The transfer matrix relates the amplitudes in the left and on the
right of the sample, (

coR

ci R

)
= M

(
ci L

coL

)
. (1.1.11)

Transfer matrices have a multiplicative composition law,

M = M2M1. (1.1.12)
1A quaternionq is a linear combination of the unit matrix and the three Pauli matrices,q = q011 +

i
∑3

j =1 qj σj . A quaternion is called real (complex) if the componentsqj ( j = 0,1,2,3) are real (complex)
numbers. Quaternions have different rules for the complex conjugate, transposition, and the trace: The
complex (hermitian) conjugateq∗ = q∗

0 + i
∑3

j =1 q∗
j σj (q† = q∗

0 − i
∑3

j =1 q∗
j σj ). The trace of a quaternion

is trq = q0. The complex (hermitian) conjugateQ∗ (Q†) of a quaternion matrixQ is the (transpose of
the) matrix of complex (hermitian) conjugates. The dualQR = Q∗†. The trace of a quaternion matrix is∑

i tr Qii .
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V

I

δ

Figure 1-3. Mesoscopic sample (dotted) connected to two electron reservoirs by ideal leads. A

voltage difference δV = (1/e)δµ between the reservoirs causes a current I through the sample.

Analogous to the decomposition of the scattering matrix in terms of reflection and trans-
mission matrices, we can also decompose the transfer matrix in four blocks,

M =
(

m11 m12

m21 m22

)
. (1.1.13)

The four blocks ofM are related to the reflection and transmission matricesr , r ′, t , andt ′
through

m11 = t†−1, m12 = r ′t ′−1, m21 = −t ′−1r, m22 = t ′−1, (1.1.14)

⇐⇒ r = −m−1
22 m21, r ′ = m12m

−1
22 , t = m†−1

11 , t ′ = m−1
22 . (1.1.15)

The multiplicative composition law makes the transfer matrix appropriate for a description
of quantum transport through a disordered wire.

1.1.2 Landauer formula

The viewpoint that conductance can be seen as a scattering problem goes back to Landauer
[7], and has been developed by Imry [8], B¨uttiker [9], and others. (See Ref. [1] for a review
with more applications.)

To derive the Landauer formula, we consider a mesoscopic sample at zero temperature
which is connected to electron reservoirs 1 and 2 by means of two ideal leads (Fig. 1-
3). The reservoirs are held at chemical potentialsµ1 andµ2. States with ingoing wave
boundary conditions for lead 1 are fed from reservoir 1, so they are occupied for energies
E ≤ µ1. Similarly, states coming from lead 2 are occupied for energiesE ≤ µ2. Per mode
and per unit of energy, the current that is injected from a reservoir into the leads is 2e/h.
For current injected from reservoir 1 in moden, a fraction

∑
m |tmn|2 is transmitted into

lead 2, the rest is reflected back into lead 1. Similarly, for the current that is injected from
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reservoir 2 in moden, a fraction
∑

m |t ′mn|2 is transmitted into lead 1, the remainder being
reflected. It follows that the currentsI is given by

I = 2e

h

N∑
m,n=1

[∫ µ1

d E(δmn − |rmn(E)|2)−
∫ µ2

d E|t ′mn(E)|2
]
,

= 2e

h

N∑
m,n=1

[∫ µ1

d E|tmn(E)|2 −
∫ µ2

d E(δmn − |r ′
mn(E)|2)

]
. (1.1.16)

Here we definedrnm(E) = r ′
nm(E) = δmn andtmn(E) = t ′mn(E) = 0 if the mode corre-

sponding ton or m is not propagating at energyE. Unitarity of S ensures thatI = 0 if
µ1 = µ2. To first order in the differenceδµ = µ1 − µ2, we find

δ I = 2e

h

N∑
m,n=1

|tmn(µ)|2δµ. (1.1.17)

Hence the conductanceG = δ I /δV = eδ I /δµ is given by the formula

G = 2e2

h

N∑
m,n=1

|tmn|2 = 2e2

h
tr t t†, (1.1.18)

which is known as the Landauer formula.

1.2 Random matrix theory of a quantum dot

Since the 1950s, when Wigner and Dyson [10–12] first proposed random matrix theory
as a tool for the statistical analysis of resonance spectra of heavy nuclei, random matrix
theory has found applications in many other branches of physics, including atomic physics,
mesoscopic physics, quantum chromo dynamics, and biophysics [13].

In mesoscopic physics, the Wigner-Dyson random matrix theory is appropriate for a
statistical description of chaotic quantum dots. A quantum dot is a small metal island, usu-
ally confined by gates, and coupled to electron reservoirs by point contacts. The adjective
chaotic is used for weakly disordered quantum dots (metal grains) as well as for ballistic
dots where the classical motion of the electrons is chaotic. On time scales longer than
the timeτerg needed for ergodic exploration of the phase space, disordered and ballistic
quantum dots show the same universal behavior. For a disordered dot with sizeL, Fermi
velocity vF , and mean free path̀, the ergodic time is the time of diffusion through the
quantum dot,τerg = L2/vF` (Ec = h̄/τerg is the Thouless energy). For ballistic dots,
τerg ∼ L/vF . In a chaotic quantum dot, the other relevant time scales (dwell timeτdwell,
dephasing timeτφ) are much larger than the ergodic time. In this sense, a quantum dot is
effectively zero-dimensional, which explains the origin of the name “dot”.

Here some of the basic concepts of the Wigner-Dyson random matrix theory are re-
viewed, with an emphasis on the applications to chaotic quantum dots.
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1.2.1 Closed system: random Hamiltonian

A closed quantum dot is characterized through its energy levels and wavefunctions. The
precise value of the energy levels and the amplitude of the wavefunction is very sensitive
to the impurity configuration or the sample boundaries. Therefore, one usually considers
a statistical ensemble of chaotic quantum dots, which have slightly different shapes, Fermi
energy, or impurity configuration. Statistical properties of the energy levels and wavefunc-
tions for such an ensemble turn out to be universal. They are independent of the size or
shape of the quantum dot, or the impurity concentration, and depend entirely on the basic
symmetries of the system: time-reversal symmetry, spin-rotational symmetry, and spatial
symmetries. The universality breaks down if energy differences exceed the inverse ergodic
time h̄/τerg, i.e. if the non-chaotic dynamics on time scales shorter thanτerg is probed.

The universal statistical properties of a chaotic quantum dot are the same as those of a
big random Hermitian matrixH that has the same symmetries as the microscopic Hamil-
tonian of the quantum dot. For a disordered quantum dot, this correspondence was first
conjectured by Gorkov and Eliashberg [14], and later proven by Efetov [15]; for ballis-
tic dots, numerical evidence was first given by Bohigas, Giannoni, and Schmit [16], and
an analytical justification was given only very recently by Andreev, Agam, Simons, and
Altshuler [17]. The energy levels of the quantum dot correspond to the eigenvalues of the
random matrixH , and the wavefunction to its eigenvectors. The precise distribution of the
random matrixH is not relevant. This is the celebrated universality of random matrix the-
ory. It is the same universality that governs the statistical properties of the energy levels and
wavefunctions of a chaotic quantum and ensures that they do not depend on microscopic
details.

Random matrix theory was developed by Wigner and Dyson for the study of nuclear
resonance spectra. Wigner originally proposed an ensemble of Hermitian matricesH
where all matrix elements are independent Gaussian distributed random numbers. This
is the Gaussian ensemble of random-matrix theory. One distinguishes three fundamen-
tal symmetry classes, depending on whether the elements ofH are real, complex, or real
quaternion numbers. The three classes are labeled by the symmetry indexβ, which counts
the degrees of freedom of the matrix elements ofH : β = 1, 2, or 4 if the elements of
H are real, complex, or real quaternion numbers, respectively. Real matrices are appro-
priate for systems with time-reversal symmetry, complex matrices describe a system in
which time-reversal symmetry is broken by a magnetic field, while matrices of real or
complex quaternions describe a system of spin 1/2 particles, where spin-rotation symme-
try is broken by a spin-orbit interaction. (Hermitian matrices of complex quaternions are
not considered explicitly; they behave the same as complex matrices of the double size.)
The four possibilities are summarized in Table 1-1.

Though mathematically convenient, the Gaussian distribution is not essential. It is more
natural to consider an ensemble of Hermitian matrices with a distribution of the general
form

P(H) ∝ exp[−βtr V(H)] , (1.2.1)

whereV is some function ofH . The choiceV(H) ∝ H2 corresponds to the Gaussian
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TRS SRS elements ofH symmetry index

yes yes real numbers β = 1

yes no real quaternions β = 4

no yes complex numbers β = 2

no no complex quaternions β = 2

Table 1-1. Four symmetry classes, depending on the presence/absence of time-reversal symmetry

and spin-rotational symmetry (SRS). The case β = 2 refers to both cases where time-reversal

symmetry is broken.

ensemble. (The factorβ in the exponent is added for convenience.) LetE1, . . . , EM be the
eigenvalues of theM × M hermitian matrixH , and letU be the matrix of its eigenvectors.
The matrixU is orthogonal (unitary, symplectic) forβ = 1 (2, 4). (It is assumed that the
distribution ofH does not depend on the eigenvector matrixU .) To find the distribution of
the eigenvaluesEj , we use the jacobian between the volume elementsd H and the volume
elementsdU for the matrixU and

∏
j d Ej for the eigenvaluesEj ,

d H = dU J({Ej })
M∏

j =1

d Ej , J({Ej }) =
M∏

i< j

|Ei − Ej |β. (1.2.2)

The volume elementdU corresponds to the invariant measure on the orthogonal (unitary,
symplectic) group.2 The distribution of the eigenvaluesEj thus reads

P({Ej }) ∝ J({Ej })
N∏

j =1

e−βV(Ej )

= exp


β∑

i< j

ln |Ei − Ej | − β

N∑
j =1

V(Ej )


 . (1.2.3)

The jacobianJ({Ej }) causes a repulsion between the levelsEj andEi (i, j = 1, . . . ,M),
proportional to|Ei − Ej |β .3 The distribution (1.2.3) resembles a partition function for a
gas ofN particles in one dimension at positionsEj , subject to a potentialV(E), and with
a logarithmic Coulomb interaction. The symmetry indexβ plays the role of the inverse
temperature.

2The invariant or Haar measuredU on the orthogonal (unitary, symplectic) group is the unique measure
dU that is invariant under the group transformationsU → V UV′, whereV is an arbitrary orthogonal
(unitary, symplectic) matrix. An explicit representation of the invariant measure can be found in Sec. 3.1 of
this thesis.

3To see why the repulsion between levelsEi and Ej is proportional to|Ei − Ej |β , notice that to first
order in perturbation theory for nearly degenerate levelsEi andEj , the difference(Ei − Ej )

2 = (〈i |H |i 〉 −
〈 j |H | j 〉)2+ 4|〈i |H | j 〉|2. The total number of degrees of freedom on the r.h.s. isβ+ 1, henceP(Ei − Ej ) ∝
|Ei − Ej |β .
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The random matrixH serves as a model for a microscopic Hamiltonian only if we take
the limit M → ∞. Contact with a physical Hamiltonian is then made for the distributions
of afinitenumber of levels and/or eigenfunction elements, but not for the joint distribution
of all M eigenvaluesEj . While Eq. (1.2.3) contains the joint distribution ofall levels,
the main problem in random matrix theory is to extract the physically relevant statistical
properties that concern only afew levels, such as the density of states, level correlators, or
spacing distributions.

The distribution (1.2.3) of the eigenvaluesEj consists of two parts: the Jacobian fac-
tor J({Ej }), accounting for the “interaction” between the energy levels, and the potential
V(E). Their roles are quite different. The potentialV(E) determines the average density
of states〈ρ(E)〉, where

ρ(E) =
∑

j

δ(E − Ej ). (1.2.4)

For the Gaussian ensemble withV(H) = M H2/4λ2 we find for largeM and for all three
symmetry classesβ = 1, 2, and 4

〈ρ(E)〉 = M

2πλ2

√
4λ2 − E2. (1.2.5)

The parameterλ governs the mean level spacing1 = πλ/M at the originE = 0. The
density of states for the Gaussian ensemble is known as Wigner’s semi-circle law. The
semi-circular density of states is a characteristic of the Gaussian ensemble, and has no
physical relevance: different potentialsV have different densities of states.

While the average density of states is determined by the potentialV , the fluctuations
around the average are determined by the level interactions originating from the jacobian
J({Ej }) rather than by the potentialV , provided energy differences are measured in units
of the mean level spacing1. The jacobianJ({Ej }) only depends on the symmetry index
β. Hence, up to a scaling factor1, spectral fluctuations are universal, and do not depend
on the details of the random matrix ensemble. An example is the two-level correlator [6],

T2(E, E′) = 〈ρ(E)ρ(E′)〉 − 〈ρ(E)〉〈ρ(E′)〉 − 〈ρ(E)〉δ(E − E′), (1.2.6)

which takes the value

T2(E, E′) = −sin2[π(E − E′)/1]
π2(E − E′)2

, (1.2.7)

if M → ∞, irrespective of the confining potentialV . Eq. (1.2.7) holds for the unitary
ensemble (β = 2). The expressions for the orthogonal and symplectic ensembles (β = 1
and 4) are also universal, but more complicated.

For a random matrix ensemble, the universality of the spectral correlators breaks down
at energy differences which are comparable to the energy scaleEc on which variations of
the mean density of states〈ρ(E)〉 occur. For the Gaussian ensemble, this is the scaleλ, i.e.
the width of the semi-circle. The universality of random matrix theory implies that the ratio
Ec/1 → ∞ asM → ∞ for each potentialV . In a real quantum dot, the role of the cutoff
energyEc is played by the inverse ergodic timeh̄/τerg: Spectral correlators are universal
for energy differences belowEc only; they are sample-specific for distances aboveEc.
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The circular ensembles, introduced by Dyson [18], consist of unitary rather than Her-
mitian matrices. Dyson used the circular ensembles as a mathematically more elegant tool
to study level statistics. In contrast to Hermitian matrices, the unitary matrices form a com-
pact manifold. Hence there is no need to introduce a potentialV to ensure normalization
of the probability distribution in the circular ensemble. There are three circular ensembles,
consisting of uniformly distributed unitary symmetric, unitary, and unitary self-dual matri-
ces (a unitary self-dual matrix is a unitary matrixSconsisting of complex quaternions that
satisfiesSS∗ = 1), and labeled byβ = 1, 2, and 4, respectively. They are called the circu-
lar orthogonal ensemble (COE), circular unitary ensemble (CUE), and circular symplectic
ensemble (CSE).

An N × N matrix S from the circular ensemble has eigenvalueseiφ j with 0 ≤ φj < 2π
and j = 1, . . . , N, while the eigenvectors form an orthogonal (unitary, symplectic) matrix
U for β = 1 (2, 4). The uniform distribution ofS implies the distribution

P({φj }) ∝
∏
i< j

|eiφi − eiφ j |β (1.2.8)

for the eigenphasesφj . In Dysons original picture, the eigenphasesφj are viewed as energy
levels. Their mean level spacing is1 = 2π/N. In the limit N → ∞, the statistics of the
eigenphasesφj on the scale1 turns out to be the same as those of the energy levelsEj

from the Gaussian ensemble. This is another manifestation of the universality of random
matrix theory.

1.2.2 Open system: Random scattering matrix

While a closed quantum dot is characterized by energy levels and eigenfunctions, an open
dot which is connected to leads is described through its scattering matrixS. The aim of
a random matrix theory of quantum transport is a random matrix theory of the statistical
distribution of the scattering matrix.

The distribution of the scattering matrix of an open quantum dot is less universal than
the distribution of the energy levels and wavefunctions of a closed quantum dot. The
reason is quite trivial, because the scattering matrix depends on the size and transparency
of the point contacts. If the point contacts are wide, the dimensionN of the scattering
matrix is large; if they are narrow,N is small. Similarly, if the contacts contain a tunnel
barrier, most particles are reflected before they can even enter the dot, so that elements of
transmission matricest andt ′ are typically smaller than those of the reflection matricesr
andr ′. Apart from this trivial nonuniversality, the statistics of the scattering matrix of a
chaotic quantum dot is universal in the sense that it does not depend on the size or shape of
the quantum dot and on the impurity concentration. The only condition for universality is
that the particles explore the complete phase space ergodically before they exit, i.e. that the
dwell timeτdwell must be much larger than the ergodic timeτerg. This condition is satisfied
for a chaotic quantum dot with point contacts. Another difference between a random matrix
theory of the scattering matrix and the random matrix theory of energy levels is that, unlike
the Hamiltonian, the scattering matrix is by definition a finite-dimensional matrix. We
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Figure 1-4. The Wigner-Dyson random matrix theory for the scattering matrix is appropriate if the

dwell time τdwell � τerg, where τerg is the time needed for ergodic exploration of the phase space of

the sample. This condition is obeyed in chaotic quantum dots (left), but not in bulk metals with wide

contacts (right).

can not take the limitN → ∞ for an ensemble of scattering matrices; leads with one
propagating mode at the Fermi level can be well realized in experiments, so that a 2× 2
scattering matrix makes perfect sense. While the universality of random matrix theory for
large random matrices ensures that the choice of the precise potentialV in Eq. (1.2.1) is
irrelevant for the level statistics, no such freedom exists for a random matrix theory of the
scattering matrix.

Two approaches are used to obtain a random matrix theory of the scattering matrix of
a chaotic quantum dot. The first approach is the “Hamiltonian approach”. It uses random
matrix theory for theM × M HamiltonianH of the closed quantum dot without leads,
and then constructs theN × N scattering matrixS(E) from H using a standard method in
scattering theory, known asR-matrix theory,

S(E) = 1 − i K

1 + i K
, K = W

1

E − H
W†. (1.2.9)

HereW is a non-randomN × M matrix containing the matrix elements between the states
of the sample without leads and the scattering states in the leads. All non-universalities that
have to do with the contacts are contained in the matrixW. Since the limitM → ∞ has
been taken for the random matrixH , the statistics of the finite-dimensionalN × N scat-
tering matrixSdoes not depend on the precise distribution ofH : it is universal. A review
of the Hamiltonian approach can be found in Ref. [19]. Verbaarschot, Weidenm¨uller, and
Zirnbauer [20] have mapped the Hamiltonian approach to the zero-dimensional supersym-
metric non-linearσ model of Efetov [15], which in turn has been derived from microscopic
models [15,17].

The second approach is the “scattering matrix approach”. It consists of a random ma-
trix theory which applies directly to the scattering matrixS, without the intermediate use
of a Hamiltonian. In contrast to the Hamiltonian approach, where the distribution ofH is
irrelevant, in the scattering matrix approach the details of the distribution ofS are impor-
tant. Blümel and Smilansky [21] have proposed that scattering from a chaotic quantum dot
with ballistic point contacts is described by the circular ensemble,

P(S) = constant, (1.2.10)

whereS is only restricted by symmetry (S is symmetric forβ = 1 and self-dual forβ = 4).
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Baranger and Mello [22], and Jalabert, Pichard, and Beenakker [23] have investigated
the consequences of Eq. (1.2.10) for quantum transport. For this purpose, the polar decom-
position of the scattering matrix is used,

S =
(

u 0

0 v′

)( √
1 − T i

√
T

i
√
T

√
1 − T

)(
u′ 0

0 v

)
, (1.2.11)

whereu, u′, v, andv′ areN × N unitary matrices andT is a diagonal matrix. In the pres-
ence of time-reversal symmetry, we haveu∗u′ = 1, v∗v′ = 1. The (diagonal) elementsTj

( j = 1, . . . , N) of T are the eigenvalues oft t†. They are called transmission eigenvalues.
In terms of the transmission eigenvalues, the Landauer formula for the conductance reads

G = 2e2

h

N∑
j =1

Tj . (1.2.12)

The distribution of the transmission eigenvaluesTj is found from the jacobian between the
volume elementsdS on the one hand anddu, dv, du′, dv′, and

∏N
j =1 dTj on the other

hand,

dS= du dv du′ dv′ ∏
i< j

|Ti − Tj |β
N∏

j =1

T−1+β/2
j dTj . (1.2.13)

(Forβ = 1 and 4 the volume elementsdu′ anddv′ are absent due to the symmetry restric-
tion u∗u′ = 1, v∗v′ = 1.) Hence we may write

P(T1, . . . , TN) =
∏
i< j

|Ti − Tj |β
N∏

j =1

T−1+β/2
j

= exp


β∑

i< j

ln |Ti − Tj | − β

N∑
j =1

V(Tj )


 , (1.2.14)

where the potentialV(T) reads

V(T) =
{

2−β
2β ln T if 0 ≤ T ≤ 1,

∞ otherwise.

The formal analogy between distribution (1.2.14) of transmission eigenvalues for a chaotic
quantum dot and the distribution of the eigenvaluesEj (1.2.3) of a random hermitian ma-
trix allows one to apply the machinery developed for the study of energy levels of random
Hermitian matrices to the problem of transmission eigenvalues. The essential difference
between Eqs. (1.2.3) and (1.2.14) is that the former makes sense for large matrices only,
while the latter is appropriate for any finite numberN of transmission eigenvalues, includ-
ing N = 1.
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Figure 1-5. Magnetoconductance for a quantum dot shaped like a “stomach” (left) for two different

values of the Fermi wavevector k. The width of the point contacts is 0.21µm, corresponding to

N = 7 propagating modes in the point contacts for the upper curve and N = 6 for the lower one.

The conductance shows universal fluctuations as a function of the magnetic field B and the Fermi

wavevector k. Due to weak localization, the ensemble averaged conductance shows a minimum at

B = 0. For the lower curve, the minimum at B = 0 is obscured by the conductance fluctuations,

which have the same magnitude. [Figure taken from M. W. Keller et al., Phys. Rev. B 53, 1693

(1996).]

For single-mode leads, there is only one transmission eigenvalueT = (h/2e2)G with
distribution

P(T) = (β/2)T−1+β/2 (1.2.15)

The conductance distribution is highly non-Gaussian. For many-mode leads, an approach
similar to that for the analysis of spectral correlations of large Hermitian random matrices
is taken. One thus finds that the conductance distribution is a Gaussian, with mean and
variance given by

〈G〉 = 2e2

h

[
N

2
+ β − 2

4β
+ O(N−1)

]
, varG = e4

2βh2
. (1.2.16)

The leadingO(N) term of〈G〉 is the “classical” conductance: classically, only half of the
electrons entering the chaotic quantum dot is transmitted, which accounts for an average
transmission 1/2 per mode. TheO(N0) corrections to the average conductance and the
conductance fluctuations are signatures of quantum transport. TheO(N0) correction to
〈G〉 is known as the weak localization correction. It is a quantum interference contribution
due to the constructive interference of time-reversed paths which slightly enhances the
reflection probability. A magnetic field destroys the interference, and thus destroys the
weak localization correction to the conductance.
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1.3 Random matrix theory of a disordered wire

The Wigner-Dyson random matrix theory does not apply to a disordered wire, because the
particles do not have the time to explore the complete phase space of the wire ergodically
before they exit. However, in a wire that is much longer than wide, electron motion is still
ergodic in the transverse direction. The transverse ergodicity allows for a random matrix
theory of transport through a disordered wire.

As in the case of the chaotic quantum dot, two approaches can be taken: A Hamil-
tonian approach and a scattering matrix approach. The Hamiltonian approach is mapped
onto the one-dimensional supersymmetric nonlinearσ model of Efetov and Larkin [24],
the scattering matrix approach takes the form of a one-dimensional scaling theory for the
transmission eigenvalues of the scattering matrix, derived by Dorokhov [25] and Mello,
Pereyra, and Kumar [26]. (For later derivations, see Refs. [27–30].) In both approaches,
we may think of the the wire as being built from many weakly disordered slices. If many
of these building blocks are put together to form a wire, a central limit theorem ensures
universality of the transport properties of the wire, irrespective of the precise microscopic
properties of the building block.

1.3.1 Scaling equation for the transmission eigenvalues

The idea behind the scaling equation for the transmission eigenvaluesT1, . . . , TN of a
disordered wire is that they execute a “Brownian motion” as the length of the wire is
increased. The Fokker-Planck equation for this Brownian motion process is known as
the Dorokhov-Mello-Pereyra-Kumar (DMPK) equation.

For the derivation of the DMPK equation, the disordered wire is built from many
weakly disordered slices and connect them by ideal leads. Weak disorder meansλF � `,
where` is the mean free path andλF the Fermi wavelength. The slices are so thick that
they can be regarded as macroscopic (thicknessδL � λF ), and so thin that they are only
weakly scattering (δL � `). The wire hasN propagating modes at the Fermi level. The
ideal leads between the slices are necessary for a description in terms of scattering ma-
trices. We now add one extra slice to such a disordered wire (Fig. 1-6) and consider the
corresponding change of the transmission eigenvalues.

Let S1 be the scattering matrix of a disordered wire before the slice is added and letS2

be the scattering matrix of the slice (see Fig. 1-6). The corresponding transmission and
reflection matrices are labeled by a subscript 1 or 2.

We denote the scattering matrix of the total system byS. To find the transmission eigen-
values ofS, it is sufficient to consider its reflection matrixr . [The transmission eigenvalues
Tn (n = 1, . . . , N) are the eigenvalues of 1− rr †.]

For an ensemble of disordered wires, the scattering matricesS1 andS2 are statistically
independent. In Refs. [29], an ansatz for the statistical distribution of the reflection matrix
r2 of the slice is proposed,

〈(r2)mn〉 = O(δL)2,
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S
1

S
2

Figure 1-6. A thin slice (with scattering matrix S2) is added to a disordered wire (with scattering

matrix S1).

〈(r2)kl(r2)
∗
mn〉 = βδL

(βN + 2 − β)`

(
δkmδln + 2 − β

β
δknδlm

)
+ O(δL)2. (1.3.1)

(For β = 4, the complex conjugate should be replaced by the hermitian conjugate of a
quaternion.) This ansatz is known as the Equivalent channel model. It also follows from a
microscopic model for a disordered wire, which is explained in Sec. 1.3.3. In order to find
the transmission eigenvaluesT1, . . . , TN of S, we use the polar decomposition (1.2.11) for
S1, and the composition rule (1.1.10). We then find

u†
1rr †u1 = ww†, w = √

1 − T1 −√
T1

(
1 − r̃2

√
1 − T1

)−1
r̃2

√
T1, (1.3.2)

wherer̃2 = v1r2v
′
1 andT1 is the diagonal matrix of transmission eigenvalues correspond-

ing to S1. The distribution ofr̃2 is the same as that ofr2, because the distribution ofr2

is invariant under transformationsr2 → wr2w
′ with unitaryw andw′ (w′w∗ = 1 for

β = 1, 4). We expand Eq. (1.3.2) in powers ofr̃2 and apply second order perturbation
theory to find the incrementδTn of the transmission eigenvalues. The average overr2

yields

`

〈
δTn

δL

〉
= −Tn + 2Tn

βN + 2 − β


1 − Tn + β

2

∑
m6=n

Tn + Tm − 2TnTm

Tn − Tm


 ,

`

〈
δTnδTm

δL

〉
= δmn

4T2
n (1 − Tn)

βN + 2 − β
. (1.3.3)

It then follows from the general theory of Brownian motion [32] that the probability dis-
tribution P({Tj }) of the transmission eigenvaluesT1, . . . , Tn of the disordered wire obeys
the Fokker-Planck equation

∂P({Tj })
∂L

=
N∑

n=1

∂

∂Tn

(
−
〈
δTn

δL

〉
P + 1

2

N∑
m=1

∂

∂Tm

〈
δTnδTm

δL

〉
P

)

= 2

`(βN + 2 − β)

N∑
n=1

T2
n
∂

∂Tn
(1 − Tn)J({Tj }) ∂

∂Tn

P({Tj })
J({Tj }) , (1.3.4)

J({Tj }) =
∏
k<l

|Tk − Tl |β. (1.3.5)
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This is the DMPK equation. Usually, it is written down in terms of parametersλj =
1/Tj − 1. (The parametersλj are natural in a transfer-matrix approach.)

The study of the DMPK equation has developed into a field of its own. For a compre-
hensive review, the reader is referred to Ref. [5]. For a thick wire (N � 1), there are three
characteristic regimes: the ballistic regimeL <∼ `, the diffusive regimè <∼ L <∼ ξ , and the
localized regimeL >∼ ξ (ξ = βN` is the localization length).

• The ballistic regime is not very interesting. All transmission eigenvalues are close to
1, and the conductanceG ' 2e2N/h. The conductance fluctuations are small [varG
is of relative order(`/L)2].

• In the diffusive regimè <∼ L <∼ ξ the density of transmission eigenvalues of bi-
modal,

〈ρ(T)〉 ' N`

LT(1 − T)1/2
. (1.3.6)

Approximately a fractioǹ /L of the transmission eigenvalues is close to 1, the re-
mainder being close to 0. Statistical properties of the conductance are commonly
expressed in terms of a large-N expansion. The conductance distribution is Gaus-
sian, with mean and variance given by

〈G〉 = 2e2

h

(
N`

L
+ β − 2

3β
+O(N−1)

)
, varG =

(
2e2

h

)2
2

15β
+ O(N−1).

(1.3.7)
TheO(1) contribution to the average conductance is the weak localization correc-
tion [33, 34]. It is called “weak” because it is small compared to the leadingO(N)
term, and “localization” because it is a negative correction to the conductance (for
β = 1; for β = 4 the name “weak anti-localization” is more appropriate). Both the
weak localization correction and the variance of the conductance [35,36] are univer-
sal, since they depend on the symmetry indexβ, and on the fundamental constants
e andh only, and not on the sample-specific parametersN, `, andL. Weak local-
ization and universal conductance fluctuations are signatures of quantum transport.
Weak localization is due to constructive interference of time-reversed paths, and is
destroyed if time-reversal symmetry is broken by a magnetic field. Conductance
fluctuations are also caused by interference of Feynman paths, but no intuitive pic-
ture exists. (Similar universal quantum interference effects are found for a chaotic
quantum dot in with many-mode point contacts, see Sec. 1.2.)

• In the localized regime, all transmission eigenvalues are exponentially small. The
conductanceG is determined by the largest transmission eigenvalueT1. It is found
that logT1 has a Gaussian distribution with mean−2L/ξ and variance 4L/ξ . Hence
the distribution of the conductance is log-normal,

−〈ln(hG/2e2)〉 = (1/2)var[ln(hG/2e2)] = 2L/ξ. (1.3.8)
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For the distribution of the conductance in the diffusive regime, the DMPK equation
merely confirms results that were already known from diagrammatic perturbation the-
ory [33–36]. The advantage of the DMPK equation is that it gives access to the complete
distribution of transmission eigenvalues. This is important for other transport properties,
like the shot noise power [37] or the conductance of a normal sample with one supercon-
ducting contact (see next section). The DMPK equation is the natural theoretical tool for
the description of the log-normal conductance distribution in the localized regime.

1.3.2 Distribution of the unitary matrices in the polar decomposition

The DMPK equation describes the distribution of the transmission eigenvaluesT1, . . . ,TN

of a disordered wire. For some applications, it is not sufficient to know the distribution the
transmission eigenvalues; we also need the unitary matricesu, u′, v, andv′ that appear in
the polar decomposition of the scattering matrix. Little is known about their distribution.
Here we investigate the consequences of the equivalent-channel assumption (1.3.1) for
their distribution.

Consider the polar decomposition of the scattering matrixS2 of the thin slice,

S2 =
(

u2 0

0 v′
2

)( √
1 − T i

√
T

i
√
T

√
1 − T

)(
u′

2 0

0 v2

)
, (1.3.9)

For β = 1, 4 we haveu∗
2u′

2 = v∗
2v

′
2 = 1. The distribution (1.3.1) implies that for a thin

slice — after integration overv2 andv′
2 — the unitary matricesu2 andu′

2 are uniformly
distributed in the unitary group, independent of the transmission eigenvalues. This turns
out to be true for wires of arbitrary length. To see, we use induction. We assume that the
uniform distribution ofu andu′ is true for the scattering matricesS1 and S2 of the wire
and the slice separately, and then show that it holds for the scattering matrixS of the total
system. If we add the slice on the right side, we find

r = r2 + t ′2(1 − r1r ′
2)

−1r1t2. (1.3.10)

In terms of the polar decompositions ofS1 andS2, we have

r = u2

√
1 − T2v2 − u2

√
T2

(
1 − w1

√
1 − T1w

′
1

√
1 − T2

)−1
w1

√
1 − T1w

′
1

√
T2v2,

(1.3.11)
wherew1 = v2u1 andw′

1 = u′
1v

′
2. Sinceu1 andu′

1 are uniformly distributed,w1 andw′
1 are

so too. As the scattering matricesS1 andS2 are independently distributed, the distribution
of r is invariant under transformationsr → uru′, which proves the uniform distribution of
the matricesu andu′ for the polar decomposition ofS.

In their original paper, Mello, Pereyra, and Kumar [26] assumed that all four unitary
matricesu2, u′

2, v2, andv′
2 from the polar decomposition of the scattering matrix of the

thin slice are uniformly distributed in the unitary group (only restricted by symmetry). This
much stronger assumption is known as the isotropy assumption. For the results presented
in this thesis, the isotropy assumption is not necessary; it is sufficient to use the equivalent
channel assumption (1.3.1) of Mello and Tomsovic [29].
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1.3.3 Microscopic model

Dorokhov [31] has formulated a microscopic model for which the statistical distribution
of the reflection matrix of a thin slice is given by Eq. (1.3.1). In this model, the wire is
modeled byN parallel one-dimensional chains. The disorder is modeled by a Gaussian
white noise potential that admits inter-chain hopping. The wavefunction is represented by
a vectorψn(x), and the Hamiltonian reads

Hψn(x) = −h̄2

2m
E∇2ψn(x)+ kh̄2

2m

∑
m

unm(x)ψm(x) = Eψn(x). (1.3.12)

Here the wavenumberk = 2π/λF is defined throughE = h̄2k2/2m and unm(x) is a
random disorder potential with a Gaussian distribution with zero mean and with variance

〈ukl(x)umn(x
′)〉 = 4

`N
δ(x − x′)

[
δknδlm + 2 − β

β
δkmδln

]
, (1.3.13)

where` is the mean free path. The matrixu(x) consists of real (complex, quaternion)
numbers forβ = 1 (2, 4). We now consider a thin disordered slice which lies between
x = 0 andx = δL, whereλF � δL � `. Up to second order Born approximation we find
for the reflection matrixr of this thin slice

rmn = i
∫ δL

0
dxumn(x)e

2ikx −
N∑

l=1

∫ δL

0
dx
∫ δL

0
dx′eikx′

uml(x)uln(x
′)eikxeik|x′−x|.

The first two moments ofr are computed using the Gaussian white noise distribution ofu.
After integration over rapidly oscillating terms, we find

〈rmn〉 = 0,

〈rklrmn〉 = 0,

〈rklr
∗
mn〉 = βδL

`(βN + 2 − β)

(
δkmδln + 2 − β

β
δknδlm

)
,

This is precisely the distribution of Eq. (1.3.1).

1.4 Normal-metal–superconductor junctions

Being the result of interference between (quantummechanical) waves, signatures of quan-
tum transport are strongly dependent on boundary conditions. Any agent that modifies the
boundary conditions, also modifies the phases of the electrons and thus rearranges the in-
terference pattern. An example is the Aharonov-Bohm effect, where the conductance of
a mesoscopic ring depends sensitively on the amount of flux through the ring, while the
magnetic field in the metal itself is zero. The flux through the ring modifies the phase of
the electrons, but does not change their classical motion.
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A more fundamental change of boundary conditions is caused by the presence of a su-
perconducting contact. At the normal-metal–superconductor (NS) interface, the dissipative
electrical current in the normal metal is converted to a dissipationless supercurrent by the
mechanism of Andreev reflection [38]. Andreev reflection is special, because in addition to
a modification of phases, it also couples the motion of electrons (occupied states at an en-
ergyε above the Fermi level) and holes (vacancies at energyε below the Fermi level). The
interplay between Andreev reflection at the normal-metal–superconductor interface and the
quantum interference inside the normal metal results in new and unexpected signatures of
quantum transport [39].

In this section, we briefly discuss the scattering theory of Andreev reflection. The
advantage of the scattering theory is that it allows us to relate transport properties of hybrid
normal-metal–superconductor structures to the scattering matrix of the normal metal only.
In this way we can directly apply our results for the statistical distribution of the scattering
matrix of a normal metal chaotic quantum dot or a disordered wires to mesoscopic samples
with a superconducting contact.

1.4.1 Andreev reflection

The microscopic equation for a system with both normal metals and superconductors is
the Bogoliubov-De Gennes equation [40]. It has the form of two coupled Schr¨odinger
equations for the electron and hole wavefunctionsu(Er ) andv(Er ),(

H0 1(Er )
1∗(Er ) −H ∗

0

)(
u(Er )
v(Er )

)
= ε

(
u(Er )
v(Er )

)
. (1.4.1)

Electrons are occupied states at an energyε above the Fermi levelEF , holes are empty
states at an energyε below EF . The operatorH0 is the single-electron Hamiltonian and
1(Er ) is the pair potential, which is determined by the self-consistency equation

1(Er ) = g(Er )
∑
ε>0

v∗(Er )u(Er )[1 − 2 f (ε)] (1.4.2)

whereg is the BCS interaction constant andf (ε) is the Fermi function. In the normal
metal, g = 0 and hence1 = 0. At the superconducting side of the interface,1(Er )
approaches its bulk value10eiφ only at a finite distance from the interface. Here, we
neglect the suppression of1 near the interface, and use a step-function model for1(Er ).
This is allowed for junctions between a normal metal and a superconductor that consists of
a point contact or a tunnel barrier [41]. In this approximation, the Bogoliubov-De Gennes
equation reduces to a simple scattering problem for the electrons and holes in the normal
metal.

For a scattering theory of Andreev reflection, we consider a normal-metal–supercon-
ductor (NS) interface as shown in Fig. 1-7. The normal metal on the left is an ideal lead with
N propagating modes at the Fermi level. The pair potential vanishes in the normal metal,
so that the solution of the Bogoliubov-de Gennes equation consists of separate plane waves
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Figure 1-7. Schematic drawing of an NS interface. At the interface, an electron coming from N

(solid arrow) is retroreflected as a hole (dashed). At the same time, a Cooper pair is added to the

superconducting condensate. The normal metal side of the interface is connected to an ideal lead,

where the wavefunctions for the electrons and the holes are given by incoming and outgoing plane

waves.

for the electrons and the holes. Proceeding as in Sec. 1.1, where we discussed the scattering
theory for normal metals, we denote the amplitudes of the incoming and outgoing electron
and hole waves withcie

n , coe
n , cih

n , andcoh
n (n = 1, . . . , N). At the superconducting side

of the interface, no propagating solutions of the Bogoliubov-de Gennes equation exist for
excitation energiesε < 10.

In the limitε � 1, EF , the appropriate solution of the Bogoliubov-de Gennes equation
leads to the 2N × 2N scattering matrixSA for Andreev reflection [42]

(
coe

coh

)
= SA(ε)

(
cie

cih

)
, SA(ε) = −i

(
0 eiφ

e−iφ 0

)
. (1.4.3)

An electron coming from the normal metal is reflected as a hole and vice versa. The total
charge in the process of Andreev reflection is conserved by the addition of a Cooper pair to
the superconducting condensate. If the NS interface is non-ideal (e.g. if it contains a tunnel
barrier), the scattering matrixSA also contains diagonal blocks.

The scattering matrixSA has an electron-hole (e-h) grading. If we want to consider the
scattering properties of a system that contains both a normal metal (e.g. a chaotic quantum
dot or a disordered wire) and a superconductor, it is necessary to extend the notation with
e-h graded scattering matricesS to the normal metal. Since electrons and holes do not
interact in a normal metal, the scattering matrixSN(ε) for normal scattering of electrons
and holes is block diagonal,

SN(ε) =
(

S(ε) 0

0 S(−ε)∗
)
. (1.4.4)

The matrixS(ε) is the well-known scattering matrix for a normal metal sample with two
normal contacts. Holes, being the time-reversed particles of electrons, are described by the
complex conjugate scattering matrixS(−ε)∗. The off-diagonal blocks ofSN are zero.
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1.4.2 Conductance of an NS junction

What is the conductance of a normal metal with one normal and one superconducting con-
tact? At the normal-metal–superconductor interface, electron are reflected as holes, so that
charge is transported in units of 2e. Hence, if the transmission of the normal metal is
perfect, the replacement of one normal contact by a superconductor doubles the conduc-
tance. (The conductance is 4e2/h per propagating mode, compared to 2e2/h for normal
contacts.) The problem is more complicated if the normal metal is resistive. The com-
plication arises, because in order to contribute to the conductance, both the electron and
the Andreev-reflected hole must pass through the resistive metal. A simple estimate for
the conductanceGNS of an NS junction is that the effective length of the resistive normal
metal is multiplied by a factor two,

GNS(L) = 2GN(2L). (1.4.5)

For a disordered junction (GN(L) ∝ 1/L), the increase of the effective length essentially
compensates the extra factor two due to the doubling of the charge quantum.

The simple estimate (1.4.5) does not take quantum interference into account. Lam-
bert [43] and Takane and Ebisawa [44] have derived a generalization of the Landauer for-
mula for the differential conductanceGNS = d I/dV of a normal-metal–superconductor
junction, that admits a complete phase-coherent treatment of the transport problem. Their
conductance formula relatesGNS to an off-diagonal block of thee-h graded scattering
matrix S of the NS junction

GNS(V) = 4e2

h
tr Seh(eV)Seh†(eV). (1.4.6)

It remains to compute the scattering matrixS from the individual scattering matrices
SN andSA for the normal metal and the NS interface. This was done by Beenakker [42] for
the general setup shown in Fig. 1-8. The system consists of a normal metal sample, with
scattering matrixS(ε). The normal sample is connected two ideal leads withN propagating
modes each. The left lead is coupled to a normal reservoir, the right one is coupled to a
superconductor. The 2N × 2N reflection and transmission matrices of the normal metal
also have an electron-hole grading,

r (ε) =
(

r (ε) 0

0 r (−ε)∗
)
, t(ε) =

(
t (ε) 0

0 t (−ε)∗
)

etc. (1.4.7)

Then the 2N × 2N scattering matrixSof the complete system follows from a composition
rule similar to Eq. (1.1.10),

S(ε) = r (ε)+ t ′(ε)
[
1 − SA(ε)r ′(ε)

]−1 SA(ε)t(ε). (1.4.8)

Substitution of Eq. (1.4.8) into the general conductance formula (1.4.6) yields

GNS(V) = 4e2

h
tr mm†, m = t (−eV)∗

(
1 + r (eV)r (−eV)∗

)−1
t ′(eV). (1.4.9)
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Figure 1-8. Normal metal sample (dotted) connected to two ideal leads. One lead is coupled to

a superconductor. The system is described by two scattering matrices, SN and SA , for scattering

from the normal metal sample and from the normal-metal–superconductor interface, respectively.

If the applied biaseV is much less than the inverse dwell time in the normal metal, we may
neglect the difference betweenS(eV) and S(−eV). If in addition, there is no magnetic
field, one finds that Eq. (1.4.9) simplifies considerably [42],

GNS = 4e2

h

N∑
n=1

T2
n

(2 − Tn)2
. (1.4.10)

The conductance depends on the transmission eigenvaluesTn of the normal metal only.
For nonzero excitation energy or in the presence of a magnetic field no such simplification
occurs; the conductance of the NS junction depends on the entire scattering matrix of the
normal metal.

Remarkably, for a disordered NS junction, the conductance formula (1.4.9) turns out
to agree precisely with the simple estimate (1.4.5) up to small corrections of ordere2/h.
This phenomenon is commonly referred to as “reentrant superconductivity”, because the
equality ofGN andGNS that is implied by Eq. (1.4.5) is true for high temperatureskT �
h̄vF`/L2 and T = 0, but not for intermediate temperatures 0<∼ kT <∼ h̄vF`/L2. Eq.
(1.4.5) is not valid for quantum interference effects (weak-localization, conductance fluc-
tuations), which can be found from a complete quantummechanical treatment only.

The advantage of the formulation in terms of the scattering matricesSN andSA is that
it allows us to separate the contributions from the normal metal and the superconductor.
We can use the same scattering matrixS(ε) for applications to transport through a normal
metals with or without superconducting contacts. In this way, transport properties of NS
junctions can be obtained without much extra work, once the problem is solved for the
normal metal without the superconducting contact.

1.5 This thesis

In this thesis, we consider the microscopic justification of the random matrix theory of
quantum transport as well as applications to chaotic quantum dots, disordered wires, and
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normal-metal–superconductor junctions.
The Chapters 2–4 are about the random matrix theory of chaotic quantum dots. The

equivalence between the scattering matrix approach and the Hamiltonian approach for
quantum transport through chaotic quantum dots is established. In view of the equiva-
lence of the Hamiltonian approach and the microscopic theory, this provides a microscopic
justification of the random scattering matrix approach to chaotic scattering. In Ch. 2, we
address the distribution of the scattering matrix, a model for dephasing is discussed in Ch.
3, and Ch. 4 deals with the dependence on external parameters, such as the Fermi energy or
the magnetic field. The random matrix theory of a disordered wire is studied in Chapter 5.
We prove that the one-dimensional nonlinearσ -model and the Dorokhov-Mello-Pereyra-
Kumar equation are equivalent. This completes the microscopic justification of the random
matrix theory of quantum transport. In chapter 6, a diagrammatic technique for integra-
tion over the unitary group is developed. The diagrammatic technique is an important
tool for the computation of transport properties in the scattering matrix approach. Finally,
Chapter 7 contains applications to hybrid normal-metal–superconductor structures. We
use the diagrammatic technique of Ch. 6 to compute the weak-localization correction to
the conductance and the conductance fluctuations. Below a brief introduction to each of
the chapters is given.

Chapter 2: Chaotic quantum dots with non-ideal leads.

In Sec. 1.2 we discussed the two approaches for the random matrix theory of quantum
transport through chaotic quantum dots. In the Hamiltonian approach, the scattering matrix
is computed from the random HamiltonianH of the closed quantum dot and a non-random
matrix W that describes the overlap between the states inside the quantum dot and the
scattering states in the leads. In the scattering matrix approach, the scattering matrixS
itself is a random matrix, drawn from the circular ensemble of random matrix theory. The
validity of the Hamiltonian approach has been established through a mapping onto the zero-
dimensional nonlinearσ -model [20], which in turn has been derived from microscopic
theory [15, 17]. We establish the validity of the circular ensemble by deriving it from the
Hamiltonian approach, building on earlier work by Lewenkopf and Weidenm¨uller [45].

The advantage of the circular ensemble is that is conceptually simpler than the Hamil-
tonian approach, which requires aσ -model formulation for actual calculations [20]. Its
limitation, however, is that the circular ensemble is appropriate for chaotic quantum dots
with ideal ballistic point contacts (ideal leads) only. The Hamiltonian approach, on the
other hand, can also describe tunneling point contacts (non-ideal leads).

In Sec. 2.1 we consider the special case of a quantum dot with two single-mode point
contacts. The point contacts contain tunnel barriers. We describe the system consisting of
the chaotic quantum dot and the tunnel barriers by three separate scattering matrices. The
scattering matrixSd of the chaotic cavity is taken from the circular ensemble,

P(Sd) = constant, (1.5.1)

while the scattering matricesSb of the tunnel barriers are fixed. To obtain the scattering
properties of the total system we change to a transfer matrix formulation. We multiply the
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Figure 1-9. (a) A chaotic quantum dot with ballistic point contacts and leads containing tunneling

point contacts. The scattering matrix Sd of the quantum dot is taken from the circular ensemble, the

scattering matrices Sb of the tunnel barriers are fixed. (b) A quantum dot with a voltage probe. The

voltage probe is an extra lead that is coupled to a reservoir, of which the potential V is adjusted in

such a way, that the current I through the voltage probe is zero.

transfer matricesMd andMb of the dot and the barriers, respectively, and find the transfer
matrix M of the total system.

M = MbMd Mb. (1.5.2)

The resulting distribution of the conductanceG agrees completely with previous work of
Prigodin, Efetov, and Iida [48], who used theσ -model formulation of the Hamiltonian
approach.

For the general case of aN× N scattering matrix, we take a slightly different approach.
Starting point is that the direct scattering from the tunnel barriers results in a nonzero value
of the ensemble averaged scattering matrixS̄. It is convenient to adopt̄S as a measure
for the non-ideality of the leads [46]. Mello, Pereyra, and Seligman [47] derived an ex-
tension of the circular ensembles with a nonzero value ofS̄. Requiring analycity of the
scattering matrix in the upper half of the complex plane, ergodicity (energy average equals
ensemble average), and maximum information entropy of the distribution, they arrived at
a distribution known as the Poisson kernel [49],

PS̄(S) ∝ ∣∣det(1 − S̄†S)
∣∣−(βN+2−β)

. (1.5.3)

The use of the maximum entropy principle is necessary, because the Poisson kernel is not
the only ensemble with nonzerōS that obeys the analycity and ergodicity requirement.

In Sec. 2.2, we derive the Poisson kernel from the Hamiltonian approach, thus provid-
ing a microscopic justification of the Poisson kernel for scattering from a chaotic quantum
dot. For technical reasons, we replace the Gaussian distribution for theM × M random
HamiltonianH of the quantum dot by a Lorentzian one,

P(H) ∝ det
(
λ2 + (H − ε)2

)−(βM+2−β)/2
. (1.5.4)

(The parameterλ governs the mean level spacing atE = 0.) The replacement of the
Gaussian distribution by the Lorentzian distribution is allowed, because in the limitM →
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∞ the scattering matrix distribution does not depend on the precise distribution ofH .
We finally show that the Poisson kernel also agrees with the approach of Sec. 2.1, where
separate scattering matrices for the tunnel barriers are combined with a uniform distribution
of scattering matrices for the quantum dot.

Chapter 3: Dephasing in quantum dots.

The quantummechanical phase of the electrons is only conserved for some finite timeτφ,
the dephasing time. Dephasing may be caused by electron-electron interactions, or by
interactions with external sources (radiation, fluctuations of gate voltages, etc.) For a com-
parison between theory and experiment, it is necessary to know how dephasing affects the
signatures of quantum transport. The dephasing timeτφ can be measured from the weak
localization correctionδG, sinceδG is unaffected by thermal smearing (see Fig. 1-10).

A controlled way to introduce dephasing is to attach a voltage probe to the sample [50].
A voltage probe is an extra lead, coupled to an electron reservoir of which the potential
is chosen such that no current is drawn (see Fig. 1-9b). Although a voltage probe draws
no current, it destroys phase coherence, because it allows electrons to temporarily exit the
sample, and loose their phase memory in the reservoir.

In Sec. 3.1, we consider the effect of such a voltage probe on the phase-coherent con-
ductance of a chaotic quantum dot with two single-mode leads. We start from a situation
where a voltage probe with one propagating mode is coupled to the quantum dot by means
of a high tunnel barrier. In this limit, phase coherence is not affected. The conductance
distribution is highly non-Gaussian [cf. Eq. (1.2.15)]. We slowly increase the amount of
dephasing by first decreasing the reflection of the tunnel barrier, and then increasing the
number of modesN in the voltage probe. If the voltage probe contains many modes, phase
coherence is completely destroyed, and the conductance distribution becomes a delta func-
tion around the classical valuee2/h.

Can we use a voltage probe as a model for real dephasing in a quantum dot? For
a voltage probe with only a few modes, the answer is clearly no, because (1) it allows
for integer dephasing rates only and (2) dephasing occurs uniformly in space, while the
dephasing caused by the voltage probe is restricted to a very small space. The introduction
of a tunnel barrier (with transparency0) in the voltage probe cures the first problem, but
causes a new one: we now have two model parameters (0 andN) to describe dephasing,
while dephasing is characterized by a single dephasing timeτφ only.

A different way to treat dephasing is used in the Hamiltonian approach [51, 52]. Here,
a spatially uniform absorbing potential, which removes particles from the phase coherent
motion in the quantum dot, is added to the Hamiltonian. The drawback of this “imaginary-
potential model” is that an absorbing potential does not conserve the particle number.

In Sec. 3.2 both approaches are reconciled. A new version of the voltage probe model
is presented that does not suffer from the problems sketched above. It consists of a voltage
probe with many propagating channels (N � 1), and with a high tunnel barrier (0 � 1),
such that the productγ = N0 is finite. The parameterγ is related to the dephasing rate and
the mean level spacing1, γ = h/τφ1. We show that the new version of the voltage probe
model is consistent with the Hamiltonian approach: For a chaotic quantum dot, the escape
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Figure 1-10. Ensemble-averaged magnetoconductance 〈G(B)〉 for a quantum dot with two single-

mode point contacts (inset). The reduction of 〈G(B)〉 near B = 0 is due to weak localization. The

reduction is destroyed if time-reversal symmetry is broken by a weak magnetic field. The size of

the weak-localization correction is affected by dephasing, but not by thermal smearing. Therefore,

weak localization can be used to measure the dephasing time τφ . [Figure taken from C. M. Marcus

et al., Chaos, Solitons & Fractals, to be published.]

of particles through a tunneling point contact withN → ∞ and0 → 0 is rigorously
equivalent to the absorption by a spatially uniform imaginary potential.

Chapter 4: Time delay in chaotic scattering.

This chapter deals with the dependence of the scattering matrix on the energyE and on
another external parameterX, like the shape of the quantum dot or the magnetic field.

In the random Hamiltonian approach to chaotic scattering, the energy dependence of
the scattering matrix follows manifestly from Eq. (1.2.9), while the dependence on the
external parameterX is modeled through the random Hamiltonian [53]

H(X) = H0 + X H1, (1.5.5)

whereH0 and H1 are both taken from the Gaussian ensemble. The scale for the external
parameterX is not universal. Equivalently, theX-dependence of the energy levels and
eigenvectors of can be described through a Brownian motion model for the random Hamil-
tonian H(X) [54, 55]. The drawback of the Hamiltonian approach is that calculations —
which as before require a mapping to the zero-dimensional nonlinearσ -model — are even
more complicated than for the parameter-independent statistics of the scattering matrix.
On the other hand, in the random scattering matrix approach, no successful model for the
energy and magnetic field dependence ofS is known. A Brownian motion model for the
parameter-dependence of unitary matrices proved unsuccessful [56–58].

In Sec. 4.1, we propose a new model for the energy-dependence ofS in the random
scattering matrix approach. (TheX-dependence ofS is considered in Sec. 7.3.) In this
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model, a fictitious stub (a closed lead) withNs propagating modes is attached to the quan-
tum dot. Scattering from the complete system, consisting of the cavity and the stub, is still
chaotic. We describe reflection at the closed end of the stub by anE- and X-dependent
reflection matrixrs(E, X). The scattering matrixU of the quantum dot with the stub re-
placed by a regular open lead has dimensionN + Ns, whereN is the number of modes
in the real point contacts. In our model, we takeNs � N and neglect theE and X de-
pendence ofU . Neglecting theE and X dependence ofU is allowed if Ns � N and if
the particles spend most of the time inside the stub. Scattering from the dot is chaotic, so
thatU is distributed according to the circular ensemble. Hence, we find that theN × N
scattering matrixS(E, X) reads

S(E, X) = Ull + Uls [1 − rs(E, X)Uss]
−1 rs(E, X)Usl, (1.5.6)

the matricesUi j being the four blocks ofU for transmission and reflection from and to
the stub (s) or the two leads (l). An important consequence of the model (1.5.6) is that
the probability distribution of the parameter dependent ensemble of scattering matrices
S(E, X) is invariant under transformations

S(E, X) → V S(E, X)V ′, (1.5.7)

whereV andV ′ are arbitrary unitary matrices that do not depend onE andX (V = VT for
β = 1 andV = VR for β = 4). A justification of Eq. (1.5.6) starting from the Hamiltonian
approach is given in appendix A of this chapter.

Eisenbud [59], Wigner [60] and Smith [61] have shown that the derivative∂S/∂E is
closely related to the time a particle spends inside the quantum dot after it is injected
through one of the point contacts, the so-called delay time. For the description of delay
times in a multichannel scattering problem, Smith introduced the hermitian time-delay ma-
trix Q = −i h̄S†∂S/∂E and showed that the time-delay for a particle entering in a given
mode j in the lead is given by the diagonal elementQj j . In Sec. 4.2 we compute the
entire distribution of time-delay matrixQ. We also compute the distribution of a the ma-
trix −i S†∂S/∂X parameterizing the derivative∂S/∂X. Our derivation builds on work by
Wigner [62] and Gopar, Mello, and B¨uttiker [63], and makes essential use of the invariance
property (1.5.7).

As applications, we consider the a.c. conductanceG(ω) of a chaotic quantum dot (Sec.
4.1) and the distribution of the parametric derivatives∂G/∂E and∂G/∂X of the conduc-
tance (Sec. 4.3).

Chapter 5: Localization in disordered wires.

There exist two approaches for the theory of localization in disordered wires: the one-di-
mensional nonlinearσ -model of Efetov and Larkin [24], and the scaling equation for the
transmission eigenvalues of Dorokhov [25] and Mello, Pereyra, and Kumar [26]. The one-
dimensional nonlinearσ -model has been derived in three different ways: From a micro-
scopic model with a Gaussian white noise potential [24], the block-random matrix model
of Iida, Weidenm¨uller, and Zuk [64], and from a band-random matrix approach [65].
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In this chapter, we construct a mapping between the two approaches, thus showing
that they are equivalent. This brings together two lines of research which have developed
independently for more than a decade.

Chapter 6: Diagrammatic technique for integration over the unitary group.

Now that we have established the validity of the scattering matrix approach to quantum
transport through chaotic quantum dots and disordered wires, we need the tools to com-
pute physical observables. A technical problem that arises both for quantum dots and for
disordered wires is the need to integrate rational functions of a unitary matrix. For chaotic
quantum dots, the unitary matrix is the scattering matrixS itself, while for the disordered
wire, the unitary matrix is the matrixu of the polar decomposition (1.2.11).

For a quantum dot with single-mode point contacts, or for a wire with only a few
propagating modes, the sizes of the unitary matrices are small. Then it is possible to use an
explicit parameterization of the unitary matrix (e.g. in terms of Euler angles), and find the
distribution of the conductance through a straightforward (but often tedious) integration.
This method is used in e.g. in Secs. 2.1 and 3.1.

However, if the sizeN of the unitary matrix is large, explicit parameterization is not
feasible. On the other hand, for applications in the regime of weak-localization and uni-
versal conductance fluctuations, an expansion in 1/N is sufficient. Examples of such 1/N
expansions are Eq. (1.2.16) and (1.3.7) for the average and variance of the conductance
of a quantum dot and a disordered wire, respectively. In this chapter we develop a dia-
grammatic technique for integration over the unitary group, that allows for a systematic
expansion in powers of 1/N.

As applications of the diagrammatic technique, we compute the average and variance
of the conductance of a quantum dot with non-ideal leads, using the Poisson kernel (see
Ch. 2). We also compute the average and variance of the conductance of a normal-metal–
superconductor junction. This application has some overlap with the next chapter.

Chapter 7: Normal-metal–superconductor junctions.

Numerical simulations by Marmorkos, Jalabert, and Beenakker [66] have revealed that the
variance of the conductance of a disordered normal-metal–superconductor (NS) junction
is independent of a magnetic field, up to the 10% accuracy of the numerical simulations
(see Fig. 1-11). This is remarkable, because in normal metals, varG is reduced by a factor
2 if time-reversal symmetry is broken by a magnetic field. The factor 2 reduction follows
from quite general principles of random matrix theory (the Dyson-Mehta theorem [67]), or
from symmetry considerations within diagrammatic perturbation theory (equal contribu-
tions from diffusons and cooperons [35,36]). No symmetry argument could be found why
the factor 2 should be a factor 1 in the presence of a superconductor.

An analytical theory for the conductance fluctuations in NS junction exists only for the
case that time-reversal symmetry is present (no magnetic field; symmetry indexβ = 1, 4)
[68]. In this case, the conductanceGNS depends entirely on the transmission eigenvalues
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Figure 1-11. Numerical simulation of the variance of the conductance of a disordered wire with

one normal and one superconducting contact (NS) or with two normal contacts (N). The variance

is computed at different values of the average conductance GN of the normal metal, and of the

magnetic field (+ for zero field, × for a flux of 10h/e through the disordered region). The dotted

lines are the analytical predictions from Eq. (1.3.7) and Eq. (1.4.10). No analytical prediction for the

case of a NS junction with a nonzero magnetic field is shown. The figure is taken from Ref. [66].

of the disordered wire [cf. Eq. (1.4.10)],

GNS = 4e2

h

N∑
n=1

T2
n

(2 − Tn)2
.

The case of broken time-reversal symmetry is more difficult, because thenGNS also de-
pends on the unitary matricesu, u′, v, andv′ from the polar decomposition of the scattering
matrix.

In this chapter, we present analytical calculations for the case of broken time-reversal
symmetry. Starting point is the general conductance formula (1.4.9). In addition to an
average over the transmission eigenvaluesTj , we need to average over the unitary matrices
u andu′ from the polar decomposition ofS. The diagrammatic technique of Ch. 6 was
developed to tackle this problem. For the variance of the conductance (Sec. 7.1), we find
that the effect of a magnetic field is about 7%. This is small enough to explain why the
difference was not observed in the numerical simulations of Ref. [66], and large enough
to tell that there is no need to look for a symmetry argument. Nevertheless, we found
an approximate symmetry argument which relates the conductance fluctuations in an NS
junction to those in a normal metal system with a spatial symmetry.

In Sec. 7.2, we consider weak localization in NS junctions. Here, weak localization is
defined as theO(1) termδG in the large-N expansion of the conductance,

G = G0 + δG + O(N−1). (1.5.8)
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Figure 1-12. Top right: Experimental setup for a measurement of sample specific phase dependent

conductance fluctuations of Den Hartog et al. [70]. A T-shaped microstructure is connected to two

ends of a superconducting ring. The flux 8 through the ring determines the phase difference φ =
2e8/h̄ between the two superconducting contacts. Top left: Magnetoresistance after subtraction

of a φ-independent background. The background resistance and the envelope of the oscillations

fluctuate as a random function of B. The large oscillations near B = 0 are not sample-specific.

They are due to the proximity effect (induced superconductivity in the normal metal), see e.g.

Ref. [69]. Bottom right: sample specific magnetoconductance oscillations data at T = 50mK.

The flux 8T indicates the flux through the T-shaped sample itself. Bottom left: Autocorrelation

function c(1B) = 〈R(B)R(B +1B)〉/〈R(B)〉2 for the phase dependent conductance oscillations of

the resistance trace shown in the upper left panel (solid line) and the correlation function for the

background resistance (dashed line). (Figure taken from Ref. [70])
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For normal metals,δG = 0 in the presence of a magnetic field. For a disordered NS
junction, we find thatδG 6= 0 even in the presence of a magnetic field. This anomalous
weak localization correction is caused by destructive interference of paths that differ an
even number of Andreev reflections. The weak localization correction is destroyed if both
a magnetic field and a finite bias are applied, to break both time-reversal symmetry and
electron-hole degeneracy.

In Sec. 7.3, we consider a chaotic quantum dot which is attached to two superconduc-
tors. The order parameters of the superconductors have a phase differenceφ. We calculate
the magnetic-field and phase-difference dependent conductance autocorrelator

C(δB, δφ) = 〈G(B, φ)G(B + δB, φ + δφ)〉 − 〈G〉2 (1.5.9)

using the diagrammatic technique of Ch. 6 and the stub-method of Ch. 4. These calcu-
lations are motivated by recent experiments of Den Hartog et al. [70], who measured the
φ- and B-dependence of the conductance in a T-shaped microstructure (see Fig. 1-12).
The horizonal arm of the T is connected to a superconducting ring, and the vertical arm is
connected to a normal electrode. The phase difference between the two superconducting
contacts is varied by changing the flux through the superconducting ring. Although our
calculations are performed for a different model (the T-shaped samples of Ref. [70] are not
chaotic), we find qualitative agreement with the experimental observations of Den Hartog
et al.
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2 Chaotic quantum dots with nonideal leads

2.1 Conductance distribution of a quantum dot with non-
ideal single-channel leads

An ensemble of mesoscopic systems has large sample-to-sample fluctuations in its trans-
port properties, so that the average is not sufficient to characterize a single sample. To
determine the complete distribution of the conductance is therefore a fundamental problem
in this field. Early work focused on an ensemble of disordered wires. (See Ref. 1 for a
review). The distribution of the conductance in that case is either normal or log-normal,
depending on whether the wires are in the metallic or insulating regime. Recently, it was
found that a “quantum dot” has a qualitatively different conductance distribution [2–4].
A quantum dot is a small confined region, having a large level spacing compared to the
thermal energy, which is weakly coupled by point contacts to two electron reservoirs. The
classical motion within the dot is assumed to be ballistic and chaotic. An ensemble consists
of dots with small variations in shape or in Fermi energy. The capacitance of a dot is as-
sumed to be sufficiently large that the Coulomb blockade can be ignored, i.e. the electrons
are assumed to be non-interacting. Two altogether different approaches have been taken to
this problem.

Baranger and Mello [3], and Jalabert, Pichard, and Beenakker [4] started from random-
matrix theory [5]. The scattering matrixSof the quantum dot was assumed to be a member
of the circular ensemble ofN × N unitary matrices, as is appropriate for a chaotic billiard
[6, 7]. In the single-channel case (N = 1), the distributionP(T) of the transmission
probabilityT [and hence of the conductanceG = (2e2/h)T ] was found to be

P(T) = 1
2βT−1+β/2, (2.1.1)

whereβ ∈ {1, 2, 4} is the symmetry index of the ensemble (β = 1 or 2 in the absence
or presence of a time-reversal-symmetry breaking magnetic field;β = 4 in zero magnetic
field with strong spin-orbit interaction). Eq. (2.1.1) was found to be in good agreement
with numerical simulations of transmission through a chaotic billiard connected to ideal
leads having a single propagating mode [3]. (The caseβ = 4 was not considered in Ref.
3.)

Previously, Prigodin, Efetov, and Iida [2] had applied the method of supersymmetry
to the same problem, but with a different model for the point contacts. They considered
the case of broken time-reversal symmetry (β = 2), for which Eq. (2.1.1) would predict a
uniform conductance distribution. Instead, the distribution of Ref. 2 is strongly peaked near
zero conductance. The tail of the distribution (towards unit transmission) is governed by
resonant tunneling, and is consistent with earlier work by Jalabert, Stone, and Alhassid [8]
on resonant tunneling in the Coulomb-blockade regime.
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It is the purpose of the present section to bridge the gap between these two theories,
by considering a more general model for the coupling of the quantum dot to the reservoirs.
Instead of assuming ideal leads, as in Refs. 3 and 4, we allow for an arbitrary transmission
probability0 of the propagating mode in the lead, as a model for coupling via a quantum
point contact with conductance below 2e2/h. Eq. (2.1.1) corresponds to0 = 1 (ballistic
point contact). In the limit0 � 1 (tunneling point contact) we recover, forβ = 2, the
result of Ref. 2. We consider alsoβ = 1 and 4 and show that — in contrast to Eq. (2.1.1)
— the limit 0 � 1 depends only weakly on the symmetry indexβ. In the crossover
region from ballistic to tunneling conduction we find a remarkable0-dependence of the
conductance fluctuations: The variance is monotonically decreasing forβ = 1 and 2, but
it has amaximumfor β = 4 at0 = 0.74.

The system under consideration is illustrated in the inset of Fig. 2-2b. It consists of a
quantum dot with two single-channel leads containing a tunnel barrier (transmission prob-
ability 0). We assume identical leads for simplicity. The transmission properties of this
system are studied in a transfer matrix formulation. The transfer matrixMd of the quantum
dot can be parameterized as [9,10]

Md =
(

u1 0

0 v1

)( √
1 + λd

√
λd√

λd
√

1 + λd

)(
u2 0

0 v2

)
, (2.1.2)

where the parameterλd is related to the transmission probabilityTd of the dot by

Td = (1 + λd)
−1. (2.1.3)

The numbersuj andvj satisfy constraints that depend on the symmetry of the Hamiltonian
of the quantum dot:

uj = eiφ j aj , vj = e−iφ j aj , (2.1.4)

with aj a real (β = 1), complex (β = 2), or real quaternion (β = 4) number of modulus
one. In general the choice foruj andvj and their parametrisation (2.1.4) is not unique.
Uniqueness can be achieved by requiring that

a1 = 1, 0 ≤ φj < π ( j = 1, 2). (2.1.5)

As in Refs. 3 and 4, we assume that the scattering matrixSd of the quantum dot is
a member of the circular ensemble, which means thatSd is uniformly distributed in the
unitary group (or the subgroup required by time reversal and/or spin rotation symmetry).
The corresponding probability distribution of the transfer matrixMd is

Pd(Md) d Md = 1
2β(1 + λd)

−1−β/2dλddφ1dφ2da2. (2.1.6)

The transfer matrixMb of the tunnel barrier in the lead is given by

Mb =
( √

1 + µ
√
µ√

µ
√

1 + µ

)
, (2.1.7)
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with 0 = (1 + µ)−1. The transfer matrixM of the total system follows from the matrix
product

M = MbMd Mb. (2.1.8)

From Eqs. (2.1.2)–(2.1.8) we straightforwardly compute the transmission probability
T of the total system and its probability distributionP(T). The result forT is

T =
(
1 + λd + mλd cos2ψ− + m(λd + 1) cos2ψ++

2
√
λd(λd + 1)m(m + 1) cosψ− cosψ+

)−1
, (2.1.9)

where we have abbreviated

m = 4(1 − 0)0−2, ψ± = φ1 ± φ2. (2.1.10)

The variablesaj , and with them allβ-dependence, drop out of this expression. Eq. (2.1.9)
can be inverted1 to yield λd in terms ofφ1 andφ2 for given T and0. The probability
distributionP(T) then follows from

P(T) = β

2π2

∫ π

0
dφ1

∫ π

0
dφ2 (1 + λd)

−1−β/2
∣∣∣∣∂λd

∂T

∣∣∣∣ , (2.1.11)

where the integration is over allφi ∈ (0, π) for whichλd is real and positive.
For0 = 1 the functionP(T) is given by Eq. (2.1.1), as found in Refs. 3 and 4. In Fig.

2-2 the crossover from a ballistic to a tunneling point contact is shown. For0 � 1 and
T � 1,02P(T) becomes a0-independent function ofT/02, which is shown in the inset
of Fig. 2-2c. Several asymptotic expressions forP(T) can be obtained from Eq. (2.1.11)
for 0 � 1,

β = 1 : P(T) =




8

π20
T−1/2

0

π2
T−3/2

(T � 02),

(02 � T � 1),
(2.1.12)

β = 2 : P(T) = 40
02 + T

(02 + 4T)5/2
(T � 1), (2.1.13)

β = 4 : P(T) = 24T0
304 + 4T02 + 3T2

(02 + 4T)9/2
(T � 1). (2.1.14)

Theβ = 2 expression (2.1.13) forP(T) in the tunneling regime agrees precisely with the
supersymmetry calculation of Prigodin, Efetov, and Iida [2].2 Eq. (2.1) does not cover the

1Inversion of Eq. (2.1.9) requires some care. Since a shiftψ+ → ψ+ + π changes the sign of the term
containing the square root in Eq. (2.1.9), solving forλd with ψ1 andψ1 + π yields exactly two (complex)
solutions in total. This allows one to construct a single-valued functionλd(ψ+, ψ−) such that these two
solutions are given byλd(ψ+, ψ−) andλd(ψ+ + π,ψ−). This functionλd is understood as the inverse of
Eq. (2.1.9).

2To compare with Ref. 2 we identifyα1 = α2 = 1
20 � 1 and take the limitα → 0 of Eq. (7) in that

paper. This yields our Eq. (2.1.13). Hereα1, α2, andα are, respectively, the level broadening (divided by the
level spacing) due to coupling to lead 1 and 2, and due to inelastic scattering processes (which we have not
included in our formulation, whenceα → 0).
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Figure 2-2. Distribution of the transmission probability T through a quantum dot with non-ideal

leads, for three values of the transmission probability 0 of the leads. The curves are computed

from Eq. (2.1.11) for each symmetry class (β = 1,2,4). The inset of (b) shows the quantum dot,

the inset of (c) shows the asymptotic behavior of P(T) for 0 � 1 on a log-log scale.
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range near unit transmission. AsT → 1 (and0 � 1), P(T) → cβ0, with c1 = 1
2π ,

c2 = 1
4, andc4 = 3

8.
A quite remarkable feature of the quantum dot with ideal leads is the strongβ-depen-

dence ofP(T) (cf. Fig. 2-2a). For0 � 1, theβ-dependence is much less pronounced.
For T � 02 the leads dominate the transmission properties of the total system, thereby
suppressing theβ-dependence ofP(T) (although not completely). For very small trans-
mission coefficients (T � 02) the non-ideality of the leads is of less importance, and the
characteristicβ-dependence of Eq. (2.1.1) is recovered (see inset of Fig. 2-2c).

Moments ofP(T) can be computed in closed form for all0 directly from Eq. (2.1.9).
The first two moments are (recall thatm = 4(1 − 0)0−2):

〈T〉 =




1
2m−1

[√
1 + m − 1√

m
ln(

√
1 + m + √

m)
]

(β = 1),

2
3m−2

[
(m − 2)

√
1 + m + 2

]
(β = 2),

4
15m−3

[
(3m2 − 4m + 8)

√
1 + m − 32

]
(β = 4),

〈T2〉 =




3
64m−2

[
(4m − 18)

√
1 + m +

(
18√
m

+ 8
√

m
)

ln(
√

1 + m + √
m)
]
(β = 1),

4
15m−3

[(
m2 + 2m + 16

)√
1 + m − 10m − 16

]
(β = 2),

4
35m−4

[(
3m3 + 2m2 − 40m − 144

)√
1 + m + 112m + 144

]
(β = 4).

For0 � 1 one has asymptotically

〈Tn〉 = β0

2(β + 1)

n−1∏
j =1

(β + 2 j )(2 j − 1)

2 j (β + 2 j + 1)
. (2.1.15)

The0-dependence of the variance VarT = 〈T2〉 − 〈T〉2 of the transmission probability
is shown in Fig. 2-3. In the crossover regime between a ballistic point contact (0 = 1) and
a tunneling point contact (0 � 1), the three symmetry classes show striking differences.
For β = 1 and 2 the conductance fluctuations decrease monotonically upon decreasing
0, whereas they show non-monotonic behavior forβ = 4. Notice also that the transition
β = 1 → β = 2, by application of a magnetic field, reduces fluctuations for0 > 0c but
increases fluctuations for0 < 0c, where0c = 0.92.

In summary, we have computed the transmission probability of a ballistic and chaotic
cavity for all possible values of the symmetry indexβ and for arbitrary values of the trans-
parancy0 of the single-channel leads. Our results describe the conductance of a quan-
tum dot in the crossover regime from a coupling to the reservoirs by ballistic to tunneling
point contacts. The theory unifies and extends known results [2–4]. The characteristic
β-dependence of the distribution function that was found for ideal leads [Eq. (2.1.1)] is
strongly suppressed for transmission probabilitiesT larger than02. A closely related phe-
nomenon is the non-trivial0-dependence of the conductance fluctuations for the three
symmetry classes. The theory is relevant for experiments on chaotic scattering in quantum
dots with adjustable point contacts, which are of great current interest [11–13].
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Figure 2-3. Variance of the transmission probability T as a function of the transmission probability

of the leads 0.

2.2 Generalized circular ensemble of scattering matrices
for a chaotic cavity with non-ideal leads

Theoretical work [2–4, 8, 14–17] on phase-coherent conduction through cavities in which
the classical electron motion can be regarded as chaotic has stimulated recent experi-
ments [11–13, 18] on conductance fluctuations and weak-localization effects in quantum
dots. If the capacitance of the quantum dot is large enough, a description in terms of
non-interacting electrons is appropriate (otherwise the Coulomb blockade becomes impor-
tant [2,8]).

For an isolated chaotic cavity, it has been conjectured and confirmed by many exam-
ples that the statistics of the HamiltonianH agrees with that of the Gaussian ensemble of
random-matrix theory [19, 20]. If the chaotic behavior is caused by impurity scattering,
the agreement has been established by microscopic theory: Both the Gaussian ensemble
and the ensemble of Hamiltonians with randomly placed impurities are equivalent to a cer-
tain non-linearσ -model [21, 22]. Transport properties can be computed by couplingM
eigenstates ofH to N scattering channels [22–25]. SinceN � M this construction intro-
duces a great number of coupling parameters, whereas only a few independent parameters
determine the statistics of the scattering matrixSof the system [22].

For transport properties at zero temperature and infinitesimal applied voltage, one only
needs to knowS at the Fermi energyEF , and an approach which starts directly from the
ensemble of scattering matrices at a given energy is favorable. Following up on earlier
work on chaotic scattering in billiards [6, 7], two recent papers [3, 4] have studied the
transport properties of a quantum dot under the assumption thatS is distributed according
to Dyson’s circular ensemble [5, 26]. In Refs. 3 and 4 the coupling of the quantum dot to
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the external reservoirs was assumed to occur via ballistic point contacts (or “ideal leads”).
The extension to coupling via tunnel barriers (non-ideal leads) was considered in Sec. 2.1.
In all cases complete agreement was obtained with results which were obtained from the
Hamiltonian approach [2, 23, 24]. This agreement calls for a general demonstration of the
equivalence of the scattering matrix and the Hamiltonian approach, for arbitrary coupling
of the quantum dot to the external reservoirs. It is the purpose of this section to provide
such a demonstration. A proof of the equivalence of the Gaussian and circular ensembles
has been published by Lewenkopf and Weidenm¨uller [25], for the special case of ideal
leads. The present proof applies to non-ideal leads as well, and repairs a weak spot in the
proof of Ref. 25 for the ideal case.

The circular ensemble of scattering matrices is characterized by a probability distri-
bution P(S) which is constant, that is to say, each unitary matrixS is equally probable.
As a consequence, the ensemble averageS̄ is zero. This is appropriate for ideal leads.
A generalization of the circular ensemble which allows for non-zeroS̄ (and can therefore
be applied to non-ideal leads) has been derived by Mello, Pereyra, and Seligman [27, 28],
using a maximum entropy principle. The distribution function in this generalized circular
ensemble is known in the mathematical literature [29] as the Poisson kernel,

P(S) ∝ ∣∣det(1 − S̄†S)
∣∣−(βN+2−β)

. (2.2.1)

Hereβ ∈ {1, 2, 4} is the symmetry index of the ensemble of scattering matrices:β = 1 or
2 in the absence or presence of a time-reversal-symmetry breaking magnetic field;β = 4
in zero magnetic field with strong spin-orbit scattering. (In Refs. [27] and [28] only the
caseβ = 1 was considered.) One verifies thatP(S) = constant forS̄ = 0. Eq. (2.2.1) was
first recognized as a possible generalization of the circular ensemble by Krieger [30], for
the special case thatS̄ is proportional to the unit matrix.

In this section we present a microscopic justification of the Poisson kernel, by deriving
it from an ensemble of random Hamiltonians which is equivalent to an ensemble of disor-
dered metal grains. For the Hamiltonian ensemble we can use the Gaussian ensemble, or
any other ensemble to which it is equivalent in the limitM → ∞ [31]. (The microscopic
justification of the Gaussian ensemble only holds forM → ∞.) For technical reasons, we
use a Lorentzian distribution for the Hamiltonian ensemble, which in the limitM → ∞
can be shown to be equivalent to the usual Gaussian distribution. The technical advan-
tage of the Lorentzian ensemble over the Gaussian ensemble is that the equivalence to the
Poisson kernel holds for arbitraryM ≥ N, and does not require taking the limitM → ∞.

The outline of this section is as follows: In Sec. 2.2.1 the usual Hamiltonian approach
is summarized, following Ref. 22. In Sec. 2.2.2, the Lorentzian ensemble is introduced.
The eigenvalue and eigenvector statistics of the Lorentzian ensemble are shown to agree
with the Gaussian ensemble in the limitM → ∞. In Sec. 2.2.3 we then compute the
entire distribution functionP(S) of the scattering matrix from the Lorentzian ensemble of
Hamiltonians, and show that it agrees with the Poisson kernel (2.2.1) for arbitraryM ≥ N.
In Sec. 2.2.4 the Poisson kernel is shown to describe a quantum dot which is coupled to the
reservoirs by means of tunnel barriers. We conclude in Sec. 2.2.5.
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2.2.1 Hamiltonian approach

The Hamiltonian approach [22,25,32] starts with a formal division of the system into two
parts, the leads and the cavity (see Fig. 2-4a). The Hamiltonian of the total system is
represented in the following way: Let the set{|a〉} represent a basis of scattering states in
the lead at the Fermi energyEF (a = 1, . . . , N), with N the number of propagating modes
at EF . The set of bound states in the cavity is denoted by{|µ〉} (µ = 1, . . . ,M). We
assumeM ≥ N. The HamiltonianH is then given by [22]

H =
∑

a

|a〉EF 〈a| +
∑
µ,ν

|µ〉Hµν〈ν| +
∑
µ,a

(|µ〉Wµa〈a| + |a〉W∗
µa〈µ|) . (2.2.2)

The matrix elementsHµν form a hermitianM × M matrix H , with real (β = 1), com-
plex (β = 2), or real quaternion (β = 4) elements. The coupling constantsWµa form a
real (complex, real quaternion)M × N matrix W. The N × N scattering matrixS(EF )

associated with this Hamiltonian is given by

S(EF ) = 1 − 2π iW†(EF − H + iπW W†)−1W. (2.2.3)

For β = 1, 2, 4 the matrixS is respectively unitary symmetric, unitary, and unitary self-
dual.

Usually one assumes thatH is distributed according to the Gaussian ensemble,

P(H) = 1

V
exp

(
−1

4βMλ−2tr H2
)
, (2.2.4)

with V a normalization constant andλ an arbitrary coefficient which determines the den-
sity of states atEF . The coupling matrixW is fixed. Notice thatP(H) is invariant under
transformationsH → U HU† whereU is orthogonal (β = 1), unitary (β = 2), or sym-
plectic (β = 4). This implies thatP(S) is invariant under transformationsW → UW, so
that it can only depend on the invariantW†W. The ensemble-averaged scattering matrixS̄
can be calculated analytically in the limitM → ∞, at fixedN, EF , and fixed mean level
spacing1. The result is [22]

S̄ = 1 − πW†W/λ

1 + πW†W/λ
. (2.2.5)

It is possible to extend the Hamiltonian (2.2.2) to include a “background” scattering
matrix S0 which does not couple to the cavity [33]. The matrixS0 is symmetric forβ = 1
and can be decomposed asS0 = Oe2i8OT , where the matrixO is orthogonal and8 is real
and diagonal. In the limitM → ∞, the average scattering matrixS̄ is now given by [33]

S̄ = Oei81 − πW†W/λ

1 + πW†W/λ
ei8OT . (2.2.6)

Lewenkopf and Weidenm¨uller [25] used this extended version of the theory to relate
the Gaussian and circular ensembles, forβ = 1 andS̄ = 0. Their argument is based on the
assumption that Eq. (2.2.6) can be inverted, to yieldW†W andS0 as a function of̄S. Then
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(a) (b)

1 2

Figure 2-4. Schematic drawing of a disordered cavity (grey) attached to a lead. There are N

scattering channels in the lead, which are coupled to M bound levels in the cavity. In (a) only one

lead is drawn. A system with more leads (b) is described by combining them formally into one lead.

P(S) = PS̄(S) is fully determined bȳS (and does not require separate knowledge ofW†W
andS0). Under the transformationS → U SUT (with U an arbitrary unitary matrix),̄S is
mapped toU S̄UT , which implies

PS̄(S) = PU S̄UT (U SUT ). (2.2.7)

For S̄ = 0 one finds thatP(S) is invariant under transformationsS → U SUT , so thatP(S)
must be constant (circular ensemble). There is, however, a weak spot in this argument:
Equation (2.2.6) cannot be inverted for the crucial casēS = 0. It is only possible to
determineW†W, not S0. This is a serious objection, sinceS0 is not invariant under the
transformationS → U SUT , and one can not conclude thatP(S) = constant forS̄ = 0.
We have not succeeded in repairing the proof of Ref. 25 forS̄ = 0, and instead present in
the following subsections a different proof (which moreover can be extended to non-zero
S̄).

A situation in which the cavity is coupled ton reservoirs byn leads, havingNj scatter-
ing channels (j = 1, . . . , n) each, can be described in the framework presented above by
combining then leads formally into a single lead withN = ∑n

j =1 Nj scattering channels.
Scattering matrix elements between channels in the same lead correspond to reflection
from the cavity, elements between channels in different leads correspond to transmission.
In this notation, the Landauer formula for the conductanceG of a cavity with two leads
(Fig. 2-4b) takes the form

G = 2e2

h

N1∑
i=1

N1+N2∑
j =N1+1

|Si j |2. (2.2.8)

2.2.2 Lorentzian ensemble

For technical reasons we wish to replace the Gaussian distribution (2.2.4) of the Hamilto-
nians by a Lorentzian distribution,

P(H) = 1

V
λM(βM+2−β)/2 det

(
λ2 + (H − ε)2

)−(βM+2−β)/2
, (2.2.9)
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whereλ andε are parameters describing the width and center of the distribution, andV is
a normalization constant independent ofλ andε. The symmetry parameterβ ∈ {1, 2, 4}
indicates whether the matrix elements ofH are real [β = 1, Lorentzian Orthogonal En-
semble (3OE)], complex [β = 2, Lorentzian Unitary Ensemble (3UE)], or real quaternion
[β = 4, Lorentzian Symplectic Ensemble (3SE)]. (We abbreviate “Lorentzian” by a capi-
tal lambda, because the letterL is commonly used to denote the Laguerre ensemble.)

The replacement of (2.2.4) by (2.2.9) is allowed because the eigenvector and eigen-
value distributions of the Gaussian and the Lorentzian ensemble are equal on a fixed en-
ergy scale, in the limitM → ∞ at a fixed mean level spacing1. The equivalence of the
eigenvector distributions is obvious: The distribution ofH depends solely on the eigenval-
ues for both the Lorentzian and the Gaussian ensemble, so that the eigenvector distribution
is uniform for both ensembles. In order to prove the equivalence of the distribution of
the eigenvaluesE1, E2, . . . , EM (energy levels), we compare then-level cluster functions
Tn(E1, E2, . . . , En) for both ensembles. The general definition of theTn’s is given in
Ref. [5]. The first twoTn’s are defined by

T1(E) = 〈
M∑

i=1

δ(E − Ei )〉 (2.2.10)

T2(E1, E2) = 〈
M∑

i=1

δ(E1 − Ei )〉〈
M∑

j =1

δ(E2 − Ej )〉 − 〈
∑
i 6= j

δ(E1 − Ei )δ(E2 − Ej )〉.

The brackets〈. . .〉 denote an average over the ensemble. The cluster functions in the Gaus-
sian ensemble are known for arbitraryn [5], for the Lorentzian ensemble we compute them
below.

From Eq. (2.2.9) one obtains the joint probability distribution function of the eigenval-
ues,

P({Ej }) = 1

V
λM(βM+2−β)/2∏

i< j

|Ei −Ej |β
∏

i

(
λ2 + (Ei − ε)2)

)−(βM+2−β)/2
. (2.2.11)

We first consider the caseλ = 1, ε = 0. We make the transformation

S = 1 + i H

1 − i H
. (2.2.12)

The eigenvalueseiφ j of the unitary matrixSare related to the energy levelsEj by

eiφ j = 1 + i Ej

1 − i Ej
⇐⇒ φj = 2 arctanEj . (2.2.13)

The probability distribution of the eigenphases follows from Eqs. (2.2.11) and (2.2.13),

P({φj }) = 1

V
2−M(βM+2−β)/2∏

i< j

|eiφi − eiφ j |β. (2.2.14)
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This is precisely the distribution of the eigenphases in the circular ensemble. The cluster
functions in the circular ensemble are known [5, 26]. Then-level cluster functionsT3n in
the Lorentzian ensemble are thus related to then-level cluster functionsTC

n in the circular
ensemble by

T3n (E1, . . . , En) = TC
n (2 arctanE1, . . . , 2 arctanEn)

n∏
j =1

2

1 + E2
j

. (2.2.15)

Forn = 1 one finds the level density

ρ(E) = M

π(1 + E2)
, (2.2.16)

independent ofβ. Forn = 2 one finds the pair-correlation function

T32 (E1, E2) = 4 sin2(M arctanE1 − M arctanE2)

(1 + E2
1)(1 + E2

2) sin2(arctanE1 − arctanE2)
. (2.2.17)

Eq. (2.2.17) holds forβ = 2. The expressions forβ = 1, 4 are more complicated.
Then-level cluster functions for arbitraryλ andε can be found after a proper rescaling

of the energies. Eq. (2.2.15) generalizes to

T3n (E1, . . . , En) =

TC
n

(
2 arctan

E1 − ε

λ
, . . . , 2 arctan

En − ε

λ

) n∏
j =1

2λ

λ2 + (Ej − ε)2
. (2.2.18)

The large-M limit of the Tn’s is defined as

Yn(ξ1, . . . , ξn) = lim
M→∞1nTn(ξ11, . . . , ξn1). (2.2.19)

For both the Gaussian and the Lorentzian ensembles, the mean level spacing1 at the center
of the spectrum in the limitM → ∞ is given by1 = λπ/M. Therefore, the relevant limit
M → ∞ at fixed level spacing is given byM → ∞, λ → ∞,1 = λπ/M fixed for both
ensembles. Equation (2.2.18) allows us to relate theYn’s in the Lorentzian and circular
ensembles,

Y3n (ξ1, . . . , ξn) = lim
M→∞ (2π/M)n TC

n (2 arctan(πξ1/M), . . . , 2 arctan(πξn/M))

= lim
M→∞ (2π/M)n TC

n (2πξ1/M, . . . , 2πξn/M)

= YC
n (ξ1, . . . , ξn). (2.2.20)

It is known that the cluster functionsYC
n in the circular ensemble are equal to the cluster

functionsYG
n in the Gaussian ensemble [5]. Equation (2.2.20) therefore shows that the

Lorentzian and the Gaussian ensembles have the same cluster functions in the large-M
limit.
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The technical reason for working with the Lorentzian ensemble instead of with
the Gaussian ensemble is that the Lorentzian ensemble has two properties which make it
particularly easy to compute the distribution of the scattering matrix. The two properties
are:

Property 1: If H is distributed according to a Lorentzian ensemble with widthλ and
centerε, then H−1 is again distributed according to a Lorentzian ensemble, with width
λ̃ = λ/(λ2 + ε2) and center̃ε = ε/(λ2 + ε2).

Property 2: If the M × M matrix H is distributed according to a Lorentzian ensemble,
then everyN× N submatrix ofH obtained by omittingM − N rows and the corresponding
columns is again distributed according to a Lorentzian ensemble, with the same width and
center.

The proofs of both properties are essentially contained in Ref. 29. In order to make this
chapter self-contained, we briefly give the proofs in the appendix.

2.2.3 Scattering matrix distribution for the Lorentzian ensemble

The general relation between the HamiltonianH and the scattering matrixS is given by
Eq. (2.2.3). After some matrix manipulations, it can be written as

S =
(
1 + iπW†(H − EF)

−1W
) (

1 − iπW†(H − EF)
−1W

)−1
. (2.2.21)

We can write the coupling matrixW as

W = U QW̃, (2.2.22)

whereU is anM × M orthogonal (β = 1), unitary (β = 2), or symplectic (β = 4) matrix,
W̃ is anN × N matrix, andQ is anM × N matrix with all elements zero exceptQnn = 1,
1 ≤ n ≤ N. Substitution into Eq. (2.2.3) gives

S =
(
1 + iπW̃†H̃W̃

) (
1 − iπW̃†H̃ W̃

)−1
, (2.2.23)

where we have defined̃H ≡ QTU†(H − EF )
−1U Q.

We assume thatH is a member of the Lorentzian ensemble, with widthλ and center 0.
Then the matrixH − EF is also a member of the Lorentzian ensemble, with widthλ and
centerEF . Property 1 implies that(H − EF )

−1 is distributed according to a Lorentzian
ensemble with width̃λ = λ/(λ2+E2

F) and center̃ε = EF/(λ
2+E2

F). Orthogonal (unitary,
symplectic) invariance of the Lorentzian ensemble implies thatU†(H − EF )

−1U has the
same distribution as(H − EF )

−1. Using property 2 we then find that̃H [being anN × N
submatrix ofU†(H − EF )

−1U ] is distributed according to the same Lorentzian ensemble
(width λ̃ and center̃ε).

We now compute the distribution of the scattering matrix, first for a special coupling,
then for the general case.
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Special coupling matrix

First we will consider the special case that

W̃ = π−1/2δnm (2.2.24)

is proportional to the unit matrix. The relation (2.2.23) between theSand H̃ is then

S = 1 + i H̃

1 − i H̃
. (2.2.25)

Thus the eigenvalues̃Ej of H̃ andeiφ j of Sare related via

eiφ j = 1 + i Ẽj

1 − i Ẽj
⇐⇒ φj = 2 arctanẼj . (2.2.26)

Since transformations̃H → U H̃U† (with arbitrary orthogonal, unitary, or symplectic
N × N matrix U ) leaveP(H̃) invariant, P(S) is also invariant underS → U SU†. So
P(S) can only depend on the eigenvalueseiφ j of S. The distribution of theẼ’s is [cf. Eq.
(2.2.11)]

P({Ẽj }) = 1

V
λN(βN+2−β)/2∏

j<k

|Ẽj − Ẽk|β
∏

j

(
λ̃2 + (Ẽj − ε̃)2

)−(βN+2−β)/2
. (2.2.27)

From Eqs. (2.2.26) and (2.2.27) we obtain the probability distribution of theφ’s,

P({φj }) = 1

V

(
1 − σσ ∗

2

)N(βN+2−β)/2

×
∏
j<k

|eiφ j − eiφk |β
∏

j

∣∣1 − σ ∗eiφ j
∣∣−(βN+2−β)

, (2.2.28)

σ = 1 − λ̃− i ε̃

1 + λ̃+ i ε̃
= λ2 + E2

F − λ− i EF

λ2 + E2
F + λ+ i EF

. (2.2.29)

Eq. (2.2.3) implies thatP(S) has the form of a Poisson kernel,

P(S) = det(1 − S̄S̄†)(βN+2−β)/2

2N(βN+2−β)/2V

∣∣det(1 − S̄†S)
∣∣−(βN+2−β)

, (2.2.30)

the average scattering matrixS̄being given by

S̄nm = σδnm. (2.2.31)
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Arbitrary coupling matrix

Now we turn to the case of arbitrary coupling matrixW̃. We denote the scattering matrix
at couplingW̃ by S, and denote the scattering matrix at the special coupling (2.2.24) by
S0. The relation betweenSandS0 is

S = r + t ′S0(1 − r ′S0)
−1t ⇐⇒ S0 = (t ′)−1(S− r )(1 − r †S)−1t†, (2.2.32)

where we abbreviated

r = (1 − πW̃†W̃)(1 + πW̃†W̃)−1,

r ′ = −W̃(1 − πW̃†W̃)(1 + πW̃†W̃)−1W̃−1,

t = 2π1/2W̃(1 + πW̃†W̃)−1,

t ′ = 2π1/2(1 + πW̃†W̃)−1W̃†.

The symmetry of the coupling matrix̃W is reflected in the symmetry of the 2N × 2N
matrix

S1 =
(

r t ′

t r ′

)
, (2.2.33)

which is unitary symmetric (β = 1), unitary (β = 2) or unitary self-dual (β = 4).
The probability distributionP0 of S0 is given by Eq. (2.2.30). The distributionP of S

follows from

P(S) = P0(S0)
dS0

dS
, (2.2.34)

where the JacobiandS0/dS is the ratio of infinitesimal volume elements aroundS0 andS.
This Jacobian is known [29,34],

dS0

dS
=
(

det(1 − r †r )

| det(1 − r †S)|2
)(βN+2−β)/2

. (2.2.35)

After expressingS0 in terms ofS by means of Eq. (2.2.32), we find thatP(S) is given by
the same Poisson kernel as Eq. (2.2.30), but with a differentS̄,

S̄ = 1 − π(λ̃+ i ε̃)W†W

1 + π(λ̃+ i ε̃)W†W
. (2.2.36)

In the limit M → ∞ at fixed level spacing1 = λπ/M, Eq. (2.2.36) simplifies to

S̄ = 1M − π2W†W

1M + π2W†W
. (2.2.37)

The extended version of the Hamiltonian approach which includes a background scat-
tering matrix S0 can be mapped to the case without background scattering matrix by a
transformationS → S′ = U SUT (β = 1), S → S′ = U SV (β = 2), or S → S′ = U SUR

(β = 4), whereU andV are unitary matrices [33]. (U T is the transposed ofU , U R is the
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P.W. Brouwer, fig 1P.W. Brouwer, fig 1

Figure 2-5. Schematic drawing of the chaotic cavity and the non-ideal lead containing a tunnel

barrier.

dual ofU .) The Poisson kernel is covariant under such transformations [27], i.e. it maps to
a Poisson kernel with̄S′ = U S̄UT (β = 1), S̄′ = U S̄V (β = 2), or S̄′ = U S̄UR (β = 4).
As a consequence, the distribution ofS is given by the Poisson kernel for arbitrary coupling
matrix W and background scattering matrixS0. This proves the general equivalence of the
Poisson kernel and the Lorentzian ensemble of Hamiltonians.

2.2.4 Ideal versus non-ideal leads

The circular ensemble of scattering matrices is appropriate for a chaotic cavity which is
coupled to the leads by means of ballistic point contacts (“ideal” leads). In this section we
will demonstrate that the generalized circular ensemble described by the Poisson kernel is
the appropriate ensemble for a chaotic cavity which is coupled to the leads by means of
tunnel barriers (“non-ideal” leads).

The system considered is shown schematically in Fig. 2-5. We assume that the segment
of the lead between the tunnel barrier and the cavity is long enough, so that both theN × N
scattering matrixS0 of the cavity and the 2N×2N scattering matrixS1 of the tunnel barrier
are well-defined. The scattering matrixS0 has probability distributionP0 = constant of
the circular ensemble, whereas the scattering matrixS1 is kept fixed.

We decomposeS1 in terms ofN × N reflection and transmission matrices,

S1 =
(

r1 t ′1
t1 r ′

1

)
. (2.2.38)

The N × N scattering matrixSof the total system is related toS0 andS1 by

S = r1 + t ′1(1 − S0r ′
1)

−1S0t1. (2.2.39)

This relation has the same form as equation (2.2.32). We can therefore directly apply
equation (2.2.34), which yields

P(S) ∝ | det(1 − r †
1 S)|−(βN+2−β). (2.2.40)

HenceS is distributed according to a Poisson kernel, withS̄ = r1.
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2.2.5 Conclusion

In conclusion we have established by explicit computation the equivalence forM ≥ N
of a generalized circular ensemble of scattering matrices (described by a Poisson kernel)
and an ensemble ofM × M Hamiltonians with a Lorentzian distribution. The Lorentzian
and Gaussian distributions are equivalent in the large-M limit. Moreover, the Gaussian
Hamiltonian ensemble and the microscopic theory of a metal particle with randomly placed
impurities give rise to the same non-linearσ -model [21, 22]. Altogether, this provides
a microscopic justification of the Poisson kernel in the case that the chaotic motion in
the cavity is caused by impurity scattering. For the case of a ballistic chaotic cavity, a
microscopic justification is still lacking.

The equivalence of the Poisson kernel and an arbitrary Hamiltonian ensemble can be
reformulated in terms of a central limit theorem: The distribution of a submatrix ofH−1 of
fixed sizeN tends to a Lorentzian distribution whenM → ∞, independent of the details
of the distribution ofH . A central limit theorem of this kind forN = 1 has previously
been formulated and proved by Mello [28].

Appendix A: Proof of properties 1 and 2 of Sec. 2.2.2

The two proofs given below are adapted from Ref. 29. The matrixH and its inverse
H−1 have the same eigenvectors, but reciprocal eigenvalues. Therefore, property 1 of the
Lorentzian ensemble is proved by showing that the distribution of the eigenvalues ofH−1

is given by Eq. (2.2.11), with the substitutionsλ → λ̃ andε → ε̃. This is easily done,

P({E−1
j }) =

= 1

V
λM(βM+2−β)/2∏

i< j

|Ei − Ej |β
∏

i

[(
λ2 + (Ei − ε)2

)−(βM+2−β)/2
∣∣∣∣∣ d Ei

d(E−1
i )

∣∣∣∣∣
]

= 1

V
λM(βM+2−β)/2∏

i< j

∣∣∣Ei Ej (E
−1
i − E−1

j )

∣∣∣β∏
i

[(
λ2 + (Ei − ε)2

)−(βM+2−β)/2
E2

i

]

= 1

V
λM(βM+2−β)/2∏

i< j

∣∣∣E−1
i − E−1

j

∣∣∣β∏
i

(
λ2E−2

i + (1 − εE−1
i )2

)−(βM+2−β)/2

= 1

V
λ̃M(βM+2−β)/2∏

i< j

∣∣∣E−1
i − E−1

j

∣∣∣β∏
i

(
λ̃2 + (E−1

i − ε̃)2
)−(βM+2−β)/2

. (A.1)

In order to prove property 2, we may assume that after rescaling ofH we haveλ = 1,
ε = 0. First considerN = M − 1. In this case, one can write

H =
(

G Y

Y† Z

)
, (A.2)

whereG is the N × N submatrix ofH whose distribution we want to compute,Y is a
vector, with real (β = 1), complex (β = 2), or real quaternion elements (β = 4), andZ is
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a real number. For the successive integrations overZ andY we need two auxiliary results.
First, for real numbersa, b, c such thata > 0 and 4ac> b2, and for realm> 2 we have∫ ∞

−∞
dx (ax2 + bx + c)−m =

(
ac− 1

4b2
)−m+1/2

am−1π1/20(m − 1/2)/0(m). (A.3)

Second, ifx is ad-dimensional vector with real components, and ifm> (d + 1)/2, then∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxd (1 + x2)−m = πd/20(m − d/2)/0(m). (A.4)

Since det(1 + H)2 is a quadratic function ofZ, the integral overZ can now be carried
out using Eq. (A.3). The result is:

∫
d Z P(H) = π1/20

(1
2(βM + 1 − β)

)
V0

(1
2(βM + 2 − β)

) det(1 + G2)(−βM−2+β)/2 ×
(
1 + Y†(1 + G2)−1Y

)−βM−1+β
. (A.5)

Next, we integrate overY. We may choose the basis for theY-vectors so that 1+ G2

is diagonal, with diagonal elements 1+ G2
i . After rescaling of theY-vectors toY′

i =
Yi (1 + G2

i )
1/2 one obtains an integral similar to Eq. (A.4), withd = β(M − 1). The final

result is

P(G) = π(βM−β+1)/20
(1

2(βM + 1 − β)
)

V0 (βM + 1 − β)
det(1 + G2)(−β(M−1)−2+β)/2. (A.6)

Property 2 now follows by induction. Notice that Eq. (A.6) allows us to determine the
normalization constantV ,

V = π(βM−β+2)M/4
M∏

j =1

0
(1

2(β j + 1 − β)
)

0 (β j + 1 − β)
. (A.7)
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3 Dephasing in quantum dots

3.1 Effect of a voltage probe on the phase-coherent con-
ductance of a ballistic chaotic cavity

A basic notion in mesoscopic physics is that the measurement of a voltage at some point in
the sample is an invasive act, which may destroy the phase coherence throughout the whole
sample. B¨uttiker introduced a simple but realistic model for a voltage probe [1], and used it
to investigate the transition from coherent to sequential tunneling through a double-barrier
junction, induced by the coupling to a voltage lead of the region between the barriers.
The mechanism by which the measurement of a voltage destroys phase coherence is that
electrons which enter the voltage lead are reinjected into the system without any phase
relationship. B¨uttiker’s model has been applied successfully to a variety of physical situ-
ations [2–9], including diffusive transport in a disordered wire, ballistic transport through
quantum point contacts, and edge-channel transport in the quantum Hall effect. In order
to analyze their experimental data, Marcus et al. [10] proposed to use B¨uttiker’s model
to describe inelastic processes in ballistic and chaotic cavities (“quantum dots”). Here
we present a detailed analysis of the effect of a voltage probe on the entire conductance
distribution of such a system.

Several recent theoretical papers dealt with the phase-coherent conduction through a
ballistic chaotic cavity, either by means of a semiclassical approach [11], or by means of
the supersymmetry method [12–14], or by random-matrix theory [15,16] (see also Ch. 2).
Quantum interference has a striking effect on the conductanceG of the quantum dot if it
is coupled to source and drain reservoirs by means of two ballistic point contacts with a
quantized conductance of 2e2/h. Classically, one would expect a conductance distribution
P(G) which is peaked atG = e2/h, since half of the electrons injected by the source are
transmitted on average to the drain. Instead,P(G) was found to be [15,16]

P(G) ∝ G−1+β/2, 0 ≤ G ≤ 2e2/h, (3.1.1)

whereβ ∈ {1, 2, 4} is the symmetry index of the ensemble of scattering matrices (β =
1 or 2 in the absence or presence of a time-reversal-symmetry breaking magnetic field;
β = 4 in zero magnetic field with strong spin-orbit scattering). Depending onβ, the
conductance distribution is either uniform, peaked at zero or peaked at 2e2/h. As we will
show, strong coupling of the quantum dot to a voltage lead causes a crossover from Eq.
(3.1.1) to a Gaussian, peaked ate2/h. A small displacement of the peak of the Gaussian
for β = 1, and aβ-dependent width of the peak are the remnants of the weak localization
and mesoscopic fluctuation effects which are so pronounced in the case of complete phase
coherence [15,16].

A strong coupling of the voltage probe is achieved by means of a wide ballistic lead
with many scattering channels (Sec. 3.1.3). If the voltage lead contains a single channel,



66 Chapter 3: Dephasing in quantum dots

we may reduce the coupling to zero by means of a tunnel barrier in this lead (Sec. 3.1.2).
Together, these two sections cover the full range of coupling strengths. In the next section
we first formulate the problem in some more detail, and discuss the random-matrix method
used to compute the conductance distribution.

3.1.1 Formulation of the problem

We consider a ballistic and chaotic cavity (quantum dot) coupled by two leads to source
and drain reservoirs at voltagesV1 andV2. A currentI = I1 = −I2 is passed from source
to drain via leads 1 and 2. A third lead is attached to the quantum dot and connected
to a third reservoir at voltageV3. This third lead is a voltage probe, which means that
V3 is adjusted in such a way, that no current is drawn (I3 = 0). The coupling strength
of the voltage probe is determined by the numberN of scattering channels (propagating
transverse modes at the Fermi-level) in lead 3 and by the transparency of a tunnel barrier
in this lead. We assume that each of theN modes has the same transmission probability0

through the tunnel barrier. We restrict ourselves to the case that the current-carrying leads
1 and 2 are ideal (no tunnel barrier) and single-channel (a single propagating transverse
mode). This case maximizes the quantum-interference effects on the conductance. We
assume that the capacitance of the quantum dot is sufficiently large that we may neglect
the Coulomb blockade, and we will regard the electrons to be non-interacting.

The scattering-matrixSof the system has dimensionM = N + 2 and can be written as

S =



r11 t12 t13

t21 r22 t23

t31 t32 r33


 (3.1.2)

in terms of reflection and transmission matricesri i and ti j . The currents and voltages
satisfy Büttiker’s relations [17]

h

2e2
Ik = (Nk − Rkk)Vk −

∑
l 6=k

Tkl Vl , k = 1, 2, 3, (3.1.3)

whereRkk = tr rkkr
†
kk, Tkl = tr tkl t

†
kl , andNk is the number of modes in leadk. The two-

terminal conductanceG = I /(V1 − V2) follows from Eq. (3.1.3) withI1 = −I2 = I ,
I3 = 0:

G = 2e2

h

(
T12 + T13T32

T31 + T32

)
. (3.1.4)

From now on, we will measureG in units of 2e2/h.
An ensemble of quantum dots is constructed by considering small variations in shape

or Fermi energy. To compute the probability distributionP(G) of the conductance in this
ensemble we need to know the distribution of the elements of the scattering matrix. Our
basic assumption, following Refs. [15] and [16], is that for ideal leads the scattering matrix
is uniformly distributed in the space of unitaryM × M matrices. This is the circular
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ensemble of random-matrix theory [18, 19]. The distributionP0(S) for the case0 = 1 is
therefore simply

P0(S) = 1

V
, (3.1.5)

whereV = ∫
dµ is the volume of the matrix space with respect to the invariant measure

dµ. Both V anddµ depend on the symmetry indexβ ∈ {1, 2, 4}, which specifies whether
S is unitary (β = 2), unitary symmetric (β = 1), or unitary self-dual (β = 4).

A characteristic feature of the circular ensemble is that the averageS̄ of the scattering
matrix vanishes. For non-ideal leads this is no longer the case, and Eq. (3.1.5) therefore
has to be modified if0 6= 1. In Ch. 2 we showed, for a quantum dot with two non-ideal
leads, how the probability distributionP(S) of the scattering matrix can be computed by
expressing the elements of the full scattering matrixS (quantum dot plus tunnel barriers)
in terms of the scattering matrixS0 of the quantum dot alone (with ideal leads). For an
arbitrary number of leads the distribution takes the form of a Poisson kernel [20,21],

P(S) = c | det(1 − S̄†S)|−βM−2+β , (3.1.6)

with normalization constant

c = 1

V
[det(1 − S̄†S̄)]1

2βM+1−1
2β. (3.1.7)

In the present case of two single-channel ideal leads and one non-ideal lead the average
S̄ = ∫

dµ SP(S) of the scattering matrix is given by

S̄nm =
{ √

1 − 0 if 3 ≤ n = m ≤ M,

0 otherwise.
(3.1.8)

One verifies that for0 = 1, P(S) reduces to the distribution (3.1.5) of the circular ensem-
ble.

Eq. (3.1.1) holds for anyβ ∈ {1, 2, 4}. In what follows, however, we will only consider
the casesβ = 1, 2 of unitary or unitary symmetric matrices, appropriate for systems with-
out spin-orbit scattering. The caseβ = 4 of unitary self-dual matrices is computationally
much more involved, and also less relevant from a physical point of view.

As indicated by B¨uttiker [1], the casesN = 1 andN > 1 of a single- and multi-channel
voltage lead are essentially different. Current conservation (i.e. unitarity ofS) poses two
restrictions onT31 andT32: (i) T31 ≤ 1, T32 ≤ 1; and (ii) T31 + T32 ≤ N. The second
restriction is effective forN = 1 only. So forN = 1, current conservation imposes a
restriction on the coupling strength of the voltage lead to the quantum dot which is not
present forN > 1. We treat the casesN = 1 andN > 1 separately, in Secs. 3.1.2 and
3.1.3. ForN = 1 we treat the case of arbitrary0, but for N > 1 we restrict ourselves for
simplicity to0 = 1.
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3.1.2 Single-channel voltage lead

In the caseN = 1, Eq. (3.1.1) reduces to

P(S) = 1

V
0β+1

(
1 + (1 − 0)|S33|2 − 2(1 − 0)1/2 ReS33

)−β−1
. (3.1.9)

In order to calculateP(G), we need to know the invariant measuredµ in terms of a parame-
terization ofSwhich contains the transmission coefficients explicitly. The matrix elements
of S, in the caseN = 1, are related toRkk andTkl by Skk = √

Rkkeiφkk, Skl = √
Tkleiφkl ,

whereφkl are real phase shifts. When time-reversal symmetry is broken (β = 2), we
chooseR11, R22, T12, T21, φ13, φ23, φ33, φ32, andφ31 as independent variables, and the
other variables then follow from unitarity ofS. In the presence of time-reversal symmetry
(β = 1), the symmetrySkl = Slk reduces the set of independent variables toR11, R22, T12,
φ13, φ23, andφ33.

We compute the invariant measuredµ in the same way as in Ref. [15]. Denoting the
independent variables in the parameterization ofS by xi , we consider the changedS in
S associated with an infinitesimal changedxi in the independent variables. The invariant
arclength trdS†dSdefines the metric tensorgi j according to

tr dS†dS=
∑
i, j

gi j dxi dxj . (3.1.10)

The determinant detg then yields the invariant measure

dµ = | detg|1/2
∏

i

dxi . (3.1.11)

The result turns out to be independent of the phasesφkl and to have the same form for
β = 1 and 2,

dµ = (β J)−1/22(J)
∏

i

dxi . (3.1.12)

The quantityJ is defined by

J =
{

0 if R11 + T12 > 1 or R22 + T21 > 1,

4R22T12T13T23 − (R22T12 + T13T23 − R11T21)
2 otherwise,

(3.1.13)

and2(J) = 1 if J > 0 and2(J) = 0 if J ≤ 0. The independent variablesxi are different,
however, forβ = 1 andβ = 2 — as indicated above.

We have calculated the probability distribution of the conductance from Eqs. (3.1.4),
(3.1.9), and (3.1.12). The results are shown in Fig. 3-1, for several values of0. For0 = 0
(uncoupled voltage lead),P(G) is given by [15,16]

P(G) =
{

1
2G−1/2 if β = 1,

1 if β = 2.
(3.1.14)
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Figure 3-1. Distribution of the conductance G (in units of 2e2/h) for a single-channel voltage lead

(N = 1). The voltage lead contains a tunnel barrier with transmission probability 0, which varies

from 0 to 1 with increments of 0.2. (a): time-reversal symmetry (β = 1); (b): broken time-reversal

symmetry (β = 2). The quantum dot is shown schematically in the inset.

For0 = 1 (maximally coupled single-channel voltage lead), we find

P(G)=
{

2 − 2G if β = 1,
4
3

[
2G − 2G2 − (3G2 − 2G3) ln G − (1 − 3G2 + 2G3) ln(1 − G)

]
if β = 2.

(3.1.15)
The average〈G〉 and variance varG of the conductance can be calculated in closed

form for all0. We find that〈G〉 is independent of0,

〈G〉 =
{

1
3 if β = 1,
1
2 if β = 2.

(3.1.16)

The variance does depend on0,

varG =



1
45 (1 − 0)−2

(
4 − 110 + 702 − 302 ln0

)
if β = 1,

1
36(1 − 0)−3

(
3 − 110 + 1702 − 903 + 403 ln0

)
if β = 2.

(3.1.17)

The breaking of phase coherence caused by the presence of a single-channel voltage lead is
not strong enough to have any effect on the average conductance, which forβ = 1 remains
below the classical value of 1/2. The variance of the conductance is reduced somewhat
when0 is increased from 0 to 1, but remains finite. (Forβ = 1 the reduction is with a
factor 5/8, for β = 2 with a factor 5/9.) We will see in the next section, that the complete
suppression of quantum interference effects requires a voltage lead withN � 1. Then
〈G〉 → 1/2 and varG → 0.
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3.1.3 Multi-channel voltage lead

Now we turn to the case of a multi-channel ideal voltage lead (N > 1, 0 = 1). Current
conservation yields:

T13 = 1 − R11 − T12 = 1 − |S11|2 − |S12|2,
T31 = 1 − R11 − T21 = 1 − |S11|2 − |S21|2,
T32 = 1 − R22 − T12 = 1 − |S12|2 − |S22|2.

(3.1.18)

To determineP(G) it is thus sufficient to know the distributioñP(S11, S12, S21, S22) of
the matrix elementsSkl with k, l ≤ 2. This marginal probability distribution has been
calculated by Mello and coworkers [22] for arbitrary dimensionM ≥ 4 of S. As in Sec.
3.1.2 we parameterizeSkl = √

Tkleiφkl if k 6= l and Skk = √
Rkkeiφkk (k, l ≤ 2). We

abbreviate
∏

i dyi ≡ d R11d R22dT12dT22
∏2

k,l=1 dφkl . For the casesβ = 1, 2 one then
has [22]

dP̃ =




c1δ(T12 − T21)δ(φ12 − φ21)F
(M−5)/22(F)

∏
i

dyi if β = 1,

c2F M−42(F)
∏

i

dyi if β = 2,
(3.1.19)

whereF is defined by

F =




0 if R11 + T12 > 1 or R22 + T21 > 1,

(1 − R11)(1 − R22)+ (1 − T12)(1 − T21)− 1

− 2(R11R22T12T21)
1/2 cos(φ11 + φ22 − φ12 − φ21) otherwise.

(3.1.20)

The coefficientsc1 andc2 are normalization constants. Calculation of the probability dis-
tribution of the conductance is now a matter of quadrature.

Results are shown in Fig. 3-2, forN up to 10. AsN increases,P(G) becomes more
and more sharply peaked aroundG = 1

2. In the limit N → ∞, P(G) approaches a delta
function. Mean and variance are given by

〈G〉 =
{

1
2 − 1

2 N−1 + O(N−2) if β = 1,
1
2 if β = 2,

(3.1.21)

varG =
{

3
4 N−2 + O(N−3) if β = 1,
1
4 N−2 + O(N−3) if β = 2.

(3.1.22)

The variance ofG is reduced by a factor 3 when time-reversal symmetry is broken in the
limit N → ∞. The offset of〈G〉 from 1

2 whenβ = 1 is a remnant of the weak localization
effect.
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Figure 3-2. Conductance distribution for a multi-channel ideal voltage lead (0 = 1). The number N

of transverse modes in the lead varies from 1 to 10 with increments of 1 (solid curves). The dotted

curve is the distribution in the absence of a voltage lead. The cases β = 1 and 2 are shown in (a)

and (b) respectively.

3.1.4 Conclusion

We have calculated the entire probability distribution of the conductance of a quantum dot
in the presence of a voltage probe, for single-channel point contacts to source and drain, in
the presence and absence of time-reversal symmetry (no spin-orbit scattering). The average
conductance is not changed if a single-channel voltage lead containing a tunnel barrier is
attached, but the shape of the distribution changes considerably. A strikingly simple result
is obtained for a single-channel ballistic voltage lead in zero magnetic field (N = 1,0 = 1,
β = 1), whenP(G) = 2 − 2G, to be compared withP(G) = 1

2G−1/2 without the voltage
probe [15,16]. (In both casesG ∈ [0, 1] is measured in units of 2e2/h.) When the number
N of channels in the voltage lead is increased, the probability distribution becomes sharply
peaked aroundG = 1

2. Both the width of the peak and the deviation of its center from
1
2 scale as 1/N for N � 1. The width is reduced by a factor

√
3 upon breaking the

time-reversal symmetry.

The loss of phase coherence induced by a voltage probe can be investigated experimen-
tally by fabricating a cavity with three leads attached to it. Furthermore, as emphasized by
Marcus et al. [10], the inelastic scattering which occurs at finite temperatures in a quantum
dot might well be modeled effectively by an imaginary voltage lead.
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3.2 Voltage-probe and imaginary potential models for de-
phasing in a chaotic quantum dot

Extensive theoretical work has provided a detailed description of the universal features of
phase-coherent transport in classically chaotic systems, such as universal conductance fluc-
tuations, weak localization, and a non-Gaussian conductance distribution [12,15,16,23–29]
(see also Ch. 2). The advances of submicron technology in the past decade have made these
manifestations of quantum chaos in electronic transport accessible to experiment [30–37].
Although experiments on semiconductor quantum dots confirm the qualitative predictions
of the phase-coherent theory, a quantitative comparison requires that loss of phase coher-
ence be included into the theory. Two methods have been used for this purpose.

The first method, originating from B¨uttiker [1], is to include a fictitious voltage probe
into the scattering matrix. The voltage probe breaks phase coherence by removing electrons
from the phase-coherent motion in the quantum dot, and subsequently reinjecting them
without any phase relationship. The conductanceGφ of the voltage probe (in units of
2e2/h) is set by the mean level spacing1 in the quantum dot and the dephasing timeτφ ,
according toGφ = 2π h̄/τφ1. This method was used in Refs. [25], [30], and [37] and in
Sec. 3.1. The second method is to include a (spatially uniform) imaginary potential in the
Hamiltonian, equal to−i h̄/2τφ. This method was used in Refs. [26] and [28].

The two methods have given very different results for the distribution of the conduc-
tanceG, in particular in the case that the current through the quantum dot flows through
single-mode point contacts. While the distributionP(G) becomes a delta peak at the clas-
sical conductance for very strong dephasing (τφ → 0) in the voltage-probe model,P(G)
peaks at zero conductance in the imaginary potential model. It is the purpose of the present
section to reconcile the two methods, and to compute the conductance distribution in the
limit that the two methods are equivalent.

The origin of the differences lies with certain shortcomings of each model. On the
one hand, the imaginary potential model does not conserve the number of electrons. We
will show how to correct for this, thereby resolving an ambiguity in the formulation of the
model noted by McCann and Lerner [28]. On the other hand, the voltage-probe model
describes spatially localized instead of spatially uniform dephasing. This is perfectly rea-
sonable for dephasing by a real voltage probe, but it is not satisfactory if one wants a
fictitious voltage probe to serve as a model for dephasing by inelastic processes occurring
uniformly in space. A second deficiency of the voltage-probe model is that inelastic scat-
tering requires a continuous tuning parameterτφ , while the number of modesNφ in the
voltage probe can take on integer values only. Although the introduction of a tunnel barrier
(transparency0φ) in the voltage probe allows the conductanceGφ = Nφ0φ to interpolate
between integer values, the presence oftwo model parameters creates an ambiguity: The
conductance distribution depends onNφ and0φ separately, and not just on the product
Nφ0φ set by the dephasing time.

In this section we present a version of the voltage-probe model that does not suffer
from this ambiguity and that can be applied to dephasing processes occurring uniformly
in space. This version is equivalent to a particle-conserving imaginary potential model.
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We show that the absorbing term in the Hamiltonian can be replaced by an absorbing lead
(the voltage probe) in the limitNφ → ∞, 0φ → 0 at fixedGφ = Nφ0φ. This is the
“locally weak absorption limit” of Zirnbauer [24]. Both shortcomings of the voltage-probe
model are cured: The limitNφ → ∞ together with ergodicity ensures spatial uniformity
of the dephasing, while the conductanceGφ is the only variable left to parameterize the
dephasing rate.

The outline of the section is as follows. In Sec. 3.2.1 we recall the voltage-probe model
and derive the limitNφ → ∞, 0φ → 0 at fixed Nφ0φ from the particle-conserving
imaginary potential model. We then calculate the effect of dephasing on the conductance
distribution in the case of single-mode point contacts (Sec. 3.2.2). The distribution narrows
around the classical series conductance of the two point contacts when the dimensionless
dephasing rateγ = 2π h̄/τφ1 becomes� 1, but not precisely in the way which was
computed in Ref. [25] and Sec. 3.1. In Sec. 3.2.3 we briefly consider the case of multi-
mode point contacts (number of modes� 1), which is less interesting. We conclude in
Sec. 3.2.4.

3.2.1 Two models for dephasing

The system under consideration is shown in Fig. 3-3. It consists of a chaotic cavity, coupled
by two point contacts (withN1 and N2 propagating modes at the Fermi energyEF ) to
source and drain reservoirs at voltagesV1 andV2. A current I = I1 = −I2 flows from
source to drain. In the voltage-probe model [1], a fictitious third lead (Nφ modes) connects
the cavity to a reservoir at voltageVφ. Particle conservation is enforced by adjustingVφ
in such a way that no current is drawn (Iφ = 0). The third lead contains a tunnel barrier,
with a transmission probability0φ which we assume to be the same for each mode. The
scattering matrixShas dimensionM = N1 + N2 + Nφ and can be written as

S =



s11 s12 s1φ

s21 s22 s2φ

sφ1 sφ2 sφφ


 , (3.2.1)

in terms ofNi × Nj reflection and transmission matricessi j . Application of the relations
[17]

Ik = 2e2

h

∑
l

Gkl Vl , k = 1, 2, φ, (3.2.2)

Gkl = δkl Nk − tr skls
†
kl, (3.2.3)

yields the (dimensionless) conductanceG = (h/2e2)I /(V1 − V2),

G = −G12 − G1φGφ2

Gφ1 + Gφ2
. (3.2.4)
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Figure 3-3. Chaotic cavity, connected to current source and drain reservoirs (1 and 2), and to a

voltage probe (φ). The voltage probe contains a tunnel barrier (dotted line). The voltage Vφ is

adjusted such that Iφ = 0.

Using unitarity ofS we may eliminate the conductance coefficientsGkl which involve
the voltage probe,

G = −G12 + (G11 + G12)(G22 + G12)

G11 + G12 + G21 + G22
. (3.2.5)

The remaining conductance coefficients are constructed from the matrix

S̃ =
(

s11 s12

s21 s22

)
, (3.2.6)

which formally represents the scattering matrix of an absorbing system. The first term in
Eq. (3.2.5) would be the conductance if the voltage probe would truly absorb the elec-
trons which enter it. The second term accounts for the electrons that are reinjected from
the phase-breaking reservoir, thereby ensuring particle conservation in the voltage-probe
model.

The imaginary potential model relatesS̃ to a HamiltonianH̃ with a spatially uniform,
negative imaginary potential−i γ1/4π . As used in Refs. [26] and [28], it retains only
the first term in Eq. (3.2.5), and therefore does not conserve particles. We correct this
by including the second term. We will now show that this particle-conserving imaginary
potential model is equivalent to the voltage-probe model in the limitNφ → ∞, 0φ → 0,
Nφ0φ ≡ γ .

Our equivalence proof is based on the general relationship [38,39]

S̃ = 1 − 2π i W̃†(EF − H̃ + iπW̃W̃†)−1W̃ (3.2.7)

between theN × N scattering matrix̃S (N = N1 + N2) and theN ′ × N ′ HamiltonianH̃
(the limit N′ → ∞ is taken later on). The Hamiltonian contains an imaginary potential,
H̃µν = Hµν − i δµνγ1/4π , with H a Hermitian matrix. For a chaotic cavity,H is taken
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from the Gaussian ensemble of random matrix theory [19]. TheN ′ × N matrix W̃ has
elements (cf. Sec. 2.2)

πW̃2
µn = π−1δµnN ′1

(
20−1

n − 1 − 20−1
n

√
1 − 0n

)
. (3.2.8)

Here0n is the transmission probability of moden in the leads and the energy1 is the mean
level spacing ofH . We embedW̃ into anN ′ × N ′ matrix by the definitionW̃µn = 0 for
N < n ≤ N′, and define

πW2
µn = πW̃2

µn + δµnγ1/4π. (3.2.9)

Substitution into Eq. (3.2.7) shows thatS̃ is an N × N submatrix of anN ′ × N ′ unitary
matrix

S = 1 − 2π iW†(EF − H + iπW W†)−1W. (3.2.10)

We have neglected the difference betweenW̃µµ andWµµ for 1 ≤ µ ≤ N, which is allowed
in the limit N′ → ∞. The matrixSis the scattering matrix of a cavity with three leads: Two
real leads withN1, N2 modes, plus a fictitious lead withN ′ − N modes. The transmission
probability0n of a mode in the fictitious lead follows from Eqs. (3.2.8) and (3.2.9),

0n = 4π2W2
nnN ′1

(N ′1+ π2W2
nn)

2
→ γ

N ′ if N ′ → ∞, (3.2.11)

where we have used thatπW2
nn = γ1/4π for N < n ≤ N ′.

We conclude that the particle-conserving imaginary potential model and the voltage-
probe model are equivalent in the limitNφ = N ′ − N → ∞, 0φ = γ /N ′ → 0, Nφ0φ =
γ (1 − N/N′) → γ .

3.2.2 Single-mode point contacts

The effect of quantum-interference on the conductance is maximal if the point contacts
which couple the chaotic cavity to the source and drain reservoirs have only a single prop-
agating mode at the Fermi level. Then the sample-to-sample fluctuations of the conduc-
tance are of the same size as the average conductance itself. One thus needs the entire
conductance distribution to characterize an ensemble of quantum dots. (An ensemble may
be generated by small variations in shape or in Fermi energy.)

In the absence of dephasing, the conductance distributionP(G) is highly non-Gaus-
sian [12, 15, 16] (see Sec. 2.1). For ideal point contacts (transmission probabilities01 =
02 = 1), one finds [15,16]

P(G) = 1
2βG(β−2)/2. (3.2.12)

The symmetry parameterβ = 2 (1) in the presence (absence) of a time-reversal-symmetry
breaking magnetic field. For high tunnel barriers (01, 02 � 1), P(G) is maximal for
G = 0, and drops off∝ G−3/2 for G � 0102, see Ref. [12] and Sec. 2.1. In this section,
we compute the conductance distribution in the presence of dephasing, using the voltage-
probe model in the limitNφ → ∞, 0φ → 0 at fixed Nφ0φ, in which it is equivalent
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Figure 3-4. Solid curves: Conductance distributions of a quantum dot with two ideal single-mode

point contacts, computed from Eqs. (3.2.19) and (3.2.21) for dephasing rates γ = 0, 0.5, 1, 2,

and 5. The top panel is for zero magnetic field (β = 1), the bottom panel for broken time-reversal

symmetry (β = 2). The dotted curves are the results of Refs. [25] and Sec. 3.1 for the model of

an ideal voltage probe (without a tunnel barrier), in which dephasing is not fully uniform in phase

space. For γ = 0 the two models coincide. The value γ = 0.5 is not accessible in the model of an

ideal voltage probe (because γ = Nφ0φ can take on only integer values if 0φ = 1).

to the current-conserving imaginary potential model. We focus on the case of ideal point
contacts, and discuss the effect of tunnel barriers briefly at the end of the section.

In Sec. 2.2, it has been shown that the scattering matrixS is distributed according to
the Poisson kernel [20,21,40],

P(S) = 1

V

det(1 − S̄S̄†)(βM+2−β)/2

| det(1 − S̄S†)|βM+2−β , (3.2.13)

whereV is a normalization constant,M = N1 + N2 + Nφ is the dimension ofS, and S̄
is a diagonal matrix with diagonal elementsS̄nn = √

1 − 0n. Here0n is the transmission
probability of moden (0n ≡ 0φ for N1 + N2 < n ≤ M). The measuredS is the invariant
measure on the manifold of unitary (unitary symmetric) matrices forβ = 2 (1).

We now specialize to the case of ideal single-mode point contacts,N1 = N2 = 1 and
01 = 02 = 1. We seek the distribution of the 2× 2 submatrixS̃defined in Eq. (3.2.6). We
start with the polar decomposition ofS,

S =
(

u 0

0 v

)( √
1 − t†t i t †

i t
√

1 − t t†

)(
u′ 0

0 v′

)
, (3.2.14)

whereu andu′ (v andv′) are 2×2 (Nφ×Nφ) unitary matrices, andt is aNφ×2 matrix with
all elements equal to zero excepttnn = √

Tn, n = 1, 2. In the presence of time-reversal
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symmetry,u′ = uT andv′ = vT. In terms of the polar decomposition (3.2.14) we have

S̃ = u

( √
1 − T1 0

0
√

1 − T2

)
u′. (3.2.15)

The two parametersT1 andT2 govern the strength of the absorption by the voltage probe.
For T1, T2 → 0 the matrixS̃ is unitary and there is no absorption, whereas forT1, T2 → 1
the matrixS̃vanishes and the absorption is complete. Substitution of the invariant measure
[29]

dS = |T1 − T2|β(T1T2)
(βNφ−2−β)/2

× dudu′dvdv′dT1dT2 (3.2.16)

and the polar decomposition (3.2.14) into the Poisson kernel (3.2.13), yields the distribu-
tion of S̃ in the form

P(T1, T2, u, u
′) = 0

Nφ(βNφ+2+β)/2
φ |T1 − T2|β

× 1

V

∫
dv
∫

dv′ (T1T2)
(βNφ−2−β)/2

| det(1 − v′v τ)|βNφ+2+β , (3.2.17)

τ =
√
(1 − 0φ)(1 − t t†). (3.2.18)

Since Eq. (3.2.17) is independent ofu andu′, the matricesu andu′ are uniformly dis-
tributed in the unitary group, and the distribution ofS̃ is completely determined by the
joint distributionP(T1, T2) of the absorption probabilitiesT1 andT2.

It remains to perform the integral overv andv′ in Eq. (3.2.17). This is a non-trivial
calculation, which we describe in the appendix. The final result in the limitNφ → ∞,
0φ → 0 at fixedγ = Nφ0φ is

P(T1, T2) = 1
8T−4

1 T−4
2 exp

[
−1

2γ (T
−1
1 + T−1

2 )
]
|T1 − T2|

[
γ 2(2 − 2eγ + γ + γeγ )

− γ (T1 + T2)(6 − 6eγ + 4γ + 2γeγ + γ 2)

+ T1T2(24− 24eγ + 18γ + 6γeγ + 6γ 2 + γ 3)
]

(3.2.19)

for β = 1 (presence of time-reversal symmetry), and

P(T1, T2) = 1
2T−6

1 T−6
2 exp

[
−γ (T−1

1 + T−1
2 )

]
(T1 − T2)

2

×
[
γ 4(1 − 2eγ + e2γ − γ 2eγ )− γ 3(T1 + T2)(4 − 8eγ + 4e2γ + 2γ

− 2γeγ − 2γ 2eγ − γ 3eγ )+ γ 2(T2
1 + T2

2 )(2 − 4eγ + 2e2γ + 4γ

− 4γeγ + γ 2 + γ 2eγ − γ 3eγ )+ γ 2T1T2(20− 40eγ + 20e2γ + 16γ

− 16γeγ + 4γ 2 − 8γ 2eγ − 4γ 3eγ − γ 4eγ )− γT1T2(T1 + T2)(12

− 24eγ + 12e2γ + 24γ − 24γeγ + 12γ 2 + 2γ 3 − 2γ 3eγ − γ 4eγ )

+ T2
1 T2

2 (12− 24eγ + 12e2γ + 24γ − 24γeγ + 24γ 2 − 12γ 2eγ + 8γ 3

+ 4γ 3eγ + γ 4 − 2γ 4eγ )
]

(3.2.20)
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Figure 3-5. The limiting conductance distribution (3.2.22) for γ � 1 (solid curves). A Gaussian

distribution with the same mean and variance is shown for comparison (dotted curves).

for β = 2 (absence of time-reversal symmetry).
To relate the conductanceG to T1, T2, u, andu′, we substitute the polar decomposition

of S into Eq. (3.2.5), with the result

G =
2∑

i, j =1

u1i u
′
i 2u∗

1 j u
′∗
j 2

√
(1 − Ti )(1 − Tj )

+ (T1 + T2)
−1

2∑
i, j =1

|u1i |2|u′
j 2|2Ti Tj . (3.2.21)

Eqs. (3.2.19) and (3.2.21), together with the uniform distribution of the 2× 2 matricesu,
u′ over the unitary group, fully determine the distributionP(G) of the conductance of a
chaotic cavity with two ideal single-mode point contacts. We parameterizeu, u′ in Euler
angles and obtainP(G) as a four-dimensional integral, which we evaluate numerically.
The distribution is plotted in Fig. 3-4 (solid curves) for several values of the dimensionless
dephasing rateγ = 2π h̄/τφ1. Forγ � 1, the conductance distribution becomes peaked
around the classical conductanceG = 1/2,

P(G) → γβ

2

(
1 + |x| − δβ1x

)
e−|x| if γ � 1, (3.2.22)

wherex = 2γβ(G − 1/2).1 Notice that the distribution remains non-Gaussian for all
values ofγ . The limiting distribution (3.2.22) is plotted in Fig. 3-5, forβ = 1 and 2. The

1The conditionγ � 1 for very strong dephasing is understood as the regimeτdwell � τφ � τerg, where
τdwell is the dwell time of the electrons in the quantum dot andτerg the time scale for ergodic exploration of
the complete phase space. The regimeτφ < τerg is considered in Ref. [28].
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average and variance of the conductance are

〈G〉 = 1
2 − 1

2δβ1γ
−1 + O(γ−2), (3.2.23)

varG = 1
4(1 + 2δβ1)γ

−2 + O(γ−3). (3.2.24)

The effect of dephasing was previously studied in Ref. [25] and Sec. 3.1 for the case
0φ = 1 of an ideal voltage probe (without a tunnel barrier). The corresponding results are
also shown in Fig. 3-4 (dotted curves). We see that the limitNφ → ∞, 0φ → 0 results in
narrower distributions at the same value ofγ = Nφ0φ. In particular, the tailsG → 0 and
G → 1 are strongly suppressed even for the smallestγ , in contrast with the case of the
ideal voltage probe. The physical reason for the difference is that keepingNφ small and
setting0φ equal to 1 corresponds to dephasing which is not fully uniform in phase space,
and therefore not as effective as the limitNφ → ∞, 0φ → 0. For largeγ , the difference
vanishes, and the distribution (3.2.22) is recovered for an ideal voltage probe as well. (The
fact that the conductance fluctuations aroundG = 1/2 are non-Gaussian was overlooked
in Ref. [25] and Sec. 3.1.)

We have shown in the previous section that the voltage-probe model in the limitNφ →
∞, 0φ → 0 is equivalent to the particle-conserving imaginary potential model. The re-
quirement of particle conservation is essential. This is illustrated in Fig. 3-6a, where we
compare our results with those obtained from the imaginary potential model without enfor-
cing conservation of particles. [This model corresponds to settingG = −G12 in Eq. (3.2.5)
and was first solved in Ref. [12].] Forγ � 1, the imaginary potential without particle con-
servation yields a distribution which is maximal atG = 0, instead of a strongly peaked
distribution aroundG = 1/2 [cf. Eq. (3.2.22)].

The first two moments of the conductance can be computed analytically from equations
(3.2.19) and (3.2.21). The resulting expressions (which are too lengthy to report here)
are plotted in Fig. 3-6b. The markers at integer values ofγ are the results of the ideal
voltage-probe model of Refs. [25] and Sec. 3.1, where0φ = 1 andγ = Nφ = 0, 1, 2, . . ..
The remarkable result of Sec. 3.1 that〈G〉 is the same forγ = 0 andγ = 1 is special
for dephasing by a single-mode voltage probe: The present model with spatially uniform
dephasing has a strictly monotonic increase of〈G〉 with γ for β = 1.

Sofar we have considered ideal point contacts. Non-ideal point contacts (i.e. point
contacts with tunnel barriers) correspond to01, 02 < 1 in the distribution (3.2.13) ofS.
Using the results of Sec. 2.2, this case can be mapped onto that of ideal point contacts by
the parameterization [20,21]

S = R + T(1 − S′R)−1S′T, (3.2.25)

where R and T = i
√

1 − R2 are diagonal matrices. The only nonzero elements ofR
are R11 = √

1 − 01 and R22 = √
1 − 02. The distribution ofS′ is given by the Poisson

kernel (3.2.13) with01 = 02 = 1. Physically,S′ is the scattering matrix of the quantum dot
without the tunnel barriers in the point contacts, whileR (T ) is the reflection (transmission)
matrix of the tunnel barriers in the absence of the quantum dot, see Sec. 2.2. We may
restrict the parameterization (3.2.25) to the 2× 2 submatrixS̃,

S̃ = R̃ + T̃(1 − S̃′ R̃)−1S̃′T̃ , (3.2.26)
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(a) (b)

Figure 3-6. (a) Solid curves: Same as in Fig. 3-4, bottom panel. Dotted curves: Results of

the imaginary potential model without particle conservation. (b) Variance of the conductance as

a function of the dephasing rate γ , for β = 1 (solid curve) and β = 2 (dotted curve), computed

from Eqs. (3.2.19) and (3.2.21). The crosses (β = 1) and squares (β = 2) at integer γ result from

the model of Refs. [25] and Sec. 3.1 with the ideal voltage probe. The inset shows the average

conductance for β = 1. (For β = 2 the average is trivially equal to 1/2 for all γ in both models.)

where the matrices̃S′, R̃, and T̃ are the upper-left 2× 2 submatrices ofS′, R, andT ,
respectively. The matrix̃S′ has the distribution given by Eqs. (3.2.17) and (3.2.19). The
matricesR̃ andT̃ are fixed, so the distribution of̃S follows directly from Eq. (3.2.26).

For strong dephasing (γ � 01, 02) we find that the conductance distribution becomes
a Gaussian with mean and variance given by

〈G〉 = 0102

01 + 02
− 202

10
2
2(4/β − 01 − 02)

γ (01 + 02)3
, (3.2.27)

varG = 402
10

2
2(0

2
1 + 02

2 − 010
2
2 − 02

102)

βγ (01 + 02)3
. (3.2.28)

The average conductance〈G〉 is the classical series conductance of the two point-contact
conductances01 and02. Fluctuations around the classical conductance are of orderγ−1/2.
For ideal point contacts (01, 02 → 1) the variance (3.2.28) vanishes. The higher-order
fluctuations are non-Gaussian, described by Eq. (3.2.22).

Again our result is entirely different from that of the imaginary potential model without
particle conservation [12, 28], whereP(G) becomes sharply peaked atG = 0 whenγ �
01, 02. We have verified that we recover the results of Ref. [12] from our Eqs. (3.2.19) and
(3.2.21) if we retain only the first term in Eq. (3.2.5), i.e. if we setG = −G12. The results
of Ref. [28] are recovered if we symmetrize this term, i.e. if we setG = −(G12 + G21)/2.
(This is different from−G12 if β = 2 andγ 6= 0.) Once particle conservation is enforced,
the imaginary potential model leads unambiguously to Eq. (3.2.27).
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3.2.3 Multi-mode point contacts

In this section we consider the caseN1, N2 � 1 of a large number of modes in the two point
contacts. The conductance distribution is then a Gaussian, hence it suffices to compute the
first two moments ofG. We first consider ideal point contacts (01 = 02 = 1), and discuss
the effect of tunnel barriers at the end.

For N1, N2 � 1 the integration over the scattering matrixSwith the probability distri-
bution (3.2.13) can be done using the diagrammatic technique of Ch. 6. The result for the
average of the conductance coefficientsGi j is

〈Gi j 〉 = Ni δi j − Ni Nj

N + Nφ0φ
+ δβ,1Ai j , (3.2.29)

Ai j = Ni Nj (N + 2Nφ0φ − Nφ02
φ)

(N + Nφ0φ)3
− δi j Ni

N + Nφ0φ
, (3.2.30)

up to terms of orderN−1. (Here we recall thatN = N1 + N2.) For the covariances
cov(Gi j ,Gkl) ≡ 〈Gi j Gkl〉 − 〈Gi j 〉〈Gkl〉 we find

cov(Gi j ,Gkl) = Aik Ajl + δβ,1Ail Ajk

+ 2Ni Nj NkNl Nφ(Nφ + N)02
φ(1 − 0φ)

β(N + Nφ0φ)6
. (3.2.31)

In order to find the average and variance of the conductance in the presence of dephasing,
we substitute Eqs. (3.2.30) and (3.2.31) into Eq. (3.2.5). The result is

〈G〉 = N1N2

N

(
1 − δβ1

N + γ

)
, (3.2.32)

varG = 2N2
1 N2

2

βN2(N + γ )2
, (3.2.33)

with γ = Nφ0φ.
Eq. (3.2.32) was previously obtained by Aleiner and Larkin [27]. Eq. (3.2.33) for varG

agrees with the interpolation formula of Baranger and Mello [25]. The derivation presented
here shows that this interpolation formula is in fact a rigorous result of perturbation theory.
[However, the interpolation formula of Ref. [25] for〈G〉 differs from Eq. (3.2.32).] In
the final expression for〈G〉 and varG only the productNφ0φ appears, although the mo-
ments of the conductance coefficientsGi j depend onNφ and0φ separately. Apparently, in
large-N perturbation theory the precise choice ofNφ and0φ in the voltage-probe model is
irrelevant, the conductance distribution being determined by the productNφ0φ only. For
small dephasing ratesγ � N, Eq. (3.2.32) agrees with Efetov’s result [26], who used the
imaginary potential model without enforcing particle conservation. However, forγ >∼ N,
our result differs from that of Ref. [26], indicating the importance of particle conservation
once the dephasing rateγ and the dimensionless escape rateN through the point contacts
become comparable.
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We have carried out the same calculation for the case of non-ideal point contacts. The
transmission probability of moden is denoted by0n (n = 1, . . . , N1 corresponding to the
first point contact,n = N1 + 1, . . . , N1 + N2 to the second point contact). The result is

〈G〉 = g1g′
1

g
− δβ1

g2g′2
1 + g2

1g′
2

g2(g + γ )
, (3.2.34)

varG = 2g2
1g′2

1

βg2(g + γ )2
+ 4(g4

1g′
2 − g4

1g′
3 + g2g′4

1 − g3g′4
1 )

βg4(g + γ )

+ 3(g4
1g′2

2 + g2
2g′4

1 )

βg4(g + γ )2
− 4g2

1g′2
1 (g2 + g′

2)

βg3(g + γ )2
, (3.2.35)

gp =
N1∑

n=1

0 p
n , g′

p =
N1+N2∑

n=1+N1

0 p
n , g = g1 + g′

1. (3.2.36)

One can check that Eq. (3.2.34) reduces to Eq. (3.2.32) for ideal point contacts (when
gp = N1, g′

p = N2). As in the case of single-mode point contacts, varG ∝ γ−2 for γ � 1
without tunnel barriers, while varG ∝ γ−1 otherwise.

3.2.4 Conclusion

In summary, we have demonstrated the equivalence of two models for dephasing, the volta-
ge-probe model and the imaginary potential model. In doing so we have corrected a num-
ber of shortcomings of each model, notably the non-uniformity of the dephasing in the
voltage-probe model of Ref. [25] and Sec. 3.1 and the lack of particle conservation in the
imaginary potential model of Refs. [26] and [28]. We have calculated the distribution of
the conductance and shown that it peaks at the classical conductance for strong dephas-
ing once particle conservation is enforced, thereby reconciling the contradictory results of
Ref. [25] and Sec. 3.1, on the one hand, and Refs. [26] and [28], on the other hand. We
find that for ideal single-mode point contacts (no tunnel barriers), conductance fluctuations
are non-Gaussian and∝ τφ for strong dephasing (τφ → 0). In the case of non-ideal point
contacts (with tunnel barriers), fluctuations are larger (∝ √

τφ) and Gaussian forτφ → 0 .
The effect of dephasing becomes appreciable when the dimensionless dephasing rate

γ = 2π h̄/τφ1 is of the same order as the dimensionless escape rateg = ∑
n 0n through

the two point contacts. Forγ � g, the weak-localization correctionδG = 〈G〉(β =
2)− 〈G〉(β = 1) and the conductance fluctuations are given by

δG = a1g/γ + O(g/γ )2, (3.2.37)

varG = b1g/γ + b2(g/γ )
2 + O(g/γ )3, (3.2.38)

wherea1, b1, andb2 are numerical coefficients determined by equations (3.2.23), (3.2.27),
(3.2.32), and (3.2.34). For the special case of two single-mode point contacts, we have

a1 = 402
10

2
2

(01 + 02)4
, (3.2.39)
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b1 = 402
10

2
2(0

2
1 + 02

2 − 010
2
2 − 02

102)

β(01 + 02)4
. (3.2.40)

The coefficientb2 is only relevant if01, 02 ≈ 1, whenb1 ≈ (2 − 01 − 02)/4β � 1 and
b2 ≈ (1 + 2δβ1)/16. At finite temperatures, in addition to dephasing, the effect of thermal
smearing becomes important [26]. Since thermal smearing has no effect on the average
conductance, the weak-localization correctionδG provides an unambiguous way to find
the dephasing rateγ .

The fact that dephasing was not entirely uniform in phase space in the model of Ref.
[25] and Sec. 3.1 leads to small but noticeable differences with the completely uniform de-
scription used here, in particular for the case of single-mode point contacts. The differences
may result in a discrepancy1γ ≈ 1 in the estimated value of the dimensionless dephasing
rateγ , if the ideal voltage-probe model of Ref. [25] and Sec. 3.1 is used instead of the
model presented here. A difference1γ ≈ 1 is relevant, as experiments on semiconductor
quantum dots can have dephasing rates as low asγ ≈ 2 [41].

Both the voltage-probe model and the imaginary potential model only provide an effec-
tive description of dephasing. They cannot compete with a microscopic theory of inelastic
scattering in quantum dots (see e.g. Refs. [42] and [43]). At this time, a microscopic the-
ory for the effect of inelastic scattering on the conductance distribution does not yet exist.
For the time being, the model presented here may well be the most realistic description
available.

Appendix A: Calculation of P(T1, T2)

We start the calculation ofP(T1, T2) from the integral expression (3.2.17), in which we
may replace the double integral ofv andv′ by a single integral of the matrixv′v over the
unitary group (forβ = 2) or over the manifold of unitary symmetric matrices (forβ = 1).
We make a substitution of variablesv′v → w via

v′v = τ −
√

1 − τ2w(1 − τw)−1
√

1 − τ2. (A.1)

The matrixτ was defined in Eq. (3.2.18). One verifies that the matrixw is unitary (unitary
symmetric forβ = 1). By Sec. 2.2, the Jacobian of this transformation is [20,21]

det

(
dv′v
dw

)
= V

V ′
| det(1 − v′vτ)|βNφ+2−β

det(1 − τ2)(βNφ+2−β)/2 , (A.2)

whereV and V ′ are normalization constants. This change of variables is a key step in
the calculation, since the Jacobian (A.2) cancels the denominator of the integrand of Eq.
(3.2.17) almost completely,

P(T1, T2) = 1

V ′

∫
dw0β(6−β)

φ |T1 − T2|β

×
∏

j =1,2

(1 + 0φT−1
j − 0φ)

−(βNφ+6−β)/2
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×
∏

j =1,2

T−2β−2
j | det(1 − τw)|2β. (A.3)

We now consider separately the integral

Iβ =
∫

dw | det(1 − τw)|2β

=
∫

dw det(1 − √
τw

√
τ )β det(1 − √

τw−1√τ). (A.4)

Here we have used that the matrixτ is a positive diagonal matrix. We now change variables√
τw−1√τ → w̃−1. If the matrixτ were unitary, we could write

Iβ =
∫

dw̃ det(1 − τw̃τ )β det(1 − w̃−1)β, (A.5)

in view of the invariance of the measuredw = dw̃. However,τ is not unitary. A theorem
due to Weyl allows us to continue Eq. (A.5) analytically to arbitraryτ [44].

To evaluateIβ , we decomposẽw in eigenvectors and eigenphases,w̃ = Uei2U†,
whereU is an orthogonal (unitary) matrix forβ = 1 (2), and2i j = δi j θj , 0 ≤ θj < 2π .
The invariant measuredw̃ reads [19]

dw̃ = dU
∏
i< j

|ei θi − ei θ j |β
∏

i

dθi . (A.6)

After some algebraic manipulations, we arrive at

Iβ =
∫

dθ1 . . .

∫
dθNφ

∏
i< j

|ei θi − ei θ j |β
Nφ∏
j =1

(
1 − e−i θi

)β

×
Nφ∏
j =1

[
1 − (1 − 0φ)e

i θ j
]β ∫

dU detAβ, (A.7)

where the 2× 2 matrix A is given by

Ai j = δi j − (1 − 0φ)

Nφ∑
l=1

Uil U
∗
j l e

i θl
√

Ti Tj

1 − (1 − 0φ)ei θl
. (A.8)

The determinant ofA is computed by a direct expansion. SinceNφ � 1, we may con-
sider the matrix elementsUkl as independent real (complex) Gaussian distributed variables
with zero mean and variance 1/Nφ for β = 1 (2). We write the result of the Gaussian
integrations in terms of derivatives of a generating functionFβ ,

Nφ∏
j =1

[
1 − (1 − 0φ)e

i θ j
]β ∫

dU detAβ = DβFβ. (A.9)
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The generating functionFβ depends on the variablesxk, yk, andzk, wherek = 1 for β = 1
andk = 1, 2 for β = 2,

Fβ =
Nφ∏
j =1

β∏
k=1

(1 + xk + yk)[1 + f (xk, yk, zk)e
i θ j ], (A.10)

f (x, y, z) = (1 + x + y)−1(1 − 0φ)

×
[
1 + x(1 − 2T1)+ y(1 − 2T2)+ z

√
T1T2

]
. (A.11)

The differential operatorDβ reads

D1 = 1
2 N−1

φ (∂x1 + ∂y1)+ N−2
φ ∂z1∂z1, (A.12)

D2 = N−2
φ

[
1
2(∂x1∂x2 + ∂y1∂y2)− 1

4(∂x1 − ∂y2)
2
]

+ N−3
φ (3

2∂z2∂z2 − 1
2∂z1∂z1)(∂x1 + ∂y1)

+ N−4
φ ∂z1∂z2∂z2(3∂z2 − 2∂z1). (A.13)

The derivatives in Eq. (A.9) should be evaluated atxk = yk = zk = 0 (k = 1, 2).
We are left with an integral over the phasesθj which is of the type

I ′
β =

∫
dθ1 . . .

∫
dθn

∏
i< j

|ei θi − ei θ j |β

×
n∏

j =1

(1 − e−i θ j )β
β∏

k=1

(
ak − ei θ j

)
. (A.14)

The integrand is a product of secular determinants det(λ − U) of a unitary matrixU .
Integrals of this form were considered by Haake et al [45]. Forβ = 1 we can directly
apply the results in their paper, forβ = 2 we need to extend their method to include a
product of four secular determinants. We find

I ′
1 = (1 + n)(an+3

1 − 1)− (3 + n)a1(a
n+1
1 − 1)

(a1 − 1)3(n − 1)
, (A.15)

I ′
2 = (an+2

1 − 1)(an+2
2 − 1)

(a1 − 1)2(a2 − 1)2

− (an+2
1 − an+2

2 )(n + 2)

(a1 − 1)(a2 − 2)(a1 − a2)
. (A.16)

The desired integralIβ is obtained fromI ′
β by substitution of Eq. (A.15) withn = Nφ,

ak = f (xk, yk, zk) into Eqs. (A.7)–(A.12). Substitution ofIβ into Eq. (A.3) then leads to
the final result (3.2.19).
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4 Time delay in chaotic scattering

4.1 Charge-Relaxation and dwell time in the fluctuating
admittance of a chaotic cavity

A quantum dot is a small conducting island, formed with the help of gates, with a ballistic
and chaotic classical dynamics, and coupled to electron reservoirs by ballistic point con-
tacts. The search for signatures of phase-coherent transport through chaotic quantum dots
focused on the d.c. conductance [1–4]. However, the a.c. response is also of interest [3,5,6],
since it probes the charge distribution and its dynamics. While the d.c. conductance is en-
tirely determined by the scattering properties of the quantum dot, a.c. transport requires
that nearby conductors (gates) are taken into account as well [7–9]: charges may temporar-
ily pile up in the quantum dot, thus interacting with the gates through long-range Coulomb
forces.

Except for highly transmissive samples [9], the low-frequency dynamics of a mesosco-
pic conductor is governed by a charge-relaxation mode or an RC-relaxation timeτ .
However, as soon as weak localization [10] and universal conductance fluctuations [11]
play a role, this is no longer a complete picture. In this section, we demonstrate that the
weak localization effects and the a.c. conductance (admittance) fluctuations are primarily
governed by a second time-scale, a dwell timeτd, characteristic of the non-interacting
system. The large disparity of these two time-scales (τd � τ for a macroscopic quantum
dot) dramatically affects the admittance and provides a signature that should be readily
observed.

In a recent paper, Gopar, Mello, and B¨uttiker studied the capacitance fluctuations of
a chaotic quantum dot, coupled to the outside world through one point contact with a
single conducting channel only [5]. For the low-frequency fluctuations, weak localization
effects are absent and the double-time scale behavior discussed here does not occur. In this
section, we calculate the average and variance of the admittance for the case of a two-probe
quantum dot with multichannel point contacts. Multichannel contacts are necessary to be
in the regime of weak localization and universal conductance fluctuations. Moreover, the
presence of two point contacts instead of one turns out to be essential for the existence of
quantum interference effects to leading order in the frequencyω.

The system under consideration is depicted in Fig. 4-1a. Two electron reservoirs at
voltagesU1(ω) and U2(ω) are coupled to the quantum dot by two point contacts with
N1, N2 � 1 modes, through which currentsI1(ω) and I2(ω) are passed. The dot is
coupled capacitively to a gate, connected to a reservoir at voltageU3(ω), from which a
current I3(ω) flows. A geometrical capacitanceC accounts for the capacitive coupling
with the gate [5, 7]. We assume that the gate is macroscopic, i.e. that its density of states
dn3/dε � C/e2. The a.c. transport properties of the system are characterized by the di-
mensionless admittanceGµν(ω) = (h/2e2)δ Iµ(ω)/δUν(ω). We restrict ourselves to the
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δV=0δ V=0δ

(a) (b)

Figure 4-1. (a) Chaotic cavity (grey), coupled to source and drain reservoir (1 and 2) by point con-

tacts. The cavity is coupled capacitively to the gate (3). (b) Construction of the energy dependent

ensemble of scattering matrices. A change δε of the energy is replaced by a spatially uniform

change δV = −δε/e of the potential in the cavity (left), which in turn is statistically equivalent to

a chaotic cavity with δV = 0 (right), coupled to a closed lead (a stub) with an energy-dependent

reflection matrix.

coefficientsGµν(ω) with µ, ν = 1, 2, the remaining coefficients being determined by cur-
rent conservation and gauge invariance [7–9],

∑3
µ=1 Gµν(ω) = ∑3

ν=1 Gµν(ω) = 0. The
emittanceEµν is the first order term in a small-ω expansion of the admittance,

Gµν(ω) = Gµν − iωEµν + O(ω2). (4.1.1)

HereGµν ≡ Gµν(0) is the d.c. conductance. The emittance coefficients are the analogues
of the capacitance coefficients for a purely capacitive system [8,9].

A calculation of the admittance proceeds in two steps [7]. First, we calculate the un-
screened admittanceGu

µν(ω), the direct response to the change in the external potentials
(at fixed internal potential)

Gu
µν(ω) =

∫
dε

f (ε − 1
2h̄ω)− f (ε + 1

2h̄ω)

h̄ω
tr
[
δµν11µ − S†

µν(ε − 1
2h̄ω)Sµν(ε + 1

2h̄ω)
]
.

(4.1.2)
Here f (ε) is the Fermi function,Sµν is theNµ × Nν scattering matrix for scattering from
ν toµ, and11µ is theNµ × Nµ unit matrix. Second, we take the screening due to the long-
range Coulomb interactions into account, which was ignored in Eq. (4.1.2). For a single
self-consistent potential within the cavity, the result is [7]

Gµν(ω) = Gu
µν(ω)+

∑2
ρ=1 Gu

µρ(ω)
∑2
σ=1 Gu

σν(ω)

ihωC/2e2 −∑2
ρ=1

∑2
σ=1 Gu

ρσ (ω)
. (4.1.3)

The average over the ensemble of quantum dots is performed using random-matrix the-
ory [12]. We use an extension of the circular ensemble of uniformly distributed scattering
matrices. This extension provides a statistical description of the energy-dependence of the
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scattering matrix.1 To construct the extended circular ensemble we first replace an energy
shift δε by a uniform decreaseδV = −δε/eof the potentialV in the quantum dot. The key
point of our method is to localizeδV in a closed lead (a stub), see Fig. 4-1b. The stub con-
tainsNs � N1+ N2 modes to ensure that it models a spatially homogeneous potential drop
δV . The system consisting of the dot and the stub is described by theNs× Ns, ε-dependent
reflection matrixrs(ε) of the stub and the(N1 + N2 + Ns)-dimensional scattering matrix
U of the cavity at reference energyε0, with the stub replaced by a regular open lead. We
choose the scattering basis in the stub and the cavity such thatrs(ε0) = 1. Forε different
from ε0 we take

rs(ε) = ei (ε−ε0)8, φ = tr8 (4.1.4)

where the matrix8 is Hermitian and positive definite. ForNs � N1 + N2, the precise
choice of8 becomes irrelevant, all information being contained in the single parameter
φ. For the matrixU we assume a uniform distribution. In the presence of time-reversal
symmetry, bothU and8 are symmetric. We finally express the scattering matrixS(ε) in
terms ofU andrs(ε),

S(ε) = Ull + Uls [1 − rs(ε)Uss]
−1 rs(ε)Usl. (4.1.5)

The matricesUi j in Eq. (4.1.5) are the four blocks ofU , describing transmission and re-
flection from and to the stub (s) or the two leads (l). The parameterφ is related to the mean
level density〈dn/dε〉 via φ = 2π〈dn/dε〉.

We are now ready to calculate the average and fluctuations of the admittance. We first
compute the average of the unscreened admittanceGu

µν(ω) with the help of the diagram-
matic technique of Ch. 6,

〈Gu
µν(ω)〉 = δµνNµ − NµNν

N(1 − iωτd)
+ (2 − β)Nµ
βN(1 − iωτd)

(
Nν(1 − 2iωτd)

N(1 − iωτd)2
− δµν

)
+O(N−1), (4.1.6)

whereN = N1 + N2 andτd = (h/N)〈dn/dε〉 is the dwell time. The symmetry index
β = 1 (2) in the absence (presence) of a time-reversal- symmetry breaking magnetic field;
β = 4 in zero magnetic field with strong spin-orbit scattering. Since fluctuations inGu

µν(ω)

are of relative orderN−2, we may directly substitute the result (4.1.6) into Eq. (4.1.3), to
obtain the first two terms in the large-N expansion of the screened admittance〈Gµν(ω)〉,

〈Gµν(ω)〉 = δµνNµ − NµNν
N(1 − iωτ)

+ (2 − β)Nµ
βN(1 − iωτd)

(
Nν(1 − 2iωτ)

N(1 − iωτ)2
− δµν

)
+ O(N−1), (4.1.7)

whereτ−1 = τ−1
d + 2e2N/hC is theRC time. TheO(N) term in the r.h.s. of Eq. (4.1.7)

is the classical admittance, theβ-dependentO(1) term is the weak-localization correction.
1For a justification of the extended circular ensemble from the Hamiltonian approach to chaotic scattering

[37], the reader is referred to App. A. A similar extension of the circular ensemble to model the magnetic-
field dependence ofS is discussed Sec. 7.3.
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Notice the almost complete formal similarity between the fully screened result (4.1.7) and
the unscreened result (4.1.6): Up to one term, screening results in the replacement of the
dwell time τd by the RC-time τ . The fact that the similarity is not complete is the key
result of this section which we discuss below in more detail.

The first two terms in the small-ω expansion of〈Gµν(ω)〉 yield the average d.c. con-
ductance〈Gµν〉 and emittance〈Eµν〉,

〈Gµν〉 = Nµ
(
δµν − Nν/N

)+ (2 − β)(Nµ/βN)
(
Nν/N − δµν

)
, (4.1.8)

〈Eµν〉 = NµNντ/N − (2 − β)(Nµτd/βN)
(
Nν/N − δµν

)
. (4.1.9)

Eq. (4.1.8) was previously obtained in Ref. [4]. ForC → 0, the RC-time τ vanishes.
Forβ = 2 we then find〈Eµν〉 = 0, for β = 1 the weak-localization contribution〈E11〉 =
−〈E12〉 = N1N2〈dn/dε〉/N3h leads to a positive emittance, while forβ = 4 the emittance
is negative. For comparison we mention that for complete screening, a ballistic conductor
has an inductive emittanceE = −(1/4h)〈dn/dε〉, whereas a metallic diffusive conductor
behaves capacitively asE = (1/6h)〈dn/dε〉 [9].

For simplicity, we restrict our presentation of the admittance fluctuations to the d.c.
conductanceGµν and the emittanceEµν at zero temperature. As before, we use the dia-
grammatic technique of Ch. 6. The leadingω-behavior of the admittance fluctuations is de-
termined by the cross-correlator cov(Gµν, Eµν) [Recall that cov(x, y) = 〈xy〉 − 〈x〉〈y〉].
We find that cov(Gµν, Eµν) is unaffected by the capacitive interaction with the gate,

cov(Gµν, Eρσ ) = cov(Gµν, Eu
ρσ ) = − NµNν τd

N2

(
Nρ
N

− δµρ

)(
Nσ
N

− δνσ

)
. (4.1.10)

For the autocorrelator of the emittance we find

cov(Eµν, Eρσ ) = 3 NµNντ2
d

2 N2

(
Nρ
N

− δµρ

)(
Nσ
N

− δνσ

)
(4.1.11)

+ NµNντ2

N3

(
δµρNσ + δνσ Nρ

)+ 2 NµNνNρNσ τ2

τ2
d N4

(τ2 − τ2
d ).

Eqs. (4.1.10) and (4.1.11) are valid forβ = 2. In zero magnetic field (β = 1, 4), the
permutationρ ↔ σ must be added; in the presence of spin-orbit scattering (β = 4), Eqs.
(4.1.10) and (4.1.11) are multiplied by 1/4.

The relevant time scales for the low-frequency response of a chaotic quantum dot are
obtained from Eqs. (4.1.9) and (4.1.10). The relevant time scale for the classical admittance
is the charge-relaxation timeτ , while the weak-localization correctionδGµν(ω) and the
admittance fluctuations are governed by the dwell timeτd. Hence, to leading order inω, the
manifestation of quantum phase coherence on a.c. transport is unaffected by the Coulomb
interactions.For a macroscopic quantum dot, the density of statesdn/dε � C/e2, so that
the two characteristic time scalesτ andτd differ considerably.

To explain this result, we first consider the weak-localization correctionδEµν to the
average emittance. A screening contribution toδEµν requires a magnetic-field depen-
dent quantum interference correction to the charge accumulated in the cavity. To first



Charge-Relaxation and dwell time. . . 95

order inω, the (unscreened) charge accumulation at a pointEr in the dot due to the ex-
ternal potential changeδUµ(ω) is determined by the injectivitydnµ(Er )/dε and emissiv-
ity dnµ(Er )/dε [8, 9]. For symmetry reasons, the ensemble averages〈dnµ(Er )/dε〉 and
〈dnµ(Er )/dε〉 both equalNµ/N times the average local density of states〈dn(Er )/dε〉, and
have no magnetic-field dependent weak-localization correction. Hence weak localization
affects how current is distributed into the different leads, but it does not lead to charging of
the sample (to leading order inω). This explains why the relevant time scale is the dwell
timeτd, characteristic of the non-interacting system, and not the charge-relaxation timeτ .

Similarly, the screening correction to cov(Gµν, Eµν) requires correlations between the
d.c. conductanceGµν and the injectivitydnρ(Er )/dε or emissivitydnρ(Er )/dε [8, 9]. For a
chaotic cavity, we have

cov(Gµν, dnρ(Er )/dε) = cov(Gµν, dnρ(Er )/dε)
= Nρ cov(Gµν, dn(Er )/dε)/N. (4.1.12)

The correlator of the d.c. conductance and the local density of states vanishes for ideal
leads, which is easily verified by computation ofκi j = cov

(|Si j |2, dn(Er )/dε). Forβ = 2
both dn(Er )/dε and the distribution ofS are invariant under multiplication ofS with a
unitary matrix. It follows thatκi j is independent ofi and j , henceκi j = 0. Forβ = 1, 4
a similar argument holds. The absence of correlations between the density of states and
the d.c. conductance is special for the case of ideal point contacts. Correlations between
Gµν anddn(Er )/dε are common for point contacts with tunnel barriers, when the scattering
matrix has no uniform distribution.

The average and variance of the admittance of a chaotic quantum dot with only one
point contact is obtained from our results by settingN1 = N, N2 = 0. Denoting the
admittance of this system byG(ω) = G11(ω), we thus obtain

〈G(ω)〉 = −Niωτ

1 − iωτ
+ (2 − β)ω2τ2

β(1 − iωτd)(1 − iωτ)2
, (4.1.13)

varG(ω) = 4τ4

βτ2
d

(iω)2 + O(ω3). (4.1.14)

Note that for a single point contact (see also Ref. [5]) the leading contribution to the vari-
ance of the admittance is proportional toω2. Since the a.c. response of such a system
is purely capacitive, the absence of a linear term in varG(ω) and the weak localization
correctionδG(ω) agrees with our previous result that quantum interference corrections to
the low-frequency admittance of a two-probe quantum dot are unaffected by the Coulomb
interactions. The variance given by Eq. (4.1.14) agrees with Fyodorov and Sommers [13]
who have used a different approach.

In conclusion, we have calculated the average and variance of the admittance of a chao-
tic quantum dot which is coupled to two electron reservoirs via multichannel point contacts.
The quantum dot is capacitively coupled to a gate. In the universal regime of multichan-
nel point contacts, phase coherent a.c. transport is characterized by weak localization and
admittance fluctuations. The relevant time scale for the quantum-interference effects at
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low frequenciesω is the dwell timeτd, while the classical admittance depends on theRC
time τ . Since these two time scales differ several orders of magnitude for a macroscopic
quantum dot (τ � τd), this effect should be clearly visible in a measurement of the a.c.
response of a chaotic quantum dot.

4.2 Quantum mechanical time-delay matrix in chaotic
scattering

Eisenbud [14] and Wigner [15] introduced the notion of time delay in a quantum me-
chanical scattering problem. Wigner’s one-dimensional analysis was generalized to an
N × N scattering matrixS by Smith [16], who studied the Hermitian energy derivative
Q = −i h̄S−1∂S/∂E and interpreted its diagonal elements as the delay time for a wave
packet incident in one of theN scattering channels. The matrixQ is called the Wigner-
Smith time-delay matrix and its eigenvaluesτ1, τ2, . . . , τN are called proper delay times.

Recently, interest in the time-delay problem was revived in the context of chaotic scat-
tering [17]. There is considerable theoretical [17–19] and experimental [20–22] evidence
that an ensemble of chaotic billiards containing a small opening (through whichN modes
can propagate at energyE) has a uniform distribution ofS in the group ofN × N uni-
tary matrices — restricted only by fundamental symmetries (see Ch. 2). This universal
distribution is the circular ensemble of random-matrix theory [6], introduced by Dyson for
its mathematical simplicity [23]. The eigenvalueseiφn of S in the circular ensemble are
distributed according to

P(φ1, φ2, . . . , φN) ∝
∏
n<m

|eiφn − eiφm|β, (4.2.1)

with the Dyson indexβ = 1, 2, 4 depending on the presence or absence of time-reversal
and spin-rotation symmetry.

No formula of such generality is known for the time-delay matrix, although many
authors have worked on this problem [13, 19, 24–33]. An early result,〈tr Q〉 = τH , is
due to Lyuboshits [24], who equated the ensemble average of the sum of the delay times
tr Q = ∑N

n=1 τn to the Heisenberg timeτH = 2π h̄/∆ (with ∆ the mean level spacing of
the closed system). The second moment of trQ was computed by Lehmann et al. [29] and
by Fyodorov and Sommers [13, 30]. The distribution ofQ itself is not known, except for
N = 1 [30, 32]. The trace ofQ determines the density of states [34], and is therefore suf-
ficient for most thermodynamic applications [32]. For applications to quantum transport,
however, the distribution of all individual eigenvaluesτn of Q is needed, as well as the
distribution of the eigenvectors (see e.g. next subsection).

The solution of this 40 year old problem is presented here. We have found that the
eigenvalues ofQ are independent ofS. 2 The distribution of the inverse delay times

2The absence of correlations between theτn’s and theφn’s is a special property of the proper delay times.
In contrast, the derivatives∂φn/∂E considered in Refs. [30,31] are correlated with theφn’s.
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γn = 1/τn turns out to be the Laguerre ensemble of random-matrix theory,

P(γ1, . . . , γN) ∝
∏
i< j

|γi − γj |β
∏

k

γ
βN/2
k e−βτH γk/2, (4.2.2)

but with an unusualN-dependent exponent. (The functionP is zero if any one of the
τn’s is negative.) The correlation functions of theτn’s consist of series over (generalized)
Laguerre polynomials [35], hence the name “Laguerre ensemble”. The eigenvectors of
Q are not independent ofS, unlessβ = 2 (which is the case of broken time-reversal
symmetry). However, for anyβ the correlations can be transformed away if we replaceQ
by the symmetrized matrix

QE = −i h̄ S−1/2 ∂S

∂E
S−1/2, (4.2.3)

which has the same eigenvalues asQ. The matrix of eigenvectorsU which diagonalizes
QE = Udiag(τ1, . . . , τN)U† is independent ofS and theτn’s, and uniformly distributed
in the orthogonal, unitary, or symplectic group (forβ = 1, 2, or 4, respectively). The
distribution (4.2.2) confirms the conjecture by Fyodorov and Sommers [13, 30] that the
distribution of trQ has an algebraic tail∝ (tr Q)−2−βN/2.

Although the time-delay matrix was interpreted by Smith as a representation of the
“time operator”, this interpretation is ambiguous [13]. The ambiguity arises because
a wavepacket has no well-defined energy. There is no ambiguity in the application ofQ
to transport problems where the incoming wave can be regarded monochromatic, like the
low-frequency response of a chaotic cavity [7, 32] (see also the previous section) or the
Fermi-energy dependence of the conductance (see next subsection). In the first problem,
time delay is described by complex reflection (or transmission) coefficientsRmn(ω),

Rmn(ω) = Rmn(0)[1 + iωτmn + O(ω2)], (4.2.4)

Rmn(0) = |Smn|2, τmn = Im h̄S−1
mn∂Smn/∂E.

The delay timeτmn determines the phase shift of the a.c. signal and goes back to Eisenbud
[14]. With respect to a suitably chosen basis, we may require that both the matricesRmn(0)
andτmn are diagonal. Then we have

Rmn(ω) = δmn[1 + iωτm +O(ω2)], (4.2.5)

where theτm (m = 1, . . . , N) are the proper delay times (eigenvalues of the Wigner-
Smith time-delay matrixQ). For electronic systems, theO(ω) term of Rmn(ω) is the
capacitance. Hence, in this context, the proper delay times have the physical interpretation
of “capacitance eigenvalues”.3

3For an electronic system (with capacitanceC), Coulomb interactions need to be taken into account self-
consistently, see e.g. Refs. [7,32] or the previous section. The result is

Rmn(ω) = δmn(1 + iωτm)− iωτmτn
hC/2e2 +∑

j τj
+ O(ω2).
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We now describe the derivation of our results. We start with some general considera-
tions about the invariance properties of the ensemble of energy-dependent scattering matri-
cesS(E), following Wigner [36], and Gopar, Mello, and B¨uttiker [32]. TheN×N matrixS
is unitary forβ = 2 (broken time-reversal symmetry), unitary symmetric forβ = 1 (unbro-
ken time-reversal and spin-rotation symmetry), and unitary self-dual forβ = 4 (unbroken
time-reversal and broken spin-rotation symmetry). The distribution functionalP[S(E)] of
a chaotic system is assumed to be invariant under a transformation

S(E) → V S(E)V ′, (4.2.6)

whereV andV ′ are arbitrary unitary matrices which do not depend onE (V ′ = VT for
β = 1, V ′ = VR for β = 4, where T denotes the transpose and R the dual of a matrix).
This invariance property is manifest in the random-matrix model for theE-dependence of
the scattering matrix given in Sec. 4.1. A microscopic justification starting from the Hamil-
tonian approach to chaotic scattering [37] is given in the appendix. Eq. (4.2.6) implies with
V = V ′ = i S−1/2 that

P(S, QE) = P(−11, QE). (4.2.7)

Here P(S, QE) is the joint distribution ofS andQE, defined with respect to the standard
(flat) measured QE for the Hermitian matrixQE and the invariant measuredSfor the uni-
tary matrixS. From Eq. (4.2.7) we conclude thatS andQE are statistically uncorrelated;
Their distribution is completely determined by its form at the special pointS = −11.

The distribution ofS and QE at S = −11 is computed using established methods of
random-matrix theory [6, 37]. TheN × N scattering matrixS is expressed in terms of the
eigenvaluesEα and the eigenfunctionsψnα of the M × M Hamiltonian matrixH of the
closed chaotic cavity [19],

S = 1 − i K

1 + i K
, Kmn = ∆M

π

M∑
α=1

ψmαψ
∗
nα

E − Eα
. (4.2.8)

The Hermitian matrixH is taken from the Gaussian orthogonal (unitary, symplectic) en-
semble [6],P(H ) ∝ exp(−βπ2trH 2/4∆2M). This implies that the eigenvector elements
ψjα are Gaussian distributed real (complex, quaternion) numbers forβ = 1 (2, 4), with
zero mean and with varianceM−1, and that the eigenvaluesEα have distribution

P({Eα}) ∝
∏
µ<ν

|Eµ − Eν |β
∏
µ

e−βπ2E2
µ/4∆

2M . (4.2.9)

The limit M → ∞ is taken at the end of the calculation.
The probabilityP(−11, QE) is found by inspection of Eq. (4.2.8) nearS = −11. The

caseS = −11 is special, becauseS equals−11 only if the energyE is an (at least)N-fold
degenerate eigenvalue ofH . For matricesS in a small neighborhood of−11, we may
restrict the summation in Eq. (4.2.8) to thoseN energy levelsEα, α = 1, . . . , N, that are
(almost) degenerate withE (i.e. |E − Eα| � ∆). The remainingM − N eigenvalues of
H do not contribute to the scattering matrix. This enormous reduction of the number of
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energy levels involved provides the simplification that allows us to compute the complete
distribution of the matrixQE.

We arrange the eigenvector elementsψnα into anN × N matrix9jα = ψjαM1/2. Its
distribution P(9) ∝ exp(−βtr99†/2) is invariant under a transformation9 → 9O,
whereO is an orthogonal (unitary, symplectic) matrix. We use this freedom to replace9

by the product9O, and choose a uniform distribution forO. We finally define theN × N
Hermitian matrixHi j = ∑N

α=1 Oiα(Eα − E)O∗
jα. Since the distribution of the energy

levels Eα close toE is given by
∏
µ<ν |Eµ − Eν |β [cf. Eq. (4.2.9)], it follows that the

matrix H has a uniform distribution nearH = 0. We then find

S = −11 + (i τH/h̄)9
†−1H9−1, QE = τH9

†−19−1. (4.2.10)

Hence the joint distribution ofSandQE at S = −11 is given by

P(−11, QE) ∝
∫

d9 d H e−β tr99†/2

× δ(9†−1H9−1) δ(QE − τH9
†−19−1)

=
∫

d9 e−β tr99†/2 (det99†)(βN+2−β)/2

× δ(QE − τH9
†−19−1). (4.2.11)

The remaining integral in Eq. (4.2.11) depends entirely on the positive-definite Hermitian
matrix0 = 99†. In Refs. [35] and [38] it is shown that∫

d9 f (99†) =
∫

d0 (det0)(β−2)/2 f (0)2(0), (4.2.12)

where2(0) = 1 if all eigenvalues of0 are positive and 0 otherwise, andf is an arbitrary
function of0 = 99†. Integration of Eq. (4.2.11) with the help of Eq. (4.2.12) finally
yields the distribution (4.2.2) for the inverse delay times and the uniform distribution of the
eigenvectors, as advertised.

In addition to the energy derivative of the scattering matrix, one may also consider the
derivative with respect to an external parameterX, such as the shape of the system, or the
magnetic field [13, 30, 31]. In random-matrix theory, the parameter dependence of energy
levels and wavefunctions is described through a parameter dependentM × M Hermitian
matrix ensemble,

H (X) = H + M−1/2XH ′, (4.2.13)

whereH andH ′ are taken from the same Gaussian ensemble. We characterize∂S/∂X
through the symmetrized derivative

QX = −i S−1/2 ∂S

∂X
S−1/2, (4.2.14)

by analogy with the symmetrized time-delay matrixQE in Eq. (4.2.3). To calculate the
distribution of QX, we assume that the invariance (4.2.6) also holds for theX-dependent
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ensemble of scattering matrices. (A random-matrix model with this invariance property is
given in Sec. 7.3). Then it is sufficient to consider the special pointS = −11. From Eqs.
(4.2.10) and (4.2.13) we find

QX = 9†−1H ′9−1, P(H ′) ∝ exp(−βtr H ′2/16), (4.2.15)

whereH ′
µν = −(τH/h̄)M−1/2∑

i, j ψ
∗
iµH ′

i jψj ν. A calculation similar to that of the dis-
tribution of the time-delay matrix shows that the distribution ofQX is a Gaussian, with a
width set byQE,

P(S, QE, QX) ∝ (detQE)
−2βN−3+3β/2

× exp

[
−β

2
tr

(
τH Q−1

E + 1

8
(τH Q−1

E QX)
2
)]
. (4.2.16)

The fact that delay times set the scale for the sensitivity to an external perturbation in an
open system is well understood in terms of classical trajectories [39], in the semiclassical
limit N → ∞. Eq. (4.2.16) makes this precise in the fully quantum-mechanical regime
of a finite number of channelsN. Correlations between parameter dependence and delay
time were also obtained in Refs. [13,30,31], for the phase shift derivatives∂φj /∂X.

In summary, we have calculated the distribution of the Wigner-Smith time-delay ma-
trix for chaotic scattering. This is relevant for experiments on frequency and parameter-
dependent transmission through chaotic microwave cavities [21, 22] or semiconductor
quantum dots with ballistic point contacts [40]. The distribution (4.2.1) has been known
since Dyson’s 1962 paper as the circular ensemble [23]. It is remarkable that the Laguerre
ensemble (4.2.2) for the (inverse) delay times was not discovered earlier.

4.3 Distribution of parametric conductance derivatives of
a quantum dot

Parametric fluctuations in quantum systems with a chaotic classical dynamics are of funda-
mental importance for the characterization of mesoscopic systems. The fluctuating depen-
dence of an energy levelEj (X) on an external parameterX, such as the magnetic field, has
received considerable attention [41]. A key role is played by the “level velocity”d Ej /d X,
describing the response to a small perturbation [42–44]. In open systems, the role of the
level velocity is played by the “conductance velocity”dG/d X. Remarkably little is known
about its distribution.

The interest in this problem was stimulated by experiments on semiconductor micro-
structures known as quantum dots, in which the electron motion is ballistic and chaotic
[40]. A typical quantum dot is confined by gate electrodes, and connected to two electron
reservoirs by ballistic point contacts, through which only a few modes can propagate at the
Fermi level. The parametric dependence of the conductance has been measured by several
groups [45–47]. In the single-mode limit, parametric fluctuations are of the same order
as the average, so that one needs the complete distribution ofG anddG/d X to character-
ize the system. Knowing the average and variance is not sufficient. Analytical results are
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available for point contacts with a large number of modes [1, 48–53]. In this section, we
present the complete distribution in the opposite limit of two single-mode point contacts
and show that it differs strikingly from the multi-mode case considered previously.

The main differences which we have found are the following. We consider the joint
distribution of the conductanceG and the derivatives∂G/∂V , ∂G/∂X with respect to the
gate voltageV and an external parameterX (typically the magnetic field). If the point
contacts contain a large number of modes,P(G, ∂G/∂V, ∂G/∂X) factorizes into three
independent Gaussian distributions [1,48–50]. In the single-mode case, in contrast, we find
that this distribution does not factorize and decays algebraically rather than exponentially.
By integrating outG and one of the two derivatives, we obtain the conductance velocity
distributionsP(∂G/∂V) and P(∂G/∂X) plotted in Fig. 4-2. Both distributions have a
singularity at zero velocity, and algebraic tails. A remarkable prediction of our theory is
that the correlations betweenG, on the one hand, and∂G/∂V and∂G/∂X, on the other
hand, can be transformed away by the change of variablesG = (2e2/h) sin2 θ , whereθ
is the polar coordinate introduced in Ref. [51]. The derivatives∂θ/∂V and ∂θ/∂X are
statistically independent ofθ . There exists no change of variables that transforms away the
correlations between∂G/∂V and∂G/∂X.

Another new feature of the single-mode case concerns the effect of Coulomb interac-
tions [8, 9]. In the simplest model, the strength of the Coulomb repulsion is measured by
the ratio of the charging energye2/C (with C the capacitance of the quantum dot) and
the mean level spacing∆. In the regimee2/C � ∆, where most experiments are done,
Coulomb interactions suppress fluctuations of the chargeQ on the quantum dot as a func-
tion of V or X, at the expense of fluctuations in the electrical potentialU . Since the Fermi
level µ in the quantum dot is pinned by the reservoirs, the kinetic energyE = µ − U
at the Fermi level fluctuates as well. Fluctuations ofE can not be ignored, because the
conductance is determined byE, and not byµ. An ensemble of quantum dots with fixed
Q and fluctuatingE behaves effectively as a canonical ensemble — rather than a grand-
canonical ensemble. In the opposite regimee2/C � ∆, the energyE does not fluctuate
on the scale of the level spacing. The ensemble is now truly grand-canonical. Fluctuations
of E on the scale of∆ can be neglected in the multi-mode case, so that the distinction
between canonical and grand-canonical averages is irrelevant. In the single-mode case the
distinction becomes important. We will see that the distribution of the conductance veloc-
ities is different in the two ensembles. (The distribution of the conductance itself is the
same.) The difference between grand-canonical and canonical averages has been studied
extensively in connection with the problem of the persistent current [54–56], which is a
thermodynamic property. Here we find a difference in the case of a transport property,
which is more unusual [57].4

To derive these results, we combine a scattering formalism with random-matrix theory
[58]. The 2× 2 scattering matrixSdetermines the conductance

G = |S12|2, (4.3.1)
4The difference between canonical and grand-canonical averages which we find is related, but not iden-

tical, to the effects of the Coulomb blockade predicted by I. L. Aleiner and L. I. Glazman (preprint, cond-
mat/9612138).
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and the (unscreened) compressibilities [9]

∂Q

∂E
= 1

2π i
tr S† ∂S

∂E
,
∂Q

∂X
= 1

2π i
tr S† ∂S

∂X
. (4.3.2)

(We measureG in units of 2e2/h andQ in units ofe.) Grand-canonical averages〈· · ·〉GC

and canonical averages〈· · ·〉C are related by

〈· · ·〉C = ∆〈· · · × d Q/d E〉GC. (4.3.3)

The factord Q/d E is the Jacobian to go from an average overQ in the canonical ensemble
to an average overE in the grand-canonical ensemble. Conductance velocities in the two
ensembles are related by

∂G

∂X

∣∣∣∣
Q

= ∂G

∂X

∣∣∣∣
E

− ∂G

∂E

∂Q

∂X

(
∂Q

∂E

)−1

, (4.3.4)

where|Q and|E indicate, respectively, derivatives at constantQ (canonical) and constant
E (grand-canonical). Derivatives∂G/∂V with respect to the gate voltage are proportional
to ∂G/∂Q in the canonical ensemble and to∂G/∂E in the grand-canonical ensemble. (The
proportionality coefficients contain elements of the capacitance matrix of the quantum dot
plus gates.) The two derivatives are related by

∂G

∂Q
= ∂G

∂E

(
∂Q

∂E

)−1

. (4.3.5)

The problem that we face is the calculation of the joint distribution ofS, ∂S/∂E, and
∂S/∂X. In view of the relations (4.3.3)–(4.3.5) it is sufficient to consider the grand-
canonical ensemble. This problem is closely related to the old problem [15, 16] of the
distribution of the Wigner-Smith delay timesτ1, . . . , τN, which are the eigenvalues of the
N × N matrix −i S†∂S/∂E. (The eigenvalues are real positive numbers.) Interest in this
problem has revived in connection with chaotic scattering [5, 13, 30, 31]. In Sec. 4.2 it has
been shown that the ratesγn = 1/τn are distributed according to

P({γn}) ∝
∏
i< j

|γi − γj |β
∏

k

γ
βN/2
k e−πβγk/∆. (4.3.6)

This distribution is known in random-matrix theory as the Laguerre ensemble, because the
correlation functions can be written as series over (generalized) Laguerre polynomials [35].
For N = 1 we recover the result of Refs. [30] and [5]. In our caseN = 2.

To compute the conductance velocities it is not sufficient to know the delay timesτn,
but we also need to know the distribution of the eigenvectors of the Wigner-Smith time-
delay matrix−i S†∂S/∂E. Furthermore, we need the distribution of−i S†∂S/∂X. The
general result containing this information is (see Sec. 4.2)

P(S, τE, τX) ∝ exp

[
−β tr

(
π

∆
τ−1

E + π2X2
0

4∆2
(τ−1

E τX)
2

)]

× (detτE)
−2βN+3(β−2)/2, (4.3.7)

τE = −i S−1/2 ∂S

∂E
S−1/2, τX = −i S−1/2 ∂S

∂X
S−1/2. (4.3.8)
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Figure 4-2. Distributions of conductance velocities in a chaotic cavity with two single-mode point

contacts [inset in (a)], computed from Eq. (4.3.13). Dashed curves are for β = 1 (time-reversal

symmetry), solid curves for β = 2 (no time-reversal symmetry). (The case β = 4, which is similar

to β = 2, is omitted for clarity.) The distribution of ∆∂G/∂E (grand-canonical ensemble) is shown

in (a) and the distribution of ∂G/∂Q (canonical ensemble) is shown in (b). (The conductance G is

measured in units of 2e2/h, the charge Q in units of e.) In (c) the distribution of X0∂G/∂X is shown

for the grand-canonical ensemble (the canonical case being nearly identical on a linear scale). The

inset compares the canonical (C) and grand-canonical (GC) results for β = 2 on a logarithmic

scale.
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The matrixτE has the same eigenvalues as the time-delay matrix, but it is more convenient
because it is uncorrelated withS, while the time-delay matrix is not. By integrating outτE

andτX from Eq. (4.3.7), we obtain a uniform distribution forS, as expected for a chaotic
cavity [17,18]. The resulting distribution of the conductance [4],P(G) ∝ G−1+β/2, is the
same in the canonical and grand-canonical ensembles, becauseSandd Q/d E are uncorre-
lated [cf. Eq. (4.3.3)]. By integrating outS, τX, and the eigenvectors ofτE, we obtain the
distribution (4.3.6) of the delay times. The distribution ofτX at fixedτE is a Gaussian. The
scale of this Gaussian is set by the parameterX0, which has no universal value.5

We are now ready to compute the distribution of the conductance velocities. Derivatives
with respect toE andQ are related to the delay times by

∂G

∂E
= c(τ1 − τ2)

√
G(1 − G), (4.3.9)

∂G

∂Q
= 2πc

τ1 − τ2

τ1 + τ2

√
G(1 − G), (4.3.10)

wherec ∈ [−1, 1] is a number that depends on the phases of the matrix elements ofSand
on the eigenvectors ofτE. Its distributionP(c) ∝ (1 − c2)−1+β/2 is independent ofτ1, τ2,
andG. The derivative∂G/∂X has a Gaussian distribution at a given value ofS andτE,
with zero mean and with variance〈(

∂G

∂X

∣∣∣∣
E

)2
〉

= α

[
G(1 − G)τ1τ2 + 1

2

(
∂G

∂E

)2
]
, (4.3.11)

〈(
∂G

∂X

∣∣∣∣
Q

)2〉
= ατ1τ2

[
G(1 − G)− 1

4π2

(
∂G

∂Q

)2
]
, (4.3.12)

where we have abbreviatedα = 4∆2/π2X2
0β. Because the variance of∂G/∂X depends

on ∂G/∂E or ∂G/∂Q, these conductance velocities are correlated.
From the distribution (4.3.6) ofτ1, τ2, and the independent distributions ofG andc, we

calculate the joint distribution ofG and its (dimensionless) derivativesGX = X0∂G/∂X,
GE = (∆/2π)∂G/∂E, andGQ = (1/2π)∂G/∂Q. The result in the grand-canonical and
canonical ensembles is

PGC(G,GE,GX) = 1

Z

∫ ∞

0
dx
∫ ∞

G2
E

G(1−G)

dy

[
yG − G2

E/(1 − G)
]−1+β/2

x−2−2β

√
π(x + y)G(1 − G) f (x)

× exp

[
−2β

x

√
x + y − G2

X

f (x)

]
, (4.3.13)

PC(G,GQ,GX) = 2

Z

∫ ∞

0
dx
∫ 1

G2
Q

G(1−G)

dy

[
yG − G2

Q/(1 − G)
]−1+β/2

x3β

(1 − y)(β+3)/2
√
πG(1 − G)g(x)

5If X represents the magnetic flux through the quantum dot, thenX0 ' (h/e)(τergodic/τdwell)
1/2, where

τdwell is the mean dwell time in the quantum dot andτergodic� τdwell is the time scale for ergodic exploration
of the available phase space.
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× exp

[
− 2βx√

1 − y
− G2

X

g(x)

]
, (4.3.14)

where

f (x) = 8β−1[xG(1 − G)+ 2G2
E],

g(x) = 8(x2β)−1[G(1 − G)− G2
Q],

Z = 3β−3β−10(β/2)0(β)0(3β/2).

By integrating outG and one of the two derivatives from Eq. (4.3.13), we obtain the
conductance velocity distributions of Fig. 4-2. (The caseβ = 4 is close toβ = 2 and is
omitted from the plot for clarity.) The distributions have a singularity at zero derivative: A
cusp forβ = 2 and 4, and a logarithmic divergence forβ = 1. The tails of the distributions
of ∂G/∂X are algebraic in both ensembles, but with a different exponent,

PGC(∂G/∂X) ∝ (∂G/∂X)−β−2, (4.3.15)

PC(∂G/∂X) ∝ (∂G/∂X)−2β−1. (4.3.16)

The distribution of∂G/∂E (grand-canonical ensemble) also has an algebraic tail [propor-
tional to(∂G/∂E)−β−2], while the distribution of∂G/∂Q (canonical ensemble) is identi-
cally zero for|∂G/∂Q| ≥ π . In both ensembles, the second moment of the conductance
velocities is finite forβ = 2 and 4, but infinite forβ = 1.

In conclusion, we have calculated the joint distribution of the conductanceG and its
parametric derivatives for a chaotic cavity, coupled to electron reservoirs by two single-
mode ballistic point contacts. The distribution is fundamentally different from the multi-
mode case, being highly non-Gaussian and with correlated derivatives. (Correlations be-
tweenG and the parametric derivatives can be transformed away by a change of variables.)
We account for Coulomb interactions by using a canonical ensemble instead of a grand-
canonical ensemble. Our results for the canonical ensemble are relevant for the analysis
of recent experiments on chaotic quantum dots, where the conductanceG is measured as
a function of both the magnetic field and the shape of the quantum dot [47]. The grand-
canonical results are relevant for experiments on microwave cavities [21, 22]. Together
with the theory provided here, such experiments can yield information on the distribution
of delay times in chaotic scattering that can not be obtained by other means.

Appendix A: Stub model versus Hamiltonian approach

In this appendix we consider the extended circular ensemble of Sec. 4.1 for the energy
dependence of the scattering matrix in more detail. We compare the extended circular
ensemble with the Hamiltonian approach and show that they are equivalent in the limit that
the number of modes in the stubNs → ∞.

In the extended circular ensemble of Sec. 4.1, a fictitious stub (a closed lead) is attached
to the cavity (see Fig. 4-1b) . The stub hasNs propagating modes. The total number of
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modes in the real leads isN. The N × N scattering matrixS(ε) of the quantum dot is
expressed in terms of the(N + Ns)× (N + Ns) scattering matrixU of the dot with the stub
replaced by a regular open lead and theNs × Ns reflection matrixrs(ε) of the stub,

S(ε) = Ull + Uls [1 − rsUss]
−1 rsUsl, U =

(
Ull Uls

Usl Uss

)
. (A.1)

Here we decomposed the matrixU into four blocksUi j , which describe transmission and
reflection from and to the stub (s) or the two leads (l). In the model of Sec. 4.1, the energy
dependence ofU is neglected, while theε-dependence ofrs is taken into account via a
simple ansatz,

rs(ε) = −e−i ε8, (A.2)

where8 is a (symmetric) positive definite matrix. We assume that all eigenvalues of8 are
comparable, so thatNstr82 ∼ (tr8)2. We further set

tr8 = 2π/∆, (A.3)

where∆ is the mean level spacing of the closed quantum dot. The unitary matrixU is taken
from the appropriate circular ensemble (depending on whether time-reversal symmetry
and/or spin-rotation symmetry are present). If the point contacts to the real leads contain
tunnel barriers,U is distributed according to the Poisson kernel (cf. Sec. 2.2; we assume
that the stub contains no tunnel barriers). In the end, the limitNs → ∞ is taken. This
ensures that particles are reflected from the stub many times before they exit through one
of the real point contacts. The extended circular ensemble is defined by Eqs. (A.1)—(A.3).
To avoid confusion with other extensions of the circular ensemble, we call it the “stub
model” for the energy dependence of the scattering matrix.

In the Hamiltonian approach, the scattering matrixS(ε) is expressed in terms of an
M × M random Hermitian matrixH , modeling the Hamiltonian of the closed cavity, and a
M × N rectangular matrixW, describing the coupling between the states in the closed dot
and the scattering states in the lead [37],

S(ε) = 11 − 2π iW†(ε − H + iπW W†)−1W. (A.4)

In the end, the limitM → ∞ is taken. For a chaotic cavity, the matrixH is a random
matrix, usually taken from the Gaussian ensemble. However, the precise distribution ofH
is not important, and we are free to take a different distribution.

In Sec. 2.2 it was shown that the scattering matrix approach and the Hamiltonian ap-
proach are equivalent at a fixed energyε. Moreover, it was shown that if the Hamiltonian
H is distributed according to the Lorentzian ensemble, the equivalence between the two
approaches even holds if the scattering matrix and the Hamiltonian have the same size. We
use this equivalence to write the scattering matrixU in terms of a hermitian matrixH and
a coupling matrixW,

U = 1 + 2π iW†(H − iπW W†)−1W, (A.5)
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where the matricesW andH have the same size asU . The matrixH is distributed accord-
ing to the Lorentzian ensemble,

P(H) ∝ det
(

M∆2 + π2H2
)−(βM+2−β)/2

, (A.6)

where we have setM = N + Ns. The coupling matrixW is a square matrix, which we
separate into two rectangular blocks describing the coupling with the lead and the stub,

W = (Wl,Ws). (A.7)

The matrixWl is anM × N rectangular matrix with elements

(Wl)µn = π−1δµn(∆M)1/2
(
20−1

n − 1 − 20−1
n

√
1 − 0n

)1/2
, (A.8)

where0n (n = 1, . . . , N) is the transmission probability of moden in the leads. Since the
stub contains no tunnel barrier, theM × Ns matrix Ws has elements(Wl)µn = δµ,N+nπ

−1

(M∆)1/2.
Substitution of Eq. (A.5) into Eq. (A.1) yields

S(ε) = 1 − 2π iW†
l G(ε)−1Wl, (A.9)

G(ε) = iπWs[1 + rs(ε)][1 − rs(ε)]−1W†
s − H + iπWlW

†
l

= π−1∆M tan[8̃ε/2] − H + iπWlW
†
l , (A.10)

where theM × M matrix 8̃ is defined as

8̃ =
(

0 0

0 8

)
. (A.11)

We expandG to first order inε. This is allowed, because the eigenvalues ofε8 are of order
N−1

s . The result is

G(ε) = ε − H − δH + iπW1W†
1 , δH = (1 − M8̃∆/2π)ε. (A.12)

Apart from the termδH , this is precisely the expression for theε-dependent scattering
matrix in the Hamiltonian approach, cf. Eq. (A.4). The correctionδH , which is absent in
the Hamiltonian approach, is not relevant for energiesε ∼ ∆ and in the limitM, Ns → ∞,
because trδH = 0 and trδH2 ∼ Mε2. (A perturbationδH with a vanishing trace is
only relevant if trδH2 ∼ M2∆2 [59]). This proves equivalence of the stub model and the
Hamiltonian approach for the energy dependence of the scattering matrix.

In Sec. 7.3, a stub model is formulated for the dependence on an external parameterX,
such as the magnetic field or the shape of the quantum dot. One can also show that this
stub model is equivalent to the Hamiltonian approach. In the Hamiltonian approach, the
parameter dependent HamiltonianH(X) is modeled through the hermitian matrix

H(X) = H + (X/
√

M)H ′, (A.13)



108 Chapter 4: Time delay in chaotic scattering

whereH and H ′ are both random hermitianM × M matrices with the same mean level
spacing. The factor

√
M is added in Eq. (A.13) to remove theM-dependence from the

relevant scale for the parameterX. If X describes the shape of the cavity,H ′ is real and
symmetric. IfX describes the magnetic field,H ′ is antisymmetric.

In the stub model of Sec. 7.3, theX-dependence is modeled through anX-dependent
reflection matrixrs(X) of the stub, which has the form

rs(X) = − exp

(
−2π i X A

M3/2∆

)
, (A.14)

whereA is a (random) matrix taken from the same ensemble asH ′. Repeating the same
steps as above, we find that the scattering matrixS(X) reads

S(X) = 1 − 2π iW†
l G(X)−1Wl, (A.15)

G(X) = −H − π−1M∆ tan[π ÃX/M3/2∆] + iπWlW
†
l ,

where Ãµν = Aµ−N,ν−N if µ, ν > N and Ãµν = 0 else. As before, we expand to first
order inX and find

G(X) = −H(X)+ iπW1W†
1 , H(X) = H + (X/

√
M)Ã. (A.16)

The HamiltonianH(X) is formally equivalent to Eq. (A.13). The only difference is that the
matrix Ã has zeros for indicesµ, ν ≤ N, while the elements ofH1 are nonzero everywhere.
Since typical matrix elements ofH ′ are of order∆

√
M, the difference is not relevant for

X ∼ 1 andM → ∞. This completes the proof of the equivalence of the stub models for
theε andX dependence of the scattering matrix and the Hamiltonian approach.
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[31] P.Šeba, K.Życzkowski, and J. Zakrewski, Phys. Rev. E54, 2438 (1996).

[32] V. A. Gopar, P. A. Mello, and M. B¨uttiker, Phys. Rev. Lett.77, 3005 (1996).

[33] E. R. Mucciolo, R. A. Jalabert, and J.-L. Pichard (preprint, cond-mat/9703178).

[34] E. Akkermans, A. Auerbach, J. E. Avron, and B. Shapiro, Phys. Rev. Lett.66, 76
(1991).

[35] K. Slevin and T. Nagao, Phys. Rev. B50, 2380 (1994); T. Nagao and K. Slevin, J.
Math. Phys.34, 2075 (1993); T. Nagao and P. J. Forrester, Nucl. Phys. B435, 401
(1995).

[36] E. P. Wigner, Ann. Math.53, 36 (1951); Proc. Cambridge Phil. Soc.47, 790 (1951);
Ann. Math.55, 7 (1952).



REFERENCES 111

[37] J. J. M. Verbaarschot, H. A. Weidenm¨uller, and M. R. Zirnbauer, Phys. Rep.129, 367
(1985).
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5 Localization in disordered wires

5.1 Equivalence of the one-dimensionalσ model and the
Dorokhov-Mello-Pereyra-Kumar equation

There are two known approaches to the theory of phase-coherent conduction and local-
ization in disordered wires: The first is the Fokker-Planck approach of Dorokhov, Mello,
Pereyra, and Kumar [1–5]. The second is the field-theoretic approach of Efetov and Larkin,
which leads to a supersymmetric nonlinearσ model [6, 7]. Both approaches provide a de-
scription of quantum transport that is independent of microscopic details of the disordered
wire. The only properties which enter are its lengthL, the elastic mean free path`, the num-
ber N of propagating transverse modes at the Fermi level (referred to as “channels”), and
the symmetry indexβ ∈ {1, 2, 4} (depending on the presence or absence of time-reversal
and/or spin-rotational symmetry). In the first approach, the transfer matrix is expressed
as a product of a large number of random matrices. As more matrices are added to this
product, the transmission eigenvaluesTn execute a Brownian motion. (TheTn are theN
eigenvalues of the transmission matrix productt†t .) The resulting Fokker-Planck equation
for theL-dependence of the distributionP(T1, . . . , TN) is known as the Dorokhov-Mello-
Pereyra-Kumar (DMPK) equation. In the second approach, one starts from the random
Hamiltonian of the disordered wire and then expresses averages of Green’s functions [6,7]
or moments of the transmission eigenvalues [8–11] as integrals over matricesQ contain-
ing both commuting and anticommuting variables. These so-called supermatrices are re-
stricted by the nonlinear constraintQ2 = 1 and give rise to a field theory known as the
one-dimensional nonlinearσ model.

In the last decade, research on the Fokker-Planck and field-theoretic approach has pro-
ceeded quite independently. Recently, exact results for the average conductance〈G〉, its
variance varG, and the densityρ(T) = 〈∑n δ(T − Tn)〉 of transmission eigenvalues were
obtained from both approaches. For the unitary symmetry class (no time-reversal symme-
try; β = 2), the DMPK equation was solved exactly by Beenakker and Rejaei [12]. The
construction of a set of biorthogonal polynomials for this exact solution then allowed for
the exact computation of〈G〉, varG, andρ(T) for arbitraryN andL in the caseβ = 2 [13].
Although there exists a formal solution for the other two symmetry classes [orthogonal
class (time-reversal symmetry without spin-orbit scattering;β = 1) and symplectic class
(time-reversal symmetry with spin-orbit scattering;β = 4)] [14], no exact results for〈G〉,
varG, andρ(T) have been obtained. Concerning theσ model, an important and substantial
progress was the development of “super Fourier analysis” by Zirnbauer [10]. This allowed
the exact calculation [10, 11] of〈G〉 and varG for all β in the thick-wire limit N → ∞,
L/` → ∞ at fixed ratioN`/L. The eigenvalue densityρ(T) was computed from theσ
model by Rejaei [15], in the thick-wire limit and for the caseβ = 2.

If one takes the thick-wire limit of theβ = 2 results for〈G〉, varG, andρ(T) from the
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DMPK equation, they agree precisely with those from theσ model [13,15]. Forβ = 1 and
4, a comparison of the two approaches has only been possible in the metallic regime` �
L � N`, where the results for〈G〉 and varG from the DMPK equation [3–5] and from
theσ model [9,11,16] agree with conventional diagrammatic perturbation theory [17–20].
The equivalence of the two approaches outside the perturbative regime has been questioned
[13] as a result of recent work by Zirnbauer [10], and by Mirlin, M¨uller-Groeling, and
Zirnbauer [11]. Starting from theσ model in the thick-wire limit, they obtained a finite
limit 〈G〉 → e2/2h asL/N` → ∞ in the caseβ = 4. On the other hand, one can prove
rigorously [13] that the DMPK equation gives limL→∞〈G〉 = 0 for all β. It was this
puzzling contradiction which motivated us to search for a general proof of equivalence of
the DMPK equation and theσ model, without the restriction toβ = 2.

In this chapter, we present a general proof of the equivalence of the two approaches,
which applies to all three symmetry classesβ, to all length scalesL, and to the complete
distribution of transmission eigenvalues described by thep-point functionsρp(T1, . . . , Tp) =
(N!/(N − p)!) ∫ dTp+1 . . .

∫
dTN P(T1, . . . , TN) for arbitrary p. We cannot relax the as-

sumption that the numberN of propagating channels in the disordered wire is� 1, since
it is needed for the derivation of the one-dimensionalσ model [11]. However, we can con-
sider theσ model formulation of a thick disordered wire which is coupled to the leads by
means of a point contact withN1 ≤ N transmitted modes [9], and show that it is mathe-
matically equivalent to a DMPK equation for a wire withN1 propagating channels. The
equivalence proof demonstrates that limL→∞〈G〉 = 0 in theσ model, in apparent contra-
diction with Zirnbauer’s work. We have reexamined the calculation of Refs. 10 and 11, and
argue that forβ = 4 the Kramers degeneracy of the transmission eigenvalues was not taken
into account properly in the super Fourier analysis. This leads to a spurious “zero-mode”,
which does not decay asL → ∞. Restoring Kramers degeneracy, we obtain modified
expressions for〈G〉 and varG which decrease exponentially in the localized regime and
moreover agree well with numerical simulations [21].

Both theσ model and the DMPK equation were derived from a number of different
models for a disordered wire. The original derivation of the DMPK equation by Dorokhov
[1], which started from a model ofN coupled chains with defects, was followed by the
random-matrix formulation of Mello, Pereyra, and Kumar [2]. These authors considered a
product of random transfer matrices, drawn from an ensemble of maximum entropy. Later
it was shown that the DMPK equation is insensitive to the choice of the ensemble, the
only relevant assumptions being weak scattering (mean free path` much greater than the
Fermi wave lengthλF ) and equivalence of the scattering channels [22, 23]. It is this latter
assumption which restricts the DMPK equation to a wire geometry. From the mathematical
point of view, the DMPK equation is the diffusion equation on a certain coset-space of
transfer matrices [24]. The one-dimensionalσ model was originally derived by Efetov and
Larkin [6,7] from a white noise model for the disorder potential. Two later derivations used
random-matrix models for the Hamiltonian of the disordered wire. Iida, Weidenm¨uller,
and Zuk (IWZ) adapted Wegner’sn-orbital model [25] to the study of transport properties
[9]. In this description, the wire is modeled by a large number of disordered segments in
series, each segment having a random Hamiltonian drawn from the Gaussian ensemble.
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An alternative derivation of theσ model, due to Fyodorov and Mirlin [26], uses a random
band matrix to model the Hamiltonian of the disordered wire. In the present chapter we
follow Ref. 11 and use the IWZ formulation of theσ model.

Our proof of equivalence of the DMPK equation and theσ model builds on the ideas
which were used by Rejaei [15] to calculateρ(T) from theσ model forβ = 2. Inspired by
Nazarov’s diagrammatic calculation ofρ(T) in the metallic regime [27], Rejaei introduced
a generating functionF which depends both on the transmission eigenvaluesTn and on
the radial parametersθi of the supermatrices in the unitaryσ model. Rejaei was able to
solve the 1d σ model exactly forβ = 2 and thus obtained the densityρ(T) as a function
of L by taking derivatives ofF with respect to theθi ’s. The resultingρ(T) could then
be compared with the result from the DPMK equation [13]. We introduce a more general
generating function which allows us to establish the equivalence of theσ model and the
DMPK equation at the level ofp-point functionsρp(T1, . . . , Tp), without actually having
to compute this function. This approach works also forβ = 1 and 4, where no explicit
solution of theσ model is available.

The outline of the chapter is as follows: In Sec. 5.1.1, an outline of the equivalence
proof is given. The full proof for theσ model with 8× 8 supermatrices follows in
Secs. 5.1.2 and 5.1.3, with technical material in Apps. A – C. For thep-point functions
ρp(T1, . . . , Tp), we have to consider theσ model with 8p × 8p supermatrices. This ex-
tension is described in App. D. In section 5.1.4, we discuss the symplectic symmetry class
(β = 4) in relation to Refs. 10 and 11. By accounting for Kramers degeneracy, we obtain
modified expressions for〈G〉 and varG, which we compare with numerical simulations of
the IWZ model by Mirlin and Müller-Groeling [21]. We conclude in Sec. 5.1.5.

5.1.1 Outline of the equivalence proof

Although our equivalence proof is technically rather involved, the basic idea can be de-
scribed in a few paragraphs. In this section, we present an outline of the equivalence proof
for the smallσ model (8× 8 supermatrices). The details are given in the following two
sections and in the appendices A — C. Appendix D contains the necessary modifications
to extend the proof toσ models with supermatrices of arbitrary size.

Part of the complexity of the problem is that theσ model and the DMPK equation
focus on totally different objects. In theσ model, transport properties are expressed as
functional integrals over supermatricesQ [9, 11]. (A supermatrix is a matrix containing
an equal number of commuting and anticommuting elements. We follow the notation and
conventions of Refs. 8, 9, and 11.) For the smallσ model the 8× 8 supermatrices are
parameterized as [7,8]

Q = T−13T, 3 =
(

1 0

0 −1

)
, (5.1.1)

T =
(

u−1 0

0 v−1

)
exp

(
0 1

2θ̂
1
2θ̂ 0

)(
u 0

0 v

)
, (5.1.2)
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whereu andv are pseudo-unitary 4× 4 supermatrices. Notice thatQ satisfies the non-
linear constraintQ2 = 1, hence the name “non-linear”σ model. (The letterσ is used for
historical reasons.) The 4× 4 supermatrix̂θ is called the radial part ofQ. It has the form

θ̂ =



θ1 θ2 0 0

θ2 θ1 0 0

0 0 i θ3 i θ4

0 0 i θ4 i θ3


 , (5.1.3)

with the symmetry restrictions

θ4 = 0 if β = 1,

θ2 = θ4 = 0 if β = 2, (5.1.4)

θ2 = 0 if β = 4.

While theσ model works with the radial part of a supermatrix, the DMPK equation
works with the radial part of an ordinary matrix (containing only commuting elements).
This is the transfer matrixX. The radial part ofX is anN × N diagonal matrix̂λ, related
to the eigenvalues ofX X†. The eigenvalues ofX X† come inN inverse pairse±xn , related
to the diagonal elementsλn of λ̂ by λn = sinh2 xn. Forβ = 4 the eigenvalues are twofold
degenerate (Kramers degeneracy). The matrixλ̂ then contains only theN independent
eigenvalues. The conductanceG is directly related to theλn’s by the Landauer formula
[2,28]

G = 2e2

h

N∑
n=1

Tn = 2e2

h

N∑
n=1

1

1 + λn
, (5.1.5)

since theN independent transmission eigenvaluesTn are related to theλn’s by Tn = (1 +
λn)

−1.
We connect both approaches by considering a generating functionF(θ̂ , λ̂) which de-

pends on both radial matrices:

F(θ̂ , λ̂) =
N∏

n=1

f (θ̂ , λn), (5.1.6)

f (θ̂ , λ) = Sdet−d/2
[
λ+ cosh2(θ̂/2)

]
(5.1.7)

=
[
(1 + 2λ+ cos(θ3 + θ4)) (1 + 2λ+ cos(θ3 − θ4))

(1 + 2λ+ cosh(θ1 + θ2)) (1 + 2λ+ cosh(θ1 − θ2))

]d/2

,

d = 1 if β = 1, 2; d = 2 if β = 4. (5.1.8)

The symbol Sdet stands for the superdeterminant of a supermatrix. Forβ = 2 this is the
generating function introduced by Rejaei.

An ensemble of disordered wires of lengthL provides a distribution of̂λ. The ensemble
average〈F(θ̂ , λ̂)〉 contains all statistical properties that are accessible from the smallσ
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model. These include the average conductance〈G〉, its variance varG and the density of
transmission eigenvaluesρ(T). We explain in appendix A how to extract these quantities
by taking derivatives of〈F(θ̂, λ̂)〉. The average〈F(θ̂ , λ̂)〉 can be determined by each of
the two approaches independently, in terms of a partial differential equation for theL-
dependence and an initial condition atL = 0. For theσ model on the one hand, the
evolution equation reads

∂

∂L

〈
F(θ̂ , λ̂)

〉
= 2

ξ
1
θ̂

〈
F(θ̂ , λ̂)

〉
, (5.1.9)

where1
θ̂

is the (radial part of the) Laplacian on theσ model space, and whereξ = βN`
is the localization length. The explicit form of1

θ̂
is given by [7]

1
θ̂

= β

2d

∑
i

J−1(θ̂ )
∂

∂θi
J(θ̂)

∂

∂θi
, (5.1.10)

where the sum runs over the independent coordinatesθi [see Eq. (5.1.4)] andJ(θ̂) is the
integration measure for the radial decomposition (5.1.1),

J(θ1, θ2, θ3) = sinhθ1 sinhθ2 sin3 θ3

∏
s1,s2=±1

sinh−2 (1
2(θ1 + s1θ2 + is2θ3)

)
if β = 1,

J(θ1, θ3) = sinhθ1 sinθ3

∏
s1=±1

sinh−2 (1
2(θ1 + is1θ3)

)
, if β = 2,

J(θ1, θ3, θ4) = sinθ3 sinθ4 sinh3 θ1

∏
s1,s2=±1

sinh−2 (1
2(θ1 + is1θ3 + is2θ4)

)
if β = 4.

The DMPK equation on the other hand, yields the evolution equation

∂

∂L

〈
F(θ̂ , λ̂)

〉
= 2

ξ

〈
D
λ̂

F(θ̂ , λ̂)
〉
, (5.1.11)

whereD
λ̂

is a second order differential operator in the parametersλn,

D
λ̂

= J−1(λ̂)

N∑
n=1

∂

∂λn
J(λ̂) λn(1 + λn)

∂

∂λn
, (5.1.12)

J(λ̂) =
∏
n>m

|λn − λm|β. (5.1.13)

The key ingredient of the equivalence proof is the identity

1
θ̂
F(θ̂ , λ̂) = D

λ̂
F(θ̂ , λ̂), (5.1.14)

which shows that the evolution withL of 〈F(θ̂, λ̂)〉 is the same in both approaches. Show-
ing that the initial conditions atL = 0 coincide as well, completes the equivalence proof.
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5.1.2 One-dimensionalσ model

We begin the detailed exposition of the equivalence proof with a formulation of theσ

model. As in Ref. 11, we use the formulation of Iida-Weidenm¨uller-Zuk (IWZ) [9].

The IWZ model

The IWZ model [9, 16] applies Wegner’sn-orbital model [25] to a wire geometry and
supplements it by a coupling to ideal (not disordered) leads, as in Landauer’s approach
to conduction [29]. The left and right leads (labeled by indices 1 and 2) containN1 and
N2 propagating modes each (per spin direction forβ = 1, 2, or per Kramers doublet for
β = 4). The disordered wire of lengthL is assumed to consist ofK segments in series (Fig.
5-1). The HamiltonianH of the disordered wire without leads is represented by a matrix
Hi j
µν , where the upper indicesi , j label the segments 1≤ i, j ≤ K and the lower indices

µ, ν label theM states (per spin direction or Kramers doublet) within each segment. The
elements ofH are real (β = 1), complex (β = 2) or quaternion (β = 4) numbers. The
coupling between the states inside one segment is described by the matricesHii

µν , which
are distributed according to the Gaussian ensemble

P(Hii ) = const.× exp
(
−1

4βMv−2
1 Tr (Hii )2

)
. (5.1.15)

Herev1 is a parameter which governs the level density at the Fermi level (E = 0). The
coupling between the states of adjacent segments is given by another set of Gaussian dis-
tributed random matricesHi j = (H ji )† (with coupling parameterv2),

P(Hi j ) = const.× exp
(
−1

2βM2v−2
2 Tr Hi j H ji

)
,

j = i ± 1. (5.1.16)

Segments which are not adjacent are uncoupled,Hi j = 0 if |i − j | ≥ 2. The coupling to
the ideal leads is described by a fixedK M × (N1 + N2) rectangular matrixW = W1 + W2

with real (β = 1), complex (β = 2) or quaternion (β = 4) elements. The matrixW has
elementsWi

µn, wherei labels the segment,µ the states in the segment, andn the modes in
the leads. The elements ofW1 (which describes the coupling to lead 1) are nonzero only
for i = 1 and 1≤ n ≤ N1; the elements ofW2 (coupling to lead 2) are nonzero only for
i = K andN1 < n ≤ N1 + N2.

The scattering matrixS(matrix elementsSnm) of the system at energyE is given by [9]

S = 1 − 2π iW†(E − H + iπW W†)−1W. (5.1.17)

The indicesn,m correspond to lead 1 if 1≤ n,m ≤ N1 and to lead 2 ifN1 < n,m ≤
N1 + N2. The reflection and transmission matricesr, r ′, t, t ′ are submatrices ofS,

S =
(

r t ′

t r ′

)
. (5.1.18)

SinceS is unitary, the productst†t and t ′†t ′ have the same set of non-zero eigenvalues,
denoted byTn = (1+λn)

−1. (If N2 > N1 there are alsoN2 − N1 transmission eigenvalues
which are zero, and can therefore be disregarded.)
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N channelsN N1 2

K segments

Figure 5-1. Schematic drawing of the disordered wire and the leads according to the IWZ model

description. The left lead (lead 1) contains N1, the right lead (lead 2) N2 propagating channels.

The number of propagating channels in the disordered wire is N. In the IWZ model, the disordered

wire is divided into K segments, each having a random Hamiltonian drawn drom the Gaussian

ensemble. The derivation of the 1d σ model from the IWZ model assumes N � 1, but allows for

finite N1 and N2.

The generating function

We now define the generating functionF(θ̂ , λ̂) introduced in the previous section. We start
from the the relationship (5.1.17) between the scattering matrix and the Hamiltonian in the
IWZ model. We consider the generating function

F = Sdet−
1
2(E −H + iπW1W†

1 Q + iπW2W†
23), (5.1.19)

H = H18 if β = 1, 4; H = (ReH)18 + i (ImH)τ3 if β = 2. (5.1.20)

Here 18 is the 8× 8 supersymmetric unit matrix andτ3 is a diagonal matrix with elements
(1,−1, 1,−1, 1,−1, 1,−1). The matrix3 was defined in Eq. (5.1.1). Note thatQ is an
arbitrary supermatrix as in Eq. (5.1.1) and that it replaces the matrix3 in the coupling term
of lead 1. In App. B we show thatF depends only on the radial partθ̂ of the matrixQ and
that the only dependence onH is through the transmission eigenvaluesTn = (1 + λn)

−1.
We also show that Eq. (5.1.19) reduces to the functionF(θ̂ , λ̂) defined in Eq. (5.1.6) of the
previous section.

In the following, we evaluate the ensemble average〈F〉 using the supersymmetric for-
malism. We first express〈F〉 as a Gaussian integral over an 8M K -dimensional supervector
ψ :

〈F〉 =
〈∫

Dψ exp
(

1
2i ψ†3(E −H + iπW1W†

1 Q + iπW2W†
23+ i ε3)ψ

)〉
.

(5.1.21)
The convergence of the Gaussian integral is assured by the parameterization (5.1.1) of the
matrix Q. Performing the standard steps, described in Refs. 9 and 11, we obtain in the
relevant limitM → ∞

〈F〉 =
∫

d Q1

∫
d QK f1(Q, Q1) f2(3, QK )W(Q1, QK ), (5.1.22)

W(Q1, QK ) =
∫

d Q2 . . .

∫
d QK−1 exp

(
−d v2

2

2v2
1

K−1∑
i=1

Str(Qi Qi+1),

)
(5.1.23)
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f1(Q, Q1) = exp

(
−1

2
d

N1∑
n=1

Str ln(1 + xn QQ1)

)
, (5.1.24)

f2(Q, QK ) = exp


−1

2
d

N1+N2∑
n=N1+1

Str ln(1 + xn QQK )


 . (5.1.25)

The numbersxn denote the eigenvalues of the matrices(π/v1)W
†
1 W1 (if 1 ≤ n ≤ N1) or

(π/v1)W
†
2 W2 (if N1 < n ≤ N1 + N2). The integerd was defined in Eq. (5.1.8).

Following Ref. 11, we consider the limitv2
1 � v2

2. Then the sum in (5.1.23) can be
replaced by an integral and theQi -integrals yield a path integral. The discrete number of
segmentsK becomes the continuous (dimensionless) variables. The propagator (5.1.23)
can be identified with the heat kernel of the supersymmetric space, determined by the heat
equation [11]

2β(v2/v1)
2 ∂

∂s
W(Q′, Q′′) = 1Q′W(Q′, Q′′),

lim
s→0

W(Q′, Q′′) = δ(Q′, Q′′). (5.1.26)

The precise definition of the Laplacian1Q and the detailed justification of Eq. (5.1.26)
are contained in Ref. 11 (1Q in Eq. (5.1.26) differs by an additional factorβ/(8d) with
respect to the notations of Ref. 11). We thus arrive at the expression

〈F〉 =
∫

d Q′
∫

d Q′′ f1(Q, Q′)W(Q′, Q′′) f2(3, Q′′). (5.1.27)

The next step is to notice thatf1(Q, Q′) has the same symmetry as the heat kernel,
i.e. f1(T−1QT, T−1Q′T) = f1(Q, Q′) whereT is an arbitrary element as described in
(5.1.1). This implies1Q′ f1(Q, Q′) = 1Q f1(Q, Q′) and hence〈F〉 also satisfies the heat
equation

2β(v2/v1)
2 ∂

∂s
〈F〉 = 1Q〈F〉. (5.1.28)

Since〈F〉 only depends on the radial partθ̂ of Q, it is sufficient to consider the radial part
1
θ̂

of the Laplacian1Q. This radial part1
θ̂

can be written as in Eq. (5.1.10). We thus
find that the ensemble average〈F(θ̂ , λ̂)〉 of the generating function defined in Eq. (5.1.6)
satisfies the partial differential equation

2β(v2/v1)
2 ∂

∂s
〈F(θ̂, λ̂)〉 = 1

θ̂
〈F(θ̂, λ̂)〉, (5.1.29)

with the initial condition implied by Eq. (5.1.26),

lim
s→0

〈
F(θ̂ , λ̂)

〉
=
∫

d Q′ f1(Q, Q′) f2(3, Q′). (5.1.30)

Together, Eqs. (5.1.29) and (5.1.30) determine the ensemble average of the generating
function F(θ̂ , λ̂) evaluated in the framework of the nonlinearσ model.
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The two limits of the IWZ model which were needed for the derivation of Eq. (5.1.30),
M → ∞ andv2

1/v
2
2 → 0, restrict the validity of Eq. (5.1.30) to the case of weak disorder

(` � λF ) and thick wires (N � 1) respectively [9, 11]. Whereas the requirement of
weak disorder is also needed for the DMPK equation, the requirement that the number of
channels in the disordered wire be large is not. To see how the latter requirement follows
from the conditionv2

1 � v2
2, we consider the expression for the average conductance〈G〉

in the diffusive metallic regime (̀� L � N`) [9,11],

〈G〉 = 2e2

h

N`

L
= 2e2

h

4v2
2

v2
1s
. (5.1.31)

Taking the linear dimension of a segment of the disordered wire in the IWZ model of order
` (i.e. s ≈ L/`, see Ref. 9), we find thatv2

1 � v2
2 corresponds toN � 1. However, no

restriction has been put to the numbersN1 andN2 of propagating channels in the leads in
the above derivation of theσ model, which allows us to consider finite values ofN1 and
N2. This situation corresponds to the case in which the thick disordered wire is coupled to
the leads 1 and 2 by means of point contacts, withN1, N2 open channels. As in Ref. 11,
the case of a disordered wire without point contacts is recovered in the limitN1, N2 → ∞.

We conclude this section with some remarks about the choice of initial conditions. In
usualσ model calculations [10, 11, 15], one considers the case ideal coupling (xn = 1,
n = 1, . . . , N1 + N2) and identifiesN = N1 = N2 (equal number of channels in the
leads and in the wire). In the thick-wire limitN → ∞ the function fi (Q, Q′) is just the
delta function [11]δ(Q, Q′), and〈F〉 becomes identical to the heat kernel itself [cf. Eq.
(5.1.27)]:

〈F〉 = W(Q, 3), N1 = N2 = N � 1. (5.1.32)

For β = 2, this result was derived by Rejaei [15]. In this case〈F〉 has the delta-function
initial condition lims→0〈F〉 = δ(Q, 3). To make contact with the DMPK equation, we
need a different “ballistic” initial condition, such that allTn’s are unity in the limit of zero
wire length. To achieve this, we take ideal coupling and assume that one of the leads has
many more channels than the other. To be specific, we fixN1 and take the limitN2 → ∞.
One then finds the initial condition

lim
s→0

〈F〉 = exp
(−1

2 N1d Str ln(1 + Q3)
)

=
(

cosθ3 + cosθ4

coshθ1 + coshθ2

)N1d

, 1 ≤ N1 � N2. (5.1.33)

In the next section, we will see that this is precisely the ballistic initial condition of the
DMPK equation.

5.1.3 DMPK equation

Let us now evaluate the ensemble average of the generating function (5.1.6) from
the DMPK equation. The DMPK equation is a Fokker-Planck-type equation for the
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L-evolution of the probability distributionP(λ̂) of theλn’s: [1–5]

1

2
(βN + 2 − β)`

∂

∂L
P(λ̂) =

N∑
n=1

∂

∂λn
λn(1 + λn)J(λ̂)

∂

∂λn
J−1(λ̂)P(λ̂), (5.1.34)

J(λ̂) =
∏
n>m

|λn − λm|β, (5.1.35)

where` denotes the mean free path in the disordered wire andN the number of propagating
modes. There isno restriction toN � 1 in the DMPK approach. We take the ballistic
initial condition

lim
L→0

P(λ̂) =
N∏

n=1

δ(λn − 0+). (5.1.36)

The DMPK equation implies forF(θ̂ , λ̂) the evolution equation [2,4]

∂

∂L
〈F(θ̂, λ̂)〉 = ∂

∂L

∫
dλ1 . . .

∫
dλN F(θ̂ , λ̂) P(λ̂)

= 2

`
(βN + 2 − β)−1

〈
D
λ̂

F(θ̂ , λ̂)
〉
, (5.1.37)

with the differential operatorD
λ̂

given by Eq. (5.1.12). In Appendix C we prove the alge-
braic identity between the two different types of Laplacians (5.1.10) and (5.1.12) applied
to F(θ̂ , λ̂),

1
θ̂
F(θ̂, λ̂) = D

λ̂
F(θ̂ , λ̂). (5.1.38)

From Eqs. (5.1.37), and (5.1.38) we conclude that that the average〈F(θ̂ , λ̂)〉, calculated in
the framework of the DMPK equation, also fulfills the evolution equation (5.1.29) of the
nonlinearσ model, provided we identify [cf. Eq. (5.1.31)]

4

s
(v2/v1)

2 = N`

L
= ξ

βL
, N � 1. (5.1.39)

Here we introduced the localization lengthξ = βN` (notice that the definition ofξ in Ref.
11 differs by a factor 2/β).

It remains to compare the initial conditions. The ballistic initial condition for the
DMPK equation implies

lim
L→0

〈F(θ̂ , λ̂)〉 = f (θ̂ , λ = 0)N =
(

cosθ3 + cosθ4

coshθ1 + coshθ2

)Nd

, (5.1.40)

which equals the initial condition (5.1.33) for the nonlinearσ model. (The thick-wire
limit lim L→0〈F〉 = δ(Q, 3) is obtained by lettingN → ∞ in the above expression).
This proves the equivalence of both approaches, as far as the generating function (5.1.6)
is concerned. In Appendix D of this chapter we extend the equivalence proof top-point
functionsρp(T1, . . . , Tp) for arbitraryp.
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5.1.4 The controversial symplectic ensemble

The main motivation of this section was to resolve a controversy between the DMPK equa-
tion and the one-dimensionalσ model in the symplectic symmetry class (β = 4). On the
one hand, the DMPK equation implies [13]〈G〉 → 0 asL → ∞. On the other hand,
Zirnbauer [10] finds from theσ model that〈G〉 → 1

2e2/h asL → ∞.
The equivalence proof presented in this chapter has as a logical consequence that

〈G〉 → 0 asL → ∞ if 〈G〉 is evaluated in the framework of theσ model. To demon-
strate this, we apply the argument of Ref. 13. The DMPK equation implies for the average
dimensionless conductanceg = ∑

n(1 + λn)
−1 the evolution equation [4]

ξ
∂〈g〉
∂L

= −β〈g2〉 − (2 − β)〈g2〉, (5.1.41)

with g2 = ∑
n(1 + λn)

−2. This relation also follows from the evolution equation (5.1.29)
of theσ model (expanding the generating function for smallθi and applying the results of
appendix A). Since 0≤ g2 ≤ g2, we have

ξ
∂〈g〉
∂L

≤ −1

2
β〈g2〉 ≤ 0. (5.1.42)

We suppose that limL→∞〈g〉 exists. Since∂〈g〉/∂L ≤ 0 [Eq. (5.1.42)] this implies that
limL→∞ ∂〈g〉/∂L = 0. Hence limL→∞〈g2〉 = 0 by Eq. (5.1.42). Since〈g〉2 ≤ 〈g2〉 this
implies that also limL→∞〈g〉 = 0.

Where does the non-zero limit in Refs. 10 and 11 come from? The ground-breaking
contribution of Zirnbauer was to use a “super-Fourier expansion” of the heat kernelW(Q, Q′)
in terms of eigenfunctions of the Laplacian in the space of theσ model. This type of Fourier
analysis is well understood for classical symmetric spaces [30]. The development and ap-
plication of the supersymmetric analogue for theσ model enabled Zirnbauer, Mirlin, and
Müller-Groeling to compute non-perturbatively the first two moments of the conductance
for any β. The non-zero limiting value limL→∞〈g〉 = 1/4 for β = 4 resulted from a
“zero mode”, a non-trivial eigenfunction of the Laplacian with zero eigenvalue. Since this
zero mode does not decay asL → ∞, it led to the surprising conclusion of absence of
localization in a wire with spin-orbit scattering in zero magnetic field [10].

An explicit expression for the zero-mode was not obtained in Refs. 10 and 11, but
only its contribution to the moments of the conductance was computed. By inspecting the
initial condition (5.1.33) of the generating function for theσ model we have been able to
construct a zero mode forβ = 4, but only if we ignore the Kramers degeneracy of the
transmission eigenvalues. This unphysical zero mode, given by

φ0(θ1, θ3, θ4) = cosθ3 + cosθ4

2 + 2 coshθ1
, (5.1.43)

arises by taking the initial condition (5.1.33) withN1 = 1 andβ = 4, but without the
extra factor two in the exponent, required by Kramers degeneracy. This unphysical initial
condition solves the evolution equation (5.1.29) for the ensemble average of the generating
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Figure 5-2. Left: The average conductance 〈g〉 multiplied by 4L/ξ = L/N` (left) and the variance

var g of the conductance (right) for the symplectic symmetry class as a function of 4L/ξ for N � 1.

Shown are our result (5.1.48) (solid), the numerical simulation of Ref. 21 (M = 100, N = 25)

(dashed), and the result of Ref. 11 (dotted).

function and implies anL-independent average conductance〈g〉 = 1/4. Although we can
not prove that Eq. (5.1.43) is Zirnbauer’s zero mode, the coincidence with the limiting
value limL→∞〈g〉 = 1/4, limL→∞ varg = 1/16 is quite suggestive.

The reason why we have to exclude the zero mode (5.1.43) from the Fourier expansion
of the heat kernel is that it is not single-valued on theσ model space of supermatricesQ,
although it is a well-defined function ofθ̂ . The parameterization (5.1.1) ofQ is 2π -periodic
in the anglesθ± = θ3 ± θ4. We can then consider on the space of anglesθ3, θ4 a parity
operationP which consists of addingπ to both of these angles. This parity operation does
not changeQ, but it changes the zero mode (5.1.43). The Laplacian (5.1.10) commutes
with P and the eigenfunctions have therefore either even or odd parity (eigenvalues+1 or
−1 of P, respectively). The physical modes of theσ model must have even parity, since
only these functions are single-valued. Forβ = 4, it is the Kramers degeneracy which
ensures that the initial condition (5.1.33) has even parity.

This observation led us to check the parity of the eigenfunctionsφν(Q) of the Laplacian
in the super Fourier analysis of Refs. 10 and 11. We consider the eigenvalue equation

1
θ̂
φν(θ1, θ3, θ4) = −ε(ν)φν(θ1, θ3, θ4) (5.1.44)

for β = 4 in the limitθ1 → ∞ at fixedθ3, θ4. In this limit, the Laplace operator simplifies
considerably

1
θ̂

→ eθ1
∂

∂θ1
e−θ1 ∂

∂θ1
+ 1

sinθ3

∂

∂θ3
sinθ3

∂

∂θ3
+ 1

sinθ4

∂

∂θ4
sinθ4

∂

∂θ4
. (5.1.45)
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From this expression one may identify the set of quantum numbersν = (λ, 1 + 2n1, 1 +
2n2), whereλ is a real number andn1, n2 are non-negative integers. The asymptotic
behavior of the eigenfunctionsφν(θ1, θ3, θ4) is given by

φν(θ1, θ3, θ4) ∼ exp
[1

2(1 + iλ)θ1
] (

Pn1(cosθ3)Pn2(cosθ4)+ Pn2(cosθ3)Pn1(cosθ4)
)
,

(5.1.46)
with the Legendre polynomialsPn(x) and the eigenvalues

ε(λ, 1 + 2n1, 1 + 2n2) = 1

4

(
λ2 + (1 + 2n1)

2 + (1 + 2n2)
2 − 1

)
. (5.1.47)

The parity of this eigenfunction is just(−1)n1+n2 and we have to restrict ourselves to those
n1 andn2 with n1 + n2 even. Applying this selection rule to the expressions for〈g〉 and
〈g2〉 of Refs. 10 and 11, omitting the zero mode [and the subsidiary series with quantum
numbersν = (i, l , l ± 2) of Refs. 10 and 11, for which the asymptotic behavior (5.1.46) is
also valid], and multiplying the surviving terms with a factor of 2 to account for Kramers
degeneracy, yields forβ = 4 and in the limitN1 = N2 = N → ∞ the expression

〈gn〉 = 25−n
∑

l1,l2=1,3,5,...,
l1+l2≡2 (mod4)

∫ ∞

0
dλ λ(λ2 + 1) tanh(πλ/2)l1l2pn(λ, l1, l2)

×
∏

σ,σ1,σ2=±1

(−1 + iσλ+ σ1l1 + σ2l2)
−1 exp

[
−(λ2 + l 2

1 + l 2
2 − 1)L/(2ξ)

]
,

(5.1.48)

wheren = 1, 2 and

p1(λ, l1, l2) = λ2 + l 2
1 + l 2

2 − 1,

p2(λ, l1, l2) = 1
4

[
2λ4 + l 4

1 + l 4
2 + 3λ2(l 2

1 + l 2
2)− 2λ2 + l 2

1 + l 2
2 − 2

]
.

Note that in our notations the dimensionless conductanceg is by a factor 2 smaller
thang in the notations of Ref. 11. Comparison of Eq. (5.1.48) with theβ = 4 result of
Ref. 11, where the parity selection rule was not implemented, shows that the perturbation
expansion aroundL/ξ = 0 is the same. (We checked this numerically up to order(L/ξ)3.)
Outside the perturbative regime, the two expressions are completely different. Instead of a
non-zero limit〈g〉 = 1/4 for L/ξ � 1, we find from Eq. (5.1.48) the exponential decay

〈g〉 ≈ 16

9
(2L/πξ)−3/2e−L/2ξ . (5.1.49)

To test our result, we have compared it with a direct numerical simulation of the IWZ
model by Mirlin and Müller-Groeling [21] (with M = 100, N = 25 and an average
over 100 different samples). The comparison is shown in Fig. 5-2. It is clear that our Eq.
(5.1.48) (solid curve) agrees quite well with the simulation, while the result of Ref. 11 does
not (dotted curve).
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Figure 5-3. The average conductance 〈g〉 multiplied by βL/ξ = L/N` (left) and the variance var g

of the conductance (right) for the three symmetry classes as a function of βL/ξ for N � 1. The

curves for β = 1,2 are taken from Refs. 10 and 11 and the curve for β = 4 is calculated from Eq.

(5.1.48). Notice that ξ = βN` is proportional to β, so that the scaling of the axes is β-independent.

Notice that this issue of the parity of the eigenfunctions does not occur forβ = 1, 2,
since there is only one compact angle (θ3) in those cases. The parity operation on theθ̂-
matrices exists only forβ = 4. For completeness we collect in Fig. 5-3 the results for〈g〉
and varg for all three symmetry classes. Theβ = 1, 2 results are from Ref. 11, theβ = 4
result is our Eq. (5.1.48).

5.1.5 Conclusion

We have established the exact mathematical equivalence of the two non-perturbative the-
oretical approaches to phase-coherent transport and localization in disordered wires: The
Fokker-Planck equation of Dorokhov, Mello, Pereyra, and Kumar [1–5] and the one-di-
mensional supersymmetric nonlinearσ model [6, 7, 9, 11, 26]. The equivalence has the
logical consequence that the absence of localization in the symplectic symmetry class, ob-
tained by Zirnbauer by super-Fourier analysis of theσ model, is not correct. By applying
a selection rule enforced by Kramers degeneracy to the eigenfunctions of Refs. 10 and 11,
we have obtained modified expressions for〈G〉 and varG, which decay exponentially as
L → ∞ and which agree well with existing numerical simulations [21].

Our equivalence proof has both conceptual and practical implications. The DMPK
equation and the 1d σ model originated almost simultaneously in the early eighties, and at
the same institute. [1, 6] Nevertheless, work on both approaches proceeded independently
in the next decade. Knowing that, instead of two theories, there is only one, seems to
us a considerable conceptual simplification of the field. It implies that the microscopic
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derivations and random-matrix models developed for theσ model apply as well to the
DMPK equation, and vice versa. (we see only the restriction, that theσ model requires the
thick-wire limit N → ∞, while the DMPK equation applies to any number of channels
N.) Practically, each of the two approaches has its own advantages, and now that we know
that they are equivalent, we can choose the approach which is best suited to our needs and
skills.

Appendix A: Transport properties determined by the gen-
erating function

We list the transport properties of interest that can be generated fromF(θ̂ , λ̂), following
Rejaei [15]. Let us consider the function

f (z1, z2) =
〈
det(1 + z2 t†t)

det(1 + z1 t†t)

〉
, (A.1)

which equals〈F(θ̂, λ̂)〉 at z2 = − sin2(1
2θ3), z1 = sinh2(1

2θ1), andθ2 = θ4 = 0. We write
Eq. (A.1) in the form

f (z1, z2) = 〈
exp

[
Tr ln(1 + z2 t†t)− Tr ln(1 + z1 t†t)

]〉
. (A.2)

The standard expansion [8, 9] with respect to smallz1 andz2 yields the first two moments
of the dimensionless conductanceg = (1/d)Tr t†t (with d = 1 + δ4,β),

〈g〉 = 1

d

∂

∂z2
f (z1, z2)

∣∣∣
z1=0=z2

= −1

d

∂

∂z1
f (z1, z2)

∣∣∣
z1=0=z2

, (A.3)

〈g2〉 = − 1

d2

∂

∂z1

∂

∂z2
f (z1, z2)

∣∣∣
z1=0=z2

. (A.4)

We may also consider [15,27] derivatives off (z1, z2) at z1 = z2. This may require the
analytic continuation ofθ1, θ3 to complex values ifz1 < 0, z2 > 0 or z2 < −1. Therefore,
we introduce the functionf (z1) as

f (z1) = ∂

∂z2
f (z1, z2)

∣∣∣
z2=z1

=
〈
Tr
[
(1 + z1 t†t)−1 t†t

]〉

=
∞∑

n=0

(−z1)
n〈Tr (t†t)n+1〉

= z−1
1

(
Tr(1)−

〈
Tr
[
(1 + z1 t†t)−1

]〉)
. (A.5)
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The average density of transmission eigenvalues now follows from:

ρ(T) = 〈Tr δ(T − t†t)〉
= − 1

πT2
Im f

(
−(T + i 0+)−1

)
. (A.6)

The application of Eq. (A.6) requires the analytical continuation of both variablesz1 and
z2 to values< −1.

Appendix B: The generating function in terms of the trans-
mission matrix

In this appendix, we show that Eq. (5.1.19) for the generating function in the IWZ model
equals Eq. (5.1.6). We first consider the two casesβ = 1, 4 of time reversal symmetry,
whenH = H18 in Eq. (5.1.19). The necessary modifications forβ = 2 are described at
the end.

We make use of the folding identity

Sdet

(
1n A

B 1m

)
= Sdet(1n − AB) = Sdet(1m − B A). (B.1)

We abbreviateG± = (E − H ± iπW W†)−1. Taking out the factor(E −H + iπW W†3)

(with unit superdeterminant), we may rewrite Eq. (5.1.19) as

F = Sdet−
1
2

(
1 +

(
G+ 0

0 G−

)
iπW1W†

1 (Q −3)

)

= Sdet−
1
2

(
1 + iπ

(
W†

1 G+W1 0

0 W†
1 G−W1

)
(Q −3)

)
, (B.2)

where we have applied Eq. (B.1) onB = W†
1 . We now insert the reflection matrixr =

1 − 2π iW†
1 G+W1 [see Eqs. (5.1.18) and (5.1.17)] into Eq. (B.2) and obtain

F = Sdet−
1
2

(
1

2
(1 +3Q)+ 1

2

(
r 0

0 r †

)
(1 −3Q)

)
. (B.3)

Now we use the parameterization (5.1.1) forQ. Notice that Eq. (B.3) does not depend on
the angular part ofQ [the matricesu, v in (5.1.2)]. Hence we may chooseQ as

Q = T−13T, T = exp(1
22), 2 =

(
0 θ̂

θ̂ 0

)
, (B.4)

which leads to

1
2(1 +3Q) = cosh(1

22) T, 1
2(1 −3Q) = − sinh(1

22) T.
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Inserting this in Eq. (B.3) and taking out the factorT (with unit superdeterminant), we get

F = Sdet−1/2

(
cosh(1

2 θ̂ ) −r sinh(1
2 θ̂ )

−r † sinh(1
2θ̂ ) cosh(1

2θ̂ )

)

= Sdet−1/2
(
cosh2(1

2θ̂ )− sinh2(1
2θ̂ )r

†r
)

= Sdet−1/2
(
1 + sinh2(1

2θ̂ )t
†t
)
, (B.5)

where we have again used (B.1) and the relationr †r = 1− t†t imposed by unitarity of the
scattering matrix.

The matrixt†t has eigenvaluesTn = (1 + λn)
−1 (n = 1, . . . , N1), which are twofold

degenerate forβ = 4, hence

F =
N1∏

n=1

Sdet−d/2(1 + sinh2(1
2θ̂ ) Tn)

=
N1∏

n=1

Sdet−d/2
(
λn + cosh2(1

2θ̂ )
)
. (B.6)

Hered = 1 + δβ,4. Eq. (B.6) establishes the connection between the two expressions
(5.1.6) and (5.1.19) for the generating function.

The above calculation assumesH = H18, henceβ = 1 orβ = 4. In the caseβ = 2,
one has insteadH = Re(H)18 + i Im(H)τ3. Instead of two subblocks withr andr † [see
Eq. (B.3)], one now needs four subblocks withr , r T , r †, andr ∗. Repeating the calculation
one finds that the final result (B.6) remains the same.

Appendix C: Identity of Laplacians

The goal of this appendix is to prove Eq. (5.1.14). Hereto we first analyze the structure of
the l.h.s. of Eq. (5.1.14) in more detail.

The derivatives ofF(θ̂ , λ̂) with respect toθj are calculated using

∂F(θ̂ , λ̂)

∂θj
=

(
N∑

n=1

1

f (θ̂ , λn)

∂ f (θ̂, λn)

∂θj

)
F(θ̂ , λ̂), (C.1)

∂2F(θ̂ , λ̂)

∂θ2
j

=
(

N∑
n=1

1

f (θ̂ , λn)

∂2 f (θ̂ , λn)

∂θ2
j

)
F(θ̂ , λ̂)+


 N∑

n6=m

1

f (θ̂ , λn) f (θ̂ , λm)

∂ f (θ̂ , λn)

∂θj

∂ f (θ̂ , λm)

∂θj


 F(θ̂, λ̂). (C.2)
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Inspection of Eqs. (5.1.10), (C.1) and (C.2) shows that1
θ̂
F(θ̂ , λ̂) has two contributions,

one involving a single summation over the channel indicesn, and another one involving a
double summation over channel indicesn 6= m,

1
θ̂
F(θ̂ , λ̂) =


 N∑

n=1

g1(θ̂ , λn)


 F(θ̂ , λ̂)+


 N∑

n6=m

g2(θ̂ , λn, λm)


 F(θ̂, λ̂). (C.3)

Using the definition (5.1.7) off (θ̂ , λ̂) one may straightforwardly calculate the functions
g1 andg2. The expressions are rather lengthy and will not be given here.

The r.h.s. of Eq. (5.1.14) contains the differential operatorD
λ̂
, which is given by Eq.

(5.1.12). Simple algebra yields

D
λ̂

=
N∑

n=1

(
λn(1 + λn)

∂2

∂λ2
n

+ (1 + 2λn)
∂

∂λn

)
+

β

2

N∑
n6=m

(λn − λm)
−1
(
λn(1 + λn)

∂

∂λn
− λm(1 + λm)

∂

∂λm

)
. (C.4)

As a consequence,D
λ̂
F(θ̂ , λ̂) has again the structure of Eq. (C.3), withg1 and g2 now

given by

g1(θ̂ , λ) = 1

f (θ̂ , λ)

[
λ(1 + λ)

∂2 f (θ̂ , λ)

∂λ2
+ (1 + 2λ)

∂ f (θ̂ , λ)

∂λ

]
, (C.5)

g2(θ̂ , λ1, λ2) = β/2

λ1 − λ2

[
λ1(1 + λ1)

f (θ̂ , λ1)

∂ f (θ̂ , λ1)

∂λ1
− λ2(1 + λ2)

f (θ̂ , λ2)

∂ f (θ̂ , λ2)

∂λ2

]
. (C.6)

Comparison of Eqs. (C.3) and (C.5) shows that the two definitions of the functionsg1 and
g2 are identical. This completes the proof of Eq. (5.1.14).

Appendix D: Extension to higher dimensional supermatri-
ces

The argumentation presented in Secs. 5.1.2 and 5.1.3 can be generalized toσ models with
Q matrices of arbitrary dimension 8p with p ≥ 1. This generalized equivalence proof
applies to thep-point functionsρp(T1, . . . , Tp) instead to the limited number of statistical
quantities that can be generated by the “small”σ model with p = 1 (compare appendix
A). Here, we briefly present the modifications with respect to thep = 1 case. The modifi-
cations concern the parameterization (5.1.1) and the generating function (5.1.7).

The main technical difficulty in such a generalization is due to the radial part of the
Laplace operator. The procedure to calculate it on conventional symmetric spaces is stan-
dard [30] and is carried over to the supersymmetricσ models as described in appendix B of
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Ref. 11. It is now more convenient to use a slightly modified form of the parameterization
of the Q-matrices, wherêθ in Eq. (5.1.1) is fully diagonal (rather than block-diagonal):

θ̂ =
(

x̂ 0

0 i ŷ

)
,

(x̂)nm = xnδnm, (ŷ)nm = ynδnm, 1 ≤ n,m ≤ 2p. (D.1)

The symmetry restrictions are [cf. Eq. (5.1.4)]

yi = yi+p if β = 1,

xi = xi+p, yi = yi+p if β = 2, (D.2)

xi = xi+p if β = 4,

for i = 1, . . . , p. In the casep = 1, we have the relationsx1 = θ1 + θ2, x2 = θ1 − θ2,
y1 = θ3 + θ4, andy2 = θ3 − θ4 between these parameters and theθi used in (5.1.3).

We can directly apply the results of appendix B in Ref. 11 which are given in terms of
the so-calledroots α(2) [with 2 given as in (B.4)]. The roots are linear functions of2
which are the eigenvalues of the linear mapping ad(2)(Xα) := [2, Xα] = α(2)Xα, de-
fined on a certain super-Lie algebra [11]. The eigenvectorsXα of the mapping are theroot
vectors,which do not depend on2. The radial integration measureJ(θ̂) in Eq. (5.1.10)
can be expressed as [30]

J(θ̂) =
∏
α>0

sinhmα [1
2 α(2)], (D.3)

where the integermα is the multiplicity of the rootα (the dimension of the root space).
Both positive and negative values ofmα can occur. The factor12 is due to the difference
between the normalization (5.1.1) of2 and the one used in Ref. 11. In appendix A of
Ref. 11, explicit formulas for the roots as well as for the root vectors are given for the case
β = 1, p = 1.

We have calculated the roots and the root vectors for allβ and arbitrary dimension
8p of the Q matrices. For simplicity, we only present the results for the roots and their
multiplicities. Let us denote withpx (py) the number of independentxi (yi ) parameters,
i.e.: px = 2p, p, p andpy = p, p, 2p for β = 1, 2, 4, respectively. Note thatβpx = 2py.
We find 8 different types of (positive) roots:

α(2) = xj − xl (1 ≤ j < l ≤ px), mα = β,

α(2) = xj − iyl (1 ≤ j ≤ px, 1 ≤ l ≤ py), mα = −2,

α(2) = i (yj − yl ) (1 ≤ j < l ≤ py), mα = 4/β,

α(2) = 2xj (1 ≤ j ≤ px), mα = β − 1,

α(2) = 2iyj (1 ≤ j ≤ py), mα = 4/β − 1,

α(2) = xj + xl (1 ≤ j < l ≤ px), mα = β,

α(2) = xj + iyl (1 ≤ j ≤ px, 1 ≤ l ≤ py), mα = −2,

α(2) = i (yj + yl ) (1 ≤ j < l ≤ py), mα = 4/β.

(D.4)
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The radial part of the Laplacian takes the form

1
θ̂

=
px∑

j =1

J−1(θ̂ )
∂

∂xj
J(θ̂)

∂

∂xj
+ β

2

py∑
j =1

J−1(θ̂ )
∂

∂yj
J(θ̂)

∂

∂yj
. (D.5)

The expressions (5.1.6) and (5.1.19) for the generating function now remain valid with the
modifiedθ̂ of Eq. (D.1), and with Eq. (5.1.7) replaced by

f (θ̂ , λ) =
py∏

i=1

[1 + 2λ+ cos(yi )]
px∏

i=1

[1 + 2λ+ cosh(xi )]−β/2. (D.6)

It is convenient to use the variablesui = sinh2(1
2xi ) andvi = − sin2(1

2 yi ) in terms of
which the Laplacian has the form

1
θ̂

=
px∑

j =1

J̃−1 ∂

∂uj
uj (1 + uj ) J̃

∂

∂uj
− β

2

py∑
j =1

J̃−1 ∂

∂vj
vj (1 + vj ) J̃

∂

∂vj
, (D.7)

J̃ =
∏

1≤i< j ≤px

(ui − uj )
β

∏
1≤i< j ≤py

(vi − vj )
4/β

px∏
i=1

py∏
j =1

(ui − vj )
−2 (D.8)

×
px∏

i=1

(
ui (1 + ui )

)β/2−1
py∏

i=1

(
vi (1 + vi )

)2/β−1
.

The generating functionF(θ̂ , λ̂) is given by

F(θ̂ , λ̂) =
N∏

n=1

( py∏
i=1

(1 + λn + vi )

px∏
i=1

(1 + λn + ui )
−β/2

)
. (D.9)

We have verified that the identity of Laplacians [Eq. 5.1.14)] remains true for the mod-
ified expressions (D.7) and (D.9). The calculations goes in a similar way as shown in App.
C for p = 1. Now, we have to keep track of 7 different types of contributions with double
and triple sums over functions ofλn, ui , vj .

In App. A we have shown that the average density of transmission eigenvaluesρ(T)
can be obtained from the generating function (5.1.6). Using the corresponding function for
the higher-dimensionalσ model considered here, it is straightforward to get thep-point
correlation functionsρp(T1, . . . , Tp).
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6 Diagrammatic technique for integration over
the unitary group

The random-matrix theory of quantum transport describes the statistics of transport prop-
erties of phase-coherent (mesoscopic) systems in terms of the statistics of random matrices
(for reviews, see Refs. [1–4]). There exist two separate (but equivalent) approaches: Either
the random matrix is used to model the Hamiltonian of the closed system, or it is used
to model the scattering matrix of the open system. The second approach is more direct
than the first, because the scattering matrix directly determines the conductance through
the Landauer formula,

G = 2e2

h
tr t t†. (6.0.1)

(The transmission matrixt is a submatrix of the scattering matrix.)
Random-matrix theory has been applied successfully to two types of mesoscopic sys-

tems: chaotic cavities and disordered wires. Baranger and Mello [5] and Jalabert, Pichard,
and Beenakker [6] studied conduction through a chaotic cavity on the assumption that the
scattering matrixS is uniformly distributed in the unitary group, restricted only by sym-
metry. This is the circular ensemble, introduced by Dyson [7], and shown to apply to a
chaotic cavity by Blümel and Smilansky [8]. The symmetry restriction is thatSS∗ = 1
in the presence of time-reversal symmetry. (The superscript∗ indicates complex conju-
gation if the elements ofS are complex numbers; in the presence of spin-orbit scattering,
S is a matrix of quaternions, andS∗ denotes the quaternion complex conjugate.) For the
disordered wire, the circular ensemble applies not to the scattering matrix itself, but to the
unitary matricesv,w, v′, andw′ in the polar decomposition,

S =
(
v 0

0 w

)( √
1 − T i

√
T

i
√

T
√

1 − T

)(
v′ 0

0 w′

)
. (6.0.2)

The matrixT is a diagonal matrix containing the transmission eigenvaluesTn ∈ [0, 1] on
the diagonal. (TheTn’s are the eigenvalues of the matrix productt t†.) The distribution
of the transmission eigenvalues is governed by a Fokker-Planck equation, the Dorokhov-
Mello-Pereyra-Kumar (DMPK) equation [9, 10]. The isotropy assumption [10] states that
v, v′, w, andw′ are uniformly and independently distributed in the unitary group, with the
restrictionv∗v′ = 1,w∗w′ = 1 in the presence of time-reversal symmetry.

The role of the circular ensemble of unitary matrices in the scattering matrix approach is
comparable to the role of the Gaussian ensemble of Hermitian matrices in the Hamiltonian
approach. However, whereas many computational techniques have been developed for
averaging over the Gaussian ensemble [11–18], the circular ensemble has received less
attention. If the dimensionN of the unitary matrices is small, the average over the circular
ensemble can be done exactly, see e.g. Secs. 2.1 and 3.1 or Ref. [19]. For some applications
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in the regime of largeN, one may regard the elements of the unitary matrix as independent
Gaussian variables [20], and then use the known diagrammatic perturbation theory for
the Gaussian ensemble [12, 17]. In other applications the Gaussian approximation breaks
down.

In this chapter we present a diagrammatic technique for integration over the unitary
group, which is not restricted to the Gaussian approximation. We discuss two applications:
A chaotic cavity coupled to the outside via a tunnel barrier, and a disordered wire attached
to a superconductor. In both cases, we calculate the mean and variance of the conductance
up to and including terms of order 1. We point out the analogy between the diagrams
contributing to the average over the circular ensemble and the diffuson and cooperon dia-
grams which appear in the theory of weak localization [33, 34] and universal conductance
fluctuations [23, 24] in disordered metals. In the presence of the superconductor a third
type of diagrams shows up, which gives rise to the coexistence of weak localization with a
magnetic field (see also Sec. 7.2 and Ref. [25]), and to anomalous conductance fluctuations
(see also Sec. 7.1.

This chapter starts in Sec. 6.1 with a summary of known results [26–28] for the integra-
tion over the unitary group of a polynomial function of matrix elements. The diagrammatic
technique is explained in Sec. 6.2. Generalizations to unitary symmetric matrices and to
unitary quaternion matrices are given in Secs. 6.3 and 6.4, respectively. We then apply
the technique to the chaotic cavity (Sec. 6.5) and the normal-metal–superconductor junc-
tion (Sec. 6.6). Some of the results of Sec. 6.5 have been obtained previously by Iida,
Weidenmüller, and Zuk, who used the Hamiltonian approach to quantum transport and the
supersymmetry technique [1,15]. The results of Sec. 6.6 have some overlap with Secs. 7.1
and 7.2. There is also some overlap between Sec. 6.6 and a recent work by Argaman and
Zee [29].

6.1 Integration of polynomials of unitary matrices

In this section we summarize known results [26–28] for the integration of a polynomial
function f (U) of the matrix elements of anN × N unitary matrixU over the unitary group
U(N). We refer to the integration as an “average”, which we denote by brackets〈· · ·〉,

〈 f 〉 ≡
∫

dU f (U). (6.1.1)

HeredU is the invariant measure (Haar measure) onU(N), normalized to unity (
∫

dU =
1). The ensemble of unitary matrices that corresponds to this average is known as the
circular unitary ensemble (CUE) [7,30].

We consider a polynomial functionf (U) = Ua1b1
. . .Uanbn

U∗
α1β1

. . .U∗
αmβm

. The av-
erage〈 f (U)〉 is zero unlessn = m, α1, . . . , αn is a permutationP of a1, . . . , an, and
β1, . . . , βn is a permutationP′ of b1, . . . , bn. The general structure of the average is

〈
Ua1b1

. . .Uambm
U∗
α1β1

. . .U∗
αnβn

〉
= δnm

∑
P,P′

VP,P′
n∏

j =1

δaj αP( j )δbjβP′( j )
, (6.1.2)
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where the summation is over all permutationsP andP′ of the numbers 1, . . . , n. The co-
efficientsVP,P′ depend only on thecycle structureof the permutationP−1P′ [27]. Recall
that each permutation of 1, . . . , n has a unique factorization in disjoint cyclic permuta-
tions (“cycles”) of lengthsc1, . . . , ck (wheren = ∑k

j =1 ck). The statement thatVP,P′ de-

pends only on the cycle structure ofP−1P′ means thatVP,P′ depends only on the lengths
c1, . . . , ck of the cycles in the factorization ofP−1P′. One may therefore writeVc1,...,ck

instead ofVP,P′ .
As an example, we consider the casen = m = 2 explicitly. The summation over the

permutationsP and P′ extends over the identity permutationid = [(1, 2) → (1, 2)] and
the exchange permutationex= [(1, 2) → (2, 1)]. Hence Eq. (6.1.2) reads〈

Ua1b1
Ua2b2

U∗
α1β1

U∗
α2β2

〉
= Vid,id δa1α1δb1β1δa2α2δb2β2 + Vex,id δa1α2δb1β1δa2α1δb2β2

+ Vid,ex δa1α1δb1β2δa2α2δb2β1 + Vex,ex δa1α2δb1β2δa2α1δb2β1.

(6.1.3)

The permutationP−1P′ that corresponds toP = P′ = id [the first term on the r.h.s.
of Eq. (6.1.3)] is again the identity permutation:P−1P′ = id = [(1, 2) → (1, 2)]. Its
factorization in cyclic permutations isid = (1 → 1)(2 → 2), so thatP−1P′ factorizes
in two cyclic permutations of unit length. Hence the cycle structure ofP−1P′ is {1, 1},
and Vid,id = V1,1. The second term on the r.h.s. of Eq. (6.1.3), corresponding toP =
ex, P′ = id, hasP−1P′ = ex = [(1, 2) → (2, 1)], which factorizes in a single cyclic
permutation of length two,ex= (1 → 2 → 1). Hence the cycle structure ofP−1P′ is {2},
andVex,id = V2. Treating the remaining two terms of Eq. (6.1.3) similarly, we obtain〈

Ua1b1
Ua2b2

U∗
α1β1

U∗
α2β2

〉
= V1,1 δa1α1δb1β1δa2α2δb2β2 + V2 δa1α2δb1β1δa2α1δb2β2

+ V2 δa1α1δb1β2δa2α2δb2β1 + V1,1 δa1α2δb1β2δa2α1δb2β1.

In general, the coefficientV1,...,1 refers to equal permutationsP = P′, corresponding to a
pairwise (Gaussian) contraction of the matricesU andU∗. CoefficientsVc1,...,ck with some
cj 6= 1 give non-Gaussian contributions.

The coefficientsV are determined by the recursion relation [27]

N Vc1,...,ck +
∑

p+q=c1

Vp,q,c2,...,ck +
k∑

j =2

cj Vc1+cj ,c2,...,cj −1,cj +1,...,ck = δc11Vc2,...,ck, (6.1.4)

with V0 ≡ 1. One can show that the solutionVc1,...,ck does not depend on the order of the
indicesc1, . . . , ck. Results forV up ton = 5 are given in App. A. The large-N expansion
of V is

Vc1,...,ck =
k∏

j =1

Vcj + O(Nk−2n−2), (6.1.5)

Vc = 1

c
N1−2c(−1)c−1

(
2c − 2

c − 1

)
+ O(N−1−2c). (6.1.6)
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(The numbersc−1
(2c−2

c−1

)
are the Catalan numbers.) For example, the coefficientV1,...,1 =

N−n + O(N−n−2). The Gaussian approximation amounts to setting allV ’s equal to zero
exceptV1,...,1, which is set toN−n.

The coefficientsVc1,...,ck determine moments ofU . Similarly, the coefficientsWc1,...,ck

determine cumulants ofU . The cumulants are obtained from the moments by subsequent
subtraction of all possible factorizations in cumulants of lower degree. For example,

Wc1 = Vc1,

Wc1,c2 = Vc1,c2 − Wc1Wc2,

Wc1,c2,c3 = Vc1,c2,c3 − Wc1Wc2,c3 − Wc2Wc1,c3 − Wc3Wc1,c2 − Wc1Wc2Wc3.

The recursion relation (6.1.4) forV implies a recursion relation forW,

NWc1,...,ck +
∑

p+q=c1

Wp,q,c2,...,ck +
k∑

j =2

cj Wc1+cj ,c2,...,cj −1,cj +1,...,ck

+
∑

p+q=c1

k∑
l=1

1

(l − 1)!(k − l )!
∑

P

Wp,cP(2),...,cP(l)Wq,cP(l+1),cP(k) = 0, (6.1.7)

with W0 ≡ 1 andP a permutation of 2, . . . , k. To leading order in 1/N this equation has
the solution,

Wc1,...,ck = 2kN−2n−k+2(−1)n+k (2n + k − 3)!
(2n)!

k∏
j =1

(2cj − 1)!
(cj − 1)!2 +O(N−2n−k). (6.1.8)

Notice thatWc1,...,ck decreases with increasing number of cyclesk, opposite to the behavior
of Vc1,...,ck .

In principle, the recursion relations permit an exact evaluation of the average of any
polynomial function ofU . In practice, as the number ofU ’s andU∗’s increases, keeping
track of the indices and of the Kronecker delta’s which connect them becomes more and
more cumbersome. It is by the introduction of a diagrammatic technique that one can carry
out this bookkeeping problem in a controlled and systematic way.

6.2 Diagrammatic technique

The usefulness of diagrams for the bookkeeping problem is well-established for averages
over the Gaussian ensemble of Hermitian matrices [12]. Br´ezin and Zee [17] have devel-
oped a diagrammatic method which can be applied to non-Gaussian ensembles as well,
as a perturbation expansion in a small parameter multiplying the non-Gaussian terms in
the distribution. No such small parameter exists for the circular ensemble. The method
presented here deals with non-Gaussian contributions to all orders. Creutz [26] has given a
diagrammatic algorithm for integrals over SU(N). Because of the more complicated struc-
ture of SU(N), we could not effectively apply his method to integrals overU(N) in the
case of a large number ofU ’s.
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U

U

* *

ab

αβ

Aij

=

=

=

ab =δ

A

Figure 6-1. Substitution rules for the unitary matrices U and U∗, the fixed matrix A and the Kro-

necker delta.

The diagrams consist of the building blocks shown in Fig. 6-1. We represent matrix
elementsUab or U∗

αβ by thick dotted lines. The first index (a or α) is a black dot, the
second index (b or β) a white dot. A fixed matrixAi j is represented by a directed thick
solid line, pointed from the first to the second index. Summation over an index is indicated
by attachment of the solid line to a dot. As an example, the functionsf (U) = tr AU BU†

andg(U) = tr AU BUCU†DU† are represented in Fig. 6-2.
The average over the matrixU consists of summing over all permutationsP and P′

in Eq. (6.1.2). Permutations are generated by drawing thin lines (representing Kronecker
deltas) between all black dots attached toU and black dots attached toU∗ (one line per
dot). Black dots connect to black dots and white dots to white dots. To find the contribution
of the permutationsP andP′ to 〈 f (U)〉, we need (i) to determine the cycle structure of the
permutationP−1P′, and (ii) to sum over the indices of the fixed matricesA.

(i) The cycle structure can be read off from the diagrams. A cycle of the permutation
P−1P′ gives rise to a closed circuit in the diagram consisting of alternating dotted and thin
lines. The lengthck of the cycle is half the number of dotted lines contained in the circuit.
We call such circuitsU -cycles of lengthck.

(ii) The trace over the elements ofA is done by inspection of the closed circuits in
the diagram which consist of alternating thick and thin lines. We call such circuitsT-
cycles. AT-cycle containing the matricesA(1), A(2), . . . , A(k) (in this order) gives rise to
tr A(1)A(2) . . . A(k). If the thick line corresponding to a matrixA is traversed opposite to its
direction, the matrix should be replaced by its transposeAT.

As an example, let us consider the average of the functionsf (U) = tr AU BU† and
g(U) = tr AU BUCU†DU†. Connecting the dots by thin lines, we arrive at the diagrams
of Fig. 6-3. For f , there is only one diagram. It contains a singleU -cycle of length 1
(weight V1) and twoT-cycles (which generate trA and trB). We look up the value of
V1 = 1/N in App. A, and find

〈 f (U)〉 = V1tr A tr B = N−1tr A tr B, (6.2.1)

Four diagrams contribute tog. The first diagram contains twoU -cycles of length 1, and
threeT -cycles. Its contribution isV1,1 tr A tr B D tr C. The second diagram contains two
U -cycles of length 1 and a singleT -cycle. Its contribution isV1,1tr ADC B. The third
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*
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Figure 6-2. Diagrammatic representation of the functions f (U) = tr AU BU† and g(U) =
tr AU BUCU†DU†.
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Figure 6-3. Diagrammatic representation of the averages of the functions f and g in Fig. 6-2.

and fourth diagram each contain a singleU -cycle of length 2 and twoT -cycles. Their
contributions areV2 tr A tr B DC andV2 tr ADB tr C. In total we find

〈g(U)〉 = V1,1(tr A tr B D tr C + tr ADC B)+ V2(tr A tr B DC + tr ADB tr C)

= (N2 − 1)−1 (tr A tr B D tr C + tr ADC B)

− [N(N2 − 1)]−1 (tr A tr B DC + tr ADB tr C) . (6.2.2)

Whereas each individualT -cycle gives rise to a trace of matrices, it is only the combi-
nation ofall U -cycles together that determines the coefficientVc1,...,ck . The evaluation of a
diagram would be more efficient, if we could attribute a weight to anindividual U-cycle.
We introduced the cumulant expansion of the coefficientsV in the coefficientsW for this
purpose. The leading termVc1,...,ck = ∏k

p=1 Wcp of the cumulant expansion attributes a
weight Wcp to each individualU -cycle of lengthcp. This is sufficient for the calculation

of the large-N limit of the average〈 f 〉. The next term
∑k

i< j Wci ,cj

∏k
p6=i, j Wcp attributes

a weightWci ,cj to the pair(i, j ) of U -cycles, and the weightWcp to all others individually.
This is sufficient for the variance off . The general rule is that thej th order cumulant
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of f in the large-N limit requires the j th order term in the cumulant expansion of the
coefficientsV , and hence requires consideration of groups ofj U -cycles.

Let us summarize the diagrammatic rules:

1. Draw the diagrams according to the substitution rules of Fig. 6-1.

2. Draw thin lines to pair black dots attached toU to black dots attached toU∗. Do the
same for the white dots.

3. Every closed circuit of alternating thick solid lines and thin solid lines (aT -cycle)
corresponds to a trace of the matricesA appearing in the circuit. If a thick line is
traversed opposite to its direction, the transpose of the matrix appears in the trace.

4. Every closed circuit of alternating dotted and thin solid lines (aU -cycle) corresponds
to a cycle of lengthck equal to half the number of dotted lines. The set ofU -cycles
in a diagram defines the coefficientVc1,...,ck , which is the weight of the diagram. The
coefficientV can be factorized into cumulants. To determine the cumulant coeffi-
cientsW, partition theU -cycles into groups. Every group ofp U-cycles of lengths
c1, . . . ,cp contributes a weightWc1,...,cp.

The diagrammatic rules are exact. In the large-N limit, we may reduce the number
of diagrams and partitions that is involved. Let us determine the order inN of a diagram
with l T -cycles andk U-cycles of total lengthn partitioned intog groups. Counting every
trace as an orderN and using the large-N result (6.1.8) for the coefficientsW, we find a
contribution of orderN2g+l−k−2n. Sinceg ≤ k the order is maximal ifg = k and the
total number of cyclesk + l is maximal. Thus, for largeN, we may restrict ourselves to
diagrams with as many cycles as possible and with a partition of theU -cycles in groups of
a single cycle (i.e. we may approximateVc1,...,ck ≈ Wc1 . . .Wck).

We conclude this section with one more example, which is the calculation of the vari-
ance varf = 〈 f 2〉 − 〈 f 〉2 of the function f (U) = tr AU BU†. Diagrammatically, we
calculate〈 f 2〉 as in Fig. 6-4a, resulting in

〈 f 2〉 = V1,1

[
(tr A)2 (tr B)2 + tr A2 tr B2

]
+ W2

[
tr A2(tr B)2 + (tr A)2 tr B2

]
,

H⇒ var f = W1,1

[
(tr A)2 (tr B)2 + tr A2 tr B2

]
+ W2

1 tr A2 tr B2

+ W2

[
tr A2(tr B)2 + (tr A)2 tr B2

]
.

If we now consider the order inN of the various contributions, we see that the leading
O(N2) term of 〈 f 2〉 (l = 4, g = k = 2, corresponding to 6 cycles and a partition of
theU -cycles into two groups of a single cycle), is exactly canceled by〈 f 〉2. This exact
cancelation is possible because the leading contribution of〈 f 2〉 is disconnected: EachT-
cycle, and each group ofU -cycles belongs entirely to one of the two factors trAU BU† of
f 2. Only connected diagrams contribute to the variance off . The connected diagrams are
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Figure 6-4. Diagrammatic representation of 〈 f 2〉.

of order 1 (k + l = 4 andg = k or k + l = 6 andg = k − 1). They give the variance

var f = W1,1(tr A)2 (tr B)2 + W2
1 tr A2 tr B2

+ W2

[
tr A2 (tr B)2 + (tr A)2 tr B2

]
+O(N−1). (6.2.3)

6.3 Integration of unitary symmetric matrices

In the presence of time-reversal symmetry the scattering matrixS is both unitary and sym-
metric: SS† = 1, S = ST. The elements ofS are complex numbers. (The case of a
quaternionS, corresponding to spin-orbit scattering, is treated in the next section.) The
ensemble of uniformly distributed unitary symmetric matrices is known as the circular or-
thogonal ensemble (COE) [7, 30]. Averages of the unitary symmetric matrixU over the
COE can be computed in two ways. One way is to substituteU = V VT, with the matrix
V uniformly distributed over the unitary group. This has the advantage that one can use
the same formulas as for averages over the CUE, but the disadvantage that the number of
unitary matrices is doubled. A more efficient way is to use specific formulas for the COE,
as we now discuss.

The average of a polynomial inU andU∗ over the COE has the general structure

〈Ua1a2
. . .Ua2n−1a2n

U∗
α1α2

. . .U∗
α2m−1α2m

〉 = δnm

∑
P

VP

2n∏
j =1

δajαP( j ). (6.3.1)

The summation is over permutationsP of the numbers 1, . . . , 2n. We can decomposeP as

P =

 n∏

j =1

Tj


 PePo


 n∏

j =1

T ′
j


 , (6.3.2)

whereTj andT ′
j permute the numbers 2j − 1 and 2j , andPe (Po) permutesn even (odd)

numbers. BecauseUab = Uba, the moment coefficientVP depends only on the cycle
structure{c1, . . . , ck} of P−1

e Po [31], so that we may writeVc1,...,ck instead ofVP.
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The moment coefficients obey the recursion relation

(N + c1)Vc1,...,ck +
∑

p+q=c1

Vp,q,c2,...,ck + 2
k∑

j =2

cj Vc1+cj ,c2,...,cj −1,cj +1,...,ck

= δc11Vc2,...,ck,

with V0 ≡ 1. The large-N expansion ofV is

Vc1,...,ck =
k∏

j =1

Vcj + O(Nk−2n−2), (6.3.3)

Vc = 1

c
N1−2c(−1)c−1

(
2c − 2

c − 1

)
− N−2c(−4)c−1 + O(N−1−2c). (6.3.4)

Compared with Eq. (6.1.5) an extra term of orderN−2c appears inVc because of the sym-
metry restriction. The recursion relation for the cumulant coefficientsW is

(N + c1)Wc1,...,ck +
∑

p+q=c1

Wp,q,c2,...,ck + 2
k∑

j =2

cj Wc1+cj ,c2,...,cj −1,cj +1,...,ck+

+
∑

p+q=c1

k∑
l=1

1

(l − 1)!(k − l )!
∑

P

Wp,cP(2),...,cP(l)Wq,cP(l+1),cP(k) = 0,

with W0 ≡ 1 andP a permutation of the numbers 2, . . . , k. The solution for largeN is

Wc1,...,ck = 22k−1N−2n−k+2(−1)n+k (2n + k − 3)!
(2n)!

k∏
j =1

(2cj − 1)!
(cj − 1)!2 + O(N−2n−k+1).

(6.3.5)
The coefficientsVc1,...,ck andWc1,...,ck are listed in App. A forn = c1 + . . .+ ck ≤ 5.

For the diagrammatic representation, we again use the substitution rules of Fig. 6-1.
The symmetry ofU is taken into account by allowing thin lines between black and white
dots. Therefore, rule 2 is replaced by

2. Pair the dots attached toU to the dots attached toU∗ by connecting them with thin
lines.

As examples, we compute the averages off (U) = tr AU BU† and g(U) =
tr AU BUCU†DU† over the COE. The diagrams for〈 f (U)〉 are shown in Fig. 6-5, with
the result

〈 f (U)〉 = V1(tr A tr B + tr ATB) = (N + 1)−1(tr A tr B + tr ATB). (6.3.6)
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Figure 6-5. Diagrammatic representation of 〈 f (U)〉 for f (U) = tr AU BU†, where U is a unitary

symmetric matrix. The second term arises because of the symmetry constraint.

Similarly, we find that

〈g(U)〉 = [(N + 1)(N + 3)]−1

× (tr A tr B D tr C + tr ADTBT tr C + tr A tr BCTD + tr ADTC BT

+ tr ADC B + tr ACT DTB + tr ADBTCT + tr ACT tr B DT)

− [(N(N + 1)(N + 3)]−1

× (tr A tr B DC + tr ACTDT BT + tr A tr B DTC + tr ACT DBT

+ tr ADB tr C + tr ADTB tr C + tr ADBCT + tr ADTBCT

+ tr ADTBTCT + tr ACT tr B D + tr ADTC B + tr ACT DB

+ tr A tr BCTDT + tr ADC BT + tr A tr B DT tr C + tr ADBT tr C).

6.4 Integration of matrices of quaternions

We extend the results of the previous sections for integrals over unitary matrices of complex
numbers to integrals over unitary matrices of quaternions. This is relevant to the case that
spin-rotation symmetry is broken by spin-orbit scattering.

Let us first recall the definition and basic properties of quaternions [30]. A quaternion
q is represented by a 2× 2 matrix,

q = a011 + ia1σ1 + ia2σ2 + ia3σ3, (6.4.1)

where11 is the 2× 2 unit matrix andσi is a Pauli matrix,

σ1 =
(

0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (6.4.2)

The coefficientsaj are complex numbers. The complex conjugateq∗ and Hermitian con-
jugateq† of a quaternionq are defined as

q∗ = a∗
011 + ia∗

1σ1 + ia∗
2σ2 + ia∗

3σ3, q† = a∗
011 − ia∗

1σ1 − ia∗
2σ2 − ia∗

3σ3. (6.4.3)

The complex conjugate of a quaternion differs from the complex conjugate of a 2× 2
matrix, whereas the Hermitian conjugate equals the Hermitian conjugate of a 2× 2 matrix.
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Let Q be anN × N matrix of quaternions with elementsQkl = Q(0)
kl 11 + i Q(1)

kl σ1 +
i Q(2)

kl σ2+ i Q(3)
kl σ3. The complex conjugateQ∗ and Hermitian conjugateQ† are defined by

(Q∗)kl = Q∗
kl and(Q†)kl = Q†

lk . The dual matrixQR is defined byQR = (Q†)∗ = (Q∗)†.
We call Q unitary if QQ† = 1 and self-dual ifQ = QR. A unitary self-dual matrix is
defined byQQ† = QQ∗ = 1. The trace trQ is defined by trQ = ∑

j Q(0)
j j , which equals

1/2 the trace of the 2N × 2N complex matrix corresponding toQ. The scattering matrix
in zero magnetic field is a unitary self-dual matrix, because of time-reversal symmetry.
The ensemble of quaternion matrices which is uniformly distributed over the unitary group
is called the circular unitary ensemble (CUE). If the ensemble is restricted to self-dual
matrices it is called the circular symplectic ensemble (CSE) [7,30].

The integration of a polynomial functionf (U) of an N × N quaternion matrixU over
the CUE or CSE can be related to the integration of a functionf̂ (U) of anN × N complex
matrixU over the CUE or COE. The translation rule is as follows (a similar rule has been
formulated for Gaussian ensembles in Refs. [32,33]):

1. f̂ (U) is constructed fromf (U) by replacing, respectively, the complex conjugates,
Hermitian conjugates, and duals of quaternion matrices by complex conjugates, Her-
mitian conjugates, and transposes of complex matrices. Furthermore, every trace is
replaced by−1

2tr , and numerical factorsN are replaced by−1
2 N.

2. The average〈 f̂ (U)〉 is calculated using the rules for integration ofN × N complex
matrices over the CUE or COE.

3. The average〈 f (U)〉 over the CUE or CSE is found by replacing, respectively, the
complex conjugates, Hermitian conjugates, and transposes of complex matrices by
the complex conjugates, Hermitian conjugates, and duals of quaternion matrices.
Traces are replaced by−2 tr and numerical factorsN by −2N.

As examples, we compute the averages of the functionsf (U) = tr AU BU† and
g(U) = trAU BUCU†DU† of N × N quaternion matrices over the CUE and CSE. The
first step is to construct the functionŝf (U) andĝ(U) of N × N complex matrices,

f̂ (U) = −1
2 trAU BU†, ĝ(U) = −1

2 trAU BUCU†DU†. (6.4.4)

The second step is to averagêf and ĝ over the CUE. The result is in Eqs. (6.2.1) and
(6.2.2),

〈 f̂ 〉CUE = −1
2 N−1tr A tr B, (6.4.5)

〈ĝ〉CUE = −1
2(N

2 − 1)−1 (tr A tr B D tr C + tr ADC B)

+ 1
2[N(N2 − 1)]−1 (tr A tr B DC + tr ADB tr C) . (6.4.6)

The third step is to translate back to quaternion matrices,

〈 f 〉CUE = N−1tr A tr B, (6.4.7)

〈g〉CUE = (4N2 − 1)−1 (4 tr A tr B D tr C + tr ADC B)

− [N(4N2 − 1)]−1 (tr A tr B DC + tr ADB tr C) . (6.4.8)
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Figure 6-6. Chaotic cavity (grey) connected to two leads containing tunnel barriers (black).

Similarly, to compute the average off andg over the CSE we need the average off̂ and
ĝ over the COE given by Eq. (6.3.6), and then translate back to quaternion matrices. For
〈 f (U)〉 we find

〈 f̂ 〉COE = −1
2(N + 1)−1(tr A tr B + tr AT B),

H⇒ 〈 f 〉CSE = (2N − 1)−1(2 tr A tr B − tr ARB). (6.4.9)

Similarly, we find for〈g(U)〉 the final result

〈g〉CSE = [(2N − 1)(2N − 3)]−1

× (4 tr A tr B D tr C − 2 tr ADRBR tr C − 2 tr A tr BCRD + tr ADRC BR

+ tr ADC B + tr ACRDRB + tr ADBRCR − 2 tr ACR tr B DR)

− [(2N(2N − 1)(2N − 3)]−1

× (2 tr A tr B DC − tr ACRDRBR + 2 tr A tr B DRC − tr ACRDBR

+ 2 tr ADB tr C + 2 tr ADRB tr C − tr ADBCR − tr ADRBCR

+ 2 tr A tr BCRDR − tr ADC BR − 4 tr A tr B DR tr C + 2 tr ADBR tr C

− tr ADRBRCR + 2 tr ACR tr B D − tr ADRC B − tr ACRDB).

6.5 Application to a chaotic cavity

We consider the system shown in Fig. 6-6, consisting of a chaotic cavity attached to two
leads, containing tunnel barriers. TheM × M scattering matrixS is decomposed into
Ni × Nj submatricessi j ,

S =
(

s11 s12

s21 s22

)
, (6.5.1)

which describe scattering from leadj into leadi (M = Ni + Nj ). The conductanceG is
given by the Landauer formula,

G/G0 = tr s12s
†
12 = tr C1SC2S†, G0 = 2e2/h. (6.5.2)

The projection matricesC1 andC2 = 1 − C1 are defined by(C1)i j = 1 if i = j ≤ N1 and
0 otherwise.
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In the absence of tunnel barriers in the leads,S is distributed according to the circular
ensemble. The symmetry indexβ ∈ {1, 2, 4} distinguishes the COE (β = 1), CUE (β =
2), and CSE (β = 4). Calculation of the average and variance ofG is straightforward [5,6],

〈G/G0〉 = βN1N2

βM + 2 − β
, (6.5.3)

varG/G0 = 2βN1N2(βN1 + 2 − β)(βN2 + 2 − β)

(βM + 2 − 2β)(βM + 2 − β)2(βM + 4 − β)
. (6.5.4)

In Sec. 2.2, we have shown that in the presence of a tunnel barrier in leadi with reflec-
tion matrixri , the distribution ofS is given by the Poisson kernel [34–36],

P(S) ∝ ∣∣det(1 − S̄†S)
∣∣−(βM+2−β)

, S̄ =
(

r1 0

0 r2

)
. (6.5.5)

The sub-unitary matrix̄S is the ensemble average ofS:
∫

dSP(S)S = S̄. The eigenvalues
0j of 1 − S̄S̄† are the transmission eigenvalues of the tunnel barriers. The fluctuating part
δS ≡ S− S̄of Scan be decomposed as

δS = T ′(1 − U R′)−1UT, (6.5.6)

whereT , T ′, andR′ areM × M matrices such that the 2M × 2M matrix

6 =
(

S̄ T′

T R′

)
(6.5.7)

is unitary. The usefulness of the decomposition (6.5.6) is thatU is distributed according
the circular ensemble (cf. Sec. 2.2) [20,34]. In the presence of time-reversal symmetry, we
further haveS̄ = S̄T, T ′ = TT, R′ = R′T, andU = UT. Physically,U corresponds to the
scattering matrix of the cavity without the tunnel barriers in the leads and6 corresponds
to the scattering matrix of the tunnel barriers in the absence of the cavity, cf. Ch. 2.

The decomposition (6.5.6) reduces the problem of averagingSwith the Poisson kernel
to integratingU over the unitary group. Because the conductanceG is a rational function
of U , this average can not be done in closed form for allM. For N1, N2 � 1 a pertur-
bative calculation is possible. In this section we will compute the mean and variance of
the conductance in the large-N limit, using the diagrammatic technique of the previous
sections.

6.5.1 Average conductance

According to the Landauer formula (6.5.2) the average conductance is given by

〈G/G0〉 = 〈tr C1δSC2δS
†〉, (6.5.8)
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Figure 6-7. Top: Diagrammatic representation of the function fn(U) in Eq. (6.5.9); Bottom: Lad-

der diagram with the largest number of cycles, which gives the O(N) contribution to the average

conductance. The arrows are omitted if the direction of the diagram is not ambiguous.

where we have used that〈δS〉 = 0. Expansion of the denominator in the decomposition
(6.5.6) ofδSyields the series

〈G/G0〉 =
∞∑

n=1

〈 fn(U)〉, (6.5.9)

fn(U) = tr C1T ′(U R′)n−1UT C2T†U†(R′†U†)n−1T ′†. (6.5.10)

The average of the polynomial functionfn(U) can be calculated diagrammatically. We
representfn(U) by the top diagram in Fig. 6-7. The average over the matrixU is done as
follows.

The leading contribution, which is of orderM, comes from the diagrams with the
largest number ofT - and U -cycles. For a polynomial of the type (6.5.8) (allU ’s are
on one side of theU†’s), these diagrams have a “ladder” structure (see bottom diagram in
Fig. 6-7). The ladder diagrams containn U-cycles andn + 1 T -cycles. Their weight is
Wn

1 = M−n +O(M−n−1), resulting in

〈 fn(U)〉 = M−n tr T ′†C1T ′ (tr R′ R′†)n−1 tr T C2T† + O(1). (6.5.11)

Summation of the series (6.5.9) yields〈G〉 to leading order inM,

〈G/G0〉 = (tr T ′†C1T ′)(tr T C2T†)

M − tr R′R′† + O(1)

= (N1 − tr S̄†C1S̄)(N2 − tr S̄C2S̄†)

M − tr S̄S̄†
+ O(1). (6.5.12)

In the second equality we have used the unitarity of the matrix6 defined in Eq. (6.5.7).
The weak-localization correction is theO(1) contribution to〈G〉. In general, anO(1)

contribution to the average conductance can have two sources: (i) a higher order contribu-
tion to the weightWc1,...,ck of the leading-order diagrams, and (ii) higher order diagrams.
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Figure 6-8. Top and middle: Two maximally crossed diagrams contributing to the weak-localization

correction to the average conductance. The right and left parts of the diagram have a ladder

structure; Bottom: The maximally crossed part of the top diagram redrawn as a ladder diagram.

In the absence of time-reversal symmetry both contributions are absent: (i)W1 = M−1 has
noO(M−2) term, and (ii) there are no diagrams of order 1.

The situation is different in the presence of time-reversal symmetry. We discuss the
caseβ = 1 in which there is no spin-orbit scattering. The caseβ = 4 then follows from
the translation rule of Sec. 6.4. In the presence of time-reversal symmetry, (i) the coefficient
W1 = M−1 − M−2 + . . . has anO(M−2) term, and (ii) there are diagrams of order 1. The
first contribution is a correctionnM−n−1 to the weightM−n in Eq. (6.5.11). Summation
overn yields the first correction to Eq. (6.5.12),

δG1 = −(tr T ′†C1T ′)(tr T C2T†)

(M − tr R′R′†)2
. (6.5.13)

The second contribution is from diagrams which are obtained from the ladder diagrams
by reversing the order of the contractions in a part of the diagram. The central part of the
diagram is “maximally crossed”, the left and right ends are ladders (see Fig. 6-8). In disor-
dered systems, the ladder diagrams are known as diffusons, while the maximally crossed
diagrams are known as cooperons. The maximally crossed diagrams are not allowed in
the absence of time-reversal symmetry, because dots of different color are connected by
thin lines (violating rule 2 in Sec. 6.2). A maximally crossed diagram can be redrawn as a
ladder diagram by flipping one of the horizontal lines along a vertical axis (bottom diagram
in Fig. 6-8).

In the maximally crossed diagrams all cycles but one have minimum length. The cycle
with the exceptional length can be aU -cycle (top diagram in Fig. 6-8), or aT -cycle (middle
diagram). To evaluate these diagrams, we need to introduce some more notation (see Fig.
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Figure 6-9. Diagrammatic representation of Eqs. (6.5.14) and (6.5.16).

6-9). We denote the left and right ladder diagrams by matricesFL andFR,

FL = T ′†C1T ′ +
∞∑

n=1

M−n(tr T ′†C1T ′)(tr R′†R′)n−1R′†R′

= T ′†C1T ′ +
(

tr T ′†C1T ′

M − tr R′R′†

)
R′†R′, (6.5.14)

FR = T C2T† +
∞∑

n=1

M−nR′R′†(tr R′R′†)n−1(tr T C2T†)

= T C2T† + R′R′†
(

tr T C2T†

M − tr R′R′†

)
. (6.5.15)

The scalarsfUU and fT T represent the maximally crossed part of the diagram,

fT T =
∞∑

n=0

M−n(tr R′R′†)n+1 = M tr RR′†

M − tr R′R′† , (6.5.16)

fUU =
∞∑

n=0

M−n−1(tr R′R′†)n = 1

M − tr R′R′† . (6.5.17)

We used the symmetry ofR′ to replaceR′T by R′. With this notation we may draw the
contributionδG2 to the weak-localization correction from the maximally crossed diagrams
as in Fig. 6-10. It evaluates to

δG2 = −M−3 tr FL fT T tr FR + tr FL fUU FT
R . (6.5.18)
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Figure 6-10. Diagrammatic representation of the weak-localization correction δG2 from the maxi-

mally crossed diagrams. The total correction δG = δG1+δG2 contains also a contribution δG1 from

the weight factors [Eq. (6.5.13)]

The total weak-localization correctionδG = δG1 + δG2 becomes

δG = −(tr T†T)−3
[
(tr C2T†T)2 tr C1(T

†T)2 + (tr C1T†T)2 tr C2(T
†T)2

]
. (6.5.19)

SinceT†T = 1 − S̄†S̄ has eigenvalues0n, we may write the final result for the average
conductance in the form

〈G/G0〉 = g1g′
1

g1 + g′
1

+
(

1 − 2

β

)
g2g′2

1 + g′
2g2

1

(g1 + g′
1)

3
+ O(M−1), (6.5.20)

gp =
N1∑

n=1

0 p
n , g′

p =
M∑

n=1+N1

0 p
n . (6.5.21)

(The β = 4 result follows from the translation rule of Sec. 6.4.) The first term in Eq.
(6.5.20) is the series conductance of the two tunnel conductancesG0g1 andG0g′

1. The
term proportional to 1− 2/β is the weak-localization correction. In the absence of tunnel
barriers one hasgp = N1, g′

p = N2, and the large-M limit of Eq. (6.5.3) is recovered.
In the case of two identical tunnel barriers (N1 = N2 = M/2 ≡ N, 0n = 0n+N for
j = 1, . . . , N), Eq. (6.5.20) simplifies to

〈G/G0〉 = 1

2
g1 +

(
1 − 2

β

)
g2

4g1
+O(M−1). (6.5.22)

Eq. (6.5.22) was previously obtained by Iida, Weidenm¨uller and Zuk [15]. If all0n’s are
equal to0, Eq. (6.5.22) simplifies further to〈G/G0〉 = 1

2 N0 + 1
4(1 − 2/β)0.

6.5.2 Conductance fluctuations

We seek the effect of tunnel barriers on the variance of the conductance, varG = 〈G2〉 −
〈G〉2. We considerβ = 1 and 2 first, and translate toβ = 4 in the end. Using the
decomposition (6.5.6) we write the variance in the form

varG/G0 = var(tr C1δSC2δS
†) =

∑
k,l ,m,n≥1

covar( fkl , fmn), (6.5.23)

fkl = tr C1T ′(U R′)k−1UT C2T†U†(R′†U†)l−1T ′†. (6.5.24)
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Figure 6-11. Diagrammatic representation of a term contributing to G2, and hence to the variance

(6.5.23) of the conductance.

Since the numberU ’s andU∗’s must be equal for a non-zero average, covar( fkl , fmn) ≡
〈 fkl fmn〉−〈 fkl〉〈 fmn〉 = 0 unlessk+m = l +n. Diagrammatically, we representfkl fmn by
Fig. 6-11. The diagram consists of an inner loop, corresponding tofkl , and an outer loop,
corresponding tofmn. The covariance offkl and fmn is given by the connected diagrams.
We call a diagram “connected” if (i) the partition of theU -cycles contains a group which
consists ofU -cycles from the inner and the outer part, or (ii) the diagram contains a cycle
(aU -cycle or aT -cycle) connecting the inner and outer loops.

We first compute the contribution from diagrams which are connected only because of
(i), i.e. diagrams in which allU -cycles andT -cycles belong either to the inner or outer
loop. The contribution from such a diagram is maximal, if theU -cycles are partitioned in
groups which are as small as possible. The optimal partition consists of groups of size 1,
except for a single group of size 2, which contains oneU -cycle from the inner and one
from the outer loop. Furthermore, the total number of cycles is maximal if both the inner
and outer loops are ladder diagrams. This requiresk = l andm = n. The covariance from
this diagram is

covariance = kmδklδmnW1,1Wk+m−2
1

× (tr T ′†C1T ′)2 (tr R′ R′†)k+m−2(tr T C2T†)2 + O(M−1). (6.5.25)

Summing overk andm we obtain the first contribution to varG/G0,

variance= M−4 (tr FL tr FR)
2. (6.5.26)

The second contribution, consisting of diagrams in which the inner and outer loops are
connected byT - or U -cycles, is of maximal order if the partition of theU -cycles involves
only groups of size 1. Forβ = 2 there are 16 connected diagrams of maximal order. They
are shown in Fig. 6-12, and their contribution to varG/G0 is tabulated in Table 6-1. The
shaded areas indicate ladder parts of the diagram (see Figs. 6-9 and 6-13). The matrices
FL and FR, and the scalarsfUU and fT T are defined in Eqs. (6.5.14) and (6.5.16). The
definitions of the matrixH and of the scalarsfUT and fT U are

fUT = fT U =
∞∑

n=1

M−n(tr R′R′†)n = tr R′R′†

M − tr R′R′† , (6.5.27)
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diagram β = 1, 2 β = 1

a W2
2 (tr FL)

2 f 2
T T (tr FR)

2 W2
2 tr FR tr RL f 2

T T tr FL tr FR

b W3 (tr FL)
2 fT T (tr FR)

2 W3 tr FR trFL fT T tr FL tr FR

c W2 (tr FL)
2 f 2

T U tr F2
R W2 tr FR tr FL f 2

T U tr FT
L FR

d tr H H† fUU tr HT H† fUU

e W2 tr F2
L f 2

UT (tr FR)
2 W2 tr FT

R FL f 2
UT tr FL tr FR

f W3 (tr FL)
2 fT T (tr FR)

2 W3 tr FR trFL fT T tr FL tr FR

g tr F2
L f 2

UU tr F2
R tr FT

R FL f 2
UU tr FT

L FR

h tr H†H fUU tr H∗H fUU

i W2
2 tr FL tr FR f 2

T T tr FL tr FR W2
2 tr FR tr FL f 2

T T tr FL tr FR

j W2
2 tr FL tr FR f 2

T T tr FL tr FR W2
2 tr FL tr FR f 2

T T tr FR tr FL

k W2 tr H R′† fT U fUT tr FL tr FR W2 tr HT R′† fT U fUT tr FL tr FR

l W2 tr FL tr FR fT U fUT tr H†R′ W2 tr FL tr FR fT U fUT tr H∗R′

m W2 tr FL tr FR fT U fUT tr R′H† W2 tr FR tr FL fT U fUT tr R′T H†

n W2 tr R′†H fT U fUT tr FL tr FR W2 tr R′∗H fT U fUT tr FL tr FR

o tr H R′† f 2
UU tr R′H† tr HT R′† f 2

UU tr R′T H†

p tr R′†H f 2
UU tr H†R′ tr R′∗H f 2

UU tr H∗R′

Table 6-1. Contribution to var G/G0 from the connected diagrams of Fig. 6-12.
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Figure 6-12. The 16 connected diagrams which contribute to the variance of the conductance.

The shaded parts are defined in Figs. 6-9 and 6-13. These diagrams contribute for β = 1 and 2.

For β = 1 there are 16 more diagrams, obtained by flipping the inner loop around a vertical axis

(diagram a–h) or around a horizontal axis (i–p), so that ladders become maximally crossed.
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H = M−1(tr FR)R
′T ′†C1T ′ + M−1(tr FL)T C2T†R′ + M−2(tr FL)(tr FR)R

′R′†R′.

In the presence of time-reversal symmetry (β = 1), the matrixU is symmetric. Diagram-
matically, this means that no distinction is made between black and white dots. In addition
to the 16 diffuson-like diagrams of Fig. 6-12, 16 more cooperon-like diagrams contribute.
These are obtained from the diagrams of Fig. 6-12 by flipping the inner loop around a
vertical (Fig. 6-12a–h) or horizontal (Fig. 6-12i–p) axis, so that segments with a ladder
structure become maximally crossed. Their contributions are listed in Table 6-1. The con-
tributions from the individual diffuson-like and cooperon-like diagrams are different. The
total contribution to varG from diffuson-like and cooperon-like diagrams is the same.

The final result for the variance ofG is

varG/G0 = 2β−1
(

g1 + g′
1

)−6 (
2g4

1g′2
1 + 4g3

1g′3
1 − 4g2

1g2g′3
1 + 2g2

1g′4
1 − 2g1g2g′4

1

+ 3g2
2g′4

1 − 2g1g3g′4
1 + 2g2g′5

1 − 2g3g′5
1 + 2g5

1g′
2 − 2g4

1g′
1g′

2

− 4g3
1g′2

1 g′
2 + 6g2

1g2g′2
1 g′

2 + 3g4
1g′2

2 − 2g5
1g′

3 − 2g4
1g′

1g′
3

)
. (6.5.28)

One verifies that the large-N limit of Eq. (6.5.4) is recovered in the absence of tunnel
barriers. For the special case of identical tunnel barriers (gp = g′

p), this simplifies to

varG/G0 = (8β g2
1)

−1
(
2g2

1 − 2g1g2 + 3g2
2 − 2g1g3

)
, (6.5.29)

in agreement with Ref. [15]. If all transmission eigenvalues0n ≡ 0 are equal, one has
varG/G0 = (8β)−1[1 + (1 − 0)2]. A high tunnel barrier (0 � 1) thus doubles the
variance.
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6.5.3 Density of transmission eigenvalues

The transmission eigenvaluesTn ∈ [0, 1] are theN1 eigenvalues of the matrix product
s12s

†
12. Without loss of generality we may assume thatN1 ≤ N2. The matrix product

s21s
†
21 then has the sameN1 eigenvalues ass12s

†
12, plusN2 − N1 eigenvalues equal to zero.

TheN1 non-zero transmission eigenvalues appear as the diagonal elements of the diagonal
matrix T in the polar decomposition of the scattering matrix

S =
(

s11 s12

s21 s22

)
=
(
v 0

0 w

)
√

1 − T 0 i
√

T

0 11 0

i
√

T 0
√

1 − T



(
v′ 0

0 w′

)
. (6.5.30)

Herev andv′ (w andw′) areN1 × N1 (N2 × N2) unitary matrices and11 is theN2 − N1

dimensional unit matrix. IfN1 = N2, Eq. (6.5.30) simplifies to Eq. (6.0.2).
Sofar we have only studied the conductanceG = G0

∑
n Tn. The leading contribution

to the average conductance comes from ladder diagrams. If we wish to average trans-
port properties of the formA = ∑

n a(Tn) (so-called linear statistics on the transmission
eigenvalues), we need to know the densityρ(T) of the transmission eigenvaluesTn. The
leading-order contribution to the transmission-eigenvalue density is given by a larger class
of diagrams, as we now discuss.

The densityρ(T) = 〈∑N1
n=1 δ(T − Tn)〉 of the transmission eigenvalues follows from

the matrix Green functionF(z):

F(z) =
〈
C1(z− SC2S†C1)

−1
〉
, (6.5.31)

ρ(T) = −π−1Im tr F(T + i ε), (6.5.32)

whereε is a positive infinitesimal. We first computeρ(T) in the absence of tunnel barriers,
when the result is known from other methods [4–6,37]. Then we include the tunnel barriers,
when the result is not known.

In the absence of tunnel barriers, the scattering matrixS is distributed according to the
circular ensemble, so that averaging amounts to integrating over the unitary group. We
computeF(z) as an expansion in powers of 1/z,

F(z) =
∞∑

n=0

〈C1z−1(SC2S†C1z−1)n〉. (6.5.33)

We will also need the Green function

F ′(z) = 〈C2(z − S†C1SC2)
−1〉 =

∞∑
n=0

〈C2z−1(S†C1SC2z−1)n〉. (6.5.34)

The two Green functionsF and F ′ are represented diagrammatically in Fig. 6-14. A di-
agram contributes to leading order [which isO(1)] if the number ofT -andU -cycles is
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Figure 6-14. Diagrammatic representation of the Green functions for the density of transmission

eigenvalues.

maximal. That is the case if the diagram isplanar, meaning that the thin lines do not
cross. The ladder diagrams are a subset of the planar diagrams. Planar diagrams have been
studied in the context of the diagrammatic evaluation of integrals over Hermitian matrices,
in particular for the Gaussian ensemble [12, 17]. For the Gaussian ensemble, only planar
diagrams withU -cycles of unit length have to be taken into account. Summation over all
these diagrams results in a self-consistency or Dyson equation forF(z), which solves the
problem [17]. For an integral of unitary matrices,U -cycles of arbitrary length need to be
taken into account, as is shown diagrammatically in Fig. 6-15. The corresponding Dyson
equation is

F(z) = z−1C1 + z−1C16(z)F(z), 6(z) =
∞∑

n=1

Wn
[
z tr F ′(z)

]n [tr F(z)]n−1,(6.5.35)

F ′(z) = z−1C2 + z−1C26
′(z)F ′(z), 6′(z) =

∞∑
n=1

Wn[z tr F(z)]n[tr F ′(z)]n−1. (6.5.36)

In terms of the generating function

h(z) =
∞∑

n=1

Wnzn−1 = 1

2z

(√
M2 + 4z− M

)
, (6.5.37)

we may rewrite Eq. (6.5.35) as

F(z) = C1(z −6(z)C1)
−1, 6(z) = h

(
z tr F(z) tr F ′(z)

)
z tr F ′(z), (6.5.38)

F ′(z) = C2(z −6(z)C2)
−1, 6′(z) = h

(
z tr F(z) tr F ′(z)

)
z tr F(z). (6.5.39)
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Figure 6-15. Diagrammatic representation of the Dyson equation (6.5.35) for F(z).

In the derivation of Eq. (6.5.38) we did not use the particular form of the matricesC1

andC2. As a check we may chooseC1 = C2 = 1, so thatF(z) = F ′(z) = (z− 1)−1, and
verify that Eq. (6.5.38) holds.

The solution of Eq. (6.5.38) is

tr F(z) = N1 − N2

2z
+
√

M2z− (N1 − N2)2

2z
√

z− 1
, (6.5.40)

tr F ′(z) = N2 − N1

2z
+
√

M2z− (N2 − N1)2

2z
√

z− 1
. (6.5.41)

The resulting density of transmission eigenvalues is

ρ(T) = M
√

T − Tmin

2πT
√

1 − T
θ(T − Tmin), Tmin = (N1 − N2)

2

M2
, (6.5.42)

in agreement with Refs. [5,6,37]. (The functionθ(x) = 1 if x > 0 and 0 ifx < 0.)
The weak-localization correction toρ(T) follows from theO(M−1) term in the large-

M expansion ofF(z). As in Sec. 6.5.1, it has two contributions:δF1(z), which is due to
the sub-leading order term in the large-M expansion ofWn, andδF2(z), which is due to
diagrams of orderO(M−1). In the absence of time-reversal symmetry, both contributions
are absent. In the presence of time-reversal symmetry, the sub-leading order termδWn =
−M−2n(−4)n−1 in the large-M expansion ofWn [cf. Eq. (6.3.3)] yields a sub-leading order
contributionδh to the generating functionh,

δh(z) =
∞∑

n=1

δWnzn−1 = −(M2 + 4z)−1, (6.5.43)

from which we obtain

tr δF1(z) = 1
4(z− Tmin)

−1 − 1
4(z− 1)−1. (6.5.44)
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The contributionδF2(z) comes from diagrams in which thin lines connect black and white
dots. Each such diagram contains the productC1C2, which vanishes. Hence, theO(M−1)

contribution toF(z) consists ofδF1(z) only. The resulting weak-localization correction to
the transmission eigenvalue density is

δρ(T) = 2 − β

4β
[δ(T − Tmin − ε)− δ(T − 1 + ε)] , (6.5.45)

in agreement with Refs. [4,6].
We now include tunnel barriers in the leads. Motivated by Nazarov’s calculation of the

density of transmission eigenvalues in a disordered metal [38], we introduce the 2M × 2M
matrices

S =
(

S 0

0 S†

)
, C =

(
0 C2

C1 0

)
, F(z) =

(
0 F ′(z)

F(z) 0

)
, (6.5.46)

T =
(

T 0

0 T†

)
, T ′ =

(
T ′ 0

0 T ′†

)
, R′ =

(
R′ 0

0 R′†

)
. (6.5.47)

Analogous to Eq. (6.5.6), we decomposeS = S̄+ δS, whereS̄ = 〈S〉 and

δS = T ′(1 − U R′)−1UT , U =
(

U 0

0 U†

)
(6.5.48)

is given in terms of a matrixU which is distributed according to the circular ensemble.
BecausēS, C1, andC2 commute andC1C2 = 0, we may replaceSby δS in the expression
(6.5.31) forF(z). The result for the matrix Green functionF(z) is

F(z) = (2z)−1
∑
±

〈
C ± CT′ [1 − U(R′ ± T CT′z−1/2)

]−1
UT Cz−1/2

〉

= (2z)−1
∑
±

[
C ± A±(F± − X±)B±

]
. (6.5.49)

In the second equation we abbreviatedX± = R′ ± T CT′z−1/2, F± = 〈X±(1−U X±)−1〉,
and definedA± andB± such thatA±X± = CT′, X± B± = T Cz−1/2.

After these algebraic manipulations we are ready to computeF± by expanding in planar
diagrams. The result is a Dyson equation similar to Eq. (6.5.35),

F± = X± (1 + 6±F±) , 6± =
∞∑

n=1

Wn (PF±)2n−1 , (6.5.50)

where the projection operatorP acts on a 2M × 2M matrix A as

A =
(

A11 A12

A21 A22

)
, PA =

(
0 11M tr A12

11M tr A21 0

)
, (6.5.51)
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11M being theM × M unit matrix. The presence of the projection operatorP in Eq. (6.5.50)
ensures that the planar diagrams contain only contractions betweenU (the 1, 1 block ofU)
andU† (the 2, 2 block ofU). In terms of the generating functionh we obtain the result

F = (2z)−1
∑
±

(
C ± CT′(1 − 6±X±)−16±T Cz−1/2

)
, (6.5.52)

6± =
(
PX±(1 − 6±X±)−1

)
h

((
PX±(1 − 6±X±)−1

)2
)
. (6.5.53)

It remains to solve the 2×2 matrix equation (6.5.53). We could not do this analytically
for arbitrary0j , but only for the case of two identical tunnel barriers:N1 = N2 = 1

2 M ≡
N, 0j = 0j +N ( j = 1, 2, . . . , N). The solution of Eq. (6.5.53) in that case is

6± = ±
(√

z − √
z− 1

)( 0 11M

11M 0

)
, (6.5.54)

independent of the0j ’s. The trace of the Green function is

tr F(z) =
N∑

j =1

2(1 − 0j )(
√

z − √
z− 1)+ 0j /

√
z − 1

2z(1 − 0j )(
√

z − √
z− 1)+ 0j

√
z
, (6.5.55)

and the corresponding density of transmission eigenvalues is

ρ(T) =
N∑

j =1

0j (2 − 0j )

π(02
j − 40j T + 4T)

√
T(1 − T)

. (6.5.56)

As a check, we note thatρ(T) → Nδ(T) if 0j → 0 for all j , andρ(T) → Nπ−1[T(1 −
T)]−1/2 if 0j → 1 for all j [in agreement with Eq. (6.5.42)].

6.6 Application to a Normal-metal–superconductor junc-
tion

As an altogether different application of the diagrammatic technique, we consider a junc-
tion between a normal metal (N) and a superconductor (S) (see Fig. 6-16). At temperatures
and voltages below the excitation gap∆ in S, conduction takes place via the mechanism
of Andreev reflection [39]: An electron coming from N with an energyε (relative to the
Fermi energyEF ) is reflected at the NS interface as a hole with energy−ε. The missing
charge of 2e is absorbed by the superconducting condensate. We calculate the average and
variance of the conductance, for the two cases that the NS junction consists of a disordered
wire or of a chaotic cavity.
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N S

Figure 6-16. Conductor consisting of a normal metal (grey) coupled to one normal-metal reservoir

(N) and one superconducting reservoir (S). The conductor may consist of a disordered segment or

of a quantum dot.

Starting point of the calculation is the relationship between the differential conductance
GNS(eV) = d I/dV of the NS junction and the transmission and reflection matrices of the
normal region [40],

GNS(ε) = 4e2

h
tr
(
t ′(ε)

[
1 + r ′(−ε)∗r ′(ε)

]−1
t (−ε)∗

)
×
(
t ′(ε)

[
1 + r ′(−ε)∗r ′(ε)

]−1
t (−ε)∗

)†
. (6.6.1)

This formula requireseV � ∆ � EF and zero temperature. The reflection and transmis-
sion matrices areN × N matrices, which together constitute the 2N ×2N scattering matrix
S. Using the polar decomposition (6.0.2) we may rewrite the conductance formula (6.6.1)
as

GNS(ε) = 4e2

h
tr

[
T+
(
1 + u+

√
1 − T−u∗−

√
1 − T+

)−1
u+

× T−u†
+
(
1 +

√
1 − T+uT−

√
1 − T−u†

+
)−1

]
, (6.6.2)

whereT± = T(±ε) andu± = w′(±ε)w(∓ε)∗. In the presence of spin-orbit scattering,S is
a matrix of quaternions, and the transpose should be replaced by the dual. In what follows,
we will consider the case of no spin-orbit scattering. Spin-orbit scattering (considered by
Slevin, Pichard, and Mello [41]) will be included at the end by means of the translation
rule of Sec. 6.4.

Averages are computed in two steps: first over the unitary matrixu, then over the matrix
of transmission eigenvaluesT . Four cases can be distinguished, depending on the magni-
tude of the magnetic fieldB and voltageV relative to the characteristic fieldBc for break-
ing time-reversal symmetry (T ) and characteristic voltageEc/e for breaking electron-hole
degeneracy (D):1

1In a disordered wire (lengthL, width W, mean free path̀), one hasBc = h/eLW, Ec = h̄vF`/L2. In a
chaotic cavity (areaA, mean dwell timeτ , mean time to cross the cavityτ ′) one hasBc = (h/eA)(τ ′/τ)1/2,
Ec = h̄/τ ).
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Figure 6-17. Ladder diagram for the O(N) contribution to 〈GNS〉. We defined R± = 1 − T±.

0. eV � Ec, B � Bc ⇐⇒ T andD are both present: Thenu± may be approxi-
mated by the unit matrix, so that one only needs to average over the transmission
eigenvalues. This case has been studied extensively [42] and does not concern us
here.

1. eV � Ec, B � Bc ⇐⇒ D is present, butT is broken: Then we may neglect the
ε-dependence ofS, so thatu+ = u− ≡ u. According to the isotropy assumption,u
is uniformly distributed inU(N).

2. eV � Ec, B � Bc ⇐⇒ T is present, butD is broken: Then we may consider
S(ε) andS(−ε) as independent unitary symmetric matrices. Henceu+ = u†

− ≡ u is
uniformly distributed inU(N).

3. eV � Ec, B � Bc ⇐⇒ bothT andD are broken: Thenu+ andu− are indepen-
dent, both uniformly distributed inU(N).

We compute the average and variance of the conductance for cases 1, 2, and 3.

6.6.1 Average conductance

We start with the computation of the average conductance〈GNS〉. We first perform the
average〈· · ·〉u overu± and then overT±. To leading order only ladder diagrams contribute,
see Fig. 6-17. The result is the same for cases 1, 2, and 3:

〈GNS/G0〉u = 2N
τ1+τ1−

τ1+ + τ1− − τ1+τ1−
+ O(1), (6.6.3)

τk± = 1

N
tr Tk± = 1

N

N∑
j =1

Tk
j (±ε). (6.6.4)

TheO(1) contributionδGNS is different for the three cases.
Case 1, absence ofT and presence ofD. We putu± = u, τk± = τk. For normal

metals, theO(1) contributionδG to 〈G〉 vanishes ifT is broken. However, in the NS
junction anO(1) contribution remains. The diagrams which contribute toδGNS have a
maximally crossed central part, with contractions betweenU ’s andU∗’s on the same side
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Figure 6-18. Maximally crossed diagram for the O(1) correction to 〈GNS〉 in the absence of time-

reversal symmetry and presence of electron-hole degeneracy (top). The right and left parts of the

diagram have a ladder structure. The central part may be redrawn as a ladder diagram (bottom).

of the diagram (Fig. 6-18, top). The left and right ends have a ladder structure. In the
Hamiltonian approach, a similar maximally crossed diagram has been studied by Altland
and Zirnbauer [25], who call it a “symplecton”. In total four diagrams contribute toδGNS,
see Fig. 6-19. The building blocks of the diagram have the algebraic expressions

F± = T± + (1 − T±) tr T± tr (1 − T∓)
∞∑

j =0

N−2 j −2 [tr (1 − T+) tr (1 − T−)
] j

= (τ1± + T±τ1∓ − τ1+τ1−) (τ1+ + τ1− − τ1+τ1−)−1 , (6.6.5)

F ′± = −(1 − T∓) tr T±
∞∑

j =0

N−2 j −1 [tr (1 − T+) tr (1 − T−)
] j

= − (τ1± − τ1±T∓) (τ1+ + τ1− − τ1+τ1−)−1 , (6.6.6)

H± = i N−1T±
√

1 − T± tr F∓ − i N−2(1 − T±)
√

1 − T± tr F∓ tr F ′±, (6.6.7)

fT T± = −tr (1 − T±)
∞∑

j =0

N−2 j [tr (1 − T+) tr (1 − T−)
] j

= −N(1 − τ1±) (τ1+ + τ1− − τ1+τ1−)−1 , (6.6.8)

fUU± = −tr (1 − T±)
∞∑

j =0

N−2 j −2 [tr (1 − T+) tr (1 − T−)
] j

= −N−1(1 − τ1±)
[
τ1+ + τ1− − τ1+τ1−

]−1
, (6.6.9)
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Figure 6-19. Diagrams for the O(1) correction to 〈GNS〉 in the absence of time-reversal symmetry

and presence of electron-hole degeneracy.

f ′
UU± =

∞∑
j =0

N−2 j −1 [tr (1 − T+) tr (1 − T−)
] j

= N−1 (τ1+ + τ1− − τ1+τ1−)−1 . (6.6.10)

Capital letters indicate matrices, lower-case letters indicate scalars. The subscripts± are
omitted from Fig. 6-19 because of electron-hole degeneracy. TheO(1) correctionδGNS

represented in Fig. 6-19 equals

δGNS/G0 = 8 f ′
UU tr i H

√
1 − T + 4W2 fT T[(tr F)2 + (tr F ′)2]

= −8τ1 − 4τ2
1 + 4τ3

1 − 8τ2
τ1(2 − τ1)3

. (6.6.11)

We still have to average over the transmission eigenvalues. We use that the sample-to-
sample fluctuationsτk − 〈τk〉 are an order 1/N smaller than the average. (This is a general
property of a linear statistics, i.e. of quantities of the formA = ∑

n a(Tn), see Ref. [4].)
Hence

〈 f (τk)〉 = f (〈τk〉)[1 + O(N−2)], (6.6.12)

which implies that we may replace the average of the rational functions (6.6.3) and (6.6.11)
of theτk’s by the rational functions of the average〈τk〉. This average has the 1/N expansion

〈τk〉 = 〈τk〉0 + O(N−2), (6.6.13)

where〈τk〉0 is O(N0). There is no term of orderN−1 in the absence ofT . The average
overT of Eqs. (6.6.3) and (6.6.11) becomes

〈GNS/G0〉 = 2N〈τ1〉0

2 − 〈τ1〉0
− 8〈τ1〉0 − 4〈τ1〉2

0 + 4〈τ1〉3
0 − 8〈τ2〉0

〈τ1〉0(2 − 〈τ1〉0)3
+ O(N−1). (6.6.14)
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Figure 6-20. Diagrams for the O(1) correction to 〈GNS〉 in the absence of electron-hole degeneracy

and presence of time-reversal symmetry.

Case 2, presence ofT and absence ofD. We putu+ = u†
− ≡ u. TheO(1) correction

comes from the maximally crossed diagrams of Fig. 6-20,

δGNS/G0 = 2W2 tr F+ fT T− tr F ′− + 2W2 tr F ′+ fT T+ tr F−
+ 2 tr F+ fUU−F ′T− + 2 tr F ′+ fUU+FT−. (6.6.15)

Averaging over the transmission eigenvalues amounts to replacingτk± by its average, i.e.
τk± → 〈τk〉0 + N−1δτk + O(N−2). (The average ofτk± is the same for+ε and−ε.)
BecauseT is not broken there is a term ofO(N−1) in this expression. We find for the
average conductance

〈GNS/G0〉 = 2N〈τ1〉0

2 − 〈τ1〉0
+ 4δτ1
(2 − 〈τ1〉0)2

+ 4 〈τ1〉2
0 − 4 〈τ1〉3

0 − 4 〈τ2〉0 + 4 〈τ1〉0〈τ2〉0

〈τ1〉0 (2 − 〈τ1〉0)3
+ O(N−1). (6.6.16)

Case 3, bothT andD broken. Becauseu+ and u− are independent, there are no
diagrams which contribute to order 1. The average conductance is obtained by averaging
Eq. (6.6.3) over the transmission eigenvalues,

〈GNS/G0〉 = 2N〈τ1〉0

2 − 〈τ1〉0
+ O(N−1). (6.6.17)

From the translation rule of Sec. 6.4 one deduces that in the presence of spin-orbit
scattering, the leadingO(N) term of the average conductance is unchanged, while theO(1)
correction is multiplied by−1/2, in agreement with what was found by Slevin, Pichard and
Mello [41].

The formulas given above apply to any system for which the isotropy assumption holds.
We discuss two examples:
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(a) A disordered wire (lengthL, mean free path̀, number of transverse modesN),
connected to a superconductor. We use the results [43]

〈τ1〉0 = (1 + L/`)−1, (6.6.18)

〈τ2〉0 = 2
3(1 + L/`)−1 + 1

3(1 + L/`)−4, (6.6.19)

δτ1 = −1
3(1 + `/L)−3. (6.6.20)

We assumè � L � N` and neglect terms of orderL/N` and`/L but retain terms of
order 1 andN`p/L p (p ≥ 1). Substitution of Eq. (6.6.18) into Eqs. (6.6.14), (6.6.16), and
(6.6.17) yields

〈GNS/G0〉 =




N(1 + L/`)−1 − 1 + 4/π2 (D, T ),
N(1/2 + L/`)−1 − 1/3 (D, noT ),
N(1/2 + L/`)−1 − 2/3 (noD, T ),
N(1/2 + L/`)−1 (noD, noT ).

(6.6.21)

The result in the presence of bothT andD has been taken from Refs. [44, 45]. In the
presence of spin-orbit scattering, theO(N) term is unchanged, while theO(1) term is
multiplied by−1/2.

(b) A chaotic cavity without tunnel barriers in the leads. Lead 1 (withN1 modes) is
connected to a normal metal, lead 2 (withN2 modes) to a superconductor. An asymme-
try betweenN1 and N2 appears because the dimension ofu± in the polar decomposition
(6.5.30) isN2 × N2. The N2 × N2 matrix T± contains the min(N1, N2) non-zero trans-
mission eigenvalues on the diagonal (remaining diagonal elements being zero). We denote
Ntot = N1 + N2 andNA = (N2

1 + 6N1N2 + N2
2)

1/2. The averages〈τ1〉0 and〈τ2〉0 and the
correctionδτ1 can be computed from the density of transmission eigenvalues [Eqs. (6.5.42)
and (6.5.45)]. The results are

δτ1 = −N1N2N−2
tot , 〈τ1〉0 = N1N−1

tot , 〈τ2〉0 = N1(N
2
tot − N1N2)N

−3
tot . (6.6.22)

Substitution into Eqs. (6.6.14), (6.6.16), and (6.6.17) gives

〈GNS/G0〉 =




Ntot(1 − Ntot/NA)− 8N1N2N2
tot/N4

A (D, T ),
2N1N2/(Ntot + N2)− 4N1N2Ntot/(Ntot + N2)

3 (D, noT ),
2N1N2/(Ntot + N2)− 4N2N2

tot/(Ntot + N2)
3 (noD, T ),

2N1N2/(Ntot + N2) (noD, noT ).

(6.6.23)

The leading order term in Eq. (6.6.23) has also been obtained by Argaman and Zee [29].
(The caseN1 = N2 was given in Ref. [6]).

6.6.2 Conductance fluctuations

To compute the variance of the conductance, we average in two steps:〈· · ·〉 = 〈〈· · ·〉u〉T ,
where〈· · ·〉u and 〈· · ·〉T are, respectively, the average over the unitary matricesu± and
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over the matrices of transmission eigenvaluesT±. It is convenient to add and subtract
〈〈GNS〉2

u〉T , so that the variance splits up into two parts,

varGNS =
〈
〈GNS〉2

u

〉
T

−
〈
〈GNS〉u

〉2
T

+
〈
〈G2

NS〉u − 〈GNS〉2
u

〉
T
, (6.6.24)

which we evaluate separately.
The first two terms of Eqs. (6.6.24) give the variance of〈GNS〉u over the distribution of

transmission eigenvalues. We calculated〈GNS〉u in Eq. (6.6.3). Since〈GNS〉u is a function
of the linear statisticτ1± only, we know that its fluctuations are an order 1/N smaller than
the average. This implies that, to leading order in 1/N,

〈
〈GNS〉2

u

〉
T

−
〈
〈GNS〉u

〉2
T

=
∑

σ,σ ′=±

〈
∂〈GNS〉u

∂ τ1σ

〉
T

〈
∂〈GNS〉u

∂ τ1σ ′

〉
T

covar(τ1σ , τ1σ ′)

= 8G2
0 N2 (2 − 〈τ1〉0)

−4 varτ1 ×
{

1 (withoutD),
2 (withD).

(6.6.25)

We now turn to the third and fourth term of Eq. (6.6.24). These terms involve the
variance〈G2

NS〉u − 〈GNS〉2
u of GNS overU(N) and subsequently an average over theTn’s.

The calculation is similar to that of Sec. 6.5.2. We representG2
NS by the diagram in Fig.

6-21. The variance with respect tou± is given by the connected diagrams. We distinguish
between two types of connected diagrams: (i) diagrams in which the inner and the outer
loop are connected by aT -cycle or by aU -cycle, and (ii) diagrams in which the partition
of theU -cycles involves a group which consists of aU -cycle from the inner loop and aU -
cycle from the outer loop. The diagrams are similar to those of Fig. 6-12, and are omitted.
The final result is〈

〈G2
NS〉u − 〈GNS〉2

u

〉
T

= 8G2
0 (2 − 〈τ1〉0)

−6 〈τ1〉−2
0

(
4〈τ1〉2

0 − 8〈τ1〉3
0 + 9〈τ1〉4

0

− 4〈τ1〉5
0 + 2〈τ1〉6

0 − 4〈τ1〉0〈τ2〉0 + 2〈τ1〉2
0〈τ2〉0

− 2〈τ1〉3
0〈τ2〉0 − 2〈τ1〉4

0〈τ2〉0 + 6〈τ2〉2
0 − 6〈τ1〉0〈τ2〉2

0

+ 3〈τ1〉2
0〈τ2〉2

0 − 4〈τ1〉0〈τ3〉0 + 6〈τ1〉2〈τ3〉0 − 2〈τ1〉3
0〈τ3〉0

)

×




2 (D, noT ),
2 (T , noD),
1 (noD, noT ).

(6.6.26)

The sum of Eqs. (6.6.25) and (6.6.26) equals varGNS, according to Eq. (6.6.24).
In the presence of spin-orbit scattering varGNS is four times as small, according to the

translation rule of Sec. 6.4.
We give explicit results for the disordered wire and the chaotic cavity.
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u- u+ u+

Figure 6-21. Diagrammatic representation of G2
NS.

(a) For the disordered wire one has [43,46]

varτ1 = 1
15N−2, 〈τk〉0 = 1

2(`/L)0(1
2)0(k)/0(k + 1

2).

Substitution into Eqs. (6.6.25) and (6.6.26) yields the variance

varGNS/G0 =




16/15− 48/π4 ≈ 0.574 (D, T ),
8/15 ≈ 0.533 (D, noT ),
8/15 ≈ 0.533 (T , noD),
4/15 ≈ 0.267 (noD, noT ).

(6.6.27)

The result in the presence of bothT andD has been taken from Ref. [45, 47]. If bothD
andT are present, breakingT (orD) reduces the variance by less than 10% [48].

(b) For the chaotic cavity one has the variance varτ1 = 2N2
1/βN4

tot and the third mo-
ment 〈τ3〉0 = N1(N

4
tot − 2N2

totN1N2 + 2N2
1 N2

2)/N5
tot [see Eqs. (6.5.4) and (6.5.42)]. In

combination with Eq. (6.6.22) this gives

varGNS/G0 =




128N2
1 N2

2(N
4
tot + 2N2

1 N2
2)(N

2
tot + 4N1N2)

−4 (D, T ),
32N2

2 N2
tot(N

2
tot − N1N2)(Ntot + N2)

−6 (D, noT ),
32N2

2 N2
tot(N

2
tot − N1N2)(Ntot + N2)

−6 (T , noD),
16N2

2 N2
tot(N

2
tot − N1N2)(Ntot + N2)

−6 (noD, noT ).

(6.6.28)

If the coupling between the cavity and the normal metal is weak compared to the coupling
to the superconductor (N2 � N1), one finds

varGNS(D, T )/varGNS(D, noT ) = O(N1/N2)
2.

In this case breakingT greatly enhances the conductance fluctuations. In the opposite
case, if the couplings are equal (N1 = N2), one finds

varGNS(D, T )/varGNS(D, noT ) = 2187/2084≈ 1.07.

In this case breakingT has almost no effect on the conductance fluctuations.
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6.7 Summary

We developed a diagrammatic technique for the evaluation of integrals of polynomial func-
tions of unitary matrices over the unitary groupU(N). In the large-N limit the number of
relevant diagrams is restricted, which allows for the evaluation of integrals over rational
functions. We also considered integrals of unitary symmetric matrices, by means of a
slight modification of the diagrammatic rules. A translation rule was given to relate inte-
grals of (self-dual) unitary matrices of quaternions to integrals over (symmetric) unitary
matrices of complex numbers.

We discussed two applications: A chaotic cavity (quantum dot) with tunnel barriers in
the leads and a normal-metal–superconductor (NS) junction. In both cases, the conduc-
tance is a rational function of a unitary matrix. In the large-N limit the average conduc-
tance is given by a series of ladder diagrams. The weak-localization correction consists
of maximally-crossed diagrams. These two types of diagrams are analogous to the dif-
fuson and cooperon diagrams in the diagrammatic perturbation theory for disordered sys-
tems [21, 22]. We computed the density of transmission eigenvalues, where the leading
order term is given by planar diagrams. Resummation of the diagrams leads to a Dyson
equation for the Green function, similar to that encountered in the theory of integrals over
Hermitian matrices [12,17].

For the NS junction, theO(1) correction to the average conductance is non-zero in the
presence of a magnetic field, because of a different type of maximally crossed diagrams.
These diagrams are suppressed by a sufficiently large voltage to break electron-hole de-
generacy. The new type of maximally crossed diagrams explains the coexistence of weak
localization with a magnetic field (see also Sec. 7.2 and the insensitivity of the conductance
fluctuations to a magnetic field [48].

Appendix A: Weight factors for polynomial integrals

In Tables 6-2 – 6-5 we list the weight factorsVc1,...,ck andWc1,...,ck for n = c1+. . .+ck ≤ 5
for the CUE and the COE. (Tables ofV are also given in Refs. [27, 28] for the CUE and
in Ref. [31] for the COE.) The weight factors are rational functions of the dimensionN
of the unitary matrix. The denominatorsAn andBn of, respectively,Vc1,...,ck andWc1,...,ck

depend only onn. They are tabulated in Tables 6-2 and 6-3. The numeratorsAnVc1,...,ck

andBnWc1,...,ck are tabulated in Tables 6-4 and 6-5.
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n An (CUE) An (COE)

1 N N + 1

2 N(N2 − 1) N(N + 1)(N + 3)

3 N(N2 − 1)(N2 − 4) (N − 1)N(N + 1)(N + 3)(N + 5)

4 N2(N2 − 1)(N2 − 4)(N2 − 9) (N − 2)(N − 1)N(N + 1)(N + 2)(N + 3)

× (N + 5)(N + 7)

5 N2(N2 − 1)(N2 − 4)(N2 − 9) (N − 3)(N − 2)(N − 1)N(N + 1)(N + 2)

× (N2 − 16) × (N + 3)(N + 5)(N + 7)(N + 9)

Table 6-2. Denominators An of the coefficients Vc1,...,ck for n = c1 + . . .+ ck ≤ 5.

n Bn (CUE) Bn (COE)

1 N N + 1

2 N2(N2 − 1) N(N + 1)2(N + 3)

3 N3(N2 − 1)(N2 − 4) (N − 1)N(N + 1)3(N + 3)(N + 5)

4 N4(N2 − 1)2(N2 − 4)(N2 − 9) (N − 2)(N − 1)N2(N + 1)4(N + 2)

× (N + 3)2(N + 5)(N + 7)

5 N5(N2 − 1)2(N2 − 4)(N2 − 9) (N − 3)(N − 2)(N − 1)N2(N + 1)5(N + 2)

× (N2 − 16) × (N + 3)2(N + 5)(N + 7)(N + 9)

Table 6-3. Denominators Bn of the coefficients Wc1,...,ck for n = c1 + . . .+ ck ≤ 5.
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c1, . . . , ck AnVc1,...,ck (CUE) AnVc1,...,ck (COE)

1 1 1

1, 1 N 2 + N

2 −1 −1

1, 1, 1 −2 + N2 2 + 5 N + N2

2, 1 −N −3 − N

3 2 2

1, 1, 1, 1 6 − 8 N2 + N4 −32− 8 N + 28N2 + 11N3 + N4

2, 1, 1 4 N − N3 −4 − 18N − 9 N2 − N3

2, 2 6 + N2 24+ 7 N + N2

3, 1 −3 + 2 N2 10+ 12N + 2 N2

4 −5 N −11− 5 N

1, 1, 1, 1, 1 78N − 20N3 + N5 128− 408N − 84N2 + 59N3 + 16N4 + N5

2, 1, 1, 1 −24+ 14N2 − N4 92+ 38N − 43N2 − 14N3 − N4

2, 2, 1 −2 N + N3 56+ 43N + 12N2 + N3

3, 1, 1 −18N + 2 N3 −52+ 40N + 22N2 + 2 N3

3, 2 −24− 2 N2 −88− 18N − 2 N2

4, 1 24− 5 N2 −7 − 36N − 5 N2

5 14N 38+ 14N

Table 6-4. Numerators AnVc1,...,ck of the coefficients Vc1,...,ck for n = c1 + . . .+ ck ≤ 5. The denomi-

nators An are given Table 6-2.
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c1, . . . , ck BnWc1,...,ck (CUE) BnWc1,...,ck (COE)

1 1 1

1, 1 1 2

2 −N −1 − N

1, 1, 1 8 32

2, 1 −4 N −8 − 8 N

3 2 N2 2 + 4 N + 2 N2

1, 1, 1, 1 −216+ 144N2 −1680+ 6720N + 6096N2 + 1152N3

2, 1, 1 72N − 48N3 280− 840N − 2136N2 − 1208N3 − 192N4

2, 2 −42N2 + 18N4 −140− 116N + 384N2 + 592N3

+ 268N4 + 36N5

3, 1 −15N2 + 15N4 198N + 552N2 + 540N3 + 216N4 + 30N5

4 5 N3 − 5 N5 −33N − 125N2 − 182N3 − 126N4

− 41N5 − 5 N6

1, 1, 1, 1, 1 −13824+ 4224N2 −483840+ 297984N + 407040N2 + 67584N3

2, 1, 1, 1 3456N − 1056N3 60480+ 23232N − 88128N2 − 59328N3

− 8448N4

2, 2, 1 −1248N2 + 288N4 −12096− 21120N + 1152N2 + 18432N3

+ 9408N4 + 1152N5

3, 1, 1 −480N2 + 240N4 −3024+ 192N + 15072N2 + 18432N3

+ 7536N4 + 960N5

3, 2 312N3 − 72N5 1512+ 4152N + 2496N2 − 2448N3

− 3480N4 − 1320N5 − 144N6

4, 1 56N3 − 56N5 −912N − 3376N2 − 4768N3 − 3168N4

− 976N5 − 112N6

5 −14N4 + 14N6 114N + 536N2 + 1018N3 + 992N4

+ 518N5 + 136N6 + 14N7

Table 6-5. Numerators BnWc1,...,ck of the coefficients Wc1,...,ck for n = c1 + . . . + ck ≤ 5. The

denominators Bn are given in Table 6-3.
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7 Normal-metal–superconductor junctions

7.1 Insensitivity to time-reversal symmetry breaking of
universal conductance fluctuations with Andreev re-
flection

Universal conductance fluctuations (UCF) are a fundamental manifestation of phase-cohe-
rent transport in disordered metals [1, 2]. The adjective “universal” describes two aspects
of the sample-to-sample fluctuations of the conductance: (1) The variance varG is of order
(e2/h)2, independent of sample size or disorder strength; (2) varG decreases precisely by a
factor of two if time-reversal symmetry (T ) is broken by a magnetic field. The universality
of this factor of two has been established both by diagrammatic perturbation theory [1,
2] and by random-matrix theory [3–6]. In the former approach, one has two classes of
diagrams, cooperons and diffusons, which contribute equally to varG in the presence of
T . A magnetic field suppresses the cooperons but leaves the diffusons unaffected, hence
varG is reduced by12. In the latter approach, the universality of the factor-of-two reduction
follows from the Dyson-Mehta theorem [7], which applies to the variance varA of any
observableA = ∑

n a(Tn)which is a linear statistic on the transmission eigenvaluesTn [8].
The crossover from a linear to a quadratic eigenvalue repulsion upon breakingT directly
leads to a reduction by12 of var A.1

The situation is qualitatively different if the normal-metal conductor (N) is attached
at one end to a superconductor (S). At the NS interface the dissipative normal current is
converted into a dissipationless supercurrent, via the scattering process of Andreev reflec-
tion: [9] An electron incident from N is reflected as a hole, with the addition of a Cooper
pair to the superconducting condensate. The conversion from normal to supercurrent has
essentially no effect on the average conductance, provided that the interface resistance is
negligibly small [10]. However, the effect on the conductance fluctuations is striking: The
variance is still universally of order(e2/h)2, but it has becomeinsensitiveto the breaking
of T . Numerical simulations by Marmorkos, Jalabert, and Beenakker [11] of a disor-
dered wire attached to a superconductor have shown that the variance is unaffected by a
T -breaking magnetic field, within the 10% statistical uncertainty of the simulations. This
does not contradict the Dyson-Mehta theorem, because the conductanceGNS of the NS
junction is a linear statistic in the presence — but not in the absence ofT [12]. One won-
ders whether there is some hidden symmetry principle which would constrain varGNS to
be the same, regardless of whetherT is broken or not. No such symmetry principle has
been found, and in fact we do not know of any successful generalization so far of the theory

1Here, and in the rest of the section, we assume that there is no spin-orbit interaction, and that spin-
rotation symmetry is maintained both with and withoutT .
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of UCF to quantities which are not linear statistics.2

Here we wish to announce that we have succeeded in the analytical calculation of
the variance ofGNS in the absence ofT , using techniques from random-matrix theory.
We find that varGNS for a disordered wire attached to a superconductor is reduced by
(2 − 90/π4)−1 ≈ 0.929 upon breakingT . This number is sufficiently close to 1 to be
consistent with the numerical simulations [11], and sufficiently different from 1 to explain
why attempts to find a rigorous symmetry principle had failed. Still, we have been able to
find an approximate symmetry argument, which explains in an intuitively appealing way
why the number(2− 90/π4)−1 is close to 1. Our theory is more generally applicable than
to a disordered wire: It applies to any NS junction for which the probability distribution
P(S) of the scattering matrixS of the normal region depends only on the transmission
eigenvaluesTn. (Such a distribution is called “isotropic” [6].) As two examples we con-
sider a disordered metal grain and a ballistic constriction in a disordered wire. Our method
can also be used to compute the effect of a magnetic field on weak-localization in an NS
junction, as reported in Sec. 7.2.

Starting point of our calculation is the general relation between the conductance of the
NS junction and the scattering matrixSof the normal region [12],

GNS = 2G0 tr mm†, G0 ≡ 2e2/h, (7.1.1)

m = √
T(1 + u

√
Ru∗√R)−1u

√
T, u ≡ w2w

∗
1.

We used the polar decomposition

S =
(
v1 0

0 w1

)(
i
√

R
√

T√
T i

√
R

)(
v2 0

0 w2

)
, (7.1.2)

wherev1, v2, w1, andw2 areN × N unitary matrices (N being the number of propagating
modes at the Fermi level in each of the two leads attached to the sample). The matrixT
is a diagonal matrix with theN transmission eigenvaluesTi ∈ [0, 1] on the diagonal, and
R = 1 − T . In the presence ofT , one hasS = ST, hencew2 = wT

1 , henceu = 1. (The
superscript T denotes the transpose of the matrix.) Eq. (7.1.1) then simplifies to [12]

GNS(T ) = 2G0
∑

nT2
n (2 − Tn)

−2, (7.1.3)

and varGNS follows directly from general formulas for the variance of a linear statistic on
the transmission eigenvalues [8,13]. In the absence ofT no such simplification occurs.

To compute varGNS = 〈G2
NS〉 − 〈GNS〉2 in the absence ofT , we assume an isotropic

distribution3 of S, which implies that the average〈· · ·〉 over the ensemble of scattering
matrices can be performed in two steps:〈· · ·〉 = 〈〈· · ·〉u〉T , where〈· · ·〉u and〈· · ·〉T are,

2A promising field-theoretic approach to this problem, based on the mapping onto a supersymmetric non-
linearσ -model, has so far not been successful [A. Altland, private communication]. The more conventional
diagrammatic perturbation theory suffers form a proliferation of relevant diagrams, and has so far not been
completed even in the presence ofT [Y. Takane and H. Ebisawa, J. Phys. Soc. Japan60, 3130 (1991)].

3The assumption of an isotropic distribution ofS is sufficient but not necessary. A weaker assumption
which also ensures that the matrixu in Eq. (7.1.1) is uniformly distributed inU(N) is the so-called “equiv-
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respectively, the average over the unitary matricesu and over the transmission eigenvalues
Ti . It is convenient to add and subtract〈〈GNS〉2

u〉T , so that the variance of the conductance
splits up into two parts,

varGNS =
〈
〈GNS〉2

u

〉
T

−
〈
〈GNS〉u

〉2
T

+〈
〈G2

NS〉u − 〈GNS〉2
u

〉
T
, (7.1.4)

which we evaluate separately.
The first part is the variance of〈GNS〉u over the distribution of transmission eigenval-

ues. As a consequence of the isotropy assumption, the matrixu is uniformly distributed in
the groupU(N) of N × N unitary matrices [6]. To evaluate〈GNS〉u we need to perform
an integral overU(N) of a rational function ofu, according to Eq. (7.1.1). Such matrix
integrals are notoriously difficult to evaluate in closed form [14], but fortunately we only
need the large-N limit. By applying the diagrammatic technique of Ch. 6 we find that

〈tr T(u
√

Ru∗√R)puT u†(
√

RuT
√

Ru†)q〉u =
δpqNτ2

1 (1 − τ1)
2p + O(1), (7.1.5)

where we have defined the traceτk = N−1∑
i Tk

i . It follows that, up to corrections of
order unity,

〈GNS〉u = 2G0N
∞∑

p=0

τ2
1 (1 − τ1)

2p = 2G0Nτ1
2 − τ1

. (7.1.6)

Sinceτk is a linear statistic, we know that its fluctuations are an order 1/N smaller than
the average [6]. This implies that, to leading order in 1/N, var f (τk) = [ f ′(τk)]2 × varτk.
The variance of Eq. (7.1.6) is therefore

〈
〈GNS〉2

u

〉
T

−
〈
〈GNS〉u

〉2
T

= 16G2
0N2varτ1

(2 − 〈τ1〉)4 + O(1/N). (7.1.7)

Note that the leading term in Eq. (7.1.7) isO(1).
We now turn to the second part of Eq. (7.1.4), which involves the variance〈G2

NS〉u −
〈GNS〉2

u of GNS overU(N) at fixed transmission eigenvalues and subsequently an average
over theTi ’s. The calculation is similar in principle to that described in the preceding
paragraph, but many more terms contribute to leading order in 1/N. Here we only give the
result,〈

〈G2
NS〉u − 〈GNS〉2

u

〉
T

= 16G2
0 (2 − 〈τ1〉)−6 〈τ1〉−2

{
4〈τ1〉2 − 8〈τ1〉3 + 9〈τ1〉4 − 4〈τ1〉5 + 2〈τ1〉6−

alent channel assumption” [P. A. Mello and S. Tomsovic, Phys. Rev. Lett.67, 342 (1991)]. Microscopic
models which satisfy this assumption have been given by O. N. Dorokhov [Phys. Rev. B37, 10526 (1988)]
and S. Iida, H. A. Weidenm¨uller, and J. A. Zuk [Ann. Phys. (NY)200, 219 (1990)]. See also Sec. 1.3 of this
thesis.
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4〈τ1〉〈τ2〉 + 2〈τ1〉2〈τ2〉 − 2〈τ1〉3〈τ2〉 − 2〈τ1〉4〈τ2〉 + 6〈τ2〉2 − 6〈τ1〉〈τ2〉2+
3〈τ1〉2〈τ2〉2 − 4〈τ1〉〈τ3〉 + 6〈τ1〉2〈τ3〉 − 2〈τ1〉3〈τ3〉

}
+ O(1/N). (7.1.8)

The sum of Eqs. (7.1.7) and (7.1.8) equals varGNS, according to Eq. (7.1.4). The resulting
expression contains only moments of the transmission eigenvalues. This solves the prob-
lem of the computation of varGNS in the absence ofT , since these moments are known.

For the application to a disordered wire (lengthL, mean free path̀) one has the vari-
ance [2, 5]N2varτ1 = 1

15, and averages [15]〈τk〉 = 1
2(`/L)0(1

2)0(k)/0(k + 1
2). Substi-

tution into Eqs. (7.1.7) and (7.1.8) yields (in the diffusive limit`/L → 0)

varGNS(noT ) = 8
15G2

0 ≈ 0.533G2
0. (7.1.9)

This is to be compared with the known result [13] in the presence ofT

varGNS(T ) = (16
15 − 48π−4)G2

0 ≈ 0.574G2
0. (7.1.10)

BreakingT reduces the variance by less than 10%, as advertised.
We would like to obtain a more direct understanding of why the two numbers in Eqs.

(7.1.9) and (7.1.10) are so close. To that end we return to the general expression (7.1.1)
for the conductanceGNS of an NS junction, in terms of the scattering matrixS of the
normal region. We compareGNS with the conductanceGNN of an entirely normal metal
consisting of two segments in series (see Fig. 7-1). The first segment has scattering matrix
S, the second segment is the mirror image of the first. That is to say, the disorder potential
is specularly reflected and the sign of the magnetic field is reversed. The system NN thus
has a reflection symmetry (S), both in the presence and absence ofT . The scattering matrix
of the second segment is6S6, where6 is a 2N × 2N matrix with zero elements, except
for 6i,N+i = 6N+i,i = 1 (i = 1, 2, . . . , N). (The matrix6 interchanges scattering states
incident from left and right.) The conductanceGNN follows from the transmission matrix
through the two segments in series by means of the Landauer formula,

GNN(S) = G0 tr m′m′†, m′ = √
T(1 + u′√Ru′√R)−1u′√T, u′ ≡ w2w1. (7.1.11)

The difference between Eqs. (7.1.1) and (7.1.11) is crucial in the presence ofT , when
w2 = wT

1 , so thatu = 1 while u′ is some random (symmetric) unitary matrix. However,
in the absence ofT , w1 andw2 are independent, so that bothu and u′ are randomly
distributed unitary matrices. We have repeated the calculation of the variance starting from
Eq. (7.1.11), and found that var trmm† = var trm′m′†, hence

varGNS(noT ) = 4 varGNN(S, noT ). (7.1.12)

The system NN is special because it possesses a reflection symmetry. Breaking the
reflection symmetryS amounts to the replacement of the mirror-imaged segment by a
different segment, with scattering matrixS′ which is independent ofS but drawn from
the same ensemble. BreakingS reduces the variance of the conductance fluctuations by a
factor of two, regardless of whetherT is present or not,

varGNN(S) = 2 varGNN(noS). (7.1.13)
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S+ BN

- B N
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Figure 7-1. (a): Schematic drawing of a disordered normal metal (N) connected to a supercon-

ductor (S), in a time-reversal symmetry (T ) breaking magnetic field B. In (b) the normal region is

connected in series with its mirror image. As indicated, the magnetic field B changes sign upon re-

flection. The variance of the conductance fluctuations in (a) is exactly four times the variance in (b).

The variance in (b) is exactly two times the variance in the absence of the reflection symmetry (S).

The exchange of T for S explains the insensitivity of the conductance fluctuations to a magnetic

field, as discussed in the text.

We have checked this relation by an explicit calculation, but it seems intuitively obvious if
one considers that the eigenstates separate into even and odd states which fluctuate inde-
pendently. Since breakingT by itself reduces the variance ofGNN by a factor of two, we
may write

varGNN(S, noT ) = varGNN(T , noS). (7.1.14)

Eqs. (7.1.12)–(7.1.14) are exact, and hold for any isotropic distribution of the scattering
matrix. We need one more relationship, which is approximate and holds only for the case
of a disordered wire: [12,16]

varGNS(T ) ≈ 4varGNN(T , noS). (7.1.15)

Taken together, Eqs. (7.1.12)–(7.1.15) imply the approximate relationship

varGNS(T ) ≈ varGNS(noT ). (7.1.16)

The exact calculation shows that the approximation is accurate within 10%. We now un-
derstand the insensitivity of the conductance fluctuations of a (disordered) NS-junction to
a magnetic field as anexchange of symmetriesin the related normal system NN: AsT is
broken,S is established, thereby compensating the reduction of varGNS.4

We have emphasized the general applicability of equations (7.1.7), (7.1.8) and (7.1.12)–
(7.1.14), which hold not just for a disordered wire, but for any isotropic distribution of
the scattering matrix. We illustrate this by two examples. The first is an NS junction

4To avoid misunderstanding about the “exchange of symmetries”, we stress that it refers to the related
NN system and not to the NS junction itself. To be precise, the structure of the scattering matrix of the NS
junction is such that the NS junction in the absence ofT is related to an NN systemwith S, whereas in
the presence ofT it is related to an NN systemwithoutS. The first relationship is exact [Eq. (7.1.12)], the
second one is approximate [Eq. (7.1.15)].
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N SN S

(a) (b)

Figure 7-2. (a): Schematic drawing of an NS junction consisting of a disordered metal grain

(shaded). (b): A disordered normal-metal wire (shaded) containing a point contact.

consisting of a disordered metal grain (see Fig. 7-2a). The coupling of N and S to the
grain occurs via ballistic point contacts (width much smaller than the mean free path in
the grain). Following Ref. [17], we may assume that the scattering matrix of the grain is
distributed according to the circular ensemble of random-matrix theory. This is an isotropic
distribution. The relevant moments of the transmission eigenvalues in the absence ofT
are [17]〈τk〉 = π−1/20(k + 1

2)/0(k + 1), N2varτ1 = 1
16. Substitution into the general

formulas (7.1.7) and (7.1.8) yields

varGNS(noT ) = 128
243G2

0 ≈ 0.527G2
0, (7.1.17)

which is again close to the known result in the presence ofT [17],

varGNS(T ) = 9
16G2

0 ≈ 0.563G2
0. (7.1.18)

The second example is a ballistic constriction (point contact) in a wire which is con-
nected to a superconductor (see Fig. 7-6b). The point contact has conductanceN0G0,
which we assume to be much smaller than the conductanceN`/L of the disordered wire
by itself. As discussed in Ref. [18], we may assume an isotropic distribution of the scatter-
ing matrix of the combined system (point contact plus disordered wire). The moments of
the transmission eigenvalues are [18]〈τk〉 = N0/N, N2varτ1 = O(N0L/N`)2. Substitu-
tion into Eqs. (7.1.7) and (7.1.8) yields, in the limitN0L/N` → 0,

varGNS(noT ) = 1
2G2

0. (7.1.19)

In contrast, ifT is not broken, the conductance fluctuations are suppressed in this limit:
[18,19]

varGNS(T ) = O(N0L/N`)2 � G2
0. (7.1.20)

In this geometry a magnetic field greatly enhances the conductance fluctuations. The rea-
son that a disordered wire with a constriction behaves so differently from an unconstricted
wire, is that the relation (7.1.15) does not hold in the presence of a constriction. However,
the general relationship (7.1.12) does hold, and indeed the result (7.1.19) is four times the
variance of a structure consisting of two point contacts in series with a reflection symmetry.

In summary, we have solved the problem of universal conductance fluctuations in nor-
mal-metal–superconductor junctions in a magnetic field, under the assumption of an isotro-
pic distribution of the scattering matrix of the normal region. We find that the structure of
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the scattering matrix of the normal-metal–superconductor junction in the absence of time-
reversal symmetry allows one to relate the conductance fluctuations to those of a normal
system with reflection symmetry. This reflection symmetry is absent in the presence of
time-reversal symmetry. It compensates the reduction of the conductance fluctuations due
to breaking of time-reversal symmetry, and explains the anomalous insensitivity of the
fluctuations in a magnetic field discovered in computer simulations [11].

7.2 Weak localization coexisting with a magnetic field in a
normal-metal–superconductor microbridge

Weak localization is a quantum correction of ordere2/h to the classical conductance of a
metal [20]. The word “localization” refers to the negative sign of the correction,5 while
the adjective “weak” indicates its smallness. In a wire geometry the weak-localization
correction takes on the universal value [21]δG = −2

3e2/h at zero temperature, inde-
pendent of the wire lengthL or mean free path̀.6 The classical (Drude) conductance
G0 ' (N`/L) e2/h is much greater thanδG in the metallic regime, where the number of
scattering channelsN � L/`. Theoretically, the weak-localization correction is the term
of order N0 in an expansion of the average conductance〈G〉 = G0 + δG + O(N−1) in
powers ofN. Experimentally,δG is measured by application of a weak magnetic field
B, which suppresses the weak-localization correction but leaves the classical conductance
unaffected [22]. The suppression occurs because weak localization requires time-reversal
symmetry (T ). In the absence ofT , quantum corrections toG0 are of orderN−1 and
not of orderN0. As a consequence, the magnetoconductance has a dip aroundB = 0 of
magnitudeδG and width of orderBc (being the field at which one flux quantum penetrates
the conductor).

What happens to weak localization if the normal-metal wire is attached at one end to a
superconductor? This problem has been the subject of active research [11,12,23–27]. The
termG0 of orderN is unaffected by the presence of the superconductor [12]. TheO(N0)

correctionδG is increased but remains universal [24,25],

δG = −(2 − 8π−2) e2/h ≈ −1.19e2/h. (7.2.1)

In all previous analytical work zero magnetic field was assumed. It was surmised, either
implicitly or explicitly [11], thatδG = 0 in the absence ofT — but this was never actually
calculated analytically. We have now succeeded in doing this calculation and would like to
report the result, which was entirely unexpected.

We find that a magnetic field by itself is not sufficient to suppress the weak-localization
correction, but only reducesδG by about a factor of two. To achieveδG = 0 requires in
addition the application of a sufficiently large voltageV to break the degeneracy in energy

5Spin-orbit scattering is assumed to be negligible, otherwise a positive quantum correction appears.
6The restriction to a wire geometry is essential for the universality. In a square or cube geometry, the

weak-localization correction isL and`-dependent.
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−δG [e2/h] T noT
D 2 − 8/π2 2/3

noD 4/3 0

Table 7-1. Dependence of the weak-localization correction δG of a normal-metal wire attached to

a superconductor on the presence or absence of time-reversal symmetry (T ) and electron hole-

degeneracy (D). The entry in the upper left corner was computed in Refs. [24,25].

between the electrons (at energyeV above the Fermi energyEF ) and the Andreev-reflected
holes (at energyeV below EF ). The electron-hole degeneracy (D) is effectively broken
wheneV exceeds the Thouless energyEc = h̄vF`/L2 (with vF the Fermi velocity). Weak
localization coexists with a magnetic field as long aseV � Ec. Our analytical results are
summarized in Table 7-1. These results disagree with the conclusions drawn in Ref. [11]
on the basis of numerical simulations. We have found that the numerical data on the weak-
localization effect was misinterpreted due to the presence of a magnetic-field dependent
contact resistance, which was not understood at that time.

Starting point of our calculation is the general relation between the differential conduc-
tanceG = d I/dV of the normal-metal–superconductor (NS) junction and the transmission
and reflection matrices of the normal region [12],

G = (4e2/h) tr m(eV)m†(eV), m(ε) = t ′(ε)
[
1 − α(ε)r ∗(−ε)r (ε)]−1

t∗(−ε), (7.2.2)

whereα(ε) ≡ exp[−2i arccos(ε/∆)]. Eq. (7.2.2) holds for subgap voltagesV ≤ ∆/e,
and requires also∆ � EF (∆ being the excitation gap in S). We assume that the length
L of the disordered normal region is much greater than the superconducting coherence
lengthξ = (h̄vF`/∆)

1/2. This implies that the Thouless energyEc � ∆. In the voltage
rangeV <∼ Ec/e we may therefore assume thateV � ∆, henceα = −1. TheN × N
transmission and reflection matricest , t ′, r , andr ′ form the scattering matrixS(ε) of the
disordered normal region (N being the number of propagating modes at the Fermi level,
which corresponds toε = 0). It is convenient to use the polar decomposition(

r ′ t ′

t r

)
=
(
v1 0

0 w1

)(
i
√

R
√

T√
T i

√
R

)(
v2 0

0 w2

)
.

Here v1, v2, w1, andw2 are N × N unitary matrices,T is a diagonal matrix with the
N transmission eigenvaluesTi ∈ [0, 1] on the diagonal, andR = 1 − T . Using this
decomposition, and substitutingα = −1, Eq. (7.2.2) can be replaced by

m(ε) = √
T(ε)

[
1 + u(ε)

√
R(−ε)u∗(−ε)√R(ε)

]−1
u(ε)

√
T(−ε), (7.2.3)

u(ε) ≡ w2(ε)w
∗
1(−ε).

We perform our calculations in the general framework of random-matrix theory. The
only assumption about the distribution of the scattering matrix that we make, is that it is
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isotropic, i.e. that it depends only on the transmission eigenvalues [6]. In the presence of
T (for B � Bc), S = ST, hencew1 = wT

2 . (The superscript T denotes the transpose of a
matrix.) If T is broken,w1 andw2 are independent. In the presence ofD (for eV � Ec),
the difference betweenS(eV) andS(−eV) may be neglected. IfD is broken,S(eV) and
S(−eV) are independent. Of the four entries in Table 7-1, the case that bothT andD are
present is the easiest, because thenu = 1 and Eq. (7.2.2) simplifies to [12]

G = (4e2/h)
∑

nT2
n (2 − Tn)

−2. (7.2.4)

The conductance is of the formG = ∑
n f (Tn), known as a linear statistic on the trans-

mission eigenvalues. General formulas [24, 25] for the weak-localization correction to the
average of a linear statistic lead directly to Eq. (7.2.1). The three other entries in Table
7-1, where eitherT orD (or both) are broken, are more difficult becauseG is no longer a
linear statistic. We consider these three cases in separate paragraphs.

(1) D, no T — Because of the isotropy assumption,w1 andw2, and henceu, are
uniformly distributed in the unitary groupU(N). We may perform the average〈· · ·〉 over
the ensemble of scattering matrices in two steps:〈· · ·〉 = 〈〈· · ·〉u〉T , where〈· · ·〉u and
〈· · ·〉T are, respectively, the average over the unitary matrixu and over the transmission
eigenvaluesTi . We compute〈· · ·〉u by an expansion in powers ofN−1. To integrate the
rational function (7.2.2) ofu overU(N), we first expand it into a geometric series and then
use the diagrammatic technique of Ch. 6. The polynomials we need are

〈G〉u = 4e2

h

∞∑
p,q=0

Mpq(−1)p+q, (7.2.5)

Mpq = 〈tr T(u
√

Ru∗√R)puT u†(
√

RuT
√

Ru†)q〉u.

Neglecting terms of orderN−1, we find

Mpq =




Nτ2
1 (1 − τ1)

2p if p = q,

τ1(τ
2
1 + τ1 − 2τ2)(1 − τ1)

p+q−1 − 2 min(p, q)

× τ2
1 (τ

2
1 − τ2)(1 − τ1)

p+q−2 if |p − q| odd,

0 else,

where we have defined the momentτk = N−1∑
i Tk

i . The summation overp andq leads
to

h

4e2
〈G〉u = Nτ1

2 − τ1
− 4τ1 − 2τ2

1 + 2τ3
1 − 4τ2

τ1(2 − τ1)3
. (7.2.6)

It remains to average over the transmission eigenvalues. Sinceτk is a linear statistic, we
know that its sample-to-sample fluctuationsδτk ≡ τk − 〈τk〉 are an order 1/N smaller than
the average [6]. Hence

〈 f (τk)〉T = f (〈τk〉)[1 + O(N−2)], (7.2.7)
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which implies that we may replace the average of the rational function (7.2.6) of theτk’s
by the rational function of the average〈τk〉. This average has the 1/N expansion

〈τk〉 = 〈τk〉0 + O(N−2), (7.2.8)

where〈τk〉0 is O(N0). There is no term of orderN−1 in the absence ofT . From Eqs.
(7.2.6)–(7.2.8) we obtain the 1/N expansion of the average conductance,

h

4e2
〈G〉 = N〈τ1〉0

2 − 〈τ1〉0
− 4〈τ1〉0 − 2〈τ1〉2

0 + 2〈τ1〉3
0 − 4〈τ2〉0

〈τ1〉0(2 − 〈τ1〉0)3
+ O(N−1). (7.2.9)

Eq. (7.2.9) is generally valid for any isotropic distribution of the scattering matrix. We
apply it to the case of a disordered wire in the limitN → ∞, `/L → 0 at constantN`/L.
The moments〈τk〉0 are given by [21]

〈τ1〉0 = `/L , 〈τ2〉0 = 2
3`/L . (7.2.10)

Substitution into Eq. (7.2.9) yields the weak-localization correctionδG = −2
3e2/h, cf.

Table 7-1.
(2) T , noD — In this case one hasu†(−eV) = u(eV) andu(eV) is uniformly dis-

tributed inU(N). A calculation similar to that in the previous paragraph yields for the
average overu:

h

4e2
〈G〉u = Nτ1+τ1−(τ1+ + τ1− − τ1+τ1−)−1 + (τ1+ + τ1− − τ1+τ1−)−3

×
[
2τ2

1+τ2
1− − τ3

1+τ
2
1− − τ2

1+τ3
1− − τ2+τ2

1− − τ2
1+τ2− + τ2+τ3

1− + τ3
1+τ2−

]
,

where we have abbreviatedτk± = τk(±eV). The next step is the average over the trans-
mission eigenvalues. We may still use Eq. (7.2.7), and we note that〈τk(ε)〉 ≡ 〈τk〉 is
independent ofε. (The energy scale for variations in〈τk(ε)〉 is EF , which is much greater
than the energy scale of interestEc.) Instead of Eq. (7.2.8) we now have the 1/N expansion

〈τk〉 = 〈τk〉0 + N−1δτk +O(N−2), (7.2.11)

which contains also a term of orderN−1 because of the presence ofT . The 1/N expansion
of 〈G〉 becomes

h

4e2
〈G〉 = N〈τ1〉0

2 − 〈τ1〉0
+ 2δτ1
(2 − 〈τ1〉0)2

+ 2〈τ1〉2
0 − 2〈τ1〉3

0 − 2〈τ2〉0 + 2〈τ1〉0〈τ2〉0

〈τ1〉0(2 − 〈τ1〉0)3

+ O(N−1). (7.2.12)

For the application to a disordered wire we use again Eq. (7.2.10) for the moments〈τk〉0,
which do not depend on whetherT is broken or not. We also needδτ1, which in the
presence ofT is given by [21]δτ1 = −1

3. Substitution into Eq. (7.2.12) yieldsδG =
−4

3e2/h, cf. Table 7-1.
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(3) noT , noD — Now u(eV) andu(−eV) are independent, each with a uniform
distribution inU(N). Carrying out the two averages overU(N) we find

h

4e2
〈G〉u = Nτ1+τ1−

τ1+ + τ1− − τ1+τ1−
. (7.2.13)

The average over the transmission eigenvalues becomes

h

4e2
〈G〉 = N〈τ1〉0

2 − 〈τ1〉0
+ O(N−1), (7.2.14)

where we have used thatδτ1 = 0 because of the absence ofT . We conclude thatδG = 0
in this case, as indicated in Table 7-1.

This completes the calculation of the weak-localization correction to the average con-
ductance. Our results, summarized in Table 7-1, imply a universalB andV-dependence of
the conductance of an NS microbridge. Raising firstB and thenV leads to two subsequent
increases of the conductance, while raising firstV and thenB leads first to a decrease and
then to an increase.

So far we have only considered theO(N0) correctionδG to 〈G〉 = G0 + δG. What
about theO(N) termG0? From Eqs. (7.2.9), (7.2.12), and (7.2.14) we see that if eitherT
orD (or both) are broken,

G0 = 4e2

h

N〈τ1〉0

2 − 〈τ1〉0
= (2e2/h) N

(1
2 + L/`

)−1
. (7.2.15)

In the second equality we substituted [21]〈τ1〉0 = (1+L/`)−1, which in the limit`/L → 0
reduces to Eq. (7.2.10). If bothT andD are unbroken, then we have instead the result [28]

G0 = (2e2/h) N [1 + L/`+ O(`/L)]−1 . (7.2.16)

The difference between Eqs. (7.2.15) and (7.2.16) is a contact resistance, which has the
valueh/4Ne2 in Eq. (7.2.15) but is twice as large in Eq. (7.2.16). In contrast, in a normal-
metal wire the contact resistance ish/2Ne2, independent ofB or V . TheB andV-depen-
dent contact resistance in an NS junction is superimposed on theB andV-dependent weak-
localization correction. Since the contribution to〈G〉 from the contact resistance is of order
(e2/h)N(`/L)2, while the weak-localization correction is of ordere2/h, the former can
only be ignored ifN(`/L)2 � 1. This is an effective restriction to the diffusive metallic
regime, wherè /L � 1 andN`/L � 1. To measure the weak-localization effect without
contamination from the contact resistance ifN(`/L)2 is not � 1, one has two options:
(1) Measure theB-dependence at fixedV � Ec/e; (2) Measure theV-dependence at
fixed B � Bc. In both cases we predict an increase of the conductance, by an amount
4
3e2/h and 2

3e2/h, respectively. In contrast, in the normal state weak localization leads to
a B-dependence, but not to aV-dependence.

We performed numerical simulations similar to those of Ref. [11] in order to test the an-
alytical predictions. The disordered normal region was modeled by a tight-binding Hamil-
tonian on a square lattice (lattice constanta), with a random impurity potential at each site
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Figure 7-3. Numerical simulation of the voltage dependence of the average differential conductance

for B = 0 (left panel) and for a flux 6h/e through the disordered normal region (right panel). The

filled circles are for an NS junction; the open circles represent the V-independent conductance in

the normal state. The three sets of data points correspond, from top to bottom, to `/L = 0.31, 0.23,

and 0.18, respectively. The arrows indicate the theoretically predicted net increase of 〈G〉 between

V = 0 and V � Ec/e.

(uniformly distributed between±1
2Ud). The Fermi energy was chosen atEF = 1.57U0

from the band bottom (U0 = h̄2/2ma2). The lengthL and widthW of the disordered
region areL = 167a, W = 35a, corresponding toN = 15 propagating modes atEF . The
mean free path is obtained from the conductanceG = (2e2/h)N(1 + L/`)−1 of the nor-
mal region in the absence ofT . The scattering matrix of the normal region was computed
numerically atε = ±eV, and then substituted into Eq. (7.2.2) to obtain the differential
conductance.

In Fig. 7-3 we show theV-dependence ofG (averaged over some 103 impurity config-
urations), for three values of̀. The left panel is forB = 0, the right panel for a flux of
6h/e through the disordered region. TheV-dependence forB = 0 is mainly due to the
contact resistance effect of orderN(`/L)2, and indeed one sees that the amount by which
G increases depends significantly on`.7 The V-dependence in aT -violating magnetic
field is entirely due to the weak-localization effect, which should be insensitive to` (as
long as`/L � 1 � N`/L). This is indeed observed in the simulation. Quantitatively, we
would expect that application of a voltage increases〈G〉 by an amount23e2/h for the three
curves in the right panel, which agrees very well with what is observed. In the absence of
a magnetic field the analytical calculation predicts a net increase in〈G〉 by 0.79, 0.46, and
0.25 × e2/h (from top to bottom), which is again in good agreement with the simulation.

7Our analytical calculation refers to the net increase of〈G〉 betweenV = 0 andV � Ec/e. We can not
describe the non-monotonicV-dependence at intermediateV , observed in the simulation forB = 0.
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Figure 7-4. (a) Two Feynman paths interfering constructively in the presence of T . (b) Two paths

involving Andreev reflection (solid dot), which interfere destructively both in the presence and ab-

sence of T .

In normal metals, the weak-localization correctionδG is explained in terms of con-
structive interference of pairs of time-reversed Feynman paths (Fig. 7-4a) [22]. This in-
terference is destroyed by a magnetic field. One might wonder what kind of interfering
paths are responsible forδG in an NS junction withoutT . Although our theory is not
formulated in terms of Feynman paths, an interpretation of the quantityMpq in Eq. (7.2.5)
using Feynman paths is possible. The two simplest interfering paths are shown in Fig.
7-4b. Regardless of whetherT is broken or not, there is an exact cancellation of the phase
shifts accumulated by the electron and the hole which traverse the loop in the same di-
rection. What remains is a phase shift ofπ due to the double Andreev reflection. As a
consequence, the path with the double loop interferes destructively with the path without a
loop, giving rise to a negativeδG.

7.3 Phase-dependent magnetoconductance fluctuations in
a chaotic Josephson junction

The conductance of a mesoscopic metal shows small fluctuations of universal sizee2/h as
a function of magnetic field [1, 2]. These universal conductance fluctuations are sample-
specific, which is why a plot of conductanceG versus magnetic fieldB is called a “mag-
netofingerprint”. The magnetoconductance is sample-specific because it depends sensiti-
vely on scattering phase shifts, and hence on the precise configuration of scatterers. Any
agency which modifies phase shifts will modify the magnetoconductance. Altshuler and
Spivak [29] first proposed to use a Josephson junction for this purpose. If the metal is
connected to two superconductors with a phase differenceφ of the order parameter, the
conductanceG(B, φ) contains two types of sample-specific fluctuations: aperiodic fluctu-
ations as a function ofB and 2π -periodic fluctuations as a function ofφ. The magnetic
field should be sufficiently large to break time-reversal symmetry, otherwise the sample-
specific fluctuations will be obscured by a much strongerB- andφ-dependence of the
ensemble-averaged conductance [10].8

8Sample-specific conductance fluctuations at zero magnetic field have been observed experimentally by
P. G. N. de Vegvar, T. A. Fulton, W. H. Mallison, and R. E. Miller, Phys. Rev. Lett.73, 1416 (1994).
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In a recent Letter, Den Hartog et al [30]. reported the experimental observation of
phase-dependent magnetoconductance fluctuations in a T-shaped two-dimensional electron
gas. The horizontal arm of the T is connected to two superconductors, the vertical arm to
a normal metal reservoir. The observed magnitude of the fluctuations was much smaller
thane2/h, presumably because the motion in the T-junction was nearly ballistic. Larger
fluctuations are expected if the arms of the T are closed, leaving only a small opening (a
point contact) for electrons to enter or leave the junction. Motion in the junction can be
ballistic or diffusive, as long as it is chaotic the statistics of the conductance fluctuations
will only depend on the number of modes in the point contacts and not on the microscopic
details of the junction.

In this section we present a theory for phase-dependent magnetoconductance fluctu-
ations in a chaotic Josephson junction. We distinguish two regimes, depending on the
relative magnitude of the number of modesM andN in the point contacts to the supercon-
ductors and normal metals respectively. ForM � N theφ-dependence of the conductance
is strongly anharmonic. This is the regime studied by Altshuler and Spivak [29]. For
M <∼ N the oscillations are nearly sinusoidal, as observed by Den Hartog et al [30]. The
difference between the two regimes can be understood qualitatively in terms of interfer-
ing Feynman paths. In the regimeM <∼ N only paths with a single Andreev reflection
contribute to the conductance. Each such path depends onφ with a phase factore±iφ/2.
Interference of these paths yields a sinusoidalφ-dependence of the conductance. In the
opposite regimeM � N, quasiparticles undergo many Andreev reflections before leav-
ing the junction. Hence higher harmonics appear, and the conductance becomes a random
2π -periodic function ofφ.

The system under consideration is shown schematically in Fig. 7-5. It consists of a
chaotic cavity in a time-reversal-symmetry breaking magnetic fieldB, which is coupled
to two superconductors and to one or two normal metals by ballistic point contacts. The
superconductors (S1 and S2) have the same voltage (defined as zero) and a phase difference
φ. The conductance of this Josephson junction is measured in a three- or four-terminal
configuration. In the three-terminal configuration (Fig. 7-5a), a currentI flows from a
normal metal N1 into the superconductors. The conductanceG = I /V1 is the ratio ofI
and the voltage differenceV1 between N1 and S1, S2. This corresponds to the experiment
of Den Hartog et al [30]. In the four-terminal configuration (Fig. 7-5b), a currentI flows
from a normal metal N1 into another metal N2. The conductanceG = I /(V1 − V2) now
contains the voltage difference between N1 and N2. This is the configuration studied by
Altshuler and Spivak [29].

Following Ref. [30] we split the conductanceG(B, φ) = G0(B) + Gφ(B, φ) into a
φ-independent background

G0(B) =
∫ 2π

0

dφ

2π
G(B, φ), (7.3.1)

plus 2π -periodic fluctuationsGφ. In the absence of time-reversal symmetry, the ensem-
ble average〈G(B, φ)〉 ≡ 〈G〉 is independent ofB andφ. Hence〈G0(B)〉 = 〈G〉 and
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Figure 7-5. Josephson junction in a three-terminal (a) and four-terminal (b) configuration.

〈Gφ(B, φ)〉 = 0. The correlator ofG is

C(δB, δφ) = 〈G(B, φ)G(B + δB, φ + δφ)〉 − 〈G〉2. (7.3.2)

Fluctuations of the background conductance are described by the correlator ofG0,

C0(δB) = 〈G0(B)G0(B + δB)〉 − 〈G〉2

=
∫ 2π

0

dδφ

2π
C(δB, δφ). (7.3.3)

(In the second equality we used that〈GφG0〉 = 0.) The differenceCφ = C − C0 is the
correlator ofGφ,

Cφ(δB, δφ) = 〈Gφ(B, φ)Gφ(B + δB, φ + δφ)〉. (7.3.4)

We compute these correlators for the three- and four-terminal configurations, beginning
with the former.

In the three-terminal configuration, the cavity is connected to three point contacts (Fig.
7-5a). The contact to the normal metal hasN propagating modes at the Fermi energy, the
contacts to the superconductors haveM/2 modes each. The(N+ M)×(N + M) scattering
matrix S of the cavity is decomposed intoM × M (N × N) reflection matricesr (r ′) and
N × M (M × N) transmission matricest (t ′),

S =
(

r t ′

t r ′

)
. (7.3.5)

The conductance at zero temperature is determined by the matrixshe of scattering ampli-
tudes from electron to hole [12,16],

G = 2 trshes
†
he, (7.3.6)

she = −i t ∗ (1 + ei8re−i8r ∗)−1
ei8t ′.

The diagonal matrix8 has diagonal elements8nn = φ/2 if 1 ≤ n ≤ M/2 and−φ/2 if
1 + M/2 ≤ n ≤ M. We measureG in units of 2e2/h.
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Figure 7-6. Schematic picture how the magnetic field is included in the scattering-matrix ensemble.

A chaotic cavity with a spatially homogeneous magnetic field (left diagram) is statistically equivalent

to a chaotic cavity in zero magnetic field (right diagram), which is coupled to a closed lead (a stub)

having a non-symmetric reflection matrix.

For chaotic scattering without time-reversal symmetry, the matrixS is uniformly dis-
tributed in the unitary group [31]. This is the circular unitary ensemble (CUE) of random-
matrix theory [32]. The CUE does not specify howSat different values ofB is correlated.
The technical innovation used in this section is an extension of the CUE, which includes
the parametric dependence of the scattering matrix on the magnetic field. The method con-
sists in replacing the magnetic field by a time-reversal-symmetry breaking stub (see Fig.
7-6). This idea is similar in spirit to B¨uttiker’s method of modeling inelastic scattering by
a phase-breaking lead [33]. The stub containsNstub modes. The end of the stub is closed,
so that it conserves the number of particles without breaking phase coherence. (B¨uttiker’s
lead, in contrast, is attached to a reservoir, which conserves the number of particles by
matching currents, not amplitudes, and therefore breaks phase coherence.) We choose our
scattering basis such that theNstub× Nstub reflection matrixrstub(B) of the stub equals the
unit matrix atB = 0. For non-zero magnetic fields we take

rstub(B) = eB A, a2 ≡
∑
n<m

A2
nm, (7.3.7)

where the matrixA is real and antisymmetric:Anm = A∗
nm = −Amn. Particle-number

is conserved by the stub becauserstub is unitary, but time-reversal symmetry is broken,
becauserstub is not symmetric ifB 6= 0. In order to model a spatially homogeneous
magnetic field, it is essential thatNstub � N + M. The value ofNstub and the precise
choice ofA are irrelevant, all results depending only on the single parametera.

The magnetic-field dependent scattering matrixS(B) in this model takes the form

S(B) = U11 + U12 [1 − rstub(B)U22]
−1 rstub(B)U21. (7.3.8)

The matricesUi j are the four blocks of a matrixU representing the scattering matrix of
the cavity atB = 0, with the stub replaced by a regular lead. The distribution ofU is
the circular orthogonal ensemble (COE), which is the ensemble of uniformly distributed,
unitary and symmetric matrices [32]. The distribution ofS(B) resulting from Eqs. (7.3.7)
and (7.3.8) crosses over from the COE forB = 0 to the CUE forB → ∞. One can show
(see Ch. 4) that it is equivalent to the distribution of scattering matrices following from
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the Pandey-Mehta Hamiltonian [34]H = H0 + i B H1 [whereH0 (H1) is a real symmetric
(antisymmetric) Gaussian distributed matrix].

It remains to relate the parametera to microscopic properties of the cavity. We do
this by computing the correlator6mn(δB) = 〈Smn(B)S

∗
mn(B + δB)〉 from Eq. (7.3.8).

Using the diagrammatic method of Ch. 6 to perform the average over the COE, we find
(for N + M � 1)

6mn = (N + M)−1
[
1 + (δB/Bc)

2
]−1

, n 6= m, (7.3.9)

with Bc ≡ a−1
√

N + M. This correlator of scattering matrix elements has also been
computed by other methods [35–38]. Comparing results we can identify

a2 = ce2vF L2 min(`, L)/h̄δ, (7.3.10)

with c a numerical coefficient of order unity depending on the shape of the cavity (linear
dimensionL, mean free path̀, Fermi velocityvF , level spacingδ). For example, for a
disordered disk or sphere (radiusL � `) the coefficientc = π/8 for the disk andπ/15 for
the sphere.

We now proceed with the calculation of the correlator of the conductance. We consider
broken time-reversal symmetry (B � Bc) and assume thatN andM are both� 1. Using
the method of Ch. 6 for the average overU , we obtain the average conductance〈G〉 =
2N M/(N + 2M) and the correlator

C(δB, δφ) = 16K N2M2(N + M)2(N + 2M)−4

× (N + M)2 + (N2 + M2K ) cos2(δφ/2)[
(N + M)2 − M2K cos2(δφ/2)

]2 , (7.3.11)

where we have abbreviatedK = [
1 + (δB/Bc)

2
]−2

. Eq. (7.3.11) simplifies considerably
in the two limiting regimesM � N andM � N. For M � N we find

C0(δB) = 24(M/N)2K , (7.3.12)

Cφ(δB, δφ) = 8 (M/N)2 K cosδφ, (7.3.13)

whereas forM � N we have (for|δφ| < π )

C0(δB) =
√

N

8M

[
1 + M

N

(
δB

Bc

)2
]−3/2

, (7.3.14)

Cφ(δB, δφ) = 1

2

[
1 + M

N

(
δB

Bc

)2

+ M

8N
δφ2

]−2

. (7.3.15)

The two regimes differ markedly in several respects:
(1) The 2π -periodic conductance fluctuations are harmonic ifM � N and highly

anharmonic ifM � N. A small incrementδφ ' √
N/M � 2π of the phase difference
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Figure 7-7. Top panels: conductance minus the ensemble average (in units of 2e2/h) as a func-

tion of the phase difference between the superconductors. Bottom panels: normalized correlator

c(δφ) = C(0, δφ)/C(0,0), computed from Eq. (7.3.11). (a) is for N = 120, M = 60; (b) is for N = 10,

M = 160.

between the superconducting contacts is sufficient to decorrelate the conductance ifM �
N.

(2) The variance of the conductance varG = C0(0)+ Cφ(0, 0) has the universal mag-
nitude 1/2 if M � N, while it is reduced by a factor(8M/N)2 if M � N.

(3) The variance varGφ = Cφ(0, 0) of theφ-dependent conductance islarger than the
variance varG0 = C0(0) of the background conductance ifM � N (by a factor

√
M/8N),

while it is smallerif M � N (by a factor 1/3).
(4) The correlatorsCφ(δB, 0) andC0(δB) both decay as a squared Lorentzian inδB/Bc

if M � N. If M � N, on the contrary,Cφ(δB, 0) decays as a squared Lorentzian, while
C0(δB) decays as a Lorentzian to the power 3/2.

The difference between the two limiting regimes is illustrated in Fig. 7-7. The “sample-
specific” curves in the upper panels were computed from Eq. (7.3.6) for a matrixS which
was randomly drawn from the CUE. The correlators in the lower panels were computed
from Eq. (7.3.11). The qualitative difference betweenM <∼ N (Fig. 7-7a) andM � N
(Fig. 7-7b) is clearly visible.

We now turn to the four-terminal configuration (Fig. 7-5b). The two point contacts to
the superconductors haveM/2 modes each, as before; The two point contacts to the normal
metals haveN/2 modes each. The conductance is given by the four-terminal generalization
of Eq. (7.3.6) [39],

G = Ree
21 + Rhe

21 + 2(Rhe
11Rhe

22 − Rhe
12Rhe

21)

Rhe
11 + Rhe

22 + Rhe
12 + Rhe

21

,

Rhe
i j = tr shecj s

†
heci , Ree

i j = tr seecj s
†
eeci , (7.3.16)



Phase-dependent magnetoconductance fluctuations. . . 195

see = r ′ − te−i8r ∗ (1 + ei8re−i8r ∗)−1
ei8t ′.

Here(c1)mn = 1 if m = n ≤ N/2 and 0 otherwise, andc2 = 1 − c1. The matrixshe was
defined in Eq. (7.3.6). Performing the averages as before, we find〈G〉 = N/4 and

C(δB, δφ) = 1
16N2K [(N + M)2 + M2K cos2(δφ/2)]
× [(N + M)2 − M2K cos2(δφ/2)]−2. (7.3.17)

In the regimeM � N this simplifies to

C0(δB) = 1
16K , (7.3.18)

Cφ(δB, δφ) = 3
32 (M/N)2 K 2 cosδφ, (7.3.19)

while in the regimeM � N we find again Eq. (7.3.14) (with an extra factor of 1/16 on the
r.h.s.).

The four-terminal configuration withM � N is similar to the system studied by Alt-
shuler and Spivak [29]. One basic difference is that they consider the high-temperature
regimekBT � h̄/τdwell (with τdwell the mean dwell time of a quasiparticle in the junction),
while we assumeT = 0 (which in practice meanskBT � h̄/τdwell). Because of this dif-
ference in temperature regimes we can not make a detailed comparison with the results of
Ref. [29].

The features of the regimeM <∼ N in the three-terminal configuration agree quali-
tatively with the experimental observations made by Den Hartog et al [30]. In particu-
lar, they find a nearly sinusoidalφ-dependence of the conductance, withCφ(B, 0) being
smaller thanC0(B), while having the sameB-dependence. The magnitude of the fluctua-
tions which they observe is much smaller than what we find for a point-contact coupling
with M andN of comparable magnitude. This brings us to the prediction, that the inser-
tion of a point contact in the vertical arm of the T-junction of Ref. [30] (which is connected
to a normal metal) would have the effect of (1) increasing the magnitude of the magne-
toconductance fluctuations so that it would become of ordere2/h; (2) introducing higher
harmonics in theφ-dependence of the conductance. This should be a feasible experiment
which would probe an interesting new regime.

In conclusion, we have calculated the correlation function of the conductance of a chao-
tic cavity coupled via point contacts to two superconductors and one or two normal metals,
as a function of the magnetic field through the cavity and the phase difference between
the superconductors. If the superconducting point contacts dominate the conductance, the
phase-dependent conductance fluctuations are harmonic, whereas they become highly an-
harmonic if the normal point contact limits the conductance. The harmonic regime has
been observed in Ref. [30], and we have suggested a modification of the experiment to
probe the anharmonic regime as well. We introduced a novel technique to compute the
magnetoconductance fluctuations, consisting in the replacement of the magnetic field by a
time-reversal-symmetry breaking stub. This extension of the circular ensemble is likely to
be useful in other applications of random-matrix theory to mesoscopic systems.



196 Chapter 7: Normal-metal–superconductor junctions



References

[1] B. L. Al’tshuler, Pis’ma Zh. Eksp. Teor. Fiz.41, 530 (1985) [JETP Lett.41, 648
(1985)].

[2] P. A. Lee and A. D. Stone, Phys. Rev. Lett.55, 1622 (1985).

[3] Y. Imry, Europhys. Lett.1, 249 (1986).

[4] K. A. Muttalib, J.-L. Pichard, and A. D. Stone, Phys. Rev. Lett.59, 2475 (1987).

[5] P. A. Mello, Phys. Rev. Lett.60, 1089 (1988).

[6] A. D. Stone, P. A. Mello, K. A. Muttalib, and J.-L. Pichard, inMesoscopic Phenom-
ena in Solids, edited by B. L. Al’tshuler, P. A. Lee, and R. A. Webb (North–Holland,
Amsterdam, 1991).

[7] F. J. Dyson and M. L. Mehta, J. Math. Phys.4, 701 (1963).

[8] C. W. J. Beenakker, Phys. Rev. Lett.70, 1155 (1993).

[9] A. F. Andreev, Zh. Eksp. Teor. Fiz.46, 1823 (1964) [Sov. Phys. JETP19, 1228
(1964)].

[10] For a review, see: C. W. J. Beenakker, inMesoscopic Quantum Physics, edited by
E. Akkermans, G. Montambaux, J.-L. Pichard, and J. Zinn-Justin (North-Holland,
Amsterdam, 1995).

[11] I. K. Marmorkos, C. W. J. Beenakker, and R. A. Jalabert, Phys. Rev. B48, 2811
(1993).

[12] C. W. J. Beenakker, Phys. Rev. B46, 12841 (1992).

[13] C. W. J. Beenakker and B. Rejaei, Phys. Rev. Lett.71, 3689 (1993); J. T. Chalker and
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Samenvatting

Deze samenvatting bevat een beknopt overzicht van de in dit proefschrift behandelde on-
derwerpen uit de toevalsmatrixtheorie van quantumtransport.

In de quantummechanica leren we de beweging van elektronen te beschrijven door een
golfvergelijking, met de bijbehorende golfverschijnselen als buiging en interferentie. In
de vaste stof begint het quantummechanische karakter van de elektronen een rol te spe-
len bij kleine afstanden (een micrometer en kleiner) en bij lage temperaturen (een Kelvin
en lager). Voor grotere afstanden en hogere temperaturen gaat het golfkarakter van de
elektronen verloren en volstaat een beschrijving volgens de klassieke mechanica. De be-
naming quantumtransport wordt gebruikt in die gevallen waarin de elektrische geleiding in
belangrijke mate bepaald wordt door het golfkarakter van de elektronen.

Het geleidingsvermogen van een metaal- of halfgeleiderdeeltje wordt bepaald door ver-
strooiing van elektronen aan verontreinigingen of roosterdefecten. Een geringe verschui-
ving van een verontreiniging of defect kan het quantummechanische interferentiepatroon,
en dus het geleidingsvermogen, aanmerkelijk veranderen. Aangezien het in de praktijk
onmogelijk is de plaats van alle defecten precies te kennen, is een statistische aanpak
vereist voor een theorie van quantumtransport: niet de eigenschappen van ´eén bepaald
deeltje staan centraal, maar de kansverdeling voor deeltjes die macroscopisch equivalent
zijn (eenzelfde afmeting en dichtheid van verontreinigingen), maar microscopisch verschil-
lend (verontreinigingen op verschillende plaatsen). In dit proefschrift gebruiken we de to-
evalsmatrixtheorie als het wiskundige kader waarbinnen zo’n statistische beschrijving van
quantumtransport gegeven wordt.

De toevalsmatrixtheorie werd in de zestiger jaren ontwikkeld in de kernfysica voor de
beschrijving van verstrooiing aan zware atoomkernen. De toepasbaarheid voor quantum-
transport is een recente ontdekking. De toevalsmatrixtheorie doet statistische uitspraken
over matrices met toevallig gekozen elementen. De matrix waar het in ons probleem om
gaat is de verstrooiingsmatrix, die de relatie tussen de amplitudes van de ingaande en uit-
gaande golven geeft. Als gevolg van ladingsbehoud is de verstrooiingsmatrix unitair. Ver-
der voldoet hij aan symmetrie-eisen, opgelegd door de fundamentele symmetrie¨en van het
systeem, zoals tijdsomkeersymmetrie of spin-rotatiesymmetrie. Als de verstrooiingsma-
trix bekend is, dan weten we ook het geleidingsvermogen. Daarom is het belangrijk, de
kansverdeling van de verstrooiingsmatrix te bestuderen.

In de hoofdstukken twee tot en met vier beschouwen we de kansverdeling van de ver-
strooiingsmatrix voor een verzameling van chaotische “quantumstippen”. Een quantumstip
is een metaal- of halfgeleiderdeeltje dat zo klein is, dat de afstand tussen de energieniveaus
groter is dan de thermische energie. Dit betekent, dat het quantummechanische interferen-
tiepatroon van de elektronen niet wordt uitgesmeerd door hun warmtebeweging (vandaar
het voorvoegsel “quantum”). Men noemt een quantumstip “chaotisch” als de klassieke be-
weging van de elektronen chaotisch is. De stroom door een quantumstip loopt via twee
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puntcontacten, die zo klein zijn dat een elektron eerst het hele volume doorloopt, alvorens
door één van de puntcontacten te ontsnappen. Van buitenaf gezien heeft een quantum-
stip daardoor geen ruimtelijke structuur, en lijkt hij op een “nul-dimensionaal” systeem,
hetgeen de benaming “stip” verklaart. Een verzameling van macroscopisch equivalente
quantumstippen wordt verkregen door de vorm of de Fermi-energie te veranderen.

Volgens de toevalsmatrixtheorie is de verstrooiingsmatrix van een chaotische quantum-
stip met ballistische puntcontacten “zo toevallig mogelijk”: zij is uniform verdeeld in de
groep van unitaire matrices, slechts beperkt door de fundamentele symmetrie¨en van het
systeem. Het is essentieel dat de puntcontacten ballistisch zijn. Dat wil zeggen, dat er in
de contacten geen reflecties optreden. In hoofdstuk twee breiden we de theorie uit naar
quantumstippen met niet-ballistische puntcontacten waarin reflectie optreedt aan een tun-
nelbarrière. Het belangrijkste resultaat van dit hoofdstuk is een bewijs van de geldigheid
van de toevalsmatrixtheorie uitgaande van de bekende verdeling van de Hamiltoniaan van
het systeem. Zo heeft de toevalsmatrixtheorie een microscopische grondslag gekregen.

In het derde hoofdstuk van dit proefschrift gaan we in op de gevolgen van het ver-
breken van de fasecoherentie door inelastische processen in quantumstippen. Bij eindige
temperatuur treden dergelijke processen altijd op, voornamelijk ten gevolge van wisselw-
erking tussen de elektronen. Een gecontroleerde manier om fasecoherentie te verbreken
is een meting van de elektrische spanning van een quantumstip. Omdat een spanningsme-
ter (bij benadering) geen stroom trekt, zal ieder elektron dat van de quantumstip naar de
spanningsmeter gaat, door een ander elektron uit de spanningsmeter worden vervangen.
De golffunctie van dit andere elektron heeft een willekeurige andere fase, en kan dus geen
aanleiding meer geven tot quantuminterferentie. We berekenen de kansverdeling van het
geleidingsvermogen voor een quantumstip met spanningsmeter, gebruikmakend van de to-
evalsmatrixtheorie van het vorige hoofdstuk. Vervolgens gebruiken we de spanningsmeter
als een model voor inelastische processen bij eindige temperatuur.

In hoofdstuk vier staat de “vertragingstijd” in een chaotische quantumstip centraal. Dit
is de tijd die een elektron in het deeltje doorbrengt, voordat het door een van de punt-
contacten ontsnapt. De vertragingstijd hangt nauw samen met de energie-afgeleide van
de logarithme van de verstrooiingsmatrix, de zogenaamde Wigner-Smith vertragingstijd-
matrix. In tegenstelling tot de verstrooiingsmatrix zelf, was over de kansverdeling van de
vertragingstijdmatrix weinig bekend. Wij zijn er in geslaagd de kansverdeling van de ver-
tragingstijdmatrix te berekenen. Deze verdeling stelt ons in staat om de frequentie- en
energieafhankelijkheid van het geleidingsvermogen van een quantumstip te bepalen.

In hoofdstuk vijf verschuift de aandacht van nuldimensionale systemen (stippen) naar
ééndimensionale systemen (draden). Als een gevolg van destructieve interferentie, strekken
de golffuncties zich in een wanordelijke draad slechts over een eindige afstand, de loka-
lisatielengte, uit. Bijgevolg is een draad die langer is dan de lokalisatielengte een isolator.
Er zijn twee theoretische methoden om lokalisatie in wanordelijke draden te beschrijven:
de veldentheorie van Efetov en Larkin, en de toevalsmatrixtheorie van Dorokhov, Mello,
Pereyra, en Kumar. In de eerstgenoemde methode wordt het quantummechanische diffusie-
proces beschreven door het niet-lineaireσ -model, bekend uit de hoge-energiefysica. In de
laatstgenoemde theorie wordt de draad opgebouwd uit dunne plakjes, die ieder een on-
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afhankelijk gekozen verstrooiingsmatrix hebben. De kansverdeling van de verstrooiings-
matrix van de gehele draad volgt dan uit een Fokker-Planckvergelijking. Hoewel deze twee
theorieën in het begin van de tachtiger jaren aan hetzelfde instituut (het Landau Instituut in
Moskou) bedacht zijn, hebben ze zich sindsdien geheel los van elkaar ontwikkeld. In dit
hoofdstuk laten we zien, dat ze wiskundig equivalent zijn.

In de voorgaande hoofdstukken hebben enkele basisprincipes van de toevalsmatrix-
theorie van quantumtransport door chaotische quantumstippen en wanordelijke draden de
revue gepasseerd. Om de toevalsmatrixtheorie daadwerkelijk toe te passen, is wiskundig
gereedschap nodig om statistische gemiddelden van functies van toevalsmatrices te bereke-
nen. Een veel voorkomend probleem is het nemen van een gemiddelde over de groep van
unitaire matrices. Dit treedt bijvoorbeeld op als het gemiddelde geleidingsvermogen van
een chaotische quantumstip berekend wordt. Voor kleine unitaire matrices (bijvoorbeeld
de 2× 2 verstrooiingsmatrix van een quantumstip met puntcontacten die slechts ´eén mode
doorlaten) kan dat door de matrix te parametriseren in Eulerhoeken. Als de matrices groter
zijn, is dat praktisch niet meer mogelijk. Om toch over groteN × N unitaire matrices te
kunnen middelen, hebben we een diagrammatische techniek ontwikkeld. Deze techniek
stelt ons in staat om een integraal over de unitaire groep als een systematische ontwikkel-
ing in 1/N uit te rekenen. Hoofdstuk zes bevat een beschrijving van de techniek en enkele
toepassingen.

Tenslotte behandelen we in hoofdstuk zeven de toepassing van de toevalsmatrixtheorie
op het geleidingsvermogen van een junctie tussen een normaal metaal en een supergeleider.
Aan het grensvlak tussen het normale metaal (N) en de supergeleider (S) treedt Andreevre-
flectie op: elektronen worden gereflecteerd als gaten. (Een gat is een lege toestand onder
het Ferminiveau, terwijl een elektron een volle toestand boven het Ferminiveau is). Door
de combinatie met Andreevreflectie zijn allerlei quantuminterferentieverschijnselen in NS-
juncties gevarieerder en verrassender dan in gewone metalen. De toevalsmatrixtheorie is
uitermate geschikt om quantumtransport door NS-juncties te beschrijven, omdat alle trans-
porteigenschappen van NS-juncties direct volgen uit de verstrooiingsmatrix van het nor-
male metaal, en de toevalsmatrixtheorie een volledige beschrijving geeft van de kansver-
deling van die matrix. In hoofdstuk zeven berekenen we de zwakke-lokalisatiecorrectie op
het gemiddelde geleidingsvermogen en de fluctuaties rond het gemiddelde. Zwakke loka-
lisatie is een afname van het middelde geleidingsvermogen ten opzichte van de “klassieke”
waarde. In tegenstelling tot een normaal metaal, waar de zwakke lokalisatie onderdrukt
wordt als tijdsomkeersymmetrie wordt verbroken door een magneetveld, blijft zwakke lo-
kalisatie in een NS-junctie bestaan in aanwezigheid van een magneetveld.
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