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1 Introduction

Electronic systems intermediate between the macroscopic and microscopic regimes are
referred to as “mesoscopic”’. Mesoscopic systems are so small, that a complete quantum-
mechanical treatment of the electrons is required if one wants to describe its transport
properties. On the other hand, they are so large, that an exact microscopic description,
starting from the precise location of impurities and sample boundaries, is not useful, since
only the slightest change of the microscopic details will completely change the result. In-
stead, in mesoscopic physics, a statistical approach is taken: one considers an average over
an ensemble of macroscopically equivalent, but microscopically different samples. An ex-
ample of such an ensemble is a set of dirty wires with the same density of impurities, but
with different impurity configurations.

This thesis is about the random matrix theory of quantum transport through mesoscopic
systems. The adjective “quantum” indicates that the quantummechanical motion of the e-
lectrons is essential. Transport properties of a mesoscopic system can differ significantly
from what one would expect on the basis of a classical description. Well-known exam-
ples are universal conductance fluctuations and weak localization in disordered wires. The
signatures of phase-coherent transport exhibit a high degree of universality. They are inde-
pendent of sample size or disorder strength and depend entirely on the dimension and the
fundamental symmetries of the system (time-reversal symmetry, spin-rotation symmetry).
Random matrix theory, originally introduced by Wigner and Dyson to describe the fluctu-
ation properties of resonance spectra of heavy nuclei, provides a natural tool for the study
of mesoscopic physics, the universality of quantum interference phenomena in mesoscopic
systems being intimately connected to the universality of the statistical properties of the
eigenvalues and eigenvectors of large random matrices. For a review of quantum transport
in mesoscopic systems, the reader is referred to Refs. [1-3]. The random matrix theory of
guantum transport of reviewed in Ref. [4, 5].

In this thesis we establish the relation between random matrix theory of quantum trans-
port and a microscopic description, we discuss how to include deviations from the universal
behavior due to the presence of tunnel barriers or dephasing into the random matrix theory,
and we consider the dependence of transport properties on an external parameter (Fermi
energy, magnetic field). Special attention is paid to normal-metal-superconductor junc-
tions, where the interplay between the phase coherent motion in the normal metal and the
superconductivity gives rise to a wide variety of unusual quantum interference phenomena.
The present chapter contains background material and a brief introduction to these topics.
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1.1 Scattering theory

The scattering matrix represents the solution of the &tihger equation for a sample that

is connected to semi-infinite leads, in a way that is appropriate for a theory of quantum
transport. Below we recall the definition of the scattering matrix and its relation to the
conductance via the Landauer formula.

1.1.1 Definition of the scattering matrix

In Fig. 1-1 a mesoscopic sample connected to two ideal leads is shown. For simplicity
we assume that the leads are two-dimensional with the same Widi#e consider non-
interacting spinless “electrons” that are described by a&tihgér equation

1 [i hv + EA(r*)]zw(r*) + V)Y () = Ey () (1.1.1)
2m c ’ o

whereV () is the impurity potentiaIA(F) the vector potential, and the boundary conditions
are such that the wavefunctian(r) vanishes outside the sample and the leads. Inside the
ideal leads, the potentidl (r) and the magnetic field vanish. Hence the solution of the
Schidinger equation is a combination of plane waves moving to and from the sample,

Y = (kW) "2cogkyy) e®* K2+ ki =k>= ZhLZ,E (1.1.2)
The coordinates andy refer to the longitudinal and transversal directions, respectively
(see Fig. 1-1), and the wavefunctions in Eq. (1.1.2) are normalized such that they carry unit
flux. Because of the boundary conditigtix, £W/2) = 0, the transversal momentupis
quantized. It can takbl = int(kW/x) different valueky = nw/Wwithn=1,2,..., N,
and thus definebl propagating modes in the lead. Sometimes, these modes are referred to
as “channels”. We denote the modes in the left (right) leag/By (v, R) andy 2" (0R),
where the superscript(o) is for waves moving towards (from) the sample.

Inside the leads, every solution of the Safliiger equation (1.1.1) can be written as
a sum of ingoing and outgoing propagating waves and evanescent waves [solutions of the
form (1.1.2) with imaginarky]. Far from the sample, the evanescent waves play no role,

and only the propagating waves remain,

N
v = Y [yt @) +ctypt)] if x > —oo, (1.1.3)

S
|
[

[ARWIRF) + SRy ORT)] if x — oo. (1.1.4)

<
:l

I
M=z

>
Il
[

The solution of the Scldinger equation provides a linear relation between coefficients
c't, ¢'R, c°L, andc®R, which we write as

oL iL
(EoR) = S(E)(EiR). (1.1.5)
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Figure 1-1. Mesoscopic sample (dotted) connected to two semi-infinite ideal leads. The leads have
width W and the sample is located between x = —L/2and x = L /2.

(Herec't is the column vector of the coefficients- etc...) By defiftion, the 2N x 2N
matrix Sis the scattering matrix. Itis convenient to decomp8sato N x N transmission
and reflection matrices r’, t, andt’,

S= ( r v ) (1.1.6)
t r’

For a wave approaching the sample through the left lead, the reflection matscribes
the reflected wave exiting through the left lead, and the transmission rhdgscribes the
transmitted wave in the right lead. Similarty,andt’ describe reflection and transmission
for waves coming from the right lead.

Flux conservation requires that the scattering matrix is unitary

SS =1. (1.1.7)

If the Hamiltonian preserves time-reversal symmetry [i.e. if there is no vector poténtial
in Eqg. (1.1.1)], we find that for every solutian(r), the time-reversed wave functigi ()

is a solution of the Scladinger equation as well. Under the operation of time-reversal, the
coefficientsx:in (c,) map to the complex conjugate®" (cin*;). Hence we have

(S;) = S(EZ;) . (1.1.8)

It follows that the scattering matri® obeysS S = 1. In combination with flux conserva-
tion [Eq. (1.1.7)], we find that the scattering matBis symmetricS = ST (the superscript
T indicates the transpose of a matrix).

For particles with spin A2, the wave function/ () in Eq. (1.1.1) is a spinor,

1 e
¥(F) = < %Eg > (1.1.9)

Describing the scattering states in the leads by spinor coeffioin{gnw]d c as well, we
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Figure 1-2. Two mesoscopic samples in series. The samples are connected by an ideal lead, so
that a scattering approach is appropriate. The left sample has scattering matrix S, the right sample
has scattering matrix $.

arrive at a scattering matri® that consists of complex quaterniohsAs in the case of
spinless particles, flux conservation requires that S unitary, S§ = 1. Under the
operation of time-reversal, the spinor coefficiem#ic%) map toi oy cy* (i aycin?;), whereoy
is the second Pauli matrix. It follows that the scattering ma&obeysSS = 1, where
S* is the quaternion complex conjugate.

Let us now consider the scattering matrix of two mesoscopic samples in series (see
Fig. 1-2). We assume, that the two samples are connected by an ideal lead, so that their
scattering matrice§, and S are well defined. By elimination of the amplitudes of the
propagating waves in the lead connecting the two samples, we find the scatteringSnatrix
of the complete system. It has reflection and transmission matrices

ro= ri+tQ-rjra) "t

t = t(l-rir)™, (1.1.10)
t = tL—ra)~y B
(= rp+td—rapTiiy,

A more convenient way to find the scattering properties of two samples in a series is the
use of a transfer matrikl. The transfer matrix relates the amplitudes in the left and on the

right of the sample,
CoR CiL
(CiR> = M(C0L>. (1.1.11)

Transfer matrices have a multiplicative composition law,

M = MoMy. (1.1.12)

1A quaternionq is a linear combination of the unit matrix and the three Pauli matriges; qoll +
i stzl gjoj. A quaternion is called real (complex) if the componegt§j = 0, 1, 2, 3) are real (complex)
numbers. Quaternions have different rules for the complex conjugate, transposition, and the trace: The
complex (hermitian) conjugatg’ = q; + i ng’zl qj*crj (qf = gg — | Zf’zl qj*crj). The trace of a quaternion
is trq = go. The complex (hermitian) conjuga@* (Q') of a quaternion matrixQ is the (transpose of
the) matrix of complex (hermitian) conjugates. The d@& = Q*'. The trace of a quaternion matrix is

> trQii.
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Figure 1-3. Mesoscopic sample (dotted) connected to two electron reservoirs by ideal leads. A
voltage difference 6§V = (1/e)du between the reservoirs causes a current | through the sample.

Analogous to the decomposition of the scattering matrix in terms of reflection and trans-
mission matrices, we can also decompose the transfer matrix in four blocks,

M = <m“ mlz). (1.1.13)

mp1 M2

The four blocks ofM are related to the reflection and transmission matrices t, andt’
through

mp1 = tT_l, m12=r/t/_l, m21:—t/_1r, m22=t’_1, (1.1.14)
ot o= —mpimpy, ' =mpmy} t=mit t'=my; (1.1.15)

The multiplicative composition law makes the transfer matrix appropriate for a description
of quantum transport through a disordered wire.

1.1.2 Landauer formula

The viewpoint that conductance can be seen as a scattering problem goes back to Landauer
[7], and has been developed by Imry [8) tBKer [9], and others. (See Ref. [1] for a review
with more applications.)

To derive the Landauer formula, we consider a mesoscopic sample at zero temperature
which is connected to electron reservoirs 1 and 2 by means of two ideal leads (Fig. 1-
3). The reservoirs are held at chemical potentiajsand ». States with ingoing wave
boundary conditions for lead 1 are fed from reservoir 1, so they are occupied for energies
E < u1. Similarly, states coming from lead 2 are occupied for energies 2. Per mode
and per unit of energy, the current that is injected from a reservoir into the leadshs 2
For current injected from reservoir 1 in modea fraction) ltmnl? is transmitted into
lead 2, the rest is reflected back into lead 1. Similarly, for the current that is injected from
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reservoir 2 in mode, a fractiony_, . |t/,,|2 is transmitted into lead 1, the remainder being
reflected. It follows that the currentsis given by

N — -
2e M1 n2 ,
= T2 | [ dEGm— i ®P) ~ [ B ENR] .
m,n:l' .
2e N o opm 2 M2 / 2_
= T2 | Bt ®rR - [ dEGm - @D | (1116
m,n:l_ .

Here we definednym(E) = r/,,,(E) = dmn andtmn(E) = t/,,,(E) = 0 if the mode corre-
sponding ton or m is not propagating at enerdy. Unitarity of S ensures that = O if
u1 = 2. To first order in the differenc&u = 1 — w2, we find

N
2e
8l =+ D ltmn() 8. (1.1.17)

m,n=1

Hence the conductan€& = §1 /§V = esl /§u is given by the formula

28 2€?
G = T Z |tmn|2 - ?trttT,

m,n=1

(1.1.18)

which is known as the Landauer formula.

1.2 Random matrix theory of a quantum dot

Since the 1950s, when Wigner and Dyson [10-12] first proposed random matrix theory
as a tool for the statistical analysis of resonance spectra of heavy nuclei, random matrix
theory has found applications in many other branches of physics, including atomic physics,
mesoscopic physics, quantum chromo dynamics, and biophysics [13].

In mesoscopic physics, the Wigner-Dyson random matrix theory is appropriate for a
statistical description of chaotic quantum dots. A quantum dot is a small metal island, usu-
ally confined by gates, and coupled to electron reservoirs by point contacts. The adjective
chaotic is used for weakly disordered quantum dots (metal grains) as well as for ballistic
dots where the classical motion of the electrons is chaotic. On time scales longer than
the timeterg Needed for ergodic exploration of the phase space, disordered and ballistic
guantum dots show the same universal behavior. For a disordered dot with, $teemi
velocity vg, and mean free path the ergodic time is the time of diffusion through the
quantum dotgerg = L2/vpl (Ec = h/terg is the Thouless energy). For ballistic dots,
Terg ~ L/vE. In @ chaotic quantum dot, the other relevant time scales (dwell tina,
dephasing time,) are much larger than the ergodic time. In this sense, a quantum dot is
effectively zero-dimensional, which explains the origin of the name “dot”.

Here some of the basic concepts of the Wigner-Dyson random matrix theory are re-
viewed, with an emphasis on the applications to chaotic quantum dots.
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1.2.1 Closed system: random Hamiltonian

A closed quantum dot is characterized through its energy levels and wavefunctions. The
precise value of the energy levels and the amplitude of the wavefunction is very sensitive
to the impurity configuration or the sample boundaries. Therefore, one usually considers
a statistical ensemble of chaotic quantum dots, which have slightly different shapes, Fermi
energy, or impurity configuration. Statistical properties of the energy levels and wavefunc-
tions for such an ensemble turn out to be universal. They are independent of the size or
shape of the quantum dot, or the impurity concentration, and depend entirely on the basic
symmetries of the system: time-reversal symmetry, spin-rotational symmetry, and spatial
symmetries. The universality breaks down if energy differences exceed the inverse ergodic
time h/terg, i.€. if the non-chaotic dynamics on time scales shorter thgfis probed.

The universal statistical properties of a chaotic quantum dot are the same as those of a
big random Hermitian matri¥d that has the same symmetries as the microscopic Hamil-
tonian of the quantum dot. For a disordered quantum dot, this correspondence was first
conjectured by Gorkov and Eliashberg [14], and later proven by Efetov [15]; for ballis-
tic dots, numerical evidence was first given by Bohigas, Giannoni, and Schmit [16], and
an analytical justification was given only very recently by Andreev, Agam, Simons, and
Altshuler [17]. The energy levels of the quantum dot correspond to the eigenvalues of the
random matrixH, and the wavefunction to its eigenvectors. The precise distribution of the
random matrixH is not relevant. This is the celebrated universality of random matrix the-
ory. Itis the same universality that governs the statistical properties of the energy levels and
wavefunctions of a chaotic quantum and ensures that they do not depend on microscopic
details.

Random matrix theory was developed by Wigner and Dyson for the study of nuclear
resonance spectra. Wigner originally proposed an ensemble of Hermitian madrices
where all matrix elements are independent Gaussian distributed random numbers. This
is the Gaussian ensemble of random-matrix theory. One distinguishes three fundamen-
tal symmetry classes, depending on whether the elemertisak real, complex, or real
guaternion numbers. The three classes are labeled by the symmetngingiich counts
the degrees of freedom of the matrix elementdHof 8 = 1, 2, or 4 if the elements of
H are real, complex, or real quaternion numbers, respectively. Real matrices are appro-
priate for systems with time-reversal symmetry, complex matrices describe a system in
which time-reversal symmetry is broken by a magnetic field, while matrices of real or
complex quaternions describe a system of sgih darticles, where spin-rotation symme-
try is broken by a spin-orbit interaction. (Hermitian matrices of complex quaternions are
not considered explicitly; they behave the same as complex matrices of the double size.)
The four possibilities are summarized in Table 1-1.

Though mathematically convenient, the Gaussian distribution is not essential. Itis more
natural to consider an ensemble of Hermitian matrices with a distribution of the general
form

P(H) oc exp[—ptrV(H)], (1.2.1)

whereV is some function oH. The choiceV (H) « H? corresponds to the Gaussian
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TRS | SRS elements oH symmetry index
yes | yes real numbers =1
yes | no real quaternions B=4
no | yes | complexnumbers
no | no | complex quaternion

B =2
B =2

1v2)

Table 1-1. Four symmetry classes, depending on the presence/absence of time-reversal symmetry
and spin-rotational symmetry (SRS). The case 8 = 2 refers to both cases where time-reversal
symmetry is broken.

ensemble. (The factg in the exponent is added for convenience.) Egf. . ., Ey be the
eigenvalues of th& x M hermitian matrixH, and letU be the matrix of its eigenvectors.
The matrixU is orthogonal (unitary, symplectic) fgr = 1 (2, 4). (It is assumed that the
distribution ofH does not depend on the eigenvector mdtkrix To find the distribution of
the eigenvalueg;, we use the jacobian between the volume elemeéhtsind the volume
elementslU for the matrixU and[[; dE; for the eigenvalueg;,

M M
dH =dUJ({E ) [ [dE. JAED =]]IE - EIf. (1.2.2)
j=1 i<j

The volume elemerdU corresponds to the invariant measure on the orthogonal (unitary,
symplectic) group. The distribution of the eigenvaluds thus reads

N
P({Ej}) o J({Ej})ne—ﬁV(Ej)
j=1

N
= exp[BY _INIE —Ej|— B _V(E) . (1.2.3)
1

<] i=

The jacobianJ ({Ej}) causes a repulsion between the levglsaandE; (i, j = 1,..., M),
proportional to|Ej — E; |#.3 The distribution (1.2.3) resembles a partition function for a
gas ofN particles in one dimension at positioks, subject to a potentia¥ (E), and with

a logarithmic Coulomb interaction. The symmetry ingexlays the role of the inverse
temperature.

2The invariant or Haar measudéJ on the orthogonal (unitary, symplectic) group is the unique measure
dU that is invariant under the group transformatidhs— VUV’, whereV is an arbitrary orthogonal
(unitary, symplectic) matrix. An explicit representation of the invariant measure can be found in Sec. 3.1 of
this thesis.

3To see why the repulsion between levElsand Ej is proportional tolEj — E; |2, notice that to first
order in perturbation theory for nearly degenerate lei#land Ej, the difference Ej — Ej)2 = ((i|H]i) —
(JIH[j)2+4(i|H[]j)I2 The total number of degrees of freedom on the r.h s, henceP (Ej — Ej)
|Ei — Ejl°.
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The random matriH serves as a model for a microscopic Hamiltonian only if we take
the limit M — oo. Contact with a physical Hamiltonian is then made for the distributions
of afinite number of levels and/or eigenfunction elements, but not for the joint distribution
of all M eigenvaluestj. While Eq. (1.2.3) contains the joint distribution afl levels,
the main problem in random matrix theory is to extract the physically relevant statistical
properties that concern onlyfeawlevels, such as the density of states, level correlators, or
spacing distributions.

The distribution (1.2.3) of the eigenvalu&s consists of two parts: the Jacobian fac-
tor J({E;j}), accounting for the “interaction” between the energy levels, and the potential
V (E). Their roles are quite different. The potentialE) determines the average density
of statesp(E)), where

p(E) =) 8(E—Ej). (1.2.4)
j

For the Gaussian ensemble withtH) = M H?2/422 we find for largeM and for all three
symmetry classe8 = 1, 2, and 4

(p(B)) =

5oV M2~ E2, (1.2.5)

The parametek governs the mean level spacidg= = A/M at the originE = 0. The
density of states for the Gaussian ensemble is known as Wigner’'s semi-circle law. The
semi-circular density of states is a characteristic of the Gaussian ensemble, and has no
physical relevance: different potentidlshave different densities of states.

While the average density of states is determined by the potadntitile fluctuations
around the average are determined by the level interactions originating from the jacobian
J({E;}) rather than by the potentia, provided energy differences are measured in units
of the mean level spacing. The jacobian] ({E;j}) only depends on the symmetry index
B. Hence, up to a scaling factay, spectral fluctuations are universal, and do not depend
on the details of the random matrix ensemble. An example is the two-level correlator [6],

To(E, E') = (0(E)p(EN) — (p(E))(p(EN) — (p(E))S(E — E), (1.2.6)

which takes the value
sirP[z(E — E')/A]
7T2(E _ E/)Z ’
if M — oo, irrespective of the confining potentigl. Eq. (1.2.7) holds for the unitary
ensemblef = 2). The expressions for the orthogonal and symplectic ensembles)
and 4) are also universal, but more complicated.
For a random matrix ensemble, the universality of the spectral correlators breaks down
at energy differences which are comparable to the energy Egade which variations of
the mean density of statés(E)) occur. For the Gaussian ensemble, this is the scale.
the width of the semi-circle. The universality of random matrix theory implies that the ratio
E./A — oo asM — oo for each potentiaV/. In a real quantum dot, the role of the cutoff
energyEc is played by the inverse ergodic tinhgterg: Spectral correlators are universal
for energy differences belo®, only; they are sample-specific for distances abbBye

To(E,E') = — (1.2.7)
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The circular ensembles, introduced by Dyson [18], consist of unitary rather than Her-
mitian matrices. Dyson used the circular ensembles as a mathematically more elegant tool
to study level statistics. In contrast to Hermitian matrices, the unitary matrices form a com-
pact manifold. Hence there is no need to introduce a potevitial ensure normalization
of the probability distribution in the circular ensemble. There are three circular ensembles,
consisting of uniformly distributed unitary symmetric, unitary, and unitary self-dual matri-
ces (a unitary self-dual matrix is a unitary matfxonsisting of complex quaternions that
satisfiesSS = 1), and labeled by = 1, 2, and 4, respectively. They are called the circu-
lar orthogonal ensemble (COE), circular unitary ensemble (CUE), and circular symplectic
ensemble (CSE).

An N x N matrix Sfrom the circular ensemble has eigenvaldéswith 0 < ¢j < 27
andj =1,..., N, while the eigenvectors form an orthogonal (unitary, symplectic) matrix
U for 8 = 1 (2, 4). The uniform distribution o® implies the distribution

Pgih o [ [ 1€ — €91 (1.2.8)

i<]j

for the eigenphasef . In Dysons original picture, the eigenphagesire viewed as energy
levels. Their mean level spacing4s = 27 /N. In the limit N — oo, the statistics of the
eigenphaseg; on the scaleA turns out to be the same as those of the energy Idugls
from the Gaussian ensemble. This is another manifestation of the universality of random
matrix theory.

1.2.2 Open system: Random scattering matrix

While a closed quantum dot is characterized by energy levels and eigenfunctions, an open
dot which is connected to leads is described through its scattering nsatiike aim of

a random matrix theory of quantum transport is a random matrix theory of the statistical
distribution of the scattering matrix.

The distribution of the scattering matrix of an open quantum dot is less universal than
the distribution of the energy levels and wavefunctions of a closed quantum dot. The
reason is quite trivial, because the scattering matrix depends on the size and transparency
of the point contacts. If the point contacts are wide, the dimenbiaof the scattering
matrix is large; if they are narrow\ is small. Similarly, if the contacts contain a tunnel
barrier, most particles are reflected before they can even enter the dot, so that elements of
transmission matricesandt’ are typically smaller than those of the reflection matrices
andr’. Apart from this trivial nonuniversality, the statistics of the scattering matrix of a
chaotic quantum dot is universal in the sense that it does not depend on the size or shape of
the quantum dot and on the impurity concentration. The only condition for universality is
that the particles explore the complete phase space ergodically before they exit, i.e. that the
dwell time rqwei must be much larger than the ergodic timg. This condition is satisfied
for a chaotic quantum dot with point contacts. Another difference between a random matrix
theory of the scattering matrix and the random matrix theory of energy levels is that, unlike
the Hamiltonian, the scattering matrix is by definition a finite-dimensional matrix. We
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Figure 1-4. The Wigner-Dyson random matrix theory for the scattering matrix is appropriate if the
dwell time zgwell 3> Terg, Where terg is the time needed for ergodic exploration of the phase space of
the sample. This condition is obeyed in chaotic quantum dots (left), but not in bulk metals with wide
contacts (right).

can not take the limiN — oo for an ensemble of scattering matrices; leads with one
propagating mode at the Fermi level can be well realized in experiments, so thata 2
scattering matrix makes perfect sense. While the universality of random matrix theory for
large random matrices ensures that the choice of the precise po¥ntidtq. (1.2.1) is
irrelevant for the level statistics, no such freedom exists for a random matrix theory of the
scattering matrix.

Two approaches are used to obtain a random matrix theory of the scattering matrix of
a chaotic quantum dot. The first approach is the “Hamiltonian approach”. It uses random
matrix theory for theM x M HamiltonianH of the closed quantum dot without leads,
and then constructs tHe x N scattering matriXS(E) from H using a standard method in
scattering theory, known &-matrix theory,

1-iK 1

K =W w, 1.2.9
1+iK’ E_H ( )

S(E) =

HereW is a non-randonN x M matrix containing the matrix elements between the states
of the sample without leads and the scattering states in the leads. All non-universalities that
have to do with the contacts are contained in the maifixSince the limitM — oo has
been taken for the random matrik, the statistics of the finite-dimensionidl x N scat-
tering matrixS does not depend on the precise distributiotofit is universal. A review
of the Hamiltonian approach can be found in Ref. [19]. Verbaarschot, Weidérrand
Zirnbauer [20] have mapped the Hamiltonian approach to the zero-dimensional supersym-
metric non-lineas model of Efetov [15], which in turn has been derived from microscopic
models [15,17].

The second approach is the “scattering matrix approach”. It consists of a random ma-
trix theory which applies directly to the scattering mat8xwithout the intermediate use
of a Hamiltonian. In contrast to the Hamiltonian approach, where the distributibhisf
irrelevant, in the scattering matrix approach the details of the distributi@aoé impor-
tant. Blimel and Smilansky [21] have proposed that scattering from a chaotic quantum dot
with ballistic point contacts is described by the circular ensemble,

P(S) = constant (1.2.10)

whereSis only restricted by symmetngis symmetric for3 = 1 and self-dual fog = 4).
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Baranger and Mello [22], and Jalabert, Pichard, and Beenakker [23] have investigated
the consequences of Eg. (1.2.10) for quantum transport. For this purpose, the polar decom-
position of the scattering matrix is used,

u 0 VI=T iJT u 0
S:<O v’>( ivT «/1—T>(O v)’ (12.11)

whereu, U, v, andv” areN x N unitary matrices and” is a diagonal matrix. In the pres-
ence of time-reversal symmetry, we have’’ = 1, v*v" = 1. The (diagonal) elemenis

(j =1,..., N)of T are the eigenvalues tf". They are called transmission eigenvalues.

In terms of the transmission eigenvalues, the Landauer formula for the conductance reads

282
G="" Z T, (1.2.12)
j=1
The distribution of the transmission eigenvaldgss found from the jacobian between the

volume elementsl S on the one hand andu, dv, du’, dv’, and ]_[szlde on the other
hand,

N
dS=dudvdu dv’ [T — 1A []7,7/%dT,. (1.2.13)
i<j j=1
(For 8 = 1 and 4 the volume elemends/ anddv’ are absent due to the symmetry restric-
tionu*u’ = 1,v*v’ = 1.) Hence we may write

N
P(T1,....TNn) = 1_[|‘n_Tj|ﬁl—[Tj—1+ﬁ/2

i<j j=1
N
= exp| Y NG =TjI=p> VA |. (1214
i<j ji=1
where the potentidV (T) reads
V) = 22_—ﬂﬁInT ifo<T <1,
I otherwise

The formal analogy between distribution (1.2.14) of transmission eigenvalues for a chaotic
quantum dot and the distribution of the eigenval&gg1.2.3) of a random hermitian ma-

trix allows one to apply the machinery developed for the study of energy levels of random
Hermitian matrices to the problem of transmission eigenvalues. The essential difference
between Egs. (1.2.3) and (1.2.14) is that the former makes sense for large matrices only,
while the latter is appropriate for any finite numbeiof transmission eigenvalues, includ-
ingN = 1.



Section 1.2: Random matrix theory of a quantum dot 21

1.4pum

400 -200 0 200 400
B (G)

Figure 1-5. Magnetoconductance for a quantum dot shaped like a “stomach” (left) for two different
values of the Fermi wavevector k. The width of the point contacts is 0.21um, corresponding to
N = 7 propagating modes in the point contacts for the upper curve and N = 6 for the lower one.
The conductance shows universal fluctuations as a function of the magnetic field B and the Fermi
wavevector k. Due to weak localization, the ensemble averaged conductance shows a minimum at
B = 0. For the lower curve, the minimum at B = 0 is obscured by the conductance fluctuations,
which have the same magnitude. [Figure taken from M. W. Keller et al., Phys. Rev. B 53, 1693
(1996).]

For single-mode leads, there is only one transmission eigenVatae(h/2e?)G with
distribution

P(T) = (B/2)T 1P/ (1.2.15)

The conductance distribution is highly non-Gaussian. For many-mode leads, an approach
similar to that for the analysis of spectral correlations of large Hermitian random matrices
is taken. One thus finds that the conductance distribution is a Gaussian, with mean and
variance given by

2¢? [N 4
@ = F[5+°

-2 e
— 2= N1 G=— . 1.2.16
hl2 + 45 + O( )], var 252 ( )

The leading?(N) term of (G) is the “classical” conductance: classically, only half of the
electrons entering the chaotic quantum dot is transmitted, which accounts for an average
transmission 12 per mode. Th&(N°) corrections to the average conductance and the
conductance fluctuations are signatures of quantum transportOTK&) correction to

(G) is known as the weak localization correction. It is a quantum interference contribution
due to the constructive interference of time-reversed paths which slightly enhances the
reflection probability. A magnetic field destroys the interference, and thus destroys the
weak localization correction to the conductance.
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1.3 Random matrix theory of a disordered wire

The Wigner-Dyson random matrix theory does not apply to a disordered wire, because the
particles do not have the time to explore the complete phase space of the wire ergodically
before they exit. However, in a wire that is much longer than wide, electron motion is still
ergodic in the transverse direction. The transverse ergodicity allows for a random matrix
theory of transport through a disordered wire.

As in the case of the chaotic quantum dot, two approaches can be taken: A Hamil-
tonian approach and a scattering matrix approach. The Hamiltonian approach is mapped
onto the one-dimensional supersymmetric nonlireanodel of Efetov and Larkin [24],
the scattering matrix approach takes the form of a one-dimensional scaling theory for the
transmission eigenvalues of the scattering matrix, derived by Dorokhov [25] and Mello,
Pereyra, and Kumar [26]. (For later derivations, see Refs. [27-30].) In both approaches,
we may think of the the wire as being built from many weakly disordered slices. If many
of these building blocks are put together to form a wire, a central limit theorem ensures
universality of the transport properties of the wire, irrespective of the precise microscopic
properties of the building block.

1.3.1 Scaling equation for the transmission eigenvalues

The idea behind the scaling equation for the transmission eigenv@jues., Ty of a
disordered wire is that they execute a “Brownian motion” as the length of the wire is
increased. The Fokker-Planck equation for this Brownian motion process is known as
the Dorokhov-Mello-Pereyra-Kumar (DMPK) equation.

For the derivation of the DMPK equation, the disordered wire is built from many
weakly disordered slices and connect them by ideal leads. Weak disorder imje&ng,
where? is the mean free path arig: the Fermi wavelength. The slices are so thick that
they can be regarded as macroscopic (thickdéss> Ar), and so thin that they are only
weakly scatteringdL <« ¢). The wire has\ propagating modes at the Fermi level. The
ideal leads between the slices are necessary for a description in terms of scattering ma-
trices. We now add one extra slice to such a disordered wire (Fig. 1-6) and consider the
corresponding change of the transmission eigenvalues.

Let S be the scattering matrix of a disordered wire before the slice is added &8d let
be the scattering matrix of the slice (see Fig. 1-6). The corresponding transmission and
reflection matrices are labeled by a subscript 1 or 2.

We denote the scattering matrix of the total systensbyo find the transmission eigen-
values ofS, it is sufficient to consider its reflection matrix [The transmission eigenvalues
To(n=1,..., N)are the eigenvalues of 1 rr ]

For an ensemble of disordered wires, the scattering mat8cand S, are statistically
independent. In Refs. [29], an ansatz for the statistical distribution of the reflection matrix
r, of the slice is proposed,

(r2))mn) = O@BL)?
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Figure 1-6. A thin slice (with scattering matrix $) is added to a disordered wire (with scattering
matrix ).

_— BsL 2-B )
(KD =GN T2 B (3km5m +—5- 3kn5|m> +06L)2  (1.3.1)

(For B = 4, the complex conjugate should be replaced by the hermitian conjugate of a
guaternion.) This ansatz is known as the Equivalent channel model. It also follows from a
microscopic model for a disordered wire, which is explained in Sec. 1.3.3. In order to find
the transmission eigenvalu@s, . .., Ty of S, we use the polar decomposition (1.2.11) for

S1, and the composition rule (1.1.10). We then find

-1
II’I‘ TU]_ = ww =y1- T]_ — \/?1( —foy/1— T]_) Irz\/?, (1.3.2)

wheref, = virpv; and 7y is the diagonal matrix of transmission eigenvalues correspond-
ing to §. The distribution off'; is the same as that o, because the distribution 0%

is invariant under transformatioms — wrw’ with unitary w andw’ (w'w* = 1 for

B = 1,4). We expand Eqg. (1.3.2) in powers iof and apply second order perturbation
theory to find the incremeniT, of the transmission eigenvalues. The average ower
yields

ST, 2T, Th + Tm — 2T T,
() - o (s AR )
BN +2—p 2 - o m
(STn(STm 4Tn2(1 - Tn)

14 = Spynp————. 1.3.3

< sL > ™MEN+2—8 (1.33)
It then follows from the general theory of Brownian motion [32] that the probability dis-

tribution P({T;}) of the transmission eigenvalu@s, . .., T, of the disordered wire obeys

the Fokker-Planck equation

N N
PT; 0 8T, 1 0 [6TrdT,
OPATY _ §h D 5T\ o 15N 0 (STbT)
oL nzlaTn SL 2m:18Tm SL

N

_ 2 0 P(TD
~ U(BN +2—,3)nZ ”aTn(1 D5 SIGIDS

qmh = [[m—Tr. (1.3.5)
k<l

(1.3.4)
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This is the DMPK equation. Usually, it is written down in terms of paramelgrs=
1/Tj — 1. (The parameters; are natural in a transfer-matrix approach.)

The study of the DMPK equation has developed into a field of its own. For a compre-
hensive review, the reader is referred to Ref. [5]. For a thick wirex{ 1), there are three
characteristic regimes: the ballistic regiine< ¢, the diffusive regime¢ < L < &, and the
localized regimd. < & (¢ = BNZ is the localization length).

e The ballistic regime is not very interesting. All transmission eigenvalues are close to
1, and the conductan€ ~ 2e?N/h. The conductance fluctuations are small [@ar
is of relative ordex¢/L)3].

¢ In the diffusive regimegZ < L < & the density of transmission eigenvalues of bi-

modal,

NZ
(M) =~ ———35 (1.3.6)

T LTA-THYZ
Approximately a fractior? /L of the transmission eigenvalues is close to 1, the re-
mainder being close to 0. Statistical properties of the conductance are commonly
expressed in terms of a largé-expansion. The conductance distribution is Gaus-
sian, with mean and variance given by

262 (N¢ B —2 2
<G>=—( i

-1 _(%E) 2 -1
- T+7+O(N )), varG_<h> 15’3+O(N )
(1.3.7)

The ©(1) contribution to the average conductance is the weak localization correc-
tion [33, 34]. Itis called “weak” because it is small compared to the leadi(id)

term, and “localization” because it is a negative correction to the conductance (for
B = 1; for B = 4 the name “weak anti-localization” is more appropriate). Both the
weak localization correction and the variance of the conductance [35, 36] are univer-
sal, since they depend on the symmetry ingexand on the fundamental constants

e andh only, and not on the sample-specific parametérg, andL. Weak local-
ization and universal conductance fluctuations are signatures of quantum transport.
Weak localization is due to constructive interference of time-reversed paths, and is
destroyed if time-reversal symmetry is broken by a magnetic field. Conductance
fluctuations are also caused by interference of Feynman paths, but no intuitive pic-
ture exists. (Similar universal quantum interference effects are found for a chaotic
guantum dot in with many-mode point contacts, see Sec. 1.2.)

e In the localized regime, all transmission eigenvalues are exponentially small. The
conductancés is determined by the largest transmission eigenvajudt is found
that logT; has a Gaussian distribution with meagL /& and variance B/&. Hence
the distribution of the conductance is log-normal,

—(In(hG/2€?)) = (1/2)var[In(hG/2e?)] = 2L /. (1.3.8)
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For the distribution of the conductance in the diffusive regime, the DMPK equation
merely confirms results that were already known from diagrammatic perturbation the-
ory [33-36]. The advantage of the DMPK equation is that it gives access to the complete
distribution of transmission eigenvalues. This is important for other transport properties,
like the shot noise power [37] or the conductance of a normal sample with one supercon-
ducting contact (see next section). The DMPK equation is the natural theoretical tool for
the description of the log-normal conductance distribution in the localized regime.

1.3.2 Distribution of the unitary matrices in the polar decomposition

The DMPK equation describes the distribution of the transmission eigenvilues, Ty
of a disordered wire. For some applications, it is not sufficient to know the distribution the
transmission eigenvalues; we also need the unitary mauiogs v, andv’ that appear in
the polar decomposition of the scattering matrix. Little is known about their distribution.
Here we investigate the consequences of the equivalent-channel assumption (1.3.1) for
their distribution.

Consider the polar decomposition of the scattering m&iaf the thin slice,

u, O VI—=T iJT u, O
(55 A5 (52) e

For 8 = 1,4 we haveuju, = vjv; = 1. The distribution (1.3.1) implies that for a thin
slice — after integration over, andv;, — the unitary matricesi, andu’, are uniformly
distributed in the unitary group, independent of the transmission eigenvalues. This turns
out to be true for wires of arbitrary length. To see, we use induction. We assume that the
uniform distribution ofu andu’ is true for the scattering matricé&s and S of the wire

and the slice separately, and then show that it holds for the scattering @atrike total
system. If we add the slice on the right side, we find

r=ra4ty(1 —riry) rato. (1.3.10)

In terms of the polar decompositions &f andS,, we have

r=ux/1-— T2v2 — Uz\/?z <l — wl\/l — Tlu)i\/l — Tz) . wiv 1l — lei\/?zvz,
(1.3.11)
wherew; = vpu; andwj = ujv,. Sinceu; andu; are uniformly distributedy; andw are
S0 too. As the scattering matricBsand S are independently distributed, the distribution
of r is invariant under transformations— uru’, which proves the uniform distribution of
the matrices andu’ for the polar decomposition .

In their original paper, Mello, Pereyra, and Kumar [26] assumed that all four unitary
matricesuy, U5, v, andv, from the polar decomposition of the scattering matrix of the
thin slice are uniformly distributed in the unitary group (only restricted by symmetry). This
much stronger assumption is known as the isotropy assumption. For the results presented
in this thesis, the isotropy assumption is not necessary; it is sufficient to use the equivalent
channel assumption (1.3.1) of Mello and Tomsovic [29].
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1.3.3 Microscopic model

Dorokhov [31] has formulated a microscopic model for which the statistical distribution
of the reflection matrix of a thin slice is given by Eq. (1.3.1). In this model, the wire is
modeled byN parallel one-dimensional chains. The disorder is modeled by a Gaussian
white noise potential that admits inter-chain hopping. The wavefunction is represented by
a vectory,(x), and the Hamiltonian reads

2 . kh2
Hyn(x) = %VZWn(X) + >m Z Unm(X)¥m(X) = Eyn(X). (1.3.12)

Here the wavenumbeér = 27 /1f is defined throughe = h2k2/2m andunm(X) is a
random disorder potential with a Gaussian distribution with zero mean and with variance

4 2
(Ui ) Umn(X)) = m(S(X —x) |:5kn5lm + Tﬁ&(m&n] : (1.3.13)

where? is the mean free path. The matuxx) consists of real (complex, quaternion)
numbers forg = 1 (2, 4). We now consider a thin disordered slice which lies between
x = 0andx = §L, whereAr <« §L « £. Up to second order Born approximation we find
for the reflection matrix of this thin slice

sL N 5L sL
. T 1 ! H H /_
rmn = | dxumn(x)ez'kX—E / dx dX &5 U (XU (X)) ekx kX' =xI,
0 0 0
=1

The first two moments af are computed using the Gaussian white noise distributien of
After integration over rapidly oscillating terms, we find

(rmn> == O’
(rkifmn) = 0,
0y BSL 2—-p
(rilmn) = BN+ 2—B) (8km5|n + 5 8kn5lm) ,

This is precisely the distribution of Eq. (1.3.1).

1.4 Normal-metal-superconductor junctions

Being the result of interference between (quantummechanical) waves, signatures of quan-
tum transport are strongly dependent on boundary conditions. Any agent that modifies the
boundary conditions, also modifies the phases of the electrons and thus rearranges the in-
terference pattern. An example is the Aharonov-Bohm effect, where the conductance of
a mesoscopic ring depends sensitively on the amount of flux through the ring, while the
magnetic field in the metal itself is zero. The flux through the ring modifies the phase of
the electrons, but does not change their classical motion.
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A more fundamental change of boundary conditions is caused by the presence of a su-
perconducting contact. At the normal-metal-superconductor (NS) interface, the dissipative
electrical current in the normal metal is converted to a dissipationless supercurrent by the
mechanism of Andreev reflection [38]. Andreev reflection is special, because in addition to
a modification of phases, it also couples the motion of electrons (occupied states at an en-
ergye above the Fermi level) and holes (vacancies at enetgtow the Fermi level). The
interplay between Andreev reflection at the normal-metal-superconductor interface and the
guantum interference inside the normal metal results in new and unexpected signatures of
guantum transport [39].

In this section, we briefly discuss the scattering theory of Andreev reflection. The
advantage of the scattering theory is that it allows us to relate transport properties of hybrid
normal-metal-superconductor structures to the scattering matrix of the normal metal only.
In this way we can directly apply our results for the statistical distribution of the scattering
matrix of a normal metal chaotic quantum dot or a disordered wires to mesoscopic samples
with a superconducting contact.

1.4.1 Andreev reflection

The microscopic equation for a system with both normal metals and superconductors is
the Bogoliubov-De Gennes equation [40]. It has the form of two coupledo8uigér
equations for the electron and hole wavefunctio@d andv(r),

5{‘1 A um ) _ (YO ) (1.4.1)
A*T) —H v(r) v(r)
Electrons are occupied states at an energpove the Fermi leveEr, holes are empty

states at an energybelow EF. The operatorHj is the single-electron Hamiltonian and
A(r) is the pair potential, which is determined by the self-consistency equation

A[) =g[) Y v OudIl - 2f ()] (1.4.2)

e>0

whereg is the BCS interaction constant arfde) is the Fermi function. In the normal
metal,g = 0 and henceA = 0. At the superconducting side of the interface()
approaches its bulk valuage’® only at a finite distance from the interface. Here, we
neglect the suppression of near the interface, and use a step-function modehf@b).

This is allowed for junctions between a normal metal and a superconductor that consists of
a point contact or a tunnel barrier [41]. In this approximation, the Bogoliubov-De Gennes
equation reduces to a simple scattering problem for the electrons and holes in the normal
metal.

For a scattering theory of Andreev reflection, we consider a normal-metal-supercon-
ductor (NS) interface as shown in Fig. 1-7. The normal metal on the leftis an ideal lead with
N propagating modes at the Fermi level. The pair potential vanishes in the normal metal,
so that the solution of the Bogoliubov-de Gennes equation consists of separate plane waves
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Figure 1-7. Schematic drawing of an NS interface. At the interface, an electron coming from N
(solid arrow) is retroreflected as a hole (dashed). At the same time, a Cooper pair is added to the
superconducting condensate. The normal metal side of the interface is connected to an ideal lead,
where the wavefunctions for the electrons and the holes are given by incoming and outgoing plane
waves.

for the electrons and the holes. Proceeding as in Sec. 1.1, where we discussed the scattering
theory for normal metals, we denote the amplitudes of the incoming and outgoing electron
and hole waves witla'®, c%¢, ¢!, andcd" (n = 1,..., N). At the superconducting side
of the interface, no propagating solutions of the Bogoliubov-de Gennes equation exist for
excitation energies < Ao.

Inthe limite < A, Ef, the appropriate solution of the Bogoliubov-de Gennes equation
leads to the Bl x 2N scattering matrixSa for Andreev reflection [42]

> e ( 0 €?
( zoh ) = Sa(e) ( zih > , Sale) = —i ( e—i¢ 0 ) . (143)

An electron coming from the normal metal is reflected as a hole and vice versa. The total
charge in the process of Andreev reflection is conserved by the addition of a Cooper pair to
the superconducting condensate. If the NS interface is non-ideal (e.qg. if it contains a tunnel
barrier), the scattering matri8, also contains diagonal blocks.

The scattering matri€® has an electron-hole-) grading. If we want to consider the
scattering properties of a system that contains both a normal metal (e.g. a chaotic quantum
dot or a disordered wire) and a superconductor, it is necessary to extend the notation with
e-h graded scattering matric&sto the normal metal. Since electrons and holes do not
interact in a normal metal, the scattering mat&x(e) for normal scattering of electrons
and holes is block diagonal,

(1.4.4)

0
&@=<3” >.

0 S(—e&)*

The matrixS(e) is the well-known scattering matrix for a normal metal sample with two
normal contacts. Holes, being the time-reversed patrticles of electrons, are described by the
complex conjugate scattering mat&—e)*. The off-diagonal blocks oy are zero.
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1.4.2 Conductance of an NS junction

What is the conductance of a normal metal with one normal and one superconducting con-
tact? At the normal-metal—-superconductor interface, electron are reflected as holes, so that
charge is transported in units oé.2 Hence, if the transmission of the normal metal is
perfect, the replacement of one normal contact by a superconductor doubles the conduc-
tance. (The conductance 8’4 h per propagating mode, compared & 2h for normal
contacts.) The problem is more complicated if the normal metal is resistive. The com-
plication arises, because in order to contribute to the conductance, both the electron and
the Andreev-reflected hole must pass through the resistive metal. A simple estimate for
the conductanc&ys of an NS junction is that the effective length of the resistive normal
metal is multiplied by a factor two,

Gns(L) = 2Gn(2L). (1.4.5)

For a disordered junctiorQ(L) o« 1/L), the increase of the effective length essentially
compensates the extra factor two due to the doubling of the charge quantum.

The simple estimate (1.4.5) does not take quantum interference into account. Lam-
bert [43] and Takane and Ebisawa [44] have derived a generalization of the Landauer for-
mula for the differential conductancgns = d1/dV of a normal-metal-superconductor
junction, that admits a complete phase-coherent treatment of the transport problem. Their
conductance formula relaté€sys to an off-diagonal block of the-h graded scattering
matrix S of the NS junction

Gns(V) = ?tr Shev)s$Mev). (1.4.6)

It remains to compute the scattering mat8xXrom the individual scattering matrices
Sy and Sy for the normal metal and the NS interface. This was done by Beenakker [42] for
the general setup shown in Fig. 1-8. The system consists of a normal metal sample, with
scattering matriX¥(¢). The normal sample is connected two ideal leads Witbropagating
modes each. The left lead is coupled to a normal reservoir, the right one is coupled to a
superconductor. TheN x 2N reflection and transmission matrices of the normal metal
also have an electron-hole grading,

[ r@® 0 [ te) 0
ree) = < 0 r(—ey ) t(e) = < 0 ti—e) ) etc. (1.4.7)

Then the N x 2N scattering matridS of the complete system follows from a composition
rule similar to Eq. (1.1.10),

S(e) = (&) + t'(e) [L— Sa (&) (©)] "~ Sa()t(e). (1.4.8)

Substitution of Eq. (1.4.8) into the general conductance formula (1.4.6) yields

Gns(V) = % trmm’, m=t(—eV)* (1+ r(eV)r(—eV)*)_lt/(eV). (1.4.9)
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Figure 1-8. Normal metal sample (dotted) connected to two ideal leads. One lead is coupled to
a superconductor. The system is described by two scattering matrices, Sy and Sa, for scattering
from the normal metal sample and from the normal-metal—-superconductor interface, respectively.

If the applied biagV is much less than the inverse dwell time in the normal metal, we may
neglect the difference betweefeV) and S(—eV). If in addition, there is no magnetic
field, one finds that Eq. (1.4.9) simplifies considerably [42],

42 N, T2

. 1.4.10
h & @-To? (1.4.10)

Gns =

The conductance depends on the transmission eigenvajuelsthe normal metal only.
For nonzero excitation energy or in the presence of a magnetic field no such simplification
occurs; the conductance of the NS junction depends on the entire scattering matrix of the
normal metal.

Remarkably, for a disordered NS junction, the conductance formula (1.4.9) turns out
to agree precisely with the simple estimate (1.4.5) up to small corrections of &fter
This phenomenon is commonly referred to as “reentrant superconductivity”, because the
equality of Gy andGps that is implied by Eq. (1.4.5) is true for high temperatuk@s>>
hvg¢/L? and T = 0, but not for intermediate temperaturesOkT < hvgt/L2. Eq.
(1.4.5) is not valid for quantum interference effects (weak-localization, conductance fluc-
tuations), which can be found from a complete quantummechanical treatment only.

The advantage of the formulation in terms of the scattering matBgesd Sy is that
it allows us to separate the contributions from the normal metal and the superconductor.
We can use the same scattering ma8ix) for applications to transport through a normal
metals with or without superconducting contacts. In this way, transport properties of NS
junctions can be obtained without much extra work, once the problem is solved for the
normal metal without the superconducting contact.

1.5 This thesis

In this thesis, we consider the microscopic justification of the random matrix theory of
guantum transport as well as applications to chaotic quantum dots, disordered wires, and
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normal-metal-superconductor junctions.

The Chapters 2—4 are about the random matrix theory of chaotic quantum dots. The
equivalence between the scattering matrix approach and the Hamiltonian approach for
guantum transport through chaotic quantum dots is established. In view of the equiva-
lence of the Hamiltonian approach and the microscopic theory, this provides a microscopic
justification of the random scattering matrix approach to chaotic scattering. In Ch. 2, we
address the distribution of the scattering matrix, a model for dephasing is discussed in Ch.
3, and Ch. 4 deals with the dependence on external parameters, such as the Fermi energy or
the magnetic field. The random matrix theory of a disordered wire is studied in Chapter 5.
We prove that the one-dimensional nonlineamodel and the Dorokhov-Mello-Pereyra-
Kumar equation are equivalent. This completes the microscopic justification of the random
matrix theory of quantum transport. In chapter 6, a diagrammatic technique for integra-
tion over the unitary group is developed. The diagrammatic technique is an important
tool for the computation of transport properties in the scattering matrix approach. Finally,
Chapter 7 contains applications to hybrid normal-metal-superconductor structures. We
use the diagrammatic technique of Ch. 6 to compute the weak-localization correction to
the conductance and the conductance fluctuations. Below a brief introduction to each of
the chapters is given.

Chapter 2: Chaotic quantum dots with non-ideal leads.

In Sec. 1.2 we discussed the two approaches for the random matrix theory of quantum
transport through chaotic quantum dots. In the Hamiltonian approach, the scattering matrix
is computed from the random Hamiltoni&hof the closed quantum dot and a non-random
matrix W that describes the overlap between the states inside the quantum dot and the
scattering states in the leads. In the scattering matrix approach, the scattering3natrix
itself is a random matrix, drawn from the circular ensemble of random matrix theory. The
validity of the Hamiltonian approach has been established through a mapping onto the zero-
dimensional nonlineas-model [20], which in turn has been derived from microscopic
theory [15, 17]. We establish the validity of the circular ensemble by deriving it from the
Hamiltonian approach, building on earlier work by Lewenkopf and Weidélam[45].

The advantage of the circular ensemble is that is conceptually simpler than the Hamil-
tonian approach, which requiressamodel formulation for actual calculations [20]. Its
limitation, however, is that the circular ensemble is appropriate for chaotic quantum dots
with ideal ballistic point contacts (ideal leads) only. The Hamiltonian approach, on the
other hand, can also describe tunneling point contacts (non-ideal leads).

In Sec. 2.1 we consider the special case of a quantum dot with two single-mode point
contacts. The point contacts contain tunnel barriers. We describe the system consisting of
the chaotic quantum dot and the tunnel barriers by three separate scattering matrices. The
scattering matrixy; of the chaotic cavity is taken from the circular ensemble,

P(&) = constant (1.5.1)

while the scattering matriceS, of the tunnel barriers are fixed. To obtain the scattering
properties of the total system we change to a transfer matrix formulation. We multiply the
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(b)

Figure 1-9. (a) A chaotic quantum dot with ballistic point contacts and leads containing tunneling
point contacts. The scattering matrix § of the quantum dot is taken from the circular ensemble, the
scattering matrices &, of the tunnel barriers are fixed. (b) A quantum dot with a voltage probe. The
voltage probe is an extra lead that is coupled to a reservoir, of which the potential V is adjusted in
such a way, that the current | through the voltage probe is zero.

transfer matriced/ly and My, of the dot and the barriers, respectively, and find the transfer
matrix M of the total system.
M = MpMygMp. (1.5.2)

The resulting distribution of the conductanGeagrees completely with previous work of
Prigodin, Efetov, and lida [48], who used themodel formulation of the Hamiltonian
approach.

For the general case ofNix N scattering matrix, we take a slightly different approach.
Starting point is that the direct scattering from the tunnel barriers results in a nonzero value
of the ensemble averaged scattering maSixIt is convenient to adop® as a measure
for the non-ideality of the leads [46]. Mello, Pereyra, and Seligman [47] derived an ex-
tension of the circular ensembles with a nonzero valu§.oRequiring analycity of the
scattering matrix in the upper half of the complex plane, ergodicity (energy average equals
ensemble average), and maximum information entropy of the distribution, they arrived at
a distribution known as the Poisson kernel [49],

P<(9)  |det1 — §fg)| NP

(1.5.3)
The use of the maximum entropy principle is necessary, because the Poisson kernel is not
the only ensemble with nonze®that obeys the analycity and ergodicity requirement.

In Sec. 2.2, we derive the Poisson kernel from the Hamiltonian approach, thus provid-
ing a microscopic justification of the Poisson kernel for scattering from a chaotic quantum
dot. For technical reasons, we replace the Gaussian distribution fof tkeM random
HamiltonianH of the quantum dot by a Lorentzian one,

—(BM+2-p)/2

P(H) det(A2 F(H- 5)2) (1.5.4)

(The parametei governs the mean level spacinglat= 0.) The replacement of the
Gaussian distribution by the Lorentzian distribution is allowed, because in theMimit
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oo the scattering matrix distribution does not depend on the precise distributibh of

We finally show that the Poisson kernel also agrees with the approach of Sec. 2.1, where
separate scattering matrices for the tunnel barriers are combined with a uniform distribution
of scattering matrices for the quantum dot.

Chapter 3: Dephasing in quantum dots.

The quantummechanical phase of the electrons is only conserved for some finitg time

the dephasing time. Dephasing may be caused by electron-electron interactions, or by
interactions with external sources (radiation, fluctuations of gate voltages, etc.) For a com-
parison between theory and experiment, it is necessary to know how dephasing affects the
signatures of quantum transport. The dephasing tiynean be measured from the weak
localization correctios G, sincesG is unaffected by thermal smearing (see Fig. 1-10).

A controlled way to introduce dephasing is to attach a voltage probe to the sample [50].
A voltage probe is an extra lead, coupled to an electron reservoir of which the potential
is chosen such that no current is drawn (see Fig. 1-9b). Although a voltage probe draws
no current, it destroys phase coherence, because it allows electrons to temporarily exit the
sample, and loose their phase memory in the reservoir.

In Sec. 3.1, we consider the effect of such a voltage probe on the phase-coherent con-
ductance of a chaotic quantum dot with two single-mode leads. We start from a situation
where a voltage probe with one propagating mode is coupled to the quantum dot by means
of a high tunnel barrier. In this limit, phase coherence is not affected. The conductance
distribution is highly non-Gaussian [cf. Eq. (1.2.15)]. We slowly increase the amount of
dephasing by first decreasing the reflection of the tunnel barrier, and then increasing the
number of mode# in the voltage probe. If the voltage probe contains many modes, phase
coherence is completely destroyed, and the conductance distribution becomes a delta func-
tion around the classical val@é/ h.

Can we use a voltage probe as a model for real dephasing in a quantum dot? For
a voltage probe with only a few modes, the answer is clearly no, because (1) it allows
for integer dephasing rates only and (2) dephasing occurs uniformly in space, while the
dephasing caused by the voltage probe is restricted to a very small space. The introduction
of a tunnel barrier (with transparengy) in the voltage probe cures the first problem, but
causes a new one: we now have two model paramefeasnd N) to describe dephasing,
while dephasing is characterized by a single dephasingdjnoaly.

A different way to treat dephasing is used in the Hamiltonian approach [51, 52]. Here,
a spatially uniform absorbing potential, which removes particles from the phase coherent
motion in the quantum dot, is added to the Hamiltonian. The drawback of this “imaginary-
potential model” is that an absorbing potential does not conserve the particle number.

In Sec. 3.2 both approaches are reconciled. A new version of the voltage probe model
is presented that does not suffer from the problems sketched above. It consists of a voltage
probe with many propagating channelé & 1), and with a high tunnel barrief (« 1),
such that the produgt = NI is finite. The parameteyr is related to the dephasing rate and
the mean level spacing, y = h/t3A. We show that the new version of the voltage probe
model is consistent with the Hamiltonian approach: For a chaotic quantum dot, the escape
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Figure 1-10. Ensemble-averaged magnetoconductance (G(B)) for a quantum dot with two single-
mode point contacts (inset). The reduction of (G(B)) near B = 0 is due to weak localization. The
reduction is destroyed if time-reversal symmetry is broken by a weak magnetic field. The size of
the weak-localization correction is affected by dephasing, but not by thermal smearing. Therefore,
weak localization can be used to measure the dephasing time . [Figure taken from C. M. Marcus
et al., Chaos, Solitons & Fractals, to be published.]

of particles through a tunneling point contact with - oo andI" — O is rigorously
equivalent to the absorption by a spatially uniform imaginary potential.

Chapter 4: Time delay in chaotic scattering.

This chapter deals with the dependence of the scattering matrix on the dhenggt on
another external paramet¥r, like the shape of the quantum dot or the magnetic field.

In the random Hamiltonian approach to chaotic scattering, the energy dependence of
the scattering matrix follows manifestly from Eq. (1.2.9), while the dependence on the
external parameteX is modeled through the random Hamiltonian [53]

H(X) = Ho + X Ha, (1.5.5)

whereHgy and H; are both taken from the Gaussian ensemble. The scale for the external
parameterX is not universal. Equivalently, th¥-dependence of the energy levels and
eigenvectors of can be described through a Brownian motion model for the random Hamil-
tonian H (X) [54, 55]. The drawback of the Hamiltonian approach is that calculations —
which as before require a mapping to the zero-dimensional nonkneasdel — are even
more complicated than for the parameter-independent statistics of the scattering matrix.
On the other hand, in the random scattering matrix approach, no successful model for the
energy and magnetic field dependencesa$ known. A Brownian motion model for the
parameter-dependence of unitary matrices proved unsuccessful [56-58].

In Sec. 4.1, we propose a new model for the energy-dependergénahe random
scattering matrix approach. (Thédependence o8 is considered in Sec. 7.3.) In this
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model, a fictitious stub (a closed lead) witly propagating modes is attached to the quan-
tum dot. Scattering from the complete system, consisting of the cavity and the stub, is still
chaotic. We describe reflection at the closed end of the stub liy-amnd X-dependent
reflection matrixrs(E, X). The scattering matri¥) of the quantum dot with the stub re-
placed by a regular open lead has dimendibA- Ns, whereN is the number of modes

in the real point contacts. In our model, we take > N and neglect thé&c and X de-
pendence oU. Neglecting theE and X dependence db is allowed if Ns > N and if

the particles spend most of the time inside the stub. Scattering from the dot is chaotic, so
thatU is distributed according to the circular ensemble. Hence, we find thadtl theN
scattering matriXS(E, X) reads

S(E, X) = Uy +Us[1—rs(E, X)Usd 2rs(E, X)Ug, (1.5.6)

the matricedJjj being the four blocks o) for transmission and reflection from and to

the stub (s) or the two leads (I). An important consequence of the model (1.5.6) is that
the probability distribution of the parameter dependent ensemble of scattering matrices
S(E, X) is invariant under transformations

S(E, X) — VSE, X)V/, (1.5.7)

whereV andV’ are arbitrary unitary matrices that do not dependecend X (V = VT for
B = 1andV = VRfor g = 4). Ajustification of Eq. (1.5.6) starting from the Hamiltonian
approach is given in appendix A of this chapter.

Eisenbud [59], Wigner [60] and Smith [61] have shown that the derivaty® E is
closely related to the time a particle spends inside the quantum dot after it is injected
through one of the point contacts, the so-called delay time. For the description of delay
times in a multichannel scattering problem, Smith introduced the hermitian time-delay ma-
trix Q = —ihS'9S/9E and showed that the time-delay for a particle entering in a given
mode j in the lead is given by the diagonal elemé®y;. In Sec. 4.2 we compute the
entire distribution of time-delay matri®Q. We also compute the distribution of a the ma-
trix —i ST9S/9 X parameterizing the derivativisS/d X. Our derivation builds on work by
Wigner [62] and Gopar, Mello, anduitiker [63], and makes essential use of the invariance
property (1.5.7).

As applications, we consider the a.c. conducta@¢e) of a chaotic quantum dot (Sec.
4.1) and the distribution of the parametric derivatio€s/0 E andoG/d X of the conduc-
tance (Sec. 4.3).

Chapter 5: Localization in disordered wires.

There exist two approaches for the theory of localization in disordered wires: the one-di-
mensional nonlineas-model of Efetov and Larkin [24], and the scaling equation for the
transmission eigenvalues of Dorokhov [25] and Mello, Pereyra, and Kumar [26]. The one-
dimensional nonlineas -model has been derived in three different ways: From a micro-
scopic model with a Gaussian white noise potential [24], the block-random matrix model
of lida, Weidennuller, and Zuk [64], and from a band-random matrix approach [65].
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In this chapter, we construct a mapping between the two approaches, thus showing
that they are equivalent. This brings together two lines of research which have developed
independently for more than a decade.

Chapter 6: Diagrammatic technique for integration over the unitary group.

Now that we have established the validity of the scattering matrix approach to quantum
transport through chaotic quantum dots and disordered wires, we need the tools to com-
pute physical observables. A technical problem that arises both for quantum dots and for
disordered wires is the need to integrate rational functions of a unitary matrix. For chaotic
guantum dots, the unitary matrix is the scattering ma®itself, while for the disordered

wire, the unitary matrix is the matrix of the polar decomposition (1.2.11).

For a quantum dot with single-mode point contacts, or for a wire with only a few
propagating modes, the sizes of the unitary matrices are small. Then itis possible to use an
explicit parameterization of the unitary matrix (e.g. in terms of Euler angles), and find the
distribution of the conductance through a straightforward (but often tedious) integration.
This method is used in e.g. in Secs. 2.1 and 3.1.

However, if the sizeN of the unitary matrix is large, explicit parameterization is not
feasible. On the other hand, for applications in the regime of weak-localization and uni-
versal conductance fluctuations, an expansiory M I sufficient. Examples of sucty N
expansions are Eq. (1.2.16) and (1.3.7) for the average and variance of the conductance
of a quantum dot and a disordered wire, respectively. In this chapter we develop a dia-
grammatic technique for integration over the unitary group, that allows for a systematic
expansion in powers of/N.

As applications of the diagrammatic technique, we compute the average and variance
of the conductance of a quantum dot with non-ideal leads, using the Poisson kernel (see
Ch. 2). We also compute the average and variance of the conductance of a normal-metal—
superconductor junction. This application has some overlap with the next chapter.

Chapter 7: Normal-metal-superconductor junctions.

Numerical simulations by Marmorkos, Jalabert, and Beenakker [66] have revealed that the
variance of the conductance of a disordered normal-metal-superconductor (NS) junction
is independent of a magnetic field, up to the 10% accuracy of the numerical simulations
(see Fig. 1-11). This is remarkable, because in normal metal§ isareduced by a factor
2 if time-reversal symmetry is broken by a magnetic field. The factor 2 reduction follows
from quite general principles of random matrix theory (the Dyson-Mehta theorem [67]), or
from symmetry considerations within diagrammatic perturbation theory (equal contribu-
tions from diffusons and cooperons [35, 36]). No symmetry argument could be found why
the factor 2 should be a factor 1 in the presence of a superconductor.

An analytical theory for the conductance fluctuations in NS junction exists only for the
case that time-reversal symmetry is present (no magnetic field; symmetrygngek 4)
[68]. In this case, the conductanGgs depends entirely on the transmission eigenvalues
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Figure 1-11. Numerical simulation of the variance of the conductance of a disordered wire with
one normal and one superconducting contact (NS) or with two normal contacts (N). The variance
is computed at different values of the average conductance Gy of the normal metal, and of the
magnetic field (4 for zero field, x for a flux of 10h/e through the disordered region). The dotted
lines are the analytical predictions from Eq. (1.3.7) and Eq. (1.4.10). No analytical prediction for the
case of a NS junction with a nonzero magnetic field is shown. The figure is taken from Ref. [66].

of the disordered wire [cf. Eq. (1.4.10)],

oo _ 4 N2

T h Ze-T?
The case of broken time-reversal symmetry is more difficult, becauseGReralso de-
pends on the unitary matricasu’, v, andv’ from the polar decomposition of the scattering
matrix.

In this chapter, we present analytical calculations for the case of broken time-reversal
symmetry. Starting point is the general conductance formula (1.4.9). In addition to an
average over the transmission eigenvalljgsve need to average over the unitary matrices
u andu’ from the polar decomposition @&. The diagrammatic technique of Ch. 6 was
developed to tackle this problem. For the variance of the conductance (Sec. 7.1), we find
that the effect of a magnetic field is about 7%. This is small enough to explain why the
difference was not observed in the numerical simulations of Ref. [66], and large enough
to tell that there is no need to look for a symmetry argument. Nevertheless, we found
an approximate symmetry argument which relates the conductance fluctuations in an NS
junction to those in a normal metal system with a spatial symmetry.

In Sec. 7.2, we consider weak localization in NS junctions. Here, weak localization is
defined as th& (1) terméG in the largeN expansion of the conductance,

G=Gp+8G+ O(N™. (1.5.8)
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Figure 1-12. Top right: Experimental setup for a measurement of sample specific phase dependent
conductance fluctuations of Den Hartog et al. [70]. A T-shaped microstructure is connected to two
ends of a superconducting ring. The flux ® through the ring determines the phase difference ¢ =
2ed/h between the two superconducting contacts. Top left: Magnetoresistance after subtraction
of a ¢-independent background. The background resistance and the envelope of the oscillations
fluctuate as a random function of B. The large oscillations near B = 0 are not sample-specific.
They are due to the proximity effect (induced superconductivity in the normal metal), see e.g.
Ref. [69]. Bottom right: sample specific magnetoconductance oscillations data at T = 50mK.
The flux @7 indicates the flux through the T-shaped sample itself. Bottom left: Autocorrelation
function c(AB) = (R(B)R(B + AB))/(R(B))? for the phase dependent conductance oscillations of
the resistance trace shown in the upper left panel (solid line) and the correlation function for the
background resistance (dashed line). (Figure taken from Ref. [70])
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For normal metals§G = 0 in the presence of a magnetic field. For a disordered NS
junction, we find thasG # 0 even in the presence of a magnetic field. This anomalous
weak localization correction is caused by destructive interference of paths that differ an
even number of Andreev reflections. The weak localization correction is destroyed if both
a magnetic field and a finite bias are applied, to break both time-reversal symmetry and
electron-hole degeneracy.

In Sec. 7.3, we consider a chaotic quantum dot which is attached to two superconduc-
tors. The order parameters of the superconductors have a phase difigrédeealculate
the magnetic-field and phase-difference dependent conductance autocorrelator

C(B,8¢) = (G(B,¢)G(B+8B, ¢ +8¢)) — (G)? (1.5.9)

using the diagrammatic technique of Ch. 6 and the stub-method of Ch. 4. These calcu-
lations are motivated by recent experiments of Den Hartog et al. [70], who measured the
¢- and B-dependence of the conductance in a T-shaped microstructure (see Fig. 1-12).
The horizonal arm of the T is connected to a superconducting ring, and the vertical arm is
connected to a normal electrode. The phase difference between the two superconducting
contacts is varied by changing the flux through the superconducting ring. Although our
calculations are performed for a different model (the T-shaped samples of Ref. [70] are not
chaotic), we find qualitative agreement with the experimental observations of Den Hartog
etal.
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2 Chaotic quantum dots with nonideal leads

2.1 Conductance distribution of a quantum dot with non-
ideal single-channel leads

An ensemble of mesoscopic systems has large sample-to-sample fluctuations in its trans-
port properties, so that the average is not sufficient to characterize a single sample. To
determine the complete distribution of the conductance is therefore a fundamental problem
in this field. Early work focused on an ensemble of disordered wires. (See Ref. 1 for a
review). The distribution of the conductance in that case is either normal or log-normal,
depending on whether the wires are in the metallic or insulating regime. Recently, it was
found that a “quantum dot” has a qualitatively different conductance distribution [2—4].
A quantum dot is a small confined region, having a large level spacing compared to the
thermal energy, which is weakly coupled by point contacts to two electron reservoirs. The
classical motion within the dot is assumed to be ballistic and chaotic. An ensemble consists
of dots with small variations in shape or in Fermi energy. The capacitance of a dot is as-
sumed to be sulfficiently large that the Coulomb blockade can be ignored, i.e. the electrons
are assumed to be non-interacting. Two altogether different approaches have been taken to
this problem.

Baranger and Mello [3], and Jalabert, Pichard, and Beenakker [4] started from random-
matrix theory [5]. The scattering matr&of the quantum dot was assumed to be a member
of the circular ensemble df x N unitary matrices, as is appropriate for a chaotic billiard
[6, 7]. In the single-channel cas®& (= 1), the distributionP(T) of the transmission
probability T [and hence of the conductanGe= (2€?/h)T] was found to be

P(T) = 38T 1H/2, (2.1.1)

wherep e {1, 2, 4} is the symmetry index of the ensembjg £ 1 or 2 in the absence

or presence of a time-reversal-symmetry breaking magnetic fietd;4 in zero magnetic
field with strong spin-orbit interaction). Eg. (2.1.1) was found to be in good agreement
with numerical simulations of transmission through a chaotic billiard connected to ideal
leads having a single propagating mode [3]. (The ¢gase 4 was not considered in Ref.

3)

Previously, Prigodin, Efetov, and lida [2] had applied the method of supersymmetry
to the same problem, but with a different model for the point contacts. They considered
the case of broken time-reversal symmey= 2), for which Eq. (2.1.1) would predict a
uniform conductance distribution. Instead, the distribution of Ref. 2 is strongly peaked near
zero conductance. The tail of the distribution (towards unit transmission) is governed by
resonant tunneling, and is consistent with earlier work by Jalabert, Stone, and Alhassid [8]
on resonant tunneling in the Coulomb-blockade regime.
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It is the purpose of the present section to bridge the gap between these two theories,
by considering a more general model for the coupling of the quantum dot to the reservoirs.
Instead of assuming ideal leads, as in Refs. 3 and 4, we allow for an arbitrary transmission
probabilityI" of the propagating mode in the lead, as a model for coupling via a quantum
point contact with conductance below?Zh. Eq. (2.1.1) corresponds 1o = 1 (ballistic
point contact). In the limil" <« 1 (tunneling point contact) we recover, f8r= 2, the
result of Ref. 2. We consider algb= 1 and 4 and show that — in contrast to Eq. (2.1.1)

— the limit I' « 1 depends only weakly on the symmetry ingéx In the crossover
region from ballistic to tunneling conduction we find a remarkdddependence of the
conductance fluctuations: The variance is monotonically decreasingy$od and 2, but

it has amaximunfor 8 = 4 atI" = 0.74.

The system under consideration is illustrated in the inset of Fig. 2-2b. It consists of a
guantum dot with two single-channel leads containing a tunnel barrier (transmission prob-
ability I'). We assume identical leads for simplicity. The transmission properties of this
system are studied in a transfer matrix formulation. The transfer mdyiaf the quantum
dot can be parameterized as [9, 10]

Mo — up O V14 Ag VAd u O (2.1.2)
T\ o un Vid VIt )\ 0 w )’ o

where the parametey is related to the transmission probability of the dot by
Ta= 1+ r9) % (2.1.3)

The numbersl; andv; satisfy constraints that depend on the symmetry of the Hamiltonian
of the quantum dot: _ _
uj = e 9 a, vj = e % a, (2.1.4)

with a; areal § = 1), complex § = 2), or real quaterniond = 4) number of modulus
one. In general the choice foi andvj and their parametrisation (2.1.4) is not unique.
Uniqueness can be achieved by requiring that

=1 0<¢ <7 (j=12). (2.1.5)

As in Refs. 3 and 4, we assume that the scattering m&yigf the quantum dot is
a member of the circular ensemble, which means &as uniformly distributed in the
unitary group (or the subgroup required by time reversal and/or spin rotation symmetry).
The corresponding probability distribution of the transfer malfixis

Pa(Mg) dMg = 38(1 + 1)1 #/2drqde1d¢.d 0. (2.1.6)

The transfer matridMy, of the tunnel barrier in the lead is given by

_(VTFE yE
Mb_( i m) (2.1.7)
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with I' = (14 )L, The transfer matriM of the total system follows from the matrix
product
M = MpMgMp. (2.1.8)

From Egs. (2.1.2)—(2.1.8) we straightforwardly compute the transmission probability
T of the total system and its probability distributi®{(T ). The result forT is

T = (l + Ad + Mig cO Y_ + m(rq + 1) coS v, +

2V/Ad(Ag + Hm(m+ 1) cosy_ COSl/f+>_ , (2.1.9)
where we have abbreviated
m=41—-D)"2 vy =¢1 Lo (2.1.10)

The variables;, and with them alB-dependence, drop out of this expression. Eq. (2.1.9)
can be invertetto yield A4 in terms of¢, and¢, for given T andI". The probability
distributionP(T) then follows from

oAd

B i i 142
LA 1 Ad) - -
22 d¢1/0 dg2 (14 Aq) 3T

where the integration is over af| € (0, ) for which A4 is real and positive.

ForI" = 1 the functionP(T) is given by Eq. (2.1.1), as found in Refs. 3 and 4. In Fig.
2-2 the crossover from a ballistic to a tunneling point contact is shownI'Faer 1 and
T « 1,I'?P(T) becomes & -independent function of / I'2, which is shown in the inset
of Fig. 2-2c. Several asymptotic expressionsmgiT ) can be obtained from Eq. (2.1.11)
forT' « 1,

P(T) = : (2.1.11)

8
T (T < T,
B=1: P(T) = 7; (2.1.12)
;T‘w T2« T <,
24T
=2: PM)= 44— 2.1.13
B (T) AT (T < D), (2.1.13)
34+ 4Tr2 4+ 312
B=4: P(T)= 24TT IR (T < 1). (2.1.14)

The g = 2 expression (2.1.13) fd?(T) in the tunneling regime agrees precisely with the
supersymmetry calculation of Prigodin, Efetov, and lidaqHq. (2.1) does not cover the

Hnversion of Eq. (2.1.9) requires some care. Since a ghift> v, + 7 changes the sign of the term
containing the square root in Eq. (2.1.9), solving fgrwith vr1 andy1 + 7 yields exactly two (complex)
solutions in total. This allows one to construct a single-valued functig ., 1) such that these two
solutions are given byq (¥4, ¥—) andiq(¥+ + 7, ¥—). This functioniq is understood as the inverse of
Eqg. (2.1.9).

2To compare with Ref. 2 we identify; = a» = %F « 1 and take the limitt — 0 of Eq. (7) in that
paper. This yields our Eqg. (2.1.13). Here a2, anda are, respectively, the level broadening (divided by the
level spacing) due to coupling to lead 1 and 2, and due to inelastic scattering processes (which we have not
included in our formulation, whenee — 0).
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Figure 2-2. Distribution of the transmission probability T through a quantum dot with non-ideal
leads, for three values of the transmission probability I' of the leads. The curves are computed
from Eq. (2.1.11) for each symmetry class (8 = 1, 2,4). The inset of (b) shows the quantum dot,
the inset of (c) shows the asymptotic behavior of P(T) for I' « 1 on a log-log scale.
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range near unit transmission. As — 1 (andI’ < 1), P(T) — cgI', withc; = %
C; = 7, andcs = 3.

A quite remarkable feature of the quantum dot with ideal leads is the stralgpen-
dence ofP(T) (cf. Fig. 2-2a). Fol" « 1, theB-dependence is much less pronounced.
For T > I'? the leads dominate the transmission properties of the total system, thereby
suppressing thg-dependence oP (T) (although not completely). For very small trans-
mission coefficientsT « I'?) the non-ideality of the leads is of less importance, and the
characteristigg-dependence of Eq. (2.1.1) is recovered (see inset of Fig. 2-2c).

Moments ofP(T) can be computed in closed form for &lldirectly from Eg. (2.1.9).

The first two moments are (recall that= 4(1 — [')[~2):

Jmt [VIdm- A inItm+ vm)] B =1),
(T)={ m~? [(m—Z)JlJr—m+2] B =2,
f5m 3 [ 3m? — 4m+ 8)v1+ m - 32| B =),
Zm2[am 18 VI m+ (£ +8ym) In/ITm+ym| (=1,
(T%) = 1 fsm3|(m?+2m+ 16) vI+m — 10m — 16| B =2,
s5m~4[(3m? + 2m? — 40m - 144 VT M+ 112m+ 144] (B =14,

ForI" « 1 one has asymptotically

n—1

n _ BT B+2)2) -1
<T>_2(;3+1)H 2j(B+2j+1)

(2.1.15)
j=1

The I'-dependence of the variance VRr= (T?) — (T)? of the transmission probability

is shown in Fig. 2-3. In the crossover regime between a ballistic point comtaet)) and

a tunneling point contaci( « 1), the three symmetry classes show striking differences.
For § = 1 and 2 the conductance fluctuations decrease monotonically upon decreasing
I, whereas they show non-monotonic behaviorfoe 4. Notice also that the transition

B =1 — B =2, byapplication of a magnetic field, reduces fluctuationd¥or I'; but
increases fluctuations for < I'c, wherel'c = 0.92.

In summary, we have computed the transmission probability of a ballistic and chaotic
cavity for all possible values of the symmetry ing&and for arbitrary values of the trans-
parancyl’ of the single-channel leads. Our results describe the conductance of a quan-
tum dot in the crossover regime from a coupling to the reservoirs by ballistic to tunneling
point contacts. The theory unifies and extends known results [2—-4]. The characteristic
B-dependence of the distribution function that was found for ideal leads [Eq. (2.1.1)] is
strongly suppressed for transmission probabilifidarger thari"2. A closely related phe-
nomenon is the non-trivial’-dependence of the conductance fluctuations for the three
symmetry classes. The theory is relevant for experiments on chaotic scattering in quantum
dots with adjustable point contacts, which are of great current interest [11-13].
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Figure 2-3. Variance of the transmission probability T as a function of the transmission probability
of the leads T".

2.2 Generalized circular ensemble of scattering matrices
for a chaotic cavity with non-ideal leads

Theoretical work [2—4, 8,14-17] on phase-coherent conduction through cavities in which
the classical electron motion can be regarded as chaotic has stimulated recent experi-
ments [11-13, 18] on conductance fluctuations and weak-localization effects in quantum
dots. If the capacitance of the quantum dot is large enough, a description in terms of
non-interacting electrons is appropriate (otherwise the Coulomb blockade becomes impor-
tant [2, 8]).

For an isolated chaotic cavity, it has been conjectured and confirmed by many exam-
ples that the statistics of the Hamiltoniahagrees with that of the Gaussian ensemble of
random-matrix theory [19, 20]. If the chaotic behavior is caused by impurity scattering,
the agreement has been established by microscopic theory: Both the Gaussian ensemble
and the ensemble of Hamiltonians with randomly placed impurities are equivalent to a cer-
tain non-linearo-model [21, 22]. Transport properties can be computed by coupling
eigenstates of to N scattering channels [22—-25]. Sinbe<« M this construction intro-
duces a great number of coupling parameters, whereas only a few independent parameters
determine the statistics of the scattering ma8iof the system [22].

For transport properties at zero temperature and infinitesimal applied voltage, one only
needs to knows at the Fermi energ¥r, and an approach which starts directly from the
ensemble of scattering matrices at a given energy is favorable. Following up on earlier
work on chaotic scattering in billiards [6, 7], two recent papers [3, 4] have studied the
transport properties of a quantum dot under the assumptioistisatistributed according
to Dyson’s circular ensemble [5, 26]. In Refs. 3 and 4 the coupling of the quantum dot to
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the external reservoirs was assumed to occur via ballistic point contacts (or “ideal leads”).
The extension to coupling via tunnel barriers (non-ideal leads) was considered in Sec. 2.1.
In all cases complete agreement was obtained with results which were obtained from the
Hamiltonian approach [2,23, 24]. This agreement calls for a general demonstration of the
equivalence of the scattering matrix and the Hamiltonian approach, for arbitrary coupling
of the quantum dot to the external reservoirs. It is the purpose of this section to provide
such a demonstration. A proof of the equivalence of the Gaussian and circular ensembles
has been published by Lewenkopf and Weidalen [25], for the special case of ideal
leads. The present proof applies to non-ideal leads as well, and repairs a weak spot in the
proof of Ref. 25 for the ideal case.

The circular ensemble of scattering matrices is characterized by a probability distri-
bution P(S) which is constant, that is to say, each unitary ma8iis equally probable.
As a consequence, the ensemble aver@ge zero. This is appropriate for ideal leads.
A generalization of the circular ensemble which allows for non-Z(and can therefore
be applied to non-ideal leads) has been derived by Mello, Pereyra, and Seligman [27, 28],
using a maximum entropy principle. The distribution function in this generalized circular
ensemble is known in the mathematical literature [29] as the Poisson kernel,

P(S) o |det1 — §Tg)| PN

(2.2.1)
Herep € {1, 2, 4} is the symmetry index of the ensemble of scattering matriées:1 or

2 in the absence or presence of a time-reversal-symmetry breaking magnetig feld;

in zero magnetic field with strong spin-orbit scattering. (In Refs. [27] and [28] only the
casef = 1 was considered.) One verifies tiiatS) = constant folS = 0. Eq. (2.2.1) was

first recognized as a possible generalization of the circular ensemble by Krieger [30], for
the special case th&tis proportional to the unit matrix.

In this section we present a microscopic justification of the Poisson kernel, by deriving
it from an ensemble of random Hamiltonians which is equivalent to an ensemble of disor-
dered metal grains. For the Hamiltonian ensemble we can use the Gaussian ensemble, or
any other ensemble to which it is equivalent in the liMit— oo [31]. (The microscopic
justification of the Gaussian ensemble only holdsNbr— oc.) For technical reasons, we
use a Lorentzian distribution for the Hamiltonian ensemble, which in the Mnit> oo
can be shown to be equivalent to the usual Gaussian distribution. The technical advan-
tage of the Lorentzian ensemble over the Gaussian ensemble is that the equivalence to the
Poisson kernel holds for arbitray > N, and does not require taking the linht — oo.

The outline of this section is as follows: In Sec. 2.2.1 the usual Hamiltonian approach
is summarized, following Ref. 22. In Sec. 2.2.2, the Lorentzian ensemble is introduced.
The eigenvalue and eigenvector statistics of the Lorentzian ensemble are shown to agree
with the Gaussian ensemble in the lint — oco. In Sec. 2.2.3 we then compute the
entire distribution functiorP (S) of the scattering matrix from the Lorentzian ensemble of
Hamiltonians, and show that it agrees with the Poisson kernel (2.2.1) for ardiraryN.

In Sec. 2.2.4 the Poisson kernel is shown to describe a quantum dot which is coupled to the
reservoirs by means of tunnel barriers. We conclude in Sec. 2.2.5.
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2.2.1 Hamiltonian approach

The Hamiltonian approach [22, 25, 32] starts with a formal division of the system into two
parts, the leads and the cavity (see Fig. 2-4a). The Hamiltonian of the total system is
represented in the following way: Let the $&d)} represent a basis of scattering states in
the lead at the Fermienerdy: (a=1, ..., N), with N the number of propagating modes

at EF. The set of bound states in the cavity is denoted |y} (v = 1,..., M). We
assumeM > N. The Hamiltonian{ is then given by [22]

H =) |a)Eral+ Y I Huwl+ Y (ImWaa@l + [@)Wia(ul) . (2.2.2)
a n,v n,a

The matrix elementsi,, form a hermitianM x M matrix H, with real § = 1), com-
plex (8 = 2), or real quaterniond = 4) elements. The coupling constafts, form a
real (complex, real quaternio® x N matrix W. The N x N scattering matrixS(Er)
associated with this Hamiltonian is given by

S(Ef) = 1—27iWT(Er — H +izWW"H~1w. (2.2.3)

For 8 = 1, 2, 4 the matrixSis respectively unitary symmetric, unitary, and unitary self-
dual.
Usually one assumes thhitis distributed according to the Gaussian ensemble,

P(H) = %exp(—%ﬁM)ﬁztr H2>, (2.2.4)

with V a normalization constant aridan arbitrary coefficient which determines the den-
sity of states aEr. The coupling matriXV is fixed. Notice thatP(H) is invariant under
transformationdd — UHUT whereU is orthogonal § = 1), unitary ¢ = 2), or sym-
plectic (8 = 4). This implies thatP(S) is invariant under transformatioMd — UW, so
that it can only depend on the invariaM'W. The ensemble-averaged scattering marix
can be calculated analytically in the linM — oo, at fixedN, Ef, and fixed mean level
spacingA. The resultis [22]
_ 1—aWTw/a
14+ awiw/a
It is possible to extend the Hamiltonian (2.2.2) to include a “background” scattering
matrix § which does not couple to the cavity [33]. The mat8xis symmetric forg = 1
and can be decomposed&s= 02 ®OT, where the matrixO is orthogonal and is real
and diagonal. In the limiM — oo, the average scattering mat®is now given by [33]

(2.2.5)

-®1—anW/)\é-¢OT.

S= Od (2.2.6)
1+ 7 WTW/A

Lewenkopf and Weidenailer [25] used this extended version of the theory to relate
the Gaussian and circular ensembles et 1 andS = 0. Their argument is based on the
assumption that Eq. (2.2.6) can be inverted, to YV andS as a function oS. Then
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Figure 2-4. Schematic drawing of a disordered cavity (grey) attached to a lead. There are N
scattering channels in the lead, which are coupled to M bound levels in the cavity. In (a) only one
lead is drawn. A system with more leads (b) is described by combining them formally into one lead.

P(S) = Pg(S) is fully determined by5 (and does not require separate knowlediEf)W
andS). Under the transformatios — U SUT (with U an arbitrary unitary matrix)Sis
mapped tdJ SUT, which implies

Ps(S) = Pyg,r (USUT). (2.2.7)

For S = 0 one finds thaP(S) is invariant under transformatio®s— U SUT, so thatP(S)
must be constant (circular ensemble). There is, however, a weak spot in this argument:
Equation (2.2.6) camot be inverted for the crucial casg = 0. It is only possible to
determineW'W, not §. This is a serious objection, sin& is not invariant under the
transformationS — U SUT, and one can not conclude thatS) = constant forS = 0.
We have not succeeded in repairing the proof of Ref. 2%fer 0, and instead present in
the following subsections a different proof (which moreover can be extended to non-zero
S).

A situation in which the cavity is coupled toreservoirs byn leads, havind\; scatter-
ing channelsj = 1, ..., n) each, can be described in the framework presented above by
combining then leads formally into a single lead witN = Z}‘Zl Nj scattering channels.
Scattering matrix elements between channels in the same lead correspond to reflection
from the cavity, elements between channels in different leads correspond to transmission.
In this notation, the Landauer formula for the conducta@cef a cavity with two leads

(Fig. 2-4b) takes the form
N1 Ni+N2

G:%Z > Isiln (2.2.8)

i=1j=Np+1

2.2.2 Lorentzian ensemble

For technical reasons we wish to replace the Gaussian distribution (2.2.4) of the Hamilto-
nians by a Lorentzian distribution,

1 —(BM+2-)/2
P(H) = vx“’“ﬁ“"”—f”/zdet(xz +(H - g)2> : (2.2.9)
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wherei ande are parameters describing the width and center of the distributiorV asd
a normalization constant independentiodndes. The symmetry paramet@ € {1, 2, 4}
indicates whether the matrix elementstéfare real B = 1, Lorentzian Orthogonal En-
semble AOE)], complex B = 2, Lorentzian Unitary Ensembl&(E)], or real quaternion
[B = 4, Lorentzian Symplectic Ensembla$E)]. (We abbreviate “Lorentzian” by a capi-
tal lambda, because the letleis commonly used to denote the Laguerre ensemble.)

The replacement of (2.2.4) by (2.2.9) is allowed because the eigenvector and eigen-
value distributions of the Gaussian and the Lorentzian ensemble are equal on a fixed en-
ergy scale, in the limiM — oo at a fixed mean level spaciny. The equivalence of the
eigenvector distributions is obvious: The distributiortbflepends solely on the eigenval-
ues for both the Lorentzian and the Gaussian ensemble, so that the eigenvector distribution
is uniform for both ensembles. In order to prove the equivalence of the distribution of
the eigenvalueg&s, Eo, ..., Em (energy levels), we compare thdevel cluster functions
Th(E1, Eo, ..., Ey) for both ensembles. The general definition of thés is given in
Ref. [5]. The first twol,’s are defined by

M
TiE) = () 8(E—E)) (2.2.10)
i=1

M M
T2(E1. E») = () _8(E1—EN)() _8(E2— E)) — () 8(E1— ES(E2 - Ep)).
i=1 j=1 i#]
The brackets. . .) denote an average over the ensemble. The cluster functions in the Gaus-
sian ensemble are known for arbitrary5], for the Lorentzian ensemble we compute them
below.

From Eq. (2.2.9) one obtains the joint probability distribution function of the eigenval-
ues,

_ 1 M(BM+2—8)/2 _ B 2 _ o\ ~(BM+2-p)/2
PUED = H|E.—E,| ]T[(A 4 (E —e) )) . (2.2.11)
We first consider the case= 1, ¢ = 0. We make the transformation
1+iH
S= ) 2.2.12
1—iH ( )

The eigenvalueg?i of the unitary matrixS are related to the energy levets by

B 1+iEj

d¥i
1-1iE;

< ¢j = 2arctark;. (2.2.13)
The probability distribution of the eigenphases follows from Eqgs. (2.2.11) and (2.2.13),

P{¢}) = %2—“"(*3“"*2—/3)/2]_[ €9 — )P, (2.2.14)

i<j
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This is precisely the distribution of the eigenphases in the circular ensemble. The cluster
functions in the circular ensemble are known [5, 26]. THevel cluster function§ A in

the Lorentzian ensemble are thus related tathevel cluster functiond,C in the circular
ensemble by

n
2
TAEyL ..., En) = TS (2arctarEy, .. ., 2 arctarE . 2.2.15
n ( 1 T‘I) n ( 1 n)]l:!- 1+ EJZ ( )
Forn = 1 one finds the level density
E)= —, 2.2.16
p(E) 1T ED ( )
independent oB. Forn = 2 one finds the pair-correlation function
4 sirf(M arctanE; — M arctanE
TZA(EL E) sint(M arctank, arctanky) (2.2.17)

(14 E®)(1 + E) sirf(arctanE; — arctanEp)’

Eqg. (2.2.17) holds fop = 2. The expressions f@g = 1, 4 are more complicated.
Then-level cluster functions for arbitrary ande can be found after a proper rescaling
of the energies. Eq. (2.2.15) generalizes to

TAEL ..., En) =
Ei—¢ En—¢)\ 2)
TE (2arctan———, ..., 2 arctan . (2.2.18
”( A A )jl:[l/\2+(Ej—e)2 ( )
The largeM limit of the Tyy’s is defined as
Yn(£1, ..., &) = I\/Ilinoo A"Th(E1A, ..., EnA). (2.2.19)

For both the Gaussian and the Lorentzian ensembles, the mean level spatiting center
of the spectrum in the limiM — oo is given byA = Aw/M. Therefore, the relevant limit
M — oo at fixed level spacing is given i\l — oo, A — 00, A = Axr/M fixed for both
ensembles. Equation (2.2.18) allows us to relateYitie in the Lorentzian and circular
ensembles,

YnA(gl,...,gn) = MI@OO (Zn/M)”T,F(Zarctamngl/M),...,2arctamn§n/M))
= lim r/MNTE2rE/M, ..., 2nEn/ M)
= YC(r ..., &) (2.2.20)

It is known that the cluster functioné® in the circular ensemble are equal to the cluster
functions Y in the Gaussian ensemble [5]. Equation (2.2.20) therefore shows that the
Lorentzian and the Gaussian ensembles have the same cluster functions in thd large-
limit.
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The technical reason for working with the Lorentzian ensemble instead of with
the Gaussian ensemble is that the Lorentzian ensemble has two properties which make it
particularly easy to compute the distribution of the scattering matrix. The two properties
are:

Property 1: If H is distributed according to a Lorentzian ensemble with widtand
centere, then H~1 is again distributed according to a Lorentzian ensemble, with width
A = 1/(A% 4 £2) and centeE = g/(A? + £2).

Property 2: If the M x M matrix H is distributed according to a Lorentzian ensemble,
then everyN x N submatrix ofH obtained by omittingl — N rows and the corresponding
columns is again distributed according to a Lorentzian ensemble, with the same width and
center.

The proofs of both properties are essentially contained in Ref. 29. In order to make this
chapter self-contained, we briefly give the proofs in the appendix.

2.2.3 Scattering matrix distribution for the Lorentzian ensemble

The general relation between the Hamiltonidnand the scattering matri® is given by
EqQ. (2.2.3). After some matrix manipulations, it can be written as

-1
S— (1+ i7WT(H — EF)—lw) (1— i7WT(H — EF)—1W> . (2.2.21)
We can write the coupling matriw/ as
W = UQW, (2.2.22)

whereU is anM x M orthogonal g = 1), unitary 8 = 2), or symplectic § = 4) matrix,
W is anN x N matrix, andQ is anM x N matrix with all elements zero excef@,, = 1,
1 < n < N. Substitution into Eq. (2.2.3) gives

S= (1+inv“vTH“v“v) (1— inVVTHVV)_l, (2.2.23)

where we have defined = Q"UT(H — Ep)~ U Q.

We assume thdt is a member of the Lorentzian ensemble, with wididind center O.
Then the matrixd — Eg is also a member of the Lorentzian ensemble, with wideémd
centerEg. Property 1 implies thatH — Eg)~1 is distributed according to a Lorentzian
ensemble with width. = 1/(12+E2) and centef = Eg/(A%+E2). Orthogonal (unitary,
symplectic) invariance of the Lorentzian ensemble implieslth%ﬂ-l — Er)~U has the
same distribution aéH — Er)~1. Using property 2 we then find thét [being anN x N
submatrix ofU T(H — Eg)~1U] is distributed according to the same Lorentzian ensemble
(width A and centeg).

We now compute the distribution of the scattering matrix, first for a special coupling,
then for the general case.
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Special coupling matrix

First we will consider the special case that

W =7"Y25,m (2.2.24)

is proportional to the unit matrix. The relation (2.2.23) betweenShedH is then

1+iH
s— -1 (2.2.25)
1-iH
Thus the eigenvalues; of H ande'® of Sare related via
o 1+iE -
9 = 1+'EJ & ¢ = 2arctarg;. (2.2.26)
—i j

Since transformationsl — U HUT (with arbitrary orthogonal, unitary, or symplectic
N x N matrix U) leave P(H) invariant, P(S) is also invariant undes - USut. So
P(S) can only depend on the eigenval@® of S. The distribution of theE’s is [cf. Eq.
(2.2.11)]

_ 1 .. o N—(BN42-p)2
PUE ) = SANN P2 TT | — B[ ()\2 + (B — s)2> . (2.2.27)
<k j

From Egs. (2.2.26) and (2.2.27) we obtain the probability distribution opthie

1/1=—0c0* N(BN+2—-8)/2
Plpi}) = —
(o b v ( > )
x [T1€% — e [Tl1-o*e?| "= (2.2.28)
j<k j

1-1—i& A 4+EZ-A1-iE

o o= TP LT '=F (2.2.29)
1+Ar+i8 A+ EE+Ar+iEF

Eqg. (2.2.3) implies thaP (S) has the form of a Poisson kernel,
det(1 — SST(BN+2-5)/2 e _
p(g = 2t ) det1 — §'g)| NP (2.2.30)

IN(BN+2—-B)/2\/
the average scattering mat®deing given by
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Arbitrary coupling matrix

Now we turn to the case of arbitrary coupling matvik We denote the scattering matrix
at couplingW by S, and denote the scattering matrix at the special coupling (2.2.24) by
S. The relation betweeBandS is

S=r+t'SA-r'Y e =) S-rna-rTg=t" (2.2.32)
where we abbreviated

r = 1—aWwW)@+~Www)-1

r' = —W@-aWW)@ +zWhw)—tw-1,
t = 27Y2PWA+ 7 WW)~1,
t = 27Y2(1+ xWiw)~twt,

The symmetry of the coupling matriw is reflected in the symmetry of the\2x 2N

Elﬂ- / ’ ( EE)
t r/

which is unitary symmetric{ = 1), unitary 8 = 2) or unitary self-dualg = 4).
The probability distributiorPy of & is given by Eq. (2.2.30). The distributid? of S
follows from S

d
P(S = Po(So)ﬁ, (2.2.34)

where the JacobiathS/d Sis the ratio of infinitesimal volume elements arougoandS.
This Jacobian is known [29, 34],

(2.2.35)

dS det —rfr) PNtz
ds — (|del(1—rTS)|2> '

After expressingy in terms of S by means of Eq. (2.2.32), we find thB(S) is given by
the same Poisson kernel as Eq. (2.2.30), but with a diffésent

1—n(h+i5)WTw
14+ 7 +i5)WIw’

S= (2.2.36)

In the limit M — oo at fixed level spacingh = Ax/M, Eq. (2.2.36) simplifies to

_ AM — 72WTw
- 7 . (2.2.37)
AM + 72WTw

The extended version of the Hamiltonian approach which includes a background scat-
tering matrix$ can be mapped to the case without background scattering matrix by a
transformatiors - S =USUT (8 =1),S— S =USV(8 =2),0rS— S =USUR
(8 = 4), whereU andV are unitary matrices [33]U" is the transposed &f , U R is the
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Figure 2-5. Schematic drawing of the chaotic cavity and the non-ideal lead containing a tunnel
barrier.

dual ofU.) The Poisson kernel is covariant under such transformations [27], i.e. it maps to
a Poisson kernel wit = USUT (8 =1),S =USV (8 =2),0rS = USUR (8 = 4).

As a consequence, the distributionif given by the Poisson kernel for arbitrary coupling
matrix W and background scattering mat&x. This proves the general equivalence of the
Poisson kernel and the Lorentzian ensemble of Hamiltonians.

2.2.4 ldeal versus non-ideal leads

The circular ensemble of scattering matrices is appropriate for a chaotic cavity which is
coupled to the leads by means of ballistic point contacts (“ideal” leads). In this section we
will demonstrate that the generalized circular ensemble described by the Poisson kernel is
the appropriate ensemble for a chaotic cavity which is coupled to the leads by means of
tunnel barriers (“non-ideal” leads).

The system considered is shown schematically in Fig. 2-5. We assume that the segment
of the lead between the tunnel barrier and the cavity is long enough, so that bothxthe
scattering matribg of the cavity and the R x 2N scattering matrixg; of the tunnel barrier
are well-defined. The scattering mati® has probability distributiorPy = constant of
the circular ensemble, whereas the scattering m&rig kept fixed.

We decomposé&; in terms of N x N reflection and transmission matrices,

S = ( b > (2.2.38)

o
The N x N scattering matriXS of the total system is related ® andS; by
S=r1+t(1— Sr) St (2.2.39)

This relation has the same form as equation (2.2.32). We can therefore directly apply
equation (2.2.34), which yields

P(S) o | detl —r] )|~ BN+2-H), (2.2.40)

HenceSis distributed according to a Poisson kernel, with- r1.



60 Chapter 2: Chaotic quantum dots with nonideal leads

2.2.5 Conclusion

In conclusion we have established by explicit computation the equivalendd for N
of a generalized circular ensemble of scattering matrices (described by a Poisson kernel)
and an ensemble &l x M Hamiltonians with a Lorentzian distribution. The Lorentzian
and Gaussian distributions are equivalent in the lavgémit. Moreover, the Gaussian
Hamiltonian ensemble and the microscopic theory of a metal particle with randomly placed
impurities give rise to the same non-linearmodel [21, 22]. Altogether, this provides
a microscopic justification of the Poisson kernel in the case that the chaotic motion in
the cavity is caused by impurity scattering. For the case of a ballistic chaotic cavity, a
microscopic justification is still lacking.

The equivalence of the Poisson kernel and an arbitrary Hamiltonian ensemble can be
reformulated in terms of a central limit theorem: The distribution of a submatrikof of
fixed sizeN tends to a Lorentzian distribution whéh — oo, independent of the details
of the distribution ofH. A central limit theorem of this kind foN = 1 has previously
been formulated and proved by Mello [28].

Appendix A: Proof of properties 1 and 2 of Sec. 2.2.2

The two proofs given below are adapted from Ref. 29. The matriand its inverse

H~1 have the same eigenvectors, but reciprocal eigenvalues. Therefore, property 1 of the
Lorentzian ensemble is proved by showing that the distribution of the eigenvalttstof

is given by Eq. (2.2.11), with the substitutions> A ande — &. This is easily done,

PHE ™) =

1

~(BM+2-p)/2 | dE
= AMOMPTTE — B 1P ] [(x2+ (Ei — e)2> :

d(E™h

\%

i< i

1 p —(BM+2-p)/2
= AMEM e p 2 [T B (7 - 0 ] [(/\2+ (E —0)?) E?]
i<]j i
1 p —(BM+2-p)2
_ v}\1\/1(,31\/|+2—,3)/2l—[ Ei—l _ Ej—l‘ 1—[ (Ain—z F- 8Ei_1)2)
i< i
1., B /- —(BM+2-)2
_ = (BM+2—-p8)/2 -1 _ -1 2 -1 x2
= [T/e™*-g" U(A +(E1-5?) . (AL

i<j
In order to prove property 2, we may assume that after rescalikywé haver = 1,
¢ = 0. First consideN = M — 1. In this case, one can write

(5 7) ”2)

whereG is the N x N submatrix ofH whose distribution we want to computé,is a
vector, with real g = 1), complex g = 2), or real quaternion elements & 4), andZ is
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a real number. For the successive integrations @vandY we need two auxiliary results.
First, for real numbera, b, ¢ such that > 0 and 4ic > b?, and for reain > 2 we have

)—m+1/2 a™ 17Y2rm—1/2)/r(m). (A.3)

o
/ dx @ +bx+c) ™M= (ac— 10?
—00
Second, ifx is ad-dimensional vector with real components, anthit- (d + 1)/2, then
o0 oo
/ dxl.../ dxg (1+x%)™™ = 792rm—d/2)/ T (m). (A.4)
—00 —00

Since detl + H)? is a quadratic function oZ, the integral oveZ can now be carried
out using Eq. (A.3). The result is:

720 (3(BM +1— )

VI (3(BM +2 - p))
)—,BM—l—i-ﬂ

/ dZP(H) det(1 + G2)(-AM=2+H)/2

(1 +Y'1+ 63ty (A.5)
Next, we integrate oveY. We may choose the basis for tNevectors so that & G2
is diagonal, with diagonal eIements—l—lGiZ. After rescaling of theY-vectors toY/ =
Yi (1 + G?)¥/2 one obtains an integral similar to Eq. (A.4), wih= (M — 1). The final
result is

g BM=P+D2 1 (2(BM + 1 - )

P©) = VI (BM +1— B)

detl + GHAM=D=2+p/2 (A )

Property 2 now follows by induction. Notice that Eqg. (A.6) allows us to determine the
normalization constary,

v = rom-proma LGOI +1-P) ~
1 TBi+1-p |
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3 Dephasing in quantum dots

3.1 Effect of a voltage probe on the phase-coherent con-
ductance of a ballistic chaotic cavity

A basic notion in mesoscopic physics is that the measurement of a voltage at some point in
the sample is an invasive act, which may destroy the phase coherence throughout the whole
sample. Bittiker introduced a simple but realistic model for a voltage probe [1], and used it

to investigate the transition from coherent to sequential tunneling through a double-barrier
junction, induced by the coupling to a voltage lead of the region between the barriers.
The mechanism by which the measurement of a voltage destroys phase coherence is that
electrons which enter the voltage lead are reinjected into the system without any phase
relationship. Bittiker's model has been applied successfully to a variety of physical situ-
ations [2—9], including diffusive transport in a disordered wire, ballistic transport through
guantum point contacts, and edge-channel transport in the quantum Hall effect. In order
to analyze their experimental data, Marcus et al. [10] proposed to ukd3’s model

to describe inelastic processes in ballistic and chaotic cavities (“quantum dots”). Here
we present a detailed analysis of the effect of a voltage probe on the entire conductance
distribution of such a system.

Several recent theoretical papers dealt with the phase-coherent conduction through a
ballistic chaotic cavity, either by means of a semiclassical approach [11], or by means of
the supersymmetry method [12—-14], or by random-matrix theory [15, 16] (see also Ch. 2).
Quantum interference has a striking effect on the conduct@noéthe quantum dot if it
is coupled to source and drain reservoirs by means of two ballistic point contacts with a
quantized conductance oé2 h. Classically, one would expect a conductance distribution
P(G) which is peaked a6 = €?/h, since half of the electrons injected by the source are
transmitted on average to the drain. Instea) was found to be [15, 16]

P(G) x G2 0< G < 2€?/h, (3.1.1)

wheref € {1, 2, 4} is the symmetry index of the ensemble of scattering matriges:(
1 or 2 in the absence or presence of a time-reversal-symmetry breaking magnetic field;
B = 4 in zero magnetic field with strong spin-orbit scattering). Depending othe
conductance distribution is either uniform, peaked at zero or peake# &.2As we will
show, strong coupling of the quantum dot to a voltage lead causes a crossover from Eq.
(3.1.1) to a Gaussian, peakededt h. A small displacement of the peak of the Gaussian
for B = 1, and g8-dependent width of the peak are the remnants of the weak localization
and mesoscopic fluctuation effects which are so pronounced in the case of complete phase
coherence [15, 16].

A strong coupling of the voltage probe is achieved by means of a wide ballistic lead
with many scattering channels (Sec. 3.1.3). If the voltage lead contains a single channel,
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we may reduce the coupling to zero by means of a tunnel barrier in this lead (Sec. 3.1.2).
Together, these two sections cover the full range of coupling strengths. In the next section
we first formulate the problem in some more detail, and discuss the random-matrix method
used to compute the conductance distribution.

3.1.1 Formulation of the problem

We consider a ballistic and chaotic cavity (quantum dot) coupled by two leads to source
and drain reservoirs at voltag¥s andV,. A currentl = 11 = —I, is passed from source
to drain via leads 1 and 2. A third lead is attached to the quantum dot and connected
to a third reservoir at voltag¥s. This third lead is a voltage probe, which means that
V3 is adjusted in such a way, that no current is drawyn£ 0). The coupling strength
of the voltage probe is determined by the numbleof scattering channels (propagating
transverse modes at the Fermi-level) in lead 3 and by the transparency of a tunnel barrier
in this lead. We assume that each of tthienodes has the same transmission probaHility
through the tunnel barrier. We restrict ourselves to the case that the current-carrying leads
1 and 2 are ideal (no tunnel barrier) and single-channel (a single propagating transverse
mode). This case maximizes the quantum-interference effects on the conductance. We
assume that the capacitance of the quantum dot is sufficiently large that we may neglect
the Coulomb blockade, and we will regard the electrons to be non-interacting.

The scattering-matri$ of the system has dimensidh = N + 2 and can be written as

rig tio tis
S= to1 oo 123 (3.1.2)

t31 132 r33

in terms of reflection and transmission matriegsandtjj. The currents and voltages
satisfy Bittiker’s relations [17]

h
— Ik = (N — Vk — ) TuVi, k=12 1.
22 'k = (Nk = R Vi > TaVi, 2,3, (3.1.3)
Ik
whereRgk = trrkkrgk, Tk = trtkltle, andN is the number of modes in ledd The two-
terminal conductanc& = 1/(V1 — V) follows from Eq. (3.1.3) withl; = —I> =1,
I3 = 0:
2¢? Ti3T32
C=—(T2t—7—F]- 3.14
b ( 12 T31+T32) (3.1.4)

From now on, we will measuré in units of 22/ h.

An ensemble of quantum dots is constructed by considering small variations in shape
or Fermi energy. To compute the probability distributi®G) of the conductance in this
ensemble we need to know the distribution of the elements of the scattering matrix. Our
basic assumption, following Refs. [15] and [16], is that for ideal leads the scattering matrix
is uniformly distributed in the space of unitaM x M matrices. This is the circular
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ensemble of random-matrix theory [18, 19]. The distributi®S) for the casd™ = 1 is
therefore simply
1
Po(S) = v (3.1.5)
whereV = [ dpu is the volume of the matrix space with respect to the invariant measure
du. BothV anddu depend on the symmetry ind@gxe {1, 2, 4}, which specifies whether
Sis unitary (8 = 2), unitary symmetric{ = 1), or unitary self-dualf = 4).

A characteristic feature of the circular ensemble is that the ave3agé¢he scattering
matrix vanishes. For non-ideal leads this is no longer the case, and Eq. (3.1.5) therefore
has to be modified if” # 1. In Ch. 2 we showed, for a quantum dot with two non-ideal
leads, how the probability distributioR(S) of the scattering matrix can be computed by
expressing the elements of the full scattering ma&quantum dot plus tunnel barriers)
in terms of the scattering matri® of the quantum dot alone (with ideal leads). For an
arbitrary number of leads the distribution takes the form of a Poisson kernel [20, 21],

P(S) = c|detl — S'g)|AM—2+8, (3.1.6)

with normalization constant
1 P 1
c = ldetl - S'g)2AM+1-35, (3.1.7)

In the present case of two single-channel ideal leads and one non-ideal lead the average
S= [du SP(S) of the scattering matrix is given by

) (3.1.8)
0 otherwise.

— — < = <
&m:{ 1-T if3<n=m<M,
One verifies that fof" = 1, P(S) reduces to the distribution (3.1.5) of the circular ensem-
ble.

Eq. (3.1.1) holds for ang € {1, 2, 4}. In what follows, however, we will only consider
the case® = 1, 2 of unitary or unitary symmetric matrices, appropriate for systems with-
out spin-orbit scattering. The cage= 4 of unitary self-dual matrices is computationally
much more involved, and also less relevant from a physical point of view.

As indicated by Bittiker [1], the casedl = 1 andN > 1 of a single- and multi-channel
voltage lead are essentially different. Current conservation (i.e. unitarfy pbses two
restrictions onTs; and T3z: (i) T3y < 1, T3z < 1; and (ii) Ts1 + T32 < N. The second
restriction is effective foN = 1 only. So forN = 1, current conservation imposes a
restriction on the coupling strength of the voltage lead to the quantum dot which is not
present forN > 1. We treat the cased = 1 andN > 1 separately, in Secs. 3.1.2 and
3.1.3. ForN = 1 we treat the case of arbitrafy; but for N > 1 we restrict ourselves for
simplicity toT" = 1.
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3.1.2 Single-channel voltage lead
In the caseN = 1, Eq. (3.1.1) reduces to

P(S) = %rﬂ“ (1+ (1—T)|Ss3)? — 2(1 — I)Y/2 Regg) = (3.1.9)

In order to calculatd® (G), we need to know the invariant measdyein terms of a parame-
terization ofSwhich contains the transmission coefficients explicitly. The matrix elements
of S, in the caseN = 1, are related tdRqx and Tig by Sik = VRk€ %, Sq = VTae ™,
where ¢y are real phase shifts. When time-reversal symmetry is broges (2), we
chooseR11, Ry, T12, To1, ¢13, P23, ¢33, ¢32, andepsy as independent variables, and the
other variables then follow from unitarity @& In the presence of time-reversal symmetry
(B = 1), the symmetn&| = Sk reduces the set of independent variableRig Ro2, Tio,
$13, P23, andezs.

We compute the invariant measutg in the same way as in Ref. [15]. Denoting the
independent variables in the parameterizatiorsddy x;, we consider the changeS in
S associated with an infinitesimal chang® in the independent variables. The invariant
arclength td S'd Sdefines the metric tensgy; according to

trdS'ds=")"gjdxdx. (3.1.10)
]

The determinant degfthen yields the invariant measure

du = |detg|? ] Jdx. (3.1.11)
i

The result turns out to be independent of the phagesnd to have the same form for
B =1and 2,

du = (8I)"Y20(3) [ ] dx. (3.1.12)
[
The quantityd is defined by

. Oif Ri1+Ti2>10rRoo+ Tog > 1,

= ) _ (3.1.13)
4Rp2T12T13T23 — (Ro2T12 + T13T23 — Ri1T21)< otherwise
and®(J)=1if J > 0and®(J) = 0if J < 0. The independent variablgsare different,
however, forg = 1 andg = 2 — as indicated above.
We have calculated the probability distribution of the conductance from Egs. (3.1.4),
(3.1.9), and (3.1.12). The results are shown in Fig. 3-1, for several valdesFafrI" = 0
(uncoupled voltage leadR (G) is given by [15, 16]

3G7Y2 if p=1,

: f5=2 (3.1.14)

P(G) = {
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Figure 3-1. Distribution of the conductance G (in units of 2e2/h) for a single-channel voltage lead
(N = 1). The voltage lead contains a tunnel barrier with transmission probability ", which varies
from 0 to 1 with increments of 0.2. (a): time-reversal symmetry (8 = 1); (b): broken time-reversal
symmetry (8 = 2). The quantum dot is shown schematically in the inset.

ForI" = 1 (maximally coupled single-channel voltage lead), we find

o] 2726 it =1,
©= 4 26 - 267 - (362~ 26%)InG - (1 - 36% + 26 1 - G) | if p =2
(3.1.15)

The averageG) and variance vag of the conductance can be calculated in closed
form for all ". We find that(G) is independent of,

1 .
z IfFpg=1,
(G) = { i if 2 _, (3.1.16)
5 =2
The variance does depend bn
1 -2 2 2 :
+=(1-01)"“(4-11"'+7T“-3r“InmC if =1,
varG =14 * ( ) (3.1.17)

La- r)—3(3 11T +1772— 9%+ 413 n r) if g =2

The breaking of phase coherence caused by the presence of a single-channel voltage lead is
not strong enough to have any effect on the average conductance, whick-férremains

below the classical value of/2. The variance of the conductance is reduced somewhat
whenT is increased from 0 to 1, but remains finite. (o= 1 the reduction is with a

factor 5/8, for 8 = 2 with a factor 5$9.) We will see in the next section, that the complete
suppression of quantum interference effects requires a voltage leadNwith 1. Then

(G) - 1/2 and vaiG — 0.
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3.1.3 Multi-channel voltage lead

Now we turn to the case of a multi-channel ideal voltage leddX 1, ' = 1). Current
conservation yields:

Tis = 1-Ru—Tiz = 1— S’ |S12/%
Ta1 1-Riu—Tor = 1—Sul>— Sl (3.1.18)
Ts2 = 1—-Rnp—Tp = 1—|SP2— S22

To determineP(G) it is thus sufficient to know the distributioR(S;1, Si2, $1, $2) of
the matrix element§ with k,1 < 2. This marginal probability distribution has been
calculated by Mello and coworkers [22] for arbitrary dimensMn> 4 of S. As in Sec.
3.1.2 we parameteriz&§; = /Te if k # | and S = VRk€* (k,1 < 2). We
abbreviate] [, dyt = dRi1d Ro2d Ty2d Too ]_[EJ:l d¢y . For the caseg = 1, 2 one then
has [22]

c18(T12 — TaD8(p12 — po) FM 220 (F) [ [dy  if g =1,

dP = ! 3.1.19
cFMeF) [ [dy if =2, ( )
i

whereF is defined by

Oif Ri1+Ti2>10rRpp+ To1 > 1,
F = { Q-RpA-Rp)+(1-Tix)(1-Top -1 (3.1.20)
— 2(R11Ro2T12T21) Y2 cos(h11 + d22 — d12 — p21) Otherwise

The coefficients; andc, are normalization constants. Calculation of the probability dis-
tribution of the conductance is now a matter of quadrature.

Results are shown in Fig. 3-2, f&f up to 10. AsN increasesP(G) becomes more
and more sharply peaked aroud= 1. In the limit N — oo, P(G) approaches a delta
function. Mean and variance are given by

1_1N-1 ~2y g
G) = {i N O :;?:;’ (3.1.21)
2 - )
SN2+ O(N73) if =1
_ 4 ’
varG = {%IN‘2+(9(N‘3) it g =2, (3.1.22)

The variance ofs is reduced by a factor 3 when time-reversal symmetry is broken in the
limit N — oo. The offset offG) from % wheng = 1is a remnant of the weak localization
effect.
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Figure 3-2. Conductance distribution for a multi-channel ideal voltage lead (I' = 1). The number N
of transverse modes in the lead varies from 1 to 10 with increments of 1 (solid curves). The dotted
curve is the distribution in the absence of a voltage lead. The cases 8 = 1 and 2 are shown in (a)
and (b) respectively.

3.1.4 Conclusion

We have calculated the entire probability distribution of the conductance of a quantum dot
in the presence of a voltage probe, for single-channel point contacts to source and drain, in
the presence and absence of time-reversal symmetry (no spin-orbit scattering). The average
conductance is not changed if a single-channel voltage lead containing a tunnel barrier is
attached, but the shape of the distribution changes considerably. A strikingly simple result
is obtained for a single-channel ballistic voltage lead in zero magnetic field (,I" = 1,

B = 1), whenP(G) = 2 — 2G, to be compared withP(G) = $G~Y/2 without the voltage

probe [15, 16]. (In both cas&3 < [0, 1] is measured in units ofe2/ h.) When the number

N of channels in the voltage lead is increased, the probability distribution becomes sharply
peaked arounds = % Both the width of the peak and the deviation of its center from

% scale as IN for N > 1. The width is reduced by a factar3 upon breaking the
time-reversal symmetry.

The loss of phase coherence induced by a voltage probe can be investigated experimen-
tally by fabricating a cavity with three leads attached to it. Furthermore, as emphasized by
Marcus et al. [10], the inelastic scattering which occurs at finite temperatures in a quantum
dot might well be modeled effectively by an imaginary voltage lead.
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3.2 \Voltage-probe and imaginary potential models for de-
phasing in a chaotic quantum dot

Extensive theoretical work has provided a detailed description of the universal features of
phase-coherent transport in classically chaotic systems, such as universal conductance fluc-
tuations, weak localization, and a non-Gaussian conductance distribution [12,15,16,23-29]
(see also Ch. 2). The advances of submicron technology in the past decade have made these
manifestations of quantum chaos in electronic transport accessible to experiment [30-37].
Although experiments on semiconductor quantum dots confirm the qualitative predictions
of the phase-coherent theory, a quantitative comparison requires that loss of phase coher-
ence be included into the theory. Two methods have been used for this purpose.

The first method, originating fromutiker [1], is to include a fictitious voltage probe
into the scattering matrix. The voltage probe breaks phase coherence by removing electrons
from the phase-coherent motion in the quantum dot, and subsequently reinjecting them
without any phase relationship. The conductatgge of the voltage probe (in units of
2¢?/h) is set by the mean level spacidgin the quantum dot and the dephasing tirge
according toGy = 27h/tsA. This method was used in Refs. [25], [30], and [37] and in
Sec. 3.1. The second method is to include a (spatially uniform) imaginary potential in the
Hamiltonian, equal te-ih/2z4. This method was used in Refs. [26] and [28].

The two methods have given very different results for the distribution of the conduc-
tanceG, in particular in the case that the current through the quantum dot flows through
single-mode point contacts. While the distributi®nG) becomes a delta peak at the clas-
sical conductance for very strong dephasing { 0) in the voltage-probe modeP (G)
peaks at zero conductance in the imaginary potential model. It is the purpose of the present
section to reconcile the two methods, and to compute the conductance distribution in the
limit that the two methods are equivalent.

The origin of the differences lies with certain shortcomings of each model. On the
one hand, the imaginary potential model does not conserve the number of electrons. We
will show how to correct for this, thereby resolving an ambiguity in the formulation of the
model noted by McCann and Lerner [28]. On the other hand, the voltage-probe model
describes spatially localized instead of spatially uniform dephasing. This is perfectly rea-
sonable for dephasing by a real voltage probe, but it is not satisfactory if one wants a
fictitious voltage probe to serve as a model for dephasing by inelastic processes occurring
uniformly in space. A second deficiency of the voltage-probe model is that inelastic scat-
tering requires a continuous tuning parametgrwhile the number of modell, in the
voltage probe can take on integer values only. Although the introduction of a tunnel barrier
(transparency'y) in the voltage probe allows the conductarigg = N4I'y to interpolate
between integer values, the presencénaf model parameters creates an ambiguity: The
conductance distribution depends big andI"y separately, and not just on the product
N, Iy set by the dephasing time.

In this section we present a version of the voltage-probe model that does not suffer
from this ambiguity and that can be applied to dephasing processes occurring uniformly
in space. This version is equivalent to a particle-conserving imaginary potential model.
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We show that the absorbing term in the Hamiltonian can be replaced by an absorbing lead
(the voltage probe) in the limiNg — oo, ', — 0 at fixedGy, = NgI'y. This is the
“locally weak absorption limit” of Zirnbauer [24]. Both shortcomings of the voltage-probe
model are cured: The limiN, — oo together with ergodicity ensures spatial uniformity

of the dephasing, while the conductar®g is the only variable left to parameterize the
dephasing rate.

The outline of the section is as follows. In Sec. 3.2.1 we recall the voltage-probe model
and derive the limitN, — oo, I'y; — 0 at fixedNgI'y, from the particle-conserving
imaginary potential model. We then calculate the effect of dephasing on the conductance
distribution in the case of single-mode point contacts (Sec. 3.2.2). The distribution narrows
around the classical series conductance of the two point contacts when the dimensionless
dephasing ratey = 27h/t4A becomess 1, but not precisely in the way which was
computed in Ref. [25] and Sec. 3.1. In Sec. 3.2.3 we briefly consider the case of multi-
mode point contacts (number of modes 1), which is less interesting. We conclude in
Sec. 3.2.4.

3.2.1 Two models for dephasing

The system under consideration is shown in Fig. 3-3. It consists of a chaotic cavity, coupled
by two point contacts (witiN; and N> propagating modes at the Fermi enelgy) to
source and drain reservoirs at voltagasandV,. A currentl = I = —I5 flows from
source to drain. In the voltage-probe model [1], a fictitious third lédgriodes) connects

the cavity to a reservoir at voltagé,. Particle conservation is enforced by adjustig

in such a way that no current is drawt} (= 0). The third lead contains a tunnel barrier,
with a transmission probabilit§ 4 which we assume to be the same for each mode. The
scattering matri>xS has dimensioM = N; + N2 + Ng and can be written as

S11 S12 S19
S=| 21 S22 S | (3.2.1)
Sp1 Sp2 Spe
in terms ofN; x N; reflection and transmission matricgs. Application of the relations

[17]

2¢?
I = Tlecs.dv., k=12, ¢, (3.2.2)

G = SNk —tr §(|S‘-(r|, (3.2.3)
yields the (dimensionless) conductar@e= (h/2e?)1 /(V1 — V>),

G15Gy2

G = -Gp————.
12 Gy1 + Ggo

(3.2.4)
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Figure 3-3. Chaotic cavity, connected to current source and drain reservoirs (1 and 2), and to a
voltage probe (¢). The voltage probe contains a tunnel barrier (dotted line). The voltage Vy is
adjusted such that Iy = 0.

Using unitarity ofS we may eliminate the conductance coefficie@ig which involve
the voltage probe,

(G11+ G12)(G22 + G12)

G = -G .
12 G11+ G124+ Go1 4+ G2

(3.2.5)

The remaining conductance coefficients are constructed from the matrix

P A (3.2.6)
S1 S22

which formally represents the scattering matrix of an absorbing system. The first term in
Eq. (3.2.5) would be the conductance if the voltage probe would truly absorb the elec-
trons which enter it. The second term accounts for the electrons that are reinjected from
the phase-breaking reservoir, thereby ensuring particle conservation in the voltage-probe
model.

The imaginary potential model relat&to a HamiltonianH with a spatially uniform,
negative imaginary potentiatiy A /4. As used in Refs. [26] and [28], it retains only
the first term in Eq. (3.2.5), and therefore does not conserve particles. We correct this
by including the second term. We will now show that this particle-conserving imaginary
potential model is equivalent to the voltage-probe model in the INpit— oo, I'y — O,
N¢F¢ =Y.

Our equivalence proof is based on the general relationship [38, 39]

S=1-27iW"(Er — H +izWWH W (3.2.7)

between theN x N scattering matridxS (N = N; + N») and theN’ x N’ HamiltonianH
(the limit N” — oo is taken later on). The Hamiltonian contains an imaginary potential,
Huo = Hy — 18,0y A /4, with H a Hermitian matrix. For a chaotic cavitl is taken
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from the Gaussian ensemble of random matrix theory [19]. Nhex N matrix W has
elements (cf. Sec. 2.2)

W2, = 7 15,aN'A (2r;1 —1-2r;t /1 rn) . (3.2.8)

HereI', is the transmission probability of moden the leads and the energyis the mean
level spacing oH. We embedV into anN’ x N’ matrix by the definitionW,,, = 0 for
N < n < N/, and define

W2, =7 W2, + 8.ny A /4m. (3.2.9)

Substitution into Eq. (3.2.7) shows th&tis anN x N submatrix of anN’ x N’ unitary
matrix
S=1-27iWT(Eg — H +izWWH~1w. (3.2.10)

We have neglected the difference betw¥ép), andw,,, for 1 < u < N, which is allowed
inthelimitN” — oco. The matrixSis the scattering matrix of a cavity with three leads: Two
real leads withiN1, N> modes, plus a fictitious lead with’ — N modes. The transmission
probabilityI",, of a mode in the fictitious lead follows from Egs. (3.2.8) and (3.2.9),

4r2W2 N’A
r, = 7 Yhn S YN S oo, (3.2.11)
(NA +72W2)2 N/

where we have used thatVZ, = y A /4 for N <n < N'.

We conclude that the particle-conserving imaginary potential model and the voltage-
probe model are equivalent in the linh, = N' — N — oo, 'y = /N’ — 0, NyT'y =
y(1—=N/N) — y.

3.2.2 Single-mode point contacts

The effect of quantum-interference on the conductance is maximal if the point contacts
which couple the chaotic cavity to the source and drain reservoirs have only a single prop-
agating mode at the Fermi level. Then the sample-to-sample fluctuations of the conduc-
tance are of the same size as the average conductance itself. One thus needs the entire
conductance distribution to characterize an ensemble of quantum dots. (An ensemble may
be generated by small variations in shape or in Fermi energy.)

In the absence of dephasing, the conductance distribii@) is highly non-Gaus-
sian [12, 15, 16] (see Sec. 2.1). For ideal point contacts (transmission probabiities
I'> = 1), one finds [15, 16]

P(G) = 38G¥~2/2, (3.2.12)

The symmetry paramet@r= 2 (1) in the presence (absence) of a time-reversal-symmetry
breaking magnetic field. For high tunnel barriefg,(I', <« 1), P(G) is maximal for

G = 0, and drops offx G=%2 for G > I'1I'», see Ref. [12] and Sec. 2.1. In this section,

we compute the conductance distribution in the presence of dephasing, using the voltage-
probe model in the limitNy — oo, I', — 0 at fixedNyI'4, in which it is equivalent
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Figure 3-4. Solid curves: Conductance distributions of a quantum dot with two ideal single-mode
point contacts, computed from Egs. (3.2.19) and (3.2.21) for dephasing rates y = 0, 0.5, 1, 2,
and 5. The top panel is for zero magnetic field (8 = 1), the bottom panel for broken time-reversal
symmetry (8 = 2). The dotted curves are the results of Refs. [25] and Sec. 3.1 for the model of
an ideal voltage probe (without a tunnel barrier), in which dephasing is not fully uniform in phase
space. For y = 0 the two models coincide. The value y = 0.5 is not accessible in the model of an
ideal voltage probe (because y = NyI'y can take on only integer values if 'y, = 1).

to the current-conserving imaginary potential model. We focus on the case of ideal point
contacts, and discuss the effect of tunnel barriers briefly at the end of the section.
In Sec. 2.2, it has been shown that the scattering m&tiscdistributed according to
the Poisson kernel [20, 21, 40],
1 det(1 — ééT)(ﬁM—i—Z—ﬁ)/Z

P(S) = G qeri = By (3.2.13)

whereV is a normalization constani! = Ni + Nz + N, is the dimension o6, andS
is a diagonal matrix with diagonal elemei8s, = +/1 — I'n. Herel', is the transmission
probability of moden (I'n = I'y for N1 + N> < n < M). The measurd Sis the invariant
measure on the manifold of unitary (unitary symmetric) matricegfer 2 (1).

We now specialize to the case of ideal single-mode point contilgts; N2 = 1 and
'y = I'» = 1. We seek the distribution of thex22 submatrixS defined in Eq. (3.2.6). We
start with the polar decomposition &f

uo 1—tft itt u 0
S= , 3.2.14
(o v)( it «/1—ttT)<O v’> ( )

whereu andu’ (v andv’) are 2x 2 (Ng x Ny ) unitary matrices, antlis aN, x 2 matrix with
all elements equal to zero exceapy = +/Tn, N = 1, 2. In the presence of time-reversal
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symmetryu’ = u' andv’ = v'. In terms of the polar decomposition (3.2.14) we have

gy VT T 0 u’
B 0 Vi-T, '

The two parameter$; and T, govern the strength of the absorption by the voltage probe.
ForTy, Tr — 0 the matrixSis unitary and there is no absorption, whereashQr, — 1

the matrixSvanishes and the absorption is complete. Substitution of the invariant measure
[29]

(3.2.15)

dS = [Ty — Tolf (TaTy)PNe=2-P)/2
x dududvdv’d T1d T, (3.2.16)

and the polar decomposition (3.2.14) into the Poisson kernel (3.2.13), yields the distribu-
tion of Sin the form

P(Ty. Taou Uy = TP P52 1y
1 , (T1Tp)BNe—2-5)/2
X v/dv/dv el — o) PN T2 (3.2.17)
r= /(- -tth. (3.2.18)

Since Eq. (3.2.17) is independent wfand u’, the matricess andu’ are uniformly dis-
tributed in the unitary group, and the distribution $fis completely determined by the
joint distribution P (T1, T») of the absorption probabilities; andTs,.

It remains to perform the integral overandv’ in Eq. (3.2.17). This is a non-trivial
calculation, which we describe in the appendix. The final result in the Npit— oo,
'y — Oatfixedy = NgI'y is

P(TLTp) = 17T, exp[—%y(Tl_l + Tz_l)] Ty — Tl [y2(2 — 2" +y +ye)
— y(TL+ T2)(6 — 6€” + 4y +2y€ +y?)
4 TiT2(24— 24¢” + 18y + 6y’ + 672 + yS)] (3.2.19)
for B = 1 (presence of time-reversal symmetry), and
PTL Ty = 31757, Pexp|—y (T + T;H)| (- To)?
x [;/‘(1 267 + € — p2) — (T + To)(4— 8¢ + 46 + 2y

— 2y =2y — 3 + YA (TP + THQR — 4e¥ + 267 + 4y

— 4y e +y2+ 2% — y3e) + y2TiT2(20 — 40€” + 20e? + 16y
—16ye” +4y? — 8y%e —4y3e — ye’) — yTiTo(T1 + T2) (12

— 24" + 1267 + 24y — 24y€ + 122 + 2% — 2% — yte)

+ TPTF (12— 247 + 1267 + 24y — 24y e’ + 24y% — 12y%¢ + 8y°
448 44— 2y4e7/)] (3.2.20)
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Figure 3-5. The limiting conductance distribution (3.2.22) for y > 1 (solid curves). A Gaussian
distribution with the same mean and variance is shown for comparison (dotted curves).

for B = 2 (absence of time-reversal symmetry).
To relate the conductanégto Ty, T», u, andu’, we substitute the polar decomposition
of Sinto Eq. (3.2.5), with the result

2
G = Zuliu{zu’{juj*z\/(l—'l'i)(l—Tj)
ij=1

2
+ (T4 T > Juy PIuj P TiTj. (3.2.21)
ij=1

Egs. (3.2.19) and (3.2.21), together with the uniform distribution of tkeZ2matriceau,

u’ over the unitary group, fully determine the distributiBiG) of the conductance of a
chaotic cavity with two ideal single-mode point contacts. We parametariaéin Euler
angles and obtaif?(G) as a four-dimensional integral, which we evaluate numerically.
The distribution is plotted in Fig. 3-4 (solid curves) for several values of the dimensionless
dephasing ratg = 2rh/tyA. Fory > 1, the conductance distribution becomes peaked
around the classical conductarée= 1/2,

PG~ 7 (L4 1 — s e ity > 1, (3.2.22)

wherex = 2yB(G — 1/2).1 Notice that the distribution remains non-Gaussian for all
values ofy. The limiting distribution (3.2.22) is plotted in Fig. 3-5, fer= 1 and 2. The
1The conditiony > 1 for very strong dephasing is understood as the regime > Ty > Tergy Where

Tdwell is the dwell time of the electrons in the quantum dot agglthe time scale for ergodic exploration of
the complete phase space. The regige: tergis considered in Ref. [28].
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average and variance of the conductance are
(G) = 3-30py T+ 0O, (3.2.23)
varG = (142507 2+ 0> 7). (3.2.24)

The effect of dephasing was previously studied in Ref. [25] and Sec. 3.1 for the case
I'y = 1 of an ideal voltage probe (without a tunnel barrier). The corresponding results are
also shown in Fig. 3-4 (dotted curves). We see that the INpit-> oo, I'y — O results in
narrower distributions at the same valueyof= Ny4I'y,. In particular, the tail$s — 0 and
G — 1 are strongly suppressed even for the smalkgesh contrast with the case of the
ideal voltage probe. The physical reason for the difference is that keégjragmall and
settingl'y, equal to 1 corresponds to dephasing which is not fully uniform in phase space,
and therefore not as effective as the lilNg — oo, 'y — 0. For largey, the difference
vanishes, and the distribution (3.2.22) is recovered for an ideal voltage probe as well. (The
fact that the conductance fluctuations aro@hé= 1/2 are non-Gaussian was overlooked
in Ref. [25] and Sec. 3.1.)

We have shown in the previous section that the voltage-probe model in théljmit
oo, I'y — 0 is equivalent to the particle-conserving imaginary potential model. The re-
quirement of particle conservation is essential. This is illustrated in Fig. 3-6a, where we
compare our results with those obtained from the imaginary potential model without enfor-
cing conservation of particles. [This model corresponds to seB@irg—G12in EqQ. (3.2.5)
and was first solved in Ref. [12].] For > 1, the imaginary potential without particle con-
servation yields a distribution which is maximal@t= 0, instead of a strongly peaked
distribution arounds = 1/2 [cf. Eq. (3.2.22)].

The first two moments of the conductance can be computed analytically from equations
(3.2.19) and (3.2.21). The resulting expressions (which are too lengthy to report here)
are plotted in Fig. 3-6b. The markers at integer valueg @ire the results of the ideal
voltage-probe model of Refs. [25] and Sec. 3.1, wHgje= 1 andy = N, =0,1,2, .. ..

The remarkable result of Sec. 3.1 th&) is the same foy = 0 andy = 1 is special
for dephasing by a single-mode voltage probe: The present model with spatially uniform
dephasing has a strictly monotonic increasé®jf with y for g = 1.

Sofar we have considered ideal point contacts. Non-ideal point contacts (i.e. point
contacts with tunnel barriers) correspondtn I', < 1 in the distribution (3.2.13) o§.

Using the results of Sec. 2.2, this case can be mapped onto that of ideal point contacts by
the parameterization [20, 21]

S = R+TA-SRIST, (3.2.25)
whereR andT = i+/1— R? are diagonal matrices. The only nonzero element® of

areR;; = /1 —T1andRyy = /1 —I'2. The distribution ofS' is given by the Poisson
kernel (3.2.13) with"; = I', = 1. PhysicallyS is the scattering matrix of the quantum dot
without the tunnel barriers in the point contacts, wiRl€T ) is the reflection (transmission)
matrix of the tunnel barriers in the absence of the quantum dot, see Sec. 2.2. We may
restrict the parameterization (3.2.25) to the 2 submatrixS,

S = R+T1-SR 8T, (3.2.26)
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Figure 3-6. (a) Solid curves: Same as in Fig. 3-4, bottom panel. Dotted curves: Results of
the imaginary potential model without particle conservation. (b) Variance of the conductance as
a function of the dephasing rate y, for 8 = 1 (solid curve) and g = 2 (dotted curve), computed
from Eqs. (3.2.19) and (3.2.21). The crosses (8 = 1) and squares (8 = 2) at integer y result from
the model of Refs. [25] and Sec. 3.1 with the ideal voltage probe. The inset shows the average
conductance for 8 = 1. (For 8 = 2 the average is trivially equal to 1/2 for all y in both models.)

where the matrice§, R, andT are the upper-left % 2 submatrices o8, R, andT,
respectively. The matri€ has the distribution given by Egs. (3.2.17) and (3.2.19). The
matricesR andT are fixed, so the distribution & follows directly from Eq. (3.2.26).

For strong dephasing/(>> I'1, I'2) we find that the conductance distribution becomes
a Gaussian with mean and variance given by

I 2I2T5(4/B —T1—To)
Fi+T2 y(T1+T2)3
AT2T2(T2 + T35 — I3 —T2Ty)

By (T1+T2)3 '

(G) : (3.2.27)

varG

(3.2.28)

The average conductan¢@) is the classical series conductance of the two point-contact
conductanceE; andI's. Fluctuations around the classical conductance are of (prdjé?.
For ideal point contactsl (g, I'> — 1) the variance (3.2.28) vanishes. The higher-order
fluctuations are non-Gaussian, described by Eq. (3.2.22).

Again our result is entirely different from that of the imaginary potential model without
particle conservation [12, 28], wheR”(G) becomes sharply peaked@t= 0 wheny >
I'1, I'2. We have verified that we recover the results of Ref. [12] from our Egs. (3.2.19) and
(3.2.21) if we retain only the first term in Eqg. (3.2.5), i.e. if we €& —G15. The results
of Ref. [28] are recovered if we symmetrize this term, i.e. if weGet — (G2 + G21)/2.
(This is different from—G12 if 8 = 2 andy # 0.) Once particle conservation is enforced,
the imaginary potential model leads unambiguously to Eq. (3.2.27).
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3.2.3 Multi-mode point contacts

In this section we consider the cade, N» > 1 of alarge number of modes in the two point
contacts. The conductance distribution is then a Gaussian, hence it suffices to compute the
first two moments of. We first consider ideal point contaci$;(= I'> = 1), and discuss
the effect of tunnel barriers at the end.

For N1, N2 > 1 the integration over the scattering mat8xvith the probability distri-
bution (3.2.13) can be done using the diagrammatic technique of Ch. 6. The result for the
average of the conductance coefficie@ig is

Ni N;

(Gij) = Nidij — N +38.1A, (3.2.29)
o Ni N](N +2N¢F¢— N¢I‘£) 5”- Ni (3230)
b (N + NgTy)3 N+ NgTp’ i

up to terms of ordeN~1. (Here we recall thaN = N; + N,.) For the covariances
cov(Gij, Gki) = (Gij Gki) — (Gij)(Gki) we find
cov(Gij, Gk) = AikAjl + 3, 1A Ajk
2Ni Nj NgNiNg (N + N)TG (1 — T'g)
B(N + N¢I‘¢)6 ’

(3.2.31)

In order to find the average and variance of the conductance in the presence of dephasing,
we substitute Egs. (3.2.30) and (3.2.31) into Eq. (3.2.5). The result is

N;N 5
G) = —+2 (1— P ) (3.2.32)
N N+ y
varG = 2N12N22 (3.2.33)
~ BNZ(N+ )% o

with y = N¢F¢.

Eq. (3.2.32) was previously obtained by Aleiner and Larkin [27]. Eq. (3.2.33) faBvar
agrees with the interpolation formula of Baranger and Mello [25]. The derivation presented
here shows that this interpolation formula is in fact a rigorous result of perturbation theory.
[However, the interpolation formula of Ref. [25] fdG) differs from Eq. (3.2.32).] In
the final expression fo{G) and varG only the productN,I', appears, although the mo-
ments of the conductance coefficie@g depend orN, andI'y separately. Apparently, in
large-N perturbation theory the precise choiceNyf andI' in the voltage-probe model is
irrelevant, the conductance distribution being determined by the prddjics only. For
small dephasing rates <« N, Eq. (3.2.32) agrees with Efetov’s result [26], who used the
imaginary potential model without enforcing particle conservation. Howevey; far N,
our result differs from that of Ref. [26], indicating the importance of particle conservation
once the dephasing rajeand the dimensionless escape rdtéhrough the point contacts
become comparable.
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We have carried out the same calculation for the case of non-ideal point contacts. The

transmission probability of modeis denoted by, (n = 1, ..., Nj corresponding to the
first point contacth = N1 + 1, ..., N1 + N2 to the second point contact). The result is
0,09, 9,97 + 079,
(G) = ) , 3.2.34
g @+ (3.2:34)
VarG 29297 Mg, — gfas + 9207 — gag)
Bg3(g + v)? Bg*Qg+ )
3 452 24 4 2~/2 /
(91?12 + 92921 ) _ 91931 (92 + 922)’ (3.2.35)
B9* 9+ y) Y9+ )
N1 N1+N>
g = D TR o= ) TP g=am+o (3.2.36)
n=1 n=1+N1

One can check that Eq. (3.2.34) reduces to Eq. (3.2.32) for ideal point contacts (when
Op = Ny, gfo = Ny). As in the case of single-mode point contacts,&ax y 2 for y > 1
without tunnel barriers, while v&@ « y ~1 otherwise.

3.2.4 Conclusion

In summary, we have demonstrated the equivalence of two models for dephasing, the volta-
ge-probe model and the imaginary potential model. In doing so we have corrected a num-
ber of shortcomings of each model, notably the non-uniformity of the dephasing in the
voltage-probe model of Ref. [25] and Sec. 3.1 and the lack of particle conservation in the
imaginary potential model of Refs. [26] and [28]. We have calculated the distribution of
the conductance and shown that it peaks at the classical conductance for strong dephas-
ing once particle conservation is enforced, thereby reconciling the contradictory results of
Ref. [25] and Sec. 3.1, on the one hand, and Refs. [26] and [28], on the other hand. We
find that for ideal single-mode point contacts (no tunnel barriers), conductance fluctuations
are non-Gaussian and 7 for strong dephasing§ — 0). In the case of non-ideal point
contacts (with tunnel barriers), fluctuations are larger, (7;) and Gaussian fory, — 0 .

The effect of dephasing becomes appreciable when the dimensionless dephasing rate
y = 2nh/74 A is of the same order as the dimensionless escap@ratg _, I'y through
the two point contacts. For > g, the weak-localization correctiodG = (G)(8 =
2) — (G)(B = 1) and the conductance fluctuations are given by

§G = ag/y + 0@g/y)>% (3.2.37)
varG = big/y +ba(9/y)% + 0(9/v)>, (3.2.38)

whereas, b1, andb, are numerical coefficients determined by equations (3.2.23), (3.2.27),
(3.2.32), and (3.2.34). For the special case of two single-mode point contacts, we have

202
4arirs

a T = A
! (I'1 + )4

(3.2.39)
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AT2T3(M2 4+ T35 — '3 —T2I,)
B(r1+T2)* '

The coefficienb, is only relevant ifl’1, I'> ~ 1, whenb; ~ (2 —-T'1 — I'2) /48 < 1 and

by ~ (14 2541)/16. At finite temperatures, in addition to dephasing, the effect of thermal
smearing becomes important [26]. Since thermal smearing has no effect on the average
conductance, the weak-localization correctdd provides an unambiguous way to find

the dephasing rate.

The fact that dephasing was not entirely uniform in phase space in the model of Ref.
[25] and Sec. 3.1 leads to small but noticeable differences with the completely uniform de-
scription used here, in particular for the case of single-mode point contacts. The differences
may result in a discrepanayy =~ 1 in the estimated value of the dimensionless dephasing
rate y, if the ideal voltage-probe model of Ref. [25] and Sec. 3.1 is used instead of the
model presented here. A differenses ~ 1 is relevant, as experiments on semiconductor
guantum dots can have dephasing rates as low=a [41].

Both the voltage-probe model and the imaginary potential model only provide an effec-
tive description of dephasing. They cannot compete with a microscopic theory of inelastic
scattering in quantum dots (see e.g. Refs. [42] and [43]). At this time, a microscopic the-
ory for the effect of inelastic scattering on the conductance distribution does not yet exist.
For the time being, the model presented here may well be the most realistic description
available.

by (3.2.40)

Appendix A:  Calculation of P(Ty, T2)

We start the calculation oP(T1, T2) from the integral expression (3.2.17), in which we
may replace the double integral ofandv’ by a single integral of the matrixv over the
unitary group (for8 = 2) or over the manifold of unitary symmetric matrices (foe= 1).
We make a substitution of variables — w via

V=1 —-vV1-12wl—-Ttw) ty1-12 (A1)
The matrixr was defined in Eq. (3.2.18). One verifies that the maitrig unitary (unitary
symmetric forg = 1). By Sec. 2.2, the Jacobian of this transformation is [20, 21]
det dv'v) V |detl- vur)|PNet2-8
®\dw )~V dett — r2)BNer2h1/2”

(A.2)

whereV and V'’ are normalization constants. This change of variables is a key step in
the calculation, since the Jacobian (A.2) cancels the denominator of the integrand of Eq.
(3.2.17) almost completely,

1 _
P(TLTy) = V/dw ry P - Tolf

x [T @4TpT =Ty Prete-pr2
j=12
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< [T 772721 detd — ru) . (A.3)
j=12

We now consider separately the integral
lp = /dw | det(1 — tw)|?
= f dw det(l — VTw/7)? detd — VTw /7). (A.4)

Here we have used that the matriis a positive diagonal matrix. We now change variables
JTw /T — w71 If the matrixt were unitary, we could write

/ dw detl — rwr)? detl — v~ (A.5)

in view of the invariance of the measule = dw. However,z is not unitary. A theorem
due to Weyl allows us to continue Eq. (A.5) analytically to arbitraf#4].

To evaluatelg, we decomposen in eigenvectors and eigenphasés,= ueeur,
whereU is an orthogonal (unitary) matrix fg¢ = 1 (2), and®jj = §;;6;, 0 < 6} < 2n.
The invariant measuregw reads [19]

div =dU [ [1€% — %1 T ]da. (A.6)
i<j [

After some algebraic manipulations, we arrive at

/del /d9N¢l_[|e'9' é%ﬂn (1—e%)’

i<j
Ny
x [T[1 - @-Tye?) / dU detA?, (A7)

j=1

where the 2x 2 matrix A is given by

U Ueh Tt

Aj = & — Q- r¢)z oy r¢)eel (A.8)

The determinant oA is computed by a direct expansion. Sindg > 1, we may con-
sider the matrix elementdy, as independent real (complex) Gaussian distributed variables
with zero mean and variance' ly for § = 1 (2). We write the result of the Gaussian
integrations in terms of derivatives of a generating functgn

Nog

[T[t-a-ryei] / dU detA? = DgFg. (A.9)

j=1
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The generating functioRg depends on the variabl&g, yi, andzg, wherek = 1forg =1
andk =1, 2 for 8 = 2,

Ny B
Fo=[]1@+ %+ yoll+ fx. yk. 20”1, (A.10)
j=1k=1
f(X,¥,2)=Q+x+y) (1L-Ty)
x [1 +X(1—2T) + y(1— 2Ty + z,/Tsz] . (A.11)

The differential operatoDg reads

D1 = 3N, (0, + dy,) + Ny 202,07, (A.12)
D2 = N;?[30nde + dydy) — 30 — 3y

+ Ny 3(302,02, — 302,02,) (35, + y,)

+ Ny *07,02,02,(30z, — 207,). (A.13)

The derivatives in EQ. (A.9) should be evaluatediat yx = z« = 0 (k = 1, 2).
We are left with an integral over the phaggsvhich is of the type

I = /del.../den]_[|é9i —d%p

i<j
n B
< [Ja-e"[](a—€%). (A.14)
j=1 k=1

The integrand is a product of secular determinantgidetU) of a unitary matrixU.
Integrals of this form were considered by Haake et al [45]. Foe 1 we can directly
apply the results in their paper, f@gr = 2 we need to extend their method to include a
product of four secular determinants. We find

, A+nm@"3 -1 - B+nay@tt -1
" T T Ta— (A1)
v (a&‘*z . 1)(a2+2 —1
27 (- D%@— 1?2

(a£‘+2 _ a2+2)(n +2

(- D(a—2)(a1—ap)

(A.16)

The desired integralls is obtained fromllg by substitution of Eq. (A.15) witln = Ny,
ax = f (X, Yk, Zx) into Egs. (A.7)—(A.12). Substitution df; into Eq. (A.3) then leads to
the final result (3.2.19).
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4 Time delay in chaotic scattering

4.1 Charge-Relaxation and dwell time in the fluctuating
admittance of a chaotic cavity

A quantum dot is a small conducting island, formed with the help of gates, with a ballistic
and chaotic classical dynamics, and coupled to electron reservoirs by ballistic point con-
tacts. The search for signatures of phase-coherent transport through chaotic quantum dots
focused on the d.c. conductance [1-4]. However, the a.c. response is also of interest [3,5,6],
since it probes the charge distribution and its dynamics. While the d.c. conductance is en-
tirely determined by the scattering properties of the quantum dot, a.c. transport requires
that nearby conductors (gates) are taken into account as well [7-9]. charges may temporar-
ily pile up in the quantum dot, thus interacting with the gates through long-range Coulomb
forces.

Except for highly transmissive samples [9], the low-frequency dynamics of a mesosco-
pic conductor is governed by a charge-relaxation mode or an RC-relaxationttime
However, as soon as weak localization [10] and universal conductance fluctuations [11]
play a role, this is no longer a complete picture. In this section, we demonstrate that the
weak localization effects and the a.c. conductance (admittance) fluctuations are primarily
governed by a second time-scale, a dwell tirge characteristic of the non-interacting
system. The large disparity of these two time-scaigs¥$ t for a macroscopic quantum
dot) dramatically affects the admittance and provides a signature that should be readily
observed.

In a recent paper, Gopar, Mello, anditBKer studied the capacitance fluctuations of
a chaotic quantum dot, coupled to the outside world through one point contact with a
single conducting channel only [5]. For the low-frequency fluctuations, weak localization
effects are absent and the double-time scale behavior discussed here does not occur. In this
section, we calculate the average and variance of the admittance for the case of a two-probe
guantum dot with multichannel point contacts. Multichannel contacts are necessary to be
in the regime of weak localization and universal conductance fluctuations. Moreover, the
presence of two point contacts instead of one turns out to be essential for the existence of
guantum interference effects to leading order in the frequency

The system under consideration is depicted in Fig. 4-1la. Two electron reservoirs at
voltagesU; (w) andU2(w) are coupled to the quantum dot by two point contacts with
N1, N2 > 1 modes, through which currentg(w) and I2(w) are passed. The dot is
coupled capacitively to a gate, connected to a reservoir at voligge), from which a
currentlz(w) flows. A geometrical capacitand@ accounts for the capacitive coupling
with the gate [5, 7]. We assume that the gate is macroscopic, i.e. that its density of states
dng/de > C/€?. The a.c. transport properties of the system are characterized by the di-
mensionless admittandg,,, (v) = (h/2e2)8lﬂ(a))/8Uv(a)). We restrict ourselves to the
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stub

dV=0 dV£0

(b)

Figure 4-1. (a) Chaotic cavity (grey), coupled to source and drain reservoir (1 and 2) by point con-
tacts. The cavity is coupled capacitively to the gate (3). (b) Construction of the energy dependent
ensemble of scattering matrices. A change é¢ of the energy is replaced by a spatially uniform
change §V = —d¢/e of the potential in the cavity (left), which in turn is statistically equivalent to
a chaotic cavity with §V = 0 (right), coupled to a closed lead (a stub) with an energy-dependent
reflection matrix.

coefficientsG,, (w) with i, v = 1, 2, the remaining coefficients being determined by cur-
rent conservation and gauge invariance [7@]3:1 Guv(@) = Y 0_1 G(w) = 0. The
emittanceE,,, is the first order term in a smad-expansion of the admittance,

Guv(®) = Gy — iwE,, + O(w?). (4.1.1)

HereG,, = G,,(0) is the d.c. conductance. The emittance coefficients are the analogues
of the capacitance coefficients for a purely capacitive system [8, 9].

A calculation of the admittance proceeds in two steps [7]. First, we calculate the un-
screened admittanc@,‘jv(w), the direct response to the change in the external potentials
(at fixed internal potential)

tr [8,0dy — SI, (e — 3hw)S,, (e + Fhw)] .

(4.1.2)
Here f (¢) is the Fermi functionS,, is theN,, x N, scattering matrix for scattering from
vtopu,andl, istheN, x N, unit matrix. Second, we take the screening due to the long-
range Coulomb interactions into account, which was ignored in Eq. (4.1.2). For a single
self-consistent potential within the cavity, the result is [7]

1 _ 1
(a)) /d f(e ha)) f(e—l— 5hw)

2_ Gu 2_ Gu
Gu(@ = G (@) + - Lo Mp(w; ZG_; v (@) : (4.1.3)
|hCE)C/2e2 — Z,O:l 20:1 Gll('l)o. ((,l))

The average over the ensemble of quantum dots is performed using random-matrix the-
ory [12]. We use an extension of the circular ensemble of uniformly distributed scattering
matrices. This extension provides a statistical description of the energy-dependence of the
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scattering matrix. To construct the extended circular ensemble we first replace an energy
shift §¢ by a uniform decreas®/ = —§¢/eof the potentiaV in the quantum dot. The key
point of our method is to localiz&V in a closed lead (a stub), see Fig. 4-1b. The stub con-
tainsNs > N1+ N2 modes to ensure that it models a spatially homogeneous potential drop
8V. The system consisting of the dot and the stub is described bydkeNs, e-dependent
reflection matrixrs(e) of the stub and théN; + N2 + Ng)-dimensional scattering matrix
U of the cavity at reference energy, with the stub replaced by a regular open lead. We
choose the scattering basis in the stub and the cavity suchstbgt = 1. Fore different
from go we take _

rs(e) =€E0% ¢ —tro (4.1.4)

where the matrixd is Hermitian and positive definite. Fdds > Nj + N», the precise
choice of® becomes irrelevant, all information being contained in the single parameter
¢. For the matrixU we assume a uniform distribution. In the presence of time-reversal
symmetry, botiJ and® are symmetric. We finally express the scattering mesi) in
terms ofU andrg(s),

S(e) = Ui+ Us[1—rg(e)Usd trs(e)Us. (4.1.5)

The matricedJj; in Eq. (4.1.5) are the four blocks &f, describing transmission and re-
flection from and to the stub (s) or the two leads (l). The parangeterelated to the mean
level density(dn/de) via¢p = 27 (dn/de).

We are now ready to calculate the average and fluctuations of the admittance. We first
compute the average of the unscreened admitt@jGéwx) with the help of the diagram-
matic technique of Ch. 6,

(GY (@) = 8uN,— NNy (2= AN, (Nv(l—Ziwrd) W)

N(1—iwrg)  AN1—iwtg) \ NL—iwg)?
+ O(NY, (4.1.6)

whereN = N1 + N2 andtg = (h/N)(dn/de) is the dwell time. The symmetry index
B = 1(2) inthe absence (presence) of a time-reversal- symmetry breaking magnetic field;
B = 4in zero magnetic field with strong spin-orbit scattering. Since fluctuatioﬁi\i)ma))

are of relative ordeN—2, we may directly substitute the result (4.1.6) into Eq. (4.1.3), to
obtain the first two terms in the largé-expansion of the screened admittagGe,, (w)),

B NN, 2=BN, (N(A—2iwr)
Guv@)) = 8Ny N(l—iwt) BN -—iwtg) ( N(1—iwr)2 ””)
+ O(N™Y, (4.1.7)

wherer~! = 731 4 2¢N/hC is theRC time. The@(N) term in the r.h.s. of Eq. (4.1.7)
is the classical admittance, tifedependen®) (1) term is the weak-localization correction.

1For ajustification of the extended circular ensemble from the Hamiltonian approach to chaotic scattering
[37], the reader is referred to App. A. A similar extension of the circular ensemble to model the magnetic-
field dependence & is discussed Sec. 7.3.
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Notice the almost complete formal similarity between the fully screened result (4.1.7) and
the unscreened result (4.1.6): Up to one term, screening results in the replacement of the
dwell time 4 by the RC-time . The fact that the similarity is not complete is the key
result of this section which we discuss below in more detail.

The first two terms in the smad-expansion ofG,, (»)) yield the average d.c. con-
ductancegG,,,) and emittanceE,,, ),

<Guv> - NM (8,uv - Nv/N) + (2 - ﬁ)(NM/IBN) (Nv/N - 8,u,v) ’ (4-1-8)
(Epv) = NuNyt/N — (2= B)(Nyta/BN) (Ny/N = 68,,) . (4.1.9)

EqQ. (4.1.8) was previously obtained in Ref. [4]. For— O, the RC-time t vanishes.

For g = 2 we then findE,,) = 0, for 8 = 1 the weak-localization contributiofE;) =
—(E12) = N1Nx(d n/de)/NSh leads to a positive emittance, while for= 4 the emittance

is negative. For comparison we mention that for complete screening, a ballistic conductor
has an inductive emittande = —(1/4h)(dn/de), whereas a metallic diffusive conductor
behaves capacitively & = (1/6h)(dn/de) [9].

For simplicity, we restrict our presentation of the admittance fluctuations to the d.c.
conductancés,,, and the emittanc&,, at zero temperature. As before, we use the dia-
grammatic technique of Ch. 6. The leadiagbehavior of the admittance fluctuations is de-
termined by the cross-correlator c@,,,, E,.,) [Recall that coux, y) = (Xy) — (X)(y)].

We find that coWG,,, E,,) is unaffected by the capacitive interaction with the gate,

NN, g (N N
coV(Gy, Epe) = cOV(Gy, E,) = —““Nig (Wp — 5Mp) (W - 8\)0) . (4.1.10)

For the autocorrelator of the emittance we find

3NN, z2 /N N
coV(Epu, Epo) = Z"Tzd (Wp — (SW> (WG - 5w> (4.1.11)
NN, 72 2N, N,N,N, 72,

(8up Na + 81}0 Np) + T — ‘L’dz)

N3 tZN4
Egs. (4.1.10) and (4.1.11) are valid f8r= 2. In zero magnetic field = 1, 4), the
permutationo <> o must be added; in the presence of spin-orbit scatteging @), Egs.
(4.1.10) and (4.1.11) are multiplied by4

The relevant time scales for the low-frequency response of a chaotic quantum dot are
obtained from Egs. (4.1.9) and (4.1.10). The relevant time scale for the classical admittance
is the charge-relaxation timg, while the weak-localization correctiaiG,,,(w) and the
admittance fluctuations are governed by the dwell tijméHence, to leading order in, the
manifestation of quantum phase coherence on a.c. transport is unaffected by the Coulomb
interactions.For a macroscopic quantum dot, the density of stdtesle > C/€?, so that
the two characteristic time scalesandzy differ considerably.

To explain this result, we first consider the weak-localization correciiép, to the
average emittance. A screening contributionsts,, requires a magnetic-field depen-
dent quantum interference correction to the charge accumulated in the cavity. To first
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order inw, the (unscreened) charge accumulation at a gointthe dot due to the ex-
ternal potential changéU,, (w) is determined by the injectivitgn,, (f)/de and emissiv-
ity dgﬂ(F)/de [8,9]. For symmetry reasons, the ensemble averadgs(r)/de) and
(dgM(F)/de> both equalN,, /N times the average local density of statds(r')/de), and
have no magnetic-field dependent weak-localization correction. Hence weak localization
affects how current is distributed into the different leads, but it does not lead to charging of
the sample (to leading order i). This explains why the relevant time scale is the dwell
time tq, characteristic of the non-interacting system, and not the charge-relaxation.time
Similarly, the screening correction to c08,,,, E,.,) requires correlations between the
d.c. conductanc&,,, and the injectivitydn,(r)/de or emissivitydgp(F)/de [8,9]. Fora
chaotic cavity, we have

cov(G,,, dn,(F)/de) = cov(GW,dgp(F)/ds)
= N, cov(G,,, dn(F)/de)/N. (4.1.12)

The correlator of the d.c. conductance and the local density of states vanishes for ideal
leads, which is easily verified by computationgf = cov(|5j 2, dn(F)/de). Forp =2
both dn(r)/de and the distribution ofS are invariant under multiplication o with a
unitary matrix. It follows thaki; is independent of and j, hencexjj = 0. Forg = 1,4
a similar argument holds. The absence of correlations between the density of states and
the d.c. conductance is special for the case of ideal point contacts. Correlations between
G,» anddn(r)/de are common for point contacts with tunnel barriers, when the scattering
matrix has no uniform distribution.

The average and variance of the admittance of a chaotic quantum dot with only one
point contact is obtained from our results by settidg = N, N> = 0. Denoting the
admittance of this system [y (w) = G11(w), we thus obtain

_ —Niwrt (2 — Bw?t?
(Gl@) = 1-iwt * B(l—iwtg)(l—iwt)?’ (4.1.13)
4
varG(w) = iz(i ®)2 + O(). (4.1.14)
Bt§

Note that for a single point contact (see also Ref. [5]) the leading contribution to the vari-
ance of the admittance is proportionaldd. Since the a.c. response of such a system

is purely capacitive, the absence of a linear term inG/as) and the weak localization
corrections G(w) agrees with our previous result that quantum interference corrections to
the low-frequency admittance of a two-probe quantum dot are unaffected by the Coulomb
interactions. The variance given by Eq. (4.1.14) agrees with Fyodorov and Sommers [13]
who have used a different approach.

In conclusion, we have calculated the average and variance of the admittance of a chao-
tic quantum dot which is coupled to two electron reservoirs via multichannel point contacts.
The quantum dot is capacitively coupled to a gate. In the universal regime of multichan-
nel point contacts, phase coherent a.c. transport is characterized by weak localization and
admittance fluctuations. The relevant time scale for the quantume-interference effects at
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low frequenciesw is the dwell timery, while the classical admittance depends onR@&

time r. Since these two time scales differ several orders of magnitude for a macroscopic
guantum dot{ < 1g), this effect should be clearly visible in a measurement of the a.c.
response of a chaotic quantum dot.

4.2 Quantum mechanical time-delay matrix in chaotic
scattering

Eisenbud [14] and Wigner [15] introduced the notion of time delay in a quantum me-
chanical scattering problem. Wigner's one-dimensional analysis was generalized to an
N x N scattering matriXS by Smith [16], who studied the Hermitian energy derivative
Q = —-ihS13S/9E and interpreted its diagonal elements as the delay time for a wave
packet incident in one of thBl scattering channels. The matiX is called the Wigner-
Smith time-delay matrix and its eigenvalugso, . .., tn are called proper delay times.
Recently, interest in the time-delay problem was revived in the context of chaotic scat-
tering [17]. There is considerable theoretical [17—19] and experimental [20—22] evidence
that an ensemble of chaotic billiards containing a small opening (through Whitlodes
can propagate at enerdy) has a uniform distribution 0§ in the group ofN x N uni-
tary matrices — restricted only by fundamental symmetries (see Ch. 2). This universal
distribution is the circular ensemble of random-matrix theory [6], introduced by Dyson for
its mathematical simplicity [23]. The eigenvalueé of Sin the circular ensemble are
distributed according to

P($1. ¢2.....¢n) o [ ] 1€ — P, (4.2.1)

n<m

with the Dyson index8 = 1, 2, 4 depending on the presence or absence of time-reversal
and spin-rotation symmetry.

No formula of such generality is known for the time-delay matrix, although many
authors have worked on this problem [13, 19, 24-33]. An early reful)) = 4, is
due to Lyuboshits [24], who equated the ensemble average of the sum of the delay times
trQ = Zr’:lzl 7, to the Heisenberg timey = 27h/A (with A the mean level spacing of
the closed system). The second moment §f was computed by Lehmann et al. [29] and
by Fyodorov and Sommers [13, 30]. The distribution(®itself is not known, except for
N = 1[30, 32]. The trace of determines the density of states [34], and is therefore suf-
ficient for most thermodynamic applications [32]. For applications to quantum transport,
however, the distribution of all individual eigenvalugsof Q is needed, as well as the
distribution of the eigenvectors (see e.g. next subsection).

The solution of this 40 year old problem is presented here. We have found that the
eigenvalues ofQ are independent 08. 2 The distribution of the inverse delay times

2The absence of correlations betweentkis and thepy’s is a special property of the proper delay times.
In contrast, the derivativels, /0 E considered in Refs. [30, 31] are correlated with ¢hés.
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vn = 1/t turns out to be the Laguerre ensemble of random-matrix theory,

N/2
POr....v) o [ [In = wmlP [ md "2 Frn2, (4.2.2)
i< K

but with an unusuaN-dependent exponent. (The functiéhis zero if any one of the

7,’S is negative.) The correlation functions of the¢s consist of series over (generalized)
Laguerre polynomials [35], hence the name “Laguerre ensemble”. The eigenvectors of
Q are not independent db, unlessg = 2 (which is the case of broken time-reversal
symmetry). However, for ang the correlations can be transformed away if we repl@ce

by the symmetrized matrix

Qe = —ih gl/zgs‘l/z, (4.2.3)

which has the same eigenvalues@s The matrix of eigenvectord which diagonalizes

Qe = Udiag(y, ..., rN)UT is independent of and thery,’s, and uniformly distributed

in the orthogonal, unitary, or symplectic group (ier= 1, 2, or 4, respectively). The
distribution (4.2.2) confirms the conjecture by Fyodorov and Sommers [13, 30] that the
distribution of trQ has an algebraic taik (tr Q)~2-#N/2,

Although the time-delay matrix was interpreted by Smith as a representation of the
“time operator”, this interpretation is ambiguous [13]. The ambiguity arises because
a wavepacket has no well-defined energy. There is no ambiguity in the applicati@n of
to transport problems where the incoming wave can be regarded monochromatic, like the
low-frequency response of a chaotic cavity [7, 32] (see also the previous section) or the
Fermi-energy dependence of the conductance (see next subsection). In the first problem,
time delay is described by complex reflection (or transmission) coeffickptéw),

Ron(@) = Rnn(O)[1+iwtmn+ O(@?)], (4.2.4)
Ron(0) = [Snnl® Tmn = IMN S50 Snn/9E.

The delay timery,, determines the phase shift of the a.c. signal and goes back to Eisenbud
[14]. With respect to a suitably chosen basis, we may require that both the m&ige®
andty, are diagonal. Then we have

Rin(@) = 8mnll + i otm + O(w?)], (4.2.5)

where ther, (m = 1, ..., N) are the proper delay times (eigenvalues of the Wigner-
Smith time-delay matrixQ). For electronic systems, th@(w) term of Ryn(w) is the
capacitance. Hence, in this context, the proper delay times have the physical interpretation
of “capacitance eigenvalues®.

3For an electronic system (with capacitai@e Coulomb interactions need to be taken into account self-
consistently, see e.g. Refs. [7,32] or the previous section. The result is

i wTmTn

_ '®TmTn 2
hC/2e2 + 3, 1 + O (7).

Rmn(®) = $mn(1+iwtm) —
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We now describe the derivation of our results. We start with some general considera-
tions about the invariance properties of the ensemble of energy-dependent scattering matri-
cesS(E), following Wigner [36], and Gopar, Mello, andiker [32]. TheN x N matrix S
is unitary forg = 2 (broken time-reversal symmetry), unitary symmetricdee 1 (unbro-
ken time-reversal and spin-rotation symmetry), and unitary self-dud fer4 (unbroken
time-reversal and broken spin-rotation symmetry). The distribution functief&lE)] of
a chaotic system is assumed to be invariant under a transformation

S(E) — VS(E)V/, (4.2.6)

whereV andV’ are arbitrary unitary matrices which do not dependbtv’ = VT for
B =1,V = VRfor B = 4, where T denotes the transpose and R the dual of a matrix).
This invariance property is manifest in the random-matrix model foBfependence of
the scattering matrix given in Sec. 4.1. A microscopic justification starting from the Hamil-
tonian approach to chaotic scattering [37] is given in the appendix. Eq. (4.2.6) implies with
V =V’ =iS Y2 that

P(S, Qe) = P(—1, Qg). (4.2.7)

Here P(S, Q) is the joint distribution ofS and Qg, defined with respect to the standard
(flat) measurel Qg for the Hermitian matriXxQg and the invariant measudssfor the uni-
tary matrixS. From Eq. (4.2.7) we conclude th&tand Qg are statistically uncorrelated;
Their distribution is completely determined by its form at the special fokat—11.

The distribution ofSand Qg at S = —1 is computed using established methods of
random-matrix theory [6,37]. ThE x N scattering matrixSis expressed in terms of the
eigenvalue€, and the eigenfunctiong,, of the M x M Hamiltonian matrix of the
closed chaotic cavity [19],

1-iK A M I/Imallfna
—_— 4.2.8
14k Kmn Z (4.2.8)
The Hermitian matrixH is taken from the Gaussian orthogonal (unitary, symplectic) en-
semble [6],P(H) o« exp(—Bm?tr H?/4A2M). This implies that the eigenvector elements
Vi« are Gaussian distributed real (complex, quaternion) numbers ferl (2, 4), with
zero mean and with variandd —1, and that the eigenvalués, have distribution

P{E)) o [ IE. — E. |ﬁ]_[e—ﬁ”255/4A2M. (4.2.9)

n<v

The limit M — oo is taken at the end of the calculation.

The probabilityP(—1, Qg) is found by inspection of Eq. (4.2.8) ne8r= —1. The
caseS = —1 is special, becausgequals—1 only if the energ)E is an (at leastN-fold
degenerate eigenvalue @f. For matricesS in a small neighborhood of 1, we may
restrict the summation in Eq. (4.2.8) to thaSeenergy level€,, « = 1, ..., N, that are
(almost) degenerate with (i.e. |E — E,| < A). The remainingM — N eigenvalues of
7 do not contribute to the scattering matrix. This enormous reduction of the number of
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energy levels involved provides the simplification that allows us to compute the complete
distribution of the matrixQe.

We arrange the eigenvector elemegts into anN x N matrix ¥j, = yjoMY2. Its
distribution P(¥) o exp(—Atr WW1/2) is invariant under a transformatioh — WO,
whereO is an orthogonal (unitary, symplectic) matrix. We use this freedom to reglace
by the product O, and choose a uniform distribution f@. We finally define theN x N
Hermitian matrixHjj = Zo’:':l Oiq(Ey — E)Oj*a. Since the distribution of the energy
levels E, close toE is given by]‘[KU |E, — E,|? [cf. Eq. (4.2.9)], it follows that the
matrix H has a uniform distribution nedt = 0. We then find

S=—1+(ty/NHYTHY ! Qg =ryulut (4.2.10)

Hence the joint distribution o8 and Qg at S= —1 is given by

P(—1, Qg) « /dlIIdH g Arwwi/2
x S(WTTHY Y §(Qg — 1wl
_ / dw e AU vY'/2 (gerg ) EN+2H)2
x 8(Qg — ¥ty . (4.2.11)

The remaining integral in Eq. (4.2.11) depends entirely on the positive-definite Hermitian
matrixI" = W', In Refs. [35] and [38] it is shown that

/d\pf(qnlﬁ) :/dr(detr)<ﬂ—2)/2 f (D), (4.2.12)

where® (I') = 1 if all eigenvalues of™ are positive and 0 otherwise, arids an arbitrary
function of ' = W', Integration of Eq. (4.2.11) with the help of Eq. (4.2.12) finally
yields the distribution (4.2.2) for the inverse delay times and the uniform distribution of the
eigenvectors, as advertised.

In addition to the energy derivative of the scattering matrix, one may also consider the
derivative with respect to an external paramefesuch as the shape of the system, or the
magnetic field [13, 30, 31]. In random-matrix theory, the parameter dependence of energy
levels and wavefunctions is described through a parameter depavdent! Hermitian
matrix ensemble,

H(X)=H + M Y2X 3, (4.2.13)

whereH and#H’ are taken from the same Gaussian ensemble. We characi&jia&
through the symmetrized derivative
9S
Qx = —isY2_=g1/2 (4.2.14)
aX
by analogy with the symmetrized time-delay mat@¢ in Eq. (4.2.3). To calculate the
distribution of Qx, we assume that the invariance (4.2.6) also holds foxttdependent
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ensemble of scattering matrices. (A random-matrix model with this invariance property is
given in Sec. 7.3). Then it is sufficient to consider the special @®iat —1. From Egs.
(4.2.10) and (4.2.13) we find

Qx = V" TH'WL P(H’) o exp(—Btr H?/16), (4.2.15)

whereH,, = —(zu/MM~Y237 g Hy; . A calculation similar to that of the dis-
tribution of the time-delay matrix shows that the distribution®f is a Gaussian, with a
width set byQg,

P(S, Qg, Qx) o (detQg)~2#N-3+36/2
X exp{—g tr (TH Qg + %(TH leQX)Z>] : (4.2.16)

The fact that delay times set the scale for the sensitivity to an external perturbation in an
open system is well understood in terms of classical trajectories [39], in the semiclassical
limit N — oco. EQ. (4.2.16) makes this precise in the fully guantum-mechanical regime
of a finite number of channel. Correlations between parameter dependence and delay
time were also obtained in Refs. [13, 30, 31], for the phase shift derivaltites X.

In summary, we have calculated the distribution of the Wigner-Smith time-delay ma-
trix for chaotic scattering. This is relevant for experiments on frequency and parameter-
dependent transmission through chaotic microwave cavities [21,22] or semiconductor
guantum dots with ballistic point contacts [40]. The distribution (4.2.1) has been known
since Dyson’s 1962 paper as the circular ensemble [23]. It is remarkable that the Laguerre
ensemble (4.2.2) for the (inverse) delay times was not discovered earlier.

4.3 Distribution of parametric conductance derivatives of
a quantum dot

Parametric fluctuations in quantum systems with a chaotic classical dynamics are of funda-
mental importance for the characterization of mesoscopic systems. The fluctuating depen-
dence of an energy levé; (X) on an external parametr, such as the magnetic field, has
received considerable attention [41]. A key role is played by the “level velodiBy’/d X,
describing the response to a small perturbation [42—44]. In open systems, the role of the
level velocity is played by the “conductance velocithG/d X. Remarkably little is known

about its distribution.

The interest in this problem was stimulated by experiments on semiconductor micro-
structures known as quantum dots, in which the electron motion is ballistic and chaotic
[40]. A typical quantum dot is confined by gate electrodes, and connected to two electron
reservoirs by ballistic point contacts, through which only a few modes can propagate at the
Fermi level. The parametric dependence of the conductance has been measured by several
groups [45-47]. In the single-mode limit, parametric fluctuations are of the same order
as the average, so that one needs the complete distributi®raotid G/d X to character-
ize the system. Knowing the average and variance is not sufficient. Analytical results are
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available for point contacts with a large number of modes [1,48-53]. In this section, we
present the complete distribution in the opposite limit of two single-mode point contacts
and show that it differs strikingly from the multi-mode case considered previously.

The main differences which we have found are the following. We consider the joint
distribution of the conductand® and the derivative8G/dV, 0G/0 X with respect to the
gate voltagev and an external parametr (typically the magnetic field). If the point
contacts contain a large number of modPsG, 0G/d0V, 0G/d X) factorizes into three
independent Gaussian distributions [1,48-50]. In the single-mode case, in contrast, we find
that this distribution does not factorize and decays algebraically rather than exponentially.
By integrating outG and one of the two derivatives, we obtain the conductance velocity
distributionsP(0G/dV) and P(aG/d X) plotted in Fig. 4-2. Both distributions have a
singularity at zero velocity, and algebraic tails. A remarkable prediction of our theory is
that the correlations betweé, on the one hand, antiG/9V anddaG/d X, on the other
hand, can be transformed away by the change of varidbles (2€2/h) sir? 6, wheref
is the polar coordinate introduced in Ref. [51]. The derivativegdV and o6 /0 X are
statistically independent éf. There exists no change of variables that transforms away the
correlations betweedG/oV andaG/a X.

Another new feature of the single-mode case concerns the effect of Coulomb interac-
tions [8, 9]. In the simplest model, the strength of the Coulomb repulsion is measured by
the ratio of the charging energ#/C (with C the capacitance of the quantum dot) and
the mean level spacing. In the regimes?/C > A, where most experiments are done,
Coulomb interactions suppress fluctuations of the ch@@ga the quantum dot as a func-
tion of V or X, at the expense of fluctuations in the electrical potektiaGince the Fermi
level i in the quantum dot is pinned by the reservoirs, the kinetic enérgy u — U
at the Fermi level fluctuates as well. Fluctuationstotan not be ignored, because the
conductance is determined I8, and not byu. An ensemble of quantum dots with fixed
Q and fluctuatinge behaves effectively as a canonical ensemble — rather than a grand-
canonical ensemble. In the opposite regigdgC <« A, the energyE does not fluctuate
on the scale of the level spacing. The ensemble is now truly grand-canonical. Fluctuations
of E on the scale ofA can be neglected in the multi-mode case, so that the distinction
between canonical and grand-canonical averages is irrelevant. In the single-mode case the
distinction becomes important. We will see that the distribution of the conductance veloc-
ities is different in the two ensembles. (The distribution of the conductance itself is the
same.) The difference between grand-canonical and canonical averages has been studied
extensively in connection with the problem of the persistent current [54-56], which is a
thermodynamic property. Here we find a difference in the case of a transport property,
which is more unusual [57.

To derive these results, we combine a scattering formalism with random-matrix theory
[58]. The 2x 2 scattering matri>S determines the conductance

G = |S12)%, (4.3.1)

4The difference between canonical and grand-canonical averages which we find is related, but not iden-
tical, to the effects of the Coulomb blockade predicted by I. L. Aleiner and L. I. Glazman (preprint, cond-
mat/9612138).
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and the (unscreened) compressibilities [9]

5 1 .9S 9 1 ,9S
0Q _ 1,95 Q1,495 (4.3.2)
0E 27i dE’ 09X 2mi X

(We measure in units of 2%/ h andQ in units ofe.) Grand-canonical averages -)gc
and canonical averageés -)c are related by

(- . ')C = A(- - X d Q/d E)Gc. (433)

The factord Q/d E is the Jacobian to go from an average o@an the canonical ensemble
to an average oveE in the grand-canonical ensemble. Conductance velocities in the two

ensembles are related by
_EE(E>‘1 4.3.4)

G G
IX|g IX|g AEIX \IE
where|q and|g indicate, respectively, derivatives at const@n{canonical) and constant
E (grand-canonical). Derivativess/dV with respect to the gate voltage are proportional
to 9G /0 Q in the canonical ensemble andaG /9 E in the grand-canonical ensemble. (The
proportionality coefficients contain elements of the capacitance matrix of the quantum dot

plus gates.) The two derivatives are related by

3G 3G (9Q\*
6 = a_E(a_E) , (4.3.5)

The problem that we face is the calculation of the joint distributio®,af S/d E, and
dS/0X. In view of the relations (4.3.3)—(4.3.5) it is sufficient to consider the grand-
canonical ensemble. This problem is closely related to the old problem [15, 16] of the
distribution of the Wigner-Smith delay times, . . ., n, Which are the eigenvalues of the
N x N matrix —i ST9S/9E. (The eigenvalues are real positive numbers.) Interest in this
problem has revived in connection with chaotic scattering [5, 13, 30, 31]. In Sec. 4.2 it has
been shown that the ratgs = 1/1, are distributed according to

P(ynh) o [T — w1 H yi /2T 4, (4.3.6)

i<j

This distribution is known in random-matrix theory as the Laguerre ensemble, because the
correlation functions can be written as series over (generalized) Laguerre polynomials [35].
For N = 1 we recover the result of Refs. [30] and [5]. In our chbke- 2.

To compute the conductance velocities it is not sufficient to know the delay times
but we also need to know the distribution of the eigenvectors of the Wigner-Smith time-
delay matrix—i ST9S/9E. Furthermore, we need the distribution 6fST9S/aX. The
general result containing this information is (see Sec. 4.2)

n2X2
P(S, g, Tx) « exp[ Btr ( e 1,270 YRY. (‘L'E ‘L’X) ):|

x (detrg) 2EN+3(6-2)/2, (4.3.7)

0S 0S
1/2 12 o = _jg 12 ~1/2 43
SeS STV S (4.3.8)

E=—-1S"
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Figure 4-2. Distributions of conductance velocities in a chaotic cavity with two single-mode point
contacts [inset in (a)], computed from Eq. (4.3.13). Dashed curves are for § = 1 (time-reversal
symmetry), solid curves for 8 = 2 (no time-reversal symmetry). (The case g = 4, which is similar
to B = 2, is omitted for clarity.) The distribution of A9G/dE (grand-canonical ensemble) is shown
in (a) and the distribution of 3G/9Q (canonical ensemble) is shown in (b). (The conductance G is
measured in units of 22/ h, the charge Q in units of e.) In (c) the distribution of XgdG/dX is shown
for the grand-canonical ensemble (the canonical case being nearly identical on a linear scale). The
inset compares the canonical (C) and grand-canonical (GC) results for 8 = 2 on a logarithmic
scale.
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The matrixzg has the same eigenvalues as the time-delay matrix, but it is more convenient
because it is uncorrelated wif) while the time-delay matrix is not. By integrating atg
andrtyx from Eq. (4.3.7), we obtain a uniform distribution f8 as expected for a chaotic
cavity [17,18]. The resulting distribution of the conductance R{G) o« G~1£/2 s the
same in the canonical and grand-canonical ensembles, be8ausel Q/d E are uncorre-
lated [cf. Eq. (4.3.3)]. By integrating o\& tx, and the eigenvectors of, we obtain the
distribution (4.3.6) of the delay times. The distributionrgfat fixedzg is a Gaussian. The
scale of this Gaussian is set by the paramigwhich has no universal valire.

We are now ready to compute the distribution of the conductance velocities. Derivatives
with respect tae and Q are related to the delay times by

G _ c(t1 — 12)v/G(1 — G), (4.3.9)

oE

3G _

2 - 222 /Ga-06), (4.3.10)
0Q 1+ 12

wherec € [—1, 1] is a number that depends on the phases of the matrix eleme8tsnaf
on the eigenvectors af. Its distributionP(c) o (1 — ¢?)~1*A/2 s independent ofy, >,
andG. The derivativedG/d X has a Gaussian distribution at a given valuesand g,
with zero mean and with variance

G| \? 3G
<(8_X E) > = |:G(1 G)rimo + - > (8E> } (4.3.11)
2
G l BG

where we have abbreviated= 442/72X3p. Because the variance 8f/0 X depends
ondG/oE oraG/0Q, these conductance velocities are correlated.

From the distribution (4.3.6) afi, t2, and the independent distributions@fandc, we
calculate the joint distribution a& and its (dimensionless) derivativ€s, = XpdG/ad X,
Ge = (A/27)0G/9dE, andGqg = (1/27)0G/dQ. The result in the grand-canonical and
canonical ensembles is

Psc(G, Gg, Gx) = dx [yG-Gi/a-g)] ix2¥
cc(G, Gg, Gx) = —/ /GZ JrX+yY)GA - G) f(x)

G(1-G)
i G%
XeXp[_?“/—_W} (4.3.13)
yG G2/(1- G)] T
Pc(G,Gqg,Gx) = —/ dX/G(ciZQ dy(l_ y)B+3/2 /mG(1 — G)g(X)

SIf X represents the magnetic flux through the quantum dot, ¥aerx (h/€)(tergodid/ Tawen) /2, where
Tdwell IS the mean dwell time in the quantum dot aRgodic < Tdwell iS the time scale for ergodic exploration
of the available phase space.
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2Bx G%
X exp[— T — g(x)} , (4.3.14)

where

f(x) = 88 xG(1l— G)+2GZ],
g = 80*B) G- G) — G,

Z = 37¥710B/2T(B(38/2).

By integrating outG and one of the two derivatives from Eq. (4.3.13), we obtain the
conductance velocity distributions of Fig. 4-2. (The c@se 4 is close tof = 2 and is
omitted from the plot for clarity.) The distributions have a singularity at zero derivative: A
cusp forg = 2 and 4, and a logarithmic divergence foe= 1. The tails of the distributions
of 3G/0 X are algebraic in both ensembles, but with a different exponent,

Pec(dG/aX) o (3G/aX)~F2, (4.3.15)
Pc(dG/aX) o« (8G/aX)~2F-1 (4.3.16)

The distribution 0fdG/d E (grand-canonical ensemble) also has an algebraic tail [propor-
tional to (G/d E)~#~2], while the distribution 0 G/3Q (canonical ensemble) is identi-
cally zero for|oG/0Q| > m. In both ensembles, the second moment of the conductance
velocities is finite fors = 2 and 4, but infinite fo = 1.

In conclusion, we have calculated the joint distribution of the conduct@aed its
parametric derivatives for a chaotic cavity, coupled to electron reservoirs by two single-
mode ballistic point contacts. The distribution is fundamentally different from the multi-
mode case, being highly non-Gaussian and with correlated derivatives. (Correlations be-
tweenG and the parametric derivatives can be transformed away by a change of variables.)
We account for Coulomb interactions by using a canonical ensemble instead of a grand-
canonical ensemble. Our results for the canonical ensemble are relevant for the analysis
of recent experiments on chaotic quantum dots, where the conductaiscemeasured as
a function of both the magnetic field and the shape of the quantum dot [47]. The grand-
canonical results are relevant for experiments on microwave cavities [21, 22]. Together
with the theory provided here, such experiments can yield information on the distribution
of delay times in chaotic scattering that can not be obtained by other means.

Appendix A: Stub model versus Hamiltonian approach

In this appendix we consider the extended circular ensemble of Sec. 4.1 for the energy
dependence of the scattering matrix in more detail. We compare the extended circular
ensemble with the Hamiltonian approach and show that they are equivalent in the limit that
the number of modes in the sty — oo.

In the extended circular ensemble of Sec. 4.1, afictitious stub (a closed lead) is attached
to the cavity (see Fig. 4-1b) . The stub hdgpropagating modes. The total number of



106 Chapter 4: Time delay in chaotic scattering

modes in the real leads M. The N x N scattering matrixS(e) of the quantum dot is
expressed in terms of tH&l + Ns) x (N 4+ Ns) scattering matrixJ of the dot with the stub
replaced by a regular open lead and Mex Ns reflection matrixs(e) of the stub,

Se) = Ui+Us[1-rUsd " rlg, U = ( Hi e > (A1)
Usi Uss
Here we decomposed the mattixinto four blocksU;j, which describe transmission and
reflection from and to the stub (s) or the two leads (l). In the model of Sec. 4.1, the energy
dependence df) is neglected, while the-dependence afs is taken into account via a
simple ansatz, _
re(e) = —e'¢®, (A.2)

where® is a (symmetric) positive definite matrix. We assume that all eigenvaluésaoé
comparable, so thatstr &2 ~ (tr ®)2. We further set

trd =2rn/A, (A.3)

whereA is the mean level spacing of the closed quantum dot. The unitary nuhtsixaken
from the appropriate circular ensemble (depending on whether time-reversal symmetry
and/or spin-rotation symmetry are present). If the point contacts to the real leads contain
tunnel barriersl is distributed according to the Poisson kernel (cf. Sec. 2.2; we assume
that the stub contains no tunnel barriers). In the end, the Ngit> oo is taken. This
ensures that particles are reflected from the stub many times before they exit through one
of the real point contacts. The extended circular ensemble is defined by Egs. (A.1)—(A.3).
To avoid confusion with other extensions of the circular ensemble, we call it the “stub
model” for the energy dependence of the scattering matrix.

In the Hamiltonian approach, the scattering ma®ix) is expressed in terms of an
M x M random Hermitian matri¥d, modeling the Hamiltonian of the closed cavity, and a
M x N rectangular matrixV, describing the coupling between the states in the closed dot
and the scattering states in the lead [37],

Se) =1 —27iWT(e — H +izWWH~1w. (A.4)

In the end, the limitM — oo is taken. For a chaotic cavity, the matrk is a random
matrix, usually taken from the Gaussian ensemble. However, the precise distribution of
is not important, and we are free to take a different distribution.

In Sec. 2.2 it was shown that the scattering matrix approach and the Hamiltonian ap-
proach are equivalent at a fixed energyMoreover, it was shown that if the Hamiltonian
H is distributed according to the Lorentzian ensemble, the equivalence between the two
approaches even holds if the scattering matrix and the Hamiltonian have the same size. We
use this equivalence to write the scattering mdtrixn terms of a hermitian matriid and
a coupling matrix\w,

U=1+27iWTH—izWwwhH=1w, (A.5)
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where the matrice®/ andH have the same size Bs The matrixH is distributed accord-
ing to the Lorentzian ensemble,

: (A.6)

—(BM12-p)/2
P(H) det(MA2+n2H2)

where we have sé¥l = N + Ns. The coupling matridV is a square matrix, which we
separate into two rectangular blocks describing the coupling with the lead and the stub,
W = (W, W). (A.7)

The matrixW is anM x N rectangular matrix with elements

1/2
Wun = 7 %un(AM)Y2 (205t — 1 2rgty1=Ty) ", (A.8)
wherel', (n =1, ..., N) is the transmission probability of moden the leads. Since the

stub contains no tunnel barrier, the x Ns matrix Ws has elementéW) ,,n = 5M,N+nﬂ_1
(M A2,
Substitution of Eg. (A.5) into Eq. (A.1) yields

Se) = 1-27iW,/G(e) " W, (A.9)
G(e) = ImWY1+rs(e)][1—rs(e)] WS — H +izWw
= 7 lAMtan®e/2] — H +imWW, (A.10)

where theM x M matrix @ is defined as

. 00
@:(Oq)). (A.11)

We expands to first order ine. This is allowed, because the eigenvalues®dfare of order
Ng L. The result is

G(e) =e—H —8H +inW,W,/, sH=1-MdA/2n)e. (A.12)

Apart from the termsH, this is precisely the expression for thedependent scattering
matrix in the Hamiltonian approach, cf. Eq. (A.4). The correctiéh, which is absent in
the Hamiltonian approach, is not relevant for energies A and in the limitM, Ns — oo,
because #H = 0 and tsH2 ~ Me2. (A perturbationsH with a vanishing trace is
only relevant if ts H? ~ M2A2 [59]). This proves equivalence of the stub model and the
Hamiltonian approach for the energy dependence of the scattering matrix.

In Sec. 7.3, a stub model is formulated for the dependence on an external pardmeter
such as the magnetic field or the shape of the quantum dot. One can also show that this
stub model is equivalent to the Hamiltonian approach. In the Hamiltonian approach, the
parameter dependent Hamiltonilii(X) is modeled through the hermitian matrix

H(X) = H + (X/vM)H’, (A.13)
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whereH andH’ are both random hermitiakl x M matrices with the same mean level
spacing. The factox/M is added in Eq. (A.13) to remove thd-dependence from the
relevant scale for the paramet¥r If X describes the shape of the cavity, is real and
symmetric. IfX describes the magnetic field,’ is antisymmetric.

In the stub model of Sec. 7.3, the-dependence is modeled through ¥rdependent
reflection matrix s(X) of the stub, which has the form

(A.14)

r(X) = —exp( 271|XA> ’

 M324

where A is a (random) matrix taken from the same ensemblelasRepeating the same
steps as above, we find that the scattering m&gix) reads

S(X) = 1-27iWGO)™ W, (A.15)
G(X) = —H - *MAtariz AX/M¥2A] +izWW',
whereA,, = A, _n,_n if u,v > N andA,, = 0 else. As before, we expand to first

order inX and find
G(X) = —H(X)+i7rW1WT, H(X)=H +(X/N)A. (A.16)

The HamiltoniarH (X) is formally equivalent to Eq. (A.13). The only difference is that the
matrix A has zeros for indices, v < N, while the elements dfl; are nonzero everywhere.
Since typical matrix elements ¢i’ are of orderA+/M, the difference is not relevant for

X ~ 1andM — oo. This completes the proof of the equivalence of the stub models for
thee and X dependence of the scattering matrix and the Hamiltonian approach.
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5 Localization in disordered wires

5.1 Equivalence of the one-dimensional model and the
Dorokhov-Mello-Pereyra-Kumar equation

There are two known approaches to the theory of phase-coherent conduction and local-
ization in disordered wires: The first is the Fokker-Planck approach of Dorokhov, Mello,
Pereyra, and Kumar [1-5]. The second is the field-theoretic approach of Efetov and Larkin,
which leads to a supersymmetric nonlineamodel [6, 7]. Both approaches provide a de-
scription of quantum transport that is independent of microscopic details of the disordered
wire. The only properties which enter are its lenfgjtlthe elastic mean free paththe num-

ber N of propagating transverse modes at the Fermi level (referred to as “channels”), and
the symmetry inde¥ € {1, 2, 4} (depending on the presence or absence of time-reversal
and/or spin-rotational symmetry). In the first approach, the transfer matrix is expressed
as a product of a large number of random matrices. As more matrices are added to this
product, the transmission eigenvalugsexecute a Brownian motion. (THe are theN
eigenvalues of the transmission matrix prodti¢t) The resulting Fokker-Planck equation

for the L-dependence of the distributid(Ty, ..., Tn) is known as the Dorokhov-Mello-
Pereyra-Kumar (DMPK) equation. In the second approach, one starts from the random
Hamiltonian of the disordered wire and then expresses averages of Green’s functions [6, 7]
or moments of the transmission eigenvalues [8-11] as integrals over ma}icestain-

ing both commuting and anticommuting variables. These so-called supermatrices are re-
stricted by the nonlinear constrai@® = 1 and give rise to a field theory known as the
one-dimensional nonlinear model.

In the last decade, research on the Fokker-Planck and field-theoretic approach has pro-
ceeded quite independently. Recently, exact results for the average conduGanite
variance va, and the density(T) = (D, 8(T — Ty,)) of transmission eigenvalues were
obtained from both approaches. For the unitary symmetry class (no time-reversal symme-
try; B = 2), the DMPK equation was solved exactly by Beenakker and Rejaei [12]. The
construction of a set of biorthogonal polynomials for this exact solution then allowed for
the exact computation @G), varG, andp (T ) for arbitraryN andL in the casgg = 2 [13].
Although there exists a formal solution for the other two symmetry classes [orthogonal
class (time-reversal symmetry without spin-orbit scatterfphg: 1) and symplectic class
(time-reversal symmetry with spin-orbit scatterifig= 4)] [14], no exact results fo{G),
varG, andp(T) have been obtained. Concerning thenodel, an important and substantial
progress was the development of “super Fourier analysis” by Zirnbauer [10]. This allowed
the exact calculation [10, 11] df5) and vaiG for all g in the thick-wire limitN — oo,

L/¢ — oo at fixed ratioN¢/L. The eigenvalue densily(T) was computed from the
model by Rejaei [15], in the thick-wire limit and for the cgée= 2.
If one takes the thick-wire limit of th@ = 2 results for(G), varG, andp(T) from the
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DMPK equation, they agree precisely with those fromd¢hmodel [13,15]. Fop = 1 and

4, a comparison of the two approaches has only been possible in the metallic fegime

L <« N¢, where the results fofG) and varG from the DMPK equation [3—-5] and from
theo model [9,11, 16] agree with conventional diagrammatic perturbation theory [17-20].
The equivalence of the two approaches outside the perturbative regime has been questioned
[13] as a result of recent work by Zirnbauer [10], and by Mirlinul?-Groeling, and
Zirnbauer [11]. Starting from the model in the thick-wire limit, they obtained a finite
limit (G) — €?/2h asL/N¢ — oo in the cased = 4. On the other hand, one can prove
rigorously [13] that the DMPK equation gives lim »,(G) = 0 for all 8. It was this
puzzling contradiction which motivated us to search for a general proof of equivalence of
the DMPK equation and the model, without the restriction tg = 2.

In this chapter, we present a general proof of the equivalence of the two approaches,
which applies to all three symmetry clasgego all length scaleg, and to the complete
distribution of transmission eigenvalues described byptp®int functionsop(Ty, ..., Tp) =
(N!/(N=p)) [dTpt1... [dTn P(Ta, ..., Ty) for arbitrary p. We cannot relax the as-
sumption that the numbe\ of propagating channels in the disordered wirgisl, since
it is needed for the derivation of the one-dimensianahodel [11]. However, we can con-
sider theo model formulation of a thick disordered wire which is coupled to the leads by
means of a point contact witN; < N transmitted modes [9], and show that it is mathe-
matically equivalent to a DMPK equation for a wire wily propagating channels. The
equivalence proof demonstrates that|lim,, (G) = 0 in theoc model, in apparent contra-
diction with Zirnbauer’'s work. We have reexamined the calculation of Refs. 10 and 11, and
argue that fop = 4 the Kramers degeneracy of the transmission eigenvalues was not taken
into account properly in the super Fourier analysis. This leads to a spurious “zero-mode”,
which does not decay ds — oo. Restoring Kramers degeneracy, we obtain modified
expressions fotG) and varG which decrease exponentially in the localized regime and
moreover agree well with numerical simulations [21].

Both theoc model and the DMPK equation were derived from a number of different
models for a disordered wire. The original derivation of the DMPK equation by Dorokhov
[1], which started from a model dl coupled chains with defects, was followed by the
random-matrix formulation of Mello, Pereyra, and Kumar [2]. These authors considered a
product of random transfer matrices, drawn from an ensemble of maximum entropy. Later
it was shown that the DMPK equation is insensitive to the choice of the ensemble, the
only relevant assumptions being weak scattering (mean freefpatith greater than the
Fermi wave length.r) and equivalence of the scattering channels [22,23]. It is this latter
assumption which restricts the DMPK equation to a wire geometry. From the mathematical
point of view, the DMPK equation is the diffusion equation on a certain coset-space of
transfer matrices [24]. The one-dimensioaahodel was originally derived by Efetov and
Larkin [6,7] from a white noise model for the disorder potential. Two later derivations used
random-matrix models for the Hamiltonian of the disordered wire. lida, Weiddam"”
and Zuk (IWZ) adapted Wegnersorbital model [25] to the study of transport properties
[9]. In this description, the wire is modeled by a large number of disordered segments in
series, each segment having a random Hamiltonian drawn from the Gaussian ensembile.
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An alternative derivation of the model, due to Fyodorov and Mirlin [26], uses a random
band matrix to model the Hamiltonian of the disordered wire. In the present chapter we
follow Ref. 11 and use the IWZ formulation of tlkemodel.

Our proof of equivalence of the DMPK equation and shenodel builds on the ideas
which were used by Rejaei [15] to calculat€l ) from theo model forg = 2. Inspired by
Nazarov’s diagrammatic calculation otT) in the metallic regime [27], Rejaei introduced
a generating functiofr which depends both on the transmission eigenvalygesnd on
the radial parametei of the supermatrices in the unitasymodel. Rejaei was able to
solve the § o model exactly for3 = 2 and thus obtained the denspyT) as a function
of L by taking derivatives oF with respect to theé;’s. The resultingo(T) could then
be compared with the result from the DPMK equation [13]. We introduce a more general
generating function which allows us to establish the equivalence af tm@del and the
DMPK equation at the level op-point functionspp(Ty, ..., Tp), without actually having
to compute this function. This approach works alsofoe= 1 and 4, where no explicit
solution of thes model is available.

The outline of the chapter is as follows: In Sec. 5.1.1, an outline of the equivalence
proof is given. The full proof for ther model with 8 x 8 supermatrices follows in
Secs. 5.1.2 and 5.1.3, with technical material in Apps. A — C. Foiptpeint functions
pp(T1, ..., Tp), we have to consider the model with 8 x 8p supermatrices. This ex-
tension is described in App. D. In section 5.1.4, we discuss the symplectic symmetry class
(B = 4) inrelation to Refs. 10 and 11. By accounting for Kramers degeneracy, we obtain
modified expressions fqiG) and varG, which we compare with numerical simulations of
the IWZ model by Mirlin and Miller-Groeling [21]. We conclude in Sec. 5.1.5.

5.1.1 Outline of the equivalence proof

Although our equivalence proof is technically rather involved, the basic idea can be de-
scribed in a few paragraphs. In this section, we present an outline of the equivalence proof
for the smallec model (8 x 8 supermatrices). The details are given in the following two
sections and in the appendices A — C. Appendix D contains the necessary modifications
to extend the proof te models with supermatrices of arbitrary size.

Part of the complexity of the problem is that themodel and the DMPK equation
focus on totally different objects. In the model, transport properties are expressed as
functional integrals over supermatric€s[9, 11]. (A supermatrix is a matrix containing
an equal number of commuting and anticommuting elements. We follow the notation and
conventions of Refs. 8, 9, and 11.) For the snaalinodel the 8x 8 supermatrices are
parameterized as [7, 8]

Q=T1AT, A= < 10 ) , (5.1.1)

ul o 0 1ip u o
= ex . 2 , 5.1.2
(o u—1> p(%e O)(Ov) ( )
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whereu andv are pseudo-unitary & 4 supermatrices. Notice th& satisfies the non-
linear constrainQ? = 1, hence the name “non-lineas” model. (The letter is used for
historical reasons.) The» 4 supermatrix is called the radial part d. It has the form

61 o 0 O
N 6 60 0 O
H — 2 v _ , (5.1.3)
O O 163 164
O O 64 163
with the symmetry restrictions
04=0 if B=1,
0 =0,=0 if B =2, (5.1.4)
0, =0 if B =4.

While theo model works with the radial part of a supermatrix, the DMPK equation
works with the radial part of an ordinary matrix (containing only commuting elements).
This is the transfer matriX. The radial part oiX is anN x N diagonal matrix., related
to the eigenvalues oX X'. The eigenvalues ok X' come inN inverse pairg™*", related
to the diagonal elements, of A by A, = sint? x,. For 8 = 4 the eigenvalues are twofold
degenerate (Kramers degeneracy). The matrtken contains only thél independent
eigenvalues. The conductanGeis directly related to the.,’s by the Landauer formula
[2,28]

2¢2 N
G:TZTnz Zm, (5.1.5)
n=1 n=1
since theN independent transmission eigenvalldgsre related to theé,’s by T, = (1 +
)L

We connect both approaches by considering a generating furfetidn.) which de-

pends on both radial matrices:

2e?
h

N

F@.0) = [] 6. m), (5.1.6)
n=1

f(,%) = Sderd? [A-i—cosl?(é/Z)] (5.1.7)

(142X + coshf1 + 62)) (1 + 21 + coshB, — 62))
d = 1ifp=12 d=2ifg=4 (5.1.8)

{ (1+ 2 + cOS63 + 64)) (1 + 24 + COS03 — 04)) ]d/ 2

The symbol Sdet stands for the superdeterminant of a supermatri@ £oP this is the
generating function introduced by Rejaei.

An ensemble of disordered wires of lendtiprovides a distribution of. The ensemble
average(F(é, 1)) contains all statistical properties that are accessible from the small
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model. These include the average conductag its variance vaG and the density of
transmission eigenvaluggT). We explain in appendix A how to extract these quantities
by taking derivatives ofF (@, 1)). The averageéF(e 1)) can be determined by each of
the two approaches independently, in terms of a partial differential equation fdr-the
dependence and an initial condition lat= 0. For theoc model on the one hand, the
evolution equation reads

—(Fa. x))—? 8 (F@.5), (5.1.9)

whereA, is the (radial part of the) Laplacian on themodel space, and whete= BN/
is the localization length. The explicit form qué is given by [7]

o4 ZJ (9) J(e)— (5.1.10)

B o 96,

where the sum runs over the independent coordirtatisee Eq. (5.1.4)] and () is the
integration measure for the radial decomposition (5.1.1),

J(01, 02,603) = sinh61 sinhdy sin® 03 l_[ sinh 2 (%(91 + 51607 + iSng)) if B=1,

S1,So==+1
J(01.69) = sinhoy sings [ sint? (301 +is163)). if =2,
S1==+1
J(01,03.02) = sindzsinogsintoy [[ sinh? (501 +is103 +is00)) if B = 4.
S1,9=+1

The DMPK equation on the other hand, yields the evolution equation

——(F@. 1) = ?(Di F@,5). (5.1.11)

whereD; is a second order differential operator in the parametgrs

D; = _1(A)Z—J(A)An(l+kn) (5.1.12)
n
I = J]in- Am|ﬂ (5.1.13)
n>m

The key ingredient of the equivalence proof is the identity
A;F@,5) =D; F@, 4, (5.1.14)

which shows that the evolution with of (F (4, 1)) is the same in both approaches. Show-
ing that the initial conditions dt = O coincide as well, completes the equivalence proof.
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5.1.2 One-dimensionab model

We begin the detailed exposition of the equivalence proof with a formulation of the
model. As in Ref. 11, we use the formulation of lida-Weidedier-Zuk (IWZ) [9].

The IWZ model

The IWZ model [9, 16] applies Wegneris-orbital model [25] to a wire geometry and
supplements it by a coupling to ideal (not disordered) leads, as in Landauer’s approach
to conduction [29]. The left and right leads (labeled by indices 1 and 2) coNaend

N2 propagating modes each (per spin directiondoe 1, 2, or per Kramers doublet for

B = 4). The disordered wire of lengthis assumed to consist & segments in series (Fig.
5-1). The HamiltoniarH of the disordered wire without leads is represented by a matrix
H}),,, where the upper indices j label the segments & i, ] < K and the lower indices

wu, v label theM states (per spin direction or Kramers doublet) within each segment. The
elements ofH are real § = 1), complex = 2) or quaternionf = 4) numbers. The
coupling between the states inside one segment is described by the mbﬂjﬁce&hich

are distributed according to the Gaussian ensemble

P(H'') = const. x exp(—%ﬂvazTr(H“)z) : (5.1.15)

Herev; is a parameter which governs the level density at the Fermi |&ek(0). The
coupling between the states of adjacent segments is given by another set of Gaussian dis-
tributed random matriced') = (H1")T (with coupling parameter),

P(H') = const. x exp(—%ﬁszz_ZTr H'l H“) :
j=i+l (5.1.16)

Segments which are not adjacent are uncoughet,= 0 if [i — j| > 2. The coupling to
the ideal leads is described by a fix€d x (N1 + N2) rectangular matrix = Wy + W,
with real (8 = 1), complex 8 = 2) or quaternionf = 4) elements. The matriwV has
elementswlim, wherei labels the segment, the states in the segment, amthe modes in
the leads. The elements Wf; (which describes the coupling to lead 1) are nonzero only
fori =1 and 1< n < Nj; the elements oV, (coupling to lead 2) are nonzero only for
i = KandN; < n < N7+ N».

The scattering matri$ (matrix elements,y) of the system at enerdy is given by [9]

S=1-27iWTE — H +izWWhH~w. (5.1.17)

The indicesn, m correspond to lead 1 if kK n,m < Npandtolead 2 ifN;y < n,m <
N; + N,. The reflection and transmission matrices’, t, t’ are submatrices @3,

rt’
S= ( o > . (5.1.18)

Since S is unitary, the products't andt’'t’ have the same set of non-zero eigenvalues,
denoted byT, = (14 in)~ L. (If N2 > Nj there are alst, — N; transmission eigenvalues
which are zero, and can therefore be disregarded.)
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| I
Nq N channels N2
: : : —

K segments

Figure 5-1. Schematic drawing of the disordered wire and the leads according to the IWZ model
description. The left lead (lead 1) contains Ni, the right lead (lead 2) N> propagating channels.
The number of propagating channels in the disordered wire is N. In the IWZ model, the disordered
wire is divided into K segments, each having a random Hamiltonian drawn drom the Gaussian
ensemble. The derivation of the 1d o model from the IWZ model assumes N > 1, but allows for
finite N; and Na.

The generating function

We now define the generating functiéié, 1) introduced in the previous section. We start
from the the relationship (5.1.17) between the scattering matrix and the Hamiltonian in the
IWZ model. We consider the generating function

F = Sdet 2(E — H +izW,W] Q + iz W,WJ A), (5.1.19)
H=Hlgif =14 H =(ReH)lg+i(mH)rs if f=2. (5.1.20)

Here % is the 8x 8 supersymmetric unit matrix ang is a diagonal matrix with elements
(1,-1,1,-1,1,-1,1, —1). The matrixA was defined in Eq. (5.1.1). Note th@tis an
arbitrary supermatrix as in Eq. (5.1.1) and that it replaces the matimthe coupling term
of lead 1. In App. B we show tha& depends only on the radial parof the matrixQ and
that the only dependence & is through the transmission eigenvaldgs= (1 + An) L.
We also show that Eq. (5.1.19) reduces to the funcfigh, 1) defined in Eq. (5.1.6) of the
previous section.

In the following, we evaluate the ensemble averéggusing the supersymmetric for-
malism. We first expresd-) as a Gaussian integral over aM & -dimensional supervector

{1/

(F) = </ Dy exp(%i YTAE = H +inWW Q +imW,W) A + ieA)z/f>>.

(5.1.21)
The convergence of the Gaussian integral is assured by the parameterization (5.1.1) of the
matrix Q. Performing the standard steps, described in Refs. 9 and 11, we obtain in the
relevant limitM — oo

(F) = / do, / dQk f1(Q. Q) f2(A, QO W(QL, Qk),  (5.1.22)
2 K-1

dv
W(Q1, Qk) = /dQZ---/dQK—l eXp(_Zfz i;Str(Qi Qi+1),) (5.1.23)
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Np
f1(Q, Q) = eXp(—%dZStr In(l+anQ1)), (5.1.24)
n=1
1 N1+Nz
f2Q. Qk) = exp|—=d > strinl+x,QQx) |- (5.1.25)
n=N1+1

The numbers, denote the eigenvalues of the matritcesvl)wfwl (if1 <n < Njp)or
(/v)WJW, (if N; < n < Ni 4 Ny). The integed was defined in Eq. (5.1.8).

Following Ref. 11, we consider the limif <« v5. Then the sum in (5.1.23) can be
replaced by an integral and tlgg -integrals yield a path integral. The discrete number of
segmentK becomes the continuous (dimensionless) variabl€he propagator (5.1.23)
can be identified with the heat kernel of the supersymmetric space, determined by the heat
equation [11]

a
2p(v2/v1)* S W(Q', Q") = AgW(Q,Q",
limOW(Q’, Q") = 8Q, Q. (5.1.26)
S—
The precise definition of the Laplaciakg and the detailed justification of Eq. (5.1.26)

are contained in Ref. 11A(q in Eq. (5.1.26) differs by an additional factgy (8d) with
respect to the notations of Ref. 11). We thus arrive at the expression

_ / dQ / dQ’ f1(Q, Q) W(Q, Q") fa(A, Q). (5.1.27)

The next step is to notice thdt(Q, Q') has the same symmetry as the heat kernel,
ie. fu(T1QT, T-1Q'T) = f1(Q, Q) whereT is an arbitrary element as described in
(5.1.1). This impliesAq f1(Q, Q') = Ag f1(Q, Q') and hencéF) also satisfies the heat
equation

9
Zﬁ(vz/v1)28—8<F> = Ag(F). (5.1.28)

Since(F) only depends on the radial parof Q, it is sufficient to consider the radial part
A, of the LaplacianAq. This radial partA, can be written as in Eq. (5.1.10). We thus

find that the ensemble average(d, 1)) of the generating function defined in Eq. (5.1.6)
satisfies the partial differential equation

9 A .
25(”2/1)1)28—5(':(9, ) = Ay (F@, 1), (5.1.29)

with the initial condition implied by Eq. (5.1.26),
lim <F(9 )\)) /dQ’ £1(Q. Q) f2(A, Q). (5.1.30)

Together, Egs. (5.1.29) and (5.1.30) determine the ensemble average of the generating
function F (9, 1) evaluated in the framework of the nonlineamodel.
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The two limits of the IWZ model which were needed for the derivation of Eq. (5.1.30),
M — oo andv?/vs — 0, restrict the validity of Eq. (5.1.30) to the case of weak disorder
(¢ > Afp) and thick wires N > 1) respectively [9, 11]. Whereas the requirement of
weak disorder is also needed for the DMPK equation, the requirement that the number of
channels in the disordered wire be large is not. To see how the latter requirement follows
from the conditionuf < v%, we consider the expression for the average conductd@dce
in the diffusive metallic regime/(« L < N¢) [9, 11],

26> Nt 2€? 4v3
(G) = T T vfs' (5.1.31)
Taking the linear dimension of a segment of the disordered wire in the IWZ model of order
¢ (i.e. s ~ L/¢, see Ref. 9), we find tha® < v3 corresponds tN >> 1. However, no
restriction has been put to the numbérsand N, of propagating channels in the leads in
the above derivation of the model, which allows us to consider finite valuesif and
N2. This situation corresponds to the case in which the thick disordered wire is coupled to
the leads 1 and 2 by means of point contacts, Wih N> open channels. As in Ref. 11,
the case of a disordered wire without point contacts is recovered in theNimil, — oo.

We conclude this section with some remarks about the choice of initial conditions. In
usualo model calculations [10, 11, 15], one considers the case ideal couplding (1,
n=1,..., N7+ N2) and identifiesN = N; = N> (equal number of channels in the
leads and in the wire). In the thick-wire limM — oo the functionf; (Q, Q’) is just the
delta function [11)5(Q, Q'), and(F) becomes identical to the heat kernel itself [cf. Eq.
(5.1.27)]:

(F) =W(Q,A), NN=Nz2=N> 1 (5.1.32)

For g = 2, this result was derived by Rejaei [15]. In this cdB¢ has the delta-function

initial condition lims_o(F) = §(Q, A). To make contact with the DMPK equation, we
need a different “ballistic” initial condition, such that dl’s are unity in the limit of zero

wire length. To achieve this, we take ideal coupling and assume that one of the leads has
many more channels than the other. To be specific, wlfiand take the limiN, — oo.

One then finds the initial condition

lim (F) = exp(—2N1d Str In(1+ QA))
S

C0SH3 + C0SHy
coshd1 + coshy,

Npd
) . 1< Ny < Na. (5.1.33)

In the next section, we will see that this is precisely the ballistic initial condition of the
DMPK equation.

5.1.3 DMPK equation

Let us now evaluate the ensemble average of the generating function (5.1.6) from
the DMPK equation. The DMPK equation is a Fokker-Planck-type equation for the
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L -evolution of the probability distributio (1) of the A’s: [1-5]

1 0
E(ﬁN +2- ﬁ)Ea—L P(A) =

N
3 .9 .
D 1+ IR —ITAPO), (5.1.34)
n=1 ddn 9An
I =TT 1*n = 2ml, (5.1.35)
n>m

where? denotes the mean free path in the disordered wireNatite number of propagating
modes. There iso restriction toN > 1 in the DMPK approach. We take the ballistic
initial condition

N
. A _ _ +
E'To P(L) = ]_[ §(n — 0). (5.1.36)

n=1
The DMPK equation implies foF (9, 1) the evolution equation [2, 4]

a

A 0 A2 2
ﬁ(|:(9,)\)) = ﬁ/dkl.../deF(G,A) P)

_ %(ﬁN -|-2—,8)_1<Di F(é,i)), (5.1.37)

with the differential operatoD; given by Eq. (5.1.12). In Appendix C we prove the alge-
braic identity between the two different types of Laplacians (5.1.10) and (5.1.12) applied
to F (@, &),

AsF@,3) =D; F@,h). (5.1.38)

From Egs. (5.1.37), and (5.1.38) we conclude that that the avéFa@e 1)), calculated in
the framework of the DMPK equation, also fulfills the evolution equation (5.1.29) of the
nonlinearoc model, provided we identify [cf. Eq. (5.1.31)]
4 > N¢ &
— =—=—", N>»1 5.1.39
S(vz/ v1) L~ AL > ( )
Here we introduced the localization length= 8N ¢ (notice that the definition of in Ref.
11 differs by a factor 28).
It remains to compare the initial conditions. The ballistic initial condition for the
DMPK equation implies

lim (5.1.40)

cosfz + costy \ N
coshv; + coshbr ’

(F@,3) = f@.n=0N = (

which equals the initial condition (5.1.33) for the nonlineamodel. (The thick-wire

limit lim . o(F) = §(Q, A) is obtained by lettingN\ — oo in the above expression).

This proves the equivalence of both approaches, as far as the generating function (5.1.6)
is concerned. In Appendix D of this chapter we extend the equivalence prgeptont
functionspp(Ty, ..., Tp) for arbitrary p.
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5.1.4 The controversial symplectic ensemble

The main motivation of this section was to resolve a controversy between the DMPK equa-
tion and the one-dimensionalmodel in the symplectic symmetry clags € 4). On the
one hand, the DMPK equation implies [18F) — 0 asL — oo. On the other hand,
Zirnbauer [10] finds from the model that{G) — %ez/h asL — oc.

The equivalence proof presented in this chapter has as a logical consequence that
(G) - 0asL — oo if (G) is evaluated in the framework of tlke model. To demon-
strate this, we apply the argument of Ref. 13. The DMPK equation implies for the average
dimensionless conductange= >, (1+ An) "1 the evolution equation [4]

3(9)

£ 0 = —Big?) - 2 P)la2). (5.1.41)
withg, = >, (1+ An)~2. This relation also follows from the evolution equation (5.1.29)
of theo model (expanding the generating function for smaknd applying the results of
appendix A). Since &< g» < g2, we have

3(9) 1, 2
§—0 = 5P <0 (5.1.42)
We suppose that lipL, o (g) exists. Sincé)(g)/oL < 0 [EqQ. (5.1.42)] this implies that
im0 8(g)/dL = 0. Hence lim (g% = 0 by Eq. (5.1.42). Sincég)? < (g?) this
implies that also lim_, . (g) = 0.

Where does the non-zero limit in Refs. 10 and 11 come from? The ground-breaking
contribution of Zirnbauer was to use a “super-Fourier expansion” of the heat Mgl Q")
in terms of eigenfunctions of the Laplacian in the space ofthedel. This type of Fourier
analysis is well understood for classical symmetric spaces [30]. The development and ap-
plication of the supersymmetric analogue for thenodel enabled Zirnbauer, Mirlin, and
Muller-Groeling to compute non-perturbatively the first two moments of the conductance
for any 8. The non-zero limiting value lim., . (g) = 1/4 for 8 = 4 resulted from a
“zero mode”, a non-trivial eigenfunction of the Laplacian with zero eigenvalue. Since this
zero mode does not decay Bs— oo, it led to the surprising conclusion of absence of
localization in a wire with spin-orbit scattering in zero magnetic field [10].

An explicit expression for the zero-mode was not obtained in Refs. 10 and 11, but
only its contribution to the moments of the conductance was computed. By inspecting the
initial condition (5.1.33) of the generating function for thanodel we have been able to
construct a zero mode fg = 4, but only if we ignore the Kramers degeneracy of the
transmission eigenvalues. This unphysical zero mode, given by

C0SH3 + C0SHy

_— 5.1.43
2+ 2 coshyq ( )

$0(01, 63, 0a) =
arises by taking the initial condition (5.1.33) witilh, = 1 andg = 4, butwithoutthe
extra factor two in the exponent, required by Kramers degeneracy. This unphysical initial
condition solves the evolution equation (5.1.29) for the ensemble average of the generating
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Figure 5-2. Left: The average conductance (g) multiplied by 4L /& = L/N¢ (left) and the variance
var g of the conductance (right) for the symplectic symmetry class as a function of 4L /& for N > 1.
Shown are our result (5.1.48) (solid), the numerical simulation of Ref. 21 (M = 100, N = 25)
(dashed), and the result of Ref. 11 (dotted).

function and implies ah -independent average conductange= 1/4. Although we can
not prove that Eq. (5.1.43) is Zirnbauer’s zero mode, the coincidence with the limiting
value lim__, (g) = 1/4, lim__, o varg = 1/16 is quite suggestive.

The reason why we have to exclude the zero mode (5.1.43) from the Fourier expansion
of the heat kernel is that it is not single-valued on éheodel space of supermatric€s
although it is a well-defined function 6f The parameterization (5.1.1) §fis 27 -periodic
in the angle®. = 63 + 6,. We can then consider on the space of angie®, a parity
operationP which consists of adding to both of these angles. This parity operation does
not changeQ, but it changes the zero mode (5.1.43). The Laplacian (5.1.10) commutes
with P and the eigenfunctions have therefore either even or odd parity (eigenvaluss
—1 of P, respectively). The physical modes of thenodel must have even parity, since
only these functions are single-valued. Fr= 4, it is the Kramers degeneracy which
ensures that the initial condition (5.1.33) has even parity.

This observation led us to check the parity of the eigenfunction®) of the Laplacian
in the super Fourier analysis of Refs. 10 and 11. We consider the eigenvalue equation

Appy(01, 03, 04) = —e(v) Py (61, 03, Oa) (5.1.44)

for B = 4 in the limitd; — oo at fixedds, 64. In this limit, the Laplace operator simplifies
considerably

3 3 1 9 9 3 9
Ay > —en 4~  _— sinfg— + ——— sinfs—. 5.1.45
07 50.% 901 TSings00: 0 P56, T sinea 00, a0, ( )
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From this expression one may identify the set of quantum numbergi, 1 4+ 2nq, 1 +
2ny), where is a real number and;, ny are non-negative integers. The asymptotic
behavior of the eigenfunctions, (61, 63, 64) is given by

by (01, 03, 0a) ~ eXp[3(1+i2)61] (Pnl(COSQS) Pn,(COS0a) + Pn,(C0SO3) Pn1(00594)>»
(5.1.46)
with the Legendre polynomialB,(x) and the eigenvalues

1
e(h, 14 2n1, 1+ 2ny) = Z(xz F(1+2n)% 4+ 1+ 2np)2 — 1). (5.1.47)

The parity of this eigenfunction is juét-1)"1*"2 and we have to restrict ourselves to those
ni andny with ny + ny even. Applying this selection rule to the expressions(fprand

(g% of Refs. 10 and 11, omitting the zero mode [and the subsidiary series with quantum
numbers = (i, |, | + 2) of Refs. 10 and 11, for which the asymptotic behavior (5.1.46) is
also valid], and multiplying the surviving terms with a factor of 2 to account for Kramers
degeneracy, yields fg# = 4 and in the limitN; = N2 = N — oo the expression

o0
@) = 22" ) / dr A(% + 1) tanhGri/2)l1l2pn (i, 11, 12)
11.1p=1,35,..., 0
I1+lp=2(mod4)
x [] (-1+ich+oili+oda) ™ exp[ -2 +1F+13 - DL/29)).
o,01,00=+%1

(5.1.48)

wheren =1, 2 and

p1(x,l1,12) = )\.2+|12_+|§_1,
P2k, 1, 12) = %1[214+|f+|§+312(lf+|§)—2A2+|f+|§—2].

Note that in our notations the dimensionless conductaniseby a factor 2 smaller
thang in the notations of Ref. 11. Comparison of Eq. (5.1.48) with ghe- 4 result of
Ref. 11, where the parity selection rule was not implemented, shows that the perturbation
expansion arount /& = 0 is the same. (We checked this numerically up to ottlgk)3.)
Outside the perturbative regime, the two expressions are completely different. Instead of a
non-zero limit(g) = 1/4 for L/& > 1, we find from Eg. (5.1.48) the exponential decay

(g) ~ l; (2L /&)~ 2e &, (5.1.49)

To test our result, we have compared it with a direct numerical simulation of the IWZ
model by Mirlin and Miller-Groeling [21] (withM = 100, N = 25 and an average
over 100 different samples). The comparison is shown in Fig. 5-2. It is clear that our Eq.
(5.1.48) (solid curve) agrees quite well with the simulation, while the result of Ref. 11 does
not (dotted curve).



126 Chapter 5: Localization in disordered wires

1.5 0.15
\=1
W 1 0.1
o L
— L Q0
Nol i E :
I > i
Vv
05 — 0.05 —
I i p-2 O
0 L 0 1 L ! I
0 ) 10 15 0 o) 10 15
BL/& BL/&

Figure 5-3. The average conductance (g) multiplied by gL/& = L/N¢ (left) and the variance var g
of the conductance (right) for the three symmetry classes as a function of gL /& for N > 1. The
curves for g = 1, 2 are taken from Refs. 10 and 11 and the curve for 8 = 4 is calculated from Eg.
(5.1.48). Notice that &£ = BN¢ is proportional to 8, so that the scaling of the axes is g-independent.

Notice that this issue of the parity of the eigenfunctions does not occu ferl, 2,
since there is only one compact angle)(in those cases. The parity operation on éhe
matrices exists only fof = 4. For completeness we collect in Fig. 5-3 the resultg@or
and var for all three symmetry classes. Tjie= 1, 2 results are from Ref. 11, the= 4
resultis our EqQ. (5.1.48).

5.1.5 Conclusion

We have established the exact mathematical equivalence of the two non-perturbative the-
oretical approaches to phase-coherent transport and localization in disordered wires: The
Fokker-Planck equation of Dorokhov, Mello, Pereyra, and Kumar [1-5] and the one-di-
mensional supersymmetric nonlinearmodel [6, 7,9, 11, 26]. The equivalence has the
logical consequence that the absence of localization in the symplectic symmetry class, ob-
tained by Zirnbauer by super-Fourier analysis oféhmodel, is not correct. By applying

a selection rule enforced by Kramers degeneracy to the eigenfunctions of Refs. 10 and 11,
we have obtained modified expressions @) and varG, which decay exponentially as

L — oo and which agree well with existing numerical simulations [21].

Our equivalence proof has both conceptual and practical implications. The DMPK
equation and thedlo model originated almost simultaneously in the early eighties, and at
the same institute. [1, 6] Nevertheless, work on both approaches proceeded independently
in the next decade. Knowing that, instead of two theories, there is only one, seems to
us a considerable conceptual simplification of the field. It implies that the microscopic
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derivations and random-matrix models developed foraheodel apply as well to the
DMPK equation, and vice versa. (we see only the restriction, that thedel requires the
thick-wire limit N — oo, while the DMPK equation applies to any number of channels

N.) Practically, each of the two approaches has its own advantages, and now that we know
that they are equivalent, we can choose the approach which is best suited to our needs and
skills.

Appendix A: Transport properties determined by the gen-
erating function

We list the transport properties of interest that can be generatedFr@m.), following
Rejaei [15]. Let us consider the function

det(1+ 22tTt)> (A1)

fo22) = <del(1 Tzt

which equalsF (4, 1)) atz, = — sirf(363), z1 = sint?(361), anddz = 6, = 0. We write
Eg. (A.1) in the form
f(z1,22) = (exp[Tr In(L + 25 tTt) — Tr In(1 + z1 t™1)]). (A.2)

The standard expansion [8, 9] with respect to sreplindz, yields the first two moments
of the dimensionless conductange= (1/d) Trt't (withd = 1+ 84,8),

10

= @ —-— f
@) doz (21, 22) 21=0=2,
1
== _a a f (Zlv 22) 21_0222’ (A'S)
10
2
= =2 % A4

We may also consider [15,27] derivativesfofzi, zo) atz; = zo. This may require the
analytic continuation of;, 63 to complex values iz; < 0,2z, > 0 orzo < —1. Therefore,
we introduce the functiorf (z;) as

f(zn) = if(z 22)
1) = 0z 1, 22

_ <Tr [(1 + zltTt)—ltTt]>

2o=12771

= ) (—z)™Tr'Hnth)

n=0

= 71 (Tr(l) _ <Tr [(1 + zltTt)—l]» . (A.5)
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The average density of transmission eigenvalues now follows from:
p(T) = (Tr&(T —t't))

1 o
_ —ﬁlmf(—(T—HO) ) (A.6)

The application of Eq. (A.6) requires the analytical continuation of both variahlesd
zp to values< —1.

Appendix B: The generating function in terms of the trans-

mission matrix

In this appendix, we show that Eq. (5.1.19) for the generating function in the IWZ model
equals Eqg. (5.1.6). We first consider the two cages 1, 4 of time reversal symmetry,
when#H = Hlgin Eq. (5.1.19). The necessary modifications o 2 are described at

the end.
We make use of the folding identity

Sdet( Ln
B

We abbreviaté&, = (E — H +i7WW")~1. Taking out the factotE — H + iz WW'A)
(with unit superdeterminant), we may rewrite Eq. (5.1.19) as
0 \. +
iTW, W, (Q — A)

F = Sder%<1+ ( GO+

1 W G, W 0
— Sdetz|1+i 1=+ — AN, B.2
on( % 0 Jamn).

m

A ) = Sdet1l, — AB) = Sdetl, — BA). (B.1)

where we have applied Eq. (B.1) & = WlT. We now insert the reflection matrix =
1-— 2ninG+W1 [see Egs. (5.1.18) and (5.1.17)] into Eq. (B.2) and obtain

1 (1 1/r O
F = Sdet 2 (§(1+AQ)+§<O rT)(l_AQ))' (B.3)

Now we use the parameterization (5.1.1) €r Notice that Eq. (B.3) does not depend on
the angular part o@ [the matricesu, v in (5.1.2)]. Hence we may choosg as

0 4
-1 1
Q=T AT,T:eXp(§®),®=(é o)’ (B.4)

which leads to

11+ AQ) =cosl3®) T, 3(1- AQ) = —sinh(30)T.
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Inserting this in Eq. (B.3) and taking out the faciowith unit superdeterminant), we get

145 o lA
F — sdetl? cosr(EQ)A —r smh(?@)
—rtsinn(30)  cosh30)

— Sdet1/? (cosﬁ(%é) — sink?(%é)r*r)

Sdet /2 (1 n sink?(%é)t*t) , (B.5)

where we have again used (B.1) and the relatibn= 1 — tt imposed by unitarity of the
scattering matrix.

The matrixt't has eigenvalues, = (1 + An) L (n=1,..., N1), which are twofold
degenerate fof = 4, hence

N1
F = []Sdet®?+sint?(36) Ty)

n=1

N1
= []sder®? (3 + costt(36)) . (B.6)

n=1

Hered = 1+ §g4. Eqg. (B.6) establishes the connection between the two expressions
(5.1.6) and (5.1.19) for the generating function.

The above calculation assumes = H1g, hencef = 1 or 8 = 4. In the case8 = 2,
one has instead! = Re(H)1g + i Im(H)3. Instead of two subblocks withandr T [see
Eq. (B.3)], one now needs four subblocks with T, r T, andr *. Repeating the calculation
one finds that the final result (B.6) remains the same.

Appendix C: Identity of Laplacians

The goal of this appendix is to prove Eg. (5.1.14). Hereto we first analyze the structure of
the |.h.s. of Eg. (5.1.14) in more detail.
The derivatives of- (6, 1) with respect t@; are calculated using

A A N A
aF @, i 1 af@, .
( ) ) — Z A ( ) n) F(e,)\.), (Cl)
36 = 0, ) 99
92F @, A Noo1 0 821@, .
OY (LT e+
06, £, ) 06

=1
N N N
1 3f 0, An) 3T (A, A .
> — _ ) 9T, Am) F@, 5. (C.2)
f(0, 1) F (0, Am) 9] d0;
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Inspection of Egs. (5.1.10), (C.1) and (C.2) shows thgF (9, 1) has two contributions,
one involving a single summation over the channel indiceand another one involving a
double summation over channel indigegt m,

N N
A;F@, ) = (Zgl(é,kn)) F@, 4 + (Z gz(é,kn,km)) F@.»). (C.3)

n=1 n-m

Using the definition (5.1.7) of (9, 1) one may straightforwardly calculate the functions
g1 andgy. The expressions are rather lengthy and will not be given here.

The r.h.s. of Eqg. (5.1.14) contains the differential oper&gr which is given by Eq.
(5.1.12). Simple algebra yields

N

92 9
D: = In(l+ An)— 14+ 20n)—
i ;( n(1+ n)ak%‘F( + n)akn>+

B . 9 9
5 Z()»n —Am)~ (kn(l + )»n)aT — Am(1+ )Lm)aT> . (C.4)
nm n m

As a consequencd); F (4, 1) has again the structure of Eq. (C.3), wigh and g, now
given by

s 1 9216, 1) 01 (6. 1)
06, 307 B/2 | MA+2r0)df (@, k)  Aa(l+hp) 3f (6, 22) C.6)
T AM—A2| f@,a) 01 f(0,1y)  0A2 ' '

Comparison of Egs. (C.3) and (C.5) shows that the two definitions of the fundjcarsd
go are identical. This completes the proof of Eq. (5.1.14).

Appendix D: Extension to higher dimensional supermatri-
ces

The argumentation presented in Secs. 5.1.2 and 5.1.3 can be generatizeddels with
Q matrices of arbitrary dimensiongBwith p > 1. This generalized equivalence proof
applies to thep-point functionspp(Ty, . . ., Tp) instead to the limited number of statistical
quantities that can be generated by the “smalfhodel withp = 1 (compare appendix
A). Here, we briefly present the modifications with respect toghe 1 case. The modifi-
cations concern the parameterization (5.1.1) and the generating function (5.1.7).

The main technical difficulty in such a generalization is due to the radial part of the
Laplace operator. The procedure to calculate it on conventional symmetric spaces is stan-
dard [30] and is carried over to the supersymmetrinodels as described in appendix B of
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Ref. 11. It is now more convenient to use a slightly modified form of the parameterization
of the Q-matrices, wheré in Eq. (5.1.1) is fully diagonal (rather than block-diagonal):

é:(x.9>,
0 iy

(X)nm = Xndnm, (¥)nm = Yndnm. 1 < n,m < 2p. (D.1)
The symmetry restrictions are [cf. EQ. (5.1.4)]
Yi = VYitp ifg=1
Xi = Xigp Yi =Vitpif B=2, (D.2)
Xi = Xitp if B =24,

fori =1,..., p. Inthe casep = 1, we have the relations, = 61 + 62, Xo = 01 — 6o,
y1 = 63 + 64, andy, = 63 — 6,4 between these parameters andghesed in (5.1.3).

We can directly apply the results of appendix B in Ref. 11 which are given in terms of
the so-calledoots «(®) [with ® given as in (B.4)]. The roots are linear functions@f
which are the eigenvalues of the linear mapping®adX,) := [0, X,] = a(©)X,, de-
fined on a certain super-Lie algebra [11]. The eigenvecXgrsf the mapping are theot
vectors,which do not depend o®. The radial integration measutgé) in Eq. (5.1.10)
can be expressed as [30]

3@ = [ [ sint™[3 ()],
a>0
where the integem,, is the multiplicity of the rootx (the dimension of the root space).
Both positive and negative values wf, can occur. The facto% is due to the difference
between the normalization (5.1.1) 6f and the one used in Ref. 11. In appendix A of
Ref. 11, explicit formulas for the roots as well as for the root vectors are given for the case
B=1p=1

We have calculated the roots and the root vectors fogahd arbitrary dimension
8p of the Q matrices. For simplicity, we only present the results for the roots and their
multiplicities. Let us denote witlpx (py) the number of independert (yi) parameters,
i.e.:px =2p, p, pandpy = p, p, 2p for B = 1, 2, 4, respectively. Note thagtpy = 2py.

We find 8 different types of (positive) roots:

(D.3)

a(®) =X — X L=<j<l=p, my = B,

() =X — iy I<j=<px, 1<l <py, my=-2

a(®) =i(yj — W) 1=<j<I<py, m, = 4/8,

a(0) = 2X; 1<j=<px), my =8 —1, (D.4)
a(®) = 2iy; (1<j=<npy), my, =4/ -1,

a(®) = Xj + X 1=<j<l=px, my = B,

a(®) = Xj + iy I<j=<px, 1<l <py, my=-2

a(®) =i(yj +W) 1l=<j<l=py, my = 4/8.
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The radial part of the Laplacian takes the form

Aj —ZJ (9) J(@)—-I—ZZJ (9) J(e)—y (D.5)
J

The expressions (5.1.6) and (5.1.19) for the generating function now remain valid with the
modifiedd of Eq. (D.1), and with Eq. (5.1.7) replaced by

Py Px
f(0,1) = 1_[[1 + 2X + coqyj )]H[l + 2x + coshx )] /2. (D.6)
i—1 i—1
It is convenient to use the variables = sint?(3x) andvi = —sir?(3y)) in terms of
which the Laplacian has the form
Px Py
-, -8 BN ., 0 -9
A=) Tt —u@+u)d——-=Y T —ovi@4v) I —, D.7
o ; ouj j(+up) ouj 2j:1 Jvj vj (1 +vj) 0vj (B.7)

Px Py
J = [ w—-w? J] @-wpw"[[[[uw-wp? (D8

1<i<j=px 1<i<j=<py i=1j=1
Px Py
B/
<[ (u@+u)
i=1

2/p-1
H(vi 1+ v )) .
The generating functiof (4, 1) is given by

i=1

N Py Px
F@,5 = ]_[ <]_[(1 +an+ o] A+ + Ui)_ﬁ/2> : (D.9)

i=1 i=1

We have verified that the identity of Laplacians [EQ. 5.1.14)] remains true for the mod-
ified expressions (D.7) and (D.9). The calculations goes in a similar way as shown in App.
C for p = 1. Now, we have to keep track of 7 different types of contributions with double
and triple sums over functions af, u;, vj.

In App. A we have shown that the average density of transmission eigenyalli¢s
can be obtained from the generating function (5.1.6). Using the corresponding function for
the higher-dimensionat model considered here, it is straightforward to get phpoint
correlation functiongp(Ty, ..., Tp).
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6 Diagrammatic technique for integration over
the unitary group

The random-matrix theory of quantum transport describes the statistics of transport prop-
erties of phase-coherent (mesoscopic) systems in terms of the statistics of random matrices
(for reviews, see Refs. [1-4]). There exist two separate (but equivalent) approaches: Either
the random matrix is used to model the Hamiltonian of the closed system, or it is used
to model the scattering matrix of the open system. The second approach is more direct
than the first, because the scattering matrix directly determines the conductance through
the Landauer formula,

2¢?
G= TtrttT. (6.0.1)

(The transmission matriiis a submatrix of the scattering matrix.)

Random-matrix theory has been applied successfully to two types of mesoscopic sys-
tems: chaotic cavities and disordered wires. Baranger and Mello [5] and Jalabert, Pichard,
and Beenakker [6] studied conduction through a chaotic cavity on the assumption that the
scattering matrixS is uniformly distributed in the unitary group, restricted only by sym-
metry. This is the circular ensemble, introduced by Dyson [7], and shown to apply to a
chaotic cavity by Blimel and Smilansky [8]. The symmetry restriction is t = 1
in the presence of time-reversal symmetry. (The superseriptlicates complex conju-
gation if the elements db are complex numbers; in the presence of spin-orbit scattering,
Sis a matrix of quaternions, an®l* denotes the quaternion complex conjugate.) For the
disordered wire, the circular ensemble applies not to the scattering matrix itself, but to the
unitary matrices, w, v/, andw’ in the polar decomposition,

i /
S:(v o>< -7 ivT >(v o>. 6.02)
0 w ivT J1I-T 0 w

The matrixT is a diagonal matrix containing the transmission eigenvalyes [0, 1] on
the diagonal. (Thd,’s are the eigenvalues of the matrix prodirct) The distribution
of the transmission eigenvalues is governed by a Fokker-Planck equation, the Dorokhov-
Mello-Pereyra-Kumar (DMPK) equation [9, 10]. The isotropy assumption [10] states that
v, v/, w, andw’ are uniformly and independently distributed in the unitary group, with the
restrictionv*v’ = 1, w*w’ = 1 in the presence of time-reversal symmetry.

The role of the circular ensemble of unitary matrices in the scattering matrix approach is
comparable to the role of the Gaussian ensemble of Hermitian matrices in the Hamiltonian
approach. However, whereas many computational techniques have been developed for
averaging over the Gaussian ensemble [11-18], the circular ensemble has received less
attention. If the dimensioM of the unitary matrices is small, the average over the circular
ensemble can be done exactly, see e.g. Secs. 2.1 and 3.1 or Ref. [19]. For some applications
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in the regime of largdN, one may regard the elements of the unitary matrix as independent
Gaussian variables [20], and then use the known diagrammatic perturbation theory for
the Gaussian ensemble [12,17]. In other applications the Gaussian approximation breaks
down.

In this chapter we present a diagrammatic technique for integration over the unitary
group, which is not restricted to the Gaussian approximation. We discuss two applications:
A chaaotic cavity coupled to the outside via a tunnel barrier, and a disordered wire attached
to a superconductor. In both cases, we calculate the mean and variance of the conductance
up to and including terms of order 1. We point out the analogy between the diagrams
contributing to the average over the circular ensemble and the diffuson and cooperon dia-
grams which appear in the theory of weak localization [33, 34] and universal conductance
fluctuations [23, 24] in disordered metals. In the presence of the superconductor a third
type of diagrams shows up, which gives rise to the coexistence of weak localization with a
magnetic field (see also Sec. 7.2 and Ref. [25]), and to anomalous conductance fluctuations
(see also Sec. 7.1.

This chapter starts in Sec. 6.1 with a summary of known results [26—28] for the integra-
tion over the unitary group of a polynomial function of matrix elements. The diagrammatic
technique is explained in Sec. 6.2. Generalizations to unitary symmetric matrices and to
unitary quaternion matrices are given in Secs. 6.3 and 6.4, respectively. We then apply
the technique to the chaotic cavity (Sec. 6.5) and the normal-metal-superconductor junc-
tion (Sec. 6.6). Some of the results of Sec. 6.5 have been obtained previously by lida,
Weidenmiller, and Zuk, who used the Hamiltonian approach to quantum transport and the
supersymmetry technique [1, 15]. The results of Sec. 6.6 have some overlap with Secs. 7.1
and 7.2. There is also some overlap between Sec. 6.6 and a recent work by Argaman and
Zee [29].

6.1 Integration of polynomials of unitary matrices

In this section we summarize known results [26—28] for the integration of a polynomial
function f (U) of the matrix elements of aN x N unitary matrixU over the unitary group
U(N). We refer to the integration as an “average”, which we denote by brackelts

(f) E/du f(U). (6.1.1)

HeredU is the invariant measure (Haar measure)lotN), normalized to unity (dU =
1). The ensemble of unitary matrices that corresponds to this average is known as the
circular unitary ensemble (CUE) [7, 30].

We consider a polynomial functioh(U) = U . .U;mﬂm. The av-

*
athy * - Uanbn a1f1*

erage(f(U)) is zero unles®y = m, a1, ..., @, IS a permutatiorP of ay, ..., a,, and
B1, ..., Bnis a permutatiorP’ of by, ..., b,. The general structure of the average is
n
(Ualbl s Uambm ;151 s ;nﬁn> = dnm Z Ve pr 1_[ (SajO‘P(i)abiﬁP/(i)’ (6.1.2)
PP’ j=1
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where the summation is over all permutatidhsind P’ of the numbers 1 .., n. The co-
efficientsVp p' depend only on theycle structureof the permutatiorP~1P’ [27]. Recall
that each permutation of, 1. ., n has a unique factorization in disjoint cyclic permuta-
tions (“cycles”) of lengthsy, ..., ck (Wheren = Z}‘Zl Ck). The statement thatp p' de-

pends only on the cycle structure Bf P’ means thaVp p' depends only on the lengths
c1, ..., ¢ of the cycles in the factorization d@~1P’. One may therefore Writ®le, . .o
instead ofVp p'.

As an example, we consider the case- m = 2 explicitly. The summation over the
permutationsP and P’ extends over the identity permutati@h= [(1,2) — (1, 2)] and
the exchange permutatiex= [(1, 2) — (2, 1)]. Hence Eqg. (6.1.2) reads

<Ua1b1Uazb2 :1;31 :2ﬂ2> = Vid.id Sa010b1819ap028b8, + Vexid Sagaz0y 81 8apas Sbyps

+ Vid,ex a1 b1 828200200281 + Vex.ex Sajar0b; 8508001 0,1
(6.1.3)

The permutatiorP~1P’ that corresponds t® = P’ = id [the first term on the r.h.s.
of Eq. (6.1.3)] is again the identity permutatioR 1P’ = id = [(1,2) — (1,2)]. Its
factorization in cyclic permutations id = (1 — 1)(2 — 2), so thatP~1P’ factorizes
in two cyclic permutations of unit length. Hence the cycle structur®otP’ is {1, 1},
andViqjg = Vi1,1. The second term on the r.h.s. of Eq. (6.1.3), correspondirfg te
ex P’ = id, hasP~1P’ = ex = [(1,2) — (2, 1)], which factorizes in a single cyclic
permutation of length twex= (1 — 2 — 1). Hence the cycle structure & 1P’ is {2},
andVeyiq = V. Treating the remaining two terms of Eq. (6.1.3) similarly, we obtain

(Ualbluazbz :1/31U:2/32> = Vi1 8ala18b1/315&2a28b2ﬁ2 + V2 831a28b1ﬁ1562a18b2ﬁ2
+ V2 831a18b1ﬁ2562a28b2ﬁ1 + Vi1 8&1a28b1/328&2a18b2/31-

In general, the coefficient; 1 refers to equal permutatio® = P’, corresponding to a
pairwise (Gaussian) contraction of the matrickandU *. Coefficientsv, ¢ with some
¢j # 1 give non-Gaussian contributions.

The coefficientd/ are determined by the recursion relation [27]

k

NVCl """ Ck + Z VP,OI,Cz,-..,Ck + Z Cj VC1+C]‘,C2,...,CJ',1,C]'+1 ..... Cck — 8011VC2 ..... Ck» (614)
p+gq=ci j=2

with Vo = 1. One can show that the solutidfy, . ¢, does not depend on the order of the

.....

indicescy, . .., k. Results fo’V up ton = 5 are given in App. A. The larg& expansion
of Vis
k
Vor.ao = | [ Vg + ON<2"72), (6.1.5)
j=1
1 2c—2
VC — EN].—ZC(_:]_)C—].( . 1) + O(N—l—ZC). (616)
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(The numbers~%(%"?) are the Catalan numbers.) For example, the coeffidignt

N~ + ©O(N~"~2). The Gaussian approximation amounts to settin¢gyalequal to zero
exceptVy, 1, which is set toN~".

The coefficientd/;, . ¢ determine moments &f. Similarly, the coefficient®\g, . ¢,
determine cumulants @f. The cumulants are obtained from the moments by subsequent
subtraction of all possible factorizations in cumulants of lower degree. For example,

Wcl = Vcl,
Wcl,Cz = Vcl,Cz - W01WCZ»
WCl,Cz,Cs = VC1,02,C3 - WCl WCz,Cs - WCz WCl,Cs - WCs WCl,Cz - WC1 WCz WCs-
The recursion relation (6.1.4) f&f implies a recursion relation foi/,
k

p+g=C1 j=2
K 1
+ Z Z ZWD»CP(Z) ,,,,, CP(I)WQ»CP(I+1)»CP(k) = 0 (6.1.7)
p+a=c1 1=1 (I =Ditk=Dr 4

with Wp = 1 andP a permutation of 2. .., k. To leading order in AN this equation has
the solution,

k(2N 4Kk — 3)! 15[ (2¢; — 1!

’’’’’ (2n)! (¢ — 2

+ O(N~27K. (6.1.8)
j=1

Notice that\,, . ¢ decreases with increasing number of cy&espposite to the behavior

In principle, the recursion relations permit an exact evaluation of the average of any
polynomial function ofU. In practice, as the number bf's andU *’s increases, keeping
track of the indices and of the Kronecker delta’s which connect them becomes more and
more cumbersome. Itis by the introduction of a diagrammatic technique that one can carry
out this bookkeeping problem in a controlled and systematic way.

6.2 Diagrammatic technique

The usefulness of diagrams for the bookkeeping problem is well-established for averages
over the Gaussian ensemble of Hermitian matrices [12¢ziBrand Zee [17] have devel-
oped a diagrammatic method which can be applied to non-Gaussian ensembles as well,
as a perturbation expansion in a small parameter multiplying the non-Gaussian terms in
the distribution. No such small parameter exists for the circular ensemble. The method
presented here deals with non-Gaussian contributions to all orders. Creutz [26] has given a
diagrammatic algorithm for integrals over 8¥). Because of the more complicated struc-
ture of SUN), we could not effectively apply his method to integrals ov&iN) in the

case of a large number bf's.
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U, = @O0
* — *
UO([3 = @0
_ A
Aij = +
ab =

Figure 6-1. Substitution rules for the unitary matrices U and U*, the fixed matrix A and the Kro-
necker delta.

The diagrams consist of the building blocks shown in Fig. 6-1. We represent matrix
elementsJ,,, or U;ﬁ by thick dotted lines. The first indexa(or «) is a black dot, the
second indexk{ or §) a white dot. A fixed matrixA;j is represented by a directed thick
solid line, pointed from the first to the second index. Summation over an index is indicated
by attachment of the solid line to a dot. As an example, the functighly = tr AU BU"
andg(U) = tr AUBUCU'DUT are represented in Fig. 6-2.

The average over the matrix consists of summing over all permutatioRsand P’
in Eq. (6.1.2). Permutations are generated by drawing thin lines (representing Kronecker
deltas) between all black dots attached)tand black dots attached td* (one line per
dot). Black dots connect to black dots and white dots to white dots. To find the contribution
of the permutation® andP’ to ( f (U)), we need (i) to determine the cycle structure of the
permutationP~1P’, and (ii) to sum over the indices of the fixed matrickes

(i) The cycle structure can be read off from the diagrams. A cycle of the permutation
P~1P’ gives rise to a closed circuit in the diagram consisting of alternating dotted and thin
lines. The lengtlty of the cycle is half the number of dotted lines contained in the circuit.
We call such circuitdJ -cycles of lengtrcy.

(i) The trace over the elements & is done by inspection of the closed circuits in
the diagram which consist of alternating thick and thin lines. We call such cir€uits
cycles. AT-cycle containing the matrice&®, A@, ..., A® (in this order) gives rise to
tr ADA@  AK_|f the thick line corresponding to a matrixis traversed opposite to its
direction, the matrix should be replaced by its transpa5e

As an example, let us consider the average of the functfaks) = tr AUBUT and
g(U) = tr AUBUCUTDUT. Connecting the dots by thin lines, we arrive at the diagrams
of Fig. 6-3. Forf, there is only one diagram. It contains a singlecycle of length 1
(weight V1) and twoT-cycles (which generate & and trB). We look up the value of
Vi =1/N in App. A, and find

(f(U)) = Vatr AtrB = N~ tr Atr B, (6.2.1)

Four diagrams contribute . The first diagram contains twd-cycles of length 1, and
threeT-cycles. Its contribution i%/1 1tr AtrBDtrC. The second diagram contains two
U-cycles of length 1 and a singlE-cycle. Its contribution isvy 1tr ADCB. The third
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Figure 6-2. Diagrammatic representation of the functions f(U) = tr AUBU' and g(U) =

tr AUBUCUTDUT,
A@ N
MQ D
B
Ae. X Ds. .. A
el T D
e o=ee e
Ao X kie . A o X kin .t
SRS U

Figure 6-3. Diagrammatic representation of the averages of the functions f and g in Fig. 6-2.

and fourth diagram each contain a sintlecycle of length 2 and twd@ -cycles. Their
contributions aré/> tr Atr BDC andV>tr ADBtrC. In total we find

(g(U)) = Vi1(tr AtrBDtrC +1tr ADCB) + Vo(tr AtrBDC +tr ADBtrC)
(N?2 - 1)1 (tr AtrBDtrC +tr ADCB)
— [N(N2= 1] L tr Atr BDC + tr ADBtrC). (6.2.2)

Whereas each individudl-cycle gives rise to a trace of matrices, it is only the combi-
diagram would be more efficient, if we could attribute a wei’gj'ﬁt toravidual U-cycle.
We introduced the cumulant expansion of the coeffici®hta the coefficientsV for this
purpose. The leading terv,, ¢ = ]‘['F‘)Zl W, of the cumulant expansion attributes a
weightW, to each individual -cycle of lengthc,. This is sufficient for the calculation

of the largeN limit of the averagg f). The next termZ!‘<j We ¢ ]_['E,;,éivj W, attributes
a weightW, ¢; to the pair(, j) of U-cycles, and the weight/;, to all others individually.
This is sufficient for the variance of. The general rule is that thgth order cumulant
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of f in the largeN limit requires thejth order term in the cumulant expansion of the
coefficientsV, and hence requires consideration of groupg 0f-cycles.
Let us summarize the diagrammatic rules:

1. Draw the diagrams according to the substitution rules of Fig. 6-1.

2. Draw thin lines to pair black dots attached.tdo black dots attached téd*. Do the
same for the white dots.

3. Every closed circuit of alternating thick solid lines and thin solid line$ {eycle)
corresponds to a trace of the matricksppearing in the circuit. If a thick line is
traversed opposite to its direction, the transpose of the matrix appears in the trace.

4. Every closed circuit of alternating dotted and thin solid lindd {eycle) corresponds
to a cycle of lengtltk equal to half the number of dotted lines. The setyetycles
in a diagram defines the coefficie, ., which is the weight of the diagram. The
coefficientV can be factorized into cumulants. To determine the cumulant coeffi-
cientsW, partition theU -cycles into groups. Every group @f U-cycles of lengths
C, - --,Cp contributes a weighi\e, . c, .

The diagrammatic rules are exact. In the laigdimit, we may reduce the number
of diagrams and partitions that is involved. Let us determine the orderafa diagram
with | T -cycles andk U-cycles of total lengti partitioned intog groups. Counting every
trace as an orded and using the larg®& result (6.1.8) for the coefficieni/, we find a
contribution of ordeN29+H—k=21 " Sinceg < k the order is maximal ity = k and the
total number of cycle& + | is maximal. Thus, for larg&l, we may restrict ourselves to
diagrams with as many cycles as possible and with a partition &f thgcles in groups of
a single cycle (i.e. we may approximatg ¢ ~ W, ... Wg,).

We conclude this section with one more example, which is the calculation of the vari-
ance varf = (f2) — (f)2 of the functionf(U) = tr AUBUT. Diagrammatically, we
calculate( f 2) as in Fig. 6-4a, resulting in

(f2) = Vig [(trA)Z(tr B)2 + tr A2tr BZ]+W2 [trAz(tr B)2 + (tr A)tr BZ],
— varf = Wis [(tr A2 (tr B)? + tr A2tr BZ]—i-letr A2tr B2

W [tr A2(tr B)2 + (tr A)%tr BZ] .

If we now consider the order iN of the various contributions, we see that the leading
O(N?) term of (f?) (I = 4, g = k = 2, corresponding to 6 cycles and a partition of
the U-cycles into two groups of a single cycle), is exactly canceled fyy¢. This exact
cancelation is possible because the leading contributidri 9fis disconnectedEachT -
cycle, and each group &f-cycles belongs entirely to one of the two factoréty BUT of

f2. Only connected diagrams contribute to the variancé.dfhe connected diagrams are
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Figure 6-4. Diagrammatic representation of ( f2).

oforder1 k4| =4andg = kork 4| = 6 andg = k — 1). They give the variance

varf = Wy 1(tr A)? (tr B)? + Witr A% tr B2
W, [tr A2 (tr B)2 + (tr A)2tr BZ] +ONY), (6.2.3)

6.3 Integration of unitary symmetric matrices

In the presence of time-reversal symmetry the scattering mats)both unitary and sym-
metric: S§ = 1, S = ST. The elements of are complex numbers. (The case of a
guaternionS, corresponding to spin-orbit scattering, is treated in the next section.) The
ensemble of uniformly distributed unitary symmetric matrices is known as the circular or-
thogonal ensemble (COE) [7,30]. Averages of the unitary symmetric mataxer the
COE can be computed in two ways. One way is to substitute V VT, with the matrix
V uniformly distributed over the unitary group. This has the advantage that one can use
the same formulas as for averages over the CUE, but the disadvantage that the number of
unitary matrices is doubled. A more efficient way is to use specific formulas for the COE,
as we now discuss.

The average of a polynomial I andU* over the COE has the general structure

2n
(Uagay - - -Yapn_sapnYetraz - - - Yetorn agm) = nm O Ve [ [ Sajarp- (6.3.1)
P j=1

The summation is over permutatioRsof the numbers 1, ... /2 We can decompose as

n n

P=(]]Ti| PP |]]Ti ]| (6.3.2)

j=1 j=1

whereT; andTJ/ permute the numbersj2- 1 and 3, andPs (Pp) permutesh even (odd)
numbers. BecausHy, = Upa, the moment coefficienVp depends only on the cycle
structure{cy, .. ., ¢k} of Pe—1 P, [31], so that we may writ&, ¢ instead ofVp.
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The moment coefficients obey the recursion relation

k

(N +c)Ve, ..o+ Z Vp.a.cono T ZZ Cj Ve14¢j.Cornnn G- 1.€j 1. Ck
pHa=c1 =2

= (Scllvcz,...,ck,
with Vo = 1. The largeN expansion oV is

k
Vor.ao = [ [ Vg + ON<2"72), (6.3.3)
j=1
1

Ve =—
‘¢

Nl—ZC(_l)c—l(ZCC__lZ> — N2 14+ ON"T%),  (6.3.4)

Compared with Eq. (6.1.5) an extra term of oréer2¢ appears iV, because of the sym-
metry restriction. The recursion relation for the cumulant coefficigviis

k
(N + )W, ..o + Z Wo.g.co..ox + chj Wey+¢.6000.6) 1. 41, Gk T

p+Qg=Cy j=2
K 1
+ Z Z (| _ 1)'(k _ |)| ZWD»CP(Z) ,,,,, CP(l)Wq,CP(|+1),CP(k) = 0’
p+g=cy |=1 ) P

with Wp = 1 andP a permutation of the numbers .2 ., k. The solution for largeN is

k
T 2n + k — 3)! (2¢c; — 1)! o
W, — 22k 1N 2n—k+2 -1 n+k( | | ) O(N 2n—k+1 )
Cl,..ry Ck ( ) (Zn)' (C] _ 1)|2 + ( )

j=1
(6.3.5)
The coefficients/, . o are listed in App. Afom=cy +... + ¢ <5.
For the diagrammatic representation, we again use the substitution rules of Fig. 6-1.
The symmetry olJ is taken into account by allowing thin lines between black and white
dots. Therefore, rule 2 is replaced by

.....

2. Pair the dots attached tb to the dots attached 10* by connecting them with thin
lines.

As examples, we compute the averages ) = tr AUBUT and glU) =
tr AUBUCU'DUT over the COE. The diagrams fof (U)) are shown in Fig. 6-5, with
the result

(f(U)) =Vatr AtrB+1tr ATB) = (N + 1) L(tr Atr B + tr ATB). (6.3.6)
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*
AR A
K= +
e B
Figure 6-5. Diagrammatic representation of (f (U)) for f(U) = tr AU BUT, where U is a unitary
symmetric matrix. The second term arises because of the symmetry constraint.

Similarly, we find that

(@) = [(N+1(N+3)7?2
x (tr AtrBDtrC +tr AD'B"trC +tr AtrBC'D +tr AD'CB'
+tr ADCB+trAC'D'B+trADB'C' +tr ACTtr BD")
—[(N(N+D(N+3]*
x (tr AtrBDC +tr AC'D'BT +tr Atr BD'C +tr ACTDBT
+tr ADBtrC +tr AD"BtrC +tr ADBC" +tr AD"BC'
+tr AD'B'CT +tr ACTtrBD +tr AD'CB +tr ACTDB
+tr AtrBC'D" +tr ADCB" +tr AtrBD'trC +tr ADB" trC).

6.4 Integration of matrices of quaternions

We extend the results of the previous sections for integrals over unitary matrices of complex
numbers to integrals over unitary matrices of quaternions. This is relevant to the case that
spin-rotation symmetry is broken by spin-orbit scattering.

Let us first recall the definition and basic properties of quaternions [30]. A quaternion
g is represented by a2 2 matrix,

q=apl+ iajo1 + iagos + 1azos, (6.4.1)

wherel is the 2x 2 unit matrix and; is a Pauli matrix,

0‘12(2 é) 02=<? _Oi > 032(3 _01>. (6.4.2)

The coefficientss; are complex numbers. The complex conjuggtend Hermitian con-
jugateq’ of a quaterniory are defined as

q* = aill+iajo1 +iasor +iajos, q' = ajl —ialoy —iajor —iajos.  (6.4.3)

The complex conjugate of a quaternion differs from the complex conjugate ok & 2
matrix, whereas the Hermitian conjugate equals the Hermitian conjugatesoRan2atrix.
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Let Q be anN x N matrix of quaternions with element3y = Ql((?)Jl + in((Pol +

[ Qﬁ)az-i-i Ql(j’)ag. The complex conjugat®* and Hermitian (:onjugat@T are defined by
(Q5K = Q}; and(Qhw = Q,.. The dual matrixQR is defined byQR = (Q")* = (Q*)".
We call Q unitary if QQ' = 1 and self-dual ifQ = QR. A unitary self-dual matrix is
defined byQ Q" = QQ* = 1. The trace tf) is defined by tQ = Zj Qj(?), which equals
1/2 the trace of the ® x 2N complex matrix corresponding Q. The scattering matrix
in zero magnetic field is a unitary self-dual matrix, because of time-reversal symmetry.
The ensemble of quaternion matrices which is uniformly distributed over the unitary group
is called the circular unitary ensemble (CUE). If the ensembile is restricted to self-dual
matrices it is called the circular symplectic ensemble (CSE) [7, 30].

The integration of a polynomial functioh(U) of anN x N quaternion matri¥xJ over
the CUE or CSE can be related to the integration of a funcfidn) of anN x N complex
matrixU over the CUE or COE. The translation rule is as follows (a similar rule has been
formulated for Gaussian ensembles in Refs. [32, 33]):

1. f(U) is constructed fronf (U) by replacing, respectively, the complex conjugates,
Hermitian conjugates, and duals of quaternion matrices by complex conjugates, Her-
mitian conjugates, and transposes of complex matrices. Furthermore, every trace is
replaced by—%tr, and numerical factorbl are replaced byL% N.

2. The averagefA(U)) is calculated using the rules for integrationMdfx N complex
matrices over the CUE or COE.

3. The averagéf (U)) over the CUE or CSE is found by replacing, respectively, the
complex conjugates, Hermitian conjugates, and transposes of complex matrices by
the complex conjugates, Hermitian conjugates, and duals of quaternion matrices.
Traces are replaced by2 tr and numerical factorsl by —2N.

As examples, we compute the averages of the functibfi$) = tr AUBU' and
g(U) = trAUBUCUTDUT of N x N quaternion matrices over the CUE and CSE. The
first step is to construct the functiorigU) andg(U) of N x N complex matrices,

f(U) = -3trAUBUT, gU)=-3trAuBUCU'DUT. (6.4.4)

The second step is to averadgeand § over the CUE. The result is in Egs. (6.2.1) and
(6.2.2),

(flcue = —IN"HrAtrB, (6.4.5)
(@)cue = —3(N°—1~*(trAtr BDtrC +tr ADCB)
+1[N(N? - 1)t (tr ArBDC + tr ADBtrC). (6.4.6)

The third step is to translate back to quaternion matrices,

(f\cue = N7ltrAtrB, (6.4.7)
(Q)cue = (@AN?—1)"1@4trAtrBDtrC +tr ADCB)
— [N(@N? =] 1 (tr ArBDC + tr ADBtrC). (6.4.8)
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Figure 6-6. Chaotic cavity (grey) connected to two leads containing tunnel barriers (black).

Similarly, to compute the average 6fandg over the CSE we need the averagefadind
g over the COE given by Eq. (6.3.6), and then translate back to quaternion matrices. For
(f(U)) we find

(ficoe = —%(N—i-l)_l(trAtrB—HrATB),
— (fl)ese = (2N —1)~2trAtr B — tr ARB). (6.4.9)

Similarly, we find for(g(U)) the final result

(@)cse = [(@2N — (2N —3)]*
x (4tr AtrBDtrC — 2tr ADRBRtrC — 2tr Atr BCRD + tr ADRC BR
+tr ADCB + tr ACRDRB + tr ADBRCR — 2tr ACRtr BDR)
—[(2N(2N — 1)(2N — 3)]¢
x (2tr AtrBDC — tr ACRDRBR + 2tr Atr BDRC — tr ACRDBR
+2trADBtrC + 2tr ADRBtrC — tr ADBCR — tr ADRBCR
+2trAtr BCRDR —tr ADCBR — 4trAtr BDRtrC + 2tr ADBRtrC
—tr ADRBRCR + 2trACRtr BD — tr ADRCB — tr ACRDB).

6.5 Application to a chaotic cavity

We consider the system shown in Fig. 6-6, consisting of a chaotic cavity attached to two
leads, containing tunnel barriers. Th& x M scattering matrixS is decomposed into

Ni x Nj submatricesj,
s= [ M %2 ). (6.5.1)
S1 S22

which describe scattering from legdnto leadi (M = N; 4+ N;). The conductancé is
given by the Landauer formula,

G/Go =trs,,si, = trCiSGS', Go=2¢?/h. (6.5.2)

The projection matrice€; andC, = 1 — C; are defined byCy)j; = 1ifi = j < Ny and
0 otherwise.
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In the absence of tunnel barriers in the leg8lgs distributed according to the circular
ensemble. The symmetry indgxe {1, 2, 4} distinguishes the COE3(= 1), CUE (8 =
2),and CSE£ = 4). Calculation of the average and variancé&xas straightforward [5, 6],

BN1N2
(G/Go) = M 125 (6.5.3)

2BN1N2(BN1+2 — B)(BN2 +2— B)

(BM +2—28)(BM +2— B)2(BM +4— )

varG/Gg (6.5.4)

In Sec. 2.2, we have shown that in the presence of a tunnel barrier invatdreflec-
tion matrixr;, the distribution ofSis given by the Poisson kernel [34-36],

e —(BMA2 ) = 0
P(S) o |det1 — §'g)| PV S=(g-r>. (6.5.5)
2

The sub-unitary matriS is the ensemble average &f [ dSASS = S. The eigenvalues
I'jof 1 - S_ST are the transmission eigenvalues of the tunnel barriers. The fluctuating part
8S= S— Sof Scan be decomposed as

§S=T'1-UR)"UT, (6.5.6)

whereT, T/, andR areM x M matrices such that the\® x 2M matrix

S T
(37 657

is unitary. The usefulness of the decomposition (6.5.6) islthét distributed according
the circular ensemble (cf. Sec. 2.2) [20,34]. In the presence of time-reversal symmetry, we
further haveS= ST, T'=TT, R = RT, andU = UT. PhysicallyU corresponds to the
scattering matrix of the cavity without the tunnel barriers in the leadsXaedrresponds
to the scattering matrix of the tunnel barriers in the absence of the cavity, cf. Ch. 2.

The decomposition (6.5.6) reduces the problem of avera§ingh the Poisson kernel
to integratingJ over the unitary group. Because the conductaags a rational function
of U, this average can not be done in closed form forMl For N1, N2 > 1 a pertur-
bative calculation is possible. In this section we will compute the mean and variance of
the conductance in the large-limit, using the diagrammatic technique of the previous
sections.

6.5.1 Average conductance

According to the Landauer formula (6.5.2) the average conductance is given by

(G/Gp) = (trC18SGsSh, (6.5.8)
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Figure 6-7. Top: Diagrammatic representation of the function f,(U) in Eq. (6.5.9); Bottom: Lad-
der diagram with the largest number of cycles, which gives the @(N) contribution to the average
conductance. The arrows are omitted if the direction of the diagram is not ambiguous.

where we have used th&S) = 0. Expansion of the denominator in the decomposition
(6.5.6) ofs Syields the series

(G/Go) = Y (fa(U)), (6.5.9)
n=1
faU) = trCiT'(UR)"WUTCTIUT(RTUN)-1TT, (6.5.10)

The average of the polynomial functioia (U) can be calculated diagrammatically. We
representf,(U) by the top diagram in Fig. 6-7. The average over the mairis done as
follows.

The leading contribution, which is of ordévl, comes from the diagrams with the
largest number off - andU-cycles. For a polynomial of the type (6.5.8) (&ll's are
on one side of th&) I’s), these diagrams have a “ladder” structure (see bottom diagram in
Fig. 6-7). The ladder diagrams containJ-cycles andh + 1 T-cycles. Their weight is
W' = M~" + O(M~"-1), resulting in

(faU)) = M"urTTCT rRRH" 1 TGT T+ 0. (6.5.11)
Summation of the series (6.5.9) yiel¢iS) to leading order irV,

arTTCTHrTC,TH
O(1
M —tr RRT +0d)
(Nq —tr STC1§)(N2 —1r SCQST)

_ e + 0. (6.5.12)

(G/Go) =

In the second equality we have used the unitarity of the matrdefined in Eq. (6.5.7).

The weak-localization correction is tl&(1) contribution to(G). In general, arO(1)
contribution to the average conductance can have two sources: (i) a higher order contribu-
tion to the weightW;, . ¢ of the leading-order diagrams, and (ii) higher order diagrams.
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Figure 6-8. Top and middle: Two maximally crossed diagrams contributing to the weak-localization
correction to the average conductance. The right and left parts of the diagram have a ladder
structure; Bottom: The maximally crossed part of the top diagram redrawn as a ladder diagram.

In the absence of time-reversal symmetry both contributions are absam; £) M1 has
no ®(M~—?) term, and (ii) there are no diagrams of order 1.

The situation is different in the presence of time-reversal symmetry. We discuss the
caseB = 1 in which there is no spin-orbit scattering. The c@se- 4 then follows from
the translation rule of Sec. 6.4. In the presence of time-reversal symmetry, (i) the coefficient
Wy = M~1— M2 4 ... has an®(M~—?) term, and (ii) there are diagrams of order 1. The
first contribution is a correctionM~"-1 to the weightM " in Eq. (6.5.11). Summation
overn yields the first correction to Eq. (6.5.12),

arTTC,THrTC,TH
(M — tr RRT)2

5Gy = (6.5.13)

The second contribution is from diagrams which are obtained from the ladder diagrams
by reversing the order of the contractions in a part of the diagram. The central part of the
diagram is “maximally crossed”, the left and right ends are ladders (see Fig. 6-8). In disor-
dered systems, the ladder diagrams are known as diffusons, while the maximally crossed
diagrams are known as cooperons. The maximally crossed diagrams are not allowed in
the absence of time-reversal symmetry, because dots of different color are connected by
thin lines (violating rule 2 in Sec. 6.2). A maximally crossed diagram can be redrawn as a
ladder diagram by flipping one of the horizontal lines along a vertical axis (bottom diagram
in Fig. 6-8).

In the maximally crossed diagrams all cycles but one have minimum length. The cycle
with the exceptional length can bé&Jacycle (top diagram in Fig. 6-8), orb-cycle (middle
diagram). To evaluate these diagrams, we need to introduce some more notation (see Fig.
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Figure 6-9. Diagrammatic representation of Egs. (6.5.14) and (6.5.16).
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6-9). We denote the left and right ladder diagrams by matrg¢esnd Fg,

oo
FLo= T'CT'+ ) M "o T'C T)r RTR)IRTR

n=1
trT7C, T/

= T+ (———— _|R'R, 6.5.14
! +(M—trR/R/T) ( )

o

FR = TCGT '+ ) M "RRItrRRH"trTC,Th
n=1
trTCoT!

= TCTT+RRT(—= ). 6.5.15
2 (M—trR/R/T) ( )

The scalarsfyy and f11 represent the maximally crossed part of the diagram,

o0
_ MtrRR'
fTT == Z M n(tl’ R/R/T)n+1 = m, (6516)
n=0
- 1
fUU == Z M_n_l(tl‘ R/ R/T)n = m (6517)
n=0

We used the symmetry d® to replaceR™ by R’. With this notation we may draw the
contributions G, to the weak-localization correction from the maximally crossed diagrams
as in Fig. 6-10. It evaluates to
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Figure 6-10. Diagrammatic representation of the weak-localization correction §G, from the maxi-
mally crossed diagrams. The total correction §G = §G1+ §G2 contains also a contribution §G1 from
the weight factors [Eq. (6.5.13)]

The total weak-localization correctid®c = §G1 + §G2 becomes
5G = —trTTT)~2 [(tr CoTIT2trcu (T2 + (tr & TTT)21r cz(TTT)Z] . (6.5.19)

SinceT'T = 1 — S'Shas eigenvalueE,, we may write the final result for the average
conductance in the form

0,01 ( 2) 0,97 + 0507 1
(G/Go) = —2L_ 1 (1- 2 ) 222 =271 4 oM7Y, 6.5.20
/50 = g+ ) (g +ap3 (6520

N1 M
9= K o= ) Tf (6.5.21)
n=1 n=1+Nz

(The B = 4 result follows from the translation rule of Sec. 6.4.) The first term in Eq.
(6.5.20) is the series conductance of the two tunnel conductaBggsand Gog;. The
term proportional to - 2/8 is the weak-localization correction. In the absence of tunnel
barriers one hagp = Nj, gb = Ny, and the largeM limit of Eq. (6.5.3) is recovered.
In the case of two identical tunnel barriefi(= N, = M/2 = N, I'y = T'hyn for
] =1,...,N), Eq. (6.5.20) simplifies to

(G/Gg) = = +(1——)—+0(M ). 6.5.22

/Go 501 %) 2q ( )

Eq. (6.5.22) was previously obtained by lida, Weidesier"and Zuk [15]. If alll'y’s are
equal tol", Eq. (6.5.22) simplifies further t6G/Go) = ANT + (1 — 2/B)T.

6.5.2 Conductance fluctuations

We seek the effect of tunnel barriers on the variance of the conductanc®,vaiG2) —
(G)2. We consider8 = 1 and 2 first, and translate {# = 4 in the end. Using the
decomposition (6.5.6) we write the variance in the form

varG/Gg = var(tr C16SGsS") = Z covar(fii, fmn),  (6.5.23)

k,I,mn>1

fu =trCT'(UR)UTCTIUT(RTUT 17T, (6.5.24)
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Figure 6-11. Diagrammatic representation of a term contributing to G2, and hence to the variance
(6.5.23) of the conductance.

Since the numbdd’s andU *’'s must be equal for a non-zero average, covar, fmn) =
(Tl fan) — (fk1) { frn) = O unlesk+m = | +n. Diagrammatically, we represefy fnn by
Fig. 6-11. The diagram consists of an inner loop, correspondirfg t@nd an outer loop,
corresponding td,,. The covariance ofy and fn is given by the connected diagrams.
We call a diagram “connected” if (i) the partition of thiecycles contains a group which
consists ot -cycles from the inner and the outer part, or (ii) the diagram contains a cycle
(aU-cycle or aT -cycle) connecting the inner and outer loops.

We first compute the contribution from diagrams which are connected only because of
(i), i.e. diagrams in which alU-cycles andT -cycles belong either to the inner or outer
loop. The contribution from such a diagram is maximal, if theycles are partitioned in
groups which are as small as possible. The optimal partition consists of groups of size 1,
except for a single group of size 2, which contains theycle from the inner and one
from the outer loop. Furthermore, the total number of cycles is maximal if both the inner
and outer loops are ladder diagrams. This requiresl andm = n. The covariance from
this diagram is

covariance = KmgSmnWy ; WS+™2
x tr 77,72 tr RRHM2r TC,TH2 + o(M~1). (6.5.25)
Summing ovek andm we obtain the first contribution to v&/ G,
variance= M~ (tr F_ tr Fr)°. (6.5.26)

The second contribution, consisting of diagrams in which the inner and outer loops are
connected byl - or U-cycles, is of maximal order if the partition of tle-cycles involves
only groups of size 1. Fg8 = 2 there are 16 connected diagrams of maximal order. They
are shown in Fig. 6-12, and their contribution to GG is tabulated in Table 6-1. The
shaded areas indicate ladder parts of the diagram (see Figs. 6-9 and 6-13). The matrices
FL and Fr, and the scalar$yy and fy1 are defined in Egs. (6.5.14) and (6.5.16). The
definitions of the matriXd and of the scalar$yt and fry are

tr R RT

M RRT (6521

o0
fur = fru=) M "rRRH" =

n=1
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diagram =12 =1
a W2 (tr F)? f2; (tr Fr)? W2tr Frtr R f2 tr F tr Fr
b Wa (tr |:|_)2 fro(r FR)2 Watr FrtrF frrtr FLtr Fr
c W (tr FL)2 2, tr F3 Wa tr Frtr F 2, tr FTFr
d trHHT fyy trHTHT fyy
e Wa tr F2 5+ (tr Fr)? Wo tr FRF £+ tr Ftr Fr
f Wa (tr |:|_)2 fro(r FR)2 Watr FrtrF frrtr FLtr Fr
g tr F2 f3, tr F3 tr FRFL f2, tr T Fr
h trHTH fuu trH*H fyu

i W2tr Ftr Fr f2tr FLtr Fr
W2 tr F tr Fr f2;tr Ftr Fr
k Wztl’HR/-r frufurTtrFLtr FR
Wotr Ftr Fr fry fut tr HTR

—

W2tr Frtr F f2,tr FLtr Fr
W2 tr F tr Fr f2;tr Frir FL
W tr HTRT frufurtrFLtrFR
Wotr Ftr Fr fry fuT trH*R

Wotr Ftr Fr fry fuTt tr RHT
Wo tr RTH frufuttrF trFr
trHRT f2, tr RHT
tr RTH f5 trH'R

T O S5 3

Wotr Frtr F fry fut tr RTHT
Wotr R*H fry futtr FLtr Fr
trHTRT {3, tr RTHT
tr R*HfS, tr H*R

Table 6-1. Contribution to var G/ Go from the connected diagrams of Fig. 6-12.
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Figure 6-12. The 16 connected diagrams which contribute to the variance of the conductance.
The shaded parts are defined in Figs. 6-9 and 6-13. These diagrams contribute for 8 = 1 and 2.
For 8 = 1 there are 16 more diagrams, obtained by flipping the inner loop around a vertical axis
(diagram a—h) or around a horizontal axis (i—p), so that ladders become maximally crossed.
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Figure 6-13. Diagrammatic representation of Eq. (6.5.27).

H = MYtrRR)RTTCT + M Ltr FOTC,TTR + M—2(tr F)(tr FR) R RTR..

In the presence of time-reversal symmetsy= 1), the matrixU is symmetric. Diagram-
matically, this means that no distinction is made between black and white dots. In addition
to the 16 diffuson-like diagrams of Fig. 6-12, 16 more cooperon-like diagrams contribute.
These are obtained from the diagrams of Fig. 6-12 by flipping the inner loop around a
vertical (Fig. 6-12a—h) or horizontal (Fig. 6-12i—p) axis, so that segments with a ladder
structure become maximally crossed. Their contributions are listed in Table 6-1. The con-
tributions from the individual diffuson-like and cooperon-like diagrams are different. The
total contribution to va6 from diffuson-like and cooperon-like diagrams is the same.

The final result for the variance @ is

—6
varG/Go = 287 (0, + ;)  (20t0? + 4odor - 4ufu,0f + 20205 — 2,00
+ 30501 — 2019301" + 20,07 — 20507 + 20707 — 201910
— 463070 + 6070,070; + 3007 — 2070 — 20f0i05) . (6.5.28)

One verifies that the largk- limit of Eq. (6.5.4) is recovered in the absence of tunnel
barriers. For the special case of identical tunnel barrigys=( gfo), this simplifies to

varG/Go = (88¢2) (2gf — 20,0, + 303 — 2g1g3) : (6.5.29)

in agreement with Ref. [15]. If all transmission eigenvalligs= I" are equal, one has
varG/Go = (88) 11+ (1—T)?]. A high tunnel barrier [ « 1) thus doubles the
variance.
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6.5.3 Density of transmission eigenvalues

The transmission eigenvaludg < [0, 1] are theN; eigenvalues of the matrix product
slzsIz. Without loss of generality we may assume tiNat < Np. The matrix product

3213;1 then has the sanlé; eigenvalues aslzsIz, plusN2 — N; eigenvalues equal to zero.

The N1 non-zero transmission eigenvalues appear as the diagonal elements of the diagonal
matrix T in the polar decomposition of the scattering matrix

()G 1 )G

0 1 0
%2/ \NO w7 o yioT VO

Herev andv’ (w andw’) are N7 x N1 (N2 x N») unitary matrices and. is theN, — Ny
dimensional unit matrix. IN; = N», Eq. (6.5.30) simplifies to Eq. (6.0.2).

Sofar we have only studied the conducta@e- Go ) _, Th. The leading contribution
to the average conductance comes from ladder diagrams. If we wish to average trans-
port properties of the forrh = ) a(T,) (so-called linear statistics on the transmission
eigenvalues), we need to know the dengityl ) of the transmission eigenvalu&g. The
leading-order contribution to the transmission-eigenvalue density is given by a larger class
of diagrams, as we now discuss.

The densityp(T) = (Zr':'ila(T — Th)) of the transmission eigenvalues follows from
the matrix Green functiof (z):

0, ) . (6.5.30)
w

Fiz = <cl(z—scstcl)—1>, (6.5.31)
p(T) = —a UmtrF(T +ie), (6.5.32)

wheree is a positive infinitesimal. We first compupgT ) in the absence of tunnel barriers,
when the result is known from other methods [4—6,37]. Then we include the tunnel barriers,
when the result is not known.

In the absence of tunnel barriers, the scattering m&irsxdistributed according to the
circular ensemble, so that averaging amounts to integrating over the unitary group. We
computeF (z) as an expansion in powers ofZ

F(2 =) (Ciz /(SGS'Ciz™H"). (6.5.33)
n=0

We will also need the Green function

F'(20 = (Caz—S'C1SG)™ = (Coz 1(STC1SGz H").  (6.5.34)

M2

n=0

The two Green function§ and F’ are represented diagrammatically in Fig. 6-14. A di-
agram contributes to leading order [which@g1)] if the number of T-andU-cycles is
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Figure 6-14. Diagrammatic representation of the Green functions for the density of transmission
eigenvalues.

maximal. That is the case if the diagrampkanar, meaning that the thin lines do not

cross. The ladder diagrams are a subset of the planar diagrams. Planar diagrams have been
studied in the context of the diagrammatic evaluation of integrals over Hermitian matrices,

in particular for the Gaussian ensemble [12,17]. For the Gaussian ensemble, only planar
diagrams withU -cycles of unit length have to be taken into account. Summation over all
these diagrams results in a self-consistency or Dyson equatidf(®y which solves the
problem [17]. For an integral of unitary matricés$;cycles of arbitrary length need to be

taken into account, as is shown diagrammatically in Fig. 6-15. The corresponding Dyson
equation is

F@=z'C+Z'CQZ@F @, @ =) Wy[ztr F'@]" [tr F(21",(6.5.35)
n=1

F'(2) = z71Co + 27 1Co2 (2)F'(2), X/(2) = ZWn[ztr F@I"[tr F'(2)]"*. (6.5.36)

n=1

In terms of the generating function
(0.¢] 1
_ n-1 __ 2 _
h(z) = n§—1: Whz" ™ = > (\/ M2 + 4z M) , (6.5.37)

we may rewrite Eq. (6.5.35) as

F(z2)=Ci(z— Z(2C1) 1, (2 =h(ztrF@trF'(2) ztrF'(z), (6.5.38)
F'(2) = Ca(z— 2(2)Cy) 1, (@ =h(ztrF@trF'(2)) ztrF(2). (6.5.39)
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Figure 6-15. Diagrammatic representation of the Dyson equation (6.5.35) for F(z).

In the derivation of Eq. (6.5.38) we did not use the particular form of the mat@ges
andC,. As a check we may choo&® = C, = 1, so thatF (z) = F/(z) = (z— 1)1, and
verify that Eq. (6.5.38) holds.

The solution of Eq. (6.5.38) is

N1 — Nz M2z — (N; — Np)?

trF(zy = + , 6.5.40
(2) = N ( )
N2 — N1 VM2z— (N2 — Np)?
trF'(z) = + . 6.5.41
(2) = N ( )
The resulting density of transmission eigenvalues is
MyT — Tnin (N1 — Np)?

(6.5.42)

p(T) = O(T — Tmin), Tmin =

2rTV/1-T M2

in agreement with Refs. [5,6,37]. (The functiéx) = 1if x > 0and 0ifx < 0.)

The weak-localization correction jo(T) follows from the©(M~1) term in the large-
M expansion ofF (z). As in Sec. 6.5.1, it has two contribution$fF1(z), which is due to
the sub-leading order term in the lare-expansion oW, and§F2(z), which is due to
diagrams of orde®(M~1). In the absence of time-reversal symmetry, both contributions
are absent. In the presence of time-reversal symmetry, the sub-leading ordéWern
—M~2"(—4)"1in the largeM expansion of\, [cf. Eq. (6.3.3)] yields a sub-leading order
contributionsh to the generating functioh,

o0
sh(z) = Y sWhz"'=—-(M?+42)7%, (6.5.43)

from which we obtain

tr8F1(2) = 32— Tmin) " — 32— D7, (6.5.44)
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The contributiors F2(z) comes from diagrams in which thin lines connect black and white
dots. Each such diagram contains the prodii®,, which vanishes. Hence, tix M 1)
contribution toF (z) consists of F1(z) only. The resulting weak-localization correction to
the transmission eigenvalue density is

Sp(T) = 24_—ﬂﬁ [6(T — Tmin—¢€) —8(T —1+¢)], (6.5.45)

in agreement with Refs. [4, 6].

We now include tunnel barriers in the leads. Motivated by Nazarov’s calculation of the
density of transmission eigenvalues in a disordered metal [38], we introduc#&ftleZm
matrices

S = (S OT), cz( 0 Cz), F(z):( 0 F/(Z)), (6.5.46)
0 S Ci O Fz O

T O T 0 R 0
T = LT = ., R = . 6.5.47
(o TT> (o T/T) <o R/T> ( )

Analogous to Eq. (6.5.6), we decompd3e= S+ §S, whereS = (S) and

u o
§S=T'1-UR)"UT, U =< 0 UT) (6.5.48)

is given in terms of a matrixJ which is distributed according to the circular ensemble.
Becauses, C1, andC, commute andC1C, = 0, we may replac&by §Sin the expression
(6.5.31) forF (z). The result for the matrix Green functidf(z) is

F@ = @'Y <C £CT/[1-UR & TCT’z‘l/Z)]_l UTCz—1/2>
+

= (2971) [C+ As(Fs — X4)By]. (6.5.49)
+

In the second equation we abbreviadéd = R+ TCT'z7 Y2 FL = (X4 (1-UX4)™,
and definedA, andB.. such thatA. X, = CT/, X, BL = TCz /2,

After these algebraic manipulations we are ready to comiputey expanding in planar
diagrams. The result is a Dyson equation similar to Eqg. (6.5.35),

0
Fo=Xs(Q+32:Fy), Zx=) Wo(PFp)™ T, (6.5.50)
n=1
where the projection operat@racts on a 81 x 2M matrix A as

A A 0 1wtrA
A= 71 M2 pa mirfaz ) (6.5.51)
A1 A I tr Aoy 0
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1y being theM x M unit matrix. The presence of the projection operatan Eq. (6.5.50)
ensures that the planar diagrams contain only contractions betwéée 1, 1 block ofU)
andUT (the 2 2 block ofU). In terms of the generating functidnwe obtain the result

F = @) (c L CT/(L—EiXp) te T Cz—1/2> : (6.5.52)
+

¥, = (:PXi(l— ):ixi)—l) h ((?xi(l— zixi)—1)2>. (6.5.53)

It remains to solve the 2 matrix equation (6.5.53). We could not do this analytically
for arbitraryT'j, but only for the case of two identical tunnel barried; = Ny = %M =
N,Tj=Tj4n (J =1,2,..., N). The solution of Eq. (6.5.53) in that case is

T,=+ (ﬁ _Vz= 1) < 1OM 10“" ) : (6.5.54)

independent of th€|’s. The trace of the Green function is

N _ _ — _ —
rF@2) — ZZ(l—F,)(ﬁ VZ-1D+Tj/vz—-1

, (6.5.55)
= 2z1-T)(VZ—~z—-1) +Tj/z
and the corresponding density of transmission eigenvalues is
N
[i(2-T;
i i) (6.5.56)

T) = .
R D ye SwTsWe sy

i=1

As a check, we note that(T) — Né&(T) if I'; — Oforall j, andp(T) — Nz~-1T@a-
T)1-Y2if I; — 1 for all j [in agreement with Eq. (6.5.42)].

6.6 Application to a Normal-metal-superconductor junc-
tion

As an altogether different application of the diagrammatic technique, we consider a junc-
tion between a normal metal (N) and a superconductor (S) (see Fig. 6-16). At temperatures
and voltages below the excitation gapin S, conduction takes place via the mechanism

of Andreev reflection [39]: An electron coming from N with an enetgfrelative to the

Fermi energyEg) is reflected at the NS interface as a hole with energy The missing
charge of 2is absorbed by the superconducting condensate. We calculate the average and
variance of the conductance, for the two cases that the NS junction consists of a disordered
wire or of a chaotic cavity.
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Figure 6-16. Conductor consisting of a normal metal (grey) coupled to one normal-metal reservoir
(N) and one superconducting reservoir (S). The conductor may consist of a disordered segment or
of a quantum dot.

Starting point of the calculation is the relationship between the differential conductance
Gns(eV) = dI/dV of the NS junction and the transmission and reflection matrices of the
normal region [40],

4¢? _
Grs(e) = -t (t/(e) [1+1/(—e)*(2)] 1t(—8)*>
_ t
x (V@ L+ @] o)) . (6.6.1)
This formula requiregV « A « Eg and zero temperature. The reflection and transmis-
sion matrices ar&l x N matrices, which together constitute thid 2 2N scattering matrix

S. Using the polar decomposition (6.0.2) we may rewrite the conductance formula (6.6.1)
as

Gns(e) = %tr {n (14 u 1T f1- T+)_1u+

x T_ub (1+\/1—T+u1\/1—T_u1)_1], (6.6.2)

whereTy = T (+¢) andut = w'(+e)w(Fe)*. Inthe presence of spin-orbit scatterigjs
a matrix of quaternions, and the transpose should be replaced by the dual. In what follows,
we will consider the case of no spin-orbit scattering. Spin-orbit scattering (considered by
Slevin, Pichard, and Mello [41]) will be included at the end by means of the translation
rule of Sec. 6.4.

Averages are computed in two steps: first over the unitary matthen over the matrix
of transmission eigenvaluds Four cases can be distinguished, depending on the magni-
tude of the magnetic fiel@ and voltageV relative to the characteristic fieB. for break-
ing time-reversal symmetryZ() and characteristic voltade./e for breaking electron-hole
degeneracym®):!

1in a disordered wire (length, width W, mean free path), one haB; = h/eLW, Ec = hvg¢/L2. Ina
chaotic cavity (are#, mean dwell timer, mean time to cross the cavity) one hasB; = (h/e A (z'/7)Y?,
EC = h/T)
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Figure 6-17. Ladder diagram for the ©(N) contribution to (Gns). We defined Ry =1 — Tx.

0. eV « E¢, B « B; & 7T andD are both present: Tham. may be approxi-
mated by the unit matrix, so that one only needs to average over the transmission
eigenvalues. This case has been studied extensively [42] and does not concern us
here.

1. eV « E¢, B> B. < D is present, bufl” is broken: Then we may neglect the
e-dependence d, so thatu, = u_ = u. According to the isotropy assumptiaun,
is uniformly distributed inU(N).

2. eV » Eq, B « B; &= T is present, buD is broken: Then we may consider
S(e) andS(—¢) as independent unitary symmetric matrices. Hance= u_ = uis
uniformly distributed inU(N).

3. eV >» E;, B> B. <= bothT and®D are broken: Them, andu_ are indepen-
dent, both uniformly distributed ift/(N).

We compute the average and variance of the conductance for cases 1, 2, and 3.

6.6.1 Average conductance

We start with the computation of the average conductg@g). We first perform the
averag€- - -), overuy and then over.. To leading order only ladder diagrams contribute,
see Fig. 6-17. The result is the same for cases 1, 2, and 3:

T4+ T2
(Gns/Go)u = 2N +0(), (6.6.3)
Tyt — T1+T1

ke = —trTi_ ZT (+e). (6.6.4)

The ©(1) contributionsGs is different for the three cases.

Case 1, absence af and presence ab. We putuy = u, tq+ = tx. For normal
metals, the?(1) contributionsG to (G) vanishes ifT is broken. However, in the NS
junction an@(1) contribution remains. The diagrams which contributé @\s have a
maximally crossed central part, with contractions betwdé&nandU *'s on the same side
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Figure 6-18. Maximally crossed diagram for the @(1) correction to (Gns) in the absence of time-
reversal symmetry and presence of electron-hole degeneracy (top). The right and left parts of the
diagram have a ladder structure. The central part may be redrawn as a ladder diagram (bottom).

of the diagram (Fig. 6-18, top). The left and right ends have a ladder structure. In the
Hamiltonian approach, a similar maximally crossed diagram has been studied by Altland
and Zirnbauer [25], who call it a “symplecton”. In total four diagrams contributg3gs,

see Fig. 6-19. The building blocks of the diagram have the algebraic expressions

Fo = Te+@Q-TotrTetrd-To Y N2 2[r@a-Tptr@—T.)]

j=0
= (t1x + Temy —mm1) (Tag + 11— — T14m1) 0, (6.6.5)
w .
Fi = —A-TptrTe Y N2 r@d-Tord-T10))
j=0
= — (s —1aTe) (s + - — T1471-) T, (6.6.6)
Hy = iNTMoy/1 - TotrFr —iN72(1 - To) /1 Totr Fotr FL, (6.6.7)
OO .
frre = —tr@d—To) > N2 [r@d-Tor@a-T1)]
j=0
= —NQ-14) (t4 + 11— — 11371-) " T, (6.6.8)
Oo .
fuur = —tr—Teo) > N2 [r@d-TpHtr@d-T)]
j=0

= —N'1l-t) [rt +1- — 4], (6.6.9)
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Figure 6-19. Diagrams for the @(1) correction to (Gys) in the absence of time-reversal symmetry
and presence of electron-hole degeneracy.

oo .
flue = Y N2 Hra-Tor@a-T1)]
j=0

- N1 (t14 + 11— — ‘L’1+‘L'1_)_1 . (6.6.10)

Capital letters indicate matrices, lower-case letters indicate scalars. The subscaigts
omitted from Fig. 6-19 because of electron-hole degeneracy. Jitg correctionsGns
represented in Fig. 6-19 equals

8Gns/Go = 8fjytriHVI—T +4Ws frrl(tr F)? + (tr F)?]
8ty — 41:12 + 41:13 — 8r,
= — : 6.6.11
11(2 - 11)3 ( )

We still have to average over the transmission eigenvalues. We use that the sample-to-
sample fluctuationss — (zx) are an order AN smaller than the average. (This is a general
property of a linear statistics, i.e. of quantities of the fofm= ), a(Tn), see Ref. [4].)
Hence

(f(m)) = F((m)IL+ ONT?)], (6.6.12)

which implies that we may replace the average of the rational functions (6.6.3) and (6.6.11)
of thetk’s by the rational functions of the averagg). This average has thg lll expansion
() = ()0 + O(N7), (6.6.13)

where (1x)o is O©(N°). There is no term of ordeX ~* in the absence of. The average
overT of Egs. (6.6.3) and (6.6.11) becomes

2N(t1)y  8(t1)g — 4T1) + 411)3 — 8(12), i
Gns/Go) = — ON Y.  (6.6.14
(Gns/ Gol 2— (110 (t1)0(2 — (11)0)3 +O(N™) ( )




Application to a Normal-metal-superconductor. . . 165

. =D

l||||||

O

'IIIIIII‘
l|||||l F+

TT+

Figure 6-20. Diagrams for the ©(1) correction to (Gys) in the absence of electron-hole degeneracy
and presence of time-reversal symmetry.

Case 2, presence af and absence ab. We putu, = ul =u. The©(1) correction
comes from the maximally crossed diagrams of Fig. 6-20,

+2trF, fyy_ FT +2trFL fyy, FL. (6.6.15)

Averaging over the transmission eigenvalues amounts to replagingy its average, i.e.
ke — (o + N1 + O(N~?). (The average ofy. is the same fore and —¢.)
BecauseT is not broken there is a term @f(N~1) in this expression. We find for the
average conductance

2N(11)0 4611

2— (o  (2—(11)0)?

L4 (t1)§ — 4 (T1)g — 4 (2) o + 4 (T1)o(T2)g
(11)0 (2 — (T1)0)®

Case 3, bothI” and D broken. Because, andu_ are independent, there are no
diagrams which contribute to order 1. The average conductance is obtained by averaging
Eq. (6.6.3) over the transmission eigenvalues,

2N(t1)0

(Gns/Go) = m+(9(N_l). (6.6.17)

(Gns/Go) =

+ O(N™1).(6.6.16)

From the translation rule of Sec. 6.4 one deduces that in the presence of spin-orbit
scattering, the leadin@(N) term of the average conductance is unchanged, whil@thge
correction is multiplied by-1/2, in agreement with what was found by Slevin, Pichard and
Mello [41].

The formulas given above apply to any system for which the isotropy assumption holds.
We discuss two examples:
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(a) A disordered wire (lengtlh., mean free patli, number of transverse modég),
connected to a superconductor. We use the results [43]

(t1)o = A+L/0)™1, (6.6.18)
(o = 2A+L/O +id+L/074 (6.6.19)
Sty = —3(1+e/L)72 (6.6.20)

We assumé « L <« N/ and neglect terms of ordér/N¢ and£/L but retain terms of
order 1 andN¢P/LP (p > 1). Substitution of Eq. (6.6.18) into Egs. (6.6.14), (6.6.16), and
(6.6.17) yields

NA+L/)1—1+4/7% (D,T),
N(1/2+L/0)"t—1/3 (D, noT),
N(1/2+L/e)"t—2/3 (noD, T),
N(1/2+L/0)~t (noD, noT).

(Gns/Go) = (6.6.21)

The result in the presence of bofth and D has been taken from Refs. [44, 45]. In the
presence of spin-orbit scattering, tligN) term is unchanged, while th@(1) term is
multiplied by —1/2.

(b) A chaotic cavity without tunnel barriers in the leads. Lead 1 (Wthmodes) is
connected to a normal metal, lead 2 (with modes) to a superconductor. An asymme-
try betweenN; and N, appears because the dimensiougfin the polar decomposition
(6.5.30) isN2 x N2. The N2 x N2 matrix T contains the mitiN1, N2) non-zero trans-
mission eigenvalues on the diagonal (remaining diagonal elements being zero). We denote
Niot = N1+ Nz andNa = (NZ + 6N1N, + N2)1/2. The averagetrs)o and(t2)o and the
correctionsty can be computed from the density of transmission eigenvalues [Egs. (6.5.42)
and (6.5.45)]. The results are

011 = —NlNthgtz, (t1)0 = N1 thtl, (12)0 = Nl(Nt%t — N1Np) thf?’. (6.6.22)

Substitution into Egs. (6.6.14), (6.6.16), and (6.6.17) gives

Niot(L — Niot/Np) — 8Ny N, NE /N2 (D, T),

2NN, /(N, . + No) — 4NN, N, ./(N, . + N.)3 (D, noT),
<GNS/GO> — 1 2/( tot 2) 1 22 tOt/( tot 32) ( ) (6623)

2Ny N, /(Nig + N,) (noD, noT).

The leading order term in Eq. (6.6.23) has also been obtained by Argaman and Zee [29].
(The caseN1 = N> was given in Ref. [6]).

6.6.2 Conductance fluctuations

To compute the variance of the conductance, we average in two $teps= ({-- -)u)T,
where(---), and (- - -)T are, respectively, the average over the unitary matncesnd
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over the matrices of transmission eigenvallles It is convenient to add and subtract
((GNS)S)T, so that the variance splits up into two parts,

varGyns = <<GNS>5>T —<(GNS)u>i +<<Gﬁs>u— <GNS>5>T, (6.6.24)

which we evaluate separately.

The first two terms of Egs. (6.6.24) give the variancé®f;s), over the distribution of
transmission eigenvalues. We calculat€ds), in Eq. (6.6.3). SincéGys)y is a function
of the linear statistie1+ only, we know that its fluctuations are an ordéiNLsmaller than
the average. This implies that, to leading order jiiN1

2 3(Gnshu\ [9(Gns)
(Gne)8). — ((Grglu). = X_:J arN1:U>T< aTTj”>T covar(ri,, 1)
_ 2N2 (0 _ —4 1 (withoutD),
= 8GHN“(2— (r1)0) "varrty x { 2 (with D).
(6.6.25)

We now turn to the third and fourth term of Eq. (6.6.24). These terms involve the
variance(G,Z\lS)u — (GNs)ﬁ of Gns overU(N) and subsequently an average overThs.
The calculation is similar to that of Sec. 6.5.2. We represﬁg by the diagram in Fig.
6-21. The variance with respectua is given by the connected diagrams. We distinguish
between two types of connected diagrams: (i) diagrams in which the inner and the outer
loop are connected byB-cycle or by aU-cycle, and (ii) diagrams in which the partition
of theU -cycles involves a group which consists dfacycle from the inner loop and@-
cycle from the outer loop. The diagrams are similar to those of Fig. 6-12, and are omitted.
The final result is

((GRelu — (Grsll), = 8GB @~ (o) ™® (rw)g” (4(rf — 8w + 8w}

— M11)3 + 2(11)§ — Hr1)o(r2)o + 2(11)5(T2)0

— 2(t1)3(12)0 — 2(t1)§{t2)0 + 6(12)5 — 6(71)0(T2)]

+ 3{e)f(r2)3 — Alma)olzalo + 6(ra)2(za)o — 2(ra)3(7a)o)

2 (D,noT),
x 3 2 (T,noD), (6.6.26)
1 (noD,noT).

The sum of Egs. (6.6.25) and (6.6.26) equalsGgg, according to Eq. (6.6.24).

In the presence of spin-orbit scattering @ys is four times as small, according to the
translation rule of Sec. 6.4.

We give explicit results for the disordered wire and the chaotic cavity.
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I u
(* 1 likl(* '+l 1) s [ ) l+l '
u u

U+ u_ U+ U+
"'(*"'(*lllo """""""""" @
*

u u u u

Figure 6-21. Diagrammatic representation of G{s.

(a) For the disordered wire one has [43, 46]
varty = N2, (n)o = 3(¢/LITGTK)/T (K + 3).
Substitution into Eqs. (6.6.25) and (6.6.26) yields the variance

16/15— 48/7* ~0.574 (D, T),

1 ~ 0.
varGus/Go = | /% 0533 (D,no7), (6.6.27)
8/15 ~ 0.533 (7,noD),
4/15 ~ 0.267 (noD,noT).

The result in the presence of bathandD has been taken from Ref. [45,47]. If bath
and7 are present, breaking (or D) reduces the variance by less than 10% [48].

(b) For the chaotic cavity one has the variancewae 2N2/AN; and the third mo-
ment(z3)o = Ny(N — 2N2N; N, + 2N2N2)/N2; [see Egs. (6.5.4) and (6.5.42)]. In
combination with Eq. (6.6.22) this gives

128NZNZ(NiG; + 2NENS (NG + 4N, Np) ™ (D, T),

32N2N2. (N2, — N,N,)(N N.)—6 D, noT),
varGns/Go = 22 tgt( tgt 1N2) (Neor + 2)_6 ( ) (6.6.28)

32N2N2Z(N2; — NyNo) (Nig; + N,) (T, noD),

16NZN2Z(NZ; — NyNo) (N + N,)~° (noD, noT).

If the coupling between the cavity and the normal metal is weak compared to the coupling
to the superconductoNg > Nj), one finds

varGns(D, T)/varGns(D, noT) = O(N1/Np)?.

In this case breaking greatly enhances the conductance fluctuations. In the opposite
case, if the couplings are equaly(= Ny), one finds

varGns(D, T)/varGns(D, noT) = 2187/2084~ 1.07.

In this case breakin@ has almost no effect on the conductance fluctuations.
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6.7 Summary

We developed a diagrammatic technique for the evaluation of integrals of polynomial func-
tions of unitary matrices over the unitary grotffN). In the largeN limit the number of
relevant diagrams is restricted, which allows for the evaluation of integrals over rational
functions. We also considered integrals of unitary symmetric matrices, by means of a
slight modification of the diagrammatic rules. A translation rule was given to relate inte-
grals of (self-dual) unitary matrices of quaternions to integrals over (symmetric) unitary
matrices of complex numbers.

We discussed two applications: A chaotic cavity (quantum dot) with tunnel barriers in
the leads and a normal-metal-superconductor (NS) junction. In both cases, the conduc-
tance is a rational function of a unitary matrix. In the lafgdimit the average conduc-
tance is given by a series of ladder diagrams. The weak-localization correction consists
of maximally-crossed diagrams. These two types of diagrams are analogous to the dif-
fuson and cooperon diagrams in the diagrammatic perturbation theory for disordered sys-
tems [21, 22]. We computed the density of transmission eigenvalues, where the leading
order term is given by planar diagrams. Resummation of the diagrams leads to a Dyson
equation for the Green function, similar to that encountered in the theory of integrals over
Hermitian matrices [12,17].

For the NS junction, thé (1) correction to the average conductance is non-zero in the
presence of a magnetic field, because of a different type of maximally crossed diagrams.
These diagrams are suppressed by a sufficiently large voltage to break electron-hole de-
generacy. The new type of maximally crossed diagrams explains the coexistence of weak
localization with a magnetic field (see also Sec. 7.2 and the insensitivity of the conductance
fluctuations to a magnetic field [48].

Appendix A:  Weight factors for polynomial integrals

In Tables 6-2 — 6-5 we list the weight factorg, . ¢ andWe,, ¢ forn=ci1+...+c <5
for the CUE and the COE. (Tables Wf are also given in Refs. [27, 28] for the CUE and
in Ref. [31] for the COE.) The weight factors are rational functions of the dimen¥ion
of the unitary matrix. The denominatofs, and By, of, respectivelyV, . . ¢ andWe,, . ¢
depend only om. They are tabulated in Tables 6-2 and 6-3. The numerag¥s, .
andBpW, ... ¢ are tabulated in Tables 6-4 and 6-5.
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A WO DN K|S

N(NZ— 1)(N2 — 4)
N2(N2 — 1)(N2 — 4)(N2 — 9)

N2(N2 — 1)(N2 — 4)(N2 — 9)
x (N2 — 16)

A, (CUE) An (COE)
N N+1
N(N2 — 1) N(N + 1)(N + 3)

(N—=21DN(N+21(N+3)(N+5)
(N=2)(N-=DN(N+I)(N+2)(N+3)
x (N +5)(N + 7)

(N = 3)(N —2)(N — N(N + 1)(N + 2
X (N+3)(N+5(N+7)(N+9)

Table 6-2. Denominators Ay of the coefficients V, ¢ forn=c1+...+ck <5.

n B, (CUE) B, (COE)
1 N N+ 1
2 N2(N2 — 1) N(N + 1)%(N + 3)
3 N3(N2 — 1)(N2 — 4) (N = DN(N + 13(N + 3)(N +5)
4 | N4 (N2 — 1)2(N2 — 4)(N2 — 9) (N = 2)(N — I)N2(N + D*(N + 2)
x (N +3)2(N +5)(N +7)
5| NS(N2 — 1)2(N2 — 4)(N2 — 9) | (N — 3)(N — 2)(N — )NZ(N + 1)5(N + 2)

x (N2 — 16)

x (N + 3)2(N +5)(N + 7)(N + 9)

Table 6-3. Denominators By, of the coefficients W, ¢ forn=c1+...+cc <5.
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C1,...,Ck AnVe,.....q (CUE) AnVe,.....c (COE)

1 1 1

1,1 N 2+ N

2 -1 -1
1,1,1 —2+4+ N? 2+5N + N2

2,1 —N —-3-N

3 2 2
1,1,1,1 6 — 8N? 4+ N4 —32— 8N +28N?+ 11N3+ N4
2,1, 1 4N — N3 —4—18N —9N?2 - N3

2,2 6+ N2 24+ 7N + N2

3,1 —342N? 10+ 12N +2N?

4 —5N —11-5N
1,1,1,1,1 | 78N — 20N3 4+ N° | 128— 408N — 84 N2+ 59N3 + 16 N* 4+ N°
2,1,1,1 | —24+ 14N?%2 — N4 92+ 38N — 43N2 — 14N3 — N4
2,2,1 —2N + N3 56+ 43N + 12N? 4+ N3
31,1 —18N +2N?3 —524+ 40N 4+ 22N? + 2N3

3,2 —24—-2N? —88— 18N —2N?

4,1 24 —5N? —7—36N —5N?

5 14N 38+ 14N

Table 6-4. Numerators ApVg,. .. ¢ Of the coefficients V¢ forn=cy + ...+ cx < 5. The denomi-
nators A, are given Table 6-2.
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C1,...,Ck BnW,.....qc (CUE) BnW,.....q (COE)
1 1 1
1,1 1 2
2 —N —1—N
1,1,1 8 32
2,1 —4N —8—-8N
3 2 N2 2+ 4N+ 2N?
1,1,1,1 —216+ 144N? —1680+ 6720N + 6096N?2 + 1152N3
2,11 72N — 48N3 280— 840N — 2136N?2 — 1208N3 — 192N*
2,2 —42N? 4 18N* —140— 116N + 384N? + 592N3
+ 268N* + 36N°
31 —15N? + 15N* 198N + 552N? + 540N3 4+ 216N+ + 30N°
4 5N3 - 5N° —33N — 125N2 — 182N3 — 126N*
— 41N> —-5N°
1,1,1,1,1 | —13824+ 4224N? | —483840+ 297984N + 407040N? + 67584N3
2,1,1,1 | 3456N — 1056N3 60480+ 23232N — 88128N? — 59328N3
— 8448N*
2,2,1 | —1248N2+288N*| —12096— 21120N + 1152N?2 + 18432N?3
+ 9408N* + 1152N°
31,1 —480N? 4 240N* —3024+ 192N + 15072N? + 18432N3
+ 7536N* + 960N°
3,2 312N3 — 72N° 1512+ 4152N + 2496N? — 2448N3
— 3480N“ — 1320N°> — 144N65
4,1 56 N2 — 56 N° —912N — 3376N2 — 4768N°3 — 3168N*
— 976N> — 112N6"
5 —14N* 4 14N6® 114N + 536N? + 1018N3 + 992N*

+518N°+ 136N% + 14N’

Table 6-5. Numerators BpW, .. ¢ Of the coefficients W, . ¢ forn = ¢ +... +c < 5 The
denominators B, are given in Table 6-3.
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7 Normal-metal—-superconductor junctions

7.1 Insensitivity to time-reversal symmetry breaking of
universal conductance fluctuations with Andreev re-
flection

Universal conductance fluctuations (UCF) are a fundamental manifestation of phase-cohe-
rent transport in disordered metals [1, 2]. The adjective “universal” describes two aspects
of the sample-to-sample fluctuations of the conductance: (1) The varianGavaf order
(€?/h)?, independent of sample size or disorder strength; (2pvéecreases precisely by a
factor of two if time-reversal symmetry() is broken by a magnetic field. The universality

of this factor of two has been established both by diagrammatic perturbation theory [1,
2] and by random-matrix theory [3—6]. In the former approach, one has two classes of
diagrams, cooperons and diffusons, which contribute equally t&G\arthe presence of

7 . A magnetic field suppresses the cooperons but leaves the diffusons unaffected, hence
varG is reduced b)%. In the latter approach, the universality of the factor-of-two reduction
follows from the Dyson-Mehta theorem [7], which applies to the varianceAvafr any
observableA = ) a(T,) which is a linear statistic on the transmission eigenvalug8].

The crossover from a linear to a quadratic eigenvalue repulsion upon breRkiigctly

leads to a reduction by of var A

The situation is qualitatively different if the normal-metal conductor (N) is attached
at one end to a superconductor (S). At the NS interface the dissipative normal current is
converted into a dissipationless supercurrent, via the scattering process of Andreev reflec-
tion: [9] An electron incident from N is reflected as a hole, with the addition of a Cooper
pair to the superconducting condensate. The conversion from normal to supercurrent has
essentially no effect on the average conductance, provided that the interface resistance is
negligibly small [10]. However, the effect on the conductance fluctuations is striking: The
variance is still universally of ordege?/h)?, but it has becommsensitiveto the breaking
of 7. Numerical simulations by Marmorkos, Jalabert, and Beenakker [11] of a disor-
dered wire attached to a superconductor have shown that the variance is unaffected by a
T -breaking magnetic field, within the 10% statistical uncertainty of the simulations. This
does not contradict the Dyson-Mehta theorem, because the conduGagae the NS
junction is a linear statistic in the presence — but not in the absenze[®2]. One won-
ders whether there is some hidden symmetry principle which would constra\gao
be the same, regardless of whetheiis broken or not. No such symmetry principle has
been found, and in fact we do not know of any successful generalization so far of the theory

IHere, and in the rest of the section, we assume that there is no spin-orbit interaction, and that spin-
rotation symmetry is maintained both with and with@ut
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of UCF to quantities which are not linear statistfcs.

Here we wish to announce that we have succeeded in the analytical calculation of
the variance ofGys in the absence of , using techniques from random-matrix theory.
We find that vaGns for a disordered wire attached to a superconductor is reduced by
(2 —90/7%~1 ~ 0.929 upon breaking”. This number is sufficiently close to 1 to be
consistent with the numerical simulations [11], and sufficiently different from 1 to explain
why attempts to find a rigorous symmetry principle had failed. Still, we have been able to
find an approximate symmetry argument, which explains in an intuitively appealing way
why the number2 — 90/7%)~1 is close to 1. Our theory is more generally applicable than
to a disordered wire: It applies to any NS junction for which the probability distribution
P(S) of the scattering matrib§ of the normal region depends only on the transmission
eigenvalued,. (Such a distribution is called “isotropic” [6].) As two examples we con-
sider a disordered metal grain and a ballistic constriction in a disordered wire. Our method
can also be used to compute the effect of a magnetic field on weak-localization in an NS
junction, as reported in Sec. 7.2.

Starting point of our calculation is the general relation between the conductance of the
NS junction and the scattering mati®«of the normal region [12],

Gns = 2Gotrmm', Gg = 2€?/h, (7.1.1)
m=vT{1+ uvRUVR) IuvT, u=w,wi.

We used the polar decomposition

v, O ivR T v O
c(E)(F RN

wherev1, v2, w1, andw, areN x N unitary matricesl being the number of propagating
modes at the Fermi level in each of the two leads attached to the sample). TheTnatrix
is a diagonal matrix with thé&l transmission eigenvaluds € [0, 1] on the diagonal, and
R=1-T. Inthe presence of’, one hasS = ST, hencew, = w], henceu = 1. (The
superscript T denotes the transpose of the matrix.) Eq. (7.1.1) then simplifies to [12]

Gns(T) = 2GoY , T2(2— To) 72, (7.1.3)

and vaiGys follows directly from general formulas for the variance of a linear statistic on
the transmission eigenvalues [8, 13]. In the absencE ob such simplification occurs.

To compute vaGns = (Gﬁs) — (Gns)? in the absence of ', we assume an isotropic
distributior? of S, which implies that the average- -) over the ensemble of scattering
matrices can be performed in two stegs:-) = ({---)u)T, Where(---)y, and(---)7 are,

2A promising field-theoretic approach to this problem, based on the mapping onto a supersymmetric non-
linearo-model, has so far not been successful [A. Altland, private communication]. The more conventional
diagrammatic perturbation theory suffers form a proliferation of relevant diagrams, and has so far not been
completed even in the presence®fY. Takane and H. Ebisawa, J. Phys. Soc. Jaf@r8130 (1991)].

3The assumption of an isotropic distribution 8fis sufficient but not necessary. A weaker assumption
which also ensures that the mattixn Eq. (7.1.1) is uniformly distributed ifi/(N) is the so-called “equiv-
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respectively, the average over the unitary matricasd over the transmission eigenvalues
Ti. Itis convenient to add and subtraq:GNs)ﬁ)T, so that the variance of the conductance
splits up into two parts,

2

- <<GNS>U> +

varGns = <<GNS>S> .

T

((GRelu — (Grsl3). . (7.1.4)

which we evaluate separately.

The first part is the variance ¢Gns)y over the distribution of transmission eigenval-
ues. As a consequence of the isotropy assumption, the nuasidniformly distributed in
the groupU(N) of N x N unitary matrices [6]. To evaluat&ys)y, we need to perform
an integral overtU(N) of a rational function olu, according to Eq. (7.1.1). Such matrix
integrals are notoriously difficult to evaluate in closed form [14], but fortunately we only
need the largeN limit. By applying the diagrammatic technique of Ch. 6 we find that

(tr T (uvRUVR)PuTu' (vVRU'VRU" ), =
SpaNTf (1 — )P + O (1), (7.1.5)

where we have defined the trage = N~ 3", TX. It follows that, up to corrections of
order unity,

o0

2GoN
(Gnslu = 2GoN Y t2(1 — o2 = 222, (7.1.6)
2—1

p=0
Sincery is a linear statistic, we know that its fluctuations are an org® &maller than
the average [6]. This implies that, to leading order itN1 var f (7x) = [ f/(tk)]? x varz.
The variance of Eq. (7.1.6) is therefore

) 2 16GZN2?vart,
<(GNS>U>T — <<GNS)U>T = W + O(1/N). (7.1.7)

Note that the leading term in Eq. (7.1.7)4%1).

We now turn to the second part of Eq. (7.1.4), which involves the varié@ﬁg)u —
(GNS)S of Gns overU(N) at fixed transmission eigenvalues and subsequently an average
over theT;’s. The calculation is similar in principle to that described in the preceding
paragraph, but many more terms contribute to leading ordethh Here we only give the
result,

((GRohu — (Gl
= 16652~ (r2) ™ (r0) 72 {4(r2) — 8(z)® + (1) — 4(z)® + 2(0) -

alent channel assumption” [P. A. Mello and S. Tomsovic, Phys. Rev. &étt342 (1991)]. Microscopic
models which satisfy this assumption have been given by O. N. Dorokhov [Phys. B&éy1B526 (1988)]
and S. lida, H. A. Weidenaller, and J. A. Zuk [Ann. Phys. (NY200, 219 (1990)]. See also Sec. 1.3 of this
thesis.
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A1) (12) + 2(11)%(12) — 2(71)3(12) — 2(T1)*(T2) + 6(12)% — 6(71)(T2)*+
3(72)3(72)? — A1) (z3) + 6(z2)?(za) — 2(e) (w3} | + OU/N). (7.1.8)

The sum of Egs. (7.1.7) and (7.1.8) equals@gEk, according to Eq. (7.1.4). The resulting
expression contains only moments of the transmission eigenvalues. This solves the prob-
lem of the computation of vdbys in the absence df, since these moments are known.

For the application to a disordered wire (lengthmean free patld) one has the vari-
ance [2,5]N?vart; = 7, and averages [15) = 5(¢/L)I'(3)T(K)/T'(k + 3). Substi-
tution into Egs. (7.1.7) and (7.1.8) yields (in the diffusive ligjiL — 0)

varGns(noT) = £G§ ~ 0.533G§. (7.1.9)
This is to be compared with the known result [13] in the presencE of
varGns(7) = (£ — 487 G5 ~ 0.574G§. (7.1.10)

Breaking7 reduces the variance by less than 10%, as advertised.

We would like to obtain a more direct understanding of why the two numbers in Egs.
(7.1.9) and (7.1.10) are so close. To that end we return to the general expression (7.1.1)
for the conductanc&ys of an NS junction, in terms of the scattering matBxof the
normal region. We compar@ys with the conductanc&yy of an entirely normal metal
consisting of two segments in series (see Fig. 7-1). The first segment has scattering matrix
S, the second segment is the mirror image of the first. That is to say, the disorder potential
is specularly reflected and the sign of the magnetic field is reversed. The system NN thus
has a reflection symmetrg), both in the presence and absenc& ofThe scattering matrix
of the second segment}sSX, whereX is a 2N x 2N matrix with zero elements, except
for Zinyi = Zn+ii =10 =1,2,..., N). (The matrixX interchanges scattering states
incident from left and right.) The conductanGgn follows from the transmission matrix
through the two segments in series by means of the Landauer formula,

GNN(S) = Gotrm'mT, m' =vVTA+UVRUVR WVT, U =wowy. (7.1.11)

The difference between Egs. (7.1.1) and (7.1.11) is crucial in the preserte when

wy = wI, so thatu = 1 while u’ is some random (symmetric) unitary matrix. However,

in the absence of”, w1 andw; are independent, so that bathand u’ are randomly
distributed unitary matrices. We have repeated the calculation of the variance starting from
Eq. (7.1.11), and found that vartrm' = vartrm’m’?, hence

varGns(noT) = 4varGnn(S, noT). (7.1.12)

The system NN is special because it possesses a reflection symmetry. Breaking the
reflection symmetry§ amounts to the replacement of the mirror-imaged segment by a
different segment, with scattering matr& which is independent o§ but drawn from
the same ensemble. BreakiSgeduces the variance of the conductance fluctuations by a
factor of two, regardless of wheth@r is present or not,

varGnn(S) = 2varGyn(no S). (7.1.13)
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(@)

N +B -B N
(b)

Figure 7-1. (a): Schematic drawing of a disordered normal metal (N) connected to a supercon-
ductor (S), in a time-reversal symmetry (7°) breaking magnetic field B. In (b) the normal region is
connected in series with its mirror image. As indicated, the magnetic field B changes sign upon re-
flection. The variance of the conductance fluctuations in (a) is exactly four times the variance in (b).
The variance in (b) is exactly two times the variance in the absence of the reflection symmetry (S).
The exchange of T for S explains the insensitivity of the conductance fluctuations to a magnetic
field, as discussed in the text.

We have checked this relation by an explicit calculation, but it seems intuitively obvious if
one considers that the eigenstates separate into even and odd states which fluctuate inde-
pendently. Since breaking by itself reduces the variance Giyn by a factor of two, we
may write

varGnn(S, noT) = varGyn(7, noS). (7.1.14)

Egs. (7.1.12)—(7.1.14) are exact, and hold for any isotropic distribution of the scattering
matrix. We need one more relationship, which is approximate and holds only for the case
of a disordered wire: [12, 16]

varGns(7) ~ 4varGyn(7, no S). (7.1.15)
Taken together, Egs. (7.1.12)—(7.1.15) imply the approximate relationship
varGns(7) ~ varGns(no 7). (7.1.16)

The exact calculation shows that the approximation is accurate within 10%. We now un-
derstand the insensitivity of the conductance fluctuations of a (disordered) NS-junction to
a magnetic field as amxchange of symmetri@sthe related normal system NN: AE is
broken,S is established, thereby compensating the reduction dbyar’

We have emphasized the general applicability of equations (7.1.7), (7.1.8) and (7.1.12)—
(7.1.14), which hold not just for a disordered wire, but for any isotropic distribution of
the scattering matrix. We illustrate this by two examples. The first is an NS junction

4To avoid misunderstanding about the “exchange of symmetries”, we stress that it refers to the related
NN system and not to the NS junction itself. To be precise, the structure of the scattering matrix of the NS
junction is such that the NS junction in the absenceTois related to an NN systewith S, whereas in
the presence of it is related to an NN systemvithoutS. The first relationship is exact [Eq. (7.1.12)], the
second one is approximate [Eq. (7.1.15)].
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vAls W :
M(a) (b)

Figure 7-2. (a): Schematic drawing of an NS junction consisting of a disordered metal grain
(shaded). (b): A disordered normal-metal wire (shaded) containing a point contact.

consisting of a disordered metal grain (see Fig. 7-2a). The coupling of N and S to the
grain occurs via ballistic point contacts (width much smaller than the mean free path in
the grain). Following Ref. [17], we may assume that the scattering matrix of the grain is
distributed according to the circular ensemble of random-matrix theory. This is an isotropic
distribution. The relevant moments of the transmission eigenvalues in the absehce of
are [17](w) = 7~Y20'(k + 3)/'(k + 1), N?vart; = Z. Substitution into the general
formulas (7.1.7) and (7.1.8) yields

varGns(no7) = $28G3 ~ 0.527G§, (7.1.17)
which is again close to the known result in the presencg ¢17],
varGns(T) = 1G5 ~ 0.563G3. (7.1.18)

The second example is a ballistic constriction (point contact) in a wire which is con-
nected to a superconductor (see Fig. 7-6b). The point contact has condulskgBge
which we assume to be much smaller than the conductlldgé of the disordered wire
by itself. As discussed in Ref. [18], we may assume an isotropic distribution of the scatter-
ing matrix of the combined system (point contact plus disordered wire). The moments of
the transmission eigenvalues are [18)) = No/N, N?varr; = O(NgL/N¢)2. Substitu-
tion into Egs. (7.1.7) and (7.1.8) yields, in the limgL /N¢ — O,

varGns(no T) = 1G3. (7.1.19)

In contrast, if7 is not broken, the conductance fluctuations are suppressed in this limit:
[18,19]
varGns(7) = O(NoL/N£)? « G3. (7.1.20)

In this geometry a magnetic field greatly enhances the conductance fluctuations. The rea-
son that a disordered wire with a constriction behaves so differently from an unconstricted
wire, is that the relation (7.1.15) does not hold in the presence of a constriction. However,
the general relationship (7.1.12) does hold, and indeed the result (7.1.19) is four times the
variance of a structure consisting of two point contacts in series with a reflection symmetry.
In summary, we have solved the problem of universal conductance fluctuations in nor-
mal-metal-superconductor junctions in a magnetic field, under the assumption of an isotro-
pic distribution of the scattering matrix of the normal region. We find that the structure of
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the scattering matrix of the normal-metal-superconductor junction in the absence of time-
reversal symmetry allows one to relate the conductance fluctuations to those of a normal
system with reflection symmetry. This reflection symmetry is absent in the presence of
time-reversal symmetry. It compensates the reduction of the conductance fluctuations due
to breaking of time-reversal symmetry, and explains the anomalous insensitivity of the
fluctuations in a magnetic field discovered in computer simulations [11].

7.2 Weak localization coexisting with a magnetic field in a
normal-metal—-superconductor microbridge

Weak localization is a quantum correction of oreéérh to the classical conductance of a
metal [20]. The word “localization” refers to the negative sign of the corretinhjle

the adjective “weak” indicates its smallness. In a wire geometry the weak-localization
correction takes on the universal value [} = —%ez/h at zero temperature, inde-
pendent of the wire length or mean free patli.® The classical (Drude) conductance

Go ~ (N¢/L) €%/ h is much greater thahG in the metallic regime, where the number of
scattering channels > L /¢. Theoretically, the weak-localization correction is the term

of order N? in an expansion of the average conductat@e = Gg + §G + O(N~1) in

powers ofN. Experimentally§G is measured by application of a weak magnetic field

B, which suppresses the weak-localization correction but leaves the classical conductance
unaffected [22]. The suppression occurs because weak localization requires time-reversal
symmetry (7). In the absence of , quantum corrections t6Gq are of orderN—1 and

not of orderN®. As a consequence, the magnetoconductance has a dip aBotn€ of
magnitudesG and width of ordeB. (being the field at which one flux quantum penetrates

the conductor).

What happens to weak localization if the normal-metal wire is attached at one end to a
superconductor? This problem has been the subject of active research [11,12,23-27]. The
term Gg of orderN is unaffected by the presence of the superconductor [12].0TIN)
correctionsG is increased but remains universal [24, 25],

G =—(2—8r?)€e/h~ —119€*/ h. (7.2.1)

In all previous analytical work zero magnetic field was assumed. It was surmised, either
implicitly or explicitly [11], that6G = 0 in the absence af — but this was never actually
calculated analytically. We have now succeeded in doing this calculation and would like to
report the result, which was entirely unexpected.

We find that a magnetic field by itself is not sufficient to suppress the weak-localization
correction, but only reduce¥s by about a factor of two. To achiew& = 0 requires in
addition the application of a sufficiently large voltageo break the degeneracy in energy

5Spin-orbit scattering is assumed to be negligible, otherwise a positive quantum correction appears.
The restriction to a wire geometry is essential for the universality. In a square or cube geometry, the
weak-localization correction is and¢-dependent.
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—8G [€?/h] T no7 |
D 2-8/7% | 2/3
no?D 4/3 0

Table 7-1. Dependence of the weak-localization correction §G of a normal-metal wire attached to
a superconductor on the presence or absence of time-reversal symmetry (7°) and electron hole-
degeneracy (D). The entry in the upper left corner was computed in Refs. [24, 25].

between the electrons (at energy above the Fermi enerdyr ) and the Andreev-reflected
holes (at energeV below Eg). The electron-hole degenerad®) is effectively broken
wheneV exceeds the Thouless enefify = hvg£/L? (with ve the Fermi velocity). Weak
localization coexists with a magnetic field as longeds < E¢. Our analytical results are
summarized in Table 7-1. These results disagree with the conclusions drawn in Ref. [11]
on the basis of numerical simulations. We have found that the numerical data on the weak-
localization effect was misinterpreted due to the presence of a magnetic-field dependent
contact resistance, which was not understood at that time.

Starting point of our calculation is the general relation between the differential conduc-
tanceG = d1/dV of the normal-metal—-superconductor (NS) junction and the transmission
and reflection matrices of the normal region [12],

G = (4e?/hytrmeV)m'(eV), m(e) =t'(¢) [1- a(s)r*(—g)r(s)]_lt*(—g), (7.2.2)

wherea(e) = expg—2iarccose/A)]. Eq. (7.2.2) holds for subgap voltages < A/e,

and requires als&\ <« Ef (A being the excitation gap in S). We assume that the length

L of the disordered normal region is much greater than the superconducting coherence
lengthg = (hvgt/A)Y2. This implies that the Thouless enerfy <« A. In the voltage
rangeV < E./e we may therefore assume thel¥ <« A, hencex = —1. TheN x N
transmission and reflection matriced’, r, andr’ form the scattering matri$(¢) of the
disordered normal region\( being the number of propagating modes at the Fermi level,
which corresponds te = 0). It is convenient to use the polar decomposition

r’ t ! 0 ivR T vy O
t r “\o w1 «/T i«/ﬁ 0 wy '

Here vy, v2, w1, andw2 are N x N unitary matrices,T is a diagonal matrix with the
N transmission eigenvalueg < [0, 1] on the diagonal, andR = 1 — T. Using this
decomposition, and substitutiag= —1, Eq. (7.2.2) can be replaced by

~1
m(e) = /T(e) [1 + u(e)yv/ R(=e)u*(—e)y R(S)] u@)vT(=e),  (7.2.3)
ue) = wy(e)wi(—e).

We perform our calculations in the general framework of random-matrix theory. The
only assumption about the distribution of the scattering matrix that we make, is that it is
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isotropic, i.e. that it depends only on the transmission eigenvalues [6]. In the presence of
T (for B« Bg), S= ST, hencew,; = w;. (The superscript T denotes the transpose of a
matrix.) If 7 is broken,w; andw, are independent. In the presenceld{for eV « E.),

the difference betwee8(eV) and S(—eV) may be neglected. ID is broken,S(eV) and
S(—eV) are independent. Of the four entries in Table 7-1, the case thattbatid D are
present is the easiest, because thenl and Eq. (7.2.2) simplifies to [12]

G = (46?/h)Y T2(2— T 2 (7.2.4)

The conductance is of the for@ = ), f(T,), known as a linear statistic on the trans-
mission eigenvalues. General formulas [24, 25] for the weak-localization correction to the
average of a linear statistic lead directly to Eq. (7.2.1). The three other entries in Table
7-1, where eithel” or D (or both) are broken, are more difficult beca@és no longer a
linear statistic. We consider these three cases in separate paragraphs.

(1) D, no T — Because of the isotropy assumptiam and w,, and hencau, are
uniformly distributed in the unitary groupl(N). We may perform the average -) over
the ensemble of scattering matrices in two stefs:) = ({---)u)T, Where(---)y, and
(---)T are, respectively, the average over the unitary matrand over the transmission
eigenvaluesT,. We compute(- - -), by an expansion in powers & —1. To integrate the
rational function (7.2.2) ool overU(N), we first expand it into a geometric series and then
use the diagrammatic technique of Ch. 6. The polynomials we need are

462 &
(Gly = ?péolvlpq(—l)m_q, (7.2.5)
Mpg = (trT(uvRUVRPUTU (VRUVRUHY,.

Neglecting terms of ordeX —1, we find

NzZ(1—1)?Pif p=q,

11(t? + 1 — 21,) (1 — 1) PT9=1 — 2min(p, @)
x 12(t? — 1,)(1 — 7)) Pt9=2if |p — g| odd,
0 else

Mpq =

where we have defined the momept= N1 > Ti". The summation ovep andq leads
to
h (G)y = N1 4‘[1—2‘Ef+2Tf—4T2
4e2 YT o T1 112 —-11)3
It remains to average over the transmission eigenvalues. $ineea linear statistic, we
know that its sample-to-sample fluctuatidng = tx — (=) are an order AN smaller than
the average [6]. Hence

(7.2.6)

(f @)t = f((m)IL+ ON?)], (7.2.7)



186 Chapter 7: Normal-metal-superconductor junctions

which implies that we may replace the average of the rational function (7.2.6) of’the
by the rational function of the average;). This average has the Il expansion

(%) = ()0 + O(N72), (7.2.8)

where ()0 is O©(N°®). There is no term of ordeN—! in the absence of". From Egs.
(7.2.6)—(7.2.8) we obtain the/ N expansion of the average conductance,

h N(ri)o  Hri)o — 2(t1)3 + 2(t1)3 — 412)o 1

— (G) = - +O(N™). 7.2.9

4e? ( 2—(11)o (t1)0(2 — (11)0)3 ( )

Eqg. (7.2.9) is generally valid for any isotropic distribution of the scattering matrix. We
apply it to the case of a disordered wire in the lilNit— oo, £/L — 0 at constanN¢/L.

The momentszy)o are given by [21]

(t1)o=£/L, (r2)0 = 5¢€/L. (7.2.10)

Substitution into Eq. (7.2.9) yields the weak-localization correctiGn = —%ez/h, cf.
Table 7-1.

(2) T, noD — In this case one has' (—eV) = u(eV) andu(eV) is uniformly dis-
tributed inU(N). A calculation similar to that in the previous paragraph yields for the
average oveu:

h
4€?

2 2 _ 3.2 _ 2 3 2 _ 2 3 3
X [2T1+T1— TULp T T U T T Ty T T T T T Tyt 71+72—] ’

(Glu=Nry 1y (t + 7. =11 ) 4 (o 1 — 71 ) 70

where we have abbreviategd. = tw(£eV). The next step is the average over the trans-
mission eigenvalues. We may still use Eq. (7.2.7), and we note(th@)) = (wk) is
independent of. (The energy scale for variations {a(¢)) is EF, which is much greater
than the energy scale of interdst.) Instead of Eq. (7.2.8) we now have thE8\Lexpansion

(k) = (w)o + N2t + O(N72), (7.2.11)

which contains also a term of ordir! because of the presence®f The I/N expansion
of (G) becomes

n (G) = N{zwo 21 2{r1)§ — 2(71)§ — 2(z2)0 + 2(w)o(2)o
4e? 2—(m)o  (2—(11)0)? (t1)0(2 — (r1)0)°
+O(N™h. (7.2.12)

For the application to a disordered wire we use again Eq. (7.2.10) for the motagiats
which do not depend on whethéf is broken or not. We also neéd, which in the

presence off is given by [21]§7; = —%. Substitution into Eq. (7.2.12) yieldsc =

—3€?/h, cf. Table 7-1.
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(3) noT, noD — Now u(eV) andu(—eV) are independent, each with a uniform
distribution inU(N). Carrying out the two averages ovel(N) we find

h _ N7y 7y
702 (Ghu= . (7.2.13)

Ty T — T4 T

The average over the transmission eigenvalues becomes

h N(z1)0 1

22 (G) = 2~ (o +O(N™), (7.2.14)
where we have used thét; = 0 because of the absencedf We conclude thaiG = 0
in this case, as indicated in Table 7-1.

This completes the calculation of the weak-localization correction to the average con-
ductance. Our results, summarized in Table 7-1, imply a univ&saidV -dependence of
the conductance of an NS microbridge. Raising f8#stnd thenV leads to two subsequent
increases of the conductance, while raising Msind thenB leads first to a decrease and
then to an increase.

So far we have only considered tiN°) correctionsG to (G) = Gg + §G. What
about the®(N) termGo? From Egs. (7.2.9), (7.2.12), and (7.2.14) we see that if either
or D (or both) are broken,

. 4e? N(t1)0

_ 1 -1
Go= - —teng = /N (3+L/0) . (7.2.15)

In the second equality we substituted [21])o = (1+L/¢)~1, whichin the limit¢/L — 0
reduces to Eq. (7.2.10). If both andD are unbroken, then we have instead the result [28]

Go= (2¢?/h)N[1+ L/t +0@/L)] L. (7.2.16)

The difference between Egs. (7.2.15) and (7.2.16) is a contact resistance, which has the
valueh/4N € in Eq. (7.2.15) but is twice as large in Eq. (7.2.16). In contrast, in a normal-
metal wire the contact resistancehig2N €2, independent oB or V. The B andV-depen-
dent contact resistance in an NS junction is superimposed db émelV -dependent weak-
localization correction. Since the contribution(t®) from the contact resistance is of order
(€2/h)N(¢/L)?, while the weak-localization correction is of ordef/ h, the former can
only be ignored ifN(¢/L)? « 1. This is an effective restriction to the diffusive metallic
regime, wheré/L <« 1 andNZ/L > 1. To measure the weak-localization effect without
contamination from the contact resistanceNif¢/L)? is not< 1, one has two options:
(1) Measure theB-dependence at fixed > Ec/e; (2) Measure thé/-dependence at
fixed B > B¢. In both cases we predict an increase of the conductance, by an amount
%ez/h and%ez/h, respectively. In contrast, in the normal state weak localization leads to
a B-dependence, but not to\&dependence.

We performed numerical simulations similar to those of Ref. [11] in order to test the an-
alytical predictions. The disordered normal region was modeled by a tight-binding Hamil-
tonian on a square lattice (lattice constajtwith a random impurity potential at each site
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Figure 7-3. Numerical simulation of the voltage dependence of the average differential conductance
for B = 0 (left panel) and for a flux 6 h/e through the disordered normal region (right panel). The
filled circles are for an NS junction; the open circles represent the V-independent conductance in
the normal state. The three sets of data points correspond, from top to bottom, to £/L = 0.31, 0.23,
and 0.18, respectively. The arrows indicate the theoretically predicted net increase of (G) between
V =0andV > E¢/e

(uniformly distributed betwee&%ud). The Fermi energy was chosenBt = 1.57Ug
from the band bottomUy = h?/2m&?). The lengthL and widthW of the disordered
region areL = 167a, W = 35a, corresponding ttN = 15 propagating modes &i-. The
mean free path is obtained from the conducta@ce (2e?/h)N(1+ L/¢)~1 of the nor-
mal region in the absence 6f. The scattering matrix of the normal region was computed
numerically ate = +eV, and then substituted into Eq. (7.2.2) to obtain the differential
conductance.

In Fig. 7-3 we show th&/ -dependence dB (averaged over some 3 dnpurity config-
urations), for three values d@df The left panel is forB = 0, the right panel for a flux of
6 h/e through the disordered region. TMedependence foB = 0 is mainly due to the
contact resistance effect of ordui(¢/L)?, and indeed one sees that the amount by which
G increases depends significantly 64 The V-dependence in & -violating magnetic
field is entirely due to the weak-localization effect, which should be insensitive(&s
longasl/L <« 1« N¢/L). Thisis indeed observed in the simulation. Quantitatively, we
would expect that application of a voltage increaggsby an amoun%ez/ h for the three
curves in the right panel, which agrees very well with what is observed. In the absence of
a magnetic field the analytical calculation predicts a net increa&)iby 0.79, 046, and
0.25 x €/h (from top to bottom), which is again in good agreement with the simulation.

’Our analytical calculation refers to the net increasé@f betweenV = 0 andV > E¢/e. We can not
describe the non-monotonit-dependence at intermediate observed in the simulation f& = 0.
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Figure 7-4. (a) Two Feynman paths interfering constructively in the presence of 7. (b) Two paths
involving Andreev reflection (solid dot), which interfere destructively both in the presence and ab-
sence of 7.

In normal metals, the weak-localization correcti®@ is explained in terms of con-
structive interference of pairs of time-reversed Feynman paths (Fig. 7-4a) [22]. This in-
terference is destroyed by a magnetic field. One might wonder what kind of interfering
paths are responsible féG in an NS junction withoutZ. Although our theory is not
formulated in terms of Feynman paths, an interpretation of the quaviigyin Eq. (7.2.5)
using Feynman paths is possible. The two simplest interfering paths are shown in Fig.
7-4b. Regardless of wheth@r is broken or not, there is an exact cancellation of the phase
shifts accumulated by the electron and the hole which traverse the loop in the same di-
rection. What remains is a phase shiftrofdue to the double Andreev reflection. As a
consequence, the path with the double loop interferes destructively with the path without a
loop, giving rise to a negativeG.

7.3 Phase-dependent magnetoconductance fluctuations in
a chaotic Josephson junction

The conductance of a mesoscopic metal shows small fluctuations of universefl/dizas

a function of magnetic field [1, 2]. These universal conductance fluctuations are sample-
specific, which is why a plot of conductanGversus magnetic fiel® is called a “mag-
netofingerprint”. The magnetoconductance is sample-specific because it depends sensiti-
vely on scattering phase shifts, and hence on the precise configuration of scatterers. Any
agency which modifies phase shifts will modify the magnetoconductance. Altshuler and
Spivak [29] first proposed to use a Josephson junction for this purpose. If the metal is
connected to two superconductors with a phase differgnoéthe order parameter, the
conductancé& (B, ¢) contains two types of sample-specific fluctuations: aperiodic fluctu-
ations as a function oB and 2r-periodic fluctuations as a function gf The magnetic

field should be sufficiently large to break time-reversal symmetry, otherwise the sample-
specific fluctuations will be obscured by a much stronBerand ¢-dependence of the
ensemble-averaged conductance fL0].

8sample-specific conductance fluctuations at zero magnetic field have been observed experimentally by
P. G. N. de Vegvar, T. A. Fulton, W. H. Mallison, and R. E. Miller, Phys. Rev. [#3t1416 (1994).
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In a recent Letter, Den Hartog et al [30]. reported the experimental observation of
phase-dependent magnetoconductance fluctuations in a T-shaped two-dimensional electron
gas. The horizontal arm of the T is connected to two superconductors, the vertical arm to
a normal metal reservoir. The observed magnitude of the fluctuations was much smaller
thane?/ h, presumably because the motion in the T-junction was nearly ballistic. Larger
fluctuations are expected if the arms of the T are closed, leaving only a small opening (a
point contact) for electrons to enter or leave the junction. Motion in the junction can be
ballistic or diffusive, as long as it is chaotic the statistics of the conductance fluctuations
will only depend on the number of modes in the point contacts and not on the microscopic
details of the junction.

In this section we present a theory for phase-dependent magnetoconductance fluctu-
ations in a chaotic Josephson junction. We distinguish two regimes, depending on the
relative magnitude of the number of moddsandN in the point contacts to the supercon-
ductors and normal metals respectively. Kbrs> N the¢-dependence of the conductance
is strongly anharmonic. This is the regime studied by Altshuler and Spivak [29]. For
M < N the oscillations are nearly sinusoidal, as observed by Den Hartog et al [30]. The
difference between the two regimes can be understood qualitatively in terms of interfer-
ing Feynman paths. In the regimld < N only paths with a single Andreev reflection
contribute to the conductance. Each such path dependgswith a phase factoe™ ¢/2,
Interference of these paths yields a sinusoitt@lependence of the conductance. In the
opposite regimeM > N, quasiparticles undergo many Andreev reflections before leav-
ing the junction. Hence higher harmonics appear, and the conductance becomes a random
2 -periodic function ofp.

The system under consideration is shown schematically in Fig. 7-5. It consists of a
chaotic cavity in a time-reversal-symmetry breaking magnetic flavhich is coupled
to two superconductors and to one or two normal metals by ballistic point contacts. The
superconductors ¢&nd $) have the same voltage (defined as zero) and a phase difference
¢. The conductance of this Josephson junction is measured in a three- or four-terminal
configuration. In the three-terminal configuration (Fig. 7-5a), a curftethdws from a
normal metal N into the superconductors. The conductafice- | /V; is the ratio ofl
and the voltage differencé; between N and §, S;. This corresponds to the experiment
of Den Hartog et al [30]. In the four-terminal configuration (Fig. 7-5b), a curteitaws
from a normal metal Ninto another metal N The conductanc& = 1 /(V1 — Vo) now
contains the voltage difference betweepn &hd No. This is the configuration studied by
Altshuler and Spivak [29].

Following Ref. [30] we split the conductan€&(B, ¢) = Go(B) + G4(B, ¢) into a
¢-independent background

2n
Go(B) :/0 %G(B,q&), (7.3.1)

plus 2r-periodic fluctuations5,. In the absence of time-reversal symmetry, the ensem-
ble average/G(B, ¢)) = (G) is independent oB and¢. Hence(Go(B)) = (G) and
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(a) N, Ny N, (b)

|
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Figure 7-5. Josephson junction in a three-terminal (a) and four-terminal (b) configuration.

(Gg(B, ¢)) = 0. The correlator oG is
C(5B,8¢) = (G(B,d)G(B+3B, ¢+ 35p)) — (G2 (7.3.2)
Fluctuations of the background conductance are described by the correl@gyr of
Co(8B) = (Go(B)Go(B +8B)) — (G)?

2 ds

= / dog C(8B, 89). (7.3.3)
0 27

(In the second equality we used th&sGo) = 0.) The differenceCy = C — Cq is the

correlator ofGy,

Cs(8B.8¢) = (Gy(B,$)Gy(B+ 5B, ¢+ 5¢)). (7.3.4)

We compute these correlators for the three- and four-terminal configurations, beginning
with the former.

In the three-terminal configuration, the cavity is connected to three point contacts (Fig.
7-5a). The contact to the normal metal Mpropagating modes at the Fermi energy, the
contacts to the superconductors hdwg2 modes each. The&N + M) x (N + M) scattering
matrix S of the cavity is decomposed intd x M (N x N) reflection matrices (r’) and
N x M (M x N) transmission matricets(t’),

rt’
S= ( o ) (7.3.5)

The conductance at zero temperature is determined by the matiot scattering ampli-
tudes from electron to hole [12, 16],

G = 2trs, s (7.3.6)
She = —it*(1+€®Pre”®r )_1eiq’t’.

The diagonal matrixb has diagonal elements,, = ¢/2if1 < n < M/2 and—¢/2 if
1+ M/2 < n < M. We measuré in units of 22/ h.
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stub

B=0 B=%0

Figure 7-6. Schematic picture how the magnetic field is included in the scattering-matrix ensemble.
A chaotic cavity with a spatially homogeneous magnetic field (left diagram) is statistically equivalent
to a chaotic cavity in zero magnetic field (right diagram), which is coupled to a closed lead (a stub)
having a non-symmetric reflection matrix.

For chaotic scattering without time-reversal symmetry, the m&iis uniformly dis-
tributed in the unitary group [31]. This is the circular unitary ensemble (CUE) of random-
matrix theory [32]. The CUE does not specify h&mat different values oB is correlated.

The technical innovation used in this section is an extension of the CUE, which includes
the parametric dependence of the scattering matrix on the magnetic field. The method con-
sists in replacing the magnetic field by a time-reversal-symmetry breaking stub (see Fig.
7-6). This idea is similar in spirit to &tiker's method of modeling inelastic scattering by

a phase-breaking lead [33]. The stub contadilggp modes. The end of the stub is closed,

so that it conserves the number of particles without breaking phase coherenttke{®"

lead, in contrast, is attached to a reservoir, which conserves the number of particles by
matching currents, not amplitudes, and therefore breaks phase coherence.) We choose our
scattering basis such that thgyp x Nstup reflection matrix syyp(B) of the stub equals the

unit matrix atB = 0. For non-zero magnetic fields we take

rsun(B) = €®4, a®= > " AL, (7.3.7)
n<m
where the matrixA is real and antisymmetricA,,, = Asm = —An, Particle-number

is conserved by the stub becausgyp is unitary, but time-reversal symmetry is broken,
becauseasyp is not symmetric ifB # 0. In order to model a spatially homogeneous
magnetic field, it is essential th&siyp > N + M. The value ofNgyp and the precise
choice ofA are irrelevant, all results depending only on the single pararaeter

The magnetic-field dependent scattering maf(B) in this model takes the form

S(B) = U11 + U12[1 — rewun(B)U22] L rsun(B) Ua1. (7.3.8)

The matricedJ;; are the four blocks of a matrid representing the scattering matrix of
the cavity atB = 0, with the stub replaced by a regular lead. The distributiob) aé

the circular orthogonal ensemble (COE), which is the ensemble of uniformly distributed,
unitary and symmetric matrices [32]. The distributionS§B) resulting from Egs. (7.3.7)
and (7.3.8) crosses over from the COE B 0 to the CUE forB — oco. One can show
(see Ch. 4) that it is equivalent to the distribution of scattering matrices following from
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the Pandey-Mehta Hamiltonian [3# = Ho + i BH; [whereHp (Hy) is a real symmetric
(antisymmetric) Gaussian distributed matrix].

It remains to relate the paramei@ito microscopic properties of the cavity. We do
this by computing the correlat@mn(B) = (Sy(B)Shn(B + §B)) from Eqg. (7.3.8).
Using the diagrammatic method of Ch. 6 to perform the average over the COE, we find
(for N+ M > 1)

-1
Smn = (N + M)~? [1+(5B/BC)2] . n£m, (7.3.9)

with B = a~1/N + M. This correlator of scattering matrix elements has also been
computed by other methods [35—-38]. Comparing results we can identify

a? = cefve L2min(e, L)/hs, (7.3.10)

with ¢ a numerical coefficient of order unity depending on the shape of the cavity (linear
dimensionL, mean free patld, Fermi velocityvg, level spacing). For example, for a
disordered disk or sphere (radiuss ¢) the coefficient = /8 for the disk andr/15 for
the sphere.

We now proceed with the calculation of the correlator of the conductance. We consider
broken time-reversal symmetrd(> Bc) and assume théd andM are both>> 1. Using
the method of Ch. 6 for the average ov¢y we obtain the average conductan =
2N M/(N + 2M) and the correlator

C(5B,8¢) = 16KN2M?(N + M)?(N +2M)™
(N4 M)2 + (N2 4+ M2K) co2(8¢/2)
[(N + M)2 — M2K co2(5¢/2)]°

: (7.3.11)

where we have abbreviatdd = [l + (6B/ BC)Z]_Z. Eq. (7.3.11) simplifies considerably
in the two limiting regimedM « N andM > N. ForM « N we find

Co(6B) = 24(M/N)?K, (7.3.12)
Cy(5B,8¢) = 8(M/N)*K coss, (7.3.13)

whereas foM > N we have (forlé¢| < )

N M /sB\2]?
Co(6B) = Jsﬂ[”ﬁ(?)} : (7.3.14)

-2
1 M /5B

2
Cy(8B,8¢p) = E[HW(E) +%5¢2} . (7.3.15)

The two regimes differ markedly in several respects:
(1) The Zr-periodic conductance fluctuations are harmonidlif < N and highly
anharmonic ifM > N. A small increment¢ >~ /N/M « 27 of the phase difference
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c(6¢)

L \
0
0051 150051 15 2
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Figure 7-7. Top panels: conductance minus the ensemble average (in units of 2e2/h) as a func-
tion of the phase difference between the superconductors. Bottom panels: normalized correlator
c(8¢) = C(0, 8¢)/C(0, 0), computed from Eq. (7.3.11). (a) is for N = 120, M = 60; (b) is for N = 10,
M = 160

between the superconducting contacts is sufficient to decorrelate the conductsinse if
N.

(2) The variance of the conductance @t= Co(0) + C4(0, 0) has the universal mag-
nitude /2 if M > N, while it is reduced by a factqB8M/N)? if M <« N.

(3) The variance v, = Cy(0, 0) of the ¢-dependent conductancel@ger than the
variance vaGg = Cy(0) of the background conductanceMf > N (by a factor,/M/8N),
while it is smallerif M <« N (by a factor ¥3).

(4) The correlator€, (6 B, 0) andCq (6 B) both decay as a squared LorentziadBy Bc
if M < N. If M > N, on the contraryC,; (5B, 0) decays as a squared Lorentzian, while
Co(8B) decays as a Lorentzian to the powg3

The difference between the two limiting regimes is illustrated in Fig. 7-7. The “sample-
specific” curves in the upper panels were computed from Eq. (7.3.6) for a ngatrich
was randomly drawn from the CUE. The correlators in the lower panels were computed
from Eq. (7.3.11). The qualitative difference betwedn< N (Fig. 7-7a) andV > N
(Fig. 7-7b) is clearly visible.

We now turn to the four-terminal configuration (Fig. 7-5b). The two point contacts to
the superconductors hat/2 modes each, as before; The two point contacts to the normal
metals havéN /2 modes each. The conductance is given by the four-terminal generalization
of Eq. (7.3.6) [39],

heph heph
2(Ri7R%5 — RizRep)
R + R35 + RIS + R3
RI® = GG, R =SSl (7.3.16)

G = RS+ R+
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Se = '—te?®rr (14 eiq’re_iq’r*)_léq’t’.
Here(ci))mn=1if m=n < N/2 and 0 otherwise, anch = 1 — ¢;. The matrixs,e was
defined in Eq. (7.3.6). Performing the averages as before, weé@he= N/4 and

C(8B,8¢) = =NZK[(N + M)?+ M2K cos(5¢/2)]
x [(N + M)? — M?K coS(8¢/2)] 2. (7.3.17)

In the regimeM <« N this simplifies to

Co(6B) = &K, (7.3.18)
Cs(8B,8¢) = > (M/N)2KZcosse, (7.3.19)

while in the regimeM > N we find again Eq. (7.3.14) (with an extra factor ¢fL6 on the
r.h.s.).

The four-terminal configuration witM > N is similar to the system studied by Alt-
shuler and Spivak [29]. One basic difference is that they consider the high-temperature
regimekg T > h/tgwen (With tgwe the mean dwell time of a quasiparticle in the junction),
while we assum@& = 0 (which in practice meanssT < h/tgwel). Because of this dif-
ference in temperature regimes we can not make a detailed comparison with the results of
Ref. [29].

The features of the regimkl < N in the three-terminal configuration agree quali-
tatively with the experimental observations made by Den Hartog et al [30]. In particu-
lar, they find a nearly sinusoida+dependence of the conductance, Witk B, 0) being
smaller tharCp(B), while having the sam8-dependence. The magnitude of the fluctua-
tions which they observe is much smaller than what we find for a point-contact coupling
with M and N of comparable magnitude. This brings us to the prediction, that the inser-
tion of a point contact in the vertical arm of the T-junction of Ref. [30] (which is connected
to a normal metal) would have the effect of (1) increasing the magnitude of the magne-
toconductance fluctuations so that it would become of oedigh; (2) introducing higher
harmonics in the-dependence of the conductance. This should be a feasible experiment
which would probe an interesting new regime.

In conclusion, we have calculated the correlation function of the conductance of a chao-
tic cavity coupled via point contacts to two superconductors and one or two normal metals,
as a function of the magnetic field through the cavity and the phase difference between
the superconductors. If the superconducting point contacts dominate the conductance, the
phase-dependent conductance fluctuations are harmonic, whereas they become highly an-
harmonic if the normal point contact limits the conductance. The harmonic regime has
been observed in Ref. [30], and we have suggested a modification of the experiment to
probe the anharmonic regime as well. We introduced a novel technique to compute the
magnetoconductance fluctuations, consisting in the replacement of the magnetic field by a
time-reversal-symmetry breaking stub. This extension of the circular ensemble is likely to
be useful in other applications of random-matrix theory to mesoscopic systems.
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Samenvatting

Deze samenvatting bevat een beknopt overzicht van de in dit proefschrift behandelde on-
derwerpen uit de toevalsmatrixtheorie van quantumtransport.

In de quantummechanica leren we de beweging van elektronen te beschrijven door een
golfvergelijking, met de bijbehorende golfverschijnselen als buiging en interferentie. In
de vaste stof begint het quantummechanische karakter van de elektronen een rol te spe-
len bij kleine afstanden (een micrometer en kleiner) en bij lage temperaturen (een Kelvin
en lager). Voor grotere afstanden en hogere temperaturen gaat het golfkarakter van de
elektronen verloren en volstaat een beschrijving volgens de klassieke mechanica. De be-
naming quantumtransport wordt gebruikt in die gevallen waarin de elektrische geleiding in
belangrijke mate bepaald wordt door het golfkarakter van de elektronen.

Het geleidingsvermogen van een metaal- of halfgeleiderdeeltje wordt bepaald door ver-
strooiing van elektronen aan verontreinigingen of roosterdefecten. Een geringe verschui-
ving van een verontreiniging of defect kan het quantummechanische interferentiepatroon,
en dus het geleidingsvermogen, aanmerkelijk veranderen. Aangezien het in de praktijk
onmogelijk is de plaats van alle defecten precies te kennen, is een statistische aanpak
vereist voor een theorie van quantumtransport: niet de eigenschappeérvérepaald
deeltje staan centraal, maar de kansverdeling voor deeltjes die macroscopisch equivalent
zijn (eenzelfde afmeting en dichtheid van verontreinigingen), maar microscopisch verschil-
lend (verontreinigingen op verschillende plaatsen). In dit proefschrift gebruiken we de to-
evalsmatrixtheorie als het wiskundige kader waarbinnen zo’n statistische beschrijving van
guantumtransport gegeven wordt.

De toevalsmatrixtheorie werd in de zestiger jaren ontwikkeld in de kernfysica voor de
beschrijving van verstrooiing aan zware atoomkernen. De toepasbaarheid voor quantum-
transport is een recente ontdekking. De toevalsmatrixtheorie doet statistische uitspraken
over matrices met toevallig gekozen elementen. De matrix waar het in ons probleem om
gaat is de verstrooiingsmatrix, die de relatie tussen de amplitudes van de ingaande en uit-
gaande golven geeft. Als gevolg van ladingsbehoud is de verstrooiingsmatrix unitair. Ver-
der voldoet hij aan symmetrie-eisen, opgelegd door de fundamentele synemetiehet
systeem, zoals tijdsomkeersymmetrie of spin-rotatiesymmetrie. Als de verstrooiingsma-
trix bekend is, dan weten we ook het geleidingsvermogen. Daarom is het belangrijk, de
kansverdeling van de verstrooiingsmatrix te bestuderen.

In de hoofdstukken twee tot en met vier beschouwen we de kansverdeling van de ver-
strooiingsmatrix voor een verzameling van chaotische “quantumstippen”. Een quantumstip
is een metaal- of halfgeleiderdeeltje dat zo klein is, dat de afstand tussen de energieniveaus
groter is dan de thermische energie. Dit betekent, dat het quantummechanische interferen-
tiepatroon van de elektronen niet wordt uitgesmeerd door hun warmtebeweging (vandaar
het voorvoegsel “quantum”). Men noemt een quantumstip “chaotisch” als de klassieke be-
weging van de elektronen chaotisch is. De stroom door een quantumstip loopt via twee
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puntcontacten, die zo klein zijn dat een elektron eerst het hele volume doorloopt, alvorens
door één van de puntcontacten te ontsnappen. Van buitenaf gezien heeft een quantum-
stip daardoor geen ruimtelijke structuur, en lijkt hij op een “nul-dimensionaal” systeem,
hetgeen de benaming “stip” verklaart. Een verzameling van macroscopisch equivalente
guantumstippen wordt verkregen door de vorm of de Fermi-energie te veranderen.

\olgens de toevalsmatrixtheorie is de verstrooiingsmatrix van een chaotische quantum-
stip met ballistische puntcontacten “zo toevallig mogelijk™: zij is uniform verdeeld in de
groep van unitaire matrices, slechts beperkt door de fundamentele synemeisie het
systeem. Het is essentieel dat de puntcontacten ballistisch zijn. Dat wil zeggen, dat er in
de contacten geen reflecties optreden. In hoofdstuk twee breiden we de theorie uit naar
guantumstippen met niet-ballistische puntcontacten waarin reflectie optreedt aan een tun-
nelbarrére. Het belangrijkste resultaat van dit hoofdstuk is een bewijs van de geldigheid
van de toevalsmatrixtheorie uitgaande van de bekende verdeling van de Hamiltoniaan van
het systeem. Zo heeft de toevalsmatrixtheorie een microscopische grondslag gekregen.

In het derde hoofdstuk van dit proefschrift gaan we in op de gevolgen van het ver-
breken van de fasecoherentie door inelastische processen in quantumstippen. Bij eindige
temperatuur treden dergelijke processen altijd op, voornamelijk ten gevolge van wisselw-
erking tussen de elektronen. Een gecontroleerde manier om fasecoherentie te verbreken
is een meting van de elektrische spanning van een quantumstip. Omdat een spanningsme-
ter (bij benadering) geen stroom trekt, zal ieder elektron dat van de quantumstip naar de
spanningsmeter gaat, door een ander elektron uit de spanningsmeter worden vervangen.
De golffunctie van dit andere elektron heeft een willekeurige andere fase, en kan dus geen
aanleiding meer geven tot quantuminterferentie. We berekenen de kansverdeling van het
geleidingsvermogen voor een quantumstip met spanningsmeter, gebruikmakend van de to-
evalsmatrixtheorie van het vorige hoofdstuk. Vervolgens gebruiken we de spanningsmeter
als een model voor inelastische processen bij eindige temperatuur.

In hoofdstuk vier staat de “vertragingstijd” in een chaotische quantumstip centraal. Dit
is de tijd die een elektron in het deeltje doorbrengt, voordat het door een van de punt-
contacten ontsnapt. De vertragingstijd hangt nauw samen met de energie-afgeleide van
de logarithme van de verstrooiingsmatrix, de zogenaamde Wigner-Smith vertragingstijd-
matrix. In tegenstelling tot de verstrooiingsmatrix zelf, was over de kansverdeling van de
vertragingstijdmatrix weinig bekend. Wij zijn er in geslaagd de kansverdeling van de ver-
tragingstijdmatrix te berekenen. Deze verdeling stelt ons in staat om de frequentie- en
energieafhankelijkheid van het geleidingsvermogen van een quantumstip te bepalen.

In hoofdstuk vijf verschuift de aandacht van nuldimensionale systemen (stippen) naar
eéndimensionale systemen (draden). Als een gevolg van destructieve interferentie, strekken
de golffuncties zich in een wanordelijke draad slechts over een eindige afstand, de loka-
lisatielengte, uit. Bijgevolg is een draad die langer is dan de lokalisatielengte een isolator.
Er zijn twee theoretische methoden om lokalisatie in wanordelijke draden te beschrijven:
de veldentheorie van Efetov en Larkin, en de toevalsmatrixtheorie van Dorokhov, Mello,
Pereyra, en Kumar. In de eerstgenoemde methode wordt het quantummechanische diffusie-
proces beschreven door het niet-lineairenodel, bekend uit de hoge-energiefysica. In de
laatstgenoemde theorie wordt de draad opgebouwd uit dunne plakjes, die ieder een on-
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afhankelijk gekozen verstrooiingsmatrix hebben. De kansverdeling van de verstrooiings-
matrix van de gehele draad volgt dan uit een Fokker-Planckvergelijking. Hoewel deze twee
theoriesh in het begin van de tachtiger jaren aan hetzelfde instituut (het Landau Instituut in
Moskou) bedacht zijn, hebben ze zich sindsdien geheel los van elkaar ontwikkeld. In dit
hoofdstuk laten we zien, dat ze wiskundig equivalent zijn.

In de voorgaande hoofdstukken hebben enkele basisprincipes van de toevalsmatrix-
theorie van quantumtransport door chaotische quantumstippen en wanordelijke draden de
revue gepasseerd. Om de toevalsmatrixtheorie daadwerkelijk toe te passen, is wiskundig
gereedschap nodig om statistische gemiddelden van functies van toevalsmatrices te bereke-
nen. Een veel voorkomend probleem is het nemen van een gemiddelde over de groep van
unitaire matrices. Dit treedt bijvoorbeeld op als het gemiddelde geleidingsvermogen van
een chaotische quantumstip berekend wordt. Voor kleine unitaire matrices (bijvoorbeeld
de 2x 2 verstrooiingsmatrix van een quantumstip met puntcontacten die st&chtsdde
doorlaten) kan dat door de matrix te parametriseren in Eulerhoeken. Als de matrices groter
zijn, is dat praktisch niet meer mogelijk. Om toch over grbhitex N unitaire matrices te
kunnen middelen, hebben we een diagrammatische techniek ontwikkeld. Deze techniek
stelt ons in staat om een integraal over de unitaire groep als een systematische ontwikkel-
ing in 1/N uit te rekenen. Hoofdstuk zes bevat een beschrijving van de techniek en enkele
toepassingen.

Tenslotte behandelen we in hoofdstuk zeven de toepassing van de toevalsmatrixtheorie
op het geleidingsvermogen van een junctie tussen een normaal metaal en een supergeleider.
Aan het grensvlak tussen het normale metaal (N) en de supergeleider (S) treedt Andreevre-
flectie op: elektronen worden gereflecteerd als gaten. (Een gat is een lege toestand onder
het Ferminiveau, terwijl een elektron een volle toestand boven het Ferminiveau is). Door
de combinatie met Andreevreflectie zijn allerlei quantuminterferentieverschijnselenin NS-
juncties gevarieerder en verrassender dan in gewone metalen. De toevalsmatrixtheorie is
uitermate geschikt om quantumtransport door NS-juncties te beschrijven, omdat alle trans-
porteigenschappen van NS-juncties direct volgen uit de verstrooiingsmatrix van het nor-
male metaal, en de toevalsmatrixtheorie een volledige beschrijving geeft van de kansver-
deling van die matrix. In hoofdstuk zeven berekenen we de zwakke-lokalisatiecorrectie op
het gemiddelde geleidingsvermogen en de fluctuaties rond het gemiddelde. Zwakke loka-
lisatie is een afname van het middelde geleidingsvermogen ten opzichte van de “klassieke”
waarde. In tegenstelling tot een normaal metaal, waar de zwakke lokalisatie onderdrukt
wordt als tijdsomkeersymmetrie wordt verbroken door een magneetveld, blijft zwakke lo-
kalisatie in een NS-junctie bestaan in aanwezigheid van een magneetveld.
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