
On dephasing and spin decay in
open quantum dots

Björn Dieter Michaelis



ii



On dephasing and spin decay in
open quantum dots

PROEFSCHRIFT

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus Dr. D. D. Breimer,
hoogleraar in de faculteit der Wiskunde en

Natuurwetenschappen en die der Geneeskunde,
volgens besluit van het College voor Promoties

te verdedigen op donderdag 16 november 2006
te klokke 16.15 uur

door

Björn Dieter Michaelis

geboren te Saarbrücken, Duitsland, op 13 augustus 1978



Promotiecommissie:

Prof. dr. C.W.J. Beenakker, promotor
Prof. dr. ir. W. van Saarloos, referent
Prof. dr. ir. G.E.W. Bauer (TU Delft)
Prof. dr. J.G.J. van den Brink
Prof. dr. P.H. Kes
Prof. dr. ir. L.P. Kouwenhoven (TU Delft)

Het onderzoek beschreven in dit proefschrift is onderdeel van het wetenschap-
pelijke programma van de Stichting voor Fundamenteel Onderzoek der Materie
(FOM) en de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

The research described in this thesis has been carried out as part of the scientific
programme of the Foundation for Fundamental Research on Matter (FOM) and
the Netherlands Organisation for Scientific Research (NWO).



Contents

1 Introduction 1
1.1 Transport and quantum mechanics . . . . . . . . . . . . . . . . . 2

1.1.1 Scattering: the intuitive boundary conditions . . . . . . . 4
1.1.2 System bath description: the intuitive border . . . . . . . 9

1.2 Entanglement in quantum mechanics . . . . . . . . . . . . . . . . 11
1.2.1 Quantum computation . . . . . . . . . . . . . . . . . . . 11
1.2.2 Entanglement production at a quantum dot . . . . . . . . 13
1.2.3 Entanglement measure for electron pairs . . . . . . . . . . 13
1.2.4 Loss of entanglement . . . . . . . . . . . . . . . . . . . . 14

1.3 Transport in quantum dots . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Open dots . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 Closed dots . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.3 Shot noise . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.4 Weak localization . . . . . . . . . . . . . . . . . . . . . . 20

1.4 This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.A Derivation of Eq. (1.20) - electron tunneling to and from reservoirs 27
1.B Derivation of Eq. (1.20’) - dynamical potential (phonons) . . . . 30

2 Stub model for dephasing in a quantum dot 37
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . 39
2.3 Diffuson and cooperon . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.1 Without voltage fluctuations . . . . . . . . . . . . . . . . 41
2.3.2 With voltage fluctuations . . . . . . . . . . . . . . . . . . 42

2.4 Transport properties . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.1 Weak localization . . . . . . . . . . . . . . . . . . . . . . 43
2.4.2 Shot noise . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



3 Voltage probe model of spin decay in a chaotic quantum dot, with
applications to spin-flip noise and entanglement production 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . 53
3.3 General solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Simplification for spin-isotropic states . . . . . . . . . . . 54
3.3.2 Solution in terms of current correlators . . . . . . . . . . 55
3.3.3 Solution in terms of scattering matrix elements . . . . . . 56
3.3.4 Reformulation in terms of imaginary potential model . . . 57

3.4 Random-matrix theory . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.1 Distribution of scattering matrices . . . . . . . . . . . . . 59
3.4.2 Weak decoherence . . . . . . . . . . . . . . . . . . . . . 61

3.5 Ensemble averages . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6 Critical decoherence rate . . . . . . . . . . . . . . . . . . . . . . 65
3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7.1 Strength and weakness of the voltage probe model . . . . 65
3.7.2 Entanglement detection for spin-isotropic states . . . . . . 67

3.A Derivation of Eq. (3.73) . . . . . . . . . . . . . . . . . . . . . . . 69

4 All-electronic coherent population trapping in quantum dots 75
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Coherent transport . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 Decoherence beats interference trapping . . . . . . . . . . . . . . 79
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Counting statistics of coherent population trapping in quantum dots 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Fano factor . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.2 Weak decoherence . . . . . . . . . . . . . . . . . . . . . 90
5.3.3 Strong decoherence . . . . . . . . . . . . . . . . . . . . . 91

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.A Derivation of the Fano factor . . . . . . . . . . . . . . . . . . . . 92

6 Transfer of entanglement from electrons to photons by optical selec-
tion rules 97
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 General analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

vi



6.3 Application to spin-LEDs . . . . . . . . . . . . . . . . . . . . . . 100
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Samenvatting 105

List of publications 107

Curriculum Vitæ 109

vii



viii



Chapter 1

Introduction

The electron spin was discovered in 1925 by the Leiden physicists George Uh-
lenbeck and Samuel Goudsmit. Today, there is an entire field within electronics,
called spintronics, that makes use of the electron spin to switch a current and con-
trol a logical device. For such applications it is important that the spin maintains
its direction and that an initial polarization does not decay, for example due to a
nuclear magnetic field. In this thesis we describe a method that we have devel-
oped to account for the decay of the spin polarization.
Since a few years a second class of applications of the electron spin is being devel-
oped, in which the spin is the carrier of quantum information. To transfer quantum
information not only the direction of the electron spin should be preserved (up or
down), but also superpositions of the two directions should be maintained. The
degradation of a quantum mechanical superposition is called dephasing (or deco-
herence). The same mechanisms that cause decay of the polarization also cause
dephasing, but there exist also mechanisms that cause only dephasing — without
spin decay. The model for spin decay that we have developed can account for
dephasing as well — because it is a fully quantum mechanical model.
Earlier models for spin decay and dephasing were mostly aimed at electrons in
a small confined region in thermal equilibrium (a so-called quantum dot). Our
model applies to an open system out of equilibrium, through which an electrical
current can flow. The focus on nonequilibrium systems is a central theme of this
thesis. The techniques that we use to describe these systems are introduced in this
first chapter.

1



2 CHAPTER 1. INTRODUCTION

1.1 Transport and quantum mechanics

Text book quantum mechanics knows two qualitatively different ways how the
wave function can behave in time. It can evolve according to the Schrödinger
equation thus evolve according to a unitary operator. So the most general solution
|�(t)〉 of the time independent Schrödinger equation can be written in the basis
of energy eigenstates |φk〉 as

|�(t)〉 =
∑

k

ρk exp(−i Ekt/h̄)|φk〉, (1.1)

where Ek are the energy eigenvalues of the Hamilton operator H , t is the time
and the coefficients ρk are fixed by the initial conditions, e.g. the wave function at
t = 0. Important is here the aspect, that the populations of the individual energy
eigenstates ρk do not change under the unitary evolution.
But the wave function can also be measured. The measurement is a projection
into a part of the hilbert space. But by the use of quantum formalism one can
not predict when a measurement takes place. One does in general not even know
what will be measured, thus in which type of states the projection takes place. The
formalism provides only probabilities for measurement outcomes. These are the
norm of the projection of the wave function into a part of the hilbert space. The
measurement usually1 doesn’t have to conserve any property of the wavefunction
except normalization. The populations ρk do especially not have to be preserved.
I consider it as a transport process if

• one observes two distinct measurements and can explain them only by the
fact that eigenstate populations were changing between,

• or one observes a statistic of pairs of measurements and can explain the
statistic of outcomes only by the assumption that eigenstate populations
were between the two paired measurements changing between.

How is that related to our understanding of wave function propagation? Can trans-
port happen at all, if it is true what I wrote at the first place ? I distinguish three
conceptionally different ways transport can at least be explained within quantum
mechanics:

• The measurement was actually not probing the populations in the eigenba-
sis of the total hamiltonian. Instead was it referring only to a local eigenba-
sis of the hamiltonian. Scattering experiments are usually tried to be done

1This is only true for quantum mechanically complete measurements, quantum mechanically
incomplete measurements preserve some structure of the wavefunctions [1].
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in such a situation. The preparation (first measurement) and detection (sec-
ond measurement) of the projectile particles happen far away from the area
where they undergo the interesting collision.

• One or more unobserved measurements have been between the two ob-
served ones. These intermediate measurements could have changed popu-
lations. As explained above, one can almost never exclude this possibility.
But there are actually methods so that one can at least check if there was
a certain type of unobserved measurement between by clever design of the
experiments. To develop such methods are problems in the field “Quantum
Cryptography”, which has as a goal to find secure channels for informa-
tion transfer. To the “measurement between” one refers there usually as an
eavesdropper [2, 3].

• One just doesn’t know what one is doing. Despite some theoretical effort to
find a systematic approach [4], it is always necessary to postulate in which
basis a measurement apparatus is projecting. Despite the fact, that in good
experiments it seems to be just obvious how a detector acts - it probes e.g.
the spatial separation of a particle wave function in the Stern Gerlach or
the photon impact on the screen in a double slit experiment, there can be
situations in which this separation is much more subtle. As an example of
a dubious experiment, one may think of the spectroscopy of Rydberg states
in atoms or a detection of the passage of individual electrons through quan-
tum dots.
It is further necessary to postulate a hamiltonian for the unmeasured time
evolution. This postulate can of course be checked by exactly these trans-
port measurements. But especially in macroscopic disordered systems one
will never be able to pin down all parameters of the hamiltonian by that.
Thus this lack of knowledge about the evolution operator can lead to spuri-
ous transport effects.

I avoided in the aforementioned definition of transport especially any relation to
locality. Common sense transport has of course to do with some changes in lo-
cal behavior. But I hope that the general view stimulates to think more about
the technical similarities which appear in the use of quantum theory to under-
stand something like “transfer from point A to point B” as well as “changing the
wavevector from k to q”. One could consider e.g. in the broader sense as well the
loss of magnetization of a sample of iron as a transport process even if the sample
itself didn’t move.
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1.1.1 Scattering: the intuitive boundary conditions

S

t=0

t=0

t=

t= -

Figure 1.1: the grey line symbolizes the actual
evolution in a scattering process. The black
lines stand for the evolution of in- and out-
going scattering states. They evolve with a
free hamiltonian but are at t = 0 connected by
the scattering matrix S.

What one calls usually a scat-
tering experiment requires that
the wave function of the parti-
cle to be scattered is prepared (at
t = −∞) and detected (at t =
∞) in an area, where its evo-
lution operator U 0 is build up
by the free hamiltonian H0. If
|�〉 is the initial state at t =
−∞, then the actual state for all
times is given by the full evolu-
tion operator U (t ,−∞)|�〉 (see
Fig. 1.1). Thus its knowledge
provides of course also all infor-
mation about the final state fol-
lowing from |�〉. The follow-
ing construction defines the scat-
tering matrix S and describes as
well the evolution between the
limiting states. |�〉 evolves un-
til t = 0 only with the free evo-
lution operator. This state is then multiplied by the scattering matrix and evolves
further with the free evolution operator until t = ∞ to the right final state. Thus all
the complications through the scattering process are put into the “instantaneous
acting” operator S.
By just looking at its formal definition

lim
T →∞ U (T ,−T ) = lim

T →∞ U0(T ,0)SU0(0,−T ) (1.2)

one finds first of all, that all population transfers in the eigenbasis of H0 are taken
care of by S. But further may one think that one can arbitrarily choose some
part of H as H0 and thus obtains just different matrix elements for S. Despite
this is formally true, one wants to take H0 in the aforementioned sense as the
hamiltonian of the free particle because it makes S to be an object that can be
calculated very well by perturbation theory in H − H0.
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Landauer formula

An expression for the current through a little constriction between two big metals
has been derived from that scattering point of view. The boundary conditions of
the scattered particles have to be adjusted to the situation. Exactly this requires
some intuition. And despite one understands very well pure metal, one could
be worried about the back-effect of the little constriction to the big pure metal.
This worry is supported by the Kondo problem [5], in which a single magnetic
impurity is embedded in a pure metal and changes the thermodynamic properties
of the whole system.
But here and throughout the whole thesis we stick to a free electron description
of the metal. Thus carriers that approach the constriction are fully characterized
by their occupation expectation value

〈a†
n,X (E)an′,X ′(E ′)〉 = δn,n′δX ,X ′δ(E − E ′) f (E ,µX , T ). (1.3)

The operator a†
n,X (E) creates an electron in the reservoir X with quantum number

n, which labels spin and orbital degrees of freedom, and total energy E . T is the
temperature and µX the chemical potential in the X th reservoir. f (E ,µX , T ) is the
fermi function. Because we will later study the relation to quantum information,
it is convenient to state the same by writing the many particle density matrix of
the reservoir

ρ̂in = �E ,X ,n

(
f (E ,µX , T )a†

n,X (E)|0〉〈0|an,X (E)+ [1− f (E ,µX , T )]|0〉〈0|
)

.

(1.4)

Expectation values that involve electrons leaving the scatterer, created by b†
n,X (E),

can now be related to the in-going ones by use of the operator identity

bn,X (E) = S(n, X , E ;n′, X ′, E ′)an′,X ′(E ′), (1.5)

in which one has to sum over repeated indices. The scattering matrix S(..) is
unitary, which ensures here the conservation of the number of particles in the
scattering events. A first interesting expectation value is the average current. The
operator for the current through the plane in lead X at position z is

I (z, t , X ) = h̄e

2im

∫
dn

[
�†(z, t ,n, X )

∂

∂z
�†(z, t ,n, X )

−
(

∂

∂z
�†(z, t ,n, X )

)
�(z, t ,n, X )

]
, (1.6)
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where the integral over dn collects eventual spin and orbital degrees of freedom.
The field operator � is related to the second quantized creation and annihilation
operators by

�(z, t ,n, L) =
∫

d E exp(−i Et/h̄)
∑
m=1

χm(xn, yn)�n

(2π h̄2km/M)1/2
,

×[an,L exp(−ikmz)+bn,L exp(ikmz)] (1.7)

and a corresponding expression for X = R, in which the directions of the momenta
km are inverted. The χm are modes in the transversal direction, �n is a spin 1/2
spinor and M the electron mass. We have introduced the wave vector km which
can be expressed through E = Em + h̄2k2

m/2M by the total energy E and the
energy of the modes Em . If one inserts Eq. (1.7) into Eq. (1.6) and assumes, that
vm(E) is a constant in the contributing energy range around the fermi surface,
after some algebra, z drops out far away from the constriction and we obtain

I (z, t , X ) = I (X , t) = e

2π h̄

∑
m

∫
d Ed E ′ exp(i (E − E ′)t/h̄)

×
[
a†

m,X (E)am,X (E ′)−b†
m,X (E)bm,X (E ′)

]
, (1.8)

from which one may eliminate the outgoing degrees by use of the scattering ma-
trix in Eq. (1.5). The average current is then time independent and given by

〈I (L , t)〉 = e

2π h̄

∫
d E Tr[t†(E)t(E)] ( f (E ,µL , T )− f (E ,µR , T )) .

(1.9)

One sees, that the average current is given entirely by the sum of the eigenval-
ues Tn(E) of the transmission matrix product

∑
n,n′ t

†
n,n′(E)tn′,n(E) with tn,n′(E) =

S(n, L , E ;n′, R, E). At zero temperature and if the voltage difference V = (µL −
µR)/e is small compared to the scale over which Tn(E) varies, one writes Eq.
(1.9) in the form

〈I (L , t)〉 = G V , G = e2

2π h̄

∑
n

Tn(EF ), (1.10)

known as the Landauer Formula [6].

Voltage probe model

Suppose one believes to know the hamiltonian H , which describes the full time
evolution. Then one can construct a matrix S to describe the scattering problem
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in the sense above and predict transport characteristics.
But what shall one do, if experiments show that this description is wrong? One
way to react on that would be to change the hamiltonian, renew the prediction and
hope that this helps. Thus one can e.g. extend the hilbert space or change param-
eters of the hamiltonian. This process of including more and more but still not too
complicate interactions is a well known procedure in traditional condensed matter
physics. There one wants to describe properties of different type of materials and
finds out e.g. that the electron phonon coupling is in some materials more impor-
tant than in others.
But our formulation of transport in terms of S and the boundary conditions sug-
gests an alternative strategy to design a theory which is not in contradiction to the
experiment. Instead of the hamiltonian, one can manipulate the scattering matrix
itself as well as the hilbert space of scattering states. Markus Büttiker was the
first person who realized this and and got the idea of the Voltage probe concept
(sometimes also called third lead model) [7]. It was used to include inelastic scat-
tering events into the elastic scattering matrix description of the transport through
little constrictions. He introduces despite the fact that there are only two real (man
made) contacts of the constriction a third one, like depicted in Fig. 1.2. But Büt-
tiker had now to postulate two parts of the extended model.
First he had to make use of the freedom to define the scattering matrix elements
towards and away from that third lead. There is no detailed systematic way how
one should choose all of these matrix elements. In practice one rather has to take
care that there are no “anomalies” [8] induced by it. Model calculations have
shown that at least the total weight of these scattering matrix elements from the
fictitious lead to another lead, thus e.g.

TR,3(E) =
∑
n,n′

S(n, R, E ;n′,3, E)S∗(n, R, E ;n′,3, E), (1.11)

seem to have some general intuitive meaning. We come to an example in Chpt.
3 where we map the voltage probe model to a model with imaginary potential.
There we also look only at statistical behavior of observables. We postulate these
a priori unknown scattering matrix elements not only for one scattering matrix,
but for a whole set of them. Thus we can even hope, that this averaging over many
guessed scattering matrices can diminish individual anomalies.
Second, Büttiker had to postulate the in-going state in the fictitious voltage probe.
Again - this seems to be a large reservoir of freedom. But led by the goal of
simplicity and conservation laws he and others proposed several solutions for
that, like e.g. the decoherence voltage probe model [9, 10]. What do we mean
here by conservation laws? It is in quantum transport physics [11] (but also other
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(a) (b)

Figure 1.2: The voltage probe idea maps a scattering center allowing inelastic
processes to a a purely elastic scattering problem in an extended hilbert space.
(a): Sketches the transport from the left side with high to the right side with low
electron density. The electrons have to pass a constriction containing some centers
for inelastic collisions. (b): Corresponding scattering area with attached voltage
probe, the stationary state in the voltage probe (symbolized by the rings) should
not only allow a realistic mapping but also fulfill the condition of simplicity.

disciplines like hydrodynamics [12]) often necessary to be careful in defining
a model, because one could violate widely accepted expectations on it. Such
expectations concern conservation laws that follow from symmetries. One expects
e.g. that the averaged number of electrons which enter a constriction from the
right and left is the same as the number of particles that leave the constriction.
Thus the constriction is on average no source or sink of electrons. It implies that
the current inside the fictitious lead vanishes

〈I (t , L)〉 = −〈I (t , R)〉 → 〈I (t ,3)〉 = 0. (1.12)

Assuming that the incoming electrons in the voltage probe are distributed accord-
ing to a fermi distribution at zero temperature, f (E ,µ3,0), Eq. (1.12) fixes its
chemical potential µ3.
One can impose more and more conservation laws and consequently has to de-
sign the state in the voltage probe more and more sophisticatedly. Again - Chpt. 3
exemplifies this, and we impose there that the particle number is even conserved
for each energy.
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1.1.2 System bath description: the intuitive border

We are going to discuss now a description for transport which is different from
the scattering view. It complements it in the case of transport through a little
constriction in a way which we will understand a bit later. Our goal is to find an
equation describing the evolution of the state in a little part of a big system. Or to
be more precise - it should describe the evolution of that object which is sufficient
to calculate at all times the expectation value of every operator that acts only in
that little part of the big system. This object is called reduced density matrix

ρred (t) = Trpar (|�(t)〉〈�(t)|) . (1.13)

It is obtained by performing the partial trace Trpar (..) over all the degrees which
do not belong to the little part in the ’ket-bra’ construction |�(t)〉〈�(t)| with
|�(t)〉 as the total wave function. In the following we call the little part “System”
and the remaining part “bath”. The total hamiltonian

H = HSys + Hbath + V (1.14)

contains V as coupling between them. It seems here arbitrary to make this distinc-
tion between System and bath - after all, the predictions should in principle not
depend on it. But exactly this changes if one uses the approximate time evolution
of the System density matrix [13]

dρSys(t)

dt
= −i h̄−1 [HSys ,ρSys(t)

]
−h̄−2e(−i HSys t/h̄)

∫ t

0
dτ Trbath

[
Ṽ (t),
[
Ṽ (τ ),ρSys(τ )×ρbath

]]
e(i HSys t/h̄),

(1.15)

shorter written as

dρ̃(t)

dt
= −h̄−2

∫ t

0
dτ Trbath

([
Ṽ (t), [Ṽ (τ ), ρ̃Sys(τ )×ρbath]

])
, (1.16)

where operators with a tilde are given in the interaction picture, thus e.g. Ṽ (t) =
exp(i (HSys + Hbath)t)V exp(−i (HSys + Hbath)t/h̄). [.., ..] is the commutator. The
approximation in Eq. (1.15) requires among others that the bath is for all times
described by the equilibrium density matrix ρbath.2 We apply this formula in two
situations. The little constriction plays the role of the System and we write

HSys =
∑

n

E(n)c†
ncn (1.17)

2To assume equilibrium means to enforce [Hbath ,ρbath] = 0 for all times.
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with c†
n as fermionic creation operator in the n-th energy eigenstate. We ignore

many body interactions because we will later only look at situations where we
anyway don’t have to treat them seriously.
We consider as a bath

• the two electron reservoirs of different chemical potential µL ,µR . The
reservoirs support electron tunneling into and out of the constriction.
Thus we write micro canonically

Hbath =
∑

k

ε(k)
(

d†
k dk + f †

k fk

)
, (1.18)

with dk ( fk) referring to the electrons in the left (right) reservoir and k
lumps together all their quantum numbers. Further is

V =
∑
nk

T (L)
kn c†

ndk + T (R)
kn c†

n fk +h.c.. (1.19)

Appendix (1.A) derives then with help of Eq. (1.15) the master equation for
the electron transport through the System in the Lindblad form

h̄
dρSys(t)

dt
= −i [HSys ,ρSys(t)]+

∑
xn

LxnρSys(t)L†
xn

−1

2

(
L†

xn LxnρSys(t)+ρSys(t)L†
xn Lxn
)

(1.20)

with L Ln = √
γLnc†

n, L Rn = √
γRncn and γxn as tunneling rates that depend

especially on the T (x)
kn ’s. It is necessary to understand that the derivation

relies very much on the fact, that the individual energies E(n), or more
correct the states to which their corresponding eigenstates hybridize to, are
energetically several kBT inside the voltage window [µR,µL]. This stands
in contrast to the derivation of the Landauer formula, because there we
assumed the hybridization to be very homogeneous over the whole voltage
window.

• a bosonic potential that couples to the position of the electrons inside the
constriction. It resembles electron phonon interaction and it can e.g. lead
to exchange of electronic energy and phononic energy.
For simplicity we look here just at the situation in which we can identify
quite individual dots inside the constriction and write the operators for these
dot orbitals αn in terms of the eigen modes of the System

αn =
∑

n′
Mn,n′cn′ . (1.21)
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Distinct bunches of harmonic oscillators are coupled to each of the dot
orbitals

Hbath =
∑

ni

�ni h
†
ni hni V =

∑
ni

Vniα
†
nαn(h†

ni +hni ) (1.22)

Appendix (1.B) shows, that the time evolution has under reasonable as-
sumptions again Lindblad form

h̄
dρSys(t)

dt
= −i [HSys ,ρSys(t)]+

∑
n

LnρSys(t)L†
n

−1

2

(
L†

n LnρSys(t)+ρSys(t)L†
n Ln
)

(1.23)

but now with the jump operators Ln = √
γφ,nα

†
nαn where the damping rates

γφ,n depend on the coupling constants Vni .

1.2 Entanglement in quantum mechanics

1.2.1 Quantum computation

The wish that machines should support people in doing mathematical tasks is a
quite old one and has driven the invention of abacus as much as that of nowadays
computers. The computer technology had big impact on the life of many people
also because the performance of processors has been increasing enormously. Thus
one may think that we are close to the point where we don’t need much more
technological development in that respect. And it will probably be true, that the
hardware requirements for writing and printing a letter in 2050 aren’t much higher
than today.
But for everyone who has ever tried to simulate on a computer the behavior of
even a little quantum system it is clear, that our computers are very very limited
in that respect. The basic reason for this is that the nowadays existing computers
are classical whereas the evolution of the wave function is quantum. At this point
one may be puzzled: Don’t even todays computers follow the laws of quantum
mechanics, because “classical” is just a special case of “quantum” ? Despite this
is true, the events which correspond in a classical computer to the objects in the
mathematical algorithms -intermediate results- are outcomes of measurements,
thus real numbers. In the process of obtaining them one lost phase information.
But to simulate a quantum system, one needs exactly such phase information
“on the way” to obtain in the end a good real valued prediction. A quantum
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computer tries to overcome this conceptual mismatch. In a quantum computer the
intermediate information is contained in coefficients of the wave function. And
it is not just that these are complex numbers what could make them so powerful,
because a complex number is just twice as good as a real one. The qualitative
difference to a classical computer is based on the fact, that there exist even in
little quantum systems simultaneously very many of those coefficients - many
more than even a quick repetition of measurements on such a system can generate
real numbers in a reasonable time. A quantum computer should be able to use
all of these complex coefficients of the wavefunction as mathematical objects - an
enormous resource !
One needs for the realization of a quantum computer to find quantum algorithms -
a sensible way to use its resources - and hardware which suits them. Unfortunately
there are just a few quantum algorithms. There is the famous Shor algorithm for
factorizing numbers [14], the Grover algorithm for searching in datas [15] and
some other ones. A hardware, which allows to run e.g. the Shor program is
believed to contain as information units the quantum generalization of a bit: the
qubit. A qubit is a two dimensional hilbert space , lets say of basis |1〉 and |0〉, in
which one can generate all superpositions a|1〉+b|0〉. It is important that a pair of
locally distinct qubits, a|10〉+b|01〉+ c|11〉+d|00〉, can become entangled into
locally non-separable states, the so called Bell states

(|11〉+ |00〉)/√2 (1.24)

(|00〉− |11〉)/√2 (1.25)

(|01〉+ |10〉)/√2 (1.26)

(|10〉− |01〉)/√2. (1.27)

Systems in which different particles have a many body interaction, e.g the Hub-
bard model, are known to have energy eigenstates which are very much non-
separable. The simplest such system contains just two electrons at different posi-
tions. Their two spins �σ1, �σ2 can have an effective exchange interaction |J |�σ1 �σ2,
which leads e.g. to an entangled ground state (| ↑↓> +| ↓↑>)/

√
2 .

But systems with many body interaction are unfortunately poorly understood.
And especially to calculate or even design their evolution in superpositions of
excited states is still a challenge. The main reason for this is already given above:
the poor performance of classical computers3 for such a task. Fortunately there
could be a way around this - it is known under the name “free electron quan-
tum computation”. It is possible to combine charge and spin measurements to

3and maybe even of our minds
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create a quantum algorithm without any interactions between the qubits [16]. If
one only wants to entangle two qubits, then one can even do this without charge
measurements, as discussed in the next subsection.

1.2.2 Entanglement production at a quantum dot

Interactions are not needed to entangle two particles, if one makes use of fermionic
non-equilibrium states. The out of equilibrium condition can substitute for the en-
tangling strength of many body interactions. In Refs. [17, 18] it was shown that
the spin correlations in the current through biased tunnel junctions or quantum
dots demonstrate the creation of spin-entanglement for non-interacting particles.
Since this is the entangling mechanism that we will study in Chapter 3, we dis-
cuss it here in some detail. We consider a quantum dot with two point contacts
of conductance 2e2/h. So each point contact transmits a single spin-degenerate
electron mode. For an energy larger than the chemical potential on the right and
smaller than that on the left side of the quantum dot, electrons approach the scat-
tering area from the left and are in a separable state. They scatter and can so create
superpositions of six outgoing states with equal energy,

| ↑,↓〉 = b†
R↑(E)b†

L↓(E)|GS〉 (1.28)

| ↓,↑〉 = b†
R↓(E)b†

L↑(E)|GS〉 (1.29)

| ↑,↑〉 = b†
R↑(E)b†

L↑(E)|GS〉 (1.30)

| ↓,↓〉 = b†
R↓(E)b†

L↓(E)|GS〉 (1.31)

| ↑↓,0〉 = b†
R↑(E)b†

R↓(E)|GS〉 (1.32)

|0,↑↓〉 = b†
L↑(E)b†

L↓(E)|GS〉. (1.33)

Here |GS〉 is the groundstate without outgoing particles. Coherences between
states with different particle number on the left (and as well on the right) are
suppressed , because the tunnel junction is fed by a constant voltage source. But
even if one takes this into account, there remains among these six states still the
superposition within the four dimensional subspace of one particle excitations on
each side, Eqs. (1.28 - 1.31). In general a superposition of these states can contain
some non-separability thus can be entangled.

1.2.3 Entanglement measure for electron pairs

From a quantum information point of view, the scattered electron pairs on the two
sides of the quantum dot are shared between two locally distinct observers. Be-
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cause these pairs are in general not exactly in superpositions of the form of the
ideal Bell states, it is desirable to have a measure that tells the degree of usefulness
for quantum computation. Degrees of usefulness are of course always dependent
on the use. And despite the fact, that the development of further quantum algo-
rithm will open new ways of use, we stick to some traditional measure. It is called
bipartite entanglement entropy E and measures to how many Bell pairs one can
convert a large number of copies of a single two electron state [19, 20]

E = number o f equivalent Bell pairs

number o f state copies
. (1.34)

This conversion process has to fulfill the conditions that the two observers com-
municate only via classical channels and perform only local and reversible trans-
formations. It is in that sense a unique measure [21] and can be calculated for
pure states4 as the von Neumann entropy of the partial density matrix seen by just
one of the observers, ρL or ρR respectively,

E = − Tr
(
ρL log2(ρL)

)= − Tr
(
ρR log2(ρR)

)
(1.35)

The number of equivalent Bell pairs is on the other hand a sensible measure,
because the performance of such basic tasks like teleportation [22] or superdense
coding [23] scales with it.
W.K. Wootters has found a generalization of Eq. (1.35) to mixed (total) density
matrices ρ [24]. Because we make use of it in Chpt. 2 we state it here as

E = F

(
1+√

1−C2

2

)
(1.36)

F (x) = −x log2 x − (1− x) log2(1− x) (1.37)

C = max{0,λ1 −λ2 −λ3 −λ4}, (1.38)

where λi are the size ordered eigenvalues of
√√

ρρ̂
√

ρ with ρ̂ = (σ y
L σ

y
R

)
ρ∗ (σ y

L σ
y
R

)
containing the 2×2 pauli matrices σ

y
X in the subspace of the X -th observer.

1.2.4 Loss of entanglement

Interaction of the electron pairs with some bath degrees of freedom can lead to
the situation, that the two observers share some wave function, but that this wave
function is not a product state of a part just in their hilbert spaces and that of the
bath. If the observers act then only locally on their part of the wave function, the

4The density matrix of a pure state ρ has the property ρ = ρ2.
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appropriate object to describe this is the reduced density matrix, which has the
bath degrees traced out like in Eq. (1.13). It is common to distinguish two differ-
ent types of decay of the spin degrees of freedom. Firstly, there is spin relaxation
happening in a typical time T1. This relaxation drives the spin-up and spin-down
populations towards their equilibrium occupation ∝ exp(−E/kBT ), thus changes
the diagonal density matrix elements in the basis of energy eigenstates. Sec-
ondly, there can also be some unwanted change in the off-diagonal elements of
the density matrix. If one looks e.g. on an ensemble of spins initially in phase and
pointing along a direction parallel to an external magnetic field, one finds them
to loose their phase relation due to fields that discriminate them in space or time.
The time scale after which this happens is usually referred to as the coherence
time T2. In closed GaAs quantum dots, hyperfine interaction of the electron spins
with fluctuating nuclear spins is the dominant source of spin decay, with T2 � µs
and T1 increasing from µs to ms with increasing magnetic field [25–28]. In the
open quantum dots considered in this Thesis, the decoherence of the orbital de-
grees of freedom also contributes to the loss of entanglement. Typically, orbital
coherence is lost by electron-electron interactions on a time scale much smaller
than the spin decoherence time in closed quantum dots, so that the total coherence
time τφ  T1. The voltage probe model for spin decay that we develop in Chap-
ter 3 can treat decoherence and relaxation independently, with two different time
scales. But we will analyze the model in that chapter only in the case of equal de-
coherence and relaxation times, respectively zero magnetic field. The model was
however also extended to the case of more rapid decoherence than relaxation [29].

1.3 Transport in quantum dots

1.3.1 Open dots

This thesis addresses in Chpts. 2 and 3 open quantum dots. We call quantum
dots open if their resistance is much smaller than e2/h. This implies that the
broadening h̄/τdwell of the energy levels (due to the finite dwell time τdwell of an
electron in the quantum dot) is large compared to the level spacing �E . The
relatively small value of τdwell in an open quantum dot simplifies the study in two
ways:

• We can use perturbation theory in the small parameter τdwell�E/h to cal-
culate the transport properties. This perturbation theory is essentially a
semiclassical theory, because the effects of the finite level spacing are only
included in first approximation.
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• We can neglect the Coulomb repulsion of the electrons in the quantum dot,
and use the single-electron scattering approximation to describe transport
through the dot.

A common way to create quantum dots is to put metal electrodes on the surface of
a doped semiconductor heterostructure, separated by an insulator. A voltage bias
is then applied between these electrodes, called “gates”, and the heterostructure.
By adjusting these gate voltages one can deplete the two-dimensional electron
gas underneath the electrodes. Fig. 1.3 shows two electron micrographs of such
quantum dots. Both show areas of bright and dark color. The bright color repre-
sents the metal gates. These divide the two electron reservoirs and allow electrons
only to move between them through two relatively narrow constrictions (= point
contacts) and an intermediate wider region (= quantum dot). In an open quantum
dot the width of the constrictions is large compared to the fermi wave length, so
that its resistance is small compared to h/e2.
The quantum dot is called ballistic if the mean free path for impurity scattering is
large compared to its diameter. A ballistic quantum dot is also called an electron
billiard, because the electron motion inside between the narrow constrictions is
expected to be similar to a ball rolling over a billiard table. Of course the classical
motion of a billiard ball does not show interference with itself thus it is an interest-
ing task to search for quantum effects like weak localization in an electron billiard.
Furthermore one already knows from real billiards, that the individual trajectories
inside the billiard depend very sensitively on the exact shape of the boundaries
and on the (initial) speed of the balls. Such sensitivity is called chaotic dynamics.
This makes a detailed calculation for a particular electron billiard very difficult
and the result maybe not very understandable.
To find anyhow some insight into electron billiards one turns to a statistical de-
scription. Rather than studying an individual billiard in a very detailed way, one
studies the average properties of an ensemble of billiards with slightly different
shapes. Random-matrix theory describes statistically well the distribution of scat-
tering matrices of an ensemble of chaotic billiards. Experimentally, such an en-
semble can be created and studied by varying the gate voltages to slightly change
the shape of the quantum dot.

1.3.2 Closed dots

A quantum dot is called closed, if its resistance is larger than e2/h. The level
broadening is then small relative to the level spacing. One can then no longer use
semiclassical perturbation theory, and one has to include the effects of Coulomb
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Figure 1.3: Electron micrographs of two open quantum dot devices. The bright
area is the metal electrode (gate) underneath of which the electron gas is de-
pleted. The two shapes have been fabricated to compare the difference of chaotic
dynamics in the stadium billard (left) with nonchaotic (integrable) dynamics in
the circular billiard (right). The conduction electron density is here 3800µm−2.
These quantum dots are called “open” if the point contacts have resistances below
h/e2. The same device can be closed by increasing the gate voltage, so that the
point contacts are pinched off to a resistance above h/e2. Figures are taken from
Ref. [30].

repulsion in a study of the transport properties. Closed quantum dots behave
in many aspects like atoms. One can identify shell structures, Hund’s rules can
explain how electrons occupy them and structures with connected quantum dots
behave in some sense like molecules [31].
Different to atoms is mainly the possibility to manipulate their electronic struc-
ture, because

• of their susceptibility to magnetic fields. Quantum dots can have sizes much
larger than atoms in their groundstate - an external magnetic field can be
more effective. The orbital energy inside a quantum dot is considerably
changed if the magnetic field B can provide a full flux quantum e/h = AB,
where A is the area of the orbital. Whereas in atoms one has to apply
B-field strength of millions of Tesla, in quantum dots a few Tesla can be
sufficient.

• the possibility to change the electron number in a given device. Electrons
of a dot can come from the conduction band of a doped semiconductor thus
an external potential can change their density.

• they can be connected to different electron reservoirs which allows trans-
port through them.
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1.3.3 Shot noise

Up to now we have only discussed the time-averaged current as a measurable
transport quantity. The correlation function of the time-dependent current fluc-
tuations �I (X , t) = I (X , t) −〈I (X , t)〉 is a further independent observable. It is
defined as

SX ,X ′(t − t ′) = 〈�I (X , t)�I (X ′, t ′)〉 (1.39)

and is the fourier transform of the so called noise power

SX ,X ′(ω) =
∫ ∞

−∞
dτ exp(iτω)SX ,X ′(τ ). (1.40)

The labels X and X ′ indicate two different current-carrying contacts. We refer to
Refs. [32] and [33] for, respectively, an introduction and a review.

The noise power S(ω) is called this way because it is proportional to the power
spectrum of the electromagnetic radiation produced by the current fluctuations.
One way to measure the noise power is to absorb this radiation in a bolometer
(after passing it through a frequency filter), and measure the heat produced. In
a theoretical description of the measurement process we deal with the outcome
of actual current measurements JX (t). These determine the average current and
noise power through

〈I (X , t)〉 = lim
T →∞

1

2T

∫ T

−T
dt JX (t), (1.41)

SX ,X ′(ω) = lim
T →∞

1

T

∣∣∣∣
∫ ∫ T

−T
dtdt ′ exp[iω(t − t ′)]JX (t)JX ′(t ′)

∣∣∣∣ . (1.42)

If there is no voltage applied to the constriction, the noise is called thermal or
equilibrium noise Seq . One can apply the scattering approximation and obtains

Seq
L ,R(ω) = e2ω

π
coth(h̄ω/2kBT )

∑
n

Tn(EF ), (1.43)

which vanishes for zero temperature. 5

5This is for zero frequency actually a special case of the more general Johnson-Nyquist rela-
tion to the conductivity G , Seq

L ,R(0) = 4kB T G , which requires only the validity of the fluctuation
dissipation theorem.
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At finite voltage, there is also the shot noise contribution. The additional
contribution appears because of the projective nature of the electronic reservoirs.
They support unobserved measurements in the particle number basis and let the
electrons seem to pass the constriction in discrete charges.6 If the scattering ap-
proach is valid one obtains at zero temperature for the zero frequency compo-
nent [36, 37]

Sshot
L ,R (0) = e3V

π h̄

∑
n

Tn(EF )[1− Tn(EF )]. (1.44)

In the Coulomb blockade regime where one has to use the master equation (1.20),
one obtains for the zero frequency noise a much more complicated expression.
But generally Sshot(0) is proportional to the time averaged current 〈I 〉 = 〈I (L , t)〉 =
〈I (R, t)〉. The voltage-independent ratio

F = Sshot (0)

2e〈I 〉 (1.45)

is called the Fano factor. It is a numerical coefficient that contains information
on the degree to which the electrons transferred through the conductor are inde-
pendent. For independent electrons, the statistics of transferred charges is Pois-
sonian, with F = 1 (since a Poisson distribution has variance equal to the mean).
For anti-bunched electrons F < 1 and for bunched electrons F > 1. One speaks
of sub-Poissonian and super-Poissonian noise, respectively. In Fig. 1.4 we show
an experiment that measured the Fano factor in an open quantum dot in a two-
dimensional electron gas [38]. The value 1/4 measured in the experiment is in
agreement with the theoretical prediction using random-matrix theory [39] (see
next subsection for more on this technique).
Shot noise probes the particle nature of the electrons, and it is therefore not intrin-

sically a quantum mechanical effect. Indeed, shot noise was already understood
by Schottky in 1918, before the development of quantum mechanics. Quantum
corrections to the shot noise power exist, but they are smaller than the classical
value by a factor 1/N , with N the number of propagating modes in the point con-
tacts. In the experiment of Fig. 1.4 one has N = 5, so the quantum interference
corrections are not negligible, but still relatively small.

6Mathematically one can see this the best in the derivations of counting statistics [34, 35]
by projection technique. One enforces that the density matrices for the reservoirs are almost
diagonal in particle number.
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Figure 1.4: Low frequency noise power of the quantum dot shown in the inset.
The current flows from point contact A to B, point contact C is inoperative. The
solid line is the theoretical prediction which for large currents approaches the
linear behavior S = 1

4 × 2eI . At low currents the noise saturates at the thermal
noise level. The figure is adapted from Ref. [38].

1.3.4 Weak localization

The resistivity of a metal is usually decreasing with temperature [40, 41], be-
cause the inelastic scattering gets frozen out and a Fermi liquid can stabilize. The
residual resistivity at zero temperature is in semi-classical (Drude) approximation
then just given by the carrier density and the mean free path for elastic impurity
scattering. In thin films and narrow wires one finds a contrasting behavior —
below a certain temperature the resistivity starts to rise again, see Fig. 1.5. It is
a quantum mechanical peculiarity. Because the rise can be suppressed by an ex-
ternal magnetic field one surmises that time reversal symmetry plays some role.
Indeed, theories which explain this weak localization correction to the (Drude) re-
sistivity are based on the idea of constructive interference between time reversed
paths [43–46], which is called coherent backscattering.

The experiment shown in Fig. 1.5 is for a disordered conductor. In this thesis
we consider ballistic conductors, without impurities, where all scattering is at the
boundaries. A small ballistic conductor with two narrow openings (or point con-
tacts) is called an open quantum dot. The semiclassical conductance of a quantum
dot is just the series conductance of the two point contacts. If each point contact
has the same conductance N in units of the conductance quantum g0 = 2e2/h,
then the semiclassical conductance is just Gclass = (N/2)g0. The quantum me-
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Figure 1.5: Temperature dependence of the resistivity of a two-dimensional
electron gas in a GaAs-AlGaAs heterostructure. The upper set of data points
is for a narrow wire (0.5µm wide), the lower sets are for wider wires (width
W > 1.5µm). The wire length is L = 10µm. At low temperatures the resistivity
rises because of the weak localization effect. Figure taken from Ref. [42].

chanical conductance is smaller than Gclass because of coherent backscattering,
just as in the case of a disordered system discussed above. Again, a magnetic
field suppresses the weak localization correction and recovers Gclass. An experi-
mental observation of the weak localization effect in a quantum dot is shown in
Fig. 1.6.
Theoretically, the weak localization correction δg = G − Gclass follows from Eq.

(1.10), containing the N transmission eigenvalues of the quantum dot. To elimi-
nate sample-to-sample fluctuations, one needs to average the conductance over an
ensemble of quantum dots with small variations in shape. This can be done nu-
merically, but if the shape of the quantum dot is such that the classical dynamics is
chaotic, then an alternative analytical technique is possible. This is the technique
of random-matrix theory [48], which is based on the fact that the scattering matrix
of an ensemble of chaotic quantum dots is uniformly distributed in the group of
unitary matrices. The ensemble averaged conductance 〈G〉 then follows directly
from an integral over the unitary group, with the result [49]

〈G〉 = g0
N2

1+2N
⇒ δG = −g0

N

2+4N
. (1.46)

The weak localization correction varies between −g0/6 for N = 1 and −g0/4 for
N � 1.
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Figure 1.6: Magnetic field dependence of the conductance of a ballistic confined
region (quantum dots) in the two-dimensional electron gas of a GaAs-AlGaAs
heterostructure. The dots have the shape of a stadium, so the classical dynamics
is chaotic. The conductance is averaged over 48 similar devices at 50 mK. The
dip around zero magnetic field is due to the weak localization effect. Figure taken
from Ref. [47].

1.4 This Thesis

Chapter 2: Stub model for dephasing in a quantum dot

Shot noise and weak localization are two effects that probe, respectively, the parti-
cle and wave nature of the electron — so they respond differently to decoherence.
While shot noise seems to be much more insensitive to decoherence, weak local-
ization is suppressed by it. The decoherence version of the voltage probe model
discussed earlier in this introduction, indeed gives a suppression of weak local-
ization while leaving the shot noise unaffected. The work in chapter 2 was driven
by the search for a model of decoherence that does as well not have influence on
shot noise but leads to a loss of the weak localization correction. In contrast to the
voltage probe it should not have to deal with an artificially extended Hilbert space
but it should rather make use of explicit time dependence in the hamiltonian. We
have found that this can be realized if the Hilbert space of the scatterer is parti-
tioned into two spaces. One of them doesn’t decohere and the other decoheres
because of weak time-dependent fields there - we call the latter space ’stub’ [50].
The tunneling between these spaces is rare but once a part of the electronic wave-
function enters the stub it stays there very long. So it looses its phase relation
with the part that didn’t enter the stub even if the external field is so weak that
no additional shot noise is produced. We reproduce the results for shot noise and
weak localization that come out of the voltage probe model.
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Figure 1.7: Temperature dependence of the weak localization correction δg in a
quantum dot with two single channel point contacts. The two sets of data points
correspond to two different samples (one of which is shown in the lower left
inset). The upper right inset shows the dependence of δg on the decoherence rate
γφ (scaled by the level spacing), as predicted by the voltage probe model. ( The
solid curve is for a voltage probe connected to the quantum dot by a tunnel barrier,
the dashed curve is without a tunnel barrier.) Figure adapted from Ref. [51].

This is fortunate because the voltage probe model has been used extensively by
experimentalists to extract the decoherence rate γφ from weak localization mea-
surements. As a representative example, we show in Fig. 1.7 the experimental
data of Huibers et al. [51]. Shown is the temperature T dependence of the weak
localization correction δG in a quantum dot with two single channel point con-
tacts. By comparing with the γφ dependence of δg predicted by the voltage probe
model, they could determine the T dependence of γφ . In a further experiment they
did not vary T but the intensity of microwave radiation which they were shining
on the sample [52]. They found that it has the same influence as just increasing
the temperature in the whole vacuum chamber. Their conclusion was that the fact
that δg seems not to reach its theoretical T = 0 value of 1/3 can not be explained
by some fluctuating field that is just homogeneous over the whole sample. They
argued that the delicate electron-electron interaction was the primary source of
decoherence.
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Chapter 3: Voltage probe model of spin decay in a chaotic quantum dot, with
applications to spin-flip noise and entanglement production

We return to the voltage probe model. In this chapter we use this model to study
the effect of spin-flip scattering on electrical conduction through a quantum dot
with chaotic dynamics. The spin decay rate γ is quantified by the correlation
of spin-up and spin-down current fluctuations (spin-flip noise). The resulting
decoherence reduces the ability of the quantum dot to produce spin-entangled
electron-hole pairs. For γ greater than a critical value γc, the entanglement pro-
duction rate vanishes identically. The statistical distribution P(γc) of the critical
decay rate in an ensemble of chaotic quantum dots is calculated using the methods
of random-matrix theory. For small γc this distribution is ∝ γ

−1+β/2
c , depending

on the presence (β = 1) or absence (β = 2) of time-reversal symmetry. To make
contact with experimental observables, we derive a one-to-one relationship be-
tween the entanglement production rate and the spin-resolved shot noise, under
the assumption that the density matrix is isotropic in the spin degrees of freedom.
Unlike the Bell inequality, this relationship holds for both pure and mixed states.
In the tunneling regime, the electron-hole pairs are entangled if and only if the
correlator of parallel spin currents is at least twice larger than the correlator of
anti parallel spin currents.

Chapter 4: All-electronic coherent population trapping in quantum dots

We present a fully electronic analogue of coherent population trapping in quan-
tum optics, based on destructive interference of single-electron tunneling between
three closed quantum dots. A large bias voltage plays the role of the laser illu-
mination. The trapped state is a coherent superposition of the electronic charge
in two of these quantum dots, so it is destabilized as a result of decoherence by
coupling to external charges. The resulting current I through the device depends
on the ratio of the decoherence rate �φ and the tunneling rates. For �φ → 0 one
has simply I = e�φ. With increasing �φ the current peaks at the inverse trapping
time. The direct relation between I and �φ can serve as a means of measuring the
coherence time of a charge qubit in a transport experiment.
Recent experiments on a triple dot geometry have been performed by Vidan et
al. [53]. We show their findings in Fig. 1.8 because they use a dot geometry that
might be used to observe the effect predicted in this thesis. Their experiment,
however, is done in an incoherent high temperature regime, so that it produces
an incoherent trapping effect (rather than the coherent effect which we have pre-
dicted). It is due to carrier blocking because of Coulomb repulsion between an
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Figure 1.8: figure (a): Electron micrograph of a triple quantum dot. The light
areas are gates used to define the quantum dots. The locations of the dots are
highlighted by circles. This geometry allows for tunneling between dots 1 and 2,
and between dots 1 and 3. Dots 2 and 3 are capacitively coupled, but no elec-
trons may tunnel between these dots. A large voltage difference VS D = VL − VR

between the current source and drain forces electrons to tunnel either from left to
right (for VS D < 0) or from right to left (for VS D > 0). Dots 1 and 2 therefore act
as “one way street dots”. The current is blocked if VS D > 0, because then an elec-
tron gets trapped in the “dead end dot” number 3, preventing other electrons to
enter the device. This rectification behavior is shown in the current-voltage char-
acteristic in (b). The dotted (solid) line corresponds to weaker (stronger) coupling
between dots 2 and 3, which gives rise to weaker (stronger) current suppression
for VS D > 0. Figures are taken from Ref. [53].

electron that sits in a ’dead end dot’ and electrons which want to move through the
’one way street dot’. The incoherent rectification mechanism of Ref. [53] (which
happens for opposite voltage bias as our coherent effect) does not play a role in
our structure because we do not have a ’dead end dot’.

Chapter 5: Counting statistics of coherent population trapping in quantum
dots

In the previous chapter we considered the time averaged current through the triple
quantum dot device. Here we consider higher moments of the time-dependent
current fluctuations. The full distribution of the current, integrated over a cer-
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tain detection time, represents the distribution of the number of charges trans-
ferred through the device in the detection time. This is the reason that one calls
it “counting statistics”. Our analysis was motivated by an experimental develop-
ment, which we describe here. The experiment by Gustavsson et al. [54] showed
that it is possible to detect the individual passage of electrons in time through
nanoscopic constrictions. Their setup in Fig. 1.9 shows a quantum point contact
capacitively coupled to an independently gated quantum dot device [55]. The
time trace of the current through the point contact, Fig. 1.9, shows essentially two
different current intensities. Each of them corresponds to a different occupation
in the dot and allows by that to detect the individual tunneling events through it.
Because the whole counting statistics is determined this way, also the Fano fac-
tor can be extracted. They find in consistency with a theory based on the master
equation like Eq. (1.20) that it depends on the tunneling couplings of the dot to
the reservoirs. Our calculations on the triple dot device predict, that analogous
measurements on it should find Fano factors between 3 and 0.5 (in general sub-
or super-Poissonian statistics) - depending on the tunneling constants and deco-
herence strengths.

Chapter 6: Transfer of entanglement from electrons to photons by optical
selection rules

In designs of quantum computers one would like to use electron qubits to locally
process the information and photon qubits to transport it over long distances. A
first step on the way to realize this with solid state based devices was the transfer
of the spin polarization of conduction band electrons of a GaAs/AlGaAs light-
emitting diode to the circular polarization of the emitted photons [56]. The op-
eration of this device, called a spin-LED, is illustrated in Fig. 1.10. It realizes
a classical correlation transfer, which means, that one can see in the experiment
only that diagonal elements of the density matrix in the energy eigenbasis are
transferred between electron and photon degrees of freedom.
To transfer quantum information (in particular, to transfer entanglement), one
needs to transfer all components of the density matrix. A method to do this with
a spin-LED has been proposed by Vrijen and Yablonovitch [57]. Their proposal
requires a strong magnetic field to break the spin degeneracy of the energy lev-
els. In chapter 6 we examine alternative strategies that do not require a (strong)
magnetic field.
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Figure 1.9: Left panel: AFM (atomic force microscope) micrograph of a device
that capacitively couples a quantum dot (denoted by the ring of white points) and
a quantum point contact. The current IQPC through the quantum point contact
depends on the charge in the quantum dot. Right panel: Example of the time
dependent current through the quantum point contact. When it jumps downward
an electron leaves the dot, when it jumps upward an electron enters the dot. In
this way the full counting statistics of transferred charge can be measured. Figures
adapted from Ref. [54].

1.A Derivation of Eq. (1.20) - electron tunneling to and from
reservoirs

This appendix follows in some parts Ref. [58], but we generalise here to several
orbitals. We write the density operator in the interaction picture but ignore its
tilde sign

dρs(t)

dt
= −h̄−2

∫ t

0
dτ TrB ([V (t), [V (τ ),ρs(τ )ρB, ]) (1.47)
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Figure 1.10: Left panel: Geometry of the spin-LED, a device that transfers elec-
tron spin polarization to photon polarization. Spin-polarised electrons are injected
from the left into the active GaAs layer, unpolarized holes are injected from the
right. Electron-hole recombination leads to to photons with a circular polariza-
tion determined by the electron spin. Right panel: energy level structure in GaAs.
The upper levels are states in the s-type conduction band, the lower ones states
in the p-type valence band. The total angular momentum quantum number mj

is indicated. The transitions labeled 3 are a factor of three more probable than
those labeled 1. As a consequence, photons emitted by a spin down electron carry
predominantly angular momentum +1 (transition −1/2 → −3/2), while photons
emitted by a spin up electron carry predominantly angular momentum −1 (tran-
sition +1/2 → +3/2). Figures are taken from Ref. [56].

with V from Eq. (1.19) and the definition ω(n,k) = [E(n)− ε(k)]/h̄ this gives

dρs(t)

dt
= −h̄−2

∑
n,k,n′

∫ t

0
dτ
{
c†

ncn′ ,ρs(τ )
}(

T (L)
kn T (L)∗

kn′ f (ε(k),µL , T )

+T (R)
kn T (R)∗

kn′ f (ε(k),µR, T )
)

exp
(
iω(n,k)t − iω(n′,k)τ

)
+
{

cnc†
n′ ,ρs(τ )

}(
T (L)∗

kn T (L)
kn′ [1− f (ε(k),µL , T )]

+T (R)∗
kn T (R)

kn′ [1− f (ε(k),µR, T )]
)

exp
(−iω(n,k)t + iω(n′,k)τ

)
+c†

nρs(τ )cn′
(

T (L)
kn T (L)∗

kn′ f (ε(k),µL , T )+ T (R)
kn T (R)∗

kn′ f (ε(k),µR, T )
)

·(exp[iω(n,k)t − iω(n′,k)τ ]+ exp[iω(n,k)τ − iω(n′,k)t]
)

+cnρs(τ )c†
n′
(

T (L)∗
kn T (L)

kn′ [1− f (ε(k),µL , T )]+ T (R)∗
kn T (R)

kn′ [1− f (ε(k),µR, T )]
)

·(exp[−iω(n,k)t + iω(n′,k)τ ]+ exp[−iω(n,k)τ + iω(n′,k)t]
)

(1.48)
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To simplify this expression one makes use of the fact that the reservoirs have a
dense spectrum and substitutes the sum over k-points by the energy integral with
the density of states DO S(ε(k)). We encounter in Eq. (1.48) many integrals of
the type

∫
dεDO S(ε)T (X )

k(ε)n T (X )∗
k(ε)n′ f (ε,µX , T )exp[iε(t − τ )]. (1.49)

We consider the regime, where the hybridizations T (X )
k(ε)n are several kT inside

the voltage window set to [µR ,µL] and of a typical width δE . The DO S(ε)
should not vary much on the scale of δE . We assume further out of notational
simplicity, that T (X )

k(ε)n and T (X )
k(ε)n′ do not overlap for n �= n′. 7 Fig. (1.11) sketches

the assumptions on the energy dependence of the functions. Thus one finds that
the integral vanishes for X = R and is in the case X = L finite for |t −τ | < h̄/δE .
Thus we write the integral as

2h̄γX ,nδn.n′δδE (t − τ ) (1.49′)

where γX ,n contains the details of DO S(ε), the hybridizations and some fur-
ther phase. The notation δδE (..) reminds to the finite width of the delta function
through a finite δE . Thus all that follows should be used carefully if one makes
statements about time differences or considers also different mechanisms acting
on the time scale smaller than h̄/δE . Making use of this simplification we find
that Eq. (1.48) simplifies enormously to

dρs(t)

dt
= h̄−1

∑
n

γL ,nc†
nρs(t)cn − γL ,n

2

{
c†

ncn,ρs(t)
}

+γR,ncnρs(t)c†
n − γR,n

2

{
cnc†

n ,ρs(t)
}

. (1.50)

We remember now that we are still in the interaction representation of the density
operator. But if one transforms now back to the Schrödinger picture, one encoun-
ters that (1.50) equals the Lindblad equation (1.20) with the there stated jump
operators.

7This can in principle always be performed by unitary transformation of the inner orbitals
inside the constriction. This is in Chpt. 3 and 4 used, where we take the hybridization functions
of individual dots as non overlapping.
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Figure 1.11: Unscaled plot for the conditions for the validity of the Master equa-
tion. The hybridization functions of the internal eigenfunctions inside the con-
striction (labled by n,n′) have their main weight several kB T inside the voltage
window from µR to µL .

1.B Derivation of Eq. (1.20’) - dynamical potential (phonons)

We write all operators in the interaction picture with a tilde, and find

dρ̃s(t)

dt
= −h̄−2

∫
dτ
∑

ni,n′ i ′
VniVn′i′

{
α†

nαnα
†
n′αn′ ρ̃s(τ ) TrB

[(
h̃†

ni (t)+ h̃ni (t)
)(

h̃†
n′i ′ (τ )+ h̃n′i ′ (τ )

)
ρB

]
+ρ̃s(τ )α†

nαnα
†
n′αn′ TrB

[(
h̃†

ni (τ )+ h̃ni (τ )
)(

h̃†
n′i ′ (t)+ h̃n′i ′ (t)

)
ρB

]
+α†

nαnρ̃s(τ )α†
n′αn′ TrB

[(
h̃†

ni (t)+ h̃ni (t)
)(

h̃†
n′i ′ (τ )+ h̃n′i ′ (τ )

)
ρB

]
+α†

nαnρ̃s(τ )α†
n′αn′ TrB

[(
h̃†

ni (τ )+ h̃ni (τ )
)(

h̃†
n′i ′ (t)+ h̃n′i ′ (t)

)
ρB

]}
The bath is in equilibrium, thus only n = n′ and i = i ′ contributes to the sum. We
use further that there is a dense spectrum of oscillators, thus∑

ni ... →∑n

∫
dωDO Sn(ω)... . We use that h̃ni (t) = hni exp(i�ni t) and find that

like in the case of the electron reservoirs, the time integral ’shrinks’ because of a
regularized δδE (t − τ ) function where δE is roughly given by the oscillator band-
width. The integrals over the density of states, coupling constants and occupations
of the oscillator levels are all pulled into the constant γ�,n and one gets

dρ̃s(t)

dt
= h̄−1

∑
n

γ�,nα
†
nαn ρ̃s(t)α†

nαn − γ�,n

2

(
α†

nαnρ̃s(t)+ ρ̃s(t)α†
nαn
)

,

(1.51)
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which becomes with the appropriate jump operators Eq. (1.20’).
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Chapter 2

Stub model for dephasing in a
quantum dot

2.1 Introduction

The dephasing lead model was introduced by Büttiker in 1986 as a phenomeno-
logical description of the loss of coherence in quantum electron transport [1]. A
microscopic theory of dephasing by electron-electron interactions exists in disor-
dered systems [2, 3], but not in (open) chaotic systems. For that reason, exper-
iments on conduction through a chaotic quantum dot are routinely modeled by
Büttiker’s device — with considerable success [4–7].

An alternative phenomenogical approach, introduced by Vavilov and Aleiner
in 1999, is to introduce dephasing by means of a fluctuating time-dependent elec-
tric field [8]. This approach was reformulated as the dephasing stub model by
Polianski and Brouwer [9]. The two models, dephasing lead and dephasing stub,
are illustrated in Fig. 2.1. Polianski and Brouwer showed that the weak localiza-
tion correction to the conductance is suppressed in the same way by dephasing in
the two models.

The key difference between the dephasing lead and the dephasing stub is that
the former system is open while the latter system is closed. Because the quantum
dot is connected to an electron reservoir by the dephasing lead, only expectation
values of the current can be forced to vanish at low frequencies; the outcome
of an individual measurement is not so constrained. The quantum dot with the
dephasing stub remains a closed system with a vanishing low-frequency current
at each and every measurement. The difference is irrelevant for the time-averaged
current (and therefore for the conductance), but not for the time-dependent current

37
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V

V V

dephasing
lead

dephasing
stub

chaotic quantum dot

Figure 2.1: Illustration of two phenomenological ways to model dephasing in a
quantum dot. The top panel shows the fully phase coherent system, while the
two lower panels introduce dephasing either by means of a dephasing lead (left),
or by means of a dephasing stub (right). The shaded rectangles indicate electron
reservoirs and the encircled V indicates a voltage source. The voltage on the
electron reservoir connected to the dephasing lead is adjusted such that it draws no
current when averaged over many measurements. The dephasing stub, in contrast,
draws no current at each measurement.
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fluctuations. Indeed, recent studies of shot noise find differences between the two
models of dephasing [6, 10, 11].

In the context of quantum information processing, the dephasing stub model
seems a more natural starting point than the dephasing lead model. This is be-
cause quantum algorithms are based on the outcome of individual measurements
rather than on expectation values, so the model for dephasing should conserve the
particle number at each measurement — rather than only on average.

The existing dephasing stub model, however, has an undesired feature that
prevents its use as a phenomenological model for dephasing. Ref. [9] considers
a short dephasing stub, in which the mean dwell time of an electron is negligibly
small compared to the mean dwell time in the quantum dot. The voltage fluctua-
tions in a short stub drive the quantum dot out of equilibrium, as is manifested by
a nonzero noise power at zero temperature and zero applied voltage [9, 13]. We
need to avoid this, since true dephasing should have no effect in equilibrium. The
original dephasing lead model had this property, that it preserved equilibrium. In
this chapter we will remove this undesired feature of the dephasing stub model,
by demonstrating that a long dephasing stub can be an effective dephaser without
driving the quantum dot appreciably out of equilibrium. It therefore combines the
two attractive features of the existing models for dephasing: (1) Current conser-
vation for individual measurements and (2) preservation of equilibrium.

2.2 Formulation of the problem

The characteristic properties of quantum dot and stub are their level spacings
δdot,δstub and the contact conductances gdot, gstub (in units of the conductance quan-
tum e2/h, ignoring spin). We assume that the dot is coupled to electron reservoirs
by ballistic point contacts, with gdot = Ndot the total number of channels in these
point contacts. The coupling between dot and stub is via a tunnel barrier with
conductance gstub = Nstub� (where Nstub is the number of channels and � is the
transmission probability per channel). The limit Nstub → ∞, � → 0 at fixed gstub

ensures spatial uniformity of the dephasing [26].
We assume that the dynamics in the quantum dot and in the stub is chaotic.

We define the Heisenberg times τH,dot = h/δdot, τH,stub = h/δstub and the dwell
times τD,dot = τH,dot/gdot, τD,stub = τH,stub/gstub. The dwell time τD,dot refers to the
original quantum dot, before it was coupled to the stub.

In the short-stub model of Polianski and Brouwer [9] the scattering by the
stub is time dependent but instantaneous, described by an Nstub × Nstub scattering
matrix R(t) that depends on a single time argument only. We wish to introduce
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a delay time in the stub, so we need a scattering matrix R(t ′, t) that depends on
an initial time t and a final time t ′. The difference t ′ − t > 0 is the time delay
introduced by the stub. The reflection by the tunnel barrier is incorporated in R,
so that it also contains an instantaneous contribution δ(t − t ′)(1−�) times the unit
matrix.

The voltage fluctuations are introduced by a spatially random potential Vstub(r, t)
of the stub, with Gaussian statistics characterized by a mean v(t) and standard
deviation σ (t). Averages 〈· · · 〉 over sample-to-sample fluctuations are taken us-
ing the methods of random-matrix theory [22], in the metallic regime gstub � 1,
gdot � 1.

2.3 Diffuson and cooperon

Quantum corrections to transport properties in the metallic regime are described
by two propagators, the diffuson and the cooperon, each of which is determined
by an integral equation (the Dyson equation). In disordered systems, the Dyson
equation results from an average over random impurity configurations [16]. In
the ensemble of chaotic quantum dots, it results from an average over the circular
ensemble of scattering matrices [9].

The Dyson equation for the diffuson D has the form

τD,dotD(t , t − τ ;s,s − τ ) = θ(τ )e−τ/τ0 + θ(τ )
∫ τ

0
dτ1 D(t , t − τ1;s,s − τ1)

×
∫ τ−τ1

0
dτ2 e−(τ−τ1−τ2)/τ0 Nstub Dstub(t − τ1, t − τ1 − τ2;s − τ1,s − τ1 − τ2),

(2.1)

where the kernel Dstub is the diffuson of the stub,

〈tr R(t , t − τ )R†(s,s − τ ′)〉 = δ(τ − τ ′)Nstub Dstub(t , t − τ ;s,s − τ ), (2.2)

and we have defined τ0 = τH,dot/(Ndot + Nstub). Eq. (2.1) reduces to the Dyson
equation of Ref. [9] if the time delay in the stub is disregarded (τ2 → 0).

In the presence of time-reversal symmetry we also need to consider the cooperon,
determined by the Dyson equation

τD,dotC(t , t − τ ;s + τ ,s) = θ(τ )e−τ/τ0 + θ(τ )
∫ τ

0
dτ1 C(t , t − τ1;s + τ1,s)

×
∫ τ−τ1

0
dτ2 e−(τ−τ1−τ2)/τ0 NstubCstub(t − τ1, t − τ1 − τ2;s + τ1 + τ2,s + τ1), (2.3)



41

where the cooperon of the stub is defined by

〈tr R(t , t − τ )R∗(s + τ ′,s)〉 = δ(τ − τ ′)NstubCstub(t , t − τ ;s + τ ,s). (2.4)

2.3.1 Without voltage fluctuations

Let us first consider the case of a stub without voltage fluctuations. Then only
the time difference τ plays a role, and not the actual times t ,s. We abbreviate
D(t , t − τ ;s,s − τ ) ≡ D(τ ). The cooperon need not be calculated separately, be-
cause C(t , t − τ ;s + τ ,s) = D(τ ).

The diffuson of the stub is

Dstub(τ ) = (1−�)δ(τ )+�τ−1
D,stubθ(τ )e−τ/τD,stub . (2.5)

Substitution in the Dyson equation (2.1) gives

τD,dotD(τ ) = θ(τ )e−τ/τ0 + θ(τ )
∫ τ

0
dτ ′ D(τ ′)

[
ae−(τ−τ ′)/τ0 +be−(τ−τ ′)/τD,stub

]
,

a = Nstub + Nstub�τD,stub

τ0 − τD,stub
, b = Nstub�τ0

τD,stub − τ0
. (2.6)

This integral equation can be solved by Fourier transformation, or alterna-
tively, by substituting the Ansatz D(τ ) = θ(τ )(αe−xτ + βe−yτ ) and solving for
the coefficients α,β, x , y. The result is

τD,dotD(τ ) = θ(τ )
x+ −1/τD,stub

x+ − x−
e−x+τ + θ(τ )

x− −1/τD,stub

x− − x+
e−x−τ , (2.7)

x± = 1

2

(
1

τD,stub
+ 1

τD,dot
+ 1

τφ

)

±1

2

√(
1

τD,stub
− 1

τD,dot
− 1

τφ

)2

+ 4

τφτD,stub
. (2.8)

The time τφ = τH,dot/Nstub� corresponds to the dephasing time in the dephasing
lead model. One can verify that the solution (2.7) satisfies the unitarity relation∫ ∞

0
D(τ )dτ = 1. (2.9)

Note that the two parameters Nstub and � always appear together as Nstub�.
This is a simplying feature of the metallic regime gstub = Nstub� � 1. Since in
this regime the tunnel barrier in the stub only serves to renormalize the number of
channels, we might as well have assumed a ballistic coupling of the quantum dot
to the stub. To simplify the formulas, we will take � = 1 in what follows.



42 CHAPTER 2. STUB MODEL FOR DEPHASING IN A QUANTUM DOT

2.3.2 With voltage fluctuations

In the presence of a time dependent potential, the diffuson and cooperon of the
stub are given by

Dstub(t , t − τ ;s,s − τ ) =
τ−1

D,stubθ(τ )e−τ/τD,stub exp

(
−i
∫ t

t−τ

dτ ′ [v(τ ′)−v(s − t + τ ′)
])

×exp
(

−2τH,stub

∫ t

t−τ

dτ ′ [σ (τ ′)−σ (s − t + τ ′)
]2)

= Cstub(t , t − τ ;s,s − τ ). (2.10)

(We have set h̄ = 1.)
To simplify the solution of the Dyson equation, we assume that the spatial

average v(t) of the potential Vstub(r, t) in the stub vanishes and that the standard
deviation σ (t) has Gaussian fluctuations in time with moments

〈σ (t)〉 = 0, 〈σ (t)σ (t ′)〉 = γ τc

4τH,stub
δτc (t − t ′). (2.11)

The time τc is the correlation time of the fluctuating potential [setting the width
of the regularized delta function δτc (t)] and the rate γ is a measure of its strength.
The average of Dstub over the Gaussian white noise is

〈Dstub(t , t − τ ;s,s − τ )〉 = θ(τ )τ−1
D,stub exp

[−τ Q(s − t)
]
, (2.12)

Q(s − t) =
{

1/τD,stub +γ if |s − t | � τc,
1/τD,stub if |s − t |  τc.

(2.13)

For τD,stub � τc the voltage fluctuations in the stub are self-averaging, which
means that we may substitute the kernel Dstub in the Dyson equation (2.1) by its
average 〈Dstub〉. The solution has the same form as the result (2.7) without voltage
fluctuations, but with different coefficients:

τD,dotD(t , t − τ ,s,s − τ ) = θ(τ )
y+ − Q(s − t)

y+ − y−
e−y+τ + θ(τ )

y− − Q(s − t)

y− − y+
e−y−τ ,

(2.14)

y± = 1

2

(
Q(s − t)+ 1

τD,dot
+ 1

τφ

)
± 1

2

√(
Q(s − t)− 1

τD,dot
− 1

τφ

)2

+ 4

τφτD,stub
.

(2.15)

The cooperon is again given by the same expression, C(t , t −τ ;s,s −τ ) = D(t , t −
τ ;s,s − τ ).
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2.4 Transport properties

A current is passed through the quantum dot by connecting Ndot/2 channels to one
electron reservoir and Ndot/2 channels to another reservoir at a higher electrical
potential Vbias. We calculate the conductance and the shot noise power of the
quantum dot.

2.4.1 Weak localization

The weak localization correction δG to the classical conductance G0 = Ndot/2 of
the quantum dot is given by the time integral of the cooperon [9],

δG = −1

4

∫ ∞

0
dτ C(0,−τ ;τ ,0). (2.16)

As before, the conductance is measured in units of the conductance quantum e2/h
(ignoring spin).

The function C(0,−τ ;τ ,0) is given by Eq. (2.14) with Q(s − t) → Q(τ ). For
τD,stub � τc we may substitute Q = 1/τD,stub +γ , cf. Eq. (3.81). Carrying out the
integration we obtain the expected algebraic suppression of the weak localization
correction due to dephasing [9],

δG = − 1
4 (1+ τD,dot/τ

∗)−1, τ ∗ = τφ(1+1/γ τD,stub). (2.17)

For γ τD,stub � 1 (strong dephasing in the stub) the dephasing time τ ∗ of the de-
phasing stub model becomes the same as the dephasing time τφ of the dephasing
lead model [17, 18, 26].

2.4.2 Shot noise

In the absence of a fluctuating potential, the zero-temperature noise power is given
by the shot noise formula [36]

Sshot = 1
4eVbiasG0. (2.18)

The fluctuating potential drives the quantum dot out of equilibrium, adding a con-
tribution �S to the total noise power S = Sshot +�S. We would like to minimize
this classical contribution, since it is unrelated to dephasing.

The general expression for �S contains a product of two diffusons [9],

�S = Ndote2

2

∫ ∞

0
dt
[
1− K (t)2]1− sin2(eVbiast/2h̄)

2π2t2
, (2.19)

K (t) =
∫ ∞

0
dτ D(0,−τ , t , t − τ ). (2.20)
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Substitution of Eq. (2.14) gives

K (t) =
[

1+ τD,dot

τφ

(
1− 1

τD,stubQ(t)

)]−1

=
{

1 if t  τc,
(1+ τD,dot/τ

∗)−1 if t � τc.
(2.21)

For strong dephasing (τD,dot/τ
∗ � 1) the noise �S from the fluctuating po-

tential saturates at a value of order �Smax � Ndote2/τc. This is negligibly small
relative to Sshot for sufficiently large bias voltages Vbias � h̄/eτc. These are still
small bias voltages on the scale of the Thouless energy ET = h̄/τD,dot, provided
that τD,dot  τc. Combined with our earlier requirement τc  τD,stub of rapid fluc-
tuations, we conclude that the noise generated by the fluctuating potential can be
neglected in the regime

τD,dot  h̄/Vbias  τc  τD,stub. (2.22)

It is the separation of dwell times τD,dot  τD,stub, characteristic of the long-
stub model, that makes it possible to enter this regime in which the fluctuating
potential can be dephasing without being noisy. In contrast, in the short-stub
model of Ref. [9] one is in the opposite regime τD,stub  τD,dot in which the volt-
age fluctuations are either too weak to cause dephasing, or so strong that they
dominate over the shot noise.

2.5 Conclusion

A fluctuating time-dependent potential in a conductor has both a quantum me-
chanical effect (destroying phase coherence) and a classical effect (driving the
system out of equilibrium). The former effect shows up in the suppression of
weak localization, while the latter effect manifests itself in the noise power. Both
effects have been studied extensively in the literature [8,9,20,21], and both effects
are important if one is describing a conductor in a real microwave field. However,
if the voltage fluctuations are to serve as a phenomenological model of dephas-
ing, e.g. by electron-electron interactions, then one needs to retain only the former
effect — since shot noise should be insensitive to dephasing [22].

The key question we have addressed in this work, is whether a fluctuating
potential can be dephasing without being noisy. We have found that this is indeed
possible, provided that the potential fluctuates not in the conductor itself but in a
spatially separated and weakly coupled region (the stub). The dephasing stub is a



45

fictitious device, much like the dephasing lead [1]. We expect that the dephasing
stub model will be useful as a phenomenological description of decoherence in
problems where one would rather not open up the system to an electron reservoir
(as one needs to do in the dephasing lead model).

A recent paper by Sokolov [23] studies a similar geometry, a quantum dot
connected to a long lead closed at one end, but in that work there are no voltage
fluctuations in the stub. Energy averaging can still suppress certain quantum in-
terference effects (such as the universal conductance fluctuations), but not others
(such as weak localization).
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Chapter 3

Voltage probe model of spin decay in
a chaotic quantum dot, with
applications to spin-flip noise and
entanglement production

3.1 Introduction

The voltage probe model, introduced by Büttiker in the early days of mesoscopic
physics, [1] gives a phenomenological description of the loss of phase coherence
in quantum transport. Electrons that enter the voltage probe are reinjected into
the conductor with a random phase, so they can no longer contribute to quantum
interference effects. Such a device is no substitute for a microscopic treatment
of specific mechanisms of decoherence, but it serves a purpose in identifying
model independent “universal” features of the transition from coherent to inco-
herent electrical conduction.

In this work we introduce and analyze a novel application of the voltage
probe model, to spin-resolved conduction through a quantum dot. The voltage
probe then serves a dual role: It randomizes the phase, as in the original spin-
independent model, [1] but it also randomizes the spin. Two spin transport effects
are examined: spin-flip noise and spin entanglement. The two effects are funda-
mentally connected, in the sense that the degree to which spin-up and spin-down
current fluctuations are correlated provides a measure of the degree of spin entan-
glement of electron-hole pairs exiting the quantum dot. [2]

49
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voltage probe

V

chaotic 
quantum dot

Figure 3.1: Illustration of the voltage probe model. A chaotic quantum dot is
connected to a voltage source by two single-channel leads. Decoherence is in-
troduced by means of a fictitious voltage probe, which conserves particle number
within each energy range δE  eV , on time scales δt = h/δE . (The dashed line
in the figure indicates the tunnel barrier that separates the voltage probe from
the quantum dot.) The random spin flips introduced by the voltage probe give
a nonzero correlator of spin-up and spin-down currents (= spin-flip noise). The
voltage probe also reduces the entanglement production by transforming the pure
spin-singlet state of electron-hole pairs into a mixed Werner state.
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The geometry is sketched in Fig. 3.1. The coupling of the electron spin to
other degrees of freedom (nuclear spins, magnetic impurities, other electrons . . . )
is replaced by an artificial reservoir connected to the quantum dot via a tunnel
barrier. The reservoir draws neither particles nor energy from the quantum dot.
[3] Both the time averaged current and the time dependent fluctuations vanish,
enforced by a fluctuating distribution function of the artificial reservoir. [4,5] This
phenomenological description of decoherence has found many applications in the
context of (spin-independent) shot noise. (Recent references include [6–9].) For
alternative models of decoherence in that context, see Refs. [6, 10–13].

In the context of spin-resolved conduction, the voltage probe introduces two
altogether different decay processes: spin flip and decoherence. These are char-
acterized in general by two independent decay times (denoted T1 and T2 ≤ 2T1,
respectively). In order to obtain two different time scales we could introduce, in
addition to the spin-isotropic voltage probe, a pair of ferromagnetic voltage probes
that randomize the phase without flipping the spin (pure dephasing). Here we will
restrict ourselves to the simplest model of a single voltage probe, corresponding
to the limit T2 = 2T1. This choice is motivated by the desire to have as few free
parameters as possible in this exploratory study. The more general model will be
needed to make contact with the existing microscopic theory for the spin decay
times. [14–17]

The applications of the voltage probe model that we consider center around
the concept of electron-hole entanglement. A voltage V applied over a single-
channel conductor produces spin-entangled electron-hole pairs. [18] The entan-
glement production rate is maximally eV/2h bits/second, for phase-coherent spin-
independent scattering. Thermal fluctuations in the electron reservoirs [19] as
well as dephasing voltage fluctuations in the electromagnetic environment [20,21]
reduce the degree of entanglement of the electron-hole pairs. Unlike other quan-
tum interference effects, which decay smoothly to zero, the entanglement produc-
tion rate vanishes identically beyond a critical temperature or beyond a critical
decoherence rate.

One goal of this investigation is to determine the probability distribution of
the critical decoherence rate in an ensemble of quantum dots with chaotic scatter-
ing. The fluctuations in the artificial reservoir reduce the entanglement production
by transforming the pure state of the electron-hole pair into a mixed state. For
decoherence rates γ ≥ γc the density matrix of the electron-hole pairs becomes
separable. The value of γc is sample specific, with a probability distribution P(γc)
that we calculate using the methods of random-matrix theory. [22]

The entanglement production is related to physical observables via the spin-
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resolved shot noise. The correlator of spin-up and spin-down currents (spin-flip
noise) is of particular interest, since it provides a direct measure of the spin re-
laxation time. [23] By assuming that the elastic scattering in the quantum dot is
spin-independent (no spin-orbit interaction), we derive a one-to-one relation be-
tween the degree of entanglement (concurrence) of the electron-hole pairs and the
spin-resolved shot noise. In the more general spin-dependent case such a rela-
tion exists for pure states, [24, 25] through a Bell inequality, but not for mixed
states. [19] The expressions for the concurrence C take a particularly simple form
in the tunneling regime, where we find that C is nonzero if and only if the corre-
lator of spin current fluctuations is at least twice larger for parallel spins than it
is for antiparallel spins.

We derive closed-form expressions for the ensemble averaged correlators in
the regime of weak decoherence, both in the presence (β = 1) and absence (β = 2)
of time-reversal symmetry. While the average spin-resolved current correlators
are analytic in the decoherence rate γ around γ = 0, the average concurrence 〈C〉
has a singularity at that point: a square-root singularity 1−〈C〉 ∝ √

γ for β = 1,
and a logarithmic singularity 1 − 〈C〉 ∝ γ | lnγ | for β = 2. The singular effect
of a small decoherence rate on the entanglement production also shows up in the
probability distribution P(γc) of the critical decoherence rate: It does not vanish
for γc → 0, but instead has a large weight ∝ γ

−1+β/2
c .

The outline of this chapter is as follows. We start in Sec. 3.2 with a description
of the system (quantum dot with voltage probe) and a formulation of the twofold
question that we would like to answer (what is the entanglement production and
how is it related to spin noise). A solution in general terms is presented in Sec.
3.3. We begin in Sec. 3.3.1 by simplifying the problem through the assumption of
spin-independent scattering in the quantum dot. The concurrence of the electron-
hole pairs is then given as a rational function of spin-resolved current correlators
(Sec. 3.3.2). These correlators are expressed in terms of the scattering matrix
elements of the quantum dot with voltage probe (Sec. 3.3.3). To evaluate these
expressions an alternative formulation, in terms of a quantum dot without volt-
age probe but with an imaginary potential, is more convenient (Sec. 3.3.4). The
connection to random-matrix theory is made in Sec. 3.4. By averaging over the
random scattering matrices we obtain the nonanalytic γ -dependencies mentioned
above (Secs. 3.5 and 3.6). We conclude in Sec. 3.7.
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3.2 Formulation of the problem

We consider a quantum dot coupled to source and drain by single-channel point
contacts. The voltage probe has Nφ channels, and is connected to the quantum
dot by a barrier with a channel-independent tunnel probability �φ. By taking
the limit �φ → 0, Nφ → ∞ at fixed (dimensionless) conductance γ ≡ Nφ�φ , we
model spatially homogeneous decoherence with coherence time [26]

τcoherence = lim
�φ→0

lim
Nφ→∞

h

γ�
. (3.1)

(We denote by � the mean spacing of spin-degenerate levels.) Since the mean
dwell time in the quantum dot (without voltage probe) is τdwell = h/2�, one has

γ = 2τdwell/τcoherence. (3.2)

The scattering matrix S of the whole system has dimension (Nφ +2)× (Nφ +
2). By convention the index n = 1 labels the source, the index n = 2 labels the
drain, and the indices 3 ≤ n ≤ Nφ +2 label the channels in the voltage probe. All
of this refers to a single spin degree of freedom. Each channel is spin degener-
ate. As mentioned above, we assume that the scattering is spin independent. In
particular, both the Zeeman energy and the spin-orbit coupling energy should be
sufficiently small that spin rotation symmetry is not broken. The applied voltage
V between source and drain is assumed to be large compared to the tempera-
ture, but sufficiently small that the energy dependence of the scattering can be
neglected.

The energy range eV above the Fermi level is divided into small intervals
δE  eV . The voltage probe conserves particle number and energy within each
energy interval, on time scales δt = h/δE . We write this requirement as Iφ(E , t) =
0, where Iφ(E , t) is the electrical current through the voltage probe in the energy
interval (E , E + δE), averaged over the time interval (t , t + δt).

Because the voltage probe does not couple different energy intervals, we may
consider the entanglement production in each interval separately and sum over
the intervals at the end of the calculation. In what follows we will refer to a single
energy interval (without writing the energy argument explicitly).

The density matrix ρ of the outgoing state in each energy interval, traced over
the degrees of freedom of the voltage probe, contains combinations of 0, 1, or 2
excitations in the spin degenerate channel of the source lead and the drain lead.
Only the projection ρeh onto a singly excited channel in the source as well as in the
drain contributes to the entanglement production. [19] We denote by w = TrPρ
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the weight of the projection, with P the operator that projects onto singly excited
channels (so that wρeh = PρP †). The label “eh” stands for “electron-hole pair”,
where “electron” refers to the single excited channel in the drain and “hole” refers
to the single nonexcited channel in the source.

In the absence of decoherence ρeh is pure (ρ2
eh = ρeh). The voltage probe

transforms ρeh into a mixed state. Our aim is to calculate the loss of entanglement
of ρeh as a function of γ and to relate it to the spin-resolved current correlators.

3.3 General solution

3.3.1 Simplification for spin-isotropic states

The assumption of spin-independent scattering implies that the 4×4 density ma-
trix ρeh is invariant under the transformation (U ⊗U )ρeh(U † ⊗U †) = ρeh, for any
2×2 unitary matrix U . As a consequence, ρeh must be of the Werner form, [27]

ρeh = 1
4 (1− ξ )11 + ξ |�Bell〉〈�Bell|, − 1

3 ≤ ξ ≤ 1, (3.3)

with 11 the unit matrix and

|�Bell〉 = 2−1/2(|↑↓〉−|↓↑〉) (3.4)

the Bell state. [28] (The spin-up and spin-down arrows ↑,↓ label the two eigen-
states of the Pauli matrix σz .)

The concurrence [9] (degree of entanglement) of the Werner state is given by

C = 3

2
max

{
0,ξ − 1

3

}
. (3.5)

The Werner state is separable for ξ ≤ 1/3. The entanglement production rate (bits
per second) in the energy range δE under consideration is given by [19]

E = δE

h
wF
(

1
2 + 1

2

√
1−C2

)
, (3.6)

F (x) = −x log2 x − (1− x) log2(1− x). (3.7)

The parameter ξ that defines the Werner state (3.3) can be obtained from the
spin-spin correlator

Trρehσz ⊗σz = −ξ . (3.8)

In order to make contact with the voltage probe model we now relate this correla-
tor to a spin-resolved current correlator, along the lines of Refs. [2, 24, 25].
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3.3.2 Solution in terms of current correlators

We define Nout
X ,α(t) as the number of electrons going out of the quantum dot in

a time interval (t , t + δt) through the source lead (X = S) or through the drain
lead (X = D) with spin up (α =↑) or with spin down (α =↓). In terms of the
current IX ,α(t) one has Nout

D,α(t) = −ID,α(t)δt/e, Nout
S,α(t) = 1 − IS,α(t)δt/e, with

the convention that the current is positive if electrons enter the quantum dot. The
spin-spin correlator (3.8) is expressed by

ξ = −〈[Nout
S,↑(t)− Nout

S,↓(t)][Nout
D,↑(t)− Nout

D,↓(t)]〉
〈[Nout

S,↑(t)+ Nout
S,↓(t)][Nout

D,↑(t)+ Nout
D,↓(t)]〉

= −(δt/e)2 1

w
〈[IS,↑(t)− IS,↓(t)][ID,↑(t)− ID,↓(t)]〉,

(3.9)

w = (δt/e)2〈[IS,↑(t)+ IS,↓(t)−2e/δt][ID,↑(t)+ ID,↓(t)]〉,
(3.10)

where the brackets 〈· · · 〉 indicate an average over many measurements.
The time dependent current IX ,α(t) = ĪX ,α + δ IX ,α(t) has time average ĪX ,α .

The current fluctuations δ IX ,α(t) on the time scale δt = h/δE have cross correlator
〈δ IS,α(t)δ ID,β(t)〉 = (δE/h)Pαβ , with spectral density [30]

Pαβ =
∫ ∞

−∞
dt 〈δ IS,α(0)δ ID,β(t)〉. (3.11)

The total spectral density of charge noise is given by

Pcharge =
∑
α,β

∫ ∞

−∞
dt 〈δ IS,α(0)δ IS,β(t)〉 = −

∑
α,β

Pαβ . (3.12)

(The minus sign appears because
∑

β δ IS,β = −∑β δ ID,β , as a consequence of
current conservation.)

Substitution into Eqs. (3.9) and (3.10) gives

ξ = − h

e2δE

1

w

[
(h/δE)( ĪS,↑ − ĪS,↓)( ĪD,↑ − ĪD,↓)

+ P↑↑ + P↓↓ − P↑↓ − P↓↑
]

, (3.13)

w = h

e2δE

[
(h/δE)( ĪS,↑ + ĪS,↓ −2eδE/h)( ĪD,↑ + ĪD,↓)

+ P↑↑ + P↓↓ + P↑↓ + P↓↑
]

. (3.14)
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Because of the spin isotropy, ĪX ,↑ = ĪX ,↓, P↑↑ = P↓↓, and P↑↓ = P↓↑. We
denote by Ī > 0 the total time averaged current from source to drain in the energy
interval δE . Spin isotropy implies ĪS,α = 1

2 Ī and ĪD,α = − 1
2 Ī . Eqs. (3.13) and

(3.14) then simplify to

ξ = P↑↓ − P↑↑
eĪ − 1

2 (h/δE) Ī 2 − 1
2 Pcharge

, (3.15)

w = 2h

e2δE

[
eĪ − 1

2 (h/δE) Ī 2 − 1
2 Pcharge

]
. (3.16)

3.3.3 Solution in terms of scattering matrix elements

So far the analysis is general, not tied to a particular model of decoherence. Now
we turn to the voltage probe model to express the average current and the current
correlators in terms of the scattering matrix elements and the state of the reser-
voirs. For a recent exposition of this model we refer to Ref. [7]. The general
expressions take the following form in the case of spin-independent scattering
considered here:

Ī = 2eδE

h

(
T1→2 + T1→φTφ→2

Nφ − Rφ

)
, (3.17)

P↑↓ = e2δE

2h

(
QφφTφ→1Tφ→2

(Nφ − Rφ)2
+ Q1φTφ→2 + Q2φTφ→1

Nφ − Rφ

)
, (3.18)

P↑↑ = e2δE

h
Q12 + P↑↓. (3.19)

We have defined the transmission and reflection probabilities [1]

Tn→m = |Smn|2, Rφ =
Nφ+2∑
n,m=3

|Snm|2, (3.20)

Tφ→m =
Nφ+2∑
n=3

|Smn|2, Tn→φ =
Nφ+2∑
m=3

|Smn|2, (3.21)
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and the correlators of intrinsic current fluctuations [31]

Qnm =
Nφ+2∑

n′,m′=1

(
δnn′δnm′ − S∗

nn′ Snm′
)

× (δmm′δmn′ − S∗
mm′ Smn′

)
fn′(1− fm′ ), (3.22)

Qnφ =
Nφ+2∑
m=3

Qnm , Qφφ =
Nφ+2∑
n,m=3

Qnm . (3.23)

The state incident on the quantum dot from the reservoirs is fully character-
ized by the mean occupation number fn , given by

fn =

⎧⎪⎪⎨
⎪⎪⎩

1 if n = 1,
0 if n = 2,

T1→φ

Nφ − Rφ

if 3 ≤ n ≤ Nφ +2.
(3.24)

For the source and drain reservoirs this is a state of thermal equilibrium at zero
temperature. For the fictitious reservoir this is the nonequilibrium state

ρφ =
Nφ+2∏
n=3

(
fna†

n |0〉〈0|an + (1− fn)|0〉〈0|), (3.25)

with a†
n the operator that excites the n-th mode in the voltage probe. These are all

Gaussian states, meaning that averages of powers of an and a†
n can be constructed

out of the second moment 〈a†
nan〉 = fn by the rule of Gaussian averages.

3.3.4 Reformulation in terms of imaginary potential model

The model of a quantum dot with voltage probe can be reformulated in terms of
a quantum dot without voltage probe but with an imaginary potential. [26] This
reformulation simplifies the expressions for the entanglement production, so we
will carry it out here.

The unitarity of S makes it possible to eliminate from the expressions in Sec.
3.3.3 all matrix elements that involve the voltage probe. Only the four matrix
elements Snm , n,m ∈ {1,2}, involving the source and drain remain. This sub-
matrix of S forms the sub-unitary matrix

s =
(

S11 S12

S21 S22

)
=
(

r t ′
t r ′

)
. (3.26)
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As derived in Ref. [26], the matrix s corresponds to the scattering matrix of the
quantum dot without the voltage probe, but with a spatially uniform imaginary
potential −iγ�/4π . The coefficients t , t ′,r ,r ′ are the transmission and reflection
amplitudes of the quantum dot with the imaginary potential.

After performing this elimination, the expressions (3.22–3.23) for the corre-
lators Qnm that we need take the form

Q12 = −|(1− fφ)S11S∗
21 − fφ S12S∗

22|2, (3.27)

Q11 = Q22 = [ fφ(1−|S12|2)+ (1− fφ)|S11|2
]

× [(1− fφ)(1−|S11|2)+ fφ|S12|2
]
, (3.28)

Qφφ = 2(Q12 + Q11), (3.29)

Q1φ = Q2φ = − 1
2 Qφφ , (3.30)

with mean occupation number

fφ = T1→φ

Nφ − Rφ

= 1− (s†s)11

2−Tr ss†
. (3.31)

We also define the quantity

f̃φ = Tφ→1

Nφ − Rφ

= 1− (ss†)11

2−Tr ss†
, (3.32)

which equals fφ in the presence of time-reversal symmetry (when Tn→m = Tm→n)
— but is different in general.

The expressions (3.17–3.19) for the mean current Ī and the correlators Pαβ

simplify to

Ī = 2eδE

h

[
fφ(1−|S22|2)+ (1− fφ)|S21|2)

]
, (3.33)

P↑↓ = P↑↑ − e2δE

h
Q12 = e2δE

2h
Qφφ

[
f̃φ(1− f̃φ)− 1

2

]
.

(3.34)

Some more algebra shows that

eĪ − 1
2 (h/δE) Ī 2 = 2(e2δE/h)Q11, (3.35a)

Qφφ = 2 fφ(1− fφ)(1−Detss†). (3.35b)
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Substitution of Eqs. (3.34) and (3.35) into Eqs. (3.15) and (3.16) finally gives
compact expressions for the Werner parameter ξ and the weight w of the electron-
hole pair:

ξ = Y

X +Y
, (3.36)

w = 2(X +Y ), (3.37)

X = fφ(1− fφ)[2 f̃φ(1− f̃φ)+1](1−Detss†), (3.38)

Y = |r t∗ − fφ(ss†)12|2. (3.39)

The spin-resolved current correlators (3.34) are expressed similarly by

P↑↓ = P↑↑ + e2δE

h
Y = e2δE

h
( 1

2 X − Z ), (3.40)

Z = fφ(1− fφ)(1−Detss†). (3.41)

Let us check that we recover the known result [2] for the entanglement pro-
duction in the absence of decoherence. In that case s is a unitary matrix s0, so
X , Z → 0 and Y → |r0t∗

0 |2 — independent of fφ . (The label 0 indicates zero
decoherence rate.) Hence ξ = 1 (maximally entangled electron-hole pairs) and

w0 = 2g0(1− g0), (3.42)

with g0 = |t0|2 the phase coherent conductance of the quantum dot in units of
2e2/h. The total entanglement production rate (integrated over all energies) be-
comes

E0 = (eV/h)w0 = (2eV/h)g0(1− g0), (3.43)

in agreement with Ref. [2]. Furthermore, we verify that in this case P↑↓ = 0 (no
spin-flip scattering without the voltage probe), while P↑↑ = −(e2δE/h)g0(1−g0)
is given by the shot noise formula for spin-independent scattering. [32, 33]

3.4 Random-matrix theory

3.4.1 Distribution of scattering matrices

The expressions of the previous section refer to a single quantum dot. We now
consider an ensemble of quantum dots, generated by small variations in shape
or Fermi energy. For chaotic scattering the ensemble of scattering matrices is
described by random-matrix theory, characterized by the symmetry index β = 1
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in the presence of time-reversal symmetry and β = 2 if time-reversal symmetry is
broken by a magnetic field. [22] (The magnetic field should be sufficiently weak
that the Zeeman energy does not lift the spin degeneracy.) Since we assume that
spin-orbit coupling is not strong enough to break the spin rotation symmetry, the
case β = 4 of symplectic symmetry does not appear. [34]

In the absence of decoherence, s is unitary and its distribution is the circular
ensemble. With decoherence, s is sub-unitary. Its distribution P(s) was calculated
in Ref. [26]. It is given in terms of the polar decomposition

s = u

(√
1− τ1 0

0
√

1− τ2

)
u ′, (3.44)

with unitary matrices u ′ = uT if β = 1 and u ′ independent of u if β = 2. These
matrices are uniformly distributed in the unitary group. The real numbers τ1,τ2 ∈
[0,1] are the two eigenvalues of 11 − ss†. Their distribution Pβ(τ1,τ2) is given as
a function of γ by Eq. (17) of Ref. [26]. (It is a rather lengthy expression, so we
do not repeat it here.)

We parameterize the 2×2 unitary matrix u by

u = eiα3

(
eiα1+iα2 cosα eiα1−iα2 sinα

eiα2−iα1 sinα −e−iα1−iα2 cosα

)
, (3.45)

and similarly for u ′. The angles α1,α2,α3 are uniformly distributed in the interval
(0,2π ), while the angle α ∈ (0,π/2) has distribution P(α) = sin2α.

In this parameterization the occupation numbers (3.31) and (3.32) are

fφ = 1
2 + 1

2 cos2α′ τ1 − τ2

τ1 + τ2
, (3.46)

f̃φ = 1
2 + 1

2 cos2α
τ1 − τ2

τ1 + τ2
, (3.47)

with α′ = α if β = 1. The quantities X , Y , Z that determine ξ , w, P↑↓, P↑↑
become

X = fφ(1− fφ)[2 f̃φ(1− f̃φ)+1](τ1 + τ2 − τ1τ2), (3.48)

Y =
∣∣∣∣(e−i�

√
1− τ1 sinα cosα′ − ei�

√
1− τ2 cosα sinα′)

×(ei�
√

1− τ1 cosα cosα′ + e−i�
√

1− τ2 sinα sinα′)+ 1
2 fφ(τ1 − τ2) sin2α

∣∣∣∣
2

(3.49)

Z = fφ(1− fφ)(τ1 + τ2 − τ1τ2). (3.50)
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The phase � = α2 +α′
1 is uniformly distributed in (0,2π ), regardless of the value

of β.

3.4.2 Weak decoherence

In the regime γ  1 of weak decoherence the expressions simplify considerably.
The distribution Pβ(τ1,τ2) is then given by the Laguerre ensemble [26, 35]

Pβ(τ1,τ2) = cβγ 3β+2 exp[− 1
2γβ(τ−1

1 + τ−1
2 )]

|τ1 − τ2|β
(τ1τ2)2β+2

, (3.51)

with c1 = 1/48 and c2 = 1/24. Since τ1,τ2 � γ  1, we may expand

X = fφ(1− fφ)[2 f̃φ(1− f̃φ)+1](τ1 + τ2)+O(τ 2
i ),

(3.52)

Y = g0(1− g0)(1− τ1 − τ2)+ (τ1 − τ2)( fφ − 1
2 )

× [(g0 − 1
2 )cos2α + 1

2 cos2α′]+O(τ 2
i ), (3.53)

Z = fφ(1− fφ)(τ1 + τ2)+O(τ 2
i ). (3.54)

The phase coherent conductance g0 = |t0|2 is given in terms of the angles
α,α′,� by

g0 = 1
2 − 1

2 cos2α cos2α′ − 1
2 sin2α sin2α′ cos2�. (3.55)

It is independent of τ1 and τ2, with distribution [36]

P(g0) = 1
2βg−1+β/2

0 , 0 ≤ g0 ≤ 1. (3.56)

3.5 Ensemble averages

Averages over the ensemble of chaotic cavities require a four-fold integration for
β = 1 (when α′ = α),

〈· · · 〉1 =
∫ 1

0

∫ 1

0
dτ1dτ2 P1(τ1,τ2)

∫ 2π

0

d�

2π

∫ π/2

0
sin2α dα · · · (3.57)

and a five-fold integration for β = 2,

〈· · · 〉2 =
∫ 1

0

∫ 1

0
dτ1dτ2 P2(τ1,τ2)

∫ 2π

0

d�

2π

∫ π/2

0

∫ π/2

0
sin2α sin2α′ dαdα′ · · ·

(3.58)
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Figure 3.2: Dependence on the dimensionless decoherence rate γ =
2τdwell/τcoherence of the ensemble averaged spin-resolved current correlators P↑↓
and P↑↑, both in the presence (β = 1) and absence (β = 2) of time-reversal sym-
metry. The solid and dashed curves are computed by averaging Eq. (3.40) with
the random-matrix distributions, according to Eqs. (3.57) and (3.58). The dotted
lines are the weak-decoherence asymptotes (3.60–3.63). For strong decoherence
all curves tend to the value − 1

16 e3V/h.

Results are plotted in Figs. 3.2 and 3.3. In Fig. 3.2 we see that the correlator
P↑↑ of parallel spin currents (lower curves) is reduced in absolute value by the
voltage probe — in contrast to the spin-flip noise P↑↓ (upper curves), which is
increased in absolute value. For large γ all correlators tend to the same limit,

lim
γ→∞ Pσσ ′ = − 1

16

e3V

h
, (3.59)

regardless of the presence or absence of time-reversal symmetry. In Fig. 3.3 we
see how the decoherence introduced by the voltage probe reduces both the entan-
glement per electron-hole pair (quantified by the concurrence C), as well as the
total entanglement production rate E .

In the limit of weak decoherence, the averages can be calculated in closed
form using the formulas from Sec. 3.4.2. For the spin-resolved current correlators
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Figure 3.3: Dependence on γ of the average concurrence C and entanglement
production rate E . The solid and dashed curves are computed by averaging Eqs.
(3.5–3.6) and (3.36–3.37). The dotted lines are the weak-decoherence asymptotes
(3.65–3.69). The asymptote for 〈C〉2 converges poorly, because the next term of
order γ in Eq. (3.66) is not much smaller than the term of order γ lnγ .
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we find, to order γ 2:

〈P↑↓〉1 = − 7

120
γ

e3V

h
, (3.60)

〈P↑↓〉2 = − 23

378
γ

e3V

h
, (3.61)

〈P↑↑〉1 =
(

− 2

15
+ 7

120
γ

)
e3V

h
, (3.62)

〈P↑↑〉2 =
(

−1

6
+ 31

378
γ

)
e3V

h
. (3.63)

(We have replaced δE by eV , to obtain the total integrated contributions.)
The average Werner parameter,

〈ξ〉β = 1−
〈

X

X +Y

〉
β

, (3.64)

is nonanalytic in γ around γ = 0, because 〈X/g0〉β diverges. Since P(g0) ∝
g−1+β/2

0 , cf. Eq. (3.56), the average has a square-root singularity for β = 1 and a
logarithmic singularity for β = 2. The average concurrence has the same singu-
larity, in view of Eq. (3.5). To leading order in γ we find

〈ξ〉1 = 1−0.75γ 1/2 ⇒ 〈C〉1 = 1−1.13γ 1/2, (3.65)

〈ξ〉2 = 1− 13

42
γ ln

1

γ
⇒ 〈C〉2 = 1− 13

28
γ ln

1

γ
. (3.66)

The ensemble averaged weight 〈w〉β = 2〈X + Y 〉β of the electron-hole pairs
is analytic in γ ,

〈w〉1 = 4

15
+ 11

30
γ , 〈w〉2 = 1

3
+ 62

189
γ . (3.67)

The average entanglement production is given, to leading order in γ , by

〈E〉β = eV

h

(
2〈X +Y 〉β − 3

ln2
〈X〉β
〉
β

(3.68)

⇒

⎧⎪⎪⎨
⎪⎪⎩

〈E〉1 =
(

4

15
+ 11

30
γ − 9

10ln2
γ

)
eV

h
,

〈E〉2 =
(

1

3
+ 62

189
γ − 58

63ln2
γ

)
eV

h
.

(3.69)

(We have again replaced δE by eV for the total entanglement production.)
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3.6 Critical decoherence rate

For each quantum dot in the ensemble, the entanglement production rate E van-
ishes identically for γ greater than a certain value γc at which the Werner pa-
rameter ξ has dropped to 1/3. For γ slightly less than γc we may expand ξ =
1/3+O(γc −γ ). In view of Eqs. (3.5) and (3.6) the entanglement production rate
has a logarithmic singularity at the critical point,

E ∝ (γc −γ )2 ln(γc −γ )−1, if γ ↑ γc. (3.70)

This is a generic feature of the loss of entanglement by the transition to a mixed
state, cf. the logarithmic singularity in the temperature dependence of the entan-
glement production found in Ref. [19].

The statistical distribution Pβ(γc) of the critical decoherence rate in the en-
semble of chaotic quantum dots is defined by

Pβ(γc) = − d

dγ
〈�(ξ − 1

3 )〉β
∣∣∣∣
γ→γc

, (3.71)

with �(x) the unit step function (�(x) = 1 if x ≥ 0 and �(x) = 0 if x < 0). The
result of a numerical evaluation of Eq. (3.71) is plotted in Fig. 3.4. The ensemble
average is

〈γc〉β =
{

0.954 if β = 1,
0.957 if β = 2.

(3.72)

Since γ = 2τdwell/τcoherence, the critical decoherence rate of a typical sample in the
ensemble of chaotic quantum dots is of the order of the inverse of the mean dwell
time. Although the mean of the distributions for β = 1 and β = 2 is almost the
same, their shape is entirely different, cf. Fig. 3.4.

The full probability distribution shows that sample-to-sample fluctuations are
large, with a substantial weight for γc  1. For small γc the distribution Pβ(γc)
has the same limiting behavior ∝ γ

−1+β/2
c as the conductance g0 [cf. Eq. (3.56)].

More precisely, as derived in App. 3.A,

lim
γc→0

Pβ(γc) =
{

0.085γ
−1/2
c if β = 1,

13/42 if β = 2.
(3.73)

3.7 Discussion

3.7.1 Strength and weakness of the voltage probe model

We have shown how the voltage probe model of shot noise [1,4,5] can be used to
study spin relaxation and decoherence in electrical conduction through a quantum
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Figure 3.4: Probability distribution of the critical decoherence rate γc, beyond
which the entanglement production vanishes. The solid and dashed curves are
computed from Eq. (3.71). The dotted lines are the weak-decoherence asymptotes
(3.73): P(γc) ∝ γ

−1+β/2
c for γc  1.
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dot. The strength of this approach to spin transport is that it is nonperturbative
in the dimensionless conductance g0, permitting a solution for g0 of order unity
using the methods of random-matrix theory. It is therefore complementary to
existing semiclassical approaches to spin noise, [37] which require g0 � 1.

The weakness of the voltage probe model is that it is phenomenological, not
directly related to any specific mechanism for decoherence. We have examined
here the simplest implementation with a single voltage probe, corresponding to a
single decay rate γ . The dominant decoherence mechanism of electron spins in
a quantum dot, hyperfine coupling to nuclear spins, [38] has a much shorter (en-
semble averaged) decoherence time T2 than the spin-flip time T1. Pure dephas-
ing (decoherence without spin flips) can be included into the model by means
of ferromagnetic voltage probes. This is one extension that we leave for future
investigation.

Another extension is to include spin-orbit scattering (symmetry index β = 4).
We surmise that the result P(γc) ∝ γ

−1+β/2
c for the distribution of the critical

decoherence rate in the weak decoherence regime, derived here for the case β =
1,2 without spin-orbit scattering, holds for β = 4 as well — but this still needs to
be demonstrated.

3.7.2 Entanglement detection for spin-isotropic states

By restricting ourselves to a system without a preferential basis in spin space,
we have derived in Sec. 3.3.2 a one-to-one relation between the entanglement
production and the spin-resolved shot noise. This relation goes beyond the voltage
probe model, so we discuss it here in more general terms.

The basic assumption is that the conduction electrons have no preferential
quantization axis for the spin. This socalled SU(2) invariance means that the full
density matrix ρ is invariant under the simultaneous rotation of each electron spin
by any 2×2 unitary matrix U :

U ⊗U ⊗U · · ·⊗Uρ U † ⊗·· ·U † ⊗U † ⊗U † = ρ. (3.74)

The 4×4 matrix ρeh, obtained from ρ by projecting onto a single excited channel
in the source as well as in the drain, has the same invariance property:

U ⊗Uρeh U † ⊗U † = ρeh. (3.75)

As explained in Sec. 3.3.1, the concurrence of the electron-hole pairs then follows
directly from

C = 3

2
max

{
0,−Trρehσz ⊗σz − 1

3

}
. (3.76)
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Here we have excluded a spontaneous breaking of the spin-rotation symmetry (no
ferromagnetic order). The more general case has been considered in the context
of the isotropic Heisenberg model. [39]

The concurrence in this spin-isotropic case is related to the spin-resolved shot
noise by Eqs. (3.5) and (3.15). The entanglement production rate E follows ac-
cording to Eq. (3.6) from C and a weight factor w, given in terms of the shot
noise by Eq. (3.16). To detect the spin entanglement one thus needs to measure
the correlator of parallel and anti-parallel spin currents. This is in essence a form
of “quantum state tomography”, simplified by the fact that an SU(2) invariant
mixed state of two qubits is described by a single parameter (the Werner parame-
ter ξ ). The isotropy assumption does away with the need to compare correlators
in different bases, as required for the Bell inequality, [24,25] or for quantum state
tomography of an arbitrary density matrix. [40]

In closing, we mention the remarkable simplification of the general expres-
sions of Sec. 3.3.2 if the (dimensionless) conductance g0  1 (tunneling regime).
Then the shot noise is Poissonian, hence Pcharge = eĪ = −2(P↑↑ + P↑↓). More-
over, the term quadratic in Ī is smaller than the term linear in Ī by a factor g0, so
it may be neglected. Instead of Eqs. (3.15) and (3.16) we thus have

ξ = P↑↑ − P↑↓
P↑↑ + P↑↓

, w = h

eδE
Ī . (3.77)

The expressions (3.5) and (3.6) for the concurrence and entanglement production
simplify to

C = 3

2
max

{
0,

P↑↑ − P↑↓
P↑↑ + P↑↓

− 1

3

}
(3.78)

= 2

eĪ
max
{
0, |P↑↑|−2|P↑↓|

}
, (3.79)

E = Ī

e
F
(

1
2 + 1

2

√
1−C2

)
. (3.80)

We thus arrive at the conclusion that the electron-hole pairs produced by a tunnel
barrier in a single-channel conductor with spin-independent scattering are entan-
gled if and only if |P↑↑| > 2|P↑↓|, that is to say, if and only if the correlator of
parallel spin currents is at least twice as large as the correlator of antiparallel spin
currents. We hope that this simple entanglement criterion will motivate further
experimental efforts in the detection of spin noise.
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3.A Derivation of Eq. (3.73)

We wish to evaluate the distribution Pβ(γc) of the critical decoherence rate in the
limit γc → 0. We can use the expressions of Sec. 3.4.2 for the weak decoherence
regime.

If γ  1 the criticality condition ξ = 1/3 is equivalent to g0(1 − g0) = Qγ ,
with the definition

Q = (τ̃1 + τ̃2)
[

fφ(1− fφ)( f̃φ(1− f̃φ)+ 1
2 )+ g0(1− g0)

]
− (τ̃1 − τ̃2)( fφ − 1

2 )
[
(g0 − 1

2 )cos2α + 1
2 cos2α′].

(3.81)

The Laguerre distribution (3.51) of the rescaled variables τ̃i = τi/γ is independent
of γ in the limit γ → 0 (when τ̃i ranges from 0 to ∞). Substitution into Eq. (3.71)
gives

Pβ(γc) =
〈
δ

(
g0(1− g0)

Q
−γc

)〉
β

. (3.82)

We first consider the case β = 1. Then α′ = α, so g0 and Q simplify to

g0 = (sin2α sin�)2, (3.83)

Q = (τ̃1 + τ̃2)
[

f 2
φ (1− fφ)2 + 1

2 fφ(1− fφ)+ g0(1− g0)
]

− (τ̃1 − τ̃2)( fφ − 1
2 )g0 cos2α. (3.84)

The average over � contributes predominantly near � = 0 and � = π , with the
result

lim
γc→0

P1(γc) = 1

2π

√
1

γc

〈
(τ̃1 + τ̃2)1/2

[
f 2
φ (1− fφ)2 + 1

2 fφ(1− fφ)
]1/2

sin2α

〉
1

.

(3.85)

The remaining average over τ̃i and α gives simply a numerical coefficient, result-
ing in Eq. (3.73).

Turning now to the case β = 2, we first observe that the limit γc → 0 contains
equal contributions from g0 near 0 and 1. Hence Eq. (3.82) simplifies to

lim
γc→0

P2(γc) = 2 〈Qδ(g0)〉2 . (3.86)

To reach g0 = 0 we need α = α′ and � = 0 or π . Expanding around α = α′ and
� = 0, we have to second order g0 = �2 sin2 2α + (α − α′)2. There is a similar
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expansion around � = π . Using the identity δ(a2 + b2) = πδ(a)δ(b) we thus
arrive at

δ(g0) = π

sin2α
δ(α−α′)

[
δ(�)+ δ(�−π )

]
. (3.87)

Substitution into Eq. (3.86) gives the limiting value

lim
γc→0

P2(γc) = 〈
(τ̃1 + τ̃2)

[
2 f 2

φ (1− fφ)2 + fφ(1− fφ)
]〉

2
= 13

42
, (3.88)

as stated in Eq. (3.73).
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Chapter 4

All-electronic coherent population
trapping in quantum dots

4.1 Introduction

Coherent population trapping is a quantum optical phenomenon in which the laser
illumination of an atom drives an atomic electron into a coherent superposition of
orbital states and traps it there [1–3]. Such superpositions can be “dark”, in that
they are further decoupled from the optical fields. Brandes and Renzoni have
shown how such states can also be formed in artificial atoms (quantum dots)
through the use of laser illumination [4, 5]. In this chapter we present an all-
electronic analogue, i.e. without laser illumination, of coherent population trap-
ping in quantum dots. (For an analogy in superconducting Josephson junctions,
see Ref. [2, 6]; for an analogy in single benzene molecules, see Ref. [8].) We il-
lustrate this effect by considering a system of three tunnel-coupled quantum dots
and show that, under proper bias and resonance conditions, an electron can be-
come trapped in a coherent superposition of states in different dots. This state is
“dark” in the sense that, due to the Coulomb blockade, no further electrons can
pass through the dots and current flow is blocked in the absence of decoherence.

The trapping effect provides a novel mechanism for current rectification, since
the blocking is effective for one sign of the bias voltage only. This quantum me-
chanical mechanism is distinct from mechanisms discussed previously. In partic-
ular, the classical rectification mechanism of Stopa and collaborators [9,10] traps
the electron in a single quantum dot, rather than in a coherent superposition of spa-
tially separated states. Experiments by Ono and collaborators [11] on rectification
in double quantum dots likewise trap an electron in a single dot. The three-dot
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Figure 4.1: Schematic of the three-dot trap. The solid arrows indicate reversible
transitions, described by the Hamiltonian (4.1). The dashed arrows indicate irre-
versible transitions, described by the quantum jump operator (4.3). Destructive
interference of the two reversible transitions traps an electron in a coherent super-
position |�−〉 = 2−1/2(|A〉−|B〉) of the states on dots A and B. The trapped state
has vanishing amplitude on dot C , so that it can not decay into the right reservoir.
No trapping is possible if the bias is inverted, because the trapped state would
then decay into the left reservoirs.

configuration requires no Aharonov-Bohm phase to trap an electron, in contrast to
the two-dot configuration of Marquardt and Bruder [12]. Because of the phase co-
herent origin of the effect discussed here, the current that leaks through the device
when it is blocked provides a method by which one can determine the coherence
time of a charge qubit.

4.2 Coherent transport

The three-dot trap is shown schematically in Fig. 4.1. Three quantum dots and
three electron reservoirs are connected by reversible or by irreversible transi-
tions. Reversible transitions between the quantum dots are described by the tunnel
Hamiltonian

H = T |C〉〈A|+ T |C〉〈B|+H.c. = 21/2T |C〉〈�+|+H.c. (4.1)

We have defined the states

|�±〉 = 2−1/2(|A〉± |B〉). (4.2)

We consider the case that the energies of the single-particle levels |A〉, |B〉, |C〉
in the three dots are all the same (set at zero), so that inelastic transitions between
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these levels do not play a role. To minimize the number of free parameters, all
tunnel rates are put equal to T . (The more general case of unequal tunnel rates
will be considered at the end of the chapter.) We assume time-reversal symmetry,
hence T is a real number. (Since results do not depend on the sign of T , we will
take T positive for ease of notation.) We furthermore assume that the electrostatic
charging energy of the combined three-dot system is sufficiently large that the
total number of electrons does not exceed one. Many-electron states are projected
out and hence we may ignore spin.

For a bias voltage |V | � T/e, and at zero temperature, the transitions from
the source reservoirs into dots A and B and from dot C into the drain reservoir are
irreversible. (Because of this restriction, the rectification provided by our device
does not apply to the range |V | � T/e around zero bias.) The tunnel rates between
dots and reservoirs are all set equal to �. The quantum jump operators are

L A = √
�|A〉〈0|, L B = √

�|B〉〈0|, LC = √
�|0〉〈C|, (4.3)

where |0〉 is the state with all three dots empty.
We study the dynamics of this device by means of the master equation ap-

proach to single-electron tunneling [8,14,15], which describes not only the popu-
lations of the dot levels, but also accounts for quantum coherences between them.
The master equation gives the time evolution of the three-dot density matrix ρ(t)
in the Lindblad form [16]

dρ

dt
= −i [H ,ρ]+

∑
X=A,B,C

(
L XρL†

X − 1
2 L†

X L Xρ − 1
2ρL†

X L X

)
. (4.4)

(We have set h̄ ≡ 1.) As initial condition we take ρ(0) = |0〉〈0|.
We use as a basis for the density matrix the four states

|e1〉 = |�+〉, |e2〉 = |�−〉, |e3〉 = |C〉, |e4〉 = |0〉. (4.5)

This four-dimensional space may be reduced to a three-dimensional subspace by
noting that the master equation (4.4) couples only ρ44 and ρi j with i , j ≤ 3. The
matrix elements ρi j with i = 4, j �= 4 or j = 4, i �= 4 remain zero. We may there-
fore seek a solution of the form

ρ(t) = ρ̃(t)+ [1−Tr ρ̃(t)] |0〉〈0|, (4.6)

where ρ̃ is restricted to the three-dimensional subspace spanned by the states |ei〉
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with i ≤ 3. The evolution equation for ρ̃ reads

dρ̃

dt
= Mρ̃ + ρ̃M† + Q, ρ̃(0) = 0, (4.7)

M = −
⎛
⎝ 0 0 21/2iT

0 0 0
21/2iT 0 �/2

⎞
⎠ , (4.8)

Q = �(1−Tr ρ̃)

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ . (4.9)

All off-diagonal elements of ρ̃ vanish, except the purely imaginary ρ̃13 =
−ρ̃31. Four real independent variables remain, which we collect in a vector v =
(Tr ρ̃, ρ̃11, ρ̃33, Im ρ̃13) satisfying

dv

dt
= X · (v −v∞), v(0) = 0, (4.10)

X =

⎛
⎜⎜⎝

−2� 0 −� 0
−� 0 0 −23/2T
0 0 −� 23/2T
0 21/2T −21/2T −�/2

⎞
⎟⎟⎠ , v∞ =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ .

(4.11)

The solution is
v(t) = v∞ − eXtv∞. (4.12)

All four eigenvalues λn of X have a negative real part, so v(t) → v∞ for
t → ∞ and hence

lim
t→∞ρ(t) = |�−〉〈�−|. (4.13)

This is the trapped state: it does not decay because it is an eigenstate of H . For
large times |v(t)−v∞| ∝ e−αt , with trapping rate α = min(|Reλ1|, |Reλ2|, |Reλ3|, |Reλ4|).
The full expression for α is lengthy, but the two asymptotic limits have a compact
form,

α =
{

4T 2/� if T  �,
1
4 (5−√

17)� ≈ 0.22� if �  T .
(4.14)

If the coupling of the quantum dots to the reservoirs is weaker than between them-
selves, then the trapping time is of order 1/�. One might have guessed the trap-
ping time to be of order 1/T in the opposite regime T  �, but this guess under-
estimates the correct answer, which is larger by a factor �/T . The fact that α → 0
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Figure 4.2: Solid curve: Dependence of the trapping rate α on the tunnel rate �

between quantum dots and reservoirs. Both rates are normalized by the tunnel
rate T between the quantum dots. The small and large-� limits are given by
Eq. (4.14). Dashed curve: Maximal steady state current Imax in the presence of
decoherence, according to Eq. (4.19). The two quantities Imax and eα differ by
less than a factor of two over the whole range of tunnel rates.

when � → ∞ can be understood as a decoherence of the inter-dot dynamics in-
duced by a strong coupling to the electron reservoirs.

The full dependence of α on � and T is shown in Fig. 4.2. If � is increased
at constant T , the trapping rate has a maximum of αmax = 0.58 T at � = 4.35 T .

4.3 Decoherence beats interference trapping

The trapping effect requires the coherent superposition of spatially separated elec-
tronic states in quantum dots A and B. Such a charge qubit is sensitive to decoher-
ence by coupling to other charges in the environment, which effectively project
the qubit on one of the three localized states |A〉, |B〉, |C〉. We model this deco-
herence by including into the master equation the three quantum jump operators

LφX = �
1/2
φ |X〉〈X |, X = A, B,C . (4.15)

The decoherence rate �φ parameterizes the strength of the charge noise and is
taken to be dot independent. For a microscopic foundation of the charge noise
model we refer to Ref. [17]. We also note that charge noise causes phase as well
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as energy relaxation.1

The master equation reads

dρ

dt
= −i [H ,ρ]+

∑
X=A,B,C ,φA,φB ,φC

(
L XρL†

X − 1
2 L†

X L Xρ − 1
2ρL†

X L X

)
. (4.16)

The steady-state current,

I = lim
t→∞e�〈C|ρ(t)|C〉, (4.17)

is obtained by solving Eq. (4.16) with the left-hand-side set to zero. We find

I = 4e�T 2

�2 +14T 2 +2��φ(1+2T 2/�2
φ)

→
{

e�φ if �φ  �, T ,
2eT 2/�φ if �φ � �, T .

(4.18)

As illustrated in Fig. 4.3, the current vanishes both in the limit �φ → 0, because
of the trapping effect, and in the limit �φ → ∞, because of the quantum Zeno
effect [18, 19]. The maximal current is reached at �φ = 21/2T and is equal to

Imax = 4e�T 2

�2 +14T 2 +4
√

2�T

→
{

4eT 2/� if T  �,
2
7 e� ≈ 0.29e� if �  T .

(4.19)

Comparison of Eqs. (4.14) and (4.19) shows that the maximal current Imax in the
presence of decoherence is set by the trapping rate α in the absence of decoher-
ence. For T  � one has exactly Imax = eα, while for �  T the two quantities
differ by a numerical coefficient of order unity. In Fig. 4.2 both Imax/e and α are
plotted together, and are seen to differ by less than a factor of two over the whole
�, T range.

The trapping effect does not happen if the bias is inverted, so that the drain
reservoir becomes the source and vice versa. In that case we find for the steady-
state current the expression

I = 4e�T 2(2� +�φ)

�(� +�φ)(� +2�φ)+4T 2(6� +5�φ)

→
{

8e�T 2(�2 +24T 2)−1 if �φ  �, T ,
2eT 2/�φ if �φ � �, T .

(4.20)

1To calculate the energy relaxation, we decouple the three quantum dots from the electron
reservoirs (setting � ≡ 0) and calculate d E/dt = (d/dt)Trρ H from Eq. (4.16). One finds
d E/dt = −�φ E , so the energy of the three-dot system relaxes to zero with rate �φ .
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Figure 4.3: Solid curves: Dependence of the steady-state current I on the deco-
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decreasing ∝ 1/�, according to Eq. (4.19). Dashed curve: Steady-state current
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For strong decoherence the current is the same in both bias directions, but for
weak decoherence the current in the case of inverted bias does not drop to zero
but saturates at a finite value. The two cases are compared in Fig. 4.3. We see that
the appearance of a maximum current as a function of �φ is characteristic for the
trapping effect.

We have for simplicity assumed that all three dots have the same tunnel rates
and decoherence rates, but this assumption may be easily relaxed. Let us consider
first the case that the three-dot structure still has a reflection symmetry, so that
dots A and B are equivalent, but that dot C has a different tunnel rate �′ into the
reservoir and a different decoherence rate �′

φ . We denote �̄φ = (�φ +�′
φ)/2. The

result (4.18) for the steady-state current generalizes to

I = 4e�′T 2

�′2 +2T 2(6+�′/�)+2�′�φ(�̄φ/�φ +2T 2/�2
φ)

→
{

e�φ if �φ → 0,
2eT 2/�̄φ if �φ → ∞.

(4.21)
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The steady-state current still contains the desired information on the rates of de-
coherence, with the regimes of weak and strong decoherence governed by �φ and
�̄φ, respectively.

In the most general case of arbitrarily different tunnel rates TA, TB ,�A,�B ,�C

and decoherence rates �φA ,�φB ,�φC , the steady state current in the limit of weak
and strong decoherence takes the form

I → w0e(�φA +�φB )

wA +wB
if �φ → 0, (4.22a)

I → 4eTATB

wA�φA +wB�φ,B + (wA +wB)�φC

if �φ → ∞,

(4.22b)

with weight factors

w0 = TATB

T 2
A + T 2

B

, wA = �ATB/TA

�A +�B
, wB = �BTA/TB

�A +�B
, (4.23)

that are functions of the tunnel rates — but independent of the decoherence rates.
Notice that in this asymmetric case the trapped state

√
w0TB/TA|A〉 -

√
w0TA/TB |B〉

has unequal weights on the two dots A and B.

4.4 Conclusion

In conclusion, we have demonstrated how the well known concept of coherent
population trapping in atoms may be transferred to a purely electronic system. A
large voltage bias plays the role of the laser illumination and single-electron tun-
neling between quantum dots plays the role of intra-atomic transitions. Because
the quantum dots are charged, the trapped electronic state is sensitive to decoher-
ence by coupling to charges in the environment. This decoherence destabilizes
the trapped state, causing a leakage current I to flow through the quantum dots.
We have found that the maximal I in the presence of decoherence is set by the
trapping rate α, with Imax ≈ eα within a factor of two over the whole parameter
range. For small decoherence rate �φ we find I = e�φ, which provides a way
to measure the coherence time of a charge qubit in a transport experiment. We
finally note that extensions to many-electron trapping can serve as a source for
the formation of entangled electron pairs [20].
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Chapter 5

Counting statistics of coherent
population trapping in quantum dots

5.1 Introduction

The phenomenon of coherent population trapping, originating from quantum op-
tics, has recently been recognized as a useful and interesting concept in the elec-
tronic context as well. [1, 2] An all-electronic implementation, proposed in Ref.
[3], is based on destructive interference of single-electron tunneling between three
quantum dots (see Fig. 5.1). The trapped state is a coherent superposition of the
electronic charge in two of these quantum dots, so it is destabilized as a result of
decoherence by coupling to external charges. In the limit of weak decoherence
one electron is transferred on average through the device for each decoherence
event.

In an experimental breakthrough, [4, 5] Gustavsson et al. have now reported
real-time detection of single-electron tunneling, obtaining the full statistics of the
number of transferred charges in a given time interval. The first two moments
of the counting statistics give the mean current and the noise power, and higher
moments further specify the correlations between the tunneling electrons. [6] This
recent development provides a motivation to investigate the counting statistics of
coherent population trapping, going beyond the first moment studied in Ref. [3].

Since the statistics of the decoherence events is Poissonian, one might sur-
mise that the charge counting statistics would be Poissonian as well. In contrast,
we find that charges are transferred in bunches instead of independently as in
a Poisson process. The Fano factor (ratio of noise power and mean current) is
three times the Poisson value in the limit of weak decoherence. We identify the
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Figure 5.1: Three quantum dots connected to a source and a drain reservoir. Re-
versible transitions (rate T ) and irreversible transitions (rate �) are indicated by
arrows.

physical origin of this super-Poissonian noise in the alternation of two decay pro-
cesses (tunnel events and decoherence events) with very different time scales—in
accord with the general theory of Belzig. [7] For comparable tunnel and deco-
herence rates the noise becomes sub-Poissonian, while the Poisson distribution is
approached for strong decoherence.

The analysis of Ref. [3] was based on the Lindblad master equation for elec-
tron transport, [8, 9] which determines only the average number of transferred
charges. The full counting statistics can be obtained by an extension of the mas-
ter equation due to Bagrets and Nazarov [10] (without phase coherence) and to
Kießlich et al. [11] (with phase coherence). In spite of the added complexity, we
have found analytical solutions for the second moment at any decoherence rate
and for the full distribution in the limit of weak or strong decoherence.

5.2 Model

The system under consideration, studied in Ref. [3], is depicted schematically
in Fig. 5.1. It consists of three tunnel-coupled quantum dots connected to two
electron reservoirs. In the limit of large bias voltage, which we consider here,
electron tunneling from the source reservoir into the dots and from the dots into
the drain reservoir is irreversible. We assume that a single level in each dot lies
within range of the bias voltage. We also assume that due to Coulomb blockade
there can be at most one electron in total in the three dots. The basis states,
therefore, consist of the state |0〉 in which all dots are empty, and the states |A〉,
|B〉, and |C〉 in which one electron occupies one of the dots.

The time evolution of the density matrix ρ for the system is given by the
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Lindblad-type master equation, [8, 9]

dρ

dt
= −i [H ,ρ] +

∑
X=A,B,C ,φA,φB ,φC

(
L XρL†

X − 1
2 L†

X L Xρ − 1
2ρL†

X L X
)
. (5.1)

The Hamiltonian
H = T |C〉〈A|+ T |C〉〈B|+H.c. (5.2)

is responsible for reversible tunneling between the dots, with tunnel rate T . For
simplicity, we assume that the three energy levels in dots A, B, and C are degen-
erate and that the two tunnel rates from A to C and from B to C are the same.
The quantum jump operators

L A = √
�|A〉〈0|, L B = √

�|B〉〈0|, LC = √
�|0〉〈C|,

model irreversible tunneling out of and into the reservoirs, with a rate � (which
we again take the same for each dot). Finally, the quantum jump operators

LφX =√�φ|X〉〈X |, X = A, B,C , (5.3)

model decoherence due to charge noise with a rate �φ.
As a basis for the the density matrix we use the four states

|e0〉 = 2−1/2(|A〉− |B〉),
|e1〉 = 2−1/2(|A〉+ |B〉),
|e2〉 = |C〉, |e3〉 = |0〉. (5.4)

If the initial state is |0〉〈0| most of the coefficients of ρ remain zero. We collect
the five non-zero real variables in a vector

v = (ρ00,ρ11,ρ22,ρ33, Imρ02)T, (5.5)

whose time evolution can be expressed as

dv/dt = Xv, (5.6)

X =

⎛
⎜⎜⎜⎜⎝

−�φ/2 �φ/2 0 � −23/2T
�φ/2 −�φ/2 0 � 0

0 0 −� 0 23/2T
0 0 � −2� 0

21/2T 0 −21/2T 0 −�/2−�φ

⎞
⎟⎟⎟⎟⎠ . (5.7)
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It is our goal to determine the full counting statistics, being the probability dis-
tribution P(n) of the number of transferred charges in time t . Irrelevant transients
are removed by taking the limit t → ∞. The associated cumulant generating
function F (χ ) is related to P(n) by

exp[−F (χ )] =
∞∑

n=0

P(n)exp(inχ ). (5.8)

From the cumulants

Ck = −(−i∂χ )k F (χ )|χ=0 (5.9)

we obtain the average current I = eC1/t and the zero-frequency noise S = 2e2C2/t ,
both in the limit t → ∞. The Fano factor is defined as α = C2/C1.

As described in Refs. [10] and [11], in order to calculate F (χ ) one multiplies
coefficients of the rate matrix X which are associated with tunneling into one of
the reservoirs (the right one in our case), by counting factors eiχ . This leads to the
χ -dependent rate matrix

L(χ ) =

⎛
⎜⎜⎜⎜⎝

−�φ/2 �φ/2 0 � −23/2T
�φ/2 −�φ/2 0 � 0

0 0 −� 0 23/2T
0 0 �eiχ −2� 0

21/2T 0 −21/2T 0 −�/2−�φ

⎞
⎟⎟⎟⎟⎠ . (5.10)

The cumulant generating function for t → ∞ can then be obtained from the eigen-
value �min(χ ) of L(χ ) with the smallest absolute real part, [10, 11]

F (χ ) = −t�(χ)
min . (5.11)

5.3 Results

5.3.1 Fano factor

Low order cumulants can be calculated by perturbation theory in the counting
parameter χ . The calculation in outlined in App. 5.A. For the average current we
find

I = 4e�T 2

�2 +14T 2 +2��φ(1+2T 2/�2
φ)

, (5.12)
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Figure 5.2: Dependence of the Fano factor α on the normalized decoherence rate
�φ/T for three values of �/T .

in agreement with Ref. [3]. By calculating the noise power and dividing by the
mean current we obtain the Fano factor

α =
[
�4 +148T 4 +4�2(�2

φ +4T 2 +12T 4/�2
φ)+

(16T 2 +2�2)β
][

�2 +14T 2 +β
]−2

, (5.13)

β = 2��φ(1+2T 2/�2
φ). (5.14)

In Fig. 5.2 the Fano factor has been plotted as a function of ��/T for three
different values of �/T . The dependence of the Fano factor on the decoherence
rate is nonmonotonic, crossing over from super-Poissonian (α > 1) to Poissonian
(α = 1) via a region of sub-Poissonian noise (α < 1). To obtain a better under-
standing of this behavior, we study separately the regions of weak and strong
decoherence.
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5.3.2 Weak decoherence

For decoherence rate �φ  �, T we have the limiting behavior

I → e�φ, α → 3−�φ

(
17

�
+ �

T 2

)
. (5.15)

Hence one charge is transferred on average per decoherence event, but the Fano
factor is three times the value for independent charge transfers.

There exists a simple physical explanation for this behavior. For zero deco-
herence the system becomes trapped in the state |e0〉. The system is untrapped by
“decoherence events”, which occur randomly at the rate �φ according to Poisson
statistics. If �φ is sufficiently small there is enough time for the system to decay
into the trapped state between two subsequent events, so they can be viewed as in-
dependent. The super-Poissonian statistics appears because a single decoherence
event can trigger the transfer of more than a single charge.

The probability of n electrons being transferred in total as a consequence of
one decoherence event is

R1(n) = 1

2n+1
, (5.16)

since a decoherence event projects the trapped state |e0〉 onto itself or onto |e1〉
with equal probabilities 1/2 and each electron subsequently entering the dots has
a 50% chance of getting trapped in the state |e0〉.

The number of electrons which have been transferred due to exactly k de-
coherence events has distribution Rk(n), the (k − 1)th convolution of R1(n) with
itself. We get

Rk (n) = 1

2n+k

n∑
i0=0

i0∑
i1=0

· · ·
ik−3∑

ik−2=0

1

= 1

2n+k

(
n + k −1

n

)
. (5.17)

By definition,

R0(n) = δn,0 =
{

1
0

for
n = 0
n > 0

, (5.18)

being the distribution of the transferred charges after no decoherence events have
occurred.

The decoherence events in a time t have a Poisson distribution,

PPoisson(k) = e−t�φ (t�φ)k/k!. (5.19)
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Combining with Eq. (5.17) we find the probability that n electrons have been
transferred during a time t ,

P(n) =
∞∑

k=0

PPoisson(k)Rk(n) (5.20)

=
∞∑

k=1

e−t�φ (t�φ)k

2n+kk!

(
n + k −1

n

)
+ e−t�φδn,0.

The corresponding cumulant generating function is

F (χ ) = t�φ − t�φ

2− eiχ
, (5.21)

which gives rise to the cumulants

C1 = t�φ, C2 = 3t�φ, C3 = 13t�φ, (5.22)

in agreement with Eq. (5.15).
The probability distribution (5.21) has been found by Belzig in a different

model. [7] As shown in that paper, this superposition of Poisson distributions
with Fano factor 3 arises generically whenever there are two transport channels
with very different transport rates (in our case slow transport via the trapped state
|e0〉, and fast transport via the untrapped state |e1〉).

5.3.3 Strong decoherence

We show that Poisson statistics of the transferred charges is obtained for strong
decoherence. Consider the evolution equation (5.6) of the system. For �φ � �, T
the coefficients X00, X01, X10, and X11 will ensure that v0 is equal to v1 after a
time which is short compared to the other characteristic times of the system. The
trapped and the non-trapped states will be equally populated. Let us therefore
define

v′ = (ρ00 +ρ11,ρ22,ρ33, Imρ02)T (5.23)

and use ρ00 = ρ11 = v′
0/2. The evolution of v′ is governed by dv′/dt = X ′v′, with

X ′ =

⎛
⎜⎜⎝

0 0 2� −23/2T
0 −� 0 23/2T
0 � −2� 0

2−1/2T −21/2T 0 −�/2−�φ

⎞
⎟⎟⎠ . (5.24)
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The rate matrix L ′(χ ) is obtained by multiplying X ′
12 by the counting factor eiχ .

An analytic expression can be found for the smallest eigenvalue �′(χ)
min of L ′(χ ),

leading to the cumulant generating function

F (χ ) = 2T 2

�φ

t
(
1− eiχ

)
(5.25)

of a Poisson distribution.

5.4 Conclusion

In conclusion, we have shown that coherent population trapping in a purely elec-
tronic system has a highly nontrivial statistics of transferred charges. Depending
on the ratios of decoherence rate and tunnel rates, both super-Poissonian and sub-
Poissonian statistics are possible. We have obtained exact analytical solutions for
the crossover from sub- to super-Poissonian charge transfer, and have calculated
the full distribution in the limits of weak and strong decoherence. We hope that
the rich behavior of this simple device will motivate experimental work along the
lines of Ref. [4] and [5].

5.A Derivation of the Fano factor

To derive the result (5.13) for the Fano factor it is sufficient to know the cumulant
generating function to second order in χ . The eigenvalues of the rate matrix L(χ )
defined in Eq. (5.10) have the expansion

λ = λ0 +λ1χ +λ2χ
2 + O(χ3). (5.26)

We seek the eigenvalue with the smallest real part in absolute value. That eigen-
value has λ0 = 0. We also express the eigenvector w corresponding to λ and the
matrix itself in a power series in χ :

w = w0 +w1χ +w2χ
2 + O(χ3), (5.27)

L = L0 + L1χ + L2χ
2 + O(χ3). (5.28)

Inserting the above expansions into the eigenvalue equation Lw = λw yields the
following relationships of respectively zeroth, first and second order:

L0w0 = 0, (5.29)

L1w0 + L0w1 = λ1w0, (5.30)

L2w0 + L1w1 + L0w2 = λ2w0 +λ1w1. (5.31)



93

The coefficients Lk are known, while wk and λk remain to be found by solving
these equations sequentially. The first two cumulants then follow from

C1 = −i tλ1, C2 = −2tλ2. (5.32)

In an analogue way it is possible to calculate higher cumulants.
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Chapter 6

Transfer of entanglement from
electrons to photons by optical
selection rules

6.1 Introduction

A key step in road maps for solid-state quantum information processing is the
transfer of an entangled state from localized to flying qubits and vice versa. Sev-
eral different schemes exist for the transfer of entanglement from squeezed radi-
ation to localized qubits, e.g. distant atoms or superconducting quantum interfer-
ence devices [1–4]. In another class of proposals, the entanglement is transferred
from the localized qubits of electron spins to the flying qubits of photon polar-
izations [5]. Classical correlations between the spins can be transferred to the
polarizations when conservation of angular momentum together with spin-orbit
coupling imposes a one-to-one relation between the spin of the electron and the
polarization of the photon that it produces in a radiative transition. Entanglement,
however, is a quantum correlation which is easily lost in this process.

The obstacle to entanglement transfer is that the optical selection rules in the
general case entangle the photons with the electrons — and then the entangle-
ment of the photons among themselves is lost once one traces out the electronic
degrees of freedom [6]. This “tracing out” is unavoidable when the photon state
is measured independently of the electron state. After explaining this difficulty in
some more detail, we will show that it can be circumvented by post-processing
the photon state with the input of information obtained from a measurement on
the electron state.

97
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Our analysis has certain implications for a recent realistic proposal by Cerletti,
Gywat, and Loss [5] to use electron-hole recombination in spin light-emitting
diodes (spin-LEDs [7, 8]) as an efficient method for the transfer of entanglement
from electron spins onto circular photon polarizations. We will argue, firstly, that
the method of Ref. [5] transfers classical correlations but not quantum correla-
tions; and, secondly, that the quantum entanglement transfer can be realized by
measurement in a rotated basis of the hole angular momentum in each quantum
dot after the photo-emission, followed by a single-photon operation conditioned
on the outcome of that measurement.

In the concluding section we briefly discuss alternative schemes for quantum
entanglement transfer, which do not require the subsequent measurements (post-
processing) and might, therefore, be realized more easily in the laboratory.

6.2 General analysis

We consider two quantum dots A and B, each containing one qubit. The initial
two-qubit electronic state has the generic form

|�in〉 = α| ↓↓〉+β| ↑↑〉, |α|2 +|β|2 = 1. (6.1)

The entanglement of formation of this state is quantified by the concurrence [9]

Cin = 2|αβ|. (6.2)

The two states ↓, ↑ of the qubits are eigenstates of the total (orbital + spin)
angular momentum operator Lz in the z-direction, with eigenvalues L↓, L↑ (in
units of h̄). The first state in the ket | · ·〉 refers to the qubit in quantum dot A and
the second state refers to quantum dot B.

Photons with opposite circular polarizations σ± (angular momentum ±1),
emitted along the spin quantization axis, are produced according to the unitary
evolution

| ↓〉|0〉 �→ |�+〉|σ+〉, (6.3)

| ↑〉|0〉 �→ |�−〉|σ−〉, (6.4)

where |0〉 denotes the photon vacuum and |�±〉 denotes the state of the quantum
dot after the photo-emission of a σ± photon. Conservation of angular momentum
requires that |�+〉 and |�−〉 are eigenstates of Lz with eigenvalues

L+ = L↓ −1, L− = L↑ +1, (6.5)
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respectively. In general, the two states |�+〉 and |�−〉 are orthogonal because
they correspond to different eigenvalues L+ �= L−. The exception is the special
case L↓ − L↑ = 2, when L+ = L− so that |�+〉 and |�−〉 may have a nonzero
overlap.

The final state

|�final〉 = α|�+�+〉|σ+σ+〉+β|�−�−〉|σ−σ−〉 (6.6)

represents an encoding rather than a transfer of the entanglement. Assuming
that the photons are measured independently of the electrons, we trace out the
electronic degrees of freedom to obtain the reduced density matrix ρphoton of the
photons by themselves:

ρphoton = Trelectron |�final〉〈�final|
= |α|2|σ+σ+〉〈σ+σ+|+ |β|2|σ−σ−〉〈σ−σ−|+γ |σ+σ+〉〈σ−σ−|+

γ ∗|σ−σ−〉〈σ+σ+|,
(6.7)

where γ = αβ∗〈�−|�+〉A〈�−|�+〉B . The concurrence of the mixed state ρphoton

is
Cfinal = 2|γ |. (6.8)

If L↓ − L↑ �= 2, so that the final electronic states |�+〉X and |�−〉X in quantum
dots X = A, B are orthogonal, the polarizations of the photons have been cor-
related but not entangled (γ = 0 ⇒ Cfinal = 0). Since unitary operations on the
electronic degrees of freedom do not change ρphoton, the entanglement can not be
recovered by unitary evolution once the photons have left the quantum dots and
their evolution has decoupled from the electrons.

While unitary evolution can not disentangle the electrons from the photons,
a projective measurement of the quantum dots followed by post-processing of
the photons can realize the entanglement transfer. Considering the generic case
L↓ − L↑ �= 2, so that 〈�−|�+〉 = 0, we first perform the following local unitary
operation on each of the two quantum dots:

|�+〉 �→ (|�+〉+|�−〉)/√2, (6.9)

|�−〉 �→ (|�+〉−|�−〉)/√2. (6.10)

We then measure Lz . The outcome of the measurement on dot X = A, B is de-
noted by L X . The measurement leaves the photons in the state

|�photon〉 = α|σ+σ+〉+ (−1)xβ|σ−σ−〉, x = L A − L B

L+ − L−
. (6.11)
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A B
σ σ+ −

-1/2 +1/2

-3/2 +3/2

σ
σ

+
−

Figure 6.1: Left panel: A spin-entangled pair of electrons recombines with a
hole in quantum dots A and B, to emit a pair of photons with anti-correlated
circular polarizations σ±. Right panel: The four lowest energy levels involved
in the photo-emission of each quantum dot. The angular momentum quantum
number is indicated. Initially both lower levels are filled by heavy holes. The
recombination with a single electron in one of the two upper levels leaves the
remaining hole entangled with the emitted photon. This prevents the transfer of
the entanglement from the electrons to the photons.

If the measurement gives L A = L B no post-processing is needed; otherwise, the
conditional phase shift |σ±〉 �→ ±|σ±〉 performed on one of the two photons com-
pletes the entanglement transfer.

6.3 Application to spin-LEDs

The mechanism for entanglement transfer in spin-LEDs proposed in Ref. [5] is
shown schematically in Fig. 6.1. Two spin-entangled electrons (spin ±1/2) are
injected into the conduction band of two different quantum dots, each of which
is charged with a pair of heavy holes in the valence band. The two heavy holes
in each quantum dot have opposite angular momentum ±3/2, so that their total
angular momentum along z vanishes. The initial state |�in〉 is of the form (6.1),
with the identification | ↑〉 ≡ |+ 1

2 ,+ 3
2 ,− 3

2 〉 and | ↓〉 ≡ |− 1
2 ,+ 3

2 ,− 3
2 〉. (The three

fractions indicate the angular momentum quantum numbers of the electron and
the two heavy holes.) Electron-hole recombination can proceed either from an-
gular momentum +1/2 to +3/2 with emission of a σ− photon or from −1/2 to
−3/2 with emission of a σ+ photon.

The remaining heavy holes become entangled with the photons, so that the
final state |�final〉 is of the form (6.6) with the identification |�+〉 ≡ | + 3

2〉 and
|�−〉 ≡ |− 3

2 〉. These two states refer to two heavy holes with opposite angular
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momentum, so they are definitely orthogonal. Hence the reduced density matrix
of the photons ρphoton is of the form (6.7) with γ = 0 and the concurrence Cfinal =
0. The polarizations of the photons have become correlated but not entangled.
No matter how the remaining holes evolve after the photons have decoupled, the
degree of entanglement of ρphoton remains zero.

As explained in the previous section, the holes can be disentangled from the
photons by post-processing in a sequence of three steps:

1. Bring each heavy hole in a superposition of states with opposite angular
momentum by means of the local unitary operation | ± 3

2〉 �→ (| + 3
2〉± |−

3
2〉
)
/
√

2.

2. Measure the angular momentum of each hole in the z-direction, with out-
come L A, L B .

3. Perform the conditional phase shift |σ±〉 �→ ±|σ±〉 on one of the two pho-
tons if L A �= L B .

Step three is a routine linear optical operation. Step two might be achieved by
detecting whether or not a spin-up heavy hole (angular momentum +3/2) can be
injected separately into each of the two quantum dots. If both heavy holes enter
their quantum dot, or if both do not enter, then L A = L B , while L A �= L B if one
hole enters and the other does not. Step one might be achieved by an optical
Raman transition [10, 11].

6.4 Conclusion

We have shown that the transfer of entanglement from localized electron spins
to circular photon polarizations by means of optical selection rules can not be
achieved solely by unitary evolution. Projective measurements and post-processing
conditioned on the outcome of the measurements are required as well, to disen-
tangle the final electronic state from the photons. This difficulty originates from
the mismatch between the half-integer spin of fermions and the integer spin of
bosons. It severly complicates the original spin-LED proposal of Cerletti, Gy-
wat, and Loss [5], see Ref. [11]. In this concluding section we discuss several
strategies that one might use to avoid the difficulty.

As proposed by Vrijen and Yablonovitch [6], entanglement transfer by unitary
evolution to linearly polarized photons is possible if a strong magnetic field lifts
the degeneracy between the up and down hole spins, so that the topmost hole
state is nondegenerate. In the case of circular polarization considered here, it
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is possible if the angular momentum difference of the initial electronic qubits
satisfies L↓ − L↑ = 2. This might apply to a qubit formed from a +3/2 heavy hole
and a −1/2 light hole. (The difference in mass might well prevent the formation
of an entangled pair out of these qubits.) The spin-LEDs would then initially
each contain a single +1/2 electron, which would recombine with the hole under
emission of a σ± photon. The unique final state in this case is a pair of empty
quantum dots.

Alternatively, one might construct a qubit solely out of orbital degrees of
freedom (without spin-orbit coupling): An electron in a circularly symmetric
quantum dot has degenerate eigenstates of orbital angular momentum +1 or −1,
which would decay to the nondegenerate ground state (zero angular momentum)
with emission of a σ± photon [12]. Since the final state of the quantum dot is
unique, it is not entangled with the photons, in accord with the general condition
L↓ − L↑ = 2 for the transfer of entanglement by unitary evolution.

An alltogether different way out of the constraints imposed by the optical
selection rules is to let the spin-entangled electrons recombine with an entangled
pair of holes. More specifically, if a pair of electrons in the state α|+ 1

2 ,− 1
2 〉+β|−

1
2 ,+ 1

2 〉) recombines with a pair of heavy holes in the singlet state (|+ 3
2 ,− 3

2 〉−|−
3
2 ,+ 3

2 〉)/√2, then the final photonic state (after tracing out the electronic degrees
of freedom) becomes

ρphoton = 1

2
|�〉〈�|+ 1

2
|0〉〈0|, |�〉 = α|σ−σ+〉−β|σ+σ−〉, (6.12)

where |0〉 denotes the photon vacuum state. Detection of the photon pair projects
onto the entangled state |�〉. The efficiency of this entanglement transfer scheme
is 1/2 rather than unity, but it has the advantage that no measurement on the
electronic state needs to be performed.
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Samenvatting

Met de spin van het elektron wordt de tollende beweging bedoelt die in 1925
door de Leidse natuurkundigen George Uhlenbeck en Samuel Goudsmit werd
ontdekt. Tegenwoordig is er een vakgebied binnen de elektronica, de zogenaamde
spintronica, die de spin van elektronen benut om een schakeling aan te sturen. Een
linksomdraaiend elektron (spin omhoog) zet dan bijvoorbeeld de schakeling “uit”
en een rechtsomdraaiend elektron (spin omlaag) zet de schakeling “aan”. Voor
deze toepassingen is het van belang dat de spin niet door onvoorziene invloeden
van richting omkeert, bijvoorbeeld door het magnetische veld van atoomkernen.
In dit proefschrift beschrijven we een methode die we ontwikkeld hebben om het
verval van de spinrichting in rekening te brengen.

Zeer recent is er een tweede klasse van toepassingen van de elektronenspin
ontwikkeld, waarbij de spin drager is van quantuminformatie. Bij een gewone
“klassieke” schakeling wijst de spin omhoog óf omlaag, maar bij een quantum-
schakeling wijst de spin omhoog én omlaag. Men spreekt dan van een superpo-
sitie van omhoog en omlaag. Als zo’n superpositie vervalt, dan spreekt men van
defasering (of decoherentie). Dezelfde mechanismen die het gewone, klassieke
verval van de spinrichting veroorzaken, veroorzaken ook defasering, maar er zijn
ook mechanismen die alleen defasering veroorzaken — zonder klassiek verval. In
het algemeen heeft men dan ook twee verschillende tijden (gewoonlijk T1 en T2

genoemd), die respectievelijk de snelheid van spinverval en van defasering geven.
Het model voor spinverval dat wij hebben ontwikkeld kan tevens de defasering in
rekening brengen — het is dan ook een volledig quantummechanisch model.

Eerdere modellen voor spinverval en defasering waren vooral geschikt voor
elektronen in een klein afgesloten gebied (een zogenaamde quantum dot). Ons
model is toepasbaar op een open systeem, waar een elektrische stroom doorheen
kan lopen. Die combinatie van elektrische geleiding en spin verval/defasering
hebben wij hanteerbaar gemaakt door een oud model van Markus Büttiker uit te
breiden, het zogenaamde “dephasing lead” model. In het oorspronkelijke model
was de elektronenspin niet inbegrepen, alleen defasering van de ruimtelijke be-
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weging werd behandeld. Behalve de uitbreiding naar de elektronenspin, hebben
we ook een andere variant (de “dephasing stub”) onderzocht.

Dit onderwerp uit de spintronica is het belangrijkste onderdeel van het proef-
schrift, behandeld in hoofdstukken 2 en 3 (na een inleiding in hoofdstuk 1). De
elektronenspin staat ook centraal in hoofdstuk 6, waar we het probleem van de
overdracht van een quantummechanische superpositie van de elektronenspin naar
fotonpolarisaties onderzoeken. Deze overdracht is van belang voor de werking
van een quantumcomputer. In hoofdstukken 4 en 5 speelt de elektronenspin zelf
geen rol, maar wel het probleem van fasecoherente elektrische geleiding door
quantum dots. We onderzoeken in deze hoofdstukken een systeem van drie quan-
tum dots, waarin een elektron gevangen kan raken in een superpositie van toe-
standen op twee van de dots. Zulk een superpositie is een alternatieve manier om
quantuminformatie op te slaan.
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Stellingen
behorend bij het proefschrift

On dephasing and spin decay in open quantum dots

1. If you measure the energies in the excitations of two locally separate systems,
let them collide, wait till they are separate again and measure then again these
excitations, the sum of the energies does not have to be the same as before the
collisions even if their relative velocity didn’t change.

cond-mat/0606608.

2. The average electron-hole entanglement production rate on a set of quantum dots
decreases monotonously with the increasing decoherence strength of the voltage
probe model and the latter increases with temperature.

This thesis, Chapter 3, and Phys. Rev. Lett. 83, 5090 (1999).

3. The coherence time of a charge qubit can be measured in a transport experiment
by an electronic analogue of the optical method of coherent population trapping.

This thesis, Chapter 4.

4. There is no physical reality to the charge excitations with energies close to the
middle of the gap in the insulating half-filled phase of the one-band Hubbard
model, predicted by the self-energy functional approximation.

Eur. Phys. J. B 32, 429 (2003).

5. Electron-hole pairs produced at a tunnel barrier are entangled if and only if the
correlator of parallel spin currents is at least twice larger than the correlator of
antiparallel spin currents.

This thesis, Chapter 3.

6. A measurement of the squared magnetization on a many-particle spin system can
be performed by guiding it through an antiferromagnetic tube.

cond-mat/0606608.

7. Models in theoretical physics originate from intuition based on daily-life pheno-
mena — thus a successful search for qualitatively new models should be prece-
ded by extensions of that intuition.

8. Charge transfer in the regime of coherent population trapping occurs in bunches
of three electrons on average.

This thesis, Chapter 5.

9. In semiconductor electronics it is possible to measure the time dependence of a
10−19 A current very accurately with a 10−9 A current passing close by.

Björn Dieter Michaelis
16 November 2006




