MAGNETIC INVESTIGATIONS ON SOME RARE-EARTH CHALCOGENIDES

J. W. ARBOUW

BIBLIOTHEEK GORLAEUS LABORATORIA DER R.U., Wassenaarseweg 76

Postbus 75 - LEIDEN

MAGNETIC INVESTIGATIONS

ON SOME RARE-EARTH

CHALCOGENIDES

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN AAN DE RIJKSUNIVERSITEIT TE LEIDEN, OP GEZAG VAN DE RECTOR MAGNIFICUS DR. A.E. COHEN, HOOGLERAAR IN DE FACULTEIT DER LETTEREN, VOLGENS BESLUIT VAN HET COLLEGE VAN DEKANEN TE VERDEDIGEN OP WOENSDAG 2 OKTOBER 1974 TE KLOKKE 15.15 UUR

door

JAN WOUTER ARBOUW geboren te LEIDEN in 1941

Krips Repro - Meppel

PROMOTOR: DR. W.L. GROENEVELD

Het in dit proefschrift beschreven onderzoek werd aangevangen onder leiding van Prof. Dr. E.W. Gorter[†] en voortgezet onder leiding van Dr. D.J.W. IJdo.

STELLINGEN

- De conclusie van Kobayashi, Tsujikawa en Friedberg dat een spingolf model toegepast op een ééndimensionaal magnetisch systeem de waarde van x₁(0) voor de magnetische keten verbinding CsMnCl₃·2H₂O bevredigend verklaart is niet afdoende gefundeerd.
 - H. Kobayashi, I. Tsujikawa en S.A. Friedberg, J. Low Temp. Phys. <u>10</u>, 621 (1973).

J.M. Cece en R.D. Gonzales, J. Catal. 28, 254 (1973).

3. De interpretatie van de absorptiebanden in het spectrum van mangaancupferraat zoals die gegeven wordt door Abou El Ela en Afifi stemt niet overeen met de toekenning van de absorptiebanden van het door dezelfde auteurs beschreven zinkcupferraat-complex.

A.H. Abou El Ela en H.H. Afifi, Z. naturforsch. 29a, 719 (1974).

 De toekenning in de NMR spectra van p-halogeenfenyllood-tris (trifluoracetaat) aan de fenylprotonen zijn door Kalman, Pinhey en Sternhell onzorgvuldig gedaan.

J.R. Kalman, J.T. Pinhey en S. Sternhell, Tetrahedron Letters 5, 5369 (1972).

5. De conclusie van Clack en Williams dat de resultaten van nun M.O. berekeningen aan $\text{CuF}_6^{2^-}$ worden ondersteund door de door hen gemeten absorptiespectra is aan twijfel onderhevig.

D.W. Clack en W.T. Williams, J. Inorg. Nucl. Chem. 35, 3535 (1973).

 De indicering van het röntgendiffractiepatroon van NaMnCl₃ zoals die door Kestigian en Croft voor het door hen bereide preparaat gegeven wordt is onjuist.

M. Kestigian en W.J. Croft, Mat. Res. Bull. 4, 877 (1969)

 De conclusie van Riou, Gérault en Lecerf dat de zuurstofatomen en de OHgroepen in het y-Cu₂(OH)₂CrO₄ een hexagonale dichtste bolstapel vormen is onjuist.

8. De door Yu.E. Kirsh, O.P. Komarova en G.M. Lukovkin gevestigde indruk dat het potentiometrisch titratiegedrag van poly-4-vinyl-pyridine als functie van de zoutconcentratie in het gebied van lage ladingsdichtheid afwijkt van het gedrag van andere zwakke polyelectrolyten is onjuist.

> Yu.E. Kirsh, O.P. Komarova en G.M. Lukovkin, European Polymer J. 9, 1405 (1973).

- 9. Aangezien een mede-eigenaar van een octrooi volgens artikel 39 lid 2 van de Rijksoctrooiwet de bevoegdheid heeft alle handelingen genoemd in artikel 30 van de Rijksoctrooiwet te verrichten, kan, omdat uit artikel 39 lid 1 van de Rijksoctrooiwet en uit de Memorie van Toelichting daarop blijkt dat de mede-eigendom van een octrooi een vrije mede-eigendom is, het gedeelte van artikel 39 lid 2 van de Rijksoctrooiwet, waarin bepaald wordt dat licentie slechts met gemeen goedvinden der mede-eigenaren verleend kan worden, tot een dode letter gemaakt worden door overdracht van een gedeelte van een aandeel in een octrooi.
- Het zou aanbeveling verdienen voor die ongehuwde en andere alleenstaanden die daar prijs op stellen de mogelijkheid te scheppen met vervroegd pensioen te gaan.
- Gezien het feit dat de gemiddelde levensduur van vrouwen groter is dan die van mannen, is het onrechtvaardig vrouwen op een lagere leeftijd te pensioneren.

J.W. Arbouw

Leiden, 2 oktober 1974

A. Riou, Y. Gérault en A. Lecerf, Bull. Soc. France Min. Crist. 96, 25 (1973).

Aan mijn ouders Voor Henny

CONTENTS

CHAPTER I	Introduction	7
	References	14
CHAPTER II	Ruderman and Kittel, Kasuya and Yosida interaction	16
	1. Introduction	16
	2. RKKY-theory	17
	References	24
CHAPTER III	Crystal chemistry of the binary and ternary rare earth chalcogenides	25
	1. Survey of the rare earth chalcogenides	25
	2. The thorium phosphide structure	28
	3. Ordering in the thorium phosphide structure	34
	4. Parameter variations in rare earth chalcogenides	38
	with the thorium phosphide structure	
	References	42
CHAPTER IV	Magnetic measurements and apparatus	44
	1. Introduction	44
	2. The automatic Faraday balance	45
	References	51
CHAPTER V	Experimental data and results	52
	1. Preparation	52
	2. Characterization	55
	3. Results of the magnetic measurements	56
	1. The system CaPr ₂ S ₄ -BaPr ₂ S ₄ -Pr ₃ S ₄ -Pr ₂ S ₃	56
	2. The system SrPr ₂ Se ₄ -BaPr ₂ Se ₄ -Pr ₃ Se ₄ -Pr ₂ Se ₃	60
	3. The system CaNd ₂ S ₄ -BaNd ₂ S ₄ -Nd ₃ S ₄ -Nd ₂ S ₃	62
	4. The system SrNd ₂ Se ₄ -BaNd ₂ Se ₄ -Nd ₃ Se ₄ -Nd ₂ Se ₃	66
	5. The system Gd ₂ S ₃ -Gd ₃ S _{2.78}	73
	References	73

CHAPTER VI	Discussion	74
	1. Introduction	74
	2. The Gonçalves da Silva and Falicov model	77
	3. Discussion	81
	References	82

SAMENVATTING

CHAPTER I

INTRODUCTION

During the past decade a lot of information has been obtained in the field of the chemistry and physics of the rare-earth metals. One of the reasons for this is the availability of the rare-earth metals and a great number of their compounds in a high state of purity and at reasonable prices.

From a crystal chemical point of view the rare-earth metals and compounds are very interesting because in corresponding valence states the ionic radius decreases with increasing atomic number. This gives the crystal chemist the possibility to search after the influence of the radius ratio of cation and anion on the crystal structure, and related to that after the influence of the radius ratio on the physical properties.

From a physical point of view the rare-earth metals and compounds are also of great interest because of the, by the outer 5s- and 5pelectrons well screened, 4f-electrons which are responsible for the greater part of the magnetical and other physical properties.

The ground states of the trivalent rare-earth ions are in general very well described by the Russell-Saunders coupling model, and the values of the effective magnetic moments (μ_{eff}) are generally in good agreement with the theoretical values $\mu_{eff} = g\sqrt{J(J+1)} \mu_B$, where g is the Landé spectroscopic splitting factor and J is the total angular momentum. Only in the cases of Eu(III) and Sm(III) there is a discrepancy which can be explained by the existence of excited states lying close enough to the ground state to be populated at ordinary temperatures.

The behaviour of the rare-earth ions is obviously different from

the magnetic behaviour of the compounds of the first row transition metals. In compounds of these elements the influence of the crystal field on the atomic orbitals of the magnetic ions is much greater and consequently the orbital angular momentum is completely or partially quenched. In many of these compounds the effective magnetic moment is fairly well described by: $\mu_{eff} = g\sqrt{S(S+1)} \mu_{B}$, where S is the spin angular momentum, and g is not greatly different from the "free-electron" value of 2 (deviations up to 20% due to residual orbital contributions may occur).

Next to the difference in magnetic behaviour of the rare-earth compounds from that of the first row transition metal compounds, the magnetic behaviour of the rare-earth metals and alloys also differs from that of the other spontaneously magnetized elements, iron, cobalt and nickel.

The magnetic moment of the spontaneously magnetized rare-earth metals results mainly from the 4f-electrons, which are localized at the individual ions. This is clearly revealed: first by the measurements of the magnetic moment per ion determined by saturation measurements second by measurements of the paramagnetic susceptibility well above the magnetic ordering temperatures. These moments correspond, in most cases, within a few percent with the theoretical values for isolated rare-earth ions having unpaired 4f-electrons, as is indicated in table I-1.

As in the case of iron, cobalt and nickel the direct 3d-3d exchange interaction is too weak to account for the magnetic ordering (1), the even much weaker 4f-4f exchange interaction is incapable to explain the magnetic ordering in rare-earth metals at a somewhat elevated temperature. Therefore it is reasonable that other electrons than the localized 4f-electrons are assumed to take part in the interaction even though they make only a small contribution to the spontaneous magnetic moment. That a different type of magnetic interaction plays a role here is also indicated in table I-1, where the different kinds of spinarrangements are also listed.

Zener (2) proposed a model of magnetic interaction in which itinerant electrons couple together electrons which are localized on

Metal	т _λ (к)	т _N (к)	т _с (к)	Θ _p (κ)	μ _m (μ _B)	$\mu_{eff}(\mu_B)$	Spin Arrangement
Ce	12.5	12.5			0.62(2.14)		E E E S
Nd	19	20		the second second	2.3 (3.27)	18 2 8 4	是安臣告日
	7.2	13.8	7.5	al S	1.8	12839	1111
Sm	13.6	14.8		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	3 - 1	12453
Eu		90			5.9 (7.0)	123.	1 6 2 2
Gd	291	11.2	293.2	$\Theta_{\prime\prime} = \Theta_1 = 317$	7.55(7.0)	7.97(7.94)	Ferro.
Tb	227.7	229		0, = 195 0, = 239	9.34(9.0)	9.70(9.72)	Spiral.
	221		221	" 1	-	538	Ferro.
Dy	174	178.5		0, = 121 0, = 169	10.20(10.0)	10.64(10.65)	Spiral.
	83.5	10	85	" 1		P B A F	Ferro.
Но	131.6	132	1. 1. 1	Θ ₁₁ = 73 Θ ₁ = 88	10.34(10.0)	2 2 24	Spiral.
	19.4	1 2	20	" 1	1 2 2 3		Ferro.
Er	84	85		$\Theta_{11} = 61.7 \Theta_1 = 32.5$	8.0 (9.0)	1.1.2.5	Sinusoidal.
	53.5	1.1		" 1		12 2 1 1 1	Spiral.
	19.9	18.2	19.6	3 5 5 6 7	28.3		Ferro.
Tm	55	53		0 = 20	6.8 (7.0)	1 2 2 2 2	Ferro.
	1. 1.		22			1.1.1.2	4,3,4,3-Ferro

Table I-1. Some magnetical properties of the rare-earth metals. T_{λ} anomalies in the specific heat, T_N : Néel temperature, T_C : Curie temperature, Θ_p : paramagnetic Curie temperature, μ_m : saturation moment, μ_{eff} : effective magnetic moment, the values in parenthesis are the calculated values. (After W.C. Koehler (18).)

the rare-earth ions. Ruderman and Kittel (3) worked out a similar second order interaction between nuclear spins via the conduction electrons. Kasuya (4) and Yosida (5) obtained for the coupling of localized ionic moments via the conduction electrons a similar quantitative result. This theory, the so-called Ruderman and Kittel, Kasuya and Yosida (RKKY) theory can be used to explain many of the properties of the rareearth metals and their alloys (6-13).

The magnetic behaviour of the insulating rare-earth compounds generally can be explained in terms of a weak direct and a weak super exchange interaction. E.g. the magnetic properties in the series Eu0, EuS, EuSe and EuTe; in which the oxide, sulphide and selenide of europium are ferromagnetic, and EuTe is antiferromagnetic (Gorter et al. (14))(table I-2). The direct exchange interaction in these compounds

	^µ eff	μ _m	⊚ _р (к)	т _с (к)
Eu0	7.9	6.9	S.F.	+77
EuS	8.0	6.5	+16	+16
EuSe	8.2	7.0	+ 6	+ 6
EuTe	7.6	-	- 7.5	+11

Table I-2. Magnetic data for europium chalcogenides. (After E.W. Gorter et al. (14).)

is assumed to be ferromagnetic and to decrease with increasing celledge; the super exchange interaction via an anion is supposed to be antiferromagnetic and to increase with increasing atomic number of the anion.

F. Holtzberg et al. (15) suggested that the magnetic properties of the series $Eu_{(1-x)}Gd_x$ Se (x = 0 to 1), which form a complete homogeneous system having the rocksalt structure and a number of conduction electrons per magnetic ion that varies from 1 for x = 1 to 0 for x = 0, can be explained in terms of the RKKY-theory. This applies as well for the series $Eu_{(1-x)}La_x$ Se with the same variation in conduction electron concentration and with a varying number of magnetic ions. As in the weak ferromagnetic semiconductor EuSe the Eu(II) ions are partially replaced by Gd(III) or La(III) ions the number of electrons in the conduction band increases. In addition to a large increase in electrical conductivity the paramagnetic Curie-temperature (Θ_p) changes from positive to negative in the case of the system $Eu_{(1-x)}Gd_x$ Se. In the system $Eu_{(1-x)}La_x$ Se, the paramagnetic Curie-temperature has the same behaviour, but the changes are less due to the decrease in number of the magnetic ions. Figure I-1 gives the paramagnetic Curie-temperature

Fig. 1-1. Variation of the paramagnetic Curie-temperature of EuSe with Gd(III) and La(III) substitution (after F. Holtzberg, T.R. McGuire, S. Methfessel and J.C. Suits (ref. 15)).

versus x for these two series.

The same authors (16) indicated that probably a similar interaction occurred in the gadolinium selenide series $Gd_{(3-x)}Se_4$, where x = 0 to 1/3, with the thorium phosphide structure (figure 1-2), and

Fig. 1-2. Specific conductivity and paramagnetic Curie-temperature of $Gd_{(3-x)}Se_4$ as a function of x (after F. Holtzberg, T.R. McGuire, S. Methfessel and J.C. Suits (ref. 16)).

in the mixed gadolinium antimonide-gadolinium bismuthide system of the formula $Gd_4(Sb_xBi_{(1-x)})_3$, (x = 0 to 1), with the anti-thorium phosphide structure (figure 1-3).

J. Grunzweig and M. Kuznietz (17) tried to account for the properties of uranium compounds UX, where X is either an element of the pnictide group (N,P,As,Sb) or an element of the chalcogenide group (S,Se,Te). The pnictide group compounds are antiferromagnetic, while the chalcogenide group compounds are ferromagnetic. All compounds have the rocksalt structure, high magnetic transition temperatures (50 -220 K) and low electrical resistivities (table 1-3). The uranium ion

is assumed to be in the U(IV) state and the surplus electrons are supposed to be in a conduction band. The coupling between U(IV) ions is assumed to be an indirect one via the conduction electrons (RKKY mechanism). The experimental data agree rather well with these assumptions.

UX	a	T _{N,C}	μ _m	$^{\mu}$ eff	Θ	р (300К)
	(Å)	(К)	(µ _B)	(µ _B)	(K)	(μΩ.cm)
UN	4.8835	53±2	0.75	3.0	-310	90
	4.890		100	3.11	-325	160
UP	5.5865	123	1.72	3.31	+ 3	200
	5.589	130	1.9	3.56	+ 36	244
UAs	5.766	128		3.54	+ 32	238
	5.771					
USb	6.1805	213		3.85	+ 95	357
	6.191			141		
US	5.487	178±2	1.20	2.22	+173	112
	5.4885	180±5	1.60	2.25	+185	286
USe	5.710	185	1.31	2.51	+188	244
	5.743	210				280
UTe	6.151	103	1.10	2.36	+104	1300
1.500.50	6.163	123		2.84		

Table 1-3. Properties of UX compounds (after J. Grunzweig and M. Kuznietz (17)).

References

- 1. R.N. Stuart, W. Marshall, Phys. Rev. (1960) 120, 353.
 - R.E. Watson, A.J. Freeman, J. Phys. Soc. Japan Suppl. (1962) 178.1, 40.
 - 2. C. Zener, R.R. Heikes, Rev. Mod. Phys. (1953) 25, 191.
 - 3. M.A. Ruderman, C. Kittel, Phys. Rev. (1954) <u>96</u>, 99.
- 4. T. Kasuya, Prog. Theor. Phys. (1956) 16, 45.
 - 5. Key Yosida, Phys. Rev. (1957) 106, 893.
- 6. P.G. de Gennes, J. Phys. Rad. (1962) 23, 510.

- 7. P.G. de Gennes, C. R. Acad. Sci. Paris (1958) 247, 1836.
- 8. A.J. Dekker, J. Appl. Phys. (1965) 36, 906.
- 9. S.H. Liu, Phys. Rev. (1961) 121, 451.
- 10. T. Kasuya, Prog. Theor. Phys. (1956) 16, 58.
- 11. Y.A. Rocher, Adv. in Phys. (1962) 22, 233.
- 12. Y.A. Rocher, J. Phys. Chem. Sol. (1962) 23, 1621.
- 13. Y.A. Rocher, Rare Earth Res. IV (1964) 127.
- E.W. Gorter, U. Enz, J.F. Fast, S. van Houten, J. Smit, J. Appl. Phys. (1963) <u>34</u>, 1253.
- F. Holtzberg, T.R. McGuire, S. Methfessel, J.C. Suits, Phys. Rev. Lett. (1964) <u>13</u>, 18.
- F. Holtzberg, T.R. McGuire, S. Methfessel, J.C. Suits, J. Appl. Phys. (1964) <u>35</u>, 1033.
- 17. J. Grunzweig, M. Kuznietz, J. Appl. Phys. (1968) 39, 905.
- 18. W.C. Koehler, J. Appl. Phys. (1965) <u>36</u>, 1078.

CHAPTER II

RUDERMAN AND KITTEL, KASUYA AND YOSIDA INTERACTION.

II-1.Introduction.

The most important interaction that is believed to cause magnetic long-range order in the rare-earth metals and their metallic conducting compounds is generally assumed to be an indirect exchange interaction of localized ionic magnetic moments via the conduction electrons. This concept is supported by studies of the N.M.R. spectra (Knight-shift(1)), electron spin resonance (2) and by the fact that the rare-earth oxides and other ionic rare-earth compounds, having no conduction electrons, have very low magnetic ordering temperatures.

This indirect type of interaction, that is responsible for the coupling of nuclear spins, the line broadening in N.M.R. spectra and for the Knight-shift in metals and metallic compounds, has first been suggested by Fröhlich and Nabarro (3), and has been worked out in more detail by Ruderman and Kittel (4). Zener (5), Kasuya (6), Yosida (7) and several others (8-13) investigated the analogous interaction via the conduction electrons of the electronic magnetic moments localized on the metal atoms.

The interaction of a localized magnetic moment on a metal atom with the localized magnetic moment on another metal atom can be visualized in the following manner. The scattering of a conduction electron by a localized magnetic moment \vec{J}_1 depends on the interaction $\vec{J}_1 \cdot \vec{s}$, where \vec{s} is the spin of the conduction electron. A second localized magnetic moment \vec{J}_2 percepts the density of the scattered electron through the interaction $\vec{J}_2 \cdot \vec{s}$. This process effectuates an interaction between the two localized magnetic moments \vec{J}_1 and \vec{J}_2 . With an inter-

action of this type the expression obtained for the paramagnetic Curie-temperature (θ_{n}) is:

$$\Theta_{p} = \frac{3\pi Z^{2}(g-1)^{2} J(J+1) \Gamma_{s_{m>n}}^{2} \Sigma F(2k_{F}R_{mn})}{4kV^{2} \varepsilon_{F}}$$

with: Z is the number of conduction electrons per rare-earth atom,

g is the Landé spectroscopic splitting factor,

J is the magnetic moment of the rare-earth ion,

 $\ensuremath{\Gamma_{\rm S}}$ is the exchange interaction between $4\ensuremath{f^{-}}$ and conduction electrons,

k is the Boltzmann constant,

 $\boldsymbol{\epsilon}_{_{\boldsymbol{F}}}$ is the Fermi energy,

 ${\bf k}_{\rm F}$ is the Fermi momentum,

 $\rm R_{mn}$ is the distance between the rare-earth ion spins.

$$F(2k_{F}R_{mn}) = \frac{2k_{F}R_{mn}\cos(2k_{F}R_{mn}) - \sin(2k_{F}R_{mn})}{(2k_{F}R_{mn})^{4}}$$

11-2.RKKY-theory.

The above-mentioned theory, the so-called Ruderman and Kittel, Kasuya and Yosida (RKKY) theory, assumes, as given in the approach of Kittel (14), a nearly free electron model described by Bloch-functions:

$$\phi_{\vec{k}s}(\vec{x}) = e^{i\vec{k}\cdot\vec{x}} u_{\vec{k}s}(\vec{x}) = \phi_{\vec{k}}(\vec{x}) |_{s>}$$
(1)

where s is the spin-index and denotes spin-up (†) or spin-down (+) for $S^{\rm Z}.$

The perturbation of the conduction electron density created by the interaction of a localized moment \vec{J}_n at the position \vec{R}_n with a conduction electron at \vec{r}_j is first calculated. The hamiltonian \mathcal{H}_1 for this interaction has the form:

$$\mathcal{H}_{1} = \Gamma(\vec{r}_{j} - \vec{R}_{n}) \vec{s}_{j} \cdot \vec{J}_{n}$$
(2)

where $\Gamma(\vec{r}_{1} - \vec{R}_{n})$ is an exchange constant.

For the entire system with many (j) electrons and many (n) localized magnetic moments we have an interaction hamiltonian:

$$\mathcal{H} = \sum_{jn} \Gamma(\dot{r}_{j} - \dot{R}_{n})\dot{s}_{j}.\dot{J}_{n}$$
(3)

The electron-field operators are:

$$\psi(\vec{x}) = \sum_{\vec{k}s} c_{\vec{k}s} \phi_{\vec{k}s} (\vec{x}) ; \quad \psi^{+}(\vec{x}) = \sum_{\vec{k}s} c_{\vec{k}s}^{+} \phi_{\vec{k}s}^{*} (\vec{x})$$
(4)

where $c_{\vec{k}s}^+$ and $c_{\vec{k}s}^-$ are the fermion creation and annihilation operators. By using the one electron expectation value: $\int \phi^*(\vec{x}) \Re \phi(\vec{x}) d^3x$, we obtained the following hamiltonian in second-quantized form:

$$\mathcal{H} = \sum_{\substack{\vec{k} \\ \vec{k}'}} \sum_{n} \int d^{3}x \left[\phi^{*}_{\vec{k}'s'} (\vec{x}) \Gamma(\vec{x} - \vec{R}_{n}) \vec{s} \cdot \vec{J}_{n} \phi_{\vec{k}s} (\vec{x}) \right] c^{+}_{\vec{k}'s'} c_{\vec{k}s}$$
(5)
ss'

Substituting for ϕ_{1} the Bloch functions of (1), we get:

$$\mathcal{H} = \sum_{\substack{\vec{k},\vec{k}' \\ \vec{k},\vec{s}'}} \sum_{n} \int_{\vec{k},\vec{s}'} \int_{\vec{k}',\vec{s}'} \sum_{\vec{k}',\vec{s}'} (\vec{k}) \Gamma(\vec{k} - \vec{R}_n) \vec{s} \cdot \vec{J}_n e^{i\vec{k} \cdot \vec{x}} u_{\vec{k},\vec{s}} (\vec{k})] c^+_{\vec{k}',\vec{s}'} c_{\vec{k}',\vec{s}'} c$$

If we take $\vec{x}' = \vec{x} - \vec{R}_n$, the integral becomes:

$$\int d^{3}x' \left[e^{-i\vec{k}' \cdot (\vec{x}' + \vec{R}_{n})} u_{\vec{k}'s'}^{*} (\vec{x}' + \vec{R}_{n}) \Gamma(\vec{x}') \vec{s} \cdot \vec{J}_{n} e^{i\vec{k} \cdot (\vec{x}' + \vec{R}_{n})} u_{\vec{k}s} (\vec{x}' + \vec{R}_{n}) \right]$$

and as $u_{ks}(\vec{x}' + \vec{R}_n) = u_{ks}(\vec{x}')$, due to the periodicity of the lattice, we may rewrite this as:

$$\int d^{3}x \left[e^{-i\vec{k}\cdot\vec{R}_{n}} \phi^{*}_{\vec{k}'s'}(\vec{x})r(\vec{x})\vec{s}\cdot\vec{J}_{n}\phi_{\vec{k}s} e^{i\vec{k}\cdot\vec{R}_{n}} \right]$$

So we obtain for the hamiltonian:

$$\mathcal{H} = \sum_{\substack{\vec{k},\vec{k}' \\ ss'}} \sum_{\substack{\vec{k},\vec{k}' \\ ss'}} e^{i(\vec{k}-\vec{k}')\cdot\vec{R}_n} \int d^3x \phi^*_{\vec{k}'}(\vec{x}) \Gamma(\vec{x}) \phi_{\vec{k}}(\vec{x}) \langle s' | \vec{s} \cdot \vec{J}_n | s \rangle c^+_{\vec{k}'s'} c^+_{\vec{k}s'} c^+$$

With:
$$\vec{s} \cdot \vec{J}_n = s^Z J_n^Z + \frac{1}{2} s^+ J_n^- + \frac{1}{2} s^- J_n^+$$
 (7)

where s^+ , J^+ , s^- , J^- are the raising and lowering operators:

Consequently

H

where: T

The wave function for electrons with spins mainly up is in first order perturbation theory given by:

$$|\vec{k}^{\dagger}\rangle = |\vec{k}^{\dagger}\rangle_{0} + \sum_{\vec{k}'s}' |\vec{k}'s\rangle_{0} \frac{\langle \vec{k}'s |\mathcal{R}| |\vec{k}^{\dagger}\rangle}{\varepsilon_{k} - \varepsilon_{k'}}$$
(9)

where $|\vec{k}^{+}\rangle_0$ is the unperturbed state with spin up, and the prime in the

summation indicates that the state \vec{k} 's = \vec{k} ↑ is to be excluded from the summation.

lf:

$$\vec{k}s = v^{-\frac{1}{2}} e^{i\vec{k}\cdot\vec{x}} u |s \rangle$$
(10)

where V is the atomic volume and:

$$\varepsilon_k = \frac{k^2 \hbar^2}{2m^*} \tag{11}$$

is the energy of a nearly free electron in the state \vec{k} and \vec{m} is effective mass of the electron, then we find from the equations 8 and 9:

$$|\vec{k}_{\uparrow}\rangle = |\vec{k}_{\uparrow}\rangle_{0} + \frac{m^{*}}{\pi^{2}} \sum_{\vec{k}'} \frac{\Gamma(\vec{k},\vec{k}')}{k^{2} - k'^{2}} \sum_{n} e^{i(\vec{k}-\vec{k}')\cdot\vec{R}} n_{\{J_{n}^{Z}|\vec{k}_{\uparrow}\rangle} + J_{n}^{+}|\vec{k}_{\downarrow}\rangle\}$$
(12)

If the u, part of the Bloch function is independent of k, and if we take $\Gamma(k,k') = \Gamma_1$ is a constant we may write equation 12 as:

$$|\vec{k}^{\dagger}\rangle = |\vec{k}^{\dagger}\rangle_{0} + \frac{m^{k}\Gamma_{J}}{8\hbar^{2}\pi^{3}} Pfd^{3}k' \frac{e^{i\vec{k}'\cdot\vec{x}}}{k^{2}-k'^{2}} \sum_{n} \{J_{n}^{Z}|^{\dagger}\rangle + J_{n}^{\dagger}|^{\downarrow}\rangle$$
(13)

The principal value for the integral, which is necessary because of the exclusion of the state $\vec{k}' = \vec{k}$ from the summation over \vec{k}' in the equations 9 and 12, is given by:

$$Pfd^{3}k' \frac{e^{i\vec{k}'\cdot\vec{x}}}{k^{2}-k'^{2}} = \frac{2\pi^{2}}{r} \cos kr$$
 (14)

thus we have:

$$|\vec{k}^{\dagger}\rangle = |\vec{k}^{\dagger}\rangle_{0} + \frac{m^{\Gamma}J^{\cos kr}}{4\pi r\hbar^{2}} \sum_{n} \{J_{n}^{z}|^{\dagger}\rangle + J_{n}^{\dagger}|^{\downarrow}\rangle\}$$
(15)

The electron density corresponding to this wave-function is:

$$p(\vec{k}\uparrow) = 1 + \frac{m^{r}\Gamma_{J}\cos kr}{2\pi r\hbar^{2}} \cos kx \Sigma J_{n}^{Z}$$
(16)

Integrated over the ground state Fermi-sea this gives the total spinup electron density:

$$\rho(\uparrow) = \frac{1}{(2\pi)^3} \int_{0}^{k_F} d^3 k \rho(\vec{k}\uparrow) = \frac{k_F^3}{6\pi^2} \{1 - \sum_{n} \frac{3m^{\star} \Gamma_J J_n^2 k_F}{\pi\hbar^2} F(2k_F R)\}$$
(17)

where:

$$F(2k_{E}R) = \frac{2k_{F}R\cos 2k_{F}R - \sin 2k_{F}R}{(2k_{F}R)^{4}}$$
(18)

This is the Ruderman-Kittel function; a graphical representation of this function is given in figure II-1.

Fig. 11-1. Variation of the Ruderman-Kittel function, F(x), with x (after A. Herpin, Théorie du Magnétisme (ref. 15)).

We can see that the localized 4f-moments perturb the conduction electron spin in an oscillatory way. In second order this perturbation leads to an interaction between two localized magnetic moments, which is given by the hamiltonian:

$$\pi^{1} = \sum_{\substack{\vec{k} \\ \vec{k}'}} \frac{\langle \vec{k} | \pi | \vec{k}' s \rangle \langle \vec{k}' s | \pi | \vec{k} \rangle}{\epsilon_{k} - \epsilon_{k'}}$$
(19)

Using for \mathcal{K} the hamiltonian of eq. 8 and making the same assumptions (eq. 10 and 11, $\Gamma(k,k') = T_j$, u_k is independent of \vec{k}) we made before, we find:

$$\mathcal{H}^{1} = \sum_{m>n} \frac{9\pi Z^{2} \Gamma_{J}}{4\epsilon_{F} V^{2}} F(2k_{F}R_{mn}) \tilde{J}_{m}.\tilde{J}_{n}$$
(20)

where: Z is the number of conduction electrons per atom, and V is the atomic volume.

According to the evaluation of de Gennes (15) and Liu (16) the exchange constant $\Gamma_{\rm J}$ may be replaced, in the case of a strong spinorbit coupling, by $(g - 1)\Gamma_{\rm s}$, where $\Gamma_{\rm s}$ is a constant for all rare-earth ions and g is the Landé spectroscopic splitting factor of the ion. Thus the final form for the interaction hamiltonian becomes:

$$\mathcal{H}^{1} = \sum_{m \ge n} \frac{9\pi Z^{2} \Gamma_{s}^{2} (g-1)^{2}}{4V^{2} \varepsilon_{F}} F(2k_{F}R_{mn}) \vec{J}_{m} \cdot \vec{J}_{n}$$
(21)

Interactions of this type cause a long-range magnetic order.

We now replace the interaction in eq. 21 by an effective magnetic field $\vec{H}_{_{\rm P}}$ so that \mathcal{R}^1 has the form:

$$\mathcal{H}^{1} = \sum_{m} g \mu_{B} \dot{J}_{m} \cdot \dot{\vec{H}}_{e}$$
(22)

from eqs. 21 and 22 we may write:

$$\vec{H}_{e} = \frac{9\pi Z^{2} \Gamma_{s}^{2} (g-1)^{2}}{4g\mu_{B} V^{2} \varepsilon_{F}} \sum_{m>n} F(2k_{F}R_{mn}) \vec{J}_{n}$$
(23)

In the Weiss approximation we may replace each \vec{J}_n by its average $\langle \vec{J}_n \rangle$, and as all magnetic atoms are identical and equivalent, $\langle \vec{J}_n \rangle$ is related to the total magnetic moment of the crystal by:

$$\vec{M} = Ng\mu_B \langle \vec{J}_n \rangle$$
(24)

From eqs. 23 and 24 we may write:

$$\vec{H}_{e} = \frac{9\pi Z^{2} \Gamma_{s}^{2} (g-1)^{2}}{4Ng^{2} \mu_{B}^{2} V^{2} \varepsilon_{F}} \sum_{m>n} F(2k_{F}R_{mn}) \vec{M}$$
(25)

For a simple paramagnet the magnetization due to a magnetic field $\vec{\textbf{H}}$ is

given by:

$$\vec{M} = \frac{Ng^2 \mu_B^2 J (J + 1)}{3kT} \vec{H}$$

In the molecular-field model we replace \vec{H} by the sum of the applied field \vec{H}_0 and the molecular-field \vec{H}_e , hence from eqs. 25 and 26:

$$\vec{M} = \frac{Ng^2 \mu_B^2 J (J + 1)}{3kT} (\vec{H}_0 + \vec{H}_e) =$$

$$= \frac{Ng^{2}\mu_{B}^{2}J(J+1)}{3k} \frac{\vec{H}_{0}}{T} + \frac{3\pi Z^{2}J(J+1)\Gamma_{s}^{2}(g-1)}{4kV^{2}\varepsilon_{F}T} \sum_{m>n} \Sigma F(2k_{F}R_{mn}) \vec{M}$$
(27)

When we take C = $\frac{Ng^{2}\mu_{B}^{2}J(J + 1)}{3k}$ and rewrite eq. 27

$$\vec{M} = C \frac{\vec{H}_0}{T} \cdot \frac{4kTV^2 \varepsilon_F}{4kTV^2 \varepsilon_F - J(J+1)3\pi Z^2 \Gamma_s^2 (g-1) \sum_{m>n} F(2k_F R_m)}$$

$$\frac{C}{T - \frac{3\pi Z^2 (g - 1)^2 J (J + 1) \Gamma_{s_{m>n}}^2 \Sigma F (2k_F R_{mn})}{4k V^2 \varepsilon_F}} \tilde{H}_0$$

where:

$$\Theta_{p} = \frac{3\pi Z^{2}(g-1)^{2} J (J+1) \Gamma_{s}^{2} \Sigma F (2k_{F}R_{mn})}{4kV^{2} \varepsilon_{F}}$$
(28)

is the paramagnetic Curie-temperature. From this formula it can be seen that in the case of RKKY-interaction the paramagnetic Curietemperature, among other things will depend on the conduction electron concentration and on the distances between the magnetic ions.

(26)

References

A.M. van Diepen, Thesis, Amsterdam (1968). 1. M. Peter, J. Appl. Phys. (1961) 32, 338. 2. H. Fröhlich, F.R.N. Nabarro, Proc. Roy. Soc. (1940) A175, 382. 3. M.A. Ruderman, C. Kittel, Phys. Rev. (1954) 96, 99. 4. C. Zener, R.R. Heikes, Rev. Mod. Phys. (1953) 25, 191. 5. T. Kasuya, Prog. Theor. Phys. (1956) 16, 45. 6. Key Yosida, Phys. Rev. (1957) 106, 893. 7. S.H. Liu, Phys. Rev. (1961) 121, 451. 8. A. Blandin, J. Phys. Radium (1959) 20, 160. 9. 10. T.A. Kaplan, D.H. Lyons, Phys. Rev. (1963) 129, 2072. Y.A. Rocher, Adv. in Physics (1962) 22, 233. 11. 12. Y.A. Rocher, J. Phys. Chem. Sol. (1962) 23, 1621. 13. A.J. Dekker, J. Appl. Phys. (1965) 36, 906. 14. C. Kittel, Quantum Theory of Solids, J. Wiley & Sons (1963). 15. A. Herpin, Théorie du Magnétisme, Presses Universitaires de France (1968).

CHAPTER III

CRYSTAL CHEMISTRY OF SOME OF THE BINARY AND TERNARY RARE-EARTH CHALCOGENIDES

III-1.Survey of the rare-earth chalcogenides.

A very extensive survey of the crystal-chemistry of the binary and ternary rare-earth chalcogenides has been given by Flahaut and Laruelle (1) and by Flahaut (2). Here only a brief summary of the phases existing between the rare-earth metals on the one hand and sulphur, selenium or tellurium on the other hand and also of the mixed rare-earth metal, alkaline-earth metal chalcogenides will be given.

A schematic representation of the phases existing in the binary rare-earth chalcogenide series is given in the figures III-1, III-2 and III-3. The phases which are investigated in this thesis are those

-ul ar at a	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Y	Но	Er	Tm	Yb	Lu	
LS ₂ 2.0-																
L ₂ S ₃ 1.5- L ₅ S ₇ L ₃ S ₄						0			101		=	-	H	Ō	-	
LS 1.0-					-	-										

Fig. 111-1.Schematic representation of the phases in the rare-earth sulphur system (after J. Flahaut and P. Laruelle (ref.1)).

Fig. 111-2. Schematic representation of the phases in the rare-earth selenium system (after J. Flahaut and P. Laruelle (ref. 1)).

Fig. 111-3.Schematic representation of the phases in the rare-earth tellurium system (after J. Flahaut and P. Laruelle (ref. 1)). with the Th_3P_4 -structure, the γ -phase.

This thorium phosphide structure will only exist if the radius of the rare-earth ion with regard to the chalcogen ion is large enough for an eight-coordinated metal ion. This will only be realized with rare-earth metals having a lower atomic number and large radius. For the sulphides the thorium phosphide structure is found in the metal deficient composition, $\Box_{1/3}L_{2/3}S_4$ (equivalent with L_2S_3) from lanthanum up to and including terbium, and for the non-deficient composition, L_3S_4 , from lanthanum up to and including europium. Contrary to Flahaut and Laruelle (1) we have also found a phase with the thorium phosphide structure in the dysprosium sulphur system, with a cell-edge of: a = 8.293 Å, but we did not succeed in obtaining this phase pure. In the selenide series we find the thorium phosphide structure from lanthanum up to and including samarium for $\Box_{1/3}L_{2/3}Se_4$ (equivalent with L_2Se_3) as well as for L_3Se_4 . For the tellurides $\Box_{1/3}L_{2/3}Te_4$ and L_3Te_4 we find the thorium phosphide structure from lanthanum up to and including neodymium. These facts all agree very well with the assumption that the radius-ratio of cation and anion is the determining factor for the structures in the rare-earth chalcogenides.

In fact the thorium phosphide structure is a high temperature modification. At lower temperatures the orthorhombic α -modification and the tetrogonal β -modification are stable. The β -modification however seems to be stabilized by approximately 0.8% oxygen ($\sim L_{10}S_{14}$ 0)(3,4,5). The α - and β -modification are stable up to 1200°C - 1400°C approximately. Above these temperatures the thorium phosphide structure (γ -modification) becomes stable.

The compositions L_2X_3 of the rare-earth metals with higher atomnumbers have the $Y_2S_3^-$ and $U_2S_3^-$ structures with 7-coordinated metal ions or the $Al_2O_3^-$ and $Sc_2S_3^-$ structures, both with 6-coordinated metal ions. These compounds can all be obtained in the higher coordinated, and more dense thorium phosphide structure under a pressure of approximately 80 k.B at a temperature of 1200° C or higher as is shown by Eatough et al. (6,7).

The ternary chalcogenides of the rare-earth metals with the divalent alkaline-earth metals, of the general formula ML_2X_4 (M = Ca, Sr or

Ba), show a similar behaviour. With the rare-earth metals of lower atomic number the thorium phosphide structure is obtained; the alkalineearth and the rare-earth metal being distributed statistically over the eight coordinated thorium position. With the rare-earth metals of higher atom-number and smaller radius the seven-coordinated ytterbium selenide structure (8) or the calcium ferrite structure (9) are formed, the latter with the metal-ions in six- and in eight-coordination.

Chalcogenides of the general formulas: L_2X_3 , L_3X_4 and ML_2X_4 crystallizing in the various types of structures are given in table III-1.

III-2. The thorium phosphide structure.

Many of the chalcogenides of the first elements of the rare-earth metals have as the high temperature crystal structure the eventually metal-deficient thorium phosphide structure. The thorium phosphide structure belongs to the very interesting group of cubic crystal structures with non-intersecting threefold-axes. The space-group is $I\bar{4}3d$ (T_d^6) , and the atoms have been placed in the following special positions (notation after International Tables for X-ray Crystallography).

Th: (12a)

$(0,0,0;\frac{1}{2},\frac{1}{2},\frac{1}{2}) +$	3/8,0,1/4;	1/4,3/8.0;	0,1/4,3/8;
	1/8,0,3/4;	3/4,1/8,0;	0,3/4,1/8.

	1.0		1.4	
D .	(1	6	~ I	١
F # .	11	0	6	l

$(0,0,0;\frac{1}{2},\frac{1}{2},\frac{1}{2}) +$	x,x,x;	1/4+x,1/4+x,1/4+x;
	$1/2+x, 1/2-x, \overline{x};$	3/4+x,1/4-x,3/4-x;
	x ,1/2+x,1/2-x;	3/4-x,3/4+x,1/4-x;
	1/2-x, x ,1/2+x;	1/4-x, 3/4-x, 3/4+x.

where x equals approximately 1/12.

A projection of the thorium phosphide structure on the (001) plane is given in figure III-4. A good description of this structure is given by Yu.A. Kharitonov et al. (10). As a basis for their description these authors take the distorted octahedron with thorium atoms at the vertices and a phosphorus atom in its centre. A Penfield projection of this

Table III-1. The structures of the rare-earth chalcogenides of the formula: L_2X_3 , L_3X_4 and ML_2X_4 . For the thorium phosphide-type compounds the cell-edge is given in \Re .

Fig. 111-4. Projection of the cubic thorium phosphide structure along a tetragonal axis. Heights of the atoms above the plane of the paper in 1/24 of the a-axis.

octahedron is given in figure 111-5. The distortion can be realized by rotating the upper plane of a regular octahedron by approximately 22° relative to the basal plane around a threefold axis and a subsequent elongation of the octahedron by about 13.4% along the threefold axis. Along the threefold axes of the cubic cell we have continuous columns of these octahedra sharing their common equilateral triangles. In figure 111-6 we have indicated one of these columns in the projection of the structure. Now any octahedron is connected by its two bases to adjacent octahedra in the same column and by three of its lateral (and distorted) faces to three octahedra of the other columns corresponding to the other three directions of threefold axes of the cubic cell. The three remaining and non-shared faces of each octahedron participate in empty tetrahedra.

This brings us to (distorted) octahedra which share five faces,

six edges and half of the corners twice and the remaining corners three times as is indicated in figure III-7. The above-indicated framework of octahedra is a very dense one, the ratio of the number of tetrahedra

Fig. 111-6.Column of face shared octrahedra along a threefold axis in the thorium phosphide structure.

and octahedra in this metal matrix is three to four. In structures based on a closest packing of equal spheres the ratio of tetrahedral to octahedral sites is two to one. The relatively high density of this stacking of octahedra is also illustrated by the space-filling of the thorium-lattice which, for a hard sphere model with half of the thoriumthorium distance chosen as the radius for thorium, is 64.3%. For comparison the closest packing of equal spheres is 74.05%, and that of a body-centered cubic lattice is 68.02%.

A quite different description of the thorium phosphide structure is indicated by Loeb (11). For his description of crystal structures Loeb uses the concept of invariant lattice complexes (Niggli (12)). A lattice complex is defined as an arrangement of equivalent points which are related by the symmetry operations of a space-group (13). Such a lattice complex is called invariant when the points have definite and constant coordinates. For the invariant point complexes a nomenclature and a complete taxonomy has been developed by Hermann, Hellner etc.

Fig. 111-7. The sharing octahedron of the thorium phosphide structure. O Corner thrice shared O Corner twice shared ===== Edge once shared ===== Non-shared edge Shaded faces are shared faces.

(14,15,16). Loeb found that by rounding off all coordinates to the nearest multiple of 1/8 it is nearly always possible to identify a point complex as a distorted form of one of the invariant lattice complexes. In this way it is often possible to find relations between crystal structures.

In the thorium phosphide structure the thorium positions already occupy an invariant complex, the so-called +S-complex. These positions are equivalent to 1/8 of the interstices in a body-centered cubic lattice, or to one quarter of the vanadium positions in V₂Si.

With the parameter of the phosphorus atoms set equal to zero, the phosphorus positions form an I-complex that is a body-centered cubic lattice. In the real structure the parameter of the phosphorus positions, which is approximately 1/12, brings the phosphorus atoms to the centres of the distorted thorium octahedra, and it brings the coordination of the thorium from four to eight. As can be seen in the upper part of figure III-8, which is a projection of the ⁺S-complex, the lower and the upper plane of the octahedron are rotated by a fixed angle of 21⁰48¹

Fig. 111-8. Penfield projection of the stacking of two space-filling polyhedra of the bcc-lattice. The thorium positions are indicated, the idealized position of the phosphorus atoms is in the centres of the cubooctahedra.

relative to a regular octahedron. The lower part of figure III-8 gives the Penfield projection of the stacking of two space-filling polyhedra of the bcc-lattice (cubo-octahedra, Gorter (17)), with the idealized thorium and phosphorus positions. The stacking of these cubo-octahedra in the different directions of the threefold axes is given in figure III-9.

III-3.Ordering on the cation sites in the thorium phosphide structure.

F.L. Carter (18-21) has studied recently the possibility of cationic charge ordering and vacancy ordering in the thorium phosphide

Fig. 111-9.The stacking of the cubo-octahedra of the idealized thorium-phosphide structure in different directions of the threefold axes.
⊘ Height above the plane of the paper is 1/12√3 of the a-axis.
○ Height above the plane of the paper is 1/6√3 of the a-axis.
⊙ Height above the plane of the paper is 1/4√3 of the a-axis.
⊙ Height above the plane of the paper is 1/3√3 of the a-axis.
⊙ Height above the plane of the paper is 1/3√3 of the a-axis.
⊙ Height above the plane of the paper is 1/3√3 of the a-axis.
⊙ Height above the plane of the paper is 5/12√3 of the a-axis.

related structures.

In the literature dealing with the rare-earth chalcogenides having the thorium phosphide structure no experimental evidence for the ordering of vacancies in the compounds of the general formula: $\Box_{1/3}L_{2/3}X_4$ or for charge ordering in the compounds of the general formula: ML₂X₄ has been found.

Mössbauer studies in 1967 by Berkooz et al. (22) on Eu₃S₄ show the existence of Eu(11) and Eu(111) ions in the ratio one to two below 210 K but above that temperature the isomer-shift peaks broaden and then merge into a single intermediate peak, consistent with a hopping electron transport model of the extra electron. For the same compound Bransky et al. (23) have observed an electrical transition near 175 K, due to an abrupt change in activation energy for conduction from 0.16 eV to 0.21 eV below the transition temperature. This is in reasonable agreement with 0.24 eV obtained by Berkooz et al. More recently Davis et al. (24) have shown from X-ray analysis, D.T.A. data and magnetic data that in Eu₃S₄ a phase transformation occurs at 168 K which is non-magnetic in origin. These authors suggest this phase transformation to be due to a charge ordering of Eu(11) and Eu(111) in a tetragonal cell of the space-group 142d (D_{2d}^{12}).

We have tried to find experimental evidence for a crystallographic ordering in the compositions $\Box_{1/3}L_{2_2/3}X_4$ as well as in the compositions ML_2X_4 . For the latter we used $CaCe_2S_4$. The reason for this choice was the relatively great difference in X-ray scattering of calcium and cerium ions. We prepared $CaCe_2S_4$ by heating cericoxide and calcium-carbonate in a stream of dry hydrogensulphide (method 3, Chapter V-1). The obtained $CaCe_2S_4$ was treated thermally in several ways in order to obtain crystallographic ordering. After this treatment X-ray powder-diffraction data were collected. All different treated materials gave the same results. In table III-2 we have collected the observed and calculated diffraction data for the thorium phosphide structure with calcium and cerium statistically distributed over the position 12a of the space-group I $\overline{4}_{3d}$ (T_d^6) and for the "zellengleiche" sub-group I $\overline{4}_{2d}$ (p_{2d}^{12}) with the calcium-ions and the cerium-ions on the positions 4a and 8d respectively. The calculated X-ray diffraction data were

04	space-	group 2d	space	space-group 143d	
hkl	l calc	Σl calc	l calc	ΣI _{calc}	lobs
101-200	17 30	17 30	100	1	n.o. n.o.
211	1000	1286	840	840	714
2 2 0 2 2 0 2	33 227	250	118	118	128
310 301	212	471	1000	1000	1000
1 0 3 3 2 1 3 1 2 2 1 3	138 48 137 284	469	519	519	655
400	5	28	12	12	39
303	0 26	26		La se mo	n.o.
4 2 0 4 0 2 2 0 4	112 181 115	408	407	407	321
332	57	201	237	237	212
422	99	124	64	64	78
4 3 1 4 1 3	95	april-init	163	subgifue to	a) ar (a La
3 1 4 5 1 0	71 42	350		232	296
501	23	TSVER	69)	La La	an and a start of the
5 2 1 5 1 2 2 1 5	14 17 24	55	131	131	131
440404	15 }	19	14	14	13
4 3 3 5 3 0 5 0 3	7 0 3 3	13	5	5	n.o.
424		19	1358 A.	The state	n.o.
532 523 325	42 41 32	239	175	283	287
611 116	98 26		108		

Table III-2. Observed and calculated intensities for CaCe₂S₄.

37

obtained with the aid of a computer program written by Dr. H.M. Rietveld of the R.C.N. Petten, the Netherlands. The agreement of observed and calculated data is fairly good for the model with the calcium and cerium ions distributed statistically over the position 12a of the space-group $1\overline{4}3d$.

For $\Box_{1/3}$ Pr_{22/3}S₄ and for $\Box_{1/3}$ Nd_{22/3}S₄ the observed intensities are also in good agreement with those calculated for a model with the vacancies statistically distributed over the cation positions in the thorium phosphide structure, as can be seen in table III-3.

111-4.Parameter variations in rare-earth chalcogenides with the thorium phosphide structure.

In the rare-earth chalcogenides with the thorium phosphide structure it will be possible to vary both the conduction electron concentration and the cell edge almost independently. This is the reason why these compounds seem to form an excellent subject to study the indirect magnetic interactions of the RKKY type. For instance going from Ce₂S₃ fitting with the crystal structure $\Box_{1/3}$ Ce_{2/3}S₄ (where \Box denotes a cation vacancy) to Ce₃S₄, the interatomic distances will hardly vary ($\Box_{1/3}$ Ce_{2/3}S₄: a = 8.630 ± 5 Å, Ce₃S₄: a = 8.625 ± 5 Å). The number of conduction electrons, however, assuming an ionic model with trivalent cerium and divalent sulphur, will vary from zero to one per formula unit, which is reflected in the electrical resistance and other physical properties (figure 111-10 ($\Box_{1/3}$ Ce_{2/3}S₄: $\rho > 1000 \times 10^{-6}$ Ωcm, Ce₃S₄: $\rho = 0.58 \times 10^{-6}$ Ωcm)). From BaCe₂S₄ (a = 8.864 Å) to Ce₃S₄ both conduction electron concentration and interatomic distance vary.

As the compounds with the thorium phosphide structure form a complete homogeneous system, it will be possible to prepare compositions in the quaternary system between: $\Box_{1/3}L_{2/3}X_4$, L_3X_4 , AL_2X_4 and BL_2X_4 of the general formula:

 $^{\Theta}_{1-(x+y+z)}$ $^{\Box}_{1/3x}$ $^{A}_{y}{}^{B}_{z}{}^{L}_{3-(1/3x+y+z)}$ $^{X}_{4}$

38

hkl	Pr ₂ s	53	Nd2S	3
	lcalc	lobs	calc	lobs
2 1 1	1000	V.5.	1000	v.s.
220	140	m.	140	m.
310	997	V.5.	996	V.5.
222	4	n.o.	4	n.o.
321	504	V.5.	502	V.5.
400	16	V.W.	16	V.W.
4 1 1 3 3 0	3	n.o.	3	n.o.
420	445	V.5.	447	V.5.
332	256	s.	255	s.
422	70	w.	69	w.
510	86	s.	86	s.
521	145	m.	144	m.
440	16	V.W.	16	V.W.
5 3 0 4 333	$\left\{\begin{array}{c}4\\1\end{array}\right\}$	n.o.	$\left \begin{array}{c}4\\1\end{array}\right $	n.o.
600 442	$\begin{bmatrix} 0\\ 3 \end{bmatrix}$	n.o.	0 3	n.o.
611 532	113	s.	112 188	s.
620	57	w.	57	w.
541	150	m.	149	m.
622	1	n.o.	1	n.o.
631	62	w.	61	W
444	70	W.	70	W.
550	0	n.o.	0	n.o.
640	77	w.	77	ω.
721	96	14 137 147	95	
633	48 }	m.	48 47	m.
642	53	w.	53	w.
730	20	V.W.	20	V.W.
		Constant D		

Table III-3. Observed and calculated intensities for Pr_2S_3 and Nd_2S_3 for a model having the thorium phosphide structure with statistically distributed metal vacancies.

Fig. III-10.Electrical resistance, Seebeck coefficient and thermal conductivity of CeS_x (1.33 < x < 1.50) (after J.C. Danko et al. (ref. 24)).

where:	Θ	is an electron
		is a cation vacancy
	А	is a divalent alkaline-earth cation
	В	is a divalent alkaline-earth cation
	Х	is a chalcogen anion
	× =	$0 \rightarrow 1$; y = $0 \rightarrow 1$; z = $0 \rightarrow 1$; x + y x z ≤ 1 .

With compositions of this general formula it is possible to vary the interatomic distances and the number of conduction electrons almost independently.

Due to the distribution of the thorium phosphide type structure

over the rare-earth chalcogen series we were restricted to the elements La, Ce, Pr, Nd, Pm and Sm. Our only possible choice was the elements praseodymium and neodymium. The reasons for these limitations are: for La(III), the lack of magnetic moment; for Ce(III) the large extent of the 4f-orbital so that direct- and superexchange play a larger role here; for Pm(III) the radioactivity of this element and for Sm(III) the small spacing of the J-multiplet levels relative to kT. So we investigated the systems:

□1/3 ^{Pr2} 2/3 ^S 4	-	Pr3S4	1	CaPr ₂ S ₄	. 7.	BaPr2S4
D1/3Pr22/3Se4	-/	Pr3Se4	-	SrPr ₂ Se ₄	i Ha	BaPr2Se4
D1/3Nd22/3S4	-	Nd3S4	-	CaNd ₂ S ₄	-	BaNd2S4
□1/3 ^{Nd2} 2/3 ^{Se} 4	-	Nd3Se4	-	SrNd ₂ Se ₄	-	BaNd ₂ Se ₄

In figure III-11 is indicated how we selected among all possible compositions in these quaternary systems, the compositions to be measured. This figure gives the four equilateral triangles forming the faces of a regular tetrahedron, which represents a quaternary system. First we limited ourselves to the isoelectronic planes with 0, 1/3, 2/3 and 1 electron per formula unit represented in figure III-11 by the dashdot lines. Then starting with the binary compositions on these planes we prepared compositions with equal cell-edge on the other planes. This is indicated by the dashed lines in figure III-11. In this way it is possible, providing Vegart's law will hold, to obtain series of compositions with equal cell-edge and varying electron concentration.

Fig. III-11.Quaternary system between: $\Box_{0.333}L_{2.667}X_4$, L_3X_4 , AL_2X_4 and BL_2X_4 . General formula of the compositions in this system is:

 $\Theta_{1-(x+y+z)} \square_{0.333x}^{A} y^{B} z^{L} (0.333x+y+z)^{X} 4^{\cdot}$

—: Lines indicating planes of equal interatomic distances.

----: Lines indicating planes of equal electron concentration.

References

- J. Flahaut, P. Laruelle, Prog. Sci. Technol. Rare Earths 3 p. 149 ff.
 - 2. J. Flahaut, Prog. Sci. Technol. Rare Earths 3 p. 209 ff.
 - D. Carré, P. Laruelle, P. Besançon, C.R. Acad. Sci. Paris (1970) 270C, 53.

4.	P. Besançon, C.R. Acad. Sci. Paris (1968) 267C, 1130.
5.	P. Besançon, D. Carré, M. Guittard, J. Flahaut, C.R. Acad. Sci.
	Paris (1970) <u>271C</u> , 678.
6.	N.L. Eatough, A.W. Webb, H.T. Hall, Inorg. Chem. (1969) 8, 2069.
7.	N.L. Eatough, H.T. Hall, Inorg. Chem. (1970) <u>9</u> , 417.
8.	C. Souleau, M. Guittard, P. Laruelle, Bull. Soc. Chim. (1969) 9.
9.	B.F. Decker, J.S. Kasper, Acta Cryst. (1957) 10, 332.
10.	Yu.A. Kharitonov, N.L. Smirnova, N.V. Belov, J. Struct. Chem.
	(1966) <u>1</u> , 825.
11.	A.L. Loeb, J. Sol. State Chem. (1970) 1, 237.
12.	P. Niggli, Lehrbuch der Mineralogie Teil 1. Berlin Gebr.
	Bornträger (1941).
13.	W. Fisher, H. Burzlaff, E. Hellner, J.D.H. Donnay, Space Groups
	and Lattice Complexes, NBS Monograph 134, U.S. Department
	of Commerce (1973).
14.	C. Hermann, Z. Kristallogr. (1960) <u>113</u> , 178.
15.	E. Hellner, Acta Cryst. (1965) 19, 703.
16.	H. Burzlaff, W. Fisher, E. Hellner, Acta Cryst. (1968) A24, 57.
17.	E.W. Gorter, J. Sol. State Chem. (1970) 1, 279.
18.	F.L. Carter, Rare Earth Res. IV (1964) p. 495.
19.	F.L. Carter, Metallurgy of Semicond. Mat., Interscience, New
	York (1961) p. 245.
20.	F.L. Carter, Proc. of 8 th R.E. Conference (1970) p. 412.
21.	F.L. Carter, J. Sol. State Chem. (1970) <u>5</u> , 300.
22.	O. Berkooz, M. Malamud, S. Shtrikman, Sol. State Commun. (1968)
	<u>6</u> , 185.
23.	I. Bransky, N.M. Tallan, A.Z. Hed, J. Appl. Phys. (1970) 41, 1787.
24.	H.H. Davis, I. Bransky, N.M. Tallan, J. Less-Common Met. (1970)
	<u>22</u> , 193.
25.	J.C. Danko, A. Biancheria, F.L. Carter, R.R. Ferber, A.E. Fein,
	H.M. Ferrari, W.D. Johnston, G.R. Kilp, G.L. Thomas,
	Westinghouse Electric Corp., Atomic Power Dept. Rep
	1162 (1959).

CHAPTER IV

MAGNETIC MEASUREMENTS

IV-1.Introduction

In the range 2 K to 100 K magnetic measurements were carried out by means of a Princeton Applied Research (P.A.R.) Parallel Field Vibrating Sample Magnetometer Model 150. These measurements were performed in magnetic fields up to 56 k0e produced by a superconducting Nb-Zr coil. Details of the apparatus were described by H.T. Witteveen (1). In the temperature range 80 K to 1200 K we used for the magnetic measurements an automatic Faraday-balance which will be described in IV-2.

We analyzed the magnetic behaviour of our compounds in the paramagnetic region with the Curie-Weiss law:

 $\chi_m = [C/(T - \Theta)] - A$

where: χ_m is the magnetic susceptibility in $\mbox{cm}^3\mbox{mole}^{-1}.$

- C is the Curie constant in cm³degree mole⁻¹.
- 0 is the asymptotic Curie temperature in K.
- T is the temperature in K.
- A is a temperature independent contribution in cm³mole⁻¹.

The Curie-Weiss law can generally be used for samples with localized moments. In that case the temperature independent correction, A, is a diamagnetic one due to the core electrons. For such a diamagnetic term we corrected our experimental data, using the diamagnetic susceptibilities per mole as tabulated by Selwood (2). If also collective

electrons are present temperature independent Pauli paramagnetism must also be taken into account. When however the multiplet intervals are comparable to kT, as is the case with Eu(III) and Sm(III), the simple Curie-Weiss law will no longer hold and a different dependency of χ_m from T will be expected.

Values for the Curie-Weiss parameters C, Θ and A were calculated from the observed molar susceptibilities and temperatures, on an IBM 360/65 computer, with the aid of a least squares approximation program written by Rietveld (R.C.N. Petten, the Netherlands). From the relation:

$$\mu_{eff} = \left(\frac{3kC}{N\mu_B^2}\right)^{\frac{1}{2}}$$

where:

 μ_{eff} is the effective magnetic moment k is the Boltzmann constant N is Avogadro's number μ is the Bohr magneton

the effective magnetic moment can be calculated.

IV-2. The automatic Faraday balance.

Measurements of the magnetic susceptibility in the temperature range from 80 K to 1200 K were performed by using the Faraday method (2,3). The general set-up of the apparatus we used is a modification of the apparatus described by J.W. Roelofsen (4).

The Faraday method, for measuring magnetic susceptibilities, is a force method based on the fact that if a sample is placed in an inhomogeneous magnetic field H_x in the x-direction (H_y = H_z = 0) the force, F, in the z-direction, exerted on the sample is given by:

$$F_z = (m\chi_s + \chi_v)H_x \frac{\partial H_x}{\partial z}$$
 dynes

where:

F,

is the force exerted on the sample in dynes m is the mass of the sample in grams χ_s is the magnetic susceptibility of the sample in cm³g⁻¹ χ_v is the magnetic susceptibility of the sample holder in cm³ H_x is the magnetic field in the x-direction in Oe $\partial H_v/\partial z$ is the magnetic field gradient in Oe cm⁻¹.

The geometry of our equipment (figure IV-1) has been chosen in such a manner as to make the field gradient (z-direction) vertical. Now the force exerted on the sample, which for a magnetically isotropic sample also will be vertical, can be measured with a microbalance as if it was a difference in weight. The balance we use is an automatic compensated balance, Ugine Eyraud type B60, which can be evacuated. At one side of the balance beam a silica wire with a silica sample holder is suspended, at the other side is suspended a permanent bar-magnet in the

Fig. IV-1. Faraday equipment.

field of a solenoide. The force on the sample is automatically compensated by a current through the solenoide. When the balance beam is out of its equilibrium position the illumination of a photo-resistor is changed. An amplifier system tries to keep the illumination of the photo-resistor on a fixed value and brings back the balance beam in its equilibrium position by changing the current through the solenoide. The change of the current through the solenoide, which is measured over a potentiometer as a change in voltage, is directly proportional to the change in the force exerted on the sample. As this compensation system is sensitive to magnetic fields in the neighbourhood, e.g. to the leakage field of the electromagnet we use for our measurements, the balance is screened magnetically by inserting a weak-iron sheet between the electromagnet and the balance. The small influence of the leakage field that remains after this shielding is involved in the correction for the empty sample holder.

The output voltage of the balance is transmitted to a digital millivolt meter (Solartron type LM1420) and via a signal reducer, which reduces the signal with approximately 0%, 25%, 50% or 75% of the original signal, also to a 2.5 mV Honeywell chart recorder, in order to check the stability of the balance. The sensitivity of the balance, in the way we generally use it, is 650 mV gram⁻¹. The stability of the balance is 5×10^{-6} gram.

The sample holder is surrounded by a tube (figure IV-2) around which a non-inductive wound coil as heating element. The temperature of the sample is measured with a chromel-alumel thermocouple for the measurements in the low temperature region (80 K to 300 K) and with a Pt/Pt - 13% Rh thermocouple for the high temperature region (300 K to 1200 K). The cold junction of the thermocouples was at 0° C and the electromotive force was also measured with the Solartron LM1420 digital millivoltmeter. The thermocouples were calibrated with a platinum resistance thermometer (H. Drijfhout en zoon; type WP-KE-33, DIN-43760).

The magnetic field is generated by an electromagnet provided with constant force pole-caps. For the low temperature region we use a Dings electromagnet type GM-1 and for the high temperature region we use a Brucker electromagnet type B-E 10 S4. As power supply we use a

Fig. IV-2. Lower part of the sample device.

- 1. Sample tube.
- 2. Thermocouple leads.
 - 3. Furnace leads.
 - 4. Glass-metal joint.
 - 5. Outer tube.
 - 6. Bifilary wound furnace.
- 7. Thermocouple.
 - 8. Window.

specially designed rectifier of high stability built and developed by
- Jesse Electro Apparaten en Transformatoren Fabriek B.V. -.

The magnetic susceptibility per mole of a compound is computed by using the following formula:

- $\chi_{\rm m}$ is the magnetic susceptibility of the sample in cm³mole⁻¹.
- U_i is proportional to the force experienced on the sample and the sample holder by the magnetic field i.
- V_i is proportional to the force experienced on the empty sample holder by the magnetic field i.
- C; is a constant whose value is proportional to the product of the field strength and the field gradient of the magnetic field i.
- M is the molecular weight of the sample.
- G is the weight of the sample in grams.

The values of U_i , V_i and C_i depend on the strength of the magnetic field. The values of C_i for the five fixed values we generally use for the current through the electromagnet are determined by a relative method which was based on the magnetic data of mercurytetraisothiocyanatocobaltate, Hg[Co(CNS)₄] (5,6). In order to check this way of calibration and in order to check our temperature measurements we used a sample of gadolinium sesquioxide. We measured several times samples of Gd₂0₃ (cacermet 99.999%) which were heated in air at 800°C to remove traces of water. The magnetic data of these samples obeyed the Curie-Weiss law with:

$$\chi_{at} = \frac{C_{at}}{T - \Theta} = \frac{7.77}{T + 16.3}$$

 $\chi_{m} = [U_{i} - V_{i}] C_{i} \frac{M}{G}$

This result is in good agreement with the results of Arajs and Colvin (7) who found the values $C_{at} = 7.80 \text{ cm}^3 \text{at}^{-1}$ and $\Theta = -17 \text{ K}$ in the temperature range between 300 K and 1500 K.

The Faraday equipments are completely automized. A schematic diagram of the overall measuring system is shown in figure IV-3. The

Fig. IV-3.Block diagram of the automatic magnetic Faraday system.

experiment control unit consists of a programmed switch which controls a program cycle consisting of eight measurements: one force measurement at zero field, followed by five force measurements at five different values of the magnetic field, another force measurement at zero field and finally one temperature measurement. For each temperature this cycle is repeated four times. The results of these 32 measurements are punched on a paper-tape. As these four cycles have been performed the temperature is altered and after temperature equilibrium has been reached a new set of four measuring cycles is started. so we obtain with the aid of a computer program, for each temperature four values of the magnetic susceptibility at five different values of the magnetic field.

References

- 1. H.T. Witteveen, Thesis, Leiden (1973).
- P.W. Selwood, Magnetochemistry, Interscience Publishers Inc., New York (1956) 2nd ed.
- M. Faraday, Experimental Research, Taylor and Francis, London (1855) Vol. III.

4. J.W. Roelofsen, Thesis, Leiden (1967).

- 5. B.N. Figgis, R.S. Nyholm, J. Chem. Soc. (1958) 4190.
- 6. B.N. Figgis, R.S. Nyholm, J. Chem. Soc. (1959) 338.

7. S. Arajs, R.V. Colvin, J. Appl. Phys. 33 (1962) 2517.

......

CHAPTER V

EXPERIMENTAL DATA AND RESULTS

V-1. Preparation of the samples.

The most general techniques for preparing sulphides and selenides of the rare earth metals are:

- 1: Direct reaction between the elements.
- Reaction of powdered metal with dry hydrogen sulphide or hydrogen selenide.
- 3: Reaction of metal oxides, metal carbonates or mixtures thereof with hydrogen sulphide, hydrogen selenide or carbon disulphide.
- 4: Reaction of rare earth metal compounds with dry hydrogen sulphide or hydrogen selenide.
- Reduction of sulphates, selenates, sulphites or selenites with dry hydrogen gas.
- 6: Solid state reaction of powdered and compressed mixtures of the products obtained by one or more of the above-mentioned methods.

ad.1: The desired quantities of the rare earth metal and sulphur or

selenium were put in a degassed silica tube, which was evacuated to a pressure of about $10^{-3} - 10^{-4}$ torr and sealed. The tube was heated in an electrical furnace, first at 500 °C to prevent any attack of the silica by the metal and in order to maintain the sulphur or selenium vapour pressure low. After all sulphur or selenium vapour had disappeared, the temperature was raised to 1100 °C for a week. After this week the samples were cooled quickly (quenched) to room temperature. If X-ray diffraction showed that the reaction had not been completed or that one of the low-temperature phases had been formed, the samples were powdered in an agate mortar and subsequently compressed into a cylinder. This cylinder was heated in a thick-walled tantalum crucible placed in a sealed evacuated (to a pressure smaller than 10^{-5} torr) silica tube at 1400 °C, by means of a high frequent induction furnace. With X-ray fluorescence no tantalum could be detected in the samples after this treatment.

ad.2: This method of preparation was not used in our investigations.

Because this method only allows us to obtain the sesquisulphides of the rare earth metals, as is the case with the third method, and because some of the rare earth metals are pyrophoric and not easy to handle, we preferred to use the third method.

ad.3: The rare earth oxides were placed in a graphite crucible (Schunck and Ebe, quality FE 49). This crucible was surrounded by a layer of non-conducting graphite felt (Schunck and Ebe) and by a cylindrically shaped graphite radiation shield with vertical slits to avoid energy pick-up from the H.F. field. This whole ensemble was placed in a silica tube and heated in a stream of dry hydrogen sulphide at a temperature of 1300 - 1500 °C by means of a high frequent induction furnace (figure V-1). The products obtained by this method are in most cases the rare earth sesquisulphides, which lie on the sulphur-rich side of the thorium phosphide type phase extension area, as shown by Klemm et al. (1).
Only in the case of europium, Eu₃S₄ or even EuS or a mixture thereof is formed according to the circumstances of the reaction. We employed this method with hydrogen sulphide only.

ad.4: The reaction between hydrogen sulphide or hydrogen selenide and the salts of the rare earth metals shows the same advantages and disadvantages as the former method. Consequently we did not use this reaction for preparing our compositions.

ad.5: The reduction of sulphates, selenates, sulphites or selenites with dry hydrogen has many disadvantages. For instance, it is very hard to avoid the chalcogen element being lost due to the reverse reaction

Fig. V-1. Equipment for the preparation of rare earth sulphides. The cylindrically shaped radiation shield is given in detail.

of the water formed during the reaction, with the sulphide or selenide (2). We only used this method to obtain the selenides of barium and strontium (2), which we used to prepare ternary strontium and barium rare earth selenides according to the sixth method.

ad.6:To obtain the intermediate phases between those prepared by one

of the methods 1, 3 and 5, we compressed appropriate amounts of powdered specimen obtained by said methods into cylinders. These cylinders were heated in a thick-walled tantalum crucible placed in a sealed and evacuated (to a pressure of about $10^{-5} - 10^{-6}$ torr) silica tube by means of a high frequent induction furnace at 1400 °C. X-ray fluorescence showed that after this treatment no trace of tantalum was present in the samples.

The rare earth metals used were powders or chips of high purity grade, better than 99.9% (Cacermet, Elcomat). By X-ray fluorescence no trace of other than the assumed rare earth metals could be detected.

The rare earth oxides had a claimed purity of 99.9% (Cacermet, Elcomat). By means of X-ray fluorescence no rare-earth metals except the assumed ones could be detected.

The sulphur and the selenium used, had both claimed purities of 99.999% (Fluka A.G.), the carbonates of calcium strontium and barium all had claimed purities of 99.9% (Merck A.G.), the selenates of strontium and barium had a purity better than 99.9% (K & K). The hydrogen sulphide we used had a purity better than 99.5% (Loosco). Prior to use we dried the hydrogen sulphide over phosphorus pentoxide.

V-2. Characterization of the samples.

X-ray diffraction analysis was carried out by means of a Guinierde Wolf camera, and by means of a Philips powder diffractometer, type PW 1025/25, equipped with a graphite monochromator. In both cases we used Cu K- α radiation ($\lambda = 1.5418$ Å). In the powder diffractometer all samples were examined with the reflection method. In view of the possible influence of preferred orientation of the crystallites due to the flat sample holder of the diffractometer on the intensities of the diffraction lines, some samples were also investigated with the transmission method. As no significant differences in the intensities obtained by these two methods could be detected the influence of preferred orientation of the crystallites on the intensities may be neglected.

The cell dimensions and the intensities were calculated on an I.B.M. 360/65 computer by means of a least-squares Algol program for overlapping X-ray powder reflections, written by Rietveld (R.C.N. Petten, the Netherlands). Table V-1 gives, as an example, the observed and calculated values for $10^5 sin^{20}$ and for the intensities of Pr_2S_3 and Pr_3S_4 . The calculated values are based on a model having the thorium phosphide structure with the space group $1\overline{4}3d$ (T_d^6) comprising the sulphur atoms at the 16c position, with 1/12 as the value for the parameter, and the metal atoms having the position 12a. For the compositions showing metal-site vacancies, the calculated values are based on a model with a statistical

ice-so-		Pr2S3	ya . Cian	10213	Carden	Pr3S4	112 142.24	1
h k l	l calc	lobs	10 ⁵	sin ² 0	but est	lake .	105	sin ² ⊖
2102 23.04	Gare	003	care	ODS	calc	ODS	calc	obs
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1000 140 997 504 16 445	V.S. M. V.S. V.S. V.W. V.S.	4848 6464 8080 11312 12907 16133	4831 6454 8073 11305 12933 16139	1000 140 902 447 17 420	V.S. m. V.S. V.S. V.W.	4845 6460 8075 11305 12899 16124	4837 6452 8067 11292 12919 16124
3 3 2 4 2 2 4 3 1	256 70 183)	s. W.	17747 19360	17738 19364	240	s. W.	17734 19348	17734 19348
510	86	5.	20973	20974	86	s.	20961	20944
5 2 1 4 4 0 5 3 0	145 16 4	m. v.w. n.o.	24200 25813 27368	24213 25846 n.o.	138 16 3	m. v.w. n.o.	24185 25798 27410	24204 25837 n.o.
611	113	s.	30653	30635	177	s.	30635	30632
6 2 0 5 4 1 6 3 1 4 4 4	57 150 62 70	w. m. w. w.	32267 33865 37107 38720	32256 33865 37104 38730	51 157 57 66	W. m. W. W.	32247 33860 37084 38702	32245 33838 37076 38702
710	2	n.o.	40247	n.o.	6	n.o.	40309	n.o.
640 552	77 47)	ω.	41947	41948	73	w.	41921	41929
633	48	m.	43560	43546	45 }	m.	43534	43527
642 730	53 20	W. V.W.	45174 46787	45167 46803	48 20	w. v.w.	45146 46758	45147 46756

Table V-1. Observed and calculated intensities and $10^5 {\rm sin}^2_{\odot}$ values of ${\rm Pr}_2{\rm S}_3$ and ${\rm Pr}_3{\rm S}_4.$

distribution of the vacancies over the metal sites. The agreement between the observed and calculated data is fairly good.

<u>V-3-1.</u> The system CaPr₂S₄-BaPr₂S₄-Pr₂_{2/3}S₄-Pr₃S₄.

The compositions investigated in this system are indicated in figure V-2. In order to obtain these compositions we first prepared as starting materials $Pr_{2/3}S_4$, Pr_3S_4 , $CaPr_2S_4$ and $BaPr_2S_4$. Pr_3S_4 was prepared by heating a mixture of the elements in an evacuated silica

Fig. V-2. Compositions investigated in the quaternary system $CaPr_{2}S_{4}$ -BaPr_{2}S_{4}-Pr_{3}S_{4}-Pr_{2}S_{3}. Dash-dot lines indicate planes of equal electron concentration and dashed lines indicate planes of equal interatomic distances.

ampoule, according to method 1 (chapter V-1). $Pr_{2/3}S_4$, $CaPr_2S_4$ and $BaPr_2S_4$ were prepared by reaction of dry hydrogen sulphide and praseodymium oxide or mixtures of praseodymium oxide and calcium carbonate or barium carbonate according to method 3 (chapter V-1). The intermediate compositions were prepared by a solid state reaction of compressed mixtures of the starting materials (method 6, chapter V-1).

Magnetic susceptibility measurements were carried out by means of the Faraday-balance in the temperature range of 80 - 1000 K, in which temperature range all compositions showed a Curie-Weiss behaviour.

The cell edge, paramagnetic Curie-temperature and the effective magnetic moment per rare earth ion of the investigated compositions are indicated in table V-2. In this table we have also indicated the conduction electron concentration as can be calculated from a simple ionic model with trivalent praseodymium and divalent calcium, strontium and barium. In this table we have also indicated the corresponding data for SrPr₂S_L.

Regar	a (Å)	Z	⊚ _р (к)	$\mu_{\text{eff}}(\mu_{\text{B}})$
Pr ₂ S ₄	8.5786(17)	1.00	0.0	3.56
Pr _{2 QS}	8.578	.67	-16.0	3.55
Pr _{2 78} S ₁	8.577	.33	-21.7	3.58
Pr ₂ 67 ^S ₁	8.5760(17)	.00	-26.9	3.59
Ca 22Pr2 67Sh	8.579	.67	-15.6	3.58
Ca 22Pr 2 55	8.578	.33	-21.9	3.59
Ca 22Pr2 11/5/	8.577	.00	-27.2	3.60
$Ca_{0} c_{7}Pr_{2} c_{2}S_{1}$	8.579	.33	-21.5	3.59
Ca ₀ 67 ^{Pr} 2.55 ⁴	8.578	.00	-26.5	3.60
CaPr ₂ S ₁	8.5793(8)	.00	-26.8	3.59
Ba, 22Pr, 67Sh	8.657	.67	-20.3	3.57
Bao 22Pr2 54Sh	8.656	.33	-27.4	3.58
Bao 22Pr2 11Sh	8.655	.00	-27.6	3.61
Ban 22 Can 22 Pro 22 Sh	8.657	.00	-27.6	3.60
Bao 22Cao 67Pr2Sh	8.657	.00	-27.5	3.60
Bao 22 Cao 22 Pro 22 Sh	8.657	.33	-28.2	3.58
Bao (7Pro 205)	8.735	.33	-28.6	3.59
Bao 67Pro 2051	8.734	.00	-26.9	3.59
Ban 67Can 22ProS.	8.736	.00	-27.1	3.59
BaPr_S,	8.8136(18)	.00	-26.2	3.60
SrPr ₂ S ₄	8.6817(15)	.00	-26.5	3.61

Table V-2. Cell edge (a), assumed number of conduction electrons per formula unit (Z), paramagnetic Curie-temperature (Θ_p) and the effective magnetic moment (μ_{eff}) of some compositions in the series \Pr_3S_4 - \Pr_2S_3 - $CaPr_2S_4$ - $BaPr_2S_4$.

In figure V-3 the paramagnetic Curie-temperature of these compositions is given as a function of the conduction electron concentration for the different series of values for the cell edge.

Low temperature magnetic measurements were performed by means of the P.A.R. vibrating sample magnetometer on samples of Pr_3S_4 , $Pr_{22/3}S_4$, $CaPr_2S_4$, $SrPr_2S_4$ and $BaPr_2S_4$. The results of some of these measurements

Fig. V-3. The paramagnetic Curie-temperature (0_p) versus the assumed number of conduction electrons for compositions investigated in the series CaPr₂S₄-BaPr₂S₄-Pr₃S₄-Pr₂S₃.
•: compositions with a = 8.578 Å, •: compositions with a = 8.657 Å, •: compositions with a = 8.735 Å.

Fig. V-4. The $1/\chi$ versus T curves for $\Pr_2 S_3$ and $\Pr_3 S_4$. •: obtained from measurements with the Faraday balance; •: obtained from measurements with the vibrating sample magnetometer.

are summarized in figure V-4.

V-3-2. The system SrPr_Se_-BaPr_Se_-Pr_Se_-Pr22/3Se_.

The compositions investigated in this system are indicated in . figure V-5. For the preparation of these compositions we used as starting materials SrSe, BaSe, $Pr_{2_2/3}Se_4$ and Pr_3Se_4 . Strontium selenide and barium selenide were prepared by the reaction between dry hydrogen gas and $SrSe0_4$ and $BaSe0_4$ respectively, according to the fifth preparation method of chapter V-1. $Pr_{2_2/3}Se_4$ and Pr_3Se were prepared by heating a mixture of the elements in an evacuated silica ampoule, according to method 1 (chapter V-1). The sixth method of chapter V-1 was used to prepare the intermediate compositions.

The results of magnetic susceptibility measurements, carried out by means of the Faraday balance in the temperature range of 80 - 1000 K, are given in figure V-6 and table V-4. In that temperature range a Curie-Weiss law is obeyed. In table V-3 is also indicated the cell edge and the conduction electron concentration based on a simple ionic

Fig. V-5. Compositions investigated in the quaternary system SrPr₂Se₄-BaPr₂Se₄-Pr₃Se₄-Pr₂Se₃. Dash-dot lines indicate planes of equal electron concentration and dashed lines indicated planes of equal interatomic distances.

		1	T	1
	a (Å)	[⊖] р(К)	z	$\mu_{eff}(\mu_B)$
$\begin{array}{c} Pr_{3}Se_{4}\\ Pr_{2}.96Se_{4}\\ Pr_{2}.89Se_{4}\\ Pr_{2}.87Se_{4}\\ Pr_{2}.78Se_{4}\\ Pr_{2}.78Se_{4}\\ Pr_{2}.70Se_{4}\\ Pr_{2}.68Se_{4}\\ Sr_{0}.33Pr_{2}.67Se_{4}\\ Sr_{0}.33Pr_{2}.56Se_{4}\\ Sr_{0}.33Pr_{2}.56Se_{4}\\ Ba_{0}.12Pr_{2}.9Se_{4}\\ Ba_{0}.12Pr_{2}.88Se_{4}\\ Sr_{0}.67Pr_{2}.23Se_{4}\\ Ba_{0}.12Pr_{2}.88Se_{4}\\ Sr_{0}.67Pr_{2}.22Se_{4}\\ Ba_{0}.22Pr_{2}.52Se_{4}\\ Ba_{0}.22Pr_{2}.52Se_{4}\\ Ba_{0}.22Pr_{2}.52Se_{4}\\ Ba_{0}.22Pr_{2}.52Se_{4}\\ Ba_{0}.22Pr_{2}.52Se_{4}\\ Ba_{0}.22Pr_{2}.52Se_{4}\\ Ba_{0}.22Pr_{2}.52Se_{4}\\ Ba_{0}.22Pr_{2}.74Se_{4}\\ Ba_{0}.22Pr_{2}.74Se_{4}\\ Ba_{0}.22Pr_{2}.74Se_{4}\\ Ba_{0}.22Pr_{2}.74Se_{4}\\ Ba_{0}.33Pr_{2}.56Se_{4}\\ Ba_{0}.33Pr_{2}.56Se_{4}\\ Ba_{0}.56Pr_{2}.40Se_{4}\\ Ba_{0}.56Pr_{2}.40Se_{4}\\ Ba_{0}.56Pr_{2}.40Se_{4}\\ Ba_{0}.56Pr_{2}.23Se_{4}\\ Ba_{0}.56Pr_{2}.23Se_{4}\\ Ba_{0}.56Pr_{2}.23Se_{4}\\ Ba_{0}.56Pr_{2}.22Se_{4}\\ Ba_{0}.56Pr_{2}.22Se_{4}\\ Ba_{0}.56Pr_{2}.22Se_{4}\\ Ba_{0}.56Pr_{2}.23Se_{4}\\ Ba_{0}.56Pr_{2}.23Se_{4}\\ Ba_{0}.56Pr_{2}.23Se_{4}\\ Ba_{0}.56Pr_{2}.23Se_{4}\\ Ba_{0}.56Pr_{2}.23Se_{4}\\ Ba_{0}.56Pr_{2}.23Se_{4}\\ Ba_{0}.56Pr_{2}.22Se_{4}\\ Ba_{0}.56Pr_{2}.22Se_{4}\\ Ba_{0}.56Pr_{2}.23Se_{4}\\ Ba_{0}.56Pr_{2}.23Se_{4}\\ Ba_{0}.56Pr_{2}.22Se_{4}\\ Ba_{0}.56Pr_{2}.23Se_{4}\\ Ba_{0}.56Pr_{2}.23Se_{4}\\ Ba_{0}.56Pr_{2}.23Se_{4}\\ Ba_{0}.56Pr_{2}.22Se_{4}\\ Ba_{0}.56Pr_{2}.22Se_{4}\\ Ba_{0}.56Pr_{2}.22Se_{4}\\ Ba_{0}.56Pr_{2}.23Se_{4}\\ Ba_{0}.56Pr_{2}.22Se_{4}\\ Ba_{0}.56$	8.9288(14) 8.928 8.928 8.927 8.926 8.925 8.925(16) 8.953 8.952 8.951 8.952 8.954 8.955 8.954 8.955 8.956 8.977 8.975 8.976 8.977 8.975 8.976 8.977 8.975 8.976 8.977 9.0027(17) 9.001 9.002 9.003 9.004 9.052 9.053 9.054 9.053 9.054 9.053 9.054 9.053 9.054 9.053 9.054 9.078 9.078 9.1518(15)	$\begin{array}{c} - 3.1 \\ -13.1 \\ -27.0 \\ -31.5 \\ -37.2 \\ -26.7 \\ -24.3 \\ -21.6 \\ -25.1 \\ -32.1 \\ -21.6 \\ -25.1 \\ -32.1 \\ -21.6 \\ -22.3 \\ -31.5 \\ -25.0 \\ -11.7 \\ -26.7 \\ -26.7 \\ -22.0 \\ -11.7 \\ -26.3 \\ -19.1 \\ -16.3 \\ -20.1 \\ -21.6 \\ -22.5 \\ -21.3 \\ -15.1 \\ -21.5 \\ -21.9 \\ -19.7 \\ -17.6 \\ -19.9 \\ -22.6 \\ -19.7 \\ -17.6 \\ -19.9 \\ -22.2 \\ -18.7 \\ -21.0 \\ -22.2 \\$	1.00 .88 .67 .61 .33 .09 .03 .00 .67 .33 .00 .33 .67 .88 .33 .00 .33 .67 .78 .67 .00 .33 .67 .78 .67 .00 .33 .67 .33 .00 .33 .67 .33 .00 .33 .00 .33 .00 .33 .00 .33 .00 .33 .00 .33 .00 .33 .00 .00	3.52 3.54 3.56 3.56 3.58 3.59 3.59 3.58 3.59 3.58 3.59 3.58 3.59 3.58 3.59 3.58 3.57 3.58 3.59 3.57 3.58 3.57 3.58 3.57 3.58 3.59 3.57 3.58 3.59 3.57 3.58 3.59 3.57 3.58 3.59 3.57 3.58 3.59 3.57 3.58 3.59 3.57 3.58 3.59 3.57 3.58 3.59 3.57 3.58 3.59 3.57 3.58 3.59 3.57 3.58 3.59 3.57 3.58 3.59 3.58 3.59 3.57 3.58 3.59 3.59 3.59 3.59 3.57 3.58 3.59 3.57 3.58 3.59 3.59 3.57 3.58 3.59 3.57 3.57 3.58 3.59 3.57 3.58 3.59 3.57 3.57 3.58 3.59 3.57 3.58 3.59 3.57 3.57 3.58 3.59 3.57 3.58 3.59 3.57 3.58 3.59 3.57 3.58 3.59 3.57 3.58 3.59 3.57 3.58 3.59 3.59 3.57 3.58 3.59 3.58 3.59 3.59 3.57 3.58 3.59 3.59 3.57 3.58 3.59 3.58 3.59 3.59 3.59 3.57 3.58 3.59 3.58 3.59 3.59 3.59 3.58 3.59 3.58 3.59 3.58 3.59 3.58 3.59 3.58 3.59 3.58 3.59 3.58 3.59 3.59 3.58 3.59 3.58 3.59 3.58 3.59 3.58 3.59 3.58 3.59 3.58 3.59 3.58 3.59 3.58 3.59 3.58 3.59 3.58 3.59 3.58 3.59 3.58 3.59 3.58 3.58 3.58 3.58 3.58 3.59 3.58 3.58 3.59 3.58 3.58 3.58 3.58 3.58 3.59 3.58 3.58 3.59 3.58 3.59 3.58 3.59 3.58 3.59 3.58 3.59 3.58 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59

Table V-3. Cell edge (a), assumed number of conduction electrons per formula unit (Z), paramagnetic Curie-temperature (Θ_p) and the effective magnetic moment in the series $Pr_3Se_4-Pr_2Se_3-SrPr_2Se_4-BaPr_2Se_4$

Fig. V-6. The paramagnetic Curie-temperature (0_p) versus the assumed number of conduction electrons for compositions investigated in the series SrPr₂Se₄-BaPr₂Se₄-Pr₃Se₄-Pr₃Se₄-Pr₂Se₃. •: compositions with a = 8.927 A; •: compositions with a = 8.927 A; •: compositions with a = 8.977 A; +: compositions with a = 9.003 A; ×: compositions with 'a = 9.053 A; V: compositions with a = 9.078 A.

model comprising trivalent praseodymium.

In this system low temperature magnetic measurements were performed on samples of Pr_3Se_4 , $Pr_{22/3}Se_4$, $SrPr_2Se_4$ and $BaPr_2Se_4$ by means of the P.A.R. magnetometer. The results of these measurements are summarized in figures V-7 and V-8.

For Pr_3Se_4 Loginov and Sergeeva (3) have reported +6 K and 3.43 μ_B as values for the paramagnetic Curie-temperature and the effective magnetic moment respectively.

V-3-3. The system CaNd254-BaNd254-Nd254-Nd22/254.

The compositions investigated in this system are given in figure V-9. These compositions were prepared in an analogous way as those in the system $CaPr_2S_4-BaPr_2S_4-Pr_3S_4-Pr_{22/3}S_4$ (chapter V-3-1).

Magnetic susceptibility measurements were carried out by means of

Fig. V-8. The magnetization (M) versus the magnetic field (H) for Pr_2Se_3 . T = 1.95 K.

	a(Å)	z	⊖ _р (К)	$\mu_{eff}(\mu_B)$
Nd ₂ S ₁	8.5236(12)	1.00	+40.3	3.42
Nd _{2 80} S ₁	8.525	.67	+ 2.2	3.53
Nd _{2 78} S ₁	8.526	.33	-24.7	3.60
Nd _{2 67} S ₁	8.5275(19)	.00	-29.1	3.66
Ca 22Nd 67S	8.526	.67	+ 1.7	3.61
Ca _{0 22} Nd _{2 56} S ₁	8.528	.33	-26.7	3.63
Ca _{0 32} Nd _{2 h} S _h	8.529	.00	-29.7	3.63
Ca _{0 67} Nd _{2 32} S ₁	8.529	.33	-26.5	3.59
Ca _{0 67} Nd _{2 22} S ₄	8.530	.00	-30.5	3.61
CaNd ₂ S ₁	8.5315(13)	.00	-30.7	3.63
Ban 32Nd2 67Sh	8.613	.67	+ 0.9	3.55
Ba _{0 33} Nd _{2 56} S ₄	8.614	.33	-27.7	3.61
Bao 22Nd2 1/1S/1	8.616	.00	-31.1	3.60
Ban 32 Can 22 Nd2 22 S1	8.617	.00	-30.8	3.60
Ba _{0 22} Ca _{0 67} Nd ₂ S ₁	8.618	.00	-31.1	3.59
Bao 22Cao 22Nd 22S1	8.616	.33	-27.3	3.58
Ba _{0 67} Nd _{2 22} S ₁	8.702	.33	-28.0	3.58
Bao 67Nd2 22S4	8.703	.00	-31.7	3.60
Bao 67 Cao 22 Nd St	8.705	.00	-31.9	3.61
BaNd ₂ S ₁	8.7914(13)	.00	-32.1	3.60
SrNd ₂ S ₄	8.6537(11)	.00	-31.5	3.62

Table V-4. Cell edge (a), assumed number of conduction electrons per formula unit (Z), paramagnetic Curie-temperature (\odot_p) and the effective magnetic moment (μ_{eff}) in the series Nd₃S₄-Nd₂S₃-CaNd₂S₄-BaNd₂S₄.

the Faraday balance in the temperature range 80 - 1000 K. All compositions showed a Curie-Weiss behaviour in said range. The cell edge, paramagnetic Curie-temperature, the effective magnetic moment per ion and the number of conduction electrons per formula unit are given in table

Fig. V-9. Compositions investigated in the quaternary system $CaNd_2S_4$ -BaNd $_2S_4$ -Nd $_3S_4$ -Nd $_2S_3$. Dash-dot lines indicate planes of equal electron concentration and dashed lines indicate planes of equal interatomic distances.

V-4. In figure V-10, the paramagnetic Curie-temperature of these compositions is indicated as a function of the conduction electron concentration.

Low temperature magnetic measurements by means of the P.A.R. magnetometer were carried out on samples of Nd_3S_4 , $Nd_{22/3}S_4$, $CaNd_2S_4$, $SrNd_2S_4$ and $BaNd_2S_4$. The results of these measurements are summarized in figure V-11, figure V-12 and figure V-13.

Our values for the paramagnetic Curie-temperature for ${\rm Nd}_3{\rm S}_4$ and ${\rm Nd}_2{\rm S}_3$ agree with those reported by Loginov et al. (4).

Rough conductivity measurements were carried out on powdered samples of Nd₃S₄, Nd_{2/3}S₄ and CaNd₂S₄ in the temperature range of 80 - 300 K. The samples were pressed in bars of about 3 mm x 3 mm x 15 mm and sintered in an evacuated silica ampoule at 1100 °C. The four-point-contact method was used. For the samples of Nd_{2/3}S₄ and CaNd₂S₄ the conductivity decreased with the temperature, whereas for Nd₃S₄ the conductivity increased with decreasing temperature. For Nd_{2/3}S₄ and CaNd₂S₄ and CaNd₂S₄ the

Fig. V-10.The paramagnetic Curie-temperature (θ_p) versus the assumed number of conduction electrons for compositions investigated in the series CaNd₂S₄-BaNd₂S₄-Nd₃S₄-Nd₂S₃.
•: compositions with a = 8.526 Å; •: compositions with a = 8.616 Å; Δ : compositions with a = 8.703 Å.

we found $10^{-2} - 10^{-3} \, \Omega \text{cm}$. No discontinuity in the resistivity as a function of the temperature was observed. The values of the resistivity give only a rough information and depend strongly on the preparation method of the bars. Picon and Flahaut have found 1.2 x $10^{-6} \, \Omega \text{cm}$ for the resistivity of Nd₃S₄ (5).

V-3-4. The system SrNd₂Se₄-BaNd₂Se₄-Nd₃Se₄-Nd₂/₃Se₄.

The compositions investigated in this system are given in figure V-14. These compositions were prepared in an analogous manner as those in the system $SrPr_2Se_4-BaPr_2Se_4-Pr_3Se_4-Pr_2_{2/3}Se_4$ (chapter V-3-2).

Magnetic susceptibility measurements were carried out by means of the Faraday balance in the temperature range of 80 - 1000 K. All compositions showed a Curie-Weiss behaviour in that region. The cell

Fig. V-13.The magnetization per Nd (M) versus the magnetic field (H) for $BaNd_2S_4$. T = 2.05 K.

Fig. V-14.Compositions investigated in the quaternary system SrNd₂Se₄-BaNd₂Se₄-Nd₃Se₄-Nd₂Se₃. Dash-dot lines indicate planes of equal electron concentration and dashed lines indicate planes of equal interatomic distances.

Fig. V-15.The paramagnetic Curie-temperature (Θ_p) versus the assumed number of conduction electrons for compositions investigated in the series $SrNd_2Se_4$ -BaNd $_2Se_4$ -Nd $_3Se_4$ -Nd $_2Se_3$. •: compositions with a = 8.859 Å; •: compositions with a = 8.902 Å; Δ : compositions with a = 8.945 Å; +: compositions with a = 8.990 Å; ∇ : compositions with a = 9.033 Å; •: compositions with a = 9.076 Å.

edge, paramagnetic Curie-temperature, the effective magnetic moment per ion and the number of conduction electrons per formula unit are given in table V-5. In figure V-15, the paramagnetic Curie-temperature of these compositions is indicated as a function of the assumed conduction electron concentration.

We have carried out low temperature magnetic measurements using the P.A.R. vibrating sample magnetometer on samples of Nd_3Se_4 , $Nd_{22/3}Se_4$, $SrNd_2Se_4$ and $BaNd_2Se_4$. The results of these measurements are given in figure V-16, figure V-17 and figure V-18.

	a (Å)	ө _р (К)	Z	$\mu_{eff}(\mu_B)$
Nd ₂ Se ₁	8.8576(19)	+17.2	1.00	3.40
Nd _{2 80} Se ₁	8.859	-26.2	.67	3.56
Nd _{2 78} Se ₁	8.860	-40.6	.33	3.63
Nd _{2 67} Se ₁	8.8619(12)	-29.2	.00	3.62
Sr _{0 22} Nd _{2 67} Se ₄	8.900	-33.1	.67	3.57
Sr _{0.33} Nd _{2.56} Se ₄	8.902	-45.8	.33	3.59
Sr _{0 22} Nd _{2 44} Se ₄	8.903	-28.6	.00	3.60
Ba _{0 17} Nd _{2 56} Se ₄	8.905	-27.1	.00	3.61
Ba _{0 17} Nd _{2 67} Se ₄	8.904	-46.0	.33	3.58
Ba _{0 17} Nd _{2 78} Se ₄	8.902	-34.3	.67	3.57
Ba _{0 17} Nd _{2 83} Se ₄	8.902	-12.9	.83	3.54
Sr _{0.67} Nd _{2.33} Se ₄	8.943	-47.0	.33	3.61
Sr _{0.67} Nd _{2.22} Se ₄	8.944	-29.2	.00	3.61
Ba _{0 33} Nd _{2 44} Se ₄	8.948	-28.7	.00	3.60
Ba _{0 33} Nd _{2 56} Se ₄	8.947	-47.9	.33	3.59
Ba _{0 33} Nd _{2 67} Se ₄	8.945	-36.7	.67	3.56
SrNd ₂ Se ₄	8.9857(16)	-27.2	.00	3.62
Ban 50 Nd2 33 Se4	8.991	-27.9	.00	3.61
Bao 50 Nd2 44 Se4	8.990	-49.1	.33	3.59
Ba _{0 50} Nd _{2 50} Se ₄	8.989	-43.8	.50	3.58
Ban 33Srn 33Nd2 33Se4	8.988	-26.7	.33	3.60
Ba _{0 33} Sr _{0 67} Nd ₂ Se ₄	9.031	-27.8	.00	3.61
Bao 67N2 22Se4	9.035	-29.0	.00	3.60
Ba _{0 67} Nd _{2 33} Se ₄	9.033	-49.5	.33	3.58
Ba0 67 Sr 0. 33 Nd Se4	9.076	-28.4	.00	3.62
Ba _{0.83} Nd _{2.11} Se ₄	9.078	-28.1	.00	3.61
Ba0.83Nd2.17Se4	9.076	-42.7	.17	3.60
BaNd2Se4	9.1211(11)	-29.2	.00	3.62

Table V-5. Cell edge (a), assumed number of conduction electrons per formula unit (Z), paramagnetic Curie-temperature (Θ_p) and the effective magnetic moment (μ_{eff}) in the series Nd₃Se₄-Nd₂Se₃-SrNd₂Se₄-BaNd₂Se₄.

Fig. V-18.The magnetization (M) versus the magnetic field (H) for Nd_3Se_4 . T = 2 K and T = 10 K.

V-3-5. The system Gd 3- S4.

In this system the only possible values for x are in the range 0.33 > x > 0.23. Figure V-19 shows the results of the susceptibility measurements on the two extreme compositions in this system in the temperature range of 80 - 300 K. The values of Θ_{p} and μ_{eff} are Θ_{p} = +57 K, μ_{eff} = 8.28 μ_{B} for Gd_{2.77}S₄ and Θ_{p} = -18 K, μ_{eff} = 8.03 μ_{B} for Gd_{2.67}S₄ (Gd₂S₃).

References

- W. Klemm, H. Senff, Z. Anorg. Chem. 1939, <u>241</u>, 259.
 G. Brauer, Handbuch der Präparativen Anorganischen Chemie. Ferdinand Enke Verlag Stuttgart (1960) p. 830.
 G.M. Loginov, V.M. Sergeeva, Sov. Phys. - Solid State 1971, <u>12</u>, 2191.
- G.M. Loginov, V.M. Sergeeva, M.F. Bryzhina, Sov. Phys. Solid State 1971, <u>12</u>, 2942.
- 5. M.C. Picon, J. Flahaut, Compt. Rend. 1956, 243, 2074.

CHAPTER VI

DISCUSSION

VI-1.Introduction.

From the magnetic data obtained for the rare earth chalcogenides it is clear that a certain relationship exists between the ratio of rare earth ions to chalcogen ions and the paramagnetic Curie-temperature. As the number of electrons in the conduction band is also related to this ratio it is obvious to check if there is a relation between the number of conduction electrons and the paramagnetic Curie-temperature. The influence of the magnitude of the cell edge, being a function of size and ratio of cations and anions, must be considered as well. A theoretical relation between the conduction electron concentration and the paramagnetic Curie-temperature for a metallic compound is given by the RKKY-theory as is indicated in chapter II (eq. II-28).

The summation of eq. 11-28 over all metal positions in the thoriumphosphide structure has been carried out for various values of the Fermivector (k_F) and the cell edge of the cubic unit cell. Due to the convergency the summations could be limited to a sphere with a radius of 25 Å. The results are graphically represented in figure VI-1. As the theoretical value for k_F , based on a model with free conduction electrons is zero for L_2X_3 and approximately 0.6 Å⁻¹ for L_3X_4 , we expected an increasing positive interaction between the lanthanide ions when the conduction band is filled and consequently we expected an increasing value for the paramagnetic Curie-temperature on going from L_2X_3 to L_3X_4 . As can be seen from figure V-10 and figure V-19 the values for the paramagnetic Curie-temperature rise when we go from Nd₂S₃ to Nd₃S₄ and when we go from Gd₂S₃ to Gd_{2.77}S₄. Going from Pr₂S₃ to Pr₃S₄ a similar behaviour is shown, although a slight minimum can be observed for Z = 1/3 in some

Fig. VI-1.RKKY-sum versus k_F for the metal positions in the thoriumphosphide structure for different values of the cubic cell edge.

of the series in that system (figure V-3). However, the curves of the paramagnetic Curie-temperature versus the number of conduction electrons for the selenide series $Pr_2Se_3-Pr_3Se_4$ and $Nd_2Se_3-Nd_3Se_4$ show a deviation from this behaviour (figures V-6 and V-15). Here we see a small negative value of the paramagnetic Curie-temperature for the compounds Pr_2Se_3 and Nd_2Se_3 . These values are of the same order of magnitude as the values found for the compositions L_2S_3 . However, when in the selenide compositions the metal content is increased, the paramagnetic Curie-temperature first becomes more negative. This is not the expected behaviour on applying the RKKY-theory on these compositions. Thus a new theoretical interpretation must be found.

First we have to find an explanation for the negative values of the paramagnetic Curie-temperature which we have found for the semi-conducting compounds L_2X_3 and ML_2X_4 . The negative magnetic interactions in these compounds may be caused by several mechanisms or combinations

thereof:

- A direct exchange interaction of the localized ionic magnetic moments.
- A superexchange interaction of the localized ionic magnetic moments via the chalcogen atoms or via virtually excited states.
- 3. The ground state J-multiplet of the rare earth ions can be split due to the crystalline field. This splitting, when large in • comparison to the temperature of the magnetic measurements, will influence the value of the paramagnetic Curie-temperature.
- An indirect exchange interaction of the RKKY-type due to thermally excited electrons in the conduction band.

We will now give a short discussion of these four possibilities which may cause the negative interaction in the semiconducting compositions:

ad 1. A direct exchange interaction between the rare earth ions can be neglected for two reasons.

a. The distance between the rare earth ions in these compounds is large. Rare earth compounds having comparable distances between the rare earth ions generally show smaller values for the paramagnetic Curie-temperature. For example NdCl₃ shows a paramagnetic behaviour to 2.5 K with a paramagnetic Curie-temperature of 0.00 K \pm 0.01. The Nd-Nd nearest neighbour distance is 4.231 Å. For PrCl₃ having approximately the same nearest neighbour distance the value for Θ_{p} is 0.50 K \pm 0.01 (1).

 b. Direct exchange interaction in the rare earth compounds (the cerium compounds excluded) is small due to the deep-lying 4f-electrons which are well-screened by the outer 5p- and 5selectrons.

ad 2. Super exchange optionally combined with an indirect exchange mechanism of the RKKY-type is possible for the semiconducting compounds. A theory for this type of interaction has been worked out by Gonçalves da Silva and Falicov (2). A brief summary of this theory will be given in section VI-2.

ad 3. The degenerate energy levels of the J-multiplet of the ground

state can be split due to the effects of the crystalline field. When this splitting is large relative to the temperature, the lowest energy level will be more populated. As the population of the split levels is temperature dependent, the value of the paramagnetic Curie-temperature will not be related to the exchange interaction in that case, and also the measured effective magnetic moment will be different from that predicted by the Russel-Saunders coupling model. For the compositions we measured, we have found a linear dependency of $1/\chi$ on T in the temperature range between 80 K and 1100 K, with an effective magnetic moment that approximately equals the theoretical value predicted by the Russel-Saunders coupling scheme, $\mu_{eff} = g\sqrt{J(J + 1)}$. As can be seen from the low temperature measurements (figures V-4, V-7, V-11 and V-16) the influence of the crystalline field on the magnetic properties can only be found below 15 K. So the values of the paramagnetic Curietemperature determined in the temperature range between 30 K and 1100 K are not or only slightly influenced by the effects of the crystalline field.

ad 4. The excitation of electrons from the valence band into the conduction band of a semi-conductor is strongly temperature dependent. Consequently the RKKY-type exchange interaction via thermally excited electrons will be temperature dependent and consequently there will not be a linear dependency of $1/\chi$ on T. For the compositions under our investigation however we find a linear relation between $1/\chi$ and T, so a RKKY-type interaction via thermally excited conduction electrons is not important here.

VI-2. The Gonçalves da Silva and Falicov model.

In this model a system of itinerant electronic states weakly hybridized with a set of localized electronic states is discussed. The hamiltonian used by Gonçalves da Silva and Falicov (2) consists of six different terms:

 $\mathcal{H} = E_{g} + \mathcal{H}_{b} + \mathcal{H}_{+} + \mathcal{H}_{-} + \mathcal{H}_{c} + \mathcal{H}_{hvb}$

where: E represents a constant corresponding to the ground state

energy, \mathcal{H}_{b} describes the contribution of excited electron- and holestates in the conduction band, \mathcal{H}_{+} and \mathcal{H}_{-} represent the contribution of extra electrons respectively extra holes in the ionic levels, \mathcal{H}_{c} is a correlation term which makes it impossible that two extra holes or two extra electrons are present at the same ion and \mathcal{H}_{hyb} provides a hybridization between conductionband-holes and -electrons and localized ionic states. Fourth order perturbation theory yields a coupling between the localized magnetic moments that can be described by an exchange integral. Gonçalves da Silva and Falicov calculated the exchange integral for the following three simple models.

1. Free-electron-like conduction band.

First the authors restricted themselves to a large number of conduction electrons, that is, to a metal. This case gives rise to an oscillating indirect interaction between the localized spins of the RKKY-type. In the case of a single empty free-electron-like conduction band however, that is an insulator or an intrinsic semiconductor, an antiferromagnetic exchange equivalent to Anderson's super exchange (3) is obtained. In the intermediate cases both effects compete and the resulting magnetic ordering depends on the number of conduction electrons.

- Free-electron-free-hole-like conduction bands. For this model two conduction bands with equal effective masses are considered. This model is the exact equivalent for the rare earth metals to the Fedders and Martin model (4) for antiferromagnetism in systems with itinerant electrons.
- 3. s-Like- body-centered tight binding band in a b.c.c. lattice. With this model the exchange integral is calculated as a function of the Fermi-energy and the hole-energy. For the different values of the exchange integral the most stable magnetic ordering is predicted by minimization of the classical Heisenberg-energy. A summary of the results as obtained by Gonçalves da Silva and Falicov is given in table VI-1, as a function of:

$$e_F = \frac{e_F}{W}$$
 and $e_h = \frac{E_h}{W}$

where: ε_{r} is the Fermi-energy.

e _F	0.10	0.30	0.50	0.70	0.90
0.90	- 564	- 84	- 33	- 17	- 11
	- 318 F	- 51 F	- 20 F	- 11 F	- 7 F
	- 95	- 19	- 8	- 4	- 3
0.70	- 416	- 117	- 55	- 32	- 21
	- 53 н	- 32 F	- 17 F	- 11 F	- 7 F
	126	18	6	3	2
0.60	- 236	- 102	- 53	- 33	- 22
	391 AF3	40 H	11 H	4 н	2 H
	287	53	21	11	7
0.20	1821	337	137	73	45
	665 AF1	220 AF1	110 AF2	66 AF2	44 AF2
	- 402	- 82	- 33	- 18	- 11
0.00	1645	435	20	119	76
	-7998 AF1	-1692 AF1	-694 AF1	-373 AF1	-231 AF1
	- 50	- 14	- 8	- 6	- 4
-0.30	-1860	- 306	-109	- 51	- 27
	687 н	324 Н	152 AF2	85 AF2	53 AF2
	648	75	25	11	6
-0.50	- 905	- 264	-120	- 67	- 42
	-1029 F	- 100 F	- 21 F	- 5 F	0 F
	194	59	27	15	10
-0.70	266	- 70	- 51	- 34	- 24
	- 448 AF1	- 117 F	- 48 F	- 25 F	- 15 F
	- 264	- 29	- 8	- 3	- 1
-0.90	858	95	24	8	2
	335 AF1	• 9 AF1	- 36 AF1	- 39 AF1	- 3 AF1
	27	- 15	- 7	- 4	- 3
-1.00	517	93	32	14	7
	248 AF2	31 AF1	8 AF1	3 AF1	1 AF1
	92	7	1	0	0

Table VI-1. Values for the three nearest neighbour exchange integrals as a function of e_h and e_F in units of $\frac{8N^2}{6} \left(\frac{V}{W}\right)^3 V$, and the ground state magnetic configuration. AF1, AF2 and AF3 represent three types of antiferromagnetic order, F represents ferromagnetic order and H represents helical order (after Gonçalves da Silva and Falicov (2)). E_h is the energy difference between a system comprising the ion in the (4f)ⁿ⁻¹ configuration plus one electron with the energy ε_F and the ionic ground state level. W is half the band width.

For the calculations, Gonçalves da Silva and Falicov have made the assumptions that there is no orbital degeneracy $(J = \frac{1}{2})$ and that $E_e >> E_h$. The value $e_F = -1.0$ corresponds to an intrinsic semiconductor. For that value of e_F Gonçalves da Silva and Falicov have found two types of antiferromagnetic ordering depending on the values of e_h . For $e_h \approx 0.1$ and $e_F = -1.0$, the localized level being close to the bottom of the conducting band Gonçalves da Silva and Falicov have predicted for a body centered cubic lattice the antiferromagnetic ordering of figure VI-2a due to a considerable influence of second nearest neighbour interaction. This influence becomes less when the number of conducting electrons increases and the antiferromagnetic ordering of figure VI-2b is obtained. For larger values of e_F ferromagnetism and helical magnetic order are

Fig. VI-2.Expected types of antiferromagnetic ordering for $e_F = 1.00$ and $e_h = 0.10$ (a) and for $e_F = 0.80$ and $e_h = 0.30$ (b), according to the model of Gongalves da Silva and Falicov.

predicted. For larger values of e_h the influence of second nearest neighbour interactions is less, so the type of antiferromagnetic ordering of figure VI-2b is predicted. For an increasing number of conduction electrons here also the RKKY-type of interaction begins to dominate, finally resulting in a ferromagnetic ordering.

VI-3. Discussion.

As it is not possible to explain the magnetic behaviour of the rare earth chalcogenides having the thoriumphosphide structure in terms of the RKKY-theory, we will try to give an explanation for the different behaviour of the sulphides and selenides using the model of Gonçalves da Silva and Falicov. For instance, if we assume e to be approximately 0.30 - 0.50 for the sulphides, we expect a decreasing antiferromagnetic interaction with an increasing conduction electron concentration, that is with increasing e_F. When e_F equals approximately -0.70 we expect a ferromagnetic ordering to become stable. The expected value of e for the selenides will generally be smaller than that for the sulphides of the same composition due to the larger value of the band width (W) for the selenides. When we assume e_h for instance to be approximately 0.1 for the selenides we expect a strong antiferromagnetic interaction resulting in the antiferromagnetic ordering of figure VI-2a, due to the considerable contribution of next nearest neighbour interaction. For increasing values of er the contribution of next nearest neighbours relative to the nearest neighbours is reduced and the antiferromagnetic ordering of figure VI-2b is expected. When e_F equals approximately -0.50 a ferromagnetic ordering is expected. If these assumptions are correct, this behaviour will be reflected in the variations of the paramagnetic Curie-temperature with the composition. For the sulphides we expect a negative value for the paramagnetic Curie-temperature of L_2S_3 and ML_2S_4 . With the number of conduction electrons increasing we expect the paramagnetic Curie-temperature to rise. In case of the selenides we also expect negative values for the paramagnetic Curietemperatures of L_2Se_3 and ML_2Se_4 . If our assumption of the value for e_h is correct the value of the paramagnetic Curie-temperature will become more negative with an increasing number of conduction electrons. When e_F reaches the value of -0.50 the RKKY-type interaction begins to

dominate and the paramagnetic Curie-temperature rises to positive values.

With this model of Gonçalves da Silva and Falicov it will probably be possible to explain the different magnetic behaviour of the rare earth sulphides and selenides. To give a more quantitative discussion of the magnetic behaviour of these compounds a more detailed knowledge of the band-structures of these compounds is necessary. This information is not available at present, but may probably be obtained by measuring the electrical conductivity and optical properties of these compounds.

References.

- J.C. Eisenstein, R.P. Hudson, B.W. Mangum, Phys. Rev. (1965) 137A, 1886.
- C.E.T. Gonçalves da Silva, L.M. Falicov, J. Phys. (C) (1972) 5, 63.
- 3. P.W. Anderson, Phys. Rev. (1950) 79, 350.
- 4. P.A. Fedders, P.C. Martin, Phys. Rev. (1966) 143, 245.

SAMENVATTING

Het doel van het in dit proefschrift beschreven onderzoek was een inzicht te verkrijgen in hoeverre de interactie tussen gelocaliseerde magnetische momenten via de electronen in de geleidingsband een rol kan spelen bij het magnetisch gedrag van de chalcogeniden van de zeldzame aardmetalen. In het bijzonder hebben wij hiervoor onderzoek verricht aan de zeldzame aardmetaalchalcogeniden met de thoriumfosfide structuur omdat het bij deze verbinding mogelijk is het aantal electronen in de geleidingsband onafhankelijk van de grootte van de kristallografische as te varieren.

In het eerste hoofdstuk wordt een overzicht gegeven van de diverse typen van magnetische interactie die bij metalen en metaalachtige verbindingen een rol kunnen spelen. Tevens wordt in dit hoofdstuk een aantal resultaten vermeld zoals die uit het werk van andere onderzoekers bekend zijn.

In het tweede hoofdstuk wordt de voor magnetische interactie in metalen belangrijke Ruderman en Kittel, Kasuya en Yosida-theorie bebesproken en wordt een relatie tussen de paramagnetische Curietemperatuur en het aantal geleidingselectronen afgeleid. De in deze theorie voorkomende Ruderman en Kittel-som is voor het kationen rooster van de thoriumfosfide structuur berekend.

Het derde hoofdstuk geeft een overzicht van de in de zeldzame aardmetaalchalcogenide systemen voorkomende verbindingen en kristalstructuren. Van de in deze systemen veel voorkomende thoriumfosfide structuur wordt een beschrijving gegeven. Tevens is gezocht naar een mogelijke ordening van de kationen in de verbindingen $M(II)L(III)_2X_4$ en naar een ordening van vacatures in het kationen rooster van de metaal deficiente verbindingen met de thoriumfosfide structuur. Het voorkomen van dergelijke ordeningen was niet aantoonbaar. Wel kon worden aangetoond dat dergelijke ordeningen niet te verwachten zijn behalve voor de verbindingen Eu(II)Eu(III)_2X_4.

In het vierde hoofdstuk wordt een beschrijving gegeven van de voor dit onderzoek gebouwde, volledig geautomatiseerde apparatuur voor het meten van magnetische susceptibiliteiten.

Het vijfde hoofdstuk geeft de magnetische gegevens van de door ons onderzochte verbindingen. Deze resultaten zijn niet geheel in overeenstemming met de RKKY-theorie.

In het zesde hoofdstuk wordt getracht aan de hand van de theorie voor de magnetische interactie tussen zeldzame aardmetaalionen zoals die is afgeleid door Gonçalves da Silva en Falicov de afwijkingen van het volgens de RKKY-theorie verwachte magnetisch gedrag te verklaren. Het blijkt mogelijk met bepaalde aannamen voor de breedte van de geleidingsband, de Fermi-energie en de aanslagenergie van een 4f-electron naar de geleidingsband een verklaring te geven voor het magnetisch gedrag van deze verbindingen. Op verzoek van de Faculteit der Wiskunde en Natuurwetenschappen volgt hier een kort overzicht van mijn academische studie.

Na het behalen, in 1959, van het einddiploma HBS-B aan het Rembrandtlyceum te Leiden begon ik in september van datzelfde jaar mijn studie in de scheikunde aan de Rijksuniversiteit te Leiden. Het candidaatsexamen, letter F, werd afgelegd in oktober 1963. De studie werd voortgezet onder leiding van de hoogleraren Dr. E.W. Gorter, Dr. E.C. Kooyman en Dr. W.M.H. Sachtler en de lector Dr. W.J.A. Maaskant.

Het doctoraalexamen met als hoofdvak anorganische chemie en als bijvakken organische chemie en heterogene katalyse werd afgelegd in oktober 1966.

Van april 1962 tot en met oktober 1966 vervulde ik een assistentschap bij de afdeling anorganische chemie. Van november 1966 tot en met december 1967 was ik als doctoraalassistent, vanaf januari 1968 als wetenschappelijk medewerker, en vanaf januari 1972 als wetenschappelijk medewerker I bij de afdeling anorganische chemie werkzaam, waar ik sinds augustus 1967 de taak van conservator vervul.

Na een onderzoek over de carbiden van de zeldzame-aardmetalen maakte ik in 1968 een begin met het in dit proefschrift beschreven onderzoek.

In 1973 legde ik met goed gevolg het examen voor octrooigemachtigde af.

Aan het tot stand komen van dit proefschrift is medewerking verleend door verscheidene personen die ik hiervoor gaarne wil bedanken.

In de eerste plaats gaat mijn dank uit naar Drs. C.M. Plug die in het kader van zijn doctoraalstudie zijn medewerking aan dit onderzoek heeft verleend.

Voorts dank ik Dr. L. Pauwels, medewerker van het Laboratorium voor Anorganische Chemie van de Universiteit te Leuven, die daartoe in de gelegenheid gesteld door het Belgisch Nationaal Fonds voor Wetenschappelijk Onderzoek, gedurende twee maanden aan dit onderzoek heeft meegewerkt.

De discussies met de leden van de werkgroepen Vaste Stof Chemie en Theoretische Anorganische Chemie waren voor mij zeer waardevol.

Graag wil ik ook de plezierige samenwerking met de leden van de technische en administratieve staf van de Gorlaeus Laboratoria memoreren. De tekeningen voor dit proefschrift werden verzorgd door de Heren M. Pison en J.J. Pot.

