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VOORWOORD

Bij deze bijzondere gelegenheid is het mij een behoefte, een woord
van dank te richten tot al degenen, die hebben bijgedragen tot mijn
vorming.

Het voortreffelijke onderricht van den heer H. O o r v e r  op het
Nederlandsch Lyceum te ’s-Gravenhage deed een sluimerende liefde
voor de natuurkunde bij mij ontwaken. Zijn lessen, doch ook een
voordracht van wijlen prof. dr. P. E h r e n f e s t aan deze school
en de raad van den toenmaligen rector prof. R. C a s i m i r, bepaal­
den mijn latere studierichting.

In mijn eerste studiejaren aan de universiteit te Leiden had in het
bijzonder de kinetische gastheorie mijn belangstelling, waarin mevr.
dr. G. L. d e  H a a s-L o r e n t z college gaf. Ik was nog een jaar
lang in de gelegenheid, de levendige colleges van prof. E h r e n -
f e s t te volgen, die een diepen indruk op mij maakten.

Toen prof. E h r e n f e s t  ons in 1933 zoo onverwacht ontviel,
waart gij het, mijn waarde prof. dr. H. B. G. C a s i m i r, die, toen
nog assistent, een jaar lang als „invaller” het college golfmechanica
hebt gegeven. Hiervoor, maar nog meer voor de vriendelijke welwil­
lendheid, waarmee gij mij gedurende mijn geheele studie te Leiden in
wetenschappelijke moeilijkheden hebt willen helpen, ben ik U van
harte dankbaar.

U, hooggeachte Promotor, hooggeleerde K r a m e r s ,  ben ik veel
dank verschuldigd voor de belangstelling, waarmee U mijn studie
hebt gevolgd en gestimuleerd. Veel heb ik van U geleerd: op Uw
college, uit Uw college-dictaat, uit Uw boek over golfmechanica, op
het door U ingestelde „seminarium” voor theoretische natuurkunde,
maar het meest nog tijdens mijn assistentschap bij U uit gesprekken
en uit de studie, waartoe zulke gesprekken steeds weer aanleiding
gaven.

Een woord van dank past mij aan mijn ouders, die mij in de ge­
legenheid stelden, een wetenschappelijke opleiding te genieten en te



XII

voltooien. Het is ondoenlijk, hier verder al degenen te noemen, die
aan mijn vorming en opvoeding hebben meegewerkt. Mogen echter
zij allen overtuigd zijn van mijn erkentelijkheid.

In 1938 werd ik door stipendia van de Nederlandsch-Amerikaan-
sche Fundatie en van het Lorentz-fonds in staat gesteld, den zomer­
cursus aan de University of Michigan te Ann. Arbor (Mich., U.S.A.) te
volgen. Door colleges van prof. dr. H. A. B e t h e en prof. dr. G.
B r e i t  maakte ik hier kennis met het onderwerp, dat in dit proef­
schrift wordt besproken. Prof. dr. H. A. K r a m e r s  stelde mij tot
probleem, de vergelijkingen voor het zware quantum neer te schrij­
ven in een vorm, analoog aan de z.g. „photon”-vergelijkingen uit
D e B r o g 1 i e’s. „neutrino-theorie” van het licht. De onderzoekin­
gen, die hierop volgden, leidden niet alleen tot het ontstaan van dit
proefschrift, maar ook tot het publiceeren in het tijdschrift „Physi-
ca” van een artikel over het spin-impulsmoment van golfvelden, en
tot verdere studiën, die ik in de komende tijden hoop te mogen vol­
tooien.

In het eerste hoofdstuk van dit proefschrift wordt het formalisme
behandeld van de „undor-rekening”; het derde hoofdstuk bestudeert
de algemeene theorie der zware quanta. Het tweede hoofdstuk vormt
hiertusschen de schakel. Ik ben den uitgever en de Redactie van
„Physica”, in het bijzonder prof. dr.A.D. F o k k e r ,  zeererkente-
lijk voor de door hen geschapen mogelijkheid, de eerste twee hoofd­
stukken te laten verschijnen als artikels in dit tijdschrift.

F. J. B.



UNDOR CALCULUS AND CHARGE-CONJUGATION

Z usam m enfassung
Grossen, welche sich transfo rm ieren  wie P ro d u k te  4-kom ponentiger

D i r a c  scher W ellenfunktionen, w erden „U ndoren’’ genann t. Zu jedem
U ndor k ann  durch  L inearkom bination  d er K om ponen ten  seines kom -
plex K onjug ierten  <{i* ein neuer „ ladungskon jug ierte r” U ndor gebil-
d e t w erden. W enn =  iji®, w ird die W ellenfunktion  <]i ein „ N e u tre tto r”
genann t. U ndoren  zw eiter S tufe en tsp rechen  gewisse Tensoren, N eu tre tto -
ren  zw eiter S tufe en tsprechen  reelle Tensoren. M it H ilfe eines „m etri-
schen” U ndors zw eiter S tufe w erden „ k o n tra v a ria n te” U ndoren  definiert,
welche sich k o n trag red ien t zu den gewöhnlichen („k o v a rian ten ” ) U ndp-
re n transform ieren . E nd lich  w ird der „G rad ien t-N eu tre tto r” eingefiihrt.

R esu m o
K v an to jn , kiuj transfo rm igas kiel p rodu to j de kvar-kom ponan taj

D i r  a c ’aj ondofunkcioj; n i nom as „un d o ro j” . E l ciu undoro  ^ Per
u n u ag rad a  kom binado de la  kom ponan to j de gia kom plekse kon jug ito  tjj*
nova „ la rge  k o n ju g ita” undoro  povas esti k o n stru a ta . Se tji =  ni
nom as la  ondofunkcion <|j „n eü tre tb ro ” . D uastu fa j undoroj reprezenta 's
ce r ta jn  tensoro jn , duas tu fa j neü tre to ro j rep rezen tas rea la jn  tensoro jn .
P er „m etrik a” undoro  d u as tu fa  „ k o n tra ü v a r ia n ta j” undoroj es tas  difi-
n a ta j, kiuj transfo rm igas kon traüpaêe al la o rd inaraj („ k u n v a ria n ta j” )
undoro j. F ine la  „g rad ien to -n eü tre to ro ” estas p rezen ta ta .

§ 1. Introduction. It is well known that — with respect to the
restricted L o r e n t z group, excluding spatial reflections through
the origin — tensors can be expressed in terms of spinors1) 2). As
soon as spatial reflections are taken into account, however, it is
necessary to consider -pairs of spinors transforming one into the
other by a reflection through the origin. An example of such a pair
of spinors is the wave function of the D i r a c  electron.

In the following we shall investigate the properties of quantities
transforming like products of such D i r a c  wave-functions 3). Such
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quantities we shall call undors” *). They form a generalization of
D i r a c  wave-functions in the same sense as tensors form a genera­
lization of vectors. Just as the representations of the L o r e n t z
group by the transformations of most tensors are not ausreduziert, so
the representations by most undors are likewise reducible.

In particular we shall discuss, in the following, the relation between
undors of the second rank and tensors, and the analogon in undor-
calculus to real tensors: “neutrettors” 4). Finally we shall deduce the
metrical undor and define the gradient undor. The whole set of
mathematical relations will be built up in such a form, that we shall
be able to apply it later on to the theory of mesons and neutret-
tos I  I  I  |  o).

§ 2. The D i r a c  wave-function (undor of the first rank). The D i-
r a c-equation of a positive particle (a positon or a proton according
to the value of x =  mcjh) can be written in the following form:

{in -f- (y • D) +  pD0} 4» =  0, (1)
if we put

Y =  0«, (2)

' s*-T ¥-iÉ ' <3>
Here e is the elementary charge (e >  0) and 91, 93 is the potential

four-vector of the electromagnetic field. As in (1) the interaction
with heavy quanta is neglected, this equation does not account for
the anomalous magnetic moment of the proton 10) 5) 6) u).

We shall call quantities transforming like the four-component
D i r a c  wave-function 4*, four-spinors or undors of the first rank. In
the following we shall often use a representation of them, which is
ausreduziert with respect to the group of restricted L o r e n t z
transformations, and in which the first two components of a four-
spinor transform like the two-component quantity called a covariant
conjugated spinor by V a n  d e r  W a e r d e n 1), L a p o r t e  and
U h 1 e n b e c k 2), and called a regular spinor by K r a m e r s  12),
whereas the last two components transform like the spin-conjugated f )

*) Derived from undo, =  wave.
. t)  See II. A. K r i m  er s ,  loc. cit. ia), page 263. :
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of such a quantity, called a contravariant regular spinor by V a n
d e r  W a e r d e n 1) and others 2). Explicitly:

x' =  x

y' =  y cos & +  z sin It

z' =  — y sin & -f- z cos &

t' =  t

I / I & . I • • Itt l  =  4h cos — +  Vi1 sin

. / | • • It . . ft
4*2 =  <|q t  S i n - J  +  Y2 COS

&
4/3 =  +3 cos +  44 * sin —

+4 =  4/3 1 Sm ~2 +  Y4 COS —

( 4 f l )

x' =  x cos 9 +  y sin 9 -
y  =  — x sin 9 +  y cos 9
z' = z
t' =  t

x ' =  X

y ' =  y
z' V1 —  {v/c)2 =  z — vt
t' V1 —  (vjc) 2 — t —  zvjc2

where

4b =  4»!
42 =  42^ /2
4»3 =  4*3

4*4 =  44 ^ /2

4t‘ =  4 i/t
42 =  t42

4/3 =  4̂/3

.+4. =r 44/?»

+ C +  V

C —  V

(4b)

(4c)

If we require that (1) is L o r e n t  z-invariant, we find tha t the
D i r a c  matrices are given in the representation (4) by

and

if we denote by

PzO

P =  (-4 +  B pz)px ,

(5)

(6)

Px. py, Pz and a {ox, oy, oz}
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the P a u 1 i m atrices13) operating on the discrete arguments r and
s of the f our-spinor

From p2 =

♦-M 4 2

'I's

4 » -* r 4 +4
we deduce A 2 — B2 =  1, therefore,

0 0 X 0
0 0 0 X

1/X 0 0 0
0 1/X 0 0

(7)

(8)

with X =  A +  B  =  1/(^4 — B).
Apart from a numerical factor the transform ation-m atrix of 4» for

a spatial reflection through the origin 14) must be equal to p :

4 '(— x, — y, — z, t) =  j  p 4(x, y, z, t). (9)
As a double reflection should not change the geometrical meaning

of the four-spinor, j  m ust be a square root of ±  1:

f  =  ± l .  (10)
By (4) a representation of the complete L o r e n t  z group by

transformations of 4 is not yet uniquely given. If we complete (4) by
making a definite choice for the representation of reflections, the
m atrix p will be fixed by (9), (10) apart from a square root of ±  1.
On the other hand we may choose X =  1, th a t is,

P =  p*; (11)
the representation by 4 of the L o r  e n t  z group including reflec­
tions is then given by (9), (10) together with (4), apart from the same
factor ƒ in the reflection.

In the following we shall denote the conjugate complex of a m a­
trix  by an asterisk *; by a cross f the adjoint (“H e r m i t i a n
conjugate”) of a matrix. For instance

4»i
4  = 4*2 ->  4* = 4̂*

4*3 4£
4*4 4q*

and 4f ^  14*4*4*4*1.
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Further, we put
Qt* — Q5'0, =  (12)

for instance:

We introduce the normalization- or density-matrix 8 , which is
defined apart from a real numerical factor by

ptQ. — g.p( ^tg, =  g .^  g,t =  g. (13)

Further, we shall postulate that under a linear transformation
by a non-singular matrix S to another representation:H5-9-II+--3-

*9*C/)II9̂- (14)

p' = sps-1, ~a' — S a S ~ l, (14«)
the real expression

(j<t8p^
shall be invariant, so that

8-' =  S t-i 8- S~K (146)

The definitions (13) are indeed invariant under these transformations
(14a, b).

In our particular representation (4), in which

af — a, (15)

we have on account of (13), apart from a numerical factor,

8  =

|1/X| 0 0 0
0 |1/X| 0 0
0 0 |X| 0 ’
0 0 - 0 |X|

(16)

after the choice (11) of p we have, therefore,

8 = 1 .  (17)
The density operator will remain unity so long as, starting from

the representation (4), (5), (11), (17), we admit only unitary trans­
formations, for which

5Sf =  1. (18)
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In the particular representation (5), (11) it is easily verified that,
with regard to the complete L o r e n t z group,

(19)
s a seal ar, and that

j  jc — t)/t O' a ip with p =  \J/t9t}> (20)

together form a four-vector (like r with ct), which satisfies the conti­
nuity equation

div7 +  “  0 . (21)

as a consequence of (13) and the D i r a c  equation (1):

div ( f  *cty) +  ( W )  =c ot

=  tttytpifcp -  <^9^) +  ^  <]/{(21. 7  -  »)& -  9 -5  ."a -  S8)}̂  =  0.

It is, therefore, possible to regard j and p as the probability cur­
rent-density and we shall normalize c-number solutions of (1) in
one-particle wave mechanics by

f f f d x d y d z  (<̂8-<J>) =  1. (22)

In the following we shall confine ourselves mainly to those repre­
sentations, in which (17) is fulfilled, and we shall therefore drop 9
practically throughout. As regards the representation (4), this
restriction (17) means taking A — A*, B =  — B* in (6) and |X| =  1
in (8), so that

pt =  p (17a)

becomes a H e r m i t i a n  matrix. As regards transformations by
(14) to other representations, it means restriction to unitary trans­
formations (18).
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- § 3. Charge-conjugation of four-spinors. A matrix £ is defined
apart from a complex unity factor e,c by *)

y £  =  — £ y*, (3 £ =  — £ (3*, ££*
so

a £ =  £ a*, <;£ =  —£$*,
where

Sx =  — fa ,« ! ,  cycl.,
so that in the representation (5), (6)

(23)

(23 a)

(24)

(25)S  =  o .

In this representation (5), (8) this matrix £ is equal to
0 0 0 —|X|
0 0 |XJ _ 0
0 |1/X| 0 0

—|iyx| o o o
therefore the restriction (17) makes it equal to

£ =  e,c . pyoy
in the representation (4), (5), (8).

In the following the particular representation (4), (5), (11), (17),
(27) with e,c =  1 will be called the K r a m e r s 15) representation:

(26)

(27)

Pz®, P . Px» ^  P y^y , 9* (28)

By means of the matrix £ we construct from the conjugate com­
plex (i{j*) of the four-spinor wave-function (^) of a positive particle
(1), another four-component quantity

^  =s £<},*. (29)
From (1), (3) and (23) we can easily deduce that satisfies the

equation 1S)

{** +  (Y • ~B*) .+ Pöo) =  0, (30)
that is, the wave equation for a negative particle (a negaton or a
hystaton f) according to the value óf x). For this reason <]/ is called

*) This matrix £ is identical with the matrix C* introduced by P a u l i ,  loc. cit. 14).
t )  Hystaton (antiproton) is derived from-ócrraTO^ =  last; proton from7ipooTO£ =  first.
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the charge-conjugated15) of 4 . From (30) we can conclude 14) that —
with respect to restricted L o r e n t z transformations — the charge-
conjugated of an undor of the first rank is again an undor15).

As regards reflection: from (30) we can conclude only that the
transformation of 4fi must be again of the form (9). But the repre­
sentations of the complete L o r e n t z group by the transforma­
tions of 4» and by those of 4fi might be different with respect to the
sign of ƒ. In order to examine this, we compare the charge-conjugated
four-spinor in the reflected system of co-ordinates, which is defined
by

4* =  <j/fi =  •£()/* =  /•£§*+*, (31)
with the charge-conjugated four-spinor 4£ in the original system of
co-ordinates. This last, (29), will be transformed into (31) by (9)
with perhaps a different value of j, — say /(£):

<]/*' =  /(£) (3 4 /  =  ƒ»> (3 £ 4,*. (32)
From (31), (32) and (23) we find

; < « ) — ■ _  . /* ( 3 3 )

The charge-conjugated of an undor of the first rank is therefore
itself an undor with respect to the complete L o r e n t z group
(ƒ(£) =  ƒ), if

j  =  — j* (so that ƒ =  ±  i  on account of (10)). (34)
We can also prove directly that 4Ê is an undor with the choice (34)

of ƒ, without making use of the equation (30). Let A be the linear
operator of some L o r e n t z  transformation of the undor 4- Then 4fi
transforms like an undor if

4»'£ =  A4£, (35).

£A*4* =  A£4*. (35a)

A£ =  £A*. (36)
Indeed this condition is satisfied for the restricted L o r e n t z
transformations on account of (23a). For the reflection (9) it is satis­
fied, if

ƒ P£ =£ƒ* (3*, (37)
or, on account of (23), if

J  =  —  j * .  , 'O iq iJ n ij . (34)
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This result of M a j o r a n a 4) and R a c a h 18) means that it
serves a useful purpose to define the reflection of a D i r a c  wave-
function in such a way that a double spatial reflection through the
origin inverts its sign. In the following we shall see that this same
definition enables us to describe the P r o c a field (that is, a field
consisting of a four-vector A, V and an antisymmetrical tensor of
the second rank E, H) by means of a symmetrical undor.

Since according to (34) <\>£ can now be regarded as a regular undor,
it is natural to postulate that by a transformation (14) to another
representation of undors, the undor shall be transformed in the
same way as all other undors This means that

m  <|/fi =  £' ij/* =  £' S* <},* (38a)

must be obtained from t]/ (29) by a transformation (14):

=  S£<|/* . . (386)

This holds independently of the choice of t|>, if £'S* =  S £, of '£
£' =  S £S *-1. (14c)

Under the transformation (14a, c) the definitions (23) are indeed in­
variant, that is to say, if £ is defined in one representation in accord­
ance with (23) and is then transformed to another representation
according to (14c), the relations (23) will hold again between the
transformed charge-con] ugator £' and the transformed D i r a c
matrices P', a', etc. In the same way the relation

8- £ =  £M8-* = (9-£)™, (236)

which is valid in K r a m e r s’ representation, is invariant by a
transformation (146, c) and in consequence holds in every represen­
tation of undors.

It follows from (27) that
£ =  £^ (176)

holds in the representation (4), (17); and from (14c) we deduce that
this relation (17 b) holds in all representations (17), for which the density
matrix is unity, because (176) is invariant by a unitary transforma­
tion (& =  S->, S“  =  S * -1) :

£'<~ =  5t- i £̂ >s m =  S£S*~1 =  £'
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If F  is an operator, which operates on four-spinors, we can define
a charge-transformed operator Fs by

SO

(39)

F* =  £F* £*. (40)
On the other hand, if F depends on the electric elementary charge

e, we can define the charge-inverse FL of F  by

{F(e)}L =  F ( -  e). (41)

Then we can summarize the connection between (1) or

H o p ty  =  S o p t y (la)

and (30) or

(30a)
by stating that

HLop =  -H % , eip (42)
K r a m e r s 15) has pointed out that a description of electrons by

means of t]; and H ^, and a charge-conjugated description by means of
and H^p, should be equivalent. It can be shown that the meson

theory shows a similar kind of charge-invariance.

§ 4. Neutrettors of the first rank. We shall call self-charge-conjugated
four-spinors

V  =  «I» (43)
neutrettors of the first rank *). These quantities are adequate for the
description of the neutral particles of the theory of M a j o r a n a 4).
It can easily be shown that M a j o r a n a ' s  “real” D i r a c  wave-
functions are exactly what we call neutrettors. Proceeding by a
transformation (14) with

S  =  S+-1 =  (1 +  ipyay) jV ï i  (44)

’*) The name “neutrinors” (in analogy to spinors proposed by me in a Letter to the
Editor in Nature *)), seems to be less adequate, since it suggests that neutrinos can be
described by these quantities. By neutrettors, however, only photons and neutrettos are
described.
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from the K r a m e r s  representation (28) to a M a j o r a n a
representation

%-MAJ — 1» &MAJ =  1» (45)
we deduce from (23):

$ M A J — —  & M A J i  YM A J  —  — YMAJ> a M A J — a MAJ> $ M A J ---- $ M A J -  (45fl)
This is indeed the characteristic of the representation discussed by

M aj o r a n a * ) .  Four-spinors, which are se//-charge-conjugated,
are on account of (29) and (45) real in a M a j o r a n a  representa­
tion. According to M a j o r a n a 4) neutreltors can describe neutral
particles f).

For the purpose of building up a canonical theory of M a j o r a-
n a particles the K r a m e r s  representation is very convenient.
Denoting in this representation (28) the first two components of <J* as
a K r a m e r s  spinor by

(fa)=“=(”!) (4&,)
and the last two components as the spin-conjugated v* of another
K r a m e r s  spinor v by

: I ) *  :

Z i*1
— V

we can write (29) in the following form:
. \u \£ . v I

^ = M  =
so

(466)

(47)

<{,* V r  u |
M *  j V * \

This four-spinor is a neutrettor, if

*•

u
V*

^  =
u%j that means, if u

(48)

(49)

*) The representation actually used by M a j o r a n a  is obtained from (28) not by
(44), but by taking S =  i  V*. {px( 1 — Oy) +  pz(l +  <Jy)} in (14).

t) Note added in proofs. The M a j o r a n a  theory of neutral particles and the
transformation properties of £ have also been investigated by W. H. F u r r y ,  Phys.
Rev. 54, 56, 1938.
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In other words, a neutrettor of the first rank consists of a two-spinor
and its spin-conjugated and can be written as

in a K r a m e r s  representation.
In a canonical theory of neutral particles only the two-spinor u

should be regarded as a canonical variable like <J* in D i r a c ’s
theory; u* takes a place comparable with that of ijj* in D i r a c’s
theory and u% can be expressed in terms of u*.

§ 5. Undors of the second rank. We shall call a sixteen-component
quantity

(*i. ^ 2  — 1. 2, 3, 4; 5j, rt, s2, r2 — +  i> ~~ ¥) (51)

transforming like the product =  ' I ' » , , of two four-
spinors an undor of the second rank. With respect to the undor-indices
we regard it as a matrix with one column and 16 rows. Still, we shall
write it as a square matrix with 4 x 4  elements:

etc. are assumed to operate on the argument kn of 'F*1*1. Taking
these operators as unity matrices with respect to the index, on which
they do not operate, we can regard them as matrices with 16 rows
and 16 colums.

With respect to the restricted L o r e n t z group an undor of the
second rank represents one regular spinor, one conjugate complex
spinor and two mixed spinors of the second rank; it represents,
therefore2) 12), two four-vectors K, K° and L, L° (transforming like
r, ct), two scalars F0 and G0, one regular complex three-vector (the
Kennzahlen of an antisymmetrical self-dual tensor2))

^  =
M* (50)

\T/* \T/» \T/» XTJ*
T  11 T  12 T  13 T  14
\T/» \p» VD* \p*
X 21 t 22 t 23 r 24

\T/* XL/* \I/*  \T/*
1 31 ■‘■32 33 * 3 4

Ui* W  w  w
* 4 1  * 4 2  *  43 * 4 4

(52)

Matrices hke pW, pW, p<">, c (B), p(M>, y(m). a(M). ?(n), 9,(M), £<M), S (n\

F  =  H i—  iE (53 a)
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and one conjugate complex three-vector

G =  H2 +  iE2, (536)

where E u H x and E2, H2 form two antisymmetrical tensors of the
second rank. Generally all these quantities are complex. In the
K r a m e r s  representation (28) we can write :

\p* UP \T/* \T/»
x 11 x  12 x  13 x  14 F x - i F y  F 0~ F Z K x—i K y - K ° - K ,
W  \L* \P W
t 21 x 22 x 23 x 24 _ 1

—F 0—F z —F x—iF y K ° ~ K Z - K x- i K y
VL/* IIP X U * \IP
X 31 x 32 x 33 x  34 F x iL y L° L x — Gx-\-iGy G0 - f -  G,
IF IT \P ÏÏI1
X 41 x 42 x  43 x  44 L x L x iL y — G0 -f- Gz Gx - ) -  iGy

• (54)

In an arbitrary representation of undors obtainable from (28) by a
transformation (14) we should replace the left hand member 'F of
(54) by

5 ( u - i  5<2)-i (55)

By spatial reflection through the origin the undor Y will transform
according to (9) by

'F' =  /2p<»p(2)T- (56)

In the representation (28) used by us we have p(I)(3(2> =
so that this transformation (56) can be written, on account of (54),
as

K' =  f L ,  K0' =  — j2!?; F' =  - ? G ,  Fq =  j2G0,
(57)

L' =  ? K , L0' =  -  f K ° ,  G' =  -  j*F, G'0 =  f F 0.

Putting

K  =  (A +  K ° = ( \  +  W)jfi,

L =  (A -  B jiff, L° =  (V — W)*/ƒ,
-  -> -v -  (58)
F  =  (H — iR)jji, F0= ( — S -

G =  (H +  G0 =  (S -  iY)ijj,

the new quantities A, V; B, W; E, H; S and Y are still tensors with
respect to restricted L o r e n t z  transformations (two four-vectors,
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an anti-symmetrical tensor and two scalars), whereas we can now
write (57) in the following form:

A' =  -  A, V' =  + V ;

B =  4- B, W' =  -  W;

E' =  -  E, H' =  +  H;

Y' =  - Y ;  S' =  +  S.
(59)

With respect to the complete L o r e n t z group including reflec­
tions, an undor of the second rank consists therefore of a regular
scalar S ; a regular four-vector A, V ; an antisymmetrical tensor of

y  —^
the second rank E, H (which can be regarded as a pseudo-tensor of the
second rank H, E ); a pseudo-iour-vector (that is, an antisymmetrical

—̂
tensor of the third rank) B, W, and a pseudo-scalar (anti-symmetric­
al tensor of the fourth rank) Y.

It is often assumed 6) that the meson field can be regarded as a
P r o c a field 17), that is, a field consisting of a four-vector A, V and
a six-vector E, H only (case (b) of K e m m e r 6)). Such a field can
be described by an undor of the second rank satisfying the relations

YD* __  YLP YD* __  YD* .T 12 -  T 21, Y *  _  T 43,

'Fi3 =  - r nF31, Y 14= - ?'2T 41, 'F23= - / 2'F32, 'F24= - t2Y 42.

The most symmetrical method to achieve this and at the same
time the one and only possibility to achieve (60) in a way which is
independent of the representation of undors, that is, invariant under
the transformation

Y' = S(1>S(2ir , (55a)

is to postulate that the undor describing the P r o c a field must be
symmetrical with respect to its two indices, and at the same time
that for undors j2 in (9), (10) must be equal to minus unity:

..............  (61)
j2 =  — 1. (61a)

Indeed, in general a symmetrical undor of the second rank repre­
sents :

(b). a regular 4-vector A, V and a 6-vector E, H, if j2 =  — 1;

• (c) . a pseudo-4-vector B, W and a 6-vector E, H , if j2 =  4- 1
(62)
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whereas an antisymmetrical undor of the second rank represents:

(d). a pseudo-4-vector B, W, ascalar S and a pseudo-scalar Y,
if f  =  _  i ;

(62a)
(a). a regular 4-vector A, V, a scalar S and a pseudo-scalar Y,

i i f . =  +  1.
Here (a), (b), (c), (d) refer to the tensors composing the field in
the four cases considered by K e m m e r 6).

Now we define the charge-conjugated of an undor of the second
rank by

n * .  =  £(1)£(2)(^ m ,)* (63)
and its charge-adjoint by

^  =  (63a)
Then

=  (<tf<MS (636)
is a seZ/-charge-adjoint undor of the second rank. Now we can express
the tensors represented by Y 8 in terms of those represented accord­
ing to (54), (58) by Y. In this way we find from (28), (54) and (58):

A8 =  A*, V8 =  V*; E8 =  E* H8 =  H* •
-  ’ ' ’ (64)

B8 =  B*, W8 =  W*; Y8 =  Y*; S8 =  S*

We observe that by the choice of constants made in (58) we have
achieved that the tensors represented according to (54), (58) by the
charge adjoint Y 8 of an undor of the second rank Y, are the conju­
gate complex of the tensors represented by the undor Y  itself *).

If now a neutrettor of the second rank is defined as a self-charge-
adjoint undor of the second rank, it represents by (54) and (58)
according to (64) a set of real tensors. Such neutrettors are therefore
adequate for the description of the M a x w e l l i a n  field 2) and of
K e m m e r’s neutretto field 7). A specimen of a neutrettor of the
second rank is given by (J/, (636).

*) The constants in the definition by (54), (58) of the tensors S ; ïT, V; H ; b | w
and Y in term s of the components of the undor T  are uniquely determined by the/cbndi-
tm ns (59) and (64) apart from arb itrary  real numerical factors to these tensors, which are
al!\chosen equal to unity  in (58)..
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Taking
j  =  i  (34 a)

in the  following, in accordance with (34) and (61a), all factors j/i  and
»'/ƒ vanish from (58).

§ 6. Covariant undor calculus. The fact th a t the linear combina­
tions (29) (and, apart from linear combinations differing from (29) by
a numerical factor, only these) of the components of a conjugate
complex undor form again the components of a regular undor .<{**,
enables us to define a metrical undor éik> th a t is, an undor of the
second rank, which connects contravariant and covariant undors with
each other.

Since, on account of (19), (23) and (13), the expression

= ^tpt^ = s (ptö')<*+* = 2 (9-Mpt5's)W!<|4<K =
k,k k,k

=  s  ( * * p* ) * f y l s  (65)
i,k

is a scalar, we can regard

Xh =  E(9-*P*)*HÊ (66)
k

as a regular contravariant undor. We shall connect with this y an
ordinary covariant undor yj by

yj =  S  g» y” =  S  éik ■ (67)
k k,k

Since Xi shall be a regular undor and its components are linear
combinations of those of » the undor yj m ust be equal to (<J/8);
apart from some numerical factor, for which we shall choose
u n ity :

y  =  <{A (68)

As this result should be independent of 4», we hnd

2  éik (&*P*)kh =  £ |\  or g8>*(3* =  £. (69)

We conclude:
g =  £p*9-*“'. (70)
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In K r a m e r s ’ representation (Q'P =  px, £ =  pyay) the
metrical undor g,* takes the following form:

that is,

ê =  — «PzOy =

0 - 1  0  0 .

1 0 0 0
0 0 0 1 ’

0 0 — 1 0

(71)

+ 1 =  — +2» +2 =  <|*‘» <1*3 =  +4 =  — 'l'3- (71a)
We observe that in this representation the metrical undor is anti-

symmetrical just as the metrical spinor is in spinor calculus and unlike
the metrical tensor in tensor calculus (which is symmetrical):

é°° =  - ê  (gki =  -  gn). (72)
This property of the metrical undor is invariant under transforma­
tions (14) to other representations. This follows from (70), (14a, b, c):
g;,*, =  =  sgs™ =  s 5,,'g„s*,*. (14a\

l,k
A consequence of this antisymmetry of g is

X*4»a =  —  X*<^- (73)
Conjugate complex contravariant and covariant undors are con­

nected by the conjugate complex metrical undor

g h =  (g«)* =  S ^ ‘(P » -1)** (74)
k

This undor is in K r a m e r s’ representation given by
0 —1 0 0

lh
0 0 0
o o i
0 - 1 0

and transforms to another representation by
g*' =  S*g*S*.

The contravariant metrical undor gim is determined by

sg«g*m = srk
or

gSm s  g—1. =  g*—l

(74a)

(\4e)

(75)

(75a)
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In K r a m e r s ’ representation we find from (71) and (74a)
0  1 0  0 0  1 0  0

—  1 0  0  0 £ * kn t  ____
- 1 0  0  0

0  0  0  — 1 0  0  0  - 1
0  0  1 0 0  0  1 0

(76)

Transformation to another representation changes the contravariant
metrical undors g*m and g**m according to (14d, e) and (75a).

Co- and contravariant undors are now connected by

'* <!»? =  ?  è h  V*.
(77)

to =  s  im V-k

\km to». J,** == E g**’" <{£ .

Here the summation must always be carried out with respect to
the last index of the metrical undor.

From (65), (68), (73) it follows that
<]A & P <j> =  2  tp* =  — S 41 '}'*• (19a)k k

In the same way we derive

<)/*& 0<|i =  S $  W  ■ ■ (196)
For the current-density four-vector (20) we can derive similar

expressions, for instance *)
->
//c =  S ^ y*, 4'i. P =  2 ^  (V to (20a)

Inserting (46a, b) into (71a) we find in K r a m e r s’ representa­
tion

'i'1 =  1*2, u j , ij;3 —  v*2 . V
therefore, following V a n  d e r  W a e r d e n ’s notation
putting v* =  w :

«i
M2

Wi
w2

M®

V*

(78)

and

(78a)

*) Compare P. A. M. D i r a c ,  loc. c i t . ls), and W. G o r d o n ,  ]oc. cit. '»).
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The difference between our undor calculus and V a n  d e r
W a e r d e n’s spinor calculus is, that we have taken care from the
beginning that the transformations of “contravariant” undors should
indeed be contragredient to those of "covariant” undors by all trans­
formations of the complete L o r e n t z group including spatial
reflections.

We might have derived (14e) and (76) in a simpler way. Making
use of our knowledge of V a n  d e r  W a e r d e n ’s metrical spinor,
we conclude that the contravariant metrical undor g*m must have
the form

0 a 0 0
—a 0 0 0

0 0 0 —b
0 O b  0

(76 a)

in K r a m e r s ’ representation, in which the first two components
of a four-spinor behave like the components of a conjugate complex
covariant V a n  d e r  W a e r d e n  two-spinor and the last two
components like a regular contravariant V a n  d e r  W a e r d e n
spinor. The ratio (a/b) is now determined by the condition that, if 9
and are two arbitrary regular covariant undors, the expression

=  (79)

shall be a scalar with respect to the spatial reflection (9), (10) (as
well as it was, on account of (76a), a scalar by restricted L o r e n t z
transformations). In K r a m e r s ’ representation we find from
(76a), (9) and 0 =  px (28):

«(<?! (Jt2 — 92 dix) — 6(93 ^  — 94 ^3) =

=  i>2 —  ? 2  —  % 3  <K —  ? 4  + 3)  —

=  a  f ( 9 3  ^ 4  —  9 4  + 3)  —  b  72(?1  +2  —  9 2  + l ) ,

therefore,

afb =  — j2 =  — 1/y2.- (76 b)

Choosing ƒ according to (34) we find a = b and (76a) becomes
identical to (76) for K r a m e r s’ representation (28),

If, now, we postulate that the scalar (79) shall be an invariant under
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transformation (14) to another representation, we find
(g -1)' =  S'*0-1 g - 1 S ~ \  (14f)

in accordance with (1 Ad).
A still shorter way of deriving (71) is by making use of (54) and

(58). Since the metrical undor is supposed not to change its form by
L o r e n t z transformations and spatial reflections, it must repre­
sent a scalar. Therefore it must have, according to (54), (58), the
following form in K r a m e r s’ representation:

0 - S  0 0
5 0 0 0

0 0 —S 0
Taking 5 =  2 we find (71).

We remark that g is a neutrettor of the second rank on account of
the special definition (63a) given for the charge-adjoint of an undor
of the second rank.

In the literature use is often made of an abbreviated notation for
the contra variant charge-conjugated of a regular undor or :

=  (1;+ ,

vp£Mi =  vpt Q,(l)cp2) 0(1)ft(2) =  \p+

Further, we shall denote by and y^ (\l =  0, 1, 2, 3) the matrices

(a!, a2, a3) =  {a1, a2, a3} =  a, a0 =  — a0 =  1,
( 2 « )

{Yi. Ï2 ,  Ys} =  {y1. Y2. Y3} =  Y =  P Y °  =  — Yo =  P-

The probability density and current of a D i r a c  electron are
then given by

Ó1. f )  — ilc* f  — — jo =  p; f .  =  4»+ y'*^- (20b)
The relations (13), (23) and (23a) can now be written as

0 + 9 -  =  9 - S ,  « » * « •  —  f r o Y
(81)y*£= —£y *̂, a P £ = s £ a . >**.

In undor calculus the gradient four-vector V 1 is, according to (54),
(58), (60), (64), represented by a symmetrical neutrettor. In K r a-
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m e r s’ representation this gradient neutrettor has the following
form:

11
c dt

0  0

0  0

T 7  1 3
- * V '  ~ c F , ~ v -

V* —  i W y

- A 1 - V
c d t  V*

0

1 3
c  d t  V‘

— V * —  i V y

0

i - v ,  -  V , -  tV , 0 0

■ V» (82)

The D i r a c  equation of a free electron can now be written in
covariant undor-notation:

{** +  =  0 — > txij/* +  V„<  ̂=  0. (lb)
I am much indebted to Prof. K r a me r s  for many discussions

on the questions treated in the present paper.
Received Ju ly  14th, 1939.
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T H E  U N D O R  EQUATION OF T H E  MESON FIELD

Z u sam m en fassu n g
D ie M eson-Gleichung von  P r o c a ,  K e m m - e r  u n d  B h a b h a

w ird m ittels U ndoren  zw eiter S tufe dargestellt. E ine V erallgem einerung
d er G leichung f iih rt zu einer neuen  M eson-Gleichung, welche im  w esent-
lichen aus einer K om bination  der Falie (b) u n d  (d) von  K  e m  m e r  be-
s te h t. Die N eutrecto-G leichung w ird in  ahnlicher W eise erw eitert. —  D as
m agnetische M om ent der M esonen w ird abgele ite t.

D ie ladungskon jug ierten  W ellenfunktionen  genügen einer Gleichung, in
w elcher d ie  V orzeichen aller L adungen  um gekeh rt sind. W enn m an postu-
lie rt, dass sich bei B eschreibung des physikalischen  Geschehens m ittels
der ladungskon jug ierten  Grossen fü r alle physikalisch  sinnvollen Grossen
dieselben W erte ergeben sollen, la sst sich folgern, dass Teilchen m it ganz-
zahligem  Spin der E  i n  s t  e i n -B  o s e-S ta tistik , u n d  Teilchen m it
halbzahligem  Spin dem  A usschliessungsprinzip genügen müssen.

R esum o.
L a m ezona ekvacio de P r o c a ,  K e m m e r  kaj  B h a b h a  estas

p r e z e n ta ta 'p e r  odupstnfaj undoro j. P ligeneraligado de la  ekvacio donas
novan  m ezonan ekvacion, k iu  cefe konsistas el kom binajo  de la  kazoj (6)
kaj (d) de K  e m  m  e r. L a n e ü tre ta  ekvacio  estas p liv astig a ta  en la  sam a
niéniefö. Ëa^m agneth m om anto  de la m ezonoj estas kalku la ta .

L a êarge kon jug ita j ondofunkcioj kon ten tigas ekvacion, en kiu la
an taüsigno j de ciuj sargoj estas inversaj. Se oni postu las ke ce p riskribo  de
la fizikaj okazajoj per la  sarge kon jug ita j grandoj por ciuj observebloj
devas rezu lti la  sam aj valoroj, oni povas konk lud i ke korpuskloj kun
en tje ra  spino devas obei la  s ta tis tik o n  de E i n s t e i n  kaj  B o s e ,  kaj
ke korpuskloj k u n  en tje rp lu sduona  spino devas obei la  s ta tis tik o n  de
Fie t ’m  P  kaj D i.r a  c,

§ 1. The P r o c a-K e m m e r  meson equation in undor notation.
The usual meson equations of K e m m  e r 1), B h a b h a 2) and
Y u k a w a 3) can be" written in thé following form:

x(£̂ v — h u!iv) — ?v] ̂  Dv ,
x(cpv +  gb vv) -  D* t/uZ (f> v =  0, 1, 2, 3)-

( 1 )
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Here x can be expressed in terms of the mass m of the meson by
x =  tttc/h] is an antisymmetrical tensor and vv is a four-vector
given by *):

V  =  (*/2) - 'K Yi/x y V] ; v , —  ^  Yp
(<]>+ =  <̂ (3; y* =  pa “) ; (p, v =  0, 1, 2, 3).

By 4*iv and we denote the wave-functions of the fields of neu­
trons and protons, so that after superquantization the expressions
(2) represent operators which possess non-vanishing matrix elements
for transitions of a proton into a neutron. The operators Z)„ in (1)
are defined by [U.C. (3)]:

A -  V* :+ W V "  -  ®o =  -  (3)

We shall now write the P r o c a-K e m m e r  equations (1) in
vector notation. For this purpose we put

=  £°a =  E»; Zbc =  — KCb =  Ha; <pa =  Aa; — <p0 =  <p° =  V ; (4)
{a, b,c being a cyclic permutation of 1, 2, 3).

Further, we put

uoa =  ua0 =  ea, — uhc — ucb =  ha; va =  aa, v° — v, (5)
so that

“ >■ —>  — >■ —

e =  — 4»Tzp<x4>, h =  — a =  v =  (6)

Then, the equations (1) read f)

X(E +  ft «) =  — VV — (djcdt) A — (efiftc) (9TV — 93 A),

x(H +  /»h) =  rot A +  {eji%c) [If, A], . “

x.(4 +  ëb a) =  -  rot H + ; {djcdt) E -  {e\ihc) ([SI, H] +  ®E),

gj v) =  — div E — \e\itic) (SI. E).

In order to write these equations in . undor notation we can make
use of the K r a m e r s  representation of undors [U.C. (28)], in

*) F<?r  thë notation used in the present paper we must refer to the preceding paper of
the author on uridor calculus 4). Réfereiicésto formulae from that paper will be indicated
by [U.C.]. In (2), (6) and (12) we have pu t 9- =  1 [U.C. (17)].

t) rot =  curl.
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which the D i r a c  matrices a, p occurring in (6) are given by

Ox —

0 1 0 0
1 0  0 0
0 0 0 —I

, Oty

0 —  i 0 0
1 0 0 0
0 0 0 i ,  «Z =

1 0 0 0
0 —1 0 0
0 0 - 1 0

0 0 - 1  0 O o \} o 0 0 0 1

0 0 1 0
0 0 0 1
1 0 0 0 ’

0 1 0  0

(8)

and the charge-conjugated of a D i r a c
given by

£  =

0 0 0 — 1
0 0 1 0
0 1 0  0
1 0  0 0

wave-function is

(9)

In this representation the components of the tensors represented
by an undor of the second rank are related to the components of this
undor by [U.C. (54), (58), (34a)]:

2Ym . =

F, -  iFy F0 - F ,  Kx — iKy
— F0 — F s — Fx — iF y K° — K,

Lx — iLy IP — Lz — Gx +  iGy
— LP — L, — Lx — iLy — G0 +  G,

— K° — K ,
— K x — iK y

Go +  Gx
Gx +  iGy ; ( i o )

K  =  A +  B, K° =  V +  W, F  =  H — ÏE, F 0 =  - S - » X

L  =  A — B, L° =  V — W, ~G =  H  +  ÏE, G0 =  S — *Y.

Here S is a scalar, A, V a four-vector, E, H a six-vector, B, W a
pseudo-four-vector and Y a pseudo-scalar. In particular the undor of
the second rank

represents, according to (10), the following tensors

=  cpf oi>, v =  <pf ^; e =  — <pf ip a <]>, h =  —cpt pc^;  ^

b =  — q>+ <t w =  — 9fYs+; y =  <Pt *Y5P^; s =  9t P^.



TH E UNDOR EQUATION OF THE MESON FIE L D 25

Here we have put

a* =  — tay«z. cycl.; Ys =  -  ia ^ O y O ^ . (13)

From (10) we see that the P r o c a field A, V ; E, H can be repre­
sented by a symmetrical undor

sytn
+  V  *  i  T {Mt}. (14)

Writing out the meson equations (7) with the help of (10)— (12) in
terms of the undor components of vFAi4i and of

sytn

X Kkt =  ^  +  44*. 4 ^  s  4'$*, 4 ^ } , (14a)
and collecting the ten equations into one undor equation, we find,
on account of (8) and (13):

sytn sytn
+  fop K k) +  (P(I) (eta).D +  D0) -f-

—>■ sytn
+  (3®(«(2).F> +  F»0)}TMi =  0, (15)

where

fop — è {(/* +  gi) +  (/»— gb) Ys’Ys2’} (16)
is a scalar operator which, operating on an undor of the second rank
(10), multiplies in this undor E, H, Y and S by fb and A, V and W
by 8b- By an index in brackets we have here distinguished D i r a c
matrices operating on each of the indices k x and k2 of the undor.

We remark that (15) and (16) are invariant by transformation to
another representation of undors 4).

Putting

0 0
0 0

Dx iDy D0— Dx
D0- D t — Dx—iD„

\ —iDy D0~ D X

o 1 b —Dx—iD.
0 0

0 0

(17)

we can write (15) at once in covariant undor notation 4) (compare
[U.C. (82), ■(16)]):

2ixS„, + A . + du, ¥,;■ _ o, (is,
where /a,*/1*’ are the matrix elements of the scalar interaction oper­
a to r/^  (16).
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This interaction operator would take a particularly simple form, if
the constants f b and g b should happen to be equal:

/» =  & ( ? )  ( 1 9 )

A preliminary interpretation*) 5) of the binding energy of the
deuteron in the (triplet) ground state and the attraction potential in
the singlet state, on which experimental data are available, seemed
to indicate that | f bj g b \ did not differ much from unity indeed, but
later investigations 6), which accounted for the charge-independence
of the nuclear forces between heavy particles 7), gave a different
result. The simplification (19) seems, therefore, not to be allowed
for the moment and we shall not make use of it in the following.

§ 2. The generalized meson equation and the neutretto equation. In
the preceding section we have discussed the equation for the P r o-
c a - K e m m e r  meson field (case (b) of K e m m e r 1)). This field

sym
was described by a symmetrical undor and it interacted with

' sym
the symmetrical part A*t*a of the undor X ktka =  2'\i%k̂ P̂  . It is
plausible now to consider the generalization of the equations (15)

sym sym
and (18) by replacing these symmetrical undors and X kA by
the unsymmetrized undors vFAi*i and X kikt. The operator f„p can then
be replaced by a more complicated scalar operator which, operating
on an undor of the second rank (10), multiplies S by /„; A, V by gb;
E, H by f b, B, W by g d , and Y by f d . The generalized meson equation

2fx{YMi +  U  ( 2 ^ PJ }  +  {(y(1) + Y Ï2) • D) +
+  (p<‘> +  p(2))Z)0} Y Mi =  0 (20)

can then be written, according to (8) —(13), in vector notation:

x ( S + / , s )  = 0 ;  _ (21o)

x(A +  gb a) =  D0 E -  [D, H],

x(E + f b e) =  -  D0 A - D Y , x(H +  / b h j  = [D, A]; •

x(W +  gd w) =  -  D0 Y, ' x ( B + g db) = D Y ; . ?  '
 ̂ ... : • - ;i:, (2ld)

x(Y +  f d  y) =  D0 W +  (D . B).
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Apjirt from the first equation (21 o), which defines the field compo­
nent S in terms of the components of the field of heavy D i r a c
particles, these equations represent exactly the cases (b) and (d) of
K e m m e r, that is, the meson field suggested by M 0 11 e r and
R o s e n f e l d 8). The P r o c a field (b) describes mesons with a
spin angular momentum %, whereas the “pseudo-scalar field” (d)
describes spinless mesons 9).

According to K e m m e r «) the neutretto equation is obtained
from the meson equation by changing i|>* into £(4£ ^  — <J>* 4^)
and Dp into Vp ; and by postulating that the tensors representing the-
neutretto field <hMi shall be real. Thus (20) changes into

2fx{0 *iSi +  fop ( # Ai 4̂  -  < |^  4̂ ) }  +  (y«> +  Y®) W =  0 (22)

with the additional condition (see [U.C. (64)]) that

=  £(1) -  a?,*. (23)
is a neutrettor of the second rank.

The compatibility of the condition (23) with the equation (22)
must be shown. For this purpose we multiply the conjugate complex
of (22) by — £(1) £(2) and find, on account of — £<"> y^* =  y(b) £<n)
[U.C (81)] and £<» £<2> (0>Mi)* =  [U.C. (63a)]:

2fx{O t1 +  £(I)£(2) /&(<$*>*, -  v« d&; =  0,
'"'-ï v.u J  2 Ï Ï  O eC ■.

or, interchanging kj and :

2ix{OfiA| + 1%, ( 4 ^  -  # Ai 4^)»} +  (y«> +  y f )  :F < (C ;= 0 , (24)

where we have put (compafe U.C. (40)):

ftp =  £(» £<2> /* £<2>* £<»*, -r  ,  (25)
so that

( f o p ^ t)£ ^  f tp^ u , .  (2d)

Now on)v multiplies thpc tensors represented by by the
constant factors /,, fb, and ft, whereas, according to [U.C. (63).,
(63a), (64)], charge-conjugation of an undor of the second rank chan­
ges the tensors S; A, V; E, H; B, W and Y, represented by it accord­
ing to (10), into — S*; A*, V*; E*, il* ; — B*, — W* and — Y*.
We conclude therefore from (26) that ftp  is the scalar operator multi-
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plying the tensors by the conjugate complex of the factors ƒ„, gb, fb,
gd, fd. Now, assuming th a t these constants are real

to =  f t ,  gb =  gb, h  =  f*. gd =  g*, fd =  f t ,  (27)
we find

fop =  fop- (27 a)
If we make use of the fact th a t ij/f, <]**, is a neutrettor of the

second rank [U.C. (636)], the equation (24) turns into

2 +  u  ( # Ai | ^  -  -|l* , +  W  +  ri2>) ^  =  0. (28)

This equation for 3)^*, is identical with the original equation (22)
for <!>*,*,, so th a t the condition ®*,*, =  O*,*, (23) is indeed compatible
with (22), if the interaction constants (27) are real *).

§ 3. The charge-conjugated meson equation. K r a m e r s 10) has
shown th a t if <]; is a solution of the D i r a c  equation for positive
particles, then i]/£ is a solution of the equation for negative particles,
th a t is, of the equation following from the D i r a c  equation by
changing e into (— e). In the present section we shall show th a t the
meson and the neutretto  equations possess similar properties and
that, if Y  is a solution of the equation (20) for positive mesons
(“theticons” f)), then Y fi [U.C. (63)] is a solution of the equation for
negative mesons ("arneticons” f))-

For this purpose we proceed in a similar way as in the preceding
section; only this time we shall not interchange the indices k x and k2.
In this way we derive from equation (20):

2*x(n*. +  2fop (<#*, K ,)} +  + ^ 2)) =  °> <29)
where we have made use of

£(I) £(2> (cpf, |*J* =  £(2) I t  • £(1) <  =  If , ?*, • (3°)
Comparing (29) with (20) we observe th a t Yf,*, satisfies an “ame-

ticonic” equation (29) differing from the “theticonic” equation (20)
for Y*,*, by the inversion of the sign of e (as D is replaced' by D*)
hnd by the change of

fop (Ifr*, I p*,) in*0 fp  ( Ip*, I n*,)- (31)
*) If neutrettors of the second rank were defined by d> =  instead of by O =  it

would have been necessary to take gb and fb real, but fo, gd and fd purely imaginary.
t) These names are derived from &eTixo; =  positive and dtpvqnxo; =  negative.
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The electromagnetic potentials, being real, are not changed.
We must now remember that the interaction of mesons with heavy

particles, as described by the equations, should consist in the possi­
bility of the absorption of an arneticon or the emission of a theticon
by a proton which changes into a neutron, and vice versa. That is to
say, the wave-functions in the equations (20) and (29) should be
superquantized *).

If the wave-functions of anti-protons and neutrons (<J$ and i] )̂
are assumed to be anticommutative with each other (an assumption
which simplifies the discussion of the canonical theory of quantized
wave-fields and which enables us to introduce the formalism of the
isotopic spin in a natural way), we can express (31) by stating that,
in order to change the equation for Y into that for Y£, not only
should Y be replaced by Y£ and the electric charge e by

eL =  — e*. (32)
but at the same time the “mesic" charges /„, gb, etc. should be
replaced by

f o =  — f o ,  gb = ~  g*. f t  =  — f t , etc., (32a)
and by tjiy and by . There is no need to change the poten­
tials of the M a x w e l l i a n  field occurring in the meson equation
(20). This field can be described by a symmetrical neutrettor of the
second rank, so that it is equal not only to its own charge-adjoint,
but also to its charge-conjugated.

In the same way the neutretto equation for is changed into
the equivalent equation for <I>fi*t. This is seen at once by interchang­
ing in (28) again and k2 and by making use of the anticommu­
tativity of with and of with Formally the infinities of
the 8-functions from the commutation rules of protons and of neu­
trons cancel each other.

§ 4. The charge current-density and the magnetic moment of mesons.
P r o c a u) and B h a b h a 2) have derived the electric charge
density and current of mesons with a spin % from a L a g r a n g i a n ,
which was chosen in such a way that the P r o c a  equations
and the equations for the M a x w e l l i a n  field could both be
deduced from it.

;*> The tluestion of the possibility of quantization of the fields in such a way that the
relativistic invariance of the theory is maintained, is not discussed in the present paper.
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In a similar way one can proceed for the generalized meson field9).
If the field is normalized according to K e m m e r x) in such a way
that A*, — E*, Y* and — W* are the canonical conjugates of E, A,
W and Y respectively, the expressions for the electric charge density
and current take the following from »)12) :

ep =  (e/iii) {(A* . E) — (E* . A) +  Y* W -  W* Y} =  e'Ftpof'F,

T\lc =  (e[ih) {[A*,H] +  [H*. A] +  (33)

i V* E — E* V +  Y* B — B* Y} =  (e/c) . T* jop Y.

Here pop and j j c  are determined by *)
R (l)  0(2)

„ _  Qt  =  AO) A (2) J?---- ~  p  -PoP — PoP — V 2%

jof/c =  itplc 0,0) 0.(2) p(» a (2> +  P(2) a (1>

or, in tensor notation,

7 & = 7 #  =  & (1)& (2)P (1) P (2)
yd))* y(2)f*

2 ft

(34)

(34a)

These expressions are invariant by a transformation [U.C. (14),
(14a, 6)] from the K r a m e r s  representation to any other repre­
sentation of undors. The matrices pofi and j^ fc  take the place here
of the matrices & and Q’ot (that is, ftPy^) the case the D i r a c
electron. In analogy to [U.C. (206)] it is convenient to write here
(see [U.C. (80)])

(33a)

The main difference between the density matrices of electron and
meson is that pop, being a singular matrix, cannot be made unity by
transformation to any representation. A consequence of this singula­
rity of pop is that the meson equation (20) contains so called identities
between the field components (differential equations not containing

.)  Compare L. d e  B ro g l ie ,  loc. cit. “ ). page 22. The factor (1/2») is a consequence
of K e m m e r ’s ' )  way of normalizing the meson wave-function and of our choice of the
constants in (10). For instance, if the factor 2 in (1C) is removed, the factor (1/2») changes
into (1/8») M).
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derivatives with respect to the time), viz. the equations in the right
hand column of (21).

We can split up (20) into the proper equations of motion and the
so-called identities by operating on it by (.1 ±  p(1>|3<2>)/2. Abbrevia­
ting again by XMi =  2 ^ ^  and splitting up YMi and XMi
according to

^Mi — *̂ 1*, +  Y*7̂ ,
Y7 =  |  (i +  pd)p(2)) if, =  J(i -  pa»p(2)) y  (35)

we find the proper equations of motion of Y7:

2« ( V 1 +  fop X 1) -h (y(I) +  Y 2)• £>) Y77 +  (p«) +  p<2)) D qT 1 =  0, (36)
and the so-called identities:

2*x (Y77 +  fop X 11) +  (Y(I) +  ? 2) • D) Y7 =  0. (37)

Comparing (36), (37) with (21) we observe without further calcula­
tion that Y7 represents the field components E, A, W and Y, and
Y77 the field components S, Y, H and B. Only of Y7 the components
can be regarded as canonical variables, whereas the components of Y77
must be regarded as derived variables, defined by the equations (37)
(like ip =  rot 91 in quantum-electrodynamics).

If for the present the interaction of mesons with heavy particles
is neglected, the meson equation (20) takes the form

(2«  +  r„  D») Y =  0, ■ (r„ =  yO) +  y(2)). (38)

Putting Ya> Y® =  rjp) and operating on (38) by (I/2*x). THZ)A
we find ■

PH-) £>A Y +  (1 /2txj r<-) r„ Dx D» Y =  0. (39)
From

y|a Y'”’ -  Ya*> y£! +  y'm) Ya° =  -  2gv  (40)
we find

r fcr’ r M> =  °> (4i)
so that from (39) follows

rt-> d * y  =  (»/8x). (r<-) r, -  r<-> rA) (d x d * ~  d » d ') y . (42)
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From the definition (3) of D** follows
£>/* _  jyv- d * = D[X =  (e/ihc) . V[A 21rt =  (e/ihc) (43)

where denotes the M a x w e l l i a n  field. The equation (42) can
therefore be written in the following form:

rj-> DA Y  =  {e/8y.%c). r[^> Y  =  (e/4mc2) . T H  1^ Y . (44)

Adding (44) to (38) we find the following "equation of motion” for Y,
from which 0Y/02 can be solved by multiplication by (S(1):

(tx +  Yi‘> DA) Y  =  (e/8mc2) . r<~> Y. (45)

The left hand member has the form of a “D i r a c equation” for
the first index kt of the undor Y.

If this equation is iterated like the ordinary D i r a c  equation,
we find (compare (40) and (43)):
(e/8mc2) . ( -  *x +  y ' 1'  D») ($ *  f  <-> Y) =

=  {X2 +  i  Y{a y )]} D »> +  i  y H1 Tfg? ° [A ^ T  =
=  {(mV/S2) -  • (e/Mc) &*} Y. (46)

where we have put
YiA Ymi =  —

If only a magnetic field is present (© =  0), we have

\  ^  =  (> ) . J j  -  » (>  .®j =  (?■ o'*’) • (48)

Adding to (46) the corresponding equation with oj^ (where in the
left hand member T ^  occurs with the opposite sign), we find after
multiplication by %2j2

{m2c2 +  pxpx — {en/2c) . ($ .  o(1) +  o<2>)} Y  =
=  ( ^ 2/16mc2) . r ‘~> DP ($** T H  Y), (49)

w tere  h - m .o P
is the operator of the kinetic momentum. In non-relativistic ap-
proximation we put

cp° =  me2 +  T  =  — cp0, (51)
so that T  is the operator of the non-relativistic kmetic energy. If,
further, according to Y u k a w a 3), the right hand member
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^ 7 ’ r i - ’ r i£ 'W V'*“) • ( ^ 2/16mc2) of (49) is neglected in non-rela-
tivistic approximation, this equation can be written as a S c h r ö-
d i n g e r  equation (T  me2) :

— eSS) T  =  T V  =
=  {p%/2m — {eh/2 me) . \  (c(1) +~a(2) . §)} Y, (52)

so that the magnetic moment of the meson

V-op =  (e/2mc) . i  % (o(1) -f o(2>) = (e/2mc) . 8 ^  (53)

is (e/2mc) times its spin angular momentum 9)
Since the energy is given by9) £ =  ƒ Y* Pop 6 ^  Y, the non-relativistic

value of the magnetic moment is actually given by

(I =  ƒ Yf 9op [Lop Y. (54)
As the value of the spin angular momentum is given in the same

way by 9) 8  = / Y f ?op 5 $  Y, the statement
■■ ^  ^

p. =  (e/2mc) . S' (55)
holds for the values of these quantities as well as for the operators
occurring in (53).

§ 5. Charge-invariance and statistics. It is well-known that in the
hole theory of electrons (superquantized theory of the D i r a c
electron) there is an infinite c-number difference between the q-
number <s4't4* (obtained by superquantization of the wave-function
4* from the expression for the electric charge density etyty following in
the usual way from the L a g r a n g i a n  of unquantized wave-
mechanics) and the ^-number representing the correct (observable)
electric charge density. If the meson field is quantized, (33) must also
be corrected by addition of infinite c-numbers.

We have mentioned that to one description of D i r a c  particles,
mesons, neutrettos and the electromagnetic field by undor wave-
functions [U.C. (1)], (20), (22) there is an equivalent charge-conjuga­
ted description, in which some constants like e, f  and g are replaced by
eL, fL and gL (32), (32a), whereas every quantized undor *) is replaced
by its charge-conjugated [U.C. (30)], (29). This suggests a kind of

*) We assume tha t all fields are described by undors (reflection di' =  töd», [U.C.(9)
(34)]) and not by “ quasi-undors” (reflection t{/ =  p^).
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symmetry between both ways of describing physical situations *).
By way of hypothesis one might assume that such a symmetry is a
fundamental property of nature. We shall call this possible property
the “charge-invariance” of the physical world (not to be confused,
however, with the principle of conservation of electric charge!).

Therefore we shall postulate that every physically significant
quantity in quantum-mechanics (that is, every ^-number correctly
representing the value of an observable) is invariant by transition
from one description of the fields of wave-functions to the charge-
conjugated description, or, in shorter terms, is charge-invariant.

This postulate can serve to distinguish between wave-mechanical
expressions, which after quantization cannot have a physical mean­
ing any longer, and other analogous expressions, which may repre­
sent observables. For the present we shall leave this question out of
consideration, but we shall show here that the postulate of charge-
invariance implies directly that photons and neutrettos must be
neutral, that D i r a c  electrons must obey F e r m i - D i r a c  sta­
tistics and that mesons must obey E i n s t e i n-B o s e statistics.
The interesting fact is that this statistical behaviour of particles and
quanta follows much more directly from the postulate of charge-
invariance then from postulates concerning the positive character
of the total energy of free particles or quanta f).

From the L a g r a n g i a n of any kind of particles or quanta we
can always deduce expressions for the electric charge density, the
electric charge current, the total momentum and total energy of
these corpuscles.

The terms of the L a g r a n g i a n function depending on the
derivatives of the field quantities Y have always §) the form of 9)

i K 'F B r (1V'i T . (56)
If Y is an undor* * §) **) '¥k,k,....kN of rank N, then [U.C. (12)]:

-b  =  Bf =  n  p(M); r . - . l  «.*<*. (e« =  ± i ) ;  B*r* =  r ~ B ~ ; (57)
n = 1 «=1

so that, if we put
vp£ _  £ \p*, £ =  =  II £<H); £* £ =  1, (58)

«=1
») Compare H. A. K r a m e r s ,  loc. cit. 10).
t)  Compare for instance H. A. K r a m e r s 14) and M. F i e r s 15).
§) This and the following considerations apply at least, to  all particles and quanta

discussed by D i r a c  and F i e r z 15) and by K e m m e r 1).
**) In  the following, we confine ourselves to  representations, for which 9* — 1 (compare

[U.C. (17), (17a-i>)]).
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we have

B £ =  (_  1 ) S  £ B* r  £ =  _  £ r*. (59)
From (56) we find that the electric charge density, if it exists is

equal to
*P =  (eK/Tic) . Yf B T0 Y, ( -  infinite c-number). (60)

In the charge-conjugated description this expression is turned on
account of (32), into

eLPL =  ( -  eK/nc) . Y£t B F° Y£ ( -  infinite c-number), (61)
therefore, on account of (57) —(59);

eY  =  ( -  1)". {eKj%c) ( -  infinite c-number). (62)
If the expressions (60) and (62) for the electric charge density are

postulated to be equal, the components of the wave-functions Y and
Y* occurring in (60) and (62) must be commutative (apart from an
infinite «lumber term) if N  is even, and must be anti-commutative
it N  is odd.

It is not true, of course, that the commutation rules follow rieo-
rously from 6

• eP = eY .  (63)
since in (63) the sum is taken over the undor indices, and only the
wave-functions 'F and Y* in one and the same point of space are
multiplied with each other. In. this xase the ̂ function -appearing in
the commutation rules becomes infinite; its value corresponds for­
mally to the sum or the difference of the two infinite c-numbers in
(60) and (62). Since the infinite c-number in (62) must be the charge-
conjugated analogon of the infinite c-number in (60), this may be of
some help in the “evaluating” of such infinite c-numbers.

For photons and neutrettos it follows from (23) and from the
symmetry of the operator P(* with respect to both undor indices
on which it operates, that

P ^ Y % Y  =  Y » t Po,  PoA ^  =  pi  (64)

°uanta °thCr hand ^  ^  fr°m (63) and (32) f°r any Particles or

p ~  ~  PL- (65)
Comparing (64) with (65) we conclude that the electric charge

density of the fields of neutrettos and photons must vanish, if it is
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a charge-invariant expression. In a similar way we derive th a t by
means of neutrettors of the first rank only neutral patricles 16) can be
described. I t does not follow from this, however, th a t neutral par­
ticles should necessarily be described by neutrettors!

For electrons we deduce from (65) th a t
p =  — c (66)

m ust be opposite equal to
p  ̂ =  _  cL, (66a)

where CL takes the place of the infinite c-number C in the charge-
conjugated description. From this we deduce

=  S  { ( < K ) * v W  +  + * ( + * ) * }  =

=  C +  CL =  c-number. (67)

Similar relations can be deduced by postulating the charge-
invariance of the quantized expressions for electric charge current,
to tal momentum and to tal energy. For instance, from

follows

ƒ  (4»t (v »J>) + (v 4>)ovs 4»*} =  ƒ  s {(4**)* (v 4**) + (v 4»*) (th)*} —
=  — (C — CL) =  c-number. (68)

%

I t is obvious th a t relations like (67) and (68) are consistent with
the anticom m utativity relations of F e r m  i-D i r  a c statistics

+  <M*') v  s(* -  *')» (69)
bu t not with K i n s t  e i n-B o s e statistics.

In a similar way we find for mesons from

(70)
p 2%

A (l) R(2) .
l  _  r — ' "  _  CL

P . 2%

and
(70a)
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that
T* P(1> + P<2) T

2%

p(1) +  P<2)
VP£ =  C +  CL.

Applying (57) — (59) we find
. /  3 » )  - L  3 (2 ) X( P—T  p  «PI

\ 2% )
\ /P(1) + P(2)
) \ 2n 'vj =  C +  C

or, on account of (35),
*** (Pop V1) — (9op V ')~  V'* =  C 4- CL =  c-number. (73)

Again, in (73) the sum must be taken with respect to the undor
indices, as in (67) and (68). It is obvious that (73) is consistent with
E i n s t e i n - B o s e  commutativity relations between the compo­
nents of 'V1 and 'V1* :

'&kIk„(x)* '¥{>1k>,(x ') — 'v i'lk't(x') '¥klk,(x)* — c-number, (74)
and not with F e r m  i-D i r a c  anticommutativity relations.

The commutation rules for the components of V11 must be derived
from those for V1 by means of the so-called identities (37), so that it
is not very alarming that we do not find any indication of them from
(71)—(74).

For neutral particles, indication of the commutation rules can be
derived in this way from the expressions for the total momentum
and the total energy, which are also obtained directly from the L a g-
r a n g l a n. Generally we can postulate that the total L a g r a n g i a n
itself (integrated over space and time) shall be charge-invariant on
account of the commutation rules of the field components. It is
therefore not necessary to investigate the sign of the energy in order to
derive the statistical behaviour of the corpuscles concerned 14) ls).

It is true, however, that charge-invariance of the quantized
expression for the total energy implies that by quantization
according to the scheme of P a u l i  and W e i s s k o p f 17) the
so-called “states of negative energy” of free corpuscles (depen­
ding on the time by a factor e+2™‘) can be interpreted, on ac­
count of the commutation relations (which do not need specifica­
tion here!), as states of positive energy *) of corpuscles with oppo­
site electric charge. We can understand this in the following way. By
charge-conjugation of the quantized wave-function these states pass
into charge-conjugated states of positive energy. If, now, the expres-
sion for the total energy is charge-invariant on account of the (un-

*) For the corpuscles under consideration states witl) e~2mvt are of positive energy.
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specified) commutation rules of the ^-number amplitudes a (J o r-
d a n-W i g n e r  or J o r d a  n-K 1 e i n matrices), the terms in this
expression arising from the so-called states of negative energy are
automatically equal to the terms in the charge-conjugated expres­
sion arising there from states of positive energy of the charge-conju­
gated corpuscles (which are described with the help of the charge-
conjugated ^-number amplitudes b =  a*). Using the latter (charge-
conjugated) expression for the description of these terms in the total
energy, the energy is given as a sum of only positive energies with
amplitudes a*a or 6*6.

We observe that both the statistical behaviour of corpuscles and
the possibility of describing so-called states of negative energy (of
free corpuscles) as states of positive energy of charge-conjugated
corpuscles follow directly from the postulate of charge-invariance of
quantum-mechanical theories. The relation between the positive
character of the energy of free corpuscles and the charge-invariance
of energy seems to be still closer than that between charge-invariance
and statistics.

I wish to thank Prof. K r a m e r s  for his interest in this work.
Received July 15th 1939.
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THE HEAVY QUANTA THEORY OF NUCLEAR
AND COSMIC RAY PHENOMENA

§ 1. Introduction. In 1935 Y u k a w a suggested in a paper in
the Proceedings of the Physico-Mathematical Society of Japan *)
that the exchange forces between heavy particles (protons and neu­
trons) must be attributed to the action of an intervening field and, in
particular, may be regarded as a second order effect due to the
consecutive emission and absorption of charged “heavy quanta”, just
as the electromagnetic interaction between two charged particles can
be described by the quantized electromagnetic field. In order to
explain the range of about 2 x 10~13 cm of the nuclear forces, he
assumed that this quantum had a mass aboqt 200 times as large as
the electron mass: m «a 200 m. In his original theory this field was
tentatively regarded as a scalar field. Then, however, it turned o u t2)
that, if the energy of the field of heavy quanta was assumed to be
positive, the exchange force between a proton and a neutron became
repulsive in a 3S state, in contradiction to the fact that this is the
ground state of the deuteron. Since in the mean time experiments on
cosmic ray phenomena 3) 4) s) «) had suggested the existence of a
charged particle just having a mass of the order of magnitude 200 m,
which might be identified with the quantum of Y u k a w a ’s
theory7), Y u k a w a  expressed his intention to investigate whether
this difficulty with the sign of the proton-neutron force could be
removed by introducing a non-scalar heavy quantum field2).

Then, from 1937 on, the non-scalar theory of heavy quanta was
gradually developed. In January 1938 its main ideas and applications
were announced by K e m m e r 8) and B h a b h a » )  in Letters to
the Editor in Nature. It is this theory, partly in a generalized
form 10) u) 12), which will be subject of the present dissertation.

As a name for the heavy quantum of nuclear physics were suggest­
ed heavy quantum , U-particle” , “yukon”, “dynaton”, “bary-
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t(e)ron”, and for the particle composing the penetrating component
of the cosmic rays: “heavy electron”, “penetron” and “mesot(r)on”.
The last name was shortened afterwards to the more correct form
“meson” 13) 14). Though it seems to the author that the correct name
for a particle of intermediate mass should not be “meson’ , but
“metrion”, and though from a theoretical point of view the meson is
no intermediate electron, but only a heavy *) quantum, (that is, a
heavy E i n s t e i n-B o s e particle), the name “meson” seems to
be already generally adopted, so that we shall use it in the following.

§ 2. The four types of meson fields proposed by K  e m m e r and the
simplified deuteron problem. In an important paper in the Proceedings
of the Royal Society of London 10) K e m m e r has discussed four
different types (a, b, c and d) of a heavy quantum field satisfying the
K l e i  n-G o r d o n equation

(□  —  x 2) Y  =  0, (□  = A — d2lc2d? m  VfVf ; X =  mc/h), (1)

if all interactions with other fields are neglected. In all four cases the
field consists of an antisymmetrical tensor of rank n, the potentials,
and another antisymmetric tensor, of rank (w+1), the field strengths.
In the absence of other fields interacting with the heavy quantum
field, the field strengths are the (generalized) cur] of the potentials
(like in the M a x w e l l i a n  theory), and the potentials are the four­
dimensional divergences of the field strengths (unlike the theory of
the electromagnetic field).

In K e m m e r’s cases a, b, c and d the number n is equal to 0, 1,2
and 3 respectively. Case (a) is identical with the field of quanta
discussed by P a u l i  and W e i s s k o p f 15) and used by Y u k a ­
w a  in his original papers 2). Case (b) is identical with the field dis­
cussed by P r o c a 1*) and quantized by D u r a n d i n  and E r-
s c h o w 17), K e m m e r 10), B h a b h a 18) and others 19) following
the same procedure of P a u l i  and W e i s s k o p f 15). The proper­
ties of the field of case (c) differ from those of the P r o c a  field (b)
only with respect to the laws of transformation of the field compo­
nents by a spatial reflection. As a consequence of these different
transformation laws, however, the interaction of the heavy quanta
with the heavy particles (the proton-neutron, or "nuclon”, as we

*) „Baryteron” =  heavier.
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shall call it briefly) must be introduced in a different way. Similarly,
case (d) differs from (a) only with respect to the reflection, as long as
no interactions are taken into account.

The interactions of these four types of heavy quanta with heavy
particles (nuclons) are then introduced by adding to the L a-
g r a n g i a n  function scalar terms, in which no derivatives appear-
they contain only inner products of the wave-functions of protons'
neutrons and heavy quanta. (We have called this a “F e r m  i-An-
satz in the following). The coefficients of the terms, in which the
Potentials cp of the heavy-quantum fields occur, are called g„ gb, g,
gd m the four cases, whereas the coefficients fa, fb, fe and fd appear
in the interaction terms containing the field strengths £. The field
equations then take the following form:

x ( 0 0 A1 . . .A (! f u X0 Xl . . . x j  - (1/w!) VfA.ipA,..^,
(2)

Here £XqX, .. .X„] denotes the sum over all even permutations of
X o X j  . . .  X M minus the sum over all odd permutations; the u\ are
linear combinations of the products of the components of the
wave-function <J)P of protons and the conjugate complex of the
wave-function of neutrons.

From (2) we conclude that in K e m m e r ' s  theory <p and £ play
an equivalent part, contrary to the M a x w e l l i a n  theory, where
the potentials cannot be derived from the field strengths and are not
uniquely determined by them (possibility of a gauge transforma­
tion). In the original paper of Bhabha®) the interaction described
by the term with /  did not appear.

K e m m e r calculated the proton-neutron force in each of the
cases («), (b), (c) and (d), and found in non-relativistic approximation

e o owing expression for the effective potential W(i, 2) describing
e second order interaction between two nuclons 1 and 2 through the

medium of the field of (charged) mesons 10) :

W(J>2) =  KtLPt® +  Ty ( Tj?) {A +  B p »  .p21) -f-

+  (C/x2) (a<» . V ^ p 2’.. Vj)} {e~Kr̂ /ru). (3)
Here x<"), t >̂, t'") are the isotopic spin operators operating
wave-function of the wth particle; the meaning of the suffixes

on the
x, y, z
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is only that these operators have the same form as the P a u l i
matrices 20) ox, <ry, oz; they have nothing to do with the co-ordina­
tes of space. We assume that <\>P and <\iN are eigenfunctions of tz
belonging to the eigenvalues t =  +  1 and t =  — 1 respectively.

The constants A , B and C in (3) can be expressed in terms of the
coefficients /  and g occurring in the meson equations (2). If all types
of meson fields are present, in interaction with the nuclons, these
coefficients turn out to be equal to 10)

A =  Si4tc) ( -  Ig.P +  l&l2).
B =  (cx3/47c) (I/& |2—  | /d2)» (4 )

C =  (cx3/47t) (— I /ft I2 +  |/ci2 — I gel2 +  Igil2)-
It must be pointed out that in (3) some interaction-potentials of the

form of a ^-function have been omitted (compare § 7). In the
literature it is often tried 18) 21) to eliminate these 8-function inter­
actions by adding to the L a g r a n g i a n  some terms, which give
rise to a first order interaction between protons and neutrons. It is
of interest to remark that, though by these attempts the 8-functions
arising in the calculation from

A(l/r) =  — 4u8(r) =  — 47t8(x) 8(y) 8(z) (5)
are taken into account, those arising from *)

{A . V) (B . V) (1 /r) =  -  4tc 2  A< Bi 8§"*(r) =
i , i  } ?

s  _i_ r~5{2>{A .r) (B .r) — (A . B)r2} (5a)
have been forgotten18) 21) (compare § 7). For the present problem
these 8-function interactions are of little importance 22). Though
similar terms in the L a g r a n g i a n  (which for the sake of
simplicity can be introduced in exactly the same form as the terms
yielding a direct (8-function) interaction between nuclons) are of
importance for the theory of (3-disintegration, only the terms with
ordinary 8-functions (5) give rise to a direct (first order) F e r m i -
interaction between the nuclon field and the field of light particles ),
whereas the terms of the form of (5a) can be neglected the.e (§ 11).

The terms with A and B in the expression (3) for the effective
second order potential between two nuclons are commutative with

*) For the definition of the longitudinal S-function 8|”Bg(r) we refer to the foot-note on
page 72. Generally: ViV, (l/f) =  — 4ttS'f**(?) A  (Zxixj — r‘Si
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independent rotations of the spatial and the spin co-ordinates, so
that the energy levels of the two-particle problem can be character­
ized by quantum numbers I, s, ƒ, Wj. The last term of (3) (with C)
however, is commutative only with a simultaneous rotation of spatial
and spin co-ordinates, so that this term will give rise to a coupling of
states with different quantum number I. As (3) is invariant with
respect to permutation of the ordinary spin operators, states with
different quantum number s are not coupled. Finally (3) is invariant

3p6meC3u °  permutation of the isotopic spin operators, so that the
’ * states, which are antisymmetrical functions of the

spatial and spin co-ordinates and thus symmetrical functions of the
isotopic spin co-ordinates, are not coupled with the 3S, ‘P, 3D, >F
states, which are just antisymmetric in the isotopic spin co-ordinates

We conclude that the >S state of the deuteron is not coupled with
any other state by the term with C, but that the 3S state is coupled
with the D, state. We shall discuss this question afterwards and to
start with, we shall with F r ö h l i c h ,  H e i t l e r  and K e m m e r 19)
negieet this coupling. Then we can write (3) in the form (compare § 8)

(1 ,2) =  | ( t <!>t ® +  Ta )T ® ){A  -F J5'(o<,>. â 2))}(e~Kr/r),
B' =  B +  \C.

The effective potentials for the 3S and the >S state of the deuteron
are now given by

3S : W(r) =  -  {A + B ')e-Kr/r,
,s  : W(r) =  -f {A — 3B')e~K'/r. ^

The S c h r ö  d i n g e r  equation of the simplified deuteron
problem is given by

{e+(Jf i /M)A +  JCe-^/rH, =  0; (* =  mc/n). . (8)

M  - 2MNMPJ(MN +  MP) =  l-6723 x  10~24. (9)

The eigenvalue problem (8) was numerically solved by W i l ­
s o n  ) and by S a c h s  and G o e p p e r  t-M a y e r 25). The for­
mer calculated

b =  (JtM/tfy)
as a function of

a =  (— £M
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the latter calculated
a/b =  ( -  eiJU )

as a function of b. The results of W i l s o n  can be represented to a
good approximation by

a =  0'236 X ( b -  170)2, (10.W)

those of S a c h s  and G o e p p e r t-M a y e r by
a =  0' 1905 X (b -  T683)2, (b £  270), (10.S-GM)

The actual value of b for the 3S ground state of the deuteron is in the
neighbourhood of 2'8. We remark that (10. W) and (10.S-GM) do not
fit exactly in this region.

We shall put
m = 1 0 0 & n , (5 «  1-75 ± -25?) (H)

and calculate JtT/ftc as a function of Writing (10.W) and (10.S-GM)
in the form

a =  a0(b — b0)2, (10)

we can express & as a function of \  by
b =  &0'+  (1/100 Im c) . V — £M/a0.

From the definitions of b and x we now deduce

JT/tic =  100 b0{mlM )l +  V — £IMc2a0.
Putting here M  =  1 -6723 X 10-24, m =  0-909* X 10~27, c =  2‘99796 X
•X 1010, and for the triplet ground state of the deuteron — 3£ =
(— 2' 174 MeV) =  3'456 X 10-6 (erg), we find for the coefficient J {
in the potential of the 3S sta te :

3JC/%c =  0-05438 . +  0-0479s/\/ao- (12)
Substituting for a0 and b0 the values from (10.W) and (10.S-GM)
we find

3J{/%c =  0-092*5 +  0-0987 =  0-092* (£ +  l-068) (12.W)

arid
3J{/Jic =  0-091s? +  0-110 =  0-091s (£ +  1-20). (12.S-GM)

So the difference between (10.W) and (10.S-GM) is equivalent with
an incertitude of a little more then ten electron masses in the mass m
of the meson.
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From experiments on scattering of neutrons by protons we know
that the virtual'S level has an energy, which is small (& 005 MeV)
in comparison with the binding energy of the deuteron (=  2-174
MeV). We conclude that a has for the 'S level only about 1 /40 of the
value, which it has for the 3S level, and the opposite sign. Now, the
virtual levels of the S c h r ö d i n g e r  problem (8) have not yet
been determined. If we tentatively assume that for a < 0  (virtual
levels) an equation of the same kind as (10) is valid:

M  ~ ° ’2 x  (b -  1-68)2, (10fl)

we find for the >S level b «  1 -52. In the literature the value of b for
the 'S level is usually supposed to be equal to b0 on 1 '68, that is, the
energy of the >S level is entirely neglected 24) *»). This may be a little
dangerous, since for virtual just as for real levels, [b — b0) may be
very sensitive for the exact value of a, if the latter lies in the neigh­
bourhood of zero. This, indeed, would follow from (10a). From this
formula one finds (putting '<? ss C05 MeV):

=  100 b0 (m/M) I — V  l£/Mc2a0 r» 0'092£ — 0’016. (13)
Neglecting l£  entirely one finds:

' jq U  «  0-092?. (13a)
If?  1-75, the difference between (12.W) and (12.S-GM) is about
3t%  and that between (13) and (13a) is as much as 10%.

Comparing (13) with (12) we find

(W  — xJ{)l%c «a 0-115, (13.W); r»0-126, (13.S-GM),
if (10a) is valid. Here we have put '£ r» 0-05 MeV again.

Putting 5 175 in (12) and (13), we find from (7):
A/He & 0-16, B'/Hc «a 0-10.

From (4) and (6) we see that among K e m m e r ’s cases (a) — (d)
only (b) offers the possibility of making alone both A and B' positive.
This was the reason why K e m m e r and most other authors have
investigated this case in more detail, that is, they consider the meson
field as a pure P r  oca  field. Of course it is also possible to consider
the meson field as a composition of several cases. The advantages of
doing so n) will be discussed afterwards (§ 8).

We remark that the scalar field, originally discussed by Y u k a ­
w a 2) (case (a)), gives the wrong sign for A (compare (4)).
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§3. The charge-dependence of nuclear forces. In a theory of charged
mesons the proton-proton force and the neutron-neutron force are
obtained only in a fourth approximation. For a field of P r o c a -
mesons the calculation was performed by F r ö h l i c h ,  H e i t l e r
and K e m m e r 19). The effective potential in the 'S state turns out
to be repulsive and very strong for r <  1 /2x. The range is smaller than
that of the second order forces of the preceding section (§ 2). A simi­
lar short-range strong repulsion is found between a neutron and a
proton. This indicates that the theory does not allow to determine
the exact form of the effective potential between nuclons for small
values of r, by taking into account a finite number of successive
approximations yielded by the perturbation method.

Experimental data on the scattering of protons by protons 26) 27)
can be explained very well28), if one assumes that the proton-proton
>S potential, in as far as not of electromagnetic origin, is (within 1%)
equal to the proton-neutron 'S potential29). It is obvious that the
meson theory as we have presented it until now does not explain this
fact. For this reason several authors have assumed the existence of
neutral mesons. One argument of B h a b h a 18) for the existence of
these hypothetical neutrettos was, that it would make the theory
“more symmetrical” : charged and neutral particles would exist with
small, intermediate and large masses. We shall see, however, that
this argument is hardly tenable. Indeed, the neutrettos actually
introduced by the theory cannot be compared with neutrons or neu­
trinos, since the corresponding anti-neutrettos do not exist30). There is
more reason to draw a parallel between neutrettos and photons. If
the arguments of B h a b h a were reversed, we should have to
expect the existence of “charged photons” .

A theory of mesons and neutrettos and their interaction with
nuclons was developed in a very elegant way by K e m m e r ).
According to him, neutrettos are just as photons emitted and absorb­
ed by particles jumping from one state into the other without chang­
ing their charge. If an antineutretto existed, it would be absorbable
by those particles that can emit neutrettos, and vice versa. It is
obvious that such a particle would behave exactly like a neutretto
behaves itself. Therefore it seems to be prudent, not to introduce two
kinds of neutral heavy quanta, which cannot be distinguished at all,
but to assume, just as in the case of the electromagnetic field, that
the neutretto field is to be described by real tensors ,, of, in an
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undor terminology 31), by means of “neutrettors” 12). In a sym­
bolic way we may say that the antineutretto is identical with a neu-
tretto, just as an antiphoton is a photon again. (The J o r d a n -
?  ! f  1 ?  “ atTriX in a  F o u r i e r  analysis of the quantized photon
field, which should describe the antiphoton, is identical with one of
the J  o r d a n-K 1 e i n matrices describing the photons; compare
§ 6) .

The quantities / « a... and gux... in (2 ) have the form of
9 w(Tx - i ty) 4*, where ^ is the wave function of a nuclon and cu

is a combination of D i_r a c matrices; gn denotes the constants/  and
g. The neutretto field £, <p_should satisfy equations of the same kind
as (2), only fuk and gux... in these equations should now be of
the form of +  bn xz) iL. If £ and 9 are real and if w is a

, we must assumeself-adjoint (H e r m i t i a n) matrix (to =  tof)
(compare [M.F. (27)] *)) that all «„ and bn are real:

a * = a n> b * = b n. (14)

The effective (second order) potential between two nuclons, due to
the interaction through the meson field, turns out (compare § 7) to
be a sum of terms, which are proportional to

o '*  aStn&n ^  +  iXy \  „  T ®  +  V #  T<*> -  « < « )
2  O • o n  6 m  ’ —----------

In the non-relativistic approximation, only terms with m =  n
occur, so that the terms of this effective potential are simply pro­
portional to v

+  ( 15)

This would still be true in the “relativistic” approximation f) if
we assumed that it is possible to make all gn real at the same time bv
a choice of the phase of the meson field:

8n =  S’»- (16)
It is easily seen that the effective (second order) potential, due to

*) By [U.C.] will be referred to formulae from the paper of the author on undor cal

on th  , P -er ° f th ‘S the3iS>! by [M-F '] to formulae from the paper of the author
n the undor equation of the meson field «) (second chapter of this thesis)

... 11' ,  K * “  m e r ’s PaP“rs “ ) 30) term s with nt ^  n  do not appear a t all so th a t fo r
him the condition (16) is not essential in this connection. Compare § 7.
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the interaction through the neutretto field, will be a sum of terms,
which are proportional to

a* +  K < x) an +  b„ , a* +  bW 2) am +  bmv p
2 2 ‘ 2 2

In non-relativistic approximation again there are only terms with
m =  n, so that in this case the terms of the effective potential due to
the interaction through the neutretto field are simply proportional to

i { | an\2 +  \(a t  b„ +  a„b*) (t<>> +  t<2>) +  \bn\2
The total non-relativistic interaction is then a sum of terms pro­
portional to

i d  « „ |2 +  \g«\2$ l) • ^ 2)) +  ( I 'M 2 -  I?»I2K 1 )t*2) +
+  i  (at bn +  anbt) K 1’ .+ t®)}. (17)

Now, the proton-proton and the proton-neutron interaction in
states, which are antisymmetrical with respect to the spatial and spin
co-ordinates (so that (t(1) . t(2)) =  1), become equal in this approxi­
mation, if we assume

\b„\2 — | gn I2 +  i  (at  K  +  anbt) =  0.
From nuclear physics we know that the non-electromagnetic proton-
proton forces are also approximately equal to the neutron-neutron
forces, so that

i (at b„ +  a„bt) \ an|2 +  \ bn\ ■
These two conditions are satisfied, if we choose

\bn\2 =  |g„|2'; at K  =  purely imaginary.
Now, in order to avoid in our theory the existence of antineutrettos,
we have already assumed in (14) that all a„ and b„ are real. Thus we
conclude:

^  =. |g„i, a„b„ =  0, (18)

so that there are only two possibilities:
1°. the “symmetrical theory”, proposed by K e m m e r » ) :

a„ =  0, b„ =  |g„|; (19)
2°. the “neutral theory", proposed by B e t  h e 32) .

bn =  g« =  °- (19 a)
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In the latter theory, the nuclon interaction is entirely due to the
(electromagnetic and the) neutretto field, and mesons do not inter­
vene (g„ =  0). Since from cosmic ray phenomena seems to follow
that the interaction between nuclons and charged heavy quanta
cannot be neglected, we shall mainly confine ourselves in the follow­
ing to K e m m e r ’s symmetrical theory. Then, the second order
effective potential between nuclons is proportional to

(t(1) . t<2>) . (20)
The heavy quanta forces between nuclons are now independent of
the charge of the nuclons.

Comparing (20) with (15) we deduce from (3) the new form of the
non-relativistic effective second order potential between two nu­
clons :
W{i,2) =  . t<2>){A +  B p ” .P 2>) +

+  (C/x2) K > . V ,)(>  . V,)H«7^«*/r,2) (21)
Here A, B  and C are still given by (4). The potentials for a pure 3S
state and for the *S state of the deuteron are now given (compare
(6)—00) by

3S : W(r) =  - \ ( A  +  B’)e~Kr/r,
*S : W(r) =  + ± ( A -  3B'\e~K'/r, B  = B  +  iC ’ "  (22)

so that for E, =  T5 ~  2-0 we find (assuming (10a) and (13.W) or
(13.S-GM)):

m = 150 m 175 m 200 m

( Wilson )
A/he = '0-05, 0-05, 005,

(Sachs- GM) 0-06, 0-06, 0-06,
B'/hc = 0-10, 0-11, 0-13,

Comparing (22)—(23) with (4) and putting

gi =  I gb I Vex3/4 7i, g2 =  \fb\ V cyFJAk, g3 =  | gd | VcK3/4n (24)
we find for a combination of the cases (b) and (d) of K e m m e r:

g \ l h c - A j h c ,  . (2g22 +  gf)/3hc =  B'/hc,

so that g\jhc is of the order of magnitude 1 /17 or 1/16, and g\]Jic of the
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order of magnitude £ ~  if g3 =  0, and of the order of magni­
tude -g- ~  -g-, if g3 «=* g2. In  the latter case (gf -)- 2g2) /She is of the
order of magnitude 1/10. I t  m ust be remembered, however, th a t we
have here entirely neglected the coupling of the 3S state with the 3D[
state by the term  with C (compare § 8).

W ith K e m m e r 30) we shall now assume th a t the gn are real
indeed (16). Then gu\,__ and gü\.._ take according to (19) the form of

gu =  ^g^to(Tx -  *xy)<|> =  gyN<Ji<\)P]

gü =  Jgi];1' cotzi}> - ig(ig,to<];p — ftwiji,,)-
Putting in a symbolic way 30)

Y  =  4>x — i 4>v, —
x  y  ’ w

T 2 =  <t>x +  *4>y ,
(26)

(where T  is the meson field, its charge-adjoint31) and T  the
neutretto  field), we can write the L a g r a n g i a n * )

L  =  -  K  /{ 'F t B(2x -  «TaVa)Y  +  'F t B(2x -  jT aVa)Y  +

-t-2 x [r tB ./0?^ (T x- f T y)<H-YtB./0?^ + c o n j .  co m p l.]+ ....} (27)

in symbolic vector notation in the form of

L  =  -  K ƒ  {(4> . £* B [2x -  *TaVa] 4») +

+  2x [(4>. £* Bfop ̂ £ti];) +  conj. compl.] + -----}, (28)
where

SO**, =  £<» £W<D^ =  <DjU =  < * , .  ,  (29)

K e m m e r 30) has pointed out that, if (16) is assumed, the effect­
ive potential between two nuclons in any higher than  second order
approximation of perturbation calculus can, on account of the
“invariant” vector form of (28), be w ritten as

W " +  (t<‘> . t<2>) W', (20a)

where W ' and W "  are potentials depending on r12 and the spin co­
ordinates of the two nuclons only.

§ 4. Quantization and relativistic invariance of the theory. In  1929
H e i s e n b e r g  and P a u l i  33) 34) have developed a quantum

*) Compare the notation in [M.F.J M).
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theory for wave fields and have demonstrated its relativistic in­
variance. In this theory all components of a set of quantities q(x)
transforming irreducibly among each other by L o r e n t z  trans­
formations are assumed to be canonical co-ordinates, as soon as one
of these quantities q is a canonical co-ordinate. Thus, if for instance
one component of a four-vector is a canonical co-ordinate, all com­
ponents are so. For this reason K e m m e r 10), B h a b h a 9) 18)
and Y u k a w a 2) 21) built up their theory in such a way that all
components of 9 in (2) were regarded as canonical co-ordinates q(x).
Apart from some possible normalization factor, the canonical conju­
gates of 9Xlx,... are then given by p(nx...) =  ZoXX-X the canonical
conjugates of epx%... by ^A,...- Particularly by B h a b h a 18)
the quantization of the meson field was performed in a logical way
starting from this point of view.

Then, however, a difficulty arose. From the antisymmetry
°f &AA,... it follows that 9 0a,... does not possess a canonical
conjugate at all. Thus the scheme of H e i s e n b e r g  and P a u l i
cannot be applied. For in both proofs, given by them **)34) for the
relativistic invariance of each óf the commutation relations, an
essential use was made of the commutation rules holding for the
other co-ordinates q(x) transforming together with the co-ordinate in
question. The commutation relations assumed by H e i s e n b e r g
and P a u l i ,  however, do not hold between 9 ^  and the other
canonical variables, if the meson equations are regarded as ̂ -number
relations.

For instance, no 8-function is yielded by the commutator of
?oA„.. with its canonical conjugate, since the latter, being zero,
is (anti)commutative with any quantity. A similar difficulty appeared
in quantum-electrodynamics. There it can be removed in a natural
way 35) 38) by assuming that the canonical conjugate @ of the electric
potential is not identically equal to zero, but is a ^-number which,
operating on the situation function, multiplies the latter by a
constant factor only, for instance by zero. This q-number must be
introduced as a new variable.

One may try, of course, to proceed in a similar way in the meson
theory. There it is possible, indeed, to introduce similar help-quanti­
ties U in such a way that finally every canonical co-ordinate q(x)
possesses a conjugated momentum. If 9 is of rank n, we must
introduce a set of tensors U of rank (n— \),[n — 2 ) ,___, 1, 0 for
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this purpose *). In this way it is possible to find a consistent set of
commutation relations, the relativistic invariance of which follows
automatically by an application of the arguments of H e i s e n ­
b e r g  and P a u l i .  It must be borne in mind, however, that these
commutation rules are not identical with those, which are in use in the
current theory. Now, for instance, cpoA,... is commutative f) with
9A?V-.« an(i the “identities” expressing the <p0A,„. and cp*A,... in
terms of the Z  and Z *  are no longer valid as ^-number relations.
Thus the meson equations are affected and they can only be valid as
a condition imposed on the situation function (like in quantum-
electrodynamics), if we postulate that U, operating on the situation
function, multiplies the latter by a constant factor (for instance zero)
only. The advantage of such a procedure would be, that there would
exist some possibility of separating a part of the nuclon-nuclon
forces by a canonical transformation u ) 37), like this is done in quan­
tum-electrodynamics, where the static C o u l o m b  force is sepa­
rated and the longitudinal electromagnetic field is eliminated from
the theory 38) 36) (compare § 5).

However, such a procedure is impossible in the theory of heavy
quanta, since from the condition “U =  constant” imposed on the
situation function would follow that the situation function vanishes
itself. This is a consequence of the fact that in the meson theory U
will not be commutative with its own derivatives with respect to the
time (contrary to 3  in quantum-electrodynamics), as <poAs... appears
itself in the left hand member of the field equation 8Z//S<p0A,... =
=  — Ü replacing the “identity” 8L/8<.pô ... =  0. From a non-relati-
vistic point of view, again, this occurrence of <PoAs... in the corre­
sponding L a g r a n g i a n  field equation (identity) means that the
introduction of help-quantities U is entirely superfluous. The identity
can be regarded as a definition of 9o\... hi terms of the other
canonical variables and can be used directly for the derivation of the
commutation relations of <p0A,...- Thus <poA,.„ is no longer treated
as an ordinary canonical variable, but only as a “derived variable",
in analogy to §  in quantum-electrodynamics, and not to the electric po-

*) For K e m m e r’s case (b) this reduces to a single scalar (and its conjugate com­
plex). If in this case, instead of <p̂  and <pj, the and are regarded as canonical
co-ordinates, one must introduce a four-vector and a scalar. If <p̂  and ^  are regarded
as canonical co-ordinates, like it would be natural in an undor theory of mesons, one must
éven introducé two scalars and a four-vector.

t) This is one of the conditionsr, indeed, on which an application of the scheme of
H e i s e n b e r g  and P a u l i  is possible. It is not realized in the current meson theory.
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tential $8. In this way we find the commutation relations, which are
actually in use in the literature. Indeed this treatment seems to be
the more natural one. But its relativistic invariance has never been
proved, though there seems not to be a particular reason to doubt its
existence. Perhaps the proof can be given on the basis of a suitable
generalization of the theory of H e i s e n b e r g  and P a u l i .

Since by K e m m e r ,  B h a b h a  and Y u k a w a  only the
components of 9 and 9* are regarded as independent variables in
the L a g r a n g i a n  variational principle, the other quantities
then must be “defined” by (2) in terms of these variables. Thus, the
L a g r a n g i a n  function, regarded as a function of the independent
variables only, is of the second degree in the gradient operator V. One
may call this an “Z(VV)-theory”. The field equations following from
such a theory are of the second order; the first order equations are
arrived at by assuming some of them as definitions.

Although the elegance of such a procedure is questionable even in
electrodynamics, it can be defended there, since the field strengths
are uniquely determined, if the potentials are known as functions of
x, y, z, t. In these “definitions” the variables describing other fields
do not occur. The potentials, on the other hand, cannot be expressed
in terms of the field strengths.

We have already seen that this is not the case in the meson theory.
There, of course, it is possible to introduce with K e m m e r 10) and
B h a b h a 18) the quantities x — (£ — fu), which can be expressed
directly in terms of the 9; but the possibility remains of expressing
9 or at least (9 +  gu) =  7] in terms of the £. So it is not clear why
in a L a g r a n g i a n  variational principle one of the sets of quan­
tities 9 and £ should be treated differently from the other.

For this reason it seems to be more elegant to derive directly the
complete set of first order equations from a L a g r a n g i a n ,  which
is linear in the V operators, like the L a g r a n g i a n  in the wave-
mechanical theory of electrons. We shall call this an “Z(V)-theory”.

A m ore serious ob jection  ag a in st an Z.(VV)-theory of h a rd ly  know n p a r t ­
icles seems to  be th e  following. Since we know  th a t  th e  in te rac tio n  of
D i r a c  partic les w ith  th e  M a x w e l l i a n  field can  be described  by
changing in  th e  L a g r a n g i a n  function  in to  DA =  VA +  (e/ihc) %
w hereever i t  operates on th e  w ave-function  describ ing th e  an n ih ila tio n  of
a positively  charged  partic le  or th e  crea tion  of a negative  p artic le , an d  by
Df  =  VA —  {e/ihc) %  w hereever i t  opera tes on th e  co n ju g ate  w ave-
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fu nction  describ ing th e  crea tion  of positive an d  th e  ann ih ila tion  of nega­
tiv e  partic les, we are  accustom ed to  use th e  sam e schem e of in troducing
th e  in te rac tio n  w ith  th e  electrom agnetic  field, for an y  h ith e rto  unknow n
particles. One m igh t desire th a t  th is  schem e is un iquely  determ ined .

This happens to  be th e  case, if L  is linear in  th e  g rad ien t operators, like
th e  L a g r a n g i a n  used as a  ru le  for th e  e lectron  w ave field (L(V)-
theo ry ), b u t  in  a n  L(V V )-theory th e  above-m entioned  prescrip tion
(V —> D) is n o t sufficient to  determ ine a un ique in te rac tio n  w ith  the
M a x w e l l i a n  field. W e shall show  th is  for D i r a c  particles.

In s te a d  of deriv ing  th e  D i r  a  c-equation  from  a  L a g r a n g i a n

-fr(V) =  »ƒ <)Ap(ix +  Y^vm) <K (Y/i =  P<fy). (30)

we can  derive i t  from  th e  (second order) K l e i  n-G  o r  d  o n  equa tion  S9) *)

(x2 — □ ) * = ( ) ,  ( □  =  VftV#‘), (31)

w hich is derived  from  a  L a g r a n g i a n

' Ü(VY) =  ƒ ^ ^ ( x 2 —  □)({<, (32)

=  L (VV) =  ƒ  <lA p  (—  »x +  yavA) (** +  YfiV,i) 4»- (33)

On acco u n t of y^Y? +  YiTn =  —  th e  in teg ran d s appearing  in  th e
tw o expressions (32) an d  (33) are id en tica l; th e ir  difference is equal to

(—  *72) 4't  P«V  (vA v,i (2 g \ h  =  «'Y[AY/q)- (34)

I f  only  firs t o rder deriva tives are allowed, we can  in teg ra te  (32) an d  (33)
b y  p a r t s :

Il(VV) =  x2/d - tp ^ . + / . ( V M+)tp_(V»‘+), (32a)

=  Ir(VV) =  x2 ƒ  p  4» — /  (YA VA 4>)t p  (Y^Vf 4,). (33a)
Now changing  <J* in to  th e  second o rder equations following from

(32a) a re  given by
(x2 —  D2) ( =  0, (326)

and those  following from  (33a) are given by

{x2 —  D 2 —  (e/ihc) ( § .  a  —  * «  . a)}t[> =  0. (336)

T he la t te r  eq u a tio n  describes a  D i r a c  p artic le  w ith  a  m agnetic m om ent,
as i t  should  be; b u t th e  fo rm er eq u a tio n  can a t  m ost describe a particle ,
w hich does n o t possess a m agnetic m om ent, th ough  i t  has a  spin angular
m om entum  *•).

G enerally  th e  in te rac tio n  of a  p artic le  w ith  th e  electrom agnetic  field is
n o t determ ined  by  th e  p resc rip tion  V —> D, so long as th e re  is a  possib ility
of in troduc ing  som e te rm s w ith  (V^V^ —  V^V^) before app ly ing  th a t
p rescrip tion . The procedure of s ta r tin g  from  an L(VV) seems to  be especial-

*) Generally from (31) follows ixi\i +  y,x 9 =  »x<p +  yuVf* <jj =  0, where 0 is another
undor. If the total field of the quantities satisfying the first order equations consists of
one undor only, we can conclude that either -- o or =-- — <p.
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ly  dangerous since th e  (wrong) expression (32) seem s to  be sim pler th a n
th e  (right) expression (33).

T he am b ig u ity  here discussed can  be rem oved b y  in serting  D  in  th e
place of V in  th e  firs t o rder equations in stead  of in  th e  L a g r a n g i a n
itself. This, how ever, m ay  be dangerous, since som e firs t o rder equations,
such as for instance d iv  H  =  0 and  d iv  A + Y/c =  0 in  th e  case of th e
meson field in  em p ty  space, m ay possess a  ch a rac te r d iffe ren t from  th a t
of th e  regu la r field equations (com pare [M.F. (44)— (45)] !), an d  th is  can  be
verified only  b y  exam ining w hether th e  equa tions in question  can  be
derived, w ith o u t in troduc ing  au x ilia ry  variables, from  a L a g r a n g i a n
function  th a t  is linear in  V.

Since no d irec t experim en tal d a ta  ex ist on th e  in te rac tio n  betw een
m esons an d  th e  electrom agnetic  field, i t  seem s to  be necessary  —  a t  least
for a sa tis fac to ry  th eo re tica l d e riv a tio n  of a n  expression for th is  in te r ­
ac tion  —  to derive th e  firs t o rder m eson equa tions (2) from  a  L a g r a n ­
g i a n ,  w hich is linear in  th e  g rad ien t operators, L(V). W e shall see th a t
in  th is  w ay  we arrive  ex ac tly  a t  th e  equa tions given exp lic itly  by
B h a  b h a  1!) an d  Y u k a w a  **). This is n o t v e ry  surprizing, since
th e y  have changed V in to  D  in th e  r ig h t f irs t o rder equations.

So long as the theory of H e i s e n b e r g  and P a u l i  has not
yet been generalized, there is as little direct proof for the relativistic
invariance of the procedure of quantization by starting from L(V), as
there was for the Z.(VV)-method used by the cited authors. When a
more general relativistic quantum theory of wave fields will be
formulated, it should be formulated in such a way that the invarian­
ce of the Z(V)-method is generally warranted. Since this method
leads to the same H a m i l t o n i a n  (quadratic in V) as the Z(VV)-
method, the proof of relativistic invariance of both methods will be
substantially identical.

So we shah regard in the following both <p and X and their conju­
gate complex as independent variables in the L a g r a n g i a n
function Z(V); the ^ . . .  and (<*„ . . .  =

1, 2, 3) will turn out to be the canonical variables q and p,
and the variables <p0ai , and can be expressed
in terms of the canonical variables. The commutation relations
for these derived variables are then derived from those for the
canonical variables, so that, if the interaction between mesons and
nuclons is taken into account, the derived variables of the meson field
will no longer be commutative with the wave-function of the nuclon field.
This is exactly the way, in which K e m m e r ,  B h a b h a  and
Y u k a w a  actually quantize the meson field. The only difference
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with the treatment of B h a b h a 18) is, that we shall treat
from the beginning in the same way as the other derived variables
£--- ■ whereas this is done by B h a b h a  only after some
special arguments, which seem to be superfluous, since they do not
prove the relativistic invariance of the theory.

We shall now write down the L a g r a n g i a n  function L(V)
describing the fields of nuclons and light D i r a c  particles, mesons
and neutrettos in interaction with each other and with the M a x ­
w e l l i a n  field. In the preceding dissertation of the author on the
undor equation of the meson field 12) a formal argument was given
for treating the cases (b) and (d) of K e m m e r together. We shall
return to this question afterwards when we are able to discuss the
physical properties of such a generalized meson field (§ 8); only
experimental data can decide if the spinless 10) mesons of case (d)
exist or not. For the present we shall introduce these spinless mesons.
Afterwards they can always be eliminated again, if it would turn out
that we do not need them, by putting fd =  gd =  0.

We shall make a “Fermi-Ansatz” (compare page 41) for the
interaction between mesons and light D i r a c  particles, that is, we
shall assume that this interaction is given by adding to fu and gu in
(2) similar expressions f u '  and g'u', where the u' are linear combina­
tions of the 4 x 4  components of t];* i];w- Here is the wave-function
of a positon ir and <J/„ is the wave-function of the particle v called a
neutrino in the original theory of F e r m i 41) and called an anti-
neutrino by other authors 42) 23). If is the 8-component wave-
function of the light particles, we can write

U' =  \  ^ 'fto(Tx — *Ty)(J/. (35)

As for the interaction of light particles with neutrettos, we shall
make again the “C.I.” (charge-independency) assumption of K e m -
m e r ’s “symmetricaltheory” 30) (compare § 3: (25)):

ü’ =  }(<|£«ix|v — (35a)

In the literature u' is usually expressed in terms of the wave
functions <];e =  <J4 of the negaton s and =  tyf of the anti­
particle o of the (anti)neutrino v. It is easily shown, howevér, that,
apart from some signs (which can be added to the constants ƒ' and g') ,
this does not make any difference, since on account of [U.C. (12),
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(23), (29)] *) we have

=  4C£*%* =  W t f  =  ( - )
t ó *  =  =  ( - )  (36)
W *  =  <|£°£*P%* =  -  =  -  ( - )  W . .  etc.

The minus signs in brackets result from the anticom m utativity of
W and 4*0» the other from [U.C. (23)]. Comparing (36) with [M.F. (11),
(12)] and [U.C. (62), (62a)] we observe th a t the tensors (t^cixj^)
arising from the symmetrical part of ^  are changed into
(—) (4ew4o), whereas those arising from the antisymmetrical part
change into (—) (— «J'eW'J'o)-

In the following we have called o a neutrino and v an antineutrino,
following K o n o p i n s k i  and U h l e n b e c k  42). If a positon
is regarded as the counterpart of a proton, then the counterpart of a
neutron is called an antineutrino, in this terminology. W ith this con­
vention a neutrino and a negative electron are regarded as two states
of one and the same particle. Something can be said for returning to
the original terminology of F e r m i 41), bu t here we have not
done so.

A K  o n o p i n  s k i-U h i  e n b  e c k Ansatz” for the interaction
of mesons with light particles, involving derivatives of the neutrino
wave-function, was tentatively tried by Y u k a w a 23). We shall
return to this question in the discussion of the spontaneous meson
disintegration (§ 10).

We shall introduce a t once the F e r m  i-v a r i  a b I e @, in order
to avoid the difficulties with the commutation rules of a general
quantum-electrodynamical theory, in which gauge transformations
would be possible 34) 43) 44). The to ta l L a g r a n g i a n  function
then read s :

L  =  fK('FtB r /iV'*'F +  T tBr„V '1'F) +  ihc 2  tfBr.V'M» -
(P,N,ir,v) p

-  (I/4tc) (^ V '* * ” +  © V ^ )  -  2xK('FtB'F +  T fBZ +

+  Z W  +  ZfBCofZ +  T+BT +  Y fBZ +  Z+BT +  Z^BCopZ) -

+  (1/8tc) & M ' lV +  ®2) +  (eK/fc:)' T B I ^ ' F  +

-h e 2  (37)
(P .7 T )  '  '

*) Compare the first foot-note on page 47.
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Here the notation is the following: V** denotes {d/dx, d/dy, d/dz,
— d/cdt}; Y is the undor of the second rank describing according to
[M.F. (10)] the components S; A, V; E, H; B, W; Y of the general­
ized meson field; Y is the neutrettor describing the neutretto field.
(Thus Yt and Y cannot be varied independently). B =  p(1)p(2),
r„ =  V*h -|- ylf1; Y« =  P au; a0 =  — 1. 2  is a summation over
the wave-functions ib of the particles mentioned under the summation
sign. and 31" describe the electromagnetic field in the usual way
($12“ $» =  «! =  «,, 9l° =  -3 lo  =  S8); © isthe F e r m i
variable.

Z is an undor of the second rank
V .  =  2 / ^  ̂  +  2 / ; ^  ^  (38)

representing according to [M.F. (10)] the following tensors (compare
[M.F. (11)-(12)]):

“ V  —>■

a =  -F gi<l4a<Kr. v =  +

e =  — /»4»Iv*P«(I'p — h =  — /ĵ IvPo+p — /i^lPo’K ;

w =  — g^Ws+p — gd^Ys'k, b =  — gj^o+p — g^Jc^; (39)

y =  //|<i«Y*Wp+ M UYsP'lv. s =  /o'R’P'l'p +  /ó+ÏP+w
(Ys == —  laxOyOt,.)

In a similar way Z represents the real tensors
• y  — ^  y  ^

a =  a* =  £g»(ipt«tpp — +  ig»(44a(Iv — ; etc. (39a)
We assume that all constants f0, gb, etc., are real (16).

The scalar operators CoP and multiply the tensors s; a, v;
-> —> —>■ — ^  — 4 —
e, h ; b, w and y in Z, arid s ; a, v ; etc. in Z, by the constant factors
C0, Ci, C2, C3, C4, and C0, Cu etc., respectively. These constants can
still be arbitrarily chosen. It is a special assumption, that in the
terms with C^  and Cop only products of the combinations (39) —
(39a) occur. This assumption is not essential for the theory. For
instance, one might have introduced the products of the types
(<W.<MMMe). {(<M4ir)«4<M +  and (<j4<M«4<k)
with three different coefficients. For the sake of simplicity we have
not done it here.



THE L A G R A N G I A N 59

K in (37) is the normalization constant of the heavy quantum field.
In the literature this constant is not always chosen in the same way.
We shall make here a definite choice and put this constant according
to K e m m e r 10) equal to (c/2) in the following.

The L a g r a n g i a n  function (37) can be written easily in
vector notation. This_should be done in order to remove at once the
superfluous quantity TL Integrating the terms, in which derivativesm m
of E, H or Y occur, by parts, h  = J L d x d y d z d t  takes the following
form (fletches over the vectors are here omitted; rot =  curl; K is
put equal to c/2):

h  =  ƒ  L' dx dy dz dt; (40)
— L  — c {A* . (xA -f- rot H — È/c) — V* (xV -f- div E) -f-

+  E*. (xE +  VV +  A/c) — H*. (xH -  rot A) +

+  W*(xW +  Y/c) — B*. (xB — VY) +

+  Y*(xY -  div B -  W/c) -  xS* S} +

+  2c{E. (VV +  A/c) +  H . rot A — Y (div B +  W/c)} +

+  cx (A2 — V2 +  E2 — H2 +  W2 — B2 +  Y2 — S2) +
+  (1/4tt) {<S. (VS8 +  9I/c) +  § .  rot 21 +  © (div 91 +  3$/c)} +
+  (1/8tt) (®2 _  £2 _  @2) +

+  E <]/(wc2|3— i h c a .V —iftd/dt)<l/— c E d/t ( a . 91—33)iL 4-
(P>N,7T,V) t • ,T
+  (e/i%) {E*. 91V — V*9I. E +  A *. [91, H] +  H *. [91, A] —

-  Y*9I. B +  B * . 9TY — E * . 33A +  A *. $BE —
-  W*33Y +  Y*33W} +

+  cx{A* .a  — V*v +  E * .e  — H * .h  -f- W*w — B *.b  +
+  Y*y — S*s conj, compl.} -f-

+ 2cx{A .a—V v + E .e —H .h + W w —B .b + Y y —Ss} +
+  cx {Cj(a* .a  — v*v) +  C2(e*.e — h*.h) +

■f- C3 (w*w — b*. b) -f C4 y*y — C0 s*s +
+  C, (a2 -  v2) +  C2(e2 -  h2) +  C3(w2 -  b2) +  C4 y2 -  C0s2}.

Now using (40) instead of (37) as the L a g r a n g i a n  function
we can regard

A, E, W, Y; A, W; 91, 33; 'J'n .' and (41)
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as the canonical co-ordinates q(x); the canonical conjugated momenta
p(x) are then given (on account of K =  c/2) by
— E*, A*, Y*. — W*; — 2Ë, 2Y;

- ®/4ttc, -  @/4tcc; ihty*  and ih^*. (41a)
The commutation relations between these canonical variables are
now given by

[?<(*); ?,•(*')]- =  <iAx) ?;«) -  9,(x') 9i(x) =  °> ,42 E Bj
[pi(x) ; &•(*')]- =  0; [qi(x) ; p ^x ')]-=  — x')

for A, E, W, Y; A, W; 31, 3S, and their canonical conjugates; by

M x) ; ?/(*')]■+ *■ <ii(x) ?,(*') +  ?,(*') ?<(*) =  0; F D)
[ft(*); />,•(*')] + =  0; M x ) ; p,{x')] + =  i% 8,, 8(* -  *0

for <J>P, and their canonical conjugates. Each of the cano­
nical E i n s t e i n-B o s e  variables is assumed to be commutative
with each of the canonical F e r m i - D i r a c  variables.

The quantities
S, S*, V, V*, H, H*, B, B*. S, V, H, B and §  (43)

must be regarded as derived variables. They do not possess canonical
conjugates, nor are they canonical conjugates of other variables.
Varying these derived variables in

8 f  L dx dy dz dt =  0 (44)
we find the following “identities” , which may be regarded as the
definitions of the derived variables:

x(V +  v) +  div E +  {ejific) (91. E) =  0,
x(H -f h) — rot A — (e/i%c) [91, A] =  0,
x(B +  b) — VY -  (e/ihc) 91Y =  0, x(S +  s) =  0,

and conjugate complex equations; (45)
x(V -f v) f- div E =  0, x(B +  b) — VY =  0,
x(H -f- h) — rot A =  0, x(S +  s) =  0;

£  =  rot 91.
From (42) and (45) the commutation relations for the derived
variables follow.



CANONICAL AND DERIVED VARIABLES. THE H A M I L T O N I A N  6i

The *H a m i l t o n i a n  function is now given by
'L pq— L' =  H'.

This H' should be expressed in terms of the p and q, that is, the other
variables should be eliminated by means of (45). First, however, we
shall give a short expression for H', in which this elimination has
not yet taken place. Since (40) is linear in the q and does no more
contain any p, we find H' by omitting from (40) all terms containing
derivatives with respect to the time. Now making use of (45) and
integrating by parts we can write the result in the following form *):

H  =  ƒ  H dx dy dz\ (46)

/f=cx{S*S+A*.A+V*V+E*.E+H *.H +W *W +B*.B+Y*Y+
+  S2 +  A2 +  V2 +  Ê2 +  H2 +  W2 +  B2 +  Y2} +

+  (1/8tt) {Ê2 -f- § 2} -f- (1 /4tu) {(div9l — \  @) @ -f- S3 (4nep — div(£)} -|-

( N v ^ ^ m c2  ^  c a ‘ < f>0l>) 4* +  S  4|t(mc2 P +  cot. J J%pn) tp + '

+  cx {A*, a -(- E*. e +  W*w +  Y*y -f- conj. compl.} -)-
+  2cx {A .a  +  E . e - ( - W w  +  Yy} +
+  cx (C, (a*, a — v* v) +  C2 (e*. e — h*. h) +

+  C3 (w*w -  b*. b) +  C4 y*y -  C0 s*s +
+  C, (a2 -  v2) +  C2 (e2 -  h2) +  C3 (w2 -  b2) +  C4y2-  C0 s2}.

Here we have put

c.Pop =  -  in V; J*ir =  -  in V -  (e/c) 91, , (47)
and

eP =  e 'Z y ^  +  (e/in) (A*. E — E*. A +  Y*W — W*Y). (48)

The physical situation is described by a situation function y , which
can be regarded like this was originally done for instance by
F e r m i  36) 36) as a functional depending on the actual c-number
values of the field components; but it is simpler, to regard it as a
function of an infinite set of partition numbers („Besetzungszahlen”)

N2, ---- , denoting the numbers of particles or quanta in differ­
ent states 1,2, . . . . .

*) H # s  pq — L; f  H  =  ƒ (S pq — L').
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According to F e r m i  35) 36) the situation function satisfies the
special condition

<3(x, y, z , t ) x  =  0. (49)
so that

V@x — A©x =  0; ©x =  ©X =  ©X =  • • • • =  0- (50)
The derivatives of the ̂ -number field components with respect to the
time can be expressed in terms of the field components themselves
and their gradients, by means of the canonical field equations, which
can be obtained either from the L a g r a n g i a n  variational
principle, or by

■ * ■ » ƒ = [ (si)
making use of the commutation relations (42). In both ways we find

div © =  47iep — ©/c,
rot £) — @/c =  4izej/c +  V©,

and
© =  — Y93 — t/c,

© =  div 31 +  »/e.

In (52) we have put

(52)

(53)

ejlc =  e E J/aiii -f- (c/*i) {[H*,A] +  [A*,H] +
(Pr)

q_. V*E — E*V +  Y*B — B*Y}. (48a)

The continuity equation

p -f- div ƒ =  0 (54)
follows directly from (48), (48a) and the field equations for the wave-
functions of protons, electrons and mesons, as shown by B h a b h a.
From (52), (53) and (54) we deduce:

@/c =  4top — div ©,

©/c2 =  A@, ©/c3 =  A@/c, etc.
(55)

so that
□ © =  0. (56)
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From (50), (52) and (53) we find

©X =  (div 31 +  SB/c)x =  0, (57)
and

(— é/c)x =  (div © — 4nep)x =  0,

V@x =  (rot §  — (g/c — 4-kej/c)x =  0.

From (55) and (42) we conclude that @ and its derivatives with
respect to time are commutative, so that the conditions (50) are
compatible with each other. From (55) we see that the relations (50)
do not impose other conditions on the situation function than the
relations (57) and (58).

The expectancy value of an observable J (̂f) is given by

*  (59)

(Summation over all possible values of the partition numbers.)
For actual calculations it is often more convenient to regard the

field components as matrices, which do not depend on the time; then
J^(t) is given by

c/fa) = 2  X*W JFtM , (60)

where yjt) is determined by

=  h f  x(t). (61)
The condition (49) now takes the form of

@(*. y> z) XW =  0. (62)

In order to find out, how //operates on the function y(t) of the
arguments t, N u N2, ---- in (61), we must express / / i n  terms of the
canonical variables q(x) and p(x), and express these variables in terms
of J o r d a n-W i g n e r and J o r d a n-K 1 e i n matrices-operat­
ing on x(Nu N2, ---- ). This has been done explicitly for K e m-
m e r ’s case (ft) by B h a b h a ™ )  and by K o b a y a s i  and
O k a y a m a  45).

Before we proceed to this treatment of the H a m i l t o n i a n ,
however, we shall first eliminate from it the longitudinal electro­
magnetic field and the help-quantity @.
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§ 5. Elimination of the longitudinal electromagnetic field. F  e r-
m i 38) 36) has shown how to eliminate the longitudinal electro­
magnetic field from the H a m i l t o n i a n .  Here, we shall apply
his m ethod to the H a m i l t o n i a n  given by (46).

For this purpose it is convenient to  introduce the following nota­
tion. Let the operator (1/V), operating on an irrotational (longitudi­

nal) vector field %ong{x)> he defined by
X

- ■ % mg (x) =  X(x)  =  ƒ  %mg . d t  ---- ► V X  =  %ong. (63)
0

Let in the same way (1/div), operating on a scalar field p(x), be
determined by

J -  p(*) =  t ( x )  ---- > div a t =  p, ro t 3£ =  0. (64)
div

The operator (1/div) is identical with the operator — (l/47t) New of
G i b b s 46). Finally we put

I___1_ _
V * div — A '

(65)

This operator is identical with the operator — (1 /4-k) Pot of G i b  b s.
Splitting up @ into a longitudinal and a transversal field, we can

write

(66)

Since from (52) follows
1 © 47ze

long +  c  div P ’

we derive by an “integration by parts” :

(67)

1 @ \ 2

div c /

+ 1 (5
div c

[Ê .-L È .
&k J c A c

Here, we have made use of the com m utativity of

@/c =  4nep — div © with (Simg-

(68)
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From (68) we find

£ ƒ « . -  -sr ƒ (s ■t +1 1»-) I  + tI!m
j x  —  x' \

On account of (50) the first term of the right hand member of this
equation, if operating on the situation function y, does not give any
contribution. Such a term we shall call a zero-term. Now, all real *)
zero-terms 0  in the H a m i l t o n i a n  are of no physical interest,
since the contributions given by such terms 0  to the commutators of
any observable J 7 with hC, have no matrix elements between states
satisfying Oy =  zero, which do not vanish. This follows from

n3 ,* *  12 =N 5  — {Ox\)*J7X2} =  zero. (70) /11 ***"
For this reason we may change (1/8tc) ƒ in the H a m i 11 o-

n i a n into the static C o u l o m b  interaction

l iS i i  <69.)
\ x - x ' l

For the same reason the term (1/4tc) (div 91 — J@)@ may be
omitted from the H a m i l t o n i a n  (46). Indeed these zero-terms
are of importance only in the L a g r a n g i a n  function, where
they must serve for the construction of a consistent theory, but for
practical purposes they are of no interest.

The electrostatic potential occurs in the H a m i l t o n i a n  in
the terms

(l/4n)/$$(4nep — div(S) =  f%<g/4nc. (71)
Also these terms can be omitted.

In order to remove the longitudinal vector-potential from the
H a m i l t o n i a n  we perform a canonical transformation which
was indicated by F e r m i 38) »•). This transformation is given by

Z =  «<f X ,  X *  =  X *  e ~ iF , (72)
so that

A  Q O

=  S (l/«!) ]W. (73)
• » = 0  '

*) A ^-number is called real, if it is a self-adjoint (H e r m i t i a n) matrix with
respect to the partition numbers N t, N .............

5
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Here we have put
ƒ  =  [{ ƒ } ; i f U  -  [{J7};

generally - (74)
[L U 7}; # ]< “>; * £ 1 -  =  KcT7}; ^ (B+1)-

Then
(75)

N uN ,,... N»N „...
A A

so that the physical situation can be described by j 1 and /  as well as
by J 57 and /. According to F e r m i  38) 36) one must put

F —  j"ï (76)

tfj =  (iejhc) ƒ p ~ . 9tj0Mg =  (e/^c) ƒ 3lJO„g . —  p, (76a)

if2 =  (ijAizhc) f  $8 div 3li0„g =  (Iffaihc) J  %0„s . V93. (76i)

7w order to eliminate /row the H a m i l t o n i a n ,  the trans­
formation with F, is sufficient. We shall calculate, how the variables
still occurring in the H a m i l t o n i a n  are transformed by it.

For this purpose we must calculate the high-order commutators
occurring in the last member of (73). We remark that, among the
variables occurring in the H a m i l t o n i a n ,  only the wave-
functions of charged particles and mesons do not commute with (76a).
The longitudinal electric field strength, which does not commute with
%ong, has already been eliminated from the H a m i l t o n i a n  in
the foregoing.

Now, from *°) _
ep =  (e/ih) S pq (77)

q(P,ir,mes)

(summation over all canonical co-ordinates q(x) describing the anni­
hilation of protons, positons or positive mesons, or the creation of
antiprotons, negatonS or negative mesons), we deduce with the help
of the commutation relations (42):

[?«(*)» “  ^(* x ) ?«(■'') ’
ip,(x); p(*')]_ =  -  8(x -  x') pe{x'),

for all canonical co-ordinates q, describing a decrease of the total
electric charge by e, and their canonical conjugates pe describing an



THE CANONICAL TRANSFORMATION OF F E R M I 67

increase by e. Thus, we find the recursion formulae

«?*(*)}; *f i]<M+1) =  -  ( ü  • m*)Y.
. , x (79)

[{^W}; i f 9fio„gj ,-fjw

so that (73) yields

p, =  pee~ ’̂\
I =  (e/Jic)( 1 /V ) .» ^ .

These formulae can be applied to A, E, Y, W and their cano­
nical conjugates. From the fact that the wave-functions of the neu­
trons and neutrinos are not transformed at all it can be deduced that
s, v, a , ---- , as defined by (39), transform like the qe according to
(80), whereas s*, v * ,---- , transform like the pe.

The derived variables were defined by the “identities” (45), which
contain the gradient operator and the vector potential in the com­
binations

{V +  (e/ihc) 91} qe and (V — (e/ihc) 91} pe (81)

only. By the transformation (72), (76a) these expressions change on
account of (80) into

{V +  (e/ihc) 91} qe =  ea (V +  (e/ihc) 91} qe +  (Veil) . q, =

=  ea {V + (e/ihc) 91,,} qe\ (82)

{V -  (e/ihc) «} pe =  ({V -  (e/ihc) 91,,} pe) e ^ .

Thus the longitudinal vector-potential 9l,0Bg is eliminated from these
expressions. In a similar way it disappears from the expression <J,.

The transformed H a m i i t o n i a n

F f= /cy .{S*S  +  A*. A -f- ........, (46«)

in which the derived variables are "defined” by the transformed
identities

x(V +  v) +  (V +  (e/ihc) 91 . Ê) =  0, etc. (45a)
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can now be expressed in  terms of the original matrices (];, A, E, . . . . .
by inserting the expressions (80) and (82) for the transformed vari­
ables into (46a) —(45a). Then all factors e~il and etl arising from
(80) and (82) cancel each other. The longitudinal vector potential
disappears entirely. Thus we find the transformed H a m i l t o n i a n
J~C expressed in term s of the original canonical variables, bu t the
matrices ©;on?, 33, © and %ong do no longer occur in it.

I t  m ust be pointed out, however, that, if we want to calculate the
m atrix element of some observable by means of the transformed
situation function y, we m ust use, according to (75), the transformed
^-numbers, and not the original matrices occurring now in the
H a m i l t o n i a n .

For instance, © is changed by the transform ation (72)—(73) —
(76a) into *) © =  © +  (4ue/div) p.  Since from this expression the
original m atrix  of the longitudinal field @iong has not yet been
eliminated, it is impossible to calculate the expectancy value or a
m atrix element of the electric field, if (1°) the dependence of the
situation function on the partition numbers denoting the numbers of
longitudinal “photons” , or (2°) the way, in which @l0Bg operates on
this situation function, is not known. This means that, though the
longitudinal field does no more occur in the H a m i l t o n i a n ,  it
has not yet been eliminated entirely from the theory.

For this purpose, the transformation with was introduced by
F  e r m i 38) 36). I t  is easily seen from (73) and (76b) th a t among the
canonical variables only @iong and © are changed by this second
transformation. I t  turns out th a t by the combined transformation
(76) @i0Mg and © are changed into *)

=  (Siong +  V33 +  (4rce/div) p =  (47re/div) p — %onJc. (83)

© =  © — div 31 =  33/c.

From  (83) and (52) we find

© =  div 2I;tmg.

Now, from (72) — (73) and (50) follows

©X =  @x =  0,

(84)

(85)

(86)

*) Compare the foot-note on page 72.
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so tha t we find from (84) and (85)

=  0 ,

div %ong x  — 0. (88a)

(87)

Since rot %0„g =  0, we can write — always on account of (49) — :

% o n g  X  =  0 . (88)

This means th a t by a description of the physical situation by
means of the transformed situation function, the original matrices of
the scalar potential and the longitudinal vector-potential, if opera-
ting on the new situation function, m ultiply it by a quantity, which
does not depend on the time. Now the electromagnetic field strengths
are given by (compare (45), (83))

where we have omitted from (83) the term with %ong, which on account
of (88) has only vanishing matrix elements between states satisfying
(49) or (86). If only %r, %r and p are expressed in terms of J o r -
d a n-W i g n e r and J  o r d a n-K 1 e i n matrices operating on a
situation function, the dependence of which on the partition numbers of
the longitudinal field is not known, we still can compute the total
electromagnetic field strengths from (89), so tha t we m ay say th a t we
have succeeded in eliminating the longitudinal “photons” completely
from our calculations *).

This was possible only since we had the extra condition (49) on the
situation function at our disposal. Since such an extra condition does
not exist for any of the field components of the meson field, a com­
plete elimination of some part of the meson field seems to be impos­
sible u ) 37) (compare § 4).

*) T hat is to  say, for the calculation of the m atrix elements of 5g and 91 umg themselves
-  which are not transformed a t all by the F e r m i  transform ation (72)-(76) — it

would be necessary to know the dependence of % on the numbers of longitudinal photons.
However, these quantities, which according to (87) and (88) are constants, are of no
interest for physical problems.

ê  =  rot =  rot %r,
(89)

ê  =  (4ms/div) p -f  %,/c,
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§ 6 . Discussion of the H a m i l t o n i a n .  Now we can insert (45)
and (69) into the H a m i l t o n i a n  h f  (46), omit all real zero-
terms (compare (70)), transform by (72) — (76) and express the trans­
formed ̂ -numbers in terms of the original ones by means of (80)—(82).
In this way we find the transformed H a m i l t o n i a n  expressed
in terms of the original canonical variables. The result can be written
in the following form.(we write h f  instead of H  in the following):

A
hC =  ƒ  H dx dy dz\

(90)
H  — H0 +  Hc -)- Ht -f- Hu -f- Hg -T Hgg Heg.

H0 =  cx{A*.A +  E*.E  +  W*W +  Y*Y +  A2 +  Ë2 +  W 2 +  Y2}+
-f (c/x) {(rot A*, rot A) +  div E*. div E -f- (VY*. VY) +

' +  (rot A ) 2 +  (div É )2 +  (VY)2} +
+  (1/8 tc) {(£?, +  (rot 91(,)2} +  S ^t(mc2p +  c a . J 3̂ )  4».

Dfc =  — [  f   ̂ ; (e9 is given by (48)).
I X  —  x ' I

H. = — « «

ej{0)fc =  e £  -J- (e/ihy.) {[A*, rot A] +  [rot A*, A] +
< P , » )

+  E* div E -  div E* . E +  Y*VY -  VY* . Y}.

H« =  (e?/cxh2) {(91. E*) (91. E) -  (91. A*) (91. A) +  912(A*. A +  Y*Y)},

Hg =  cx{A*.a-|-E*.e+W*w-)-Y*y-(-a*.A+e*.E-f-w*W-|-y*Y}-)-
+  c {div E*. v — (rot A*, h) — (VY*. b) +  v* div E —

— (h*. rot A) — (b* . VY)} +
+  2cx {A.a - j-E.e -f- W w-f Yy}+2c [v div E — (h. rot A) — (b . VY)}.

Hgg= cx{(l—C0)s*s-TC] a*.a-|-(l —C\)v*v -|-C2e*.e-|-(1 —C2)h*.h-(-
+ C 3w *w + (1—C3)b*.b+C 4y*y+

+  (1 - C 0)s2 + C ,a 2 + ( 1 -C ,)v 2 + C 2ë 2 + ( 1 - Q h 2 +

+ C 3W2 + ( 1- C 3)b2 + C 4y2}.

Heg - - e %r • 1 glc,
ejg/c =  — («/*»){[A*,h] +  [h* ,A ]-E *v  + v * E + Y * b -b * Y } .
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For a discussion of this H a m i l t o n i a n  we expand all cano­
nical variables in series of plane waves. For this purpose we introduce
for every F o u r i e r  component of the field a set of complex unit
vectors c l defined by

& = PIP ; a?  =  c i"; (&*.ck') =  V ;  [ k , a ]  =  - * 1 '0
p p  p  p  p  p  p  t

[d*, cl] =  it\ d ; <rl — — tit; (u
p  p  p  - p  p

T

1 > Oi 1 > ■*) — i  !)•
(91)

As usual we shall expand the field components in a hypothetical
cube (volume =  Q), in which the fields are assumed to be periodic:

A(x)

A*(x)

W(*) =

W*(*) =

—  S E A
y l 2  -*■ f i = — \ p ,h  p

■—  2  2  A* a fe -m p .* .'
y  12  ->• / i = — 1 p ,n  p

2  Wd «<•'/*> *•*Vü T p

—— 2  W* e-  W») P-*
V9 * *

(92)

In a similar way the amplitudes of E and Y will be called E_* and
. = p,m

Y-+ • The real fields A, E, W, Y, ©jr will be expanded according to

r± . 1 1 _  _
A(x) =  ~~7r\ S S A-> Cl em p -z ; (A* =  — A ^  );

( * - - i  P-/1 P , p ,m -p>/i

W(x)

%r{x)

- - S W .  g « * >  P-*
V H -  P

; (W* +  W . ) ;  (93)
-p

-77=; S 2 cu cl em  p -x  ; (a l ss — a ) ; etc.
y i 2 # > , i /  #> ^, 17 - p , i i

From the commutation relations (42.E-B) between these canonical
field components, the commutation relations between the amplitudes
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can be easily derived, since *)

V  ■8( x .—  x ' ) =  —  2  i  (c^* )y /

1 r->  -> —*■ —► (94)
-pr- / (<£.'* . clt) e(‘w {p~p,)-x dx — 8„„, . 8(p — p') .
LI J  P’ P

Thus we find:

At*-
L

U 1
1—

1a.
<

. =  [E* ;
#>■/*

J — =

[ W + ;
p

Y*]_
P’

=  [ W *  ;
P v -

:p,p-
A *  ] _ r—

1,
>

1
I t
l

\ y - = i

rv v ' •
*>

1
1---1

I>
- =  [W _ *  ;

p
Y =

[ 4  ;
M

a* ]_
p',y '

=  [a —  ; e - .  ] _ .  =
P.V

«Tf 8 (/>  —  ƒ > ') ;

t f t / 2 ) V  * ? - ? )  • (9 5 )

(ih/2) 8(fi —  p ’);

Amfic 8VV, 8(p — />');

all other pairs being commutative with each other.
Following the method of P a u l i  and W e i s s k o p f 15) we put

!%. . ~ \  - r.
p

Y_* =

t i *
?  r  2

=  * f T  I ,  ( m  ,  ~  m

<>,0

#1,0

u p

up,0

u
P.y
i

UP,0

it*p,v

A
-#>

4 ' " 7

4< " V

-P

m*J),

- ( * - *  - d * . )
2  #>,o -#>,o

=  fT l / l ( n -  — n£,o  />,o f 4  f>,o

!%
\ {bn '2  M

2  *>,o

' ö  b f  '2  p,ij

d * _ ^  )
-p,y

d * _  )
-  ? ,0

d * _ *  )
-p,n

-p

)-#>,0

#>.i7

P,o

iUP,V

C
■ *>.«

(96)
. (n_4 ' M -p,v

1 + " * -  ),f 4 p, o ~ p*o

E_* = t £ *
p,v P.V

1%,
' 7  ( » U4 #>,ij

—  \Z2nJic (L+ -

&* Mp,i1
I *  .  ) ,  t u  >

-  M  M
: fg-> \ / 2tz%c (L* +  /*H

M  M  - *

*) F o r  c a lc u la tio n s  lik e  t h a t  o f @ (83) a n d  ©  (84) in  th e  p re c e d in g  sec tio n , i t  is  c o n ­
v e n ie n t to  in tro d u c e  th e  longitudinal a n d  th e  transversal 8 - f u n c t io n s  d e fin ed  b y

f e “S ( * - ? ) = 7 - S ( d )  (cH) «<*/»>?•<*—*') and
// -+■ P jf P j

8fj?s f c ~  ?). +  8%, (* — ? )  =  8;y, 8(1-* ')■
C o m p a re  N o v o b a t z k y ,  loc . c i t .  47), fo rm u la  (28).
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Here V  Hw h ’ f?,.' h-n and =  ±  J) are real con­
stants depending on p  (and tj respectively) and satisfying

f -♦ « £* =  i' .♦ ; g_* =  g . (97\
p  - p  P ,n  - p , n  1J ° - p , r j  ' *

We shall choose them afterwards in a convenient way. On account of
(95)—(96) the matrices cu, 6+ , c^, <U , U  , n u  and n
satisfy the following commutationrelationsf ̂

[ a ? ; a y -
[<u; c*]p’

[&-* ;6*  ]_/’./i

: [m_>; m* ]_ =  8(p — p’),P pf r  •

[cL ;d* ]_ =  [n_ ;n* ]
P ’11  P'-P-' P , P  P' , \L'

^p,v ’ W  ~  w  =  -  1. o, 1; 7), '̂ -  ±  1);
all other pairs commuting with each other.

Soa7 ap’hh b-t»’ci; CV d l; ^  ’ m * m-v and n* ruP P  . P ’̂  p *  p  P P’P  P’P  P.V P.V P P Pm  Pm
possess the eigenvalues 0, 1,2,3, . . . .  and the ^-numbers introduced
by (96) can be regarded as ordinary J o r d a n - K l e i n  matrices.

We shall now expand the particle wave fields <]« in series of plane
waves according to 48)

<M*) =  — ^ r  2  S (v^
V “" -*  <t= ± i p ,a  p ,a U&.

- p , o  -  p ,a '
U>*_* P * . (99)

where the are normalized four-component “spin-functions”
(undors of the first rank »)), which satisfy

{mcp +  (£.«)} =  +  V(mc)2 +  p2. ;

( p - a )  U . +  =  a p  U - >
P>a  p , a

so that the charge-conjugated «) «) of « _ satisfies
~ P - °

(wcp +  (/>. a)} u&̂  - -  a/(me)2 +  p2. u&

p ,°  ( 100)

[p. a) u& esp u& -
(100£)

I P>0 I I  p ,a

The matrices v^  and are ordinary J  o r d a n-W j g n e r
PM  p.O

matrices, since from (42.F-D) foil
[*>t  ; v* ]+ =

P ,a  p ' ,a '

[ u u  ; w* ] ,
P ,a  p>,o'

V» *>*
p .o  p i ,o ’

lows

V*P',o'V-t,o =  S °° '^ P -P ')’
■ K o ' * { p  —  p ' ) \

( 101)
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AfbufoHVh M
£  ' aS*-, w U  £
£ tsÂ-

^  fiXc
 ̂ djAictU

* ö||<Po)-'/̂

all other pairs of F e r m  i-D i r a c amplitudes being anticommu-
tative with each other.

From the L a g r a n g i a n  function (37)—(40) we can derive the
total linear momentum, the (orbital) angular momentum, the spin
angular momentum and the total electric charge in the ordinary
way 40). Since the terms in the L a g r a n g i a n  (37) describing the
interactions do not contain derivatives, the expressions for these
quantities in terms of the canonical variables do not contain inter­
action terms^jïnserting into these expressions 40) the expansions (92),

- (93), (99) of the wave-functions and substituting (96), we find the
following expression for the total momentum of the field:

j 3 = Hf{aXat X b* 6 -
f i= —1 P.P P.p

c_> c>
p p

- X (U d*
ii= —i p.p  p.p

m  y m i) +  2 i-(n* n
—I P4

+ x *(n u +u n ■)+ s s (i>3. v
r t= ± l P.V P.V P.V P.V (P,Y,ir,v) ct=

P.P
*

± 1  P,° P,°

~P,p P.P

. — W ,

) +
(102)

)}•>*p,o

In a similar way the total electric charge is found to be equal to

c =  e X {aicu
-* p p
p

2 fai b*
Ji— 1 p.ft f.p

1

■ X X v* } -
(P,7T) CT=± 1 P<° P’a (103)

é S{<u c * +  S 1  d* - S  X u u  w* }.
-*• P P p = — 1 P.p P.P (P,7r) < 7= ± I P’°  P’°

The total spin angular momentum can be written as a sum

£ = X  S cHS^ , (104)X X "ciS^ ,
- j  f i— i p p.p

p,°
where S_* can be expressed in terms of the amplitudes il* , w

p.p  p'°->
n , ) b_̂  , b_> , etc., u i  , etc., belonging to the momentum p only.

P P .»  P ,V  P ,o
We shall calculate only the spin-component parallel to the mo­
mentum

8n =X c iS_>  ; (105)

tU d*
p.p p.p

S+ = x (li ( b i  b*
P.0 fl = — 1 p.p P.p

+  x>)*{i(ii ^
i j = ± i  p .v p .v

+  X X {a%/2) {ui «*.
(P,2V,7T,t>) <7=±1 #>,<* ?■<*

1 > n i  )} +
p,p p.p

U  I* )} +p.v P.V
W y  W *  }.

p.a p,o
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Finally we shall compute the contribution to the total energy
from the term H0 of the H a m i l t o n i a n  (90). We find
Ü 0 =  cx2{(W*W^ +  A* A^ +  S E* E_* + W U M  4-

~P p  P P ,0  P, 0 1 J= ± 1  p ,i) p,r) p  p '0

+  S )+ ( l+ ^ V ) ( Y * Y ^ + E *  E_* +  S A* +
i? =  ± l  P.V p  p  p ,o p ,o r i = ± l p , T )  p , i ) ‘

+  Y I + E I  +  2 Ad )} +
P P.0 7 ) = ± l  p,ri

+  (1/871) S E { d  +  (P2/%2) cd } +
-r v=±i P’V p.n

(106)

+  c 2  S 2
(P,N,tt,v) -*■ CT=±1p

w* ) y/(mc) 2 p2.

Inserting (96) we find a simple expression, if we choose

u  =p.p
Vpj%.

up cp ^  1 +  p2/h2y2 (=  VSp/mc2) ;

P'V
We put

(107)

(108)
ep =  c V (me)2 +  p2; W^.") =  cV (Me)2 +  p2;

W(p ] =  c V  (me)2 +  p2\ w p  =  cV([xc) 2 +  p2;
where M .m .tn  and g. denote the masses of nuclons, heavy quanta,
electrons and neutrinos respectively. Then I-f0 takes the following
fo rm  •form:
& 2  s*,{o*cu+ 2 ft* b „ -(- cueP P * A *'—1 pF ~p ,p '—». .p p F 2  <h d*

+  +  rruml 2  |(n
2 2  *(£ Id

/* =—1 ■>P>P P+ P,p P,n)}+

1?=±1 p,v P,V K  ) +M p,v
(109)

+  2  2  Wd 2  (pit p_*
{P, N ,v , v )  -» <r= ± l #>,<r #>,<7P

w  „ in* ).
P,o P,a

From (98), (101), (102), (103), (105) and (109) follows the usual
interpretation oi the operators aXau , etc. as numbers of particlei/in
different states/ The matrices ou, .\ .. and p_* , ___describe the
annihilation of a quantum or a particle; the matrices a i , ___and
v t  , . . . .  its creation.p,a

Now the H a m i l t o n i a n  (90) can be interpreted. I-f0 is the

S/j/J 6T  h) ^  ét7 y a/ c&t
/I <&. ^  A' «/ut cn t̂hsi -

-
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energy when neglecting all interactions. hfc is the static C o u l o m b
interaction between protons, electrons and mesons. It contains the
infinite electrostatic self-energies of the particles; for instance:

2 JJ \x-~ ~x'\
=■£ rr̂ pM tów +  _ (110)

2JJ | ^ - ^ |  2JJ ' f f - v f
The first term of the right hand member represents the ordinary
C o u l o m b  forces together with the electrostatic exchange forces;
the second term is the infinite self-energy. hCe is well known from
radiation theory. Here some terms are added to it, representing the
radiation of the moving mesons. This part of the H a m i l t o n i a n
gives rise to the creation or the annihilation of a photon (9tir) under
transition of a charged particle or a charged heavy quantum from
one quantum state into another or under creation or annihilation of
a pair of charged particles or heavy quanta (ip*  ̂or T'*'F).

The term gives rise to direct two-photon effects, by which a
meson jumps from one state into another, or by which a pair of
mésons is created or annihilated. In the D i r a c  theory of electrons
such a term does not occur.

I~Tg describes the interaction between heavy quanta and matter.
It gives rise to the following processes (Y+ denotes a theticon or posi­
tive meson; Y— an arneticon or negative meson; Y° a neutretto; P +
denotes a proton, P— an anti-proton (hystaton), N+ a neutron and
N ~  an antineutron; iz a positon, e a negaton, v an “antineutrino
(compare § 4) and o a “neutrino” ; finally hv a photon):

Annihilation or creation of: (P~+N ++ Y +) or (P++ N —+ Y  ) or
(p+_|_p—_|_Y°) or (N++N--I-Y0) or (s+v+Y +) or (tc+ o+ Y -)  or
(7r-t-e+Y0) or (v+o+Y°). Further:
P+^± N+ +  Y+;
p -^ ±  N -  +  Y~;
7t v -(- Y+;
e 5± o  + Y - ;

N+5± P+ +  Y -;
N -^± P -  +  Y+;
v 7t +  Y~;
o 5± s +  Y+ ;

Y+ p+ +  N~;
Y - ^ P _  +  N+;
Y+ -f-o ;
Y— s +  v

Further: emission or absorption of a neutretto by a nuclon or by a
light particle jumping from one state into another without changing
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its charge; and creation of a pair of nuclons or of light particles from
3. neutretto or annihilation of such a pair to a ncutretto.

Especially the interaction between the nuclons and the heavy
quanta is of much interest, since the corresponding coefficients are
so large.

n gg describes a direct interaction of nuclons with nuclons, of
nuclons with light particles and of light particles with light particles
To some extent it can be compared with I-fc, since both terms in the
H a m i l t o n i a n  do not give rise to the creation or annihilation of
a photon or a heavy quantum. This term hfgg gives a first order
contribution to the ^-disintegration of instable nuclei:

. P + -> N+ 4- 7C +  o, N+ P+ -f e +  V.

The term I-Teg is of much importance. This term was given expli­
citly for the first time b y B h a b h a 18), though also K e m m e r
drew attention to it in a foot-note “ ). It gives a first order contribu­
tion 45) to the matrix element for the “photomesic” processes

Y+ +  N+ ^  P+ +  Av, Y~ +  P+ 3± N+ +  Av,

which couple the soft” and the “penetrating” components of cosmic
radiation 49). According to unpublished calculations the effect of this
first order term seems to be to compensate for a good deal the strong
second order transitions, in which first a photon is emitted by the
heavy quantum, and only “afterwards” the latter is absorbed by the
nuclon (compare § 12).

If (96) and (107), (108) are inserted into (92) and (93), one finds:

A(x) 'JtL |
me2 P.o 7) P 1 Sp P,V

rot

e~<*’/*> p-x (ci.1/ d* i t * * ] /  m°2 ft* u
me2 ;  ?Y V M-

' me2,
(111)'

AM — y  ö*Q s  |/)|1/ —  S 7){6.* +  d* C
1 z .n \ i-+  r sp t] p,v p P v p >>

E (* )= * j/~ S  {ew * )^ (^ |/*—  +  2 cT ]/-^ 6 _ > ) —ep p.o y Pr me2 p,i)'
____ , «—(*■/*)/>.*(ci 'me2

zp
d*

P.0
£ cl*i
V p \ ~ 2 d *  )}»m e 2 p.r,1”
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divE(*) = —j / ^ S
P

\ 4> \ [  - - { b +  ew»>£*+d* r l W M j ,
r  7  S p  #>,o #>,»

W ( * ) = t | / ~  s i /  +  c*e-W*>^},v ' f 2Ü r me2 #> #>

Y(v) = j / A £ | / ^ { a ^ (</*>^ -  « £ * -« « %

(111)

V Y W =*|/ 2M2 s  I £! /l / — (a jS .^ /* )^  +  c * c l <?-«*>*•*};
f Sp *> *> P P

and in a similar way :

~h /m e 2

/>

+  e -(»/*) P-x

n > ) +
Sp M

/m e2
^-2n* +  Sc!l*l/ —  n * )} , (112)

m e2 #>,o ,, p I  ep M

W W « f ó ï  V/i ^ (mJe'W7ï "  etc-' “ p
and:

i ' j 3 e,‘'*, w + k / % ^ « p5>: (113)
p

The expansions (112) for the neutretto field are obtained from those
for the meson field (111) by changing a/^ /20 into Vhj4Q and by
changing a  into m, c into — m, and b and d  both into n.

The conjugate complex of (111) are obtained in a similar way by
changing b into d  and d* into b* ; a into - c  and c* into - a * .
Nothing else should he changed.

The expressions (112) and (113) are real themselves.
Cross sections $  for any of the cosmic-ray reactions discussed in

the foregoing are calculated in the usual way B0) :

Oa^  =  ^ . p ( f ) . S | ( ? | 2, (114)

(summation over all admitted final states);

+  (115)
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Here v is the relative velocity of the impacting particle or quantum
and the “targets” ; hita, etc., are matrix elements of the perturba­
tions hfc, tie, hieet hTg, hfgg and ifge ( B o r n  approximation); a, i
and ƒ denote the initial, intermediate and final states. £n denotes
the energy of the situation n.

P(̂ )d(£f â) is the number of final states with an energy in
the interval d£,t which can be reached directly or through the inter­
mediate states i  from the initial state a. We have written d{£, —  £a)
in order to indicate that it may be necessary to vary the initial state
together with the final state in order to ensure a non vanishing
matrix element between both, if the creation of an antiparticle is
described as the vanishing of a particle from the so-called continuum
of states of negative energy.

The ratio between the contributions to the “matrix element” Q for
a given process from the nth and the (n -j- 2)th approximation has
the order of magnitude

h f  ■ hi-
2  2 ________* » + i  *» • »»»»— i

*» + 1 *» <'* M +  l ) ( <'«  —  €i„) (116)

The summation over in and iH+l will often have the form of an
integral over a continuum of intermediate states in. In that case it
gives rise to a factor

/  (4nCl/c2h3)psds,  ( 117)

where e and p  represent the energy and momentum of an extra
quantum emitted and absorbed again in the higher order process.
The factor £2 will be cancelled by a factor (1 /ft) from f I-f. .
The dependence of the matrix elements fft,t on the energy s”wil]
generally not be sufficient to ensure convergency of the integral over
the intermediate states, which will diverge on account of the factors
in (117). Therefore high order calculations will often diverge, if a conti­
nuum of intermediate states is possible.

The ratio between the probability of a multiple process, in which
{n +  1 ) quanta are created, and the probability of a multiple process,
m whlch °nly n quanta are created, can be estimated, if one assumes
that the lowest order of approximation giving rise to such processes
will give a result of the right order of magnitude. Then, the creation
oi{n +  1) quanta will be found by an approximation, which is one
order higher than that for the creation of n quanta. The intermediate
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states are now determined (apart from their order of sequence and
the polarizations) by the final state, and the ratio of probability is
only of the order of magnitude

^  I A t t p z d e .  h f V i l  2
M J  ~~Wc2

(118)

The factor M denotes the number of possible polarizations of the
(n i yh em itted quantum ; the integral has to be taken over all
energies e of this extra quantum  th a t are allowed by the conserva­
tion laws. The momentum of the quantum  corresponding to e is
denoted by p. A<? is the difference between the energies of the addi­
tional intermediate state and the initial (or final) state. In most
cases f  ede/\A £ \2 will be of the order of magnitude 1. Then the
ratio in question is given by

On_|_]/0M w  \T~f\2D.. pM p vïtfc2. (119)

For the emission of photons we find from (90) and (113):

\hTey/0. \ «a ehcV I pc, (120)

so tha t
<D„+1/<Ï>„ m (M/tc) (e?/hc) tv 2/137tt. (121)

For the emission of heavy quanta, however, we find from (90) and
(111) tha t the m atrix  elements |f /^V  Q | are not all of the same or­
der. Those arising from A tr, E;tmg and Y are only of the order of
magnitude

ghcV2^, ( 122)

where g is one of the constants gu g2, g3 defined by (24). So these
term s would yield a ratio

Om+ i/Om ^  (3/2tc) (g2/Tic), (123)

if we take s ^  2pc, M =  3. If we insert into (123) the values of
(g2/hc) found in § 3, we find in this way

^  T F  ^  Ttr*

The terms, however, arising from Along, E„ and W, have m atrix
elements \l~fgVD. |, which are larger by a factor (sp/mc2), and the
m atrix  elements of the term s with rot A, div E and VY are larger
than (123) by a factor (pjmc). We conclude th a t these terms may give
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rise to the production of an appreciable number of showers of heavy
quanta of high energy (sP — me2 ;> 1C8 eV), if the available amount
of energy is large enough 49).

Finally it is useful to compare the matrix elements in (111)
describing the annihilation (creation) of a positive meson with a
momentum p, and those describing the creation (annihilation) of
a negative meson with a momentum — p, since in a summation
over different intermediate states both effects will often occur in
terms, which must be added together. It must be remarked that
generally both terms will'possess a different denominator (£a — £f),
but in approximative calculations these denominators may some­
times be put equal to each other. Then we remark that in A, rot A
and their conjugate complex the matrix elements given by the
terms with b and d*^ (or with 6* and d  _* ) are (on account

p <p  - p ,i* p,)i - p ,ii
“  ')■

of c =  — eft) opposite equal to each other, whereas they are

exactly equal in E, div E and their conjugate complex. In a similar
way the matrices cl* and c*_* (or a t  and c _►) .occur with the same

p -p p -p
coefficient in W and W*, but with opposite coefficients in Y, VY and
their conjugate complex.

Thus the product of the matrix elements describing creation and
subsequent annihilation of a theticon with a momentum p and a
polarization pt will exactly be equal to the corresponding product
describing the creation and subsequent annihilation of an ameticon
with the same polarization but with a momentum — p. Only the
sign can be different. A different sign appears only, if the creation
and the annihilation are described by J  o r d a n-K 1 e i n matrices,
of which one originates in (111) from E (or its divergence) and the
otherjrom A* (or its curl), or one from A (or rot A) and the other
from E* (or div E*). For instance, if the creation of the arneticon is
described by A and its annihilation by E*, the product of the matrix
elements is opposite equal to that corresponding to the creation of a
theticon described by E*, and its subsequent annihilation described
by A. If, however, creation and annihilation are described for in­
stance by div E and E* (and E* and div E respectively), the pro-
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ducts of m atrix  elements for both processes are exactly equal.
A similar rule holds for Y and W.
These rules will enable us to avoid some frequent bu t substantial

errors in  sign 49) 45) in calculations like th a t of the second order con­
tribution to the m atrix  element Q of the photomesic and the meso-
photic effects:

Y“ (/)+ P + (0 )
~(p') +  hv(k) +  P+(0)

^ Y - ( p ) + Y + ( - p ') + K ( p )  *
(124)

(p =  p ' +  k)
where the difference between the products TTtITfIa and H fIII-fIIa is
of the above-mentioned nature and where the denominators
(£„ — £f) are equal in a non-relativistic approximation.

§ 7. The heavy quanta interaction between nuclons. In the preceding
sections we have developed a quantum  theory of the field of heavy
quanta. We shall now apply it to a number of im portant problems.
The first one we shall deal with is the force between proton-neutrons.

There are mainly two methods leading to the purpose. The first
one is th a t of a perturbation calculus; it was performed by several
authors 10) 19) 18). In  these calculations the “recoil” of the nuclons by
the emission and absorption of heavy quanta was neglected. Assu­
ming K e m m e r ’s “symmetrical” theory of mesons and ne.utret-
tos so) an attraction between nuclons was found in the second appro­
ximation. A fourth order calculation 19) yielded a strong repulsion at
small distances (r <  1 /2x). I t  is not certain, however, th a t calculations
of the successive higher order effects, if they give converging results
a t all, will not yield still stronger interactions, the sign of which is
problematic. That much is certain th a t for small values of the dis­
tance between the nuclons the result of a perturbation calculus of
finite order is not trustworthy.

The other method was used by Y u k a w a  21). This m ethod has
almost the form of a classical calculation, in which only “static”
interactions of the “static” parts of the nuclon fields are taken into
account. This m ethod can also be used for the derivation of the
B r e i t  interaction between electrons 51). There, the “static” inter­
action through the medium of photons takes the place of a similar
interaction through the heavy quantum  field in our case.
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From the H a m i l t o n i a n  h f  the equation of motion for the
quantized nuclon wave-function is derived according to (51). (It can
also be obtained directly from the L a g r a n g i a n  by variation of
its canonical conjugate). The H a m i l t o n i a n  contains the
nuclon variables in the terms hf0, hfg and hfu . These terms are of
the form of

^  — ^o +  ffg +  tfgg =
=  f ¥ ^ ° o p ^  + 1 J  g„{Tn*(fovj,) + ( f  +

+  /  S dW'1' “ kW (^  «*>„ <];). (125)
n

Here w„ are some matrices operating on the undor-index and the
isotopic spin co-ordinate of t|i, whereas T*„ denotes the components
of the heavy quanta field and their derivatives with respect to the
spatial co-ordinates.

Now, it is well known that generally a superquantized H a m i l ­
t o n i a n  of the form of

>'{i)rf0{i)op¥i) +  è f  ¥ \ 2) W(l,2)op<J/(2)<Mx) (126)
yields an equation of motion for the quantized wave function

i%¥i) =  [<KJ) ; Ü )-  =  {H°{i)0p + f ¥ i 2) W (127)
whereas the equation of motion (61) of the situation function y now
is equivalent to a “S c h r ö d i n g e r  equation” for the n particle
problem of the form of

....... «) =  ( ^ " ( ^  +  S W{k,iyypm} ^ i ,2, .........n). (128)
« = 0  k > l

Here we have put
W (k m m =  UW(k,i)op +  W(!,k)opy, (i29)

4'(-r>2» . . . . ,  n) denotes the antisymmetric situation-(wave)function
of the n body problem; so it is a c-number, contrary to the ^-number
<Kt) in (126) -(127).

Though the actual H a m i l t o n i a n  (125) has the form of (126)
with W(i,2)op == 2  g-2 u)t(» u)(,2)S (r12) — if we neglect an infinite

n

sdf-energy Xg2n f f  ̂ { i ) ^ 8(1,2) ^  (̂2)8^ ) - we cannot identify
M) +  tfg with the first term of the right hand member of (126) and
conclude to (128). For the field T* occurring in hfg is not a given
external field, but is generated again by the nuclon field, as can be
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seen from the equations (2), or better from the second order equa­
tions, which are obtained from them by iteration. These second order
equations read, if all interactions with the electromagnetic field are
neglected:
(□  — x2) A =  — V (div a +  v/c) — x (rot h — e/c) +  x2a,
(□  — x2) E =  rot(rot e -j- h/c) — x(V v -j- a/c) +  x2e, .
(□  — x2)W =  — div(Yw -+- b/c) — xy/c -j- x2w, '
(□  — x2) Y =  x (div b +  w/c) +  x2y ;
and:

(□  — x2) A =  — V(div a +  v/c) — x (rot h — e/c) +  x2a, etc. (130a)
From these equations the heavy quanta fields vF„(.r, y, z, t) can be

solved, if the nuclon field ty(x, y, z, t) is given 5Z). Following the
method of Y u k a w a ,  however, we shall now neglect all deriva­
tives with respect to the time in (130) and solve these equations only
for the static case. Then, these equations take the form of

(A -  x2)Y =  — 4tt U, (131)
where U denotes combinations of s, v, a, e, h, etc., s, v, etc., and
their first and second order derivatives with respect to the spatial
co-ordinates. The solution of (131) is given by

'F(j ) = f d 2 . U{2)e-Kr“lrn , (132)
where the gradients occurring in U can be eliminated by an integra­
tion by parts

f d 2 . (V2 U' (2)}e~K,"jru  =  — f  d2 . U'{2) V2 ( c ^ ’/̂ ia)- (133)
Here V„ denotes differentiation with respect to the set of co-ordinates
(n) or xn, yn, zn.

The expressions (132)—(133) can be substituted into (125). Then,
however, it must be remembered that in (125) 'F was essentially
commutative with ip and ip*, whereas the expression (132) does not'
commute with them, since U contains both (p* and tp- This is a result
of the omission of the derivatives with respect to the time from (130).

After the substitution of (132) —(133) into (125), the latter expres­
sion seems to take again the form of (126). Now, by the substitution,
bTg seems to become a part of the term with W(i,2)oP in (126). We
should make an error of a factor 2 in hTg, however, if we would
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conclude from this new expression to the corresponding S c h r ö-
d i n g e r  equation (128). The cause of this error is again the fact
that by the substitution of (132) into (125) the commutator of //w ith

which was essential for the derivation of (127) (thus of (61)_
(128)) from / / ,  is affected.

In order to avoid this difficulty it is more convenient to make use
of the commutation relations before substituting (132) into the H a-
m i 11 o n i a n 21). Then (132) is inserted into the field equation
(127) instead of into the H a m i l t o n i a n  (125). By this substitu­
tion a part (Hg) of the first term of (127) becomes a part of the
interaction term with W(i,2)%* again. The sum of this new con­
tribution to W(i,2yyr (from hTg) and the original interaction term
t* 7  ^ en can be regarded as the effective interaction operator

The H a m i l t o n i a n  (126) can be regarded as a convenient
expression, from which can be derived the wave equation (127)
describing the motion of ^ in interaction with the field of heavy
quanta. This field of heavy quanta, however, does not interest us for
the present. We want to know only the motion of t], in interaction
(through the field of heavy quanta) with itself. This is described by
our new equation (127eff) of the form of (127), from which, however
'F was eliminated, so that W%" was replaced by W%.

This new equation (127eff), on the other hand, can be obtained
directly fromanother effective " H a m i l t o n i a  n”, differing from
(125) since H g does no more occur in it and since Wop has been
replaced by Wty. We remark that the transition from (127eff) to this
effective H a m i 11 o n i a n (126eff), in analogy to the transition
trom (127) to (126), takes place by adding the factor ƒ ij|f(x) to the
first term, but a factor \ f ^ ( i )  to the last term of (127eff). Since this
last term was obtained from hfg by omitting the factor ƒ <LUi) and bv
substituting (132) - ( 133) for T , we find that the effective H a m i l -
to n i a n  differs from the expression obtained from the terms (125) of
the original H a m i l t o n i a n  by only inserting (132) — (133) by an
additional factor \  to the term T~f.

The “physical meaning” of such a factor j  is that, if the action of
one particle through the field on the other particle has been taken
into account by a term of the form of a direct interaction between
both particles tothe H a m i l t o n i a n ,  it is no more necessary to
take into account the action of the second particle on the first, since
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this reaction is already contained in the term describing the first
action *).

The effective H a m i l t o n i a n  has been chosen in such a way
that (51) remains valid for the nuclon field. So we can proceed from
(51) to (61) and from (61) to the S c h r ö d i n g e r  equation (128), in
which now the effective interaction potential takes the place of .

We must still remark that the procedure here discussed is allowed
only if the expression for W‘Jf, obtained from (127) by (132)—(133),
is automatically symmetric in the co-ordinates of the two particles,
since an asymmetrical expression in the equation of motion can never
be interpreted as an effective interaction operator taking the place of
the automatically symmetric operator Ws0yp" in (127)—(128). It is not
allowed to symmetrize the effective operator afterwards, since <\i(i )

and ty{2 ) play a different part in the equation (127).
The actual way of calculation is now the following: In frfg we

insert the solutions (132)—(133) of (131); we verify whether the
operator operating in the resulting expression on can be
written in a symmetrical form. It will turn out that, if derivatives
with respect to the time are neglected not only in the left hand
members, but also in the right hand members of (130), this is
possible indeed. Then we multiply this operator by and add it to
the corresponding operator in hfu , which is of the form of
Eg2wtti)w®$(ri2) (see above). The result represents the (effective)
interaction operator f ) to be inserted at once in the S c h r ö d i n ­
g e r  equation (128).

As regards the infinite self-energy neglected from hfge in the fore­
going, it would give an infinite additional term to hf0, which does
not interest us for the moment. It represents the static part of the
“mesic self-energy” of the nuclons. In a complete theory, this term
is hoped to explain the heavy mass of the nuclons, like the mass of
the electron is hoped to be explained as representing the electro­
magnetic self-energy of an electron. However, it is not clear, then,

*) Compare H. A. K r a m e r s ,  loc. cit. " ) ,  p. 301.
t )  The same result can also be obtained by inserting (132)—(133) into th e total H  a-

m i 11 o n  i a n including the meson term s in hf*. Then no factor A is required, since
exactly half the term  hfg is cancelled by  the term s of H a describing the heavy quanta.
The fact th a t both methods yield the same result indicates th a t by  transition from (125)
to  (12beff) the to ta l energy of the meson field generated by the nuclons is accounted for
as interaction energy of the nuclons themselves.
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why the mass of a neutron should be larger than that of a proton
We shall now give the result of the discussed calculation, if it is

performed for the H a m i l t o n i a n  given by (90). Here and in
the following we shall put (compare (24)):

g° =  Kto, g\ =  Kgj, g2 =  Kfb, g3 =  Kgd, g4 =  K/d;

K =  +  V cx3/47t. ^134^
Then, making use of

(x2 A) (e~Krl1') =  S(r), (135)
we can write the resulting effective potential in the following form:
W(i,2)op =  i(x<h.*?>)&?{! -  («(». a®) -  (I/*2) («(«). V,) (a® . V2)} +

+  (?ig2/>c){p(1)([a(1,,a (2)] . VO +  (3® ([a®, a(1)] . V2) +
+  *0(t)(a®. V2) +  *jj®(a®. V,)} +

+  g & P W ’. a®) +  (1 /x2)p<»p®(0(».V1)(a®. V2) -
— (l/x2)p(1)(3®(a(1) .Vi)(a® .V2)} —

~  fel/^2) V O ( < t<2>.V2) -  feg 4 /x )W 0 (1)(a®.V2) +
+  *'y1?)P®(o(U • V,)} +  (136)

+  d  Ys !)Yi2)P®] {e-Kr"frn) +
+  è(T<».T®)(47c/x2)[g2(l _  C0)p(1)p® _

I S 1 1 (a(1).a®)} -
— g2{C2P(1)P®(a(1).o®) +  (C2 — l)p(1)(3®(a(1,.a®)} +
+  d ( l  ~  C3){(o(1).o®) — Ys ’Ys2’} —

~  d C 4Y^P(1)Yi2,P(2,]S M .
The symmetry of this expression is obvious. Comparing it with the

expressions obtained by K e m m e r 1#) by perturbation calculus

are la ^  ^  expressions the terms with ëxëi and with g3g4

In  order to ensure charge-independency of the nuclear forces
(compare § 3) even with regard to the 8-function interactions we
have put

Cop =  Cop (137)
in (136). The choice of these operators made by K e m m e r 1*) and
by B h a b h a in the first section of his paper ™), was C, =  0,
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C2 =  — 1. Later on, B h a b h a changed his choice 1S) into that of
Y u k a w a 21), viz. CX =  C2 =  0, hoping to avoid in this way the
8-functions entirely. From the formalistic point of view of (37) the
latter choice seems to be the more natural one. (Also Cop =  1 would
seem a reasonable choice from this point of view). I t  must be pointed
out, however, that even in the non-relativistic approximation

pd) _  p(2) _  i . a u) _  a (2) =  y L1» =  Y 5> =  0  0 3 8 )

this choice (Cl =  C2 =  0) does not eliminate all 8-functions, since
(compare (5a))

(1 /x2) (o<». V,) (o(2). V2) (e-KT"fri2) =
=  {(W », a (2)) — i(a (1). o(2))}e-CT/r +  (4t̂ x.2) (̂aJrVoj.2jl8|^(r), (139)

where we have put

Q(a,t)  -  (a fr)(T. r)/?2}^ +  (3M  +  (3/xV)}. (140)

Inserting (139) and

-  (1 /x) V, (e -K'lr) -  (1/x) V2(.e~Kr/r) =  {1 +  (1 /xr)}(^)(«— /r). (14J)

(r =  rx — r2)

into (136), we find

I F ( j ,2 )0* ,= £ (t (1).t (2>) [ g i { l - 3 ( a (1) • a<2)) - ( ? ( a (1), a (2)) } -

-g ig 2{p<«([«(1,> a t2)].r) —P(2)([°<2)> «(1)3-') ~
_  *p<‘)(«(«-.r) +  i(J(2)(a(2).r)}(l/r){l +  (1/xf)} +

-fg2p(»[J(2){3 (a(1).a(2)) +  (?(a(1),a(2))+ K « (1)-a(2))—(?(a “)'a(2)̂ +
;-g2{^(a(1) .a (2)) — (?(o»>, a<2))} —

-g a g M " [&l){'*™.r)-iyi)&2)(ow.r)}(\lr){l +  0/xr)} +

+  ?4Ys1)P<1>Ys2)P<?)] (e~K'lr) +  (142)
' + (̂TU).T(2))(47t/x2)[g?(l-C 0)p(1)p(2>-g?C 1{ l - ( a (1).a<2>)}-

_ g2{C2p(1)p<2)(a(1).o(2)) +  (C2-  l)p(1)p(2)(a(1).a(2))}

’ +gf(l - C 3){(o(1).o(2))-Y^YlS2,}-dC4YL1>P(1)Yi2)P<2)]S W -

-  . t‘2>) (47t/x2) |  [g ^ .o ^ J + g W ^ )  +  ^

1L +

+ U  C CJT- •«

<&*>•
9 -



THE DELTA-FUNCTIONS IN THE NUCLON-NUCLON POTENTIAL 89

No choice of C0, Cu C2, C3, C4 will eliminate the 8-functions from this
expression. If we choose

Q  = 1 .  C i =  0, C2 = y  C3 =%■, C4 =  arbitrary, (143)
the ordinary 8-functions disappear at least from the non-relativistic
approximation (138). This choice, h n w ^ r  rijminfltc thc
termo with the longitudinal-8- functions. to u  ^ .

The expression given by B r e i t 51) for the interaction between
charged particles through the electromagnetic field was a reasonable
approximation since only retardation effects and non-secular high-
frequency effects are neglected in its derivation. Since we have
neglected not only the (d2/dt2)-term of the left hand member of (130),
but also the derivatives with respect to the time of s, v, hTetc.,
the approximation of the nuclon interaction given by (142) is much
worse. Indeed, the “velocity”-dependence given by the terms with
a can hardly be regarded as well justified by such a derivation. The
velocity-independent part of (142), obtained by (138), will be a good
approximation for the effective potential between slow nuclons, yu
however. This non-relativistic approximation yields'^/ we ignore the
^-functions, which — according to K e m m e r 22) — give “only”
an infinite contribution to the levels of the deuteron: 0" )' n’ M*lj
W (I ’2 )„P * *  i(T(I) .x(2)) {A -f B'(o(1)..o(2>)- -f C  ($(ail), a®)} e~Ktfr\

^ = g ? ( ^ 0 ) ,  - =  +  0), ’(144)
c> =  | I g §  {% o).

It should be hoped that it will be possible to explain by this
interaction the experiments on scattering of neutrons by protons
and the binding energy, the .magnetic moment and the electric
quadruple moment “ ) of the deuteron. If this shall be possible, the
term with Q(a(l>, a(2>), which couples the 3S state with the 3Dj state
(compare § 2), cannot be neglected. It should be possible to calculate
the strength of the coupling directly from the measured electric
quadrupole moment and the magnetic moment of the deuteron.
Compare, however, the following section.

It cannot be expected that the force derived in this section will
give an exact explanation of the binding energies of other nuclei t han
the deuteron, since the triple and multiple forces arising from a
multiple exchange” of heavy quanta between nuclons 19) may be

of considerable importance there.
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It is hoped by B h a b h a 13) and I w a n e n k o 52) that an
entirely classical treatment of the heavy quanta field will yield an
expression for the interaction between nuclons, in which the velocity
of the nuclons will have been taken into account.

The solution of equations like
( □ - x 2) Y  =  — 4n U -  (145)

is not given by (132) with “retardation” of U{2). The equation (145)
has been solved by I w a n e n k o 82).

§ 8. The deuteron problem. Inserting (144) into (128) we find the
(non-relativistic) S c h r ö d i n g e r  equation of the deuteron:

{£ +  (h2/2M(Jf!) Aj +  (h2/2M%) A2 -  W(z, 2)op} <J;(J, 2) =  0. (146)
Here Mop is given by

=  (147)

so that
l /Mop =  (1 IMp) 14~  +  0/M w) — ^  • (148)

We shall introduce the relative co-ordinates

r =  rx — r2, {% =  *1 — x2, y =  y 1 — y2, z =  zx — z2}, (149)
and the co-ordinates of the centre of gravity

?0{M% +  M%) = %  M% +  ?2 M%, (150)
so that

-*" r-[ +  r2 M s — MP r j — r2 t .̂1* t 2̂) M511
=  2---------------Mn +  M~P • 2 • 2 •

Differentiation with respect to these new co-ordinates is defined in
the usual way (as if and were constants). We shall put

Then

yields

2 _  1 I . Mn — MP
M Mp M s ’ M Mn +  MP

3 _dx0 3 dx 3
dxi ~~ dxi dx0 ' dxi dx

2 2  2

Pi \  Po ~F Bji -4- -b.

(152)

(153)

2
(154)
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Putting

dx2 3y- dxo tyo
we can write (146) in the following form:

) (A +  ±A0) — W(i,2)op} <p(i,2) =  0. (156)

Since the wave-function of a deuteron is an eigenfunction of the
operator -f x{2)) :

the isotopic spin operators vanish from the kinetic energy operator
in (156) and we can separate the co-ordinates of the centre of gravity :

By (j„ and t„ we denote the ordinary and the isotopic spin co­
ordinate of the «“ particle. In the 3S — 3Dt state of the deuteron the
isotopic spin function T  is given by the antisymmetrical "singlet spin
function” 'xofa, t2) ; in the ‘S state of the deuteron it is given by the
symmetric triplet spin function” ^ ( t,, t2). The singlet and triplet
spin functions ^  are given by

Singlet: 'xofa, a2) =  — -{a(<r,) (3(<t2) — a(a2) P^)},

Triplet: 3Xo(<h> <r2) = —  (a(a,) p(<y2) +  a(cr2) P(ct,)}, (160)

3Zi(®i. ffj) =  *(®i) »(a2), 3X—i(ffi> <J2) =  p(a,) P(ct2),

so that <x(t) denotes the isotopic spin function of a single proton and
P(t) that of a neutron.

In the ‘S state of the deuteron the wave-function (159) takes the

(T*) +  t42>) ty(i,2) =  0, (157)

r %2 - >  ^

r  +  m  A ~  *(T‘1) • t<2>) tA +  £ '(°(1) • ° (2)) +

where
+  C' (?(a(I>, o(2))] — -  j  ^ == 0, (158)

+ =  y (Ti- x2). ^ { x, y, z, au a2). (159)(159)

where

“(®) “  PW =  S-i,a, (161)

form of
V™ =  3Za(T„ t2) . ‘zo(<ri, d2) 1 T(r). (162)
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Making use of

(t (1) . t (2)) 3Xo(t i , t2) = -  + 3Xo('ti,T2),
- >  ( 163)

(ct(1) . o(2)) 'xo^i. a2) =  — 3 1Xo(cri» ff2). <?(«(I), ° (2)) ‘Xo(®l»̂ 2) = ° .

we can reduce the S c h r p d i n g e r  equation for this 'S state of
the deuteron to

+  3 B') — } 1 Y(r) = 0 .  (164)

Comparing this equation with (8) we find
(22a)

again. We have mentioned (§ 2) that the S c h r ö d i n g e r  equa­
tion (164) has been solved numerically 24) 25) for those values of XJ{,
which yield a real level. Then, it is usually assumed that the actual
value of XJ {  is approximately equal to that value, for which the
energy of the level becomes zero. However, it is not impossible (see
§ 2) that this assumption introduces an error, which may amount to
perhaps 10% of the value of XJC (compare (13) with (13a)).
■ The eigenfunctions for the 3S — 3D[ state of the deuteron 23) are
linear combinations of those of a "pure” 3S state:

T , S) = ^ 3 ^ ^  - - (165)

and those of a "pure” 3D, state (ƒ =  1):

qnm,-) =  -— -$<()($•, 9 , ff1( cr2),

=  2  a j f r ,  Y ^ ' (&,?),% ,fa , <t2).
(166)

Here the functions Yf (with \m\ <. I) are eigenfunctions of the
orbital angular momentum operators cM2 and <MX belonging to the
eigenvalues %2l(l +  1) and Tim, respectively:

AYf*—■ -  ^  Yf, AOji> =  — (167)

If they are normalized according to
2 7T 7T

f  dq> f  sin 9- ^ 9 1 Y f |2 =  47t,
0

(168)
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they are given by 55) S6)

Y \ =  (Y r 2)* =  j / ~ s i n 2 9-. e2* ,

Y 2 =  — (Y z 1)* =  — l / ~ s i n  9 cos 9  . e&, (169)

Y° J (3 cos2 9 — 1).

The triplet spin functions %  are given by (160). They are eigen-
unc ions of the spin angular momentum operators 8 2 and 8  be­

longing to the eigenvalues 2%2 and ^  respectively. From (166) we
conclude that the 3D,-functions 3>M as well as the triplet spin func-
tions satisfy the relations

5"* • %  =  % .  5 (1) . ^ 2)) <D« =  <!><?. (170)

+u ThI i C°efflClentS a^ '  in (166) are now chosen in such a way that
the 0> are eigenfunctions not only of J ,  == M t + ' 8 , belonging (on
account of (166)) to the eigenvalue fyx, but also of

c7 2 =  M 2 +  8 2 +  2{ M . 8 )
bdonging t°  the eigenvalue h2j(j +  1). For ƒ =  1 this choice of the
coefficients ajfy, is given b y :

(A' = - 0 1
(1 = — 1 + Vvo ~ Vil + v i!
(A = 0 + V ïï “Vis

i■̂
2+

(A = 1 + V il -VI + 1
«{JU (171)

We have normalized” these coefficients in such a way that the $<0
are normalized, just as the according to

2rr it

4  /* P  ƒ  sin 9d9 =  4 * ^ , .  (172)

th JreeiatPiomUnCti°nS ^  and the Spin'angular Unctions O») satisfy

(KaO) . J ) )  _  g o  p2) 3 ^  _  _  fV 2  Qay

. a (2)) — (a(1). r) (a(2). r)jr2} :3>(p _  gQji) _  | .y '2 . 3y -Ó-
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Now, the trip let solution of (158) will be a linear combination of (165)
and (166):

34v =  ‘ito fa . t2) . 3Y m; ^  =  T ps, +  (174)

Inserting (174) with (165) and (166) into (158) and making use of
(167,) (170) and (173) we find the following equations for the radial
functions u{r) and v(r) 23) :

* £ + « * + > * e~Kr
r

—  vV2 =  0,
r

%2 7 d2v 6v \
M  V dr2 r2 )

e~Kt
+  3£v +  »JC- —  v +

+  C'( l  +  —\  xr

(175)

- —  (v — u y/2) =  0.

Here we have put again

3 =  + % A .  (22 b)

Since the last terms of (175) are proportional to  1/r3 these equa­
tions cannot be solved in the usual way by expansion in powers
of r. This does not necessarily mean th a t the eigenvalue problem
(175) has no solution a t all. But if first the potential is “cut off” a t
some distance r0, the ground level will tend to — oo for r0 -> 0.

If (175) is not to  be regarded as the limiting case for r0 0 of a
potential, which is cut off a t r0, it would perhaps be possible to
ignore entirely the solutions of (175), which do not converge for
r —»- 0. Then, in the ground state of the deuteron the terms with 1 / r 3
should necessarily have the character of a strong repulsion, making
the wave-function and its derivatives zero for r -*■ 0. Though it may
be possible to  remove the difficulty entirely in this way, the proce­
dure seems to be not very satisfactory since there are many reasons
why the interaction potential (144) is questionable for small distan­
ces.

F irst of all we have neglected all high order interactions, since
we have solved the meson field acting on the nuclons from (131), but
we have ignored the derivatives with respect to the time in the right
hand members of the original equations (130). Now, we know from
perturbation calculus19) th a t the higher approximations yield inter­
actions, which for r —> 0 become much stronger than the first order



interaction, so that the theory cannot be trusted at all in this region.
Further it is quite possible that quantum mechanics, in their present
form, are not competent for the discussion of problems, in which
distances r <  r0 (<  1 /x) are involved ®7).

Thus one can hardly trust any conclusion from the theory for
which the form of the potential for small values of r is essential
Then, it seems to be reasonable to “cut off” the potentials entirely
at some distance r0(< 1/x) and to regard the ground level of the in
this way corrected equations (175) as the actual ground state of the
deuteron (though this state disappears for r0 ->■ 0).

The cutting off radius r0 then should be chosen of the order of
magnitude of f o r  i  of the “range” 1/x of the nuclear forces, since in

the i r / 1™! S  ° 2 6r CffeCtS beCOme stronS-In the ^ound statethe interaction with l/r3 may now have the character of an attraction
R u a T  i “ ? Cated here the deuteron Problem was solved by^ e  t h e  ) for the special case

£1 =  £ 3  =  0. (176)
Then, the effective potential (144) takes a simple form. The two
remaining parameters g2 and r0 were chosen by B e t h e in such a
way as to adjust the singlet and the triplet level of the deuteron. The
calculation was performed for K e m m e r ’s “symmetrical theory”
of mesons and neutrettos as well as for the “neutral theory” dis-
cussed m §3. Further the cutting off was made in two different ways

cm anbf ~  ^  ^  ^  W(fo) f°r '  <  ^  The mass of the heavy
quantum was assumed to be equal to 177 electron masses, the triplet

eautlto  w T  \°  bC ~ 2'17 MeV‘ The 1S level was not putequal to zero but calculated from the cross section for the scattering

°8 3 T i n - * 011* £ Pr°tT '  WWch WaS aSSUmed to be e<lua] to10 3 x 1 0  cm . The results are the following 32) :

CUTTING OFF OF THE POTENTIAL FOR SMALL DISTANCES 95

N eu tra l th eo ry Sym m etrica l th eo ry

C ut off: zero stra ig h t zero s tra ig h t
g |/* c * ) 0-162,

4 0-1600 0-500 0-308xro 0-320 0-436 1-679 1*733Q 2-73 2-67 — 24-7 — 17-8a 6-88 6-68 23-46 18-52

(177)

*) Tbe constant g, of Be  t h e corresponds to g J ^/2 in our notation.



96 HEAVY QUANTA THEORY OF NUCLEAR AND COSMIC RAY PHENOMENA

Here 5 is the percentage of 3D wave-function contained in the
eigenfunction 3T  of the trip let level; Q is the electric quadrupole
moment of the deuteron in units 10“ 27 cm2. From experimental data
was calculated Q =  +  2 5 , bu t this value 32) is uncertain since use
was made of approximate wave-functions of the hydrogene mole­
cule M).

Comparing the figures in (177) we rem ark th a t Q <  0 for the
symmetrical theory, Q >  0 for the neutral theory. Since Q is defined
as the average value of (3z2 — r2), if the 2-axis has the direction of J
in the 3S — 3D, state, Q >  0 means a “cigar shape” and Q <  0 a “pill
box shape” 32). These signs of Q can be understood by a simple con­
sideration about the region where the character of the potential will
be attractive and where the wave-function will be large (compare
B e t  h  e, loc. cit. 32)). This region turns out to be more concentrated
a t small values of r for the neutral theory, so th a t it can be under­
stood why this theory yields smaller values of Q. Essential for these
considerations is the assumption B ' =  fC ' >  0, introduced by (176).

We rem ark that, if C' had been chosen negative, just the neutral
theory would have yielded a deuteron of a pronounced pill box
character, whereas the symmetrical theory then would lead to a
“cigar” shape. Introducing the field of spinless heavy quanta, th a t is,
choosing a convenient value for the constant g3, we can change the
sign as well as the value of the electric quadrupole moment predicted by
the theory. In  this way theory and experiment can be fitted even in
the symmetrical theory. This seems to be the main advantage of the
generalized meson theory proposed by M 0 11 e r  and R o s e n -
f e 1 d  u ). For, indeed, the symmetrical theory seems to be preferable
to the neutral theory, in view of the cosmic ray phenomena.

I t  is reasonable to expect th a t the percentage of ^ -w a v e -fu n c ­
tion in the triplet state can be calculated from the surplus magnetic
moment of the deuteron due to this D-state. The orbital magnetic
moment [>.orb can be expressed in terms of the mechanical moment cM.
Neglecting the difference of M N and M P we find for a deuteron by a
simple consideration

(178)

The extra factor \  is a consequence of the fact th a t in the system, in
which the centre of gravity is a t rest, the radius vector of the charged

I  A  k  / t f l  )



TH E MAGNETIC MOMENT OF TH E DEUTERON 97

partiele is only half the distance r of the nuclons. Generally we have,
on account of (148), (149), (151) and (154):

The expectancy value of this expression for the ground state of the
deuteron is given exactly by (178).

The magnetic moment in the direction of the total angular mo­
mentum J is now easily calculated putting the quantum number m-
equal to j =  1. From (166) -  (171) we find for the total magnetic
moment of the 3D, state of the deuteron in the direction of J :

H now the wave-function of the ground state is expressed in terms of
normalized 3S and 3D] functions:

then the effective magnetic moment ^  of this state is given, in units
of (eW2MDc). bv

Taking pP _  278 and \ld =  085 **), we calculate from (184):

and
=  Oi, p i] +  [r2, =  [r0, p 0] +  [r , p ] (179)

1 +  Ti‘>\ 1 1 +T ® \ 1l*U P  l] +

_ e (I  + < ‘1
2M Pc\ 2

1 + T < 2>[>1> Pi] +

*i,) +  T®) 1 —
([r. p] — [r0, Po\)2 M p c \

T<» -  T<2>

i(Piv +  Pp) (181)

3T  =  ('F(’S) +  aT<’D-))/Vï' +  a3, (182)
« =  5/(100 -  a),
_  CO OO

a2 =  f  v2dr i ƒ  u2dr, (183)

,2 [Pn +  pp +  a2 {; £(Pn +  Pp)}]. (184)

|  a2 _  +  ftp — Po _  Pa-- +  1 '93
Pw +  Pp +  2hd — 1§ +  2-98 ' (185)
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Taking for (jlp the value of E s t e r m a n n ,  S i m p s o n  and
S t e r n 59) (|xP =  2-46), and the value of F a r k a s 1*) for
V-p/v-d (=  3*8), we find =  0'65 and

The magnetic moment of the neutron was measured by the
method due to B l o c h 60) and improved by F r i s c h ,  V o n
H a 1 b a n and K o c h 61). Thus, was found 62) to be in the
neighbourhood of — 2. So if the formulae (184)—(185) can be
trusted, we must conclude that a is small and that the actual value
of | pw | lies a little below 1'93 (or below T81).

Then, it should be hoped that by a convenient choice of the con­
stants glt g2 and g3 in (144) and of the cutting off radius r0 not only
the energy levels, but also the electric quadrupole moment Q and the
magnetic moment of the deuteron can be fitted with experiment, and
that the cutting off radius r0, determined in this way, will turn out
to have a value between (1/x) and (l/10x). For this purpose calcula­
tions of the deuteron states for a choice of gl, g2 and g3 different from
(176) will be of great interest. Calculations of this kind exist for
potentials of the the form of a “square well” 63).

Even if it is possible to fit in this way theory with experiment, we
must bear in mind that, if some of the calculated quantities 3£, '<?,
Q, 5c, . . . .  will turn out to be sensitive to the value of r0 within the
interval 1/x ~  l/10x, the value of such a quantity following from
the theory can hardly be believed to be reliable, if no physical
meaning is given to the parameter r0.

It is not certain, however, whether the fitting of the magnetic
moment will be possible at all. If it is true that new measurements of
| [av | yield a value, which is still higher than 2, there must be some
error in the derivation of (185).

In this connection it is of interest to remark that the charge density
and the charge current distribution [M.F.(33)] of the mesic field gener­
ated by the nuclons on account of (130)—(132) vanishes in the case of
the deuteron. Generally, this charge distribution is given by the q-
number

i 2 +  '1 *81
** ~  Pw +  2-26 • (185a)

p(j) =  U fd 2 d 3 . ,{,t(2)f (3)0(x; 2 , 3 ) m ^ ) ,  (186)

o -  n 1 o.w
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where O is given in a non-relativistic approximation by

3) =
gig2 x e~*<rM+rit)
he 8tc r\2r\z + ----- )

* ' 12'
- ) ---------------------J

* ' 13/
X

X ({o<2) -f a '3)} . j>12, r I3]) (t<2)t<3) — T^T®) =  Q (j; j ,  2). (187)
The expectancy value (59) of this ^-number p(l) for the N  body
problem is given by 64) J

P(J) <pfU, 2, . . N)  .JÈp(T; m, n) . <p(i, 2 , . . N). (188)

For the deuteron it is easily seen that (t^ t® -  t^ t») possesses
non-vamshmg matrix elements only for transitions from anti-
symmetncal states to symmetrical states and vice versa. Thus (188)
does not contribute anything to the charge distribution (and to the
electric quadrupole moment) of the deuteron in the ground state.

In a similar way it can be proved that the electric current density
of the meson field generated by a deuteron in the ground state must
vanish.

§ 9. The neutron-proton scattering. The cross section for the scat­
tering of neutrons by protons 88) ») is related to the situation of the
energy levels of the deuteron by the generalized formula ••) of

'  ? d P e i e r l s  67)- This formula, however, does not give
the right dependence of the cross section on the energy of the im­
pacting neutrons.

If the form of the effective interaction potential is known the
scattering cross section can be calculated directly. For potentials of

e form of a square well or a G a u s s  error function this has been
done by^everal authors «) «)..A meson potential of the form of

’ 6 *'/r] for rthe sm§let state was used only for a comparison
o he scattering of protons and of neutrons by protons 28).

By a direct perturbation calculus the cross section for neutron-
protonscatteringJorsfow as well as for high energy neutrons was
calculated by B h a b h a  18). Here, g3 was put equal to zero. In the
extreme relativistic case he finds the following differential cross
section for scattering through the angle £0 in the system of co-ordi­
nates, m which the centre of gravity of the proton and neutron is at

d&E-R-) & F  gf +  2g| pi ( 1
^  2 %2c2 m2c2 (x ) (1 +  cos ^°)2 d cos (189)
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Here p0 denotes the momentum of each of the cohising particles in
the system of the centre of gravity, m is the mass of the mesons. The
calculation has been performed for an “asymmetrical” meson theory
(without neutrettos), so th a t the particle scattered through an angle &0
is changed from a neutron into a proton.

The factor °f (184) ensures large cross sections for high energies.
We shall see in the following, however, th a t for large energies the
cross sections for many other processes increase. This is connected
with the phenomenon of showers, which was discussed in § 6. If
quantum-mechanics m ust not be modified •” ) a t high energies
(^> 10® eV), we can only say that, according to the theory, high
energy particles will give rise to a large number of very probable
effects, which manifest themselves as showers and nuclear explosions.

§ 10. The spontaneous disintegration of heavy quanta. In  § 6 we
have mentioned th a t the term  H g of the H a m i l t o n i a n  posses­
ses non-vanishing m atrix  elements for the following transitions:

Y+ 7T +  o, Y - - V S  +  V, Y° -> v +  o, Y°-> 7t +  e. (190)

Here o is a neutrino, e is a negative electron and v and it are the neu­
tra l and the charged state of the corresponding light antiparticles
(antineutrino and positon). Y +, Y— and Y° are a theticon, an ameti-
con and a neutretto  respectively.

The transitions (190) are allowed by the conservation laws of
momentum and energy, so th a t we m ust expect th a t there exists a
transition probability for these first order effects. The probabilities
per unit time are easily calculated according to

w ^ ^ P( £ ) . ' L \ Q \ 2, (114a)

where the “m atrix  element” Q is obtained directly from (90) with (111).
For P r  o c a-K e m m e r  quanta the calculation was performed

by Y u k   ̂w a in his third paper 21). The probability is calculated
in the system, in which the meson is a t rest, so th a t the terms with
derivatives with respect to the spatial co-ordinates in Tfe can be
omitted. In  (114a) a summation is performed over both directions of
the spin of each of the created light particles of positive energy. In
the expression for the energy of these light particles the mass terms
can be neglected since \  me2 me2. Then the calculation becomes
extremely simple.
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The density of final states p(£) is easily calculated. The number
of states for one of the emitted light D i r a c  particles (with a
momentum p of about -|mc and an energy cp approximately), the
momentum of which is situated in the interval between p&ndp +  dp
and has a direction within a solid angle do*, is given by

?{€)de^Cl^dpd<i> = &—±^dpd< *. (191)

Now, the differential of the energy of the final state is two times that of
one of the emitted particles (since the conservation of momentum
requires that an increase of the momentum of one of the light par­
ticles is coupled with exactly the same increase of the momentum of
the other emitted particle), so that

d&= 2cdp. (192)
From (191) and (192) we obtain

p(f) “  ° (193)

In this way we find for the probability of disintegration per unit
time:

for a P r o c a-K e m m e r  meson at rest:
His + g22 me2

for a spinless meson at rest'.

~ — w o~ IB---- r-zo one %

t0 Wn
g42 me2
2 he ' h

(194 a)

(194 b)

For neutrettos the probabilities of disintegration have exactly the
same value; the probabilities for each of the processes Y° v -f- o or
Y° ->■ n +  e apart have half the value of (194).

In (194) we have introduced the notation
gó =  Kf'o, g[ =  Kgj, g'2 =  Kf'b, g' =  K g'd, gi =  K f'd',

(K =  +  V cx3/4tt). (134a)
If the heavy quantum is moving with a velocity v with respect to a

system A, the probability per unit time with respect to (an observer
in) A is given by the L o r e n t z transformation of the time co­
ordinate, so that

1 ___ u>o
V 1 —  v2/c2 ( 1 9 S )

— = w
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(probability per unit time proportional to the kinetic energy of the
decaying heavy quantum).

We remark that the formulae (194a) and (195) for a P r o c a -
K e m m e r meson were given by Y u k a w a  in his third paper 21).
In his fourth paper **) Y u k a w a  has considered it necessary to
change (194a) by adding a factor 2. This is due to an error in the
interpretation of p(£). If we describe the process like Y u k a w a
by saying that by annihilation of a meson one light particle with a
momentum p and a negative energy — cp is changed into another
light particle with the same momentum p, but with a different isoto­
pic spin co-ordinate and with a positive energy -f- cp, the law of
conservation of momentum requires that the energy of the initial
state (£a), (which, from this point of view, is one among a conti­
nuum of states, like the final state), is varied together with the
energy of the final state (£f). So in this description we have (com­
pare § 6):

P(f)d (£, -  £a) =  2p(£)d£t (196)
with

d£, =  cdp. (197)

The difference of a factor two between (192) and (197) is thus com­
pensated by an additional factor 2 in (196), which was overlooked by
Y u k a w a. This error is continued in the publication of Y u k a ­
w a  on the mass and mean life time of the meson 69).

Instead of the " F e r m  i-Ansatz” of § 4 for the interaction between
heavy quanta and light D i r a c  particles, Y u k a w a 23) has also
investigated the consequences of a "K o n o p i n s k i - U  h l  e n-
b ec k Ahsatz”, in which derivatives of the neutrino wave-function
with respect to the spatial and time co-ordinates occur. Though the
formula given by Y u k a w a 23) for the disintegration probability
of a meson in consequence of such an interaction is not entirely
correct *), it remains true that the expression for this probability

*) If again, the mass term in the energy of the light particles is neglected, the equation
(68) of the paper of Y u k a w a 8*) should read:

If the mass term is taken into account, the „K.U.” interaction is corrected by a term of
the order of magnitude of the uncorrected term resulting from the „ F e r m  i” inter­
action. I am indebted to Dr. P o d o l a n s k i  for these results.
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possesses a factor (m/m)2 in addition to factors of the kind of those
appearing in (194). This means that, if the constants g' are chosen of
such an order of magnitude that the theoretical expression (194) for
the disintegration probability is in agreement with the experimental
data on this spontaneous decay of the heavy quanta 70) n), which
yield a value of about t0 m 2 X' 10 '6 sec, the constants g' must be
chosen much smaller, if a “K.U.” interaction is assumed, than if the
“F e r m  i” interaction of K e m m e r is assumed. The difference
corresponds to a factor 3 x  10~5. This means that the value of g'
resulting from a “K.U.’’-Ansatz would yield a probability for the (3-
disintegration of instable nuclei (compare § 11), which is too small by
a factor at least 72) of the same order of magnitude 23). Thus it seems
that it can hardly have any sense to introduce this complicate inter­
action into the meson theory *), since the original K.U -Ansatz 42)
was introduced only as a possible explanation of the phenomena of
^-disintegration. For this reason we shall not discuss this interaction
in the following section, but refer to the paper of Y u k a w a 23).

If we put t0 fa 2 x 10 6 sec. and ttt =  100 5 m, we find from
(194):

(2g? +  g22)/3he (1-3/?) x 10~17 (198a)
and

g?!hc «a (1-3/5) X 10—I7, (1986)
if we assume that the disintegration probabilities of spinless and of
P r o c  a-K e m m e r  heavy quanta are of the same order of magni­
tude (an assumption, which does not necessarily follow from the
experimental data!). Thus we find, taking m <=» 175 m:

g'2/nc ** |  X 10~17; g’ & \ \  x 10~17. (199)

§11. The (3-disintegration of instable nuclei. Like the nuclon-
nuclon interaction, the j3-disintegration is partly a first order effect
due to Tfgg, partly a second order effect due to hfg. In the same way
as in the discussion of the nuclon interaction (§ 7) we can according
to Y u k a w a 23) replace again the second order interaction
between heavy and light particles by an effective H a m i l t o n i a n
term of the same type as Tfgg. Then, the first and second order inter-
actions are described together by means of an operator, which can be

*) Of course, the argum ents given here do not exclude the possibility of introducing the
Ansatz m  the term s H gg only.
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transformed into an expression of the same type as the ordinary
interaction term of F e r m i 41) (see below).

The calculation was performed by Y u k a w a 23) for a combined
K.-U. and F e r m i  interaction, but we shall confine ourselves to
the latter (see § 10). The calculation runs exactly in the same way as
in §7. Only we now must take into account the interaction between
mesons and light particles as well as that between mesons and
nuclons. Thus

l f f f ( I >2)gm'\>f{l) • gn̂ {2) <*>„(2)<M2) +  COnj- COmpl.

of (125) and (126eff) of § 7 (where f(i,2) =  f(2,i)) is now replaced by
(compare (38))
\ f f f ( i ,2 ){g j / \ i )  “VM2) +

+  g'n̂ (2 )taJ /\2 )} +  conj. compl. (2C0)
where iL denotes the wave-function of the nuclons and J/ that of the
light particles.

We are now interested in matrix elements describing for instance
the reaction

N + - > P +  +  s +  v. (201)

These matrix elements arise from the terms

T x  \  *T y  • gW\2) lXy ” nV(2) +

+  g » m  ^ +2 iXy «*+(*) ■ g '^ ( x )  Tx ~  -Ty- W^'(T)} (202)

of (200). Here oim and o>„ are self-adjoint D i r a c  matrices operat­
ing on the undor indices of the wave-functions only. Now, it is easily
seen that, on account of the symmetry of W (1,2)% in § 7 the required
matrix elements can be deduced directly from (136) by omitting the
factor £(t (1). t (2)) and by taking the matrix element of the operators
there denoted by (1) between the states of the vanishing neutron N
and the created proton P; and of the operators denoted by (2)
between the charge-conjugated of the state of the created negaton s
(that is, a positonic state of negative energy; compare (100)) and the
state of the created antineutrino v.

We shall now make use of the relation (135) in order to eliminate
from (136) all terms without a gradient operator, which possess a
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factor (e Kr/r). In that way we achieve that only two types of terms
remain: those containing a gradient operator V or A acting on a
factor (e K,/r), and those containing a 8-function. All matrix
elements are integrals over the co-ordinates of the heavy (11 and the
light <2> particles. All gradient operators V! can still be replaced by
-  Va,-since they operate on a function of rn only. Then integrating
by parts over the co-ordinates of the light D i r a c  particles <2>, the
integrand can be changed into one, in which all gradient operators
operate on the wave-function of the involved light particles only.

Now, if the terms with gradient operators are compared with those
without a gradient operator but stiU proportional to (r^ /r ) , (i.e.
those terms, which were eliminated by means of (135)), we first
remark that each of the gradient operators is accompanied by a
factor (1/x) =  %/mc. The gradient itself multiplies the matrix element
by the momentum p of one of the emitted light particles divided by
n, so that each factor (1/x) V is equivalent to a factor p/mc. Now, the
momenta of the light particles actually emitted by (3-active elements
are of the order of magnitude of at most 10 me. Since me is at least
100 me (170 or 180 me seems to be more probable), the factor plmc is
at most about 1/10 (or 1/20). We shall neglect these terms.

This means that we assume that the wave-functions of the emitted
light particles are nearly constant in a region of the order of magni­
tude (1/x), that is, inside the nucleus. Thus we can replace these
wave-functions by a constant.

Since the neutrino can be considered to be free, its wave-function
can be assumed to be a normalized plane wave. Then this wave*
unction is, apart from the four-component “spin-function”, inside

the nucleus equal to the normalization factor 1 /y 'fi only, where O
is t e volume of a large cube, in which all wave-functions are assumed
to be periodic.

The emitted electron cannot be regarded to be free, on account of
e C o u l o m b  field of the nucleus (charge Ze). A reasonable

assumption is «) that the wave-function inside the nucleus (where
the electnc field decreases towards the centre) is equal to the value
which the wave-function of an electron in the C o u 1 o m b field of
a hypothetical point charge Ze would have at a nuclear radius
distance from this point charge. The wave-function should be one of

e continuum of states with an energy W >  me. If these wave-
functions are normalized in such a way that the density-in-phase of
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states is again equal to Cl/fi3, the value of these wave-functions will,
apart from the “spin-function”, be a function of the energy (W) of the
emitted electron and of the charge (Ze) of the nucleus after the
emission. This function Vf(Z,  W)/Cl can be taken from one of the
papers on the (3-decay theory 41) 42) 7S) 74).

The terms remaining in the matrix element derived from (136) are
now of the form of

gmgnffdrl dr28(rl2) (<$>(»i) «»«'M'i)) “q Vf(Z, W) (u\ utnu&( ) = ^

= (gmg;m vW Tw)id7x ( ^ ( 5  f e w )  •

Here uv is the four-component spin function of an antineutrino of
positive energy, u\ that of a positon of negative energy (that is, the
charge-conjugated of the spin function ue of a negaton of positive
energy; compare (99)—(100)).

Since the heavy particles in the nucleus can be treated in non-
relativistic approximation, we may in the factor with o>m replace (3

^  • - y -

by 1; ys, a and pa by 0; Pa by a (compare (138)).
The probability per unit time of a disintegration, by which the

electron is emitted with a momentum between ft and ft 4- dft in a
solid angle da, and the antineutrino with a momentum between
ft' and ft' +  dft' within a solid angle dut', is given by (114a). Here we
must pu t:

p(<?) d£ =  (Q/c2h3)2 ftW d W  dot ft' W' dW' dut' (204)
where

(W/c)2 =  (me)2 +  ft2', (W’/c)2 =  (lie)2 +  ft'2, (108a)
and

d£ =  d(W + W ), (so that dW dW  = dW d£). (205)
Further, on account of (203) and (136) — (135):

Q =  (4ti/x2Q) V W 7W ) . {(1 -  C0) goS Ó K P«f)/fp^  +

+ (i —co gjg( (u\ 4) +
+(1 - C 2)g2g2MPoMf) .ƒ 4»t«+w+(l-C3)g3g3K a«f) ./^a^jv}- (206)

We remark that just those matrix elements, which yielded a po­
tential of the form of a S-function for the nuclon-interaction, and
which were omitted in § 7, since they gave “only” an infinite contri-
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bution to the binding energy of the deuteron 22), correspond to the
terms, which give rise to a ^-disintegration *). Thus, by a convenient
choice of the constants C0, C„ C2 and C3 it will always be possible to
fit the total disintegration probability with the experimental data
without influencing the deuteron problem.

It is interesting to remark that the term in the H a m i l t o n i a n
with gogó (which usually does not enter into calculations, as a conse­
quence of the special part played in the theory by S) yields a contri­
bution here to the (3-decay. It is a term of the same type as the origin­
al Ferm i-in teraction41), which appears in our theory with the
constant (^ g ^ '/x 2).

The probability per unit time P(Z, W) dW  for a disintegration, by
which the electron has an energy between W and W  -f- dW, is now
calculated in the ordinary way. The sum must be taken over both
directions of the spin of the emitted light D i r a c  particles; over
the solid angles dio and da>' we have to integrate independently. The
summation over the spins brings in a new factor depending on the
energy of the emitted electron. Especially the (non-vanishing) cross
products of different terms of (206) are of interest, since they can
make the p-spectrum a little more asymmetric than the F e r m i -
distribution either for positon-emitters, or for negaton-emitters
Putting

W/mc2 =  w, (1 — Cn)gng'nj%c =  g" and Mm = f  (207)
we obtain the following expression for P(Z, W) :
P(Z, W) dW =

(mc2/%) G2 |9R(w)\2wVw2— 1 (w0— w) V(w0—w)2— (ti/m)2 dw, (208)
where

G2 \W,{w)\2 = 8 t m \ 4
to \ m / i(g? + g?) |M, |2 +

+  (g? +  g?)\M a? } { \----- +
\  w ( w 0  —  w ) J  1

+  ^ « r r i M 1p +  ^ ^ | M , p | L , _ (209)

ter™ 1 Slr Ü.d*b!e T * T ked th a t U is Possibl« t o  ch°°se tlie constants C different in the
term s with M s M p  and with in L a g r a n g i a n  and H a m i l ­
t o n i a n .
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Here m and [x are the masses of electron and neutrino respectively;
w0 is the total energy available for the emission of particles, expressed
in units of me2. Finally yj is equal to ±  1:

7) =  +  1 for positon-emitters,
V&iU)

7] =  — 1 for negaton-emitters.
As for the relative sign of go and g", and of g£ and gó', we refer to

the equations (36). Thus, if in (39) g ĵyto^p +  g'^to'jv is changed
into g^iuxj/p +  the signs of góg{ and of g'2g'3 are changed.
Then, however, we must also reverse the signs of yj in (210); so that
the result is exactly the same, as it should be.

If we assume [x =  0, the factor | 3ft (ze<) |2 in (208)—(209) may be
written as

| 3ft(w) |2 =  (c# +  riJB/w), (211)

where w ^  1 and | J3 | <.JI. From (211) we conclude that, if góg"
and ĝ g3 are both positive, the spectrum becomes a little more
asymmetric and the total disintegration probability a little higher
for all positon-emitters (J3 >  0), whereas these effects will be just
inverse for all negaton-emitters; or vice versa for gog" <  0 >  ĝ gl
[cB <  0). If, however, g'óg" and g'̂ gl have different signs, the sense of
the deviation of the spectrum from the original F e r m i  spectrum
will depend on the relative value of the matrix elements Mt and M„.

In order to investigate whether it is necessary to make use of the
possibility of choosing the constants C different from zero, we now
calculate

From

we find

Gl = (8/tt) (mlm)4 (g2l%c) (g'2l%c).

g'2IJic ™ (9/7£) X 10~17,
(m =  100 \  m),

g2l%C = 1/5 1/10 1/16

1025 . G2 m 2/(3 Is) i/(3 a 1/(5 a

(212)

(198c)

(213)

From the decay constants of light elements one can deduce 73)
G2 13ft W  l lp <=«12x10 - 25. (214)

Since in (209) several matrix elements occur, we conclude that,
roughly,

G L ^ ó X l O - 25. (214a
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This means that only for small values of I (m sw 55 m) G\ is of the
right order of magnitude »). For £ m  If, however, we find from
(213): G% & 0-02 x 10-25. In this case, which seems to be the more
probable one 75), the spontaneous meson disintegration in the nu­
cleus is not sufficient72) in order to explain the order of magnitude
of the (3-radioactivity, and it seems to be necessary to add “direct
F e r m i  terms by a convenient choice of the constants C in the
L a g r a n g i a n  and the H a m i l t o n i a n  {Bfeg). This argu­
ment, however, is not conclusive since, after all, the radioactivity
may be due to a large value of one of the constants gó or gó which
were of no interest in the discussion of the deuteron problem and do
not enter into the expression for the probability of the spontaneous
meson disintegration.

Summarizing we can say that any serious disagreement between
the theory and reliable experimental data can at present be avoided
by a convenient choice of the constants.

§ 12. Scattering and absorption of mesons by nuclei. In this section
we shall briefly mention some processes of "scattering” or absorption
of mesons by nuclear particles.

Passing through the C o u l o m b  field of a nucleus a meson can
emit photons (.Bremsstrahlung) or be deflected ( R u t h e r f o r d
scattering). The theoretical cross section for Bremsstrahlung is smal­
ler by a factor 10~* or 10^ than the corresponding effect of elec­
trons *). The effect is calculated from the terms T-fe and hfc of the
H a m i l t o n i a n ;  it can be regarded as an ordinary R u t h e r ­
f o r d  scattering coupled with the emission of a photon.
. T.^e cross sectlon for R u t h e r f o r d  scattering is obtained in a

similar way as the corresponding expression for electrons. A differ­
ence arises from the fact that the expression for the electric charge
density of the field of the scattered particle, which enters into the
; r UlTaC) 15 m0re comPlicate for mesons than for electrons (compare
(48)). L a p o r t e  78) has shown that as a consequence of this fact
a ready in the first B o r n  approximation an azimuth-dependence of
the differential cross section for R u t h e r f o r d  scattering of trans-
uersal linearly polarized mesons into a given direction appears This
effect, however, is very small for slow mesons (fourth order in vie)

The meson can be virtually absorbed itself by a nuclon and be re-
emi ted. The cross section for this “anomalous scattering” 49) or
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“C o m p t  on scattering of mesons” 2) was calculated by H e i t-
1 e r 49) and B h a b h a 18). The former simplified the calculation
by computing the cross section only for momenta, which are small in
comparison with Me (<«10 me). For a longitudinal meson impacting
with a momentum p and an energy s on a nuclon at rest, by which it
can be absorbed, (that is, a proton for the scattering of arneticons,
and a neutron for the scattering of theticons), H e i 11 e r obtained
in this “non-relativistic” approximation the following differential
cross section for scattering into a given solid angle du>:

d ^ f u l  =  (1/x)2 (g2jnc) {(g? +  2gl)lhc} {p2lms)2 da>. (215)
This result was obtained after summation over the three possible
directions of polarization of the scattered meson. If the incident
mesons are transversal, the factor (gf/hc) must be replaced by
(ga/**)-

A relativistic formula was derived by B h a b h a 18). The compli­
cate formula, which was found by him for scattering of unpolarized
mesons through an angle F0 in the system of the centre of gravity into a
given solid angle d<xt0, tends according to him to
dQ{&£iL= 6(l/x)2 {{gi + g2)2lhc}2{Mml{M+m){2M+m)}2d<*0 (216)
for the non-relativistic case p0 me, and to
M £ S L =  i( l /x )2{(g? +  2^)/fe}2(/>0/mc)2(l +  cos»0)d<öo (217)
for the extreme-relativistic case p0 Me; both expressions are diffe­
rential cross sections for scattering by a nuclon capable of absorbing
the meson (proton or neutron). Here p0 is smaller than the correspon­
ding p in (215), since B h a b h a  takes the momentum with respect
to the centre of gravity.

Comparing (216) with (215) we remark that the expressions do not
agree with each other, so that there must be some error. The extreme
relativistic equation of B h a b h a  (217) shows more similarity to
the formula of H e i 1 1 e r (215) than B h a b h a’s non-relativistic
approximation (216).

Taking m 175 m (so that 1/x «  2-2 X 10-I3cm) and g2/Tic <« £,
we find by integration over angles the following total cross sections:

«  3 X  10“ 26X (p2fme)2 cm2. (215a)

V J f  K lQ-® cm2, (216fl)
^Bkabi <*■ 3. X 10-26 x  (plmc)2 cm2. (217a)



THE ANOMALOUS SCATTERING OF MESONS BY NUCLONS 11 1

B h a b h a himself states that his non-relativistic cross section
(216a) is of the order of magnitude 10~28 cm2. H e i 11 e r states that
his expression yields a cross section corresponding to an average
range of 2 ~ 5  cm of lead for 2mc2. This result is
wrong by a factor 1 £ ~  2\ on account of too high a value of (g2ITic)
used by him in that early stage of the theory (before K e m m e r ’s
neutretto-hypothesis, compare § 3} and still by a factor 8 by a slip in
the calculation. According to (215*) the range in lead for p me is

207 1-67 X 10-
"+ 207 — 82 ' fl-------  • ^  «« 35 cm (218)

for theticons (positive mesons), which are scattered by neutrons; and
for ameticons (negative mesons), which are scattered by protons:

50 cm- (of lead). (218*)
207 1-67 x 101-24

82 li ■ $

According to the (“non-relativistic”) equation of H e i 1 1 e r or
the (extreme relativistic) equation of B h a b h a the range would
decrease for high energies proportional to l/e2. Then, however
according to § 6 the probability of the creation of showers would
increase and the range would decrease even more strongly The
probability of a third order effect

Y+ +  N+ (-* P+ -  n + +  Y+) -  P+ +  Y -  +  Y+ (219)

was estimated by H e i 11 e r «). According to a “non-relativistic”
calculation ƒ  <  Me «  10 me) the ratio of the cross sections for this
be^uaU Q 9 ^  f°f ^  <anomalous scattering” (215*) would

(220)$ (219)/^(21S) f* (3/5tt) (g2/Èc) (e/mc2)2.
Taking g2/Tw m we find

^*(219)/^>(215) *1 (e/ 6^ me2)2. (220*)
F°r high energies, however, the calculation is not reliable.

e cross section for the “C o m p t o n  scattering” of the original
yukons (se«/*r mesons) was calculated bV Y u k a w a 2) For

these particles the cross section tended to zero for increasing energy
For this reason it would be of interest to calculate the cross section
for high energy spinless mesons (case d of K e m m e r).



1 12 HEAVY QUANTATHEORY OF NUCLEAR AND COSMIC RAY PHENOMENA

Slow mesons may be very well absorbed by an atomic nucleus with
subsequent emission of a nuclon (the analogon of the photo-electric
effect). The calculation was performed by Y u k a w a 2) for yukons
and by S a k a t a  and T a n i k a w a  ” ) for P r o c a-K e m m e r
mesons. The cross section for the latter process is given by 77)

v2 gi +  2gi me2 i p  +  2 —  s  ̂1 lV>'O 64tc 3 he me Me2')(«)■ <22,>
Here p is the momentum of the impacting meson, and its energy

e =  V(mc2)2 +  (cp)2 is assumed to be small in comparison with the
rest energy of a nuclon (me2 e Mc2). I  ( 107 eV <^e) is the
binding energy in the nucleus of the nuclon emitted in the process.
For slow mesons we can write

e ft* me2, pfmc v/c V2m/M,  (222)
so that we find (taking g2fhc =  | ,  m =  175 m and I  =  107 eV):
O & 10“ 27. (cfv) cm2 (per absorbing nuclon in the nucleus). (223)
Thus we find an absorption probability proportional to (l/v). For

v/c =  1 /50 the range in lead for theticons has decreased to only about
5 cm. Very slow mesons are absorbed quickly. The arneticons are again
a little more penetrating than theticons in heavy elements, since the
latter contain less protons than neutrons.

Another important effect is the mesophotic effect and its reverse,
the photomesic effect (124). The possible intermediate states are
( ?  =  ?  + t ) :

^  N+(?) +  Y+(— ~p) +  Y -£ ) «-►
«—> P+(0) +  Y~(p') +  hs)(k) <—>

P +(0)+Y—(/>)

and

N+(0)+Y+(£)

* hv{k) +  P +(— k) + Y -(£)•«—►
-5—» P +(0) +  P - ( §  +  N + ( f )  ^

P +(?) +  Y - ( -  f )  +  Y + È
-<—s- N+(0) +  Y+(f )  +hv(k)

p+(/>)_> r t
N+(0)4-Y+(J)+P- { - p ) + V +(P')+hv{k)

N +{p')+hv(k)

(224)

P+(p) + hv(k)
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The first order contributions (from hCeg) to  the m atrix elements Q
for these processes (115; are of the same order of magnitude as the
second order contributions, bu t of opposite sign, so that some of the
terms in the differential cross sections tending to infinity for e -> oo
are cancelled.

The calculation was performed in non-relativistic approximation
by H e i 1 1 e r  49). Then in (224) the lower two intermediate states
can be neglected in both cases. The first order effect, however, was
overlooked by H e i 1 1 e r, so th a t his results cannot be trusted.
Moreover, there was a slip in the calculation, so th a t in the m atrix
element given by the formula (56) of his publication 49) the vector
p "  in the first term  should change its sign. Then, in the first formula
on page 534 the terms with (p)p') (p' . e) do no longer cancel.

I t  is noticeable th a t the same error in sign slipped into the calcula­
tion of the photomesic effect performed by K o b a y a s i  and
O k a y a m a 45), though they started  from the right m atrix element.
The considerations of § 6 (page 81 —82), however, show th a t the terms
in the m atrix  element Q arising from E* div E in cannot can­
cel each other by summation over the two first intermediate states
in (224). — K o b a y a s i  and O k a y a m a  took into account the
first order contribution from hfeg 46).

I t  is interesting to calculate separately the cross sections of longi­
tudinal and of transversal P r  o c a-K e m m e r  mesons for the
mesophotic effect, since the non-relativistic cross sections for these
two polarizations of the meson (p <̂ j Me) depend on the energy in a
different way. Making the same approximations as in the calculations
of H  e i 1 1 e r  49) and of K o b a y a s i  and O k a y a m a 45) (for
instance neglection of the recoil of the nuclon) one finds for the cross
section for longitudinal mesons a non-relativistic expression, which
for increasing energies s of the impacting meson increases proportio­
nal to s2; but for transversal mesons the non-relativistic cross section
increases only with the logarithmus of e. In  the former case the term
with s2 is due to a contribution of the first order effect, from which
the high powers in e are not cancelled by a corresponding contribu­
tion of the second order effect to the m atrix  element Q. In  the case of
transversal mesons the “high powers” of s are cancelled, and the
logarithmical increase is due to the contribution of scattering through
angles -9- 0. I t  m ust still be mentioned tha t, in order to get a not
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too complicate result, one should in the latter (transversal) case
average the cross section over both possible transversal polarizations
of the impacting meson.

The non-relativistic cross section of photons for a photomesic
effect increases always quadratically with the energy, since here the
sum must be taken over all possible polarizations of the emitted
meson; but it is plausible to draw from the preceding considerations
the conclusion that, if high energy mesons are created in the atmos­
phere of the earth by the photomesic effect, longitudinal mesons
must be preponderant in the region, where they are created; though
at sea level this may be different, on account of a stronger absorption
of longitudinal than of transversal mesons.

These conclusions, however, are not certain, since nothing can be
said about the predictions of the theory on the high energy photo­
mesic and mesophotic effects before the laborious calculation of the
relativistic cross sections has been performed. Then, the lower two
intermediate states of (224) must necessarily be taken into account
(even when the angle between the momenta of photon and meson is
small!), and the terms with A*.a and E*.e in hCv  which are neglected
in a non-relativistic calculation, must no longer be forgotten. It will
be a good policy to take into account even the recoil of the nuclon,
which may be considerable at high energies. For the photomesic
effect the creation of spinless mesons must be taken into account, if
g3 and g4 do not vanish; for the mesophotic effect the spinless mesons
can be treated separately.

Some relativistic calculation has been performed by K o b a y a -
s i and O k a y a m a 45), but from their publication it is not clear as
to how far these calculations were approximative. — Anyhow, it
would be of interest to know exactly the dependence on the energy of
the cross sections following from the unaltered theory (without intro­
duction of a “fundamental length”) for this process as well as for the
anomalous scattering of mesons (compare § 13).

It should still be added that it should be hoped that the theoretical
cross section of photons for a photomesic effect is not too small for
high energy photons, since the creation of a sufficient number of
mesons is only in this way understood. Other effects, by which a
meson can be created, seem to be far less probable. Thus the intro­
duction of a fundamental length, which according to K o b a y a s i
and O k a y a m a 45) makes the cross section of the photomesic
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effect nearly constant for high energies, might endanger the explana­
tion of the large number of mesons observed in the cosmic radiation ;
even if only those effects are “cut off” , in which the change in mo­
mentum of the nuclon is only “smaller than”, instead of “very small
in comparison with” the quantity (h/r0), where r0 denotes the funda­
mental length 57) 78) 45).

In this connection it should be remembered that the original
scalar theory of Y u k a w a  yielded a photomesic cross section that
decreased with increasing energy of the photon *») 79). This was then
regarded as an argument against the theory 79).

Another interesting effect is the so-called meson-neutretto chain 9)
Y+ +  N+ -* P+ +  Y° or Y~ +  P + - > N +  +  Y°

With (225)
Y° +  P+ -* N+ +  Y+ or Y° +  N+ -> P+ -f Y~

This process makes it possible for a heavy quantum to travel through
matter partly in the shape of a meson, partly in the shape of a neu-
tretto*). Measurements of M a a s s 80) gave evidence of this
meson-neutretto chain, as discussed by A r 1 e y and H e i t-
1 e r 81). The anti-coincidence arrays recently developed in France 82)
seem to furnish an adequate method for new experimental investiga­
tions in this direction. The question arises whether a beam of neu-
trettos is actually more penetrating than a beam of mesons, if the
processes (225) are probable.

§ 13. Discussion of the limits and the value of the theory. In the
foregoing (pages 95 and 100) we have already mentioned the ques­
tion whether a fundamental length S7) must be introduced into the
theory in order to make it fit with the experimental data. This is
assumed, indeed, by several authors 49) 78) «). They assume that
processes, in which a nuclon changes its momentum by an amount,
which is much larger than tijr0 an hx, are forbidden. W e n t-
z e 178) has pointed out that this cutting off would explain the
nanrow angular spread of hard cosmic-ray showers, which should
exist according to the measurements of S c h m e i s e r  and
B o t h e 83). This procedure makes it also possible to avoid 19) the
infinite10) mesic self-energy of the nuclon. For the anomalous

*) In a similar way, the mesophotic and the photomesic effects together give rise to a
meson-photon chain.
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magnetic moment of the nuclons, due to the magnetic moment of
the meson field generated by a single nuclon, F r ö h l i c h ,  H e i t -
1 e r and K e m m e r 19) find in this way values, which are at least
of the right order of magnitude. It is noticeable, however, that the
finite binding energy obtained by such a cutting off at momenta
hy. =  me is only small in comparison with Me2, so that the mass of
the nuclons cannot be "explained” in this way19).

In the present stage of the theory and experimental data a conclu­
sion can hardly be drawn as regards the necessity or the impossibility
of such a cutting off procedure. B h a b h a 13) has pointed out that
a great part of the present difficulties of the theory may rather be
due to the insufficiency of the methods of perturbation calculus,
which are generally used and which break down as soon as perturba­
tions are computed, which are too large. For instance by the applica­
tion of the method of the variation of constants, which is used in the
derivation of the equation (114), which we have used for all calcula­
tions of cross sections, it is necessary to postulate (1 °) that the proba­
bility per unit time for the transition a -> ƒ is calculated only for a
time, in which the total probability of any transition is still very
small in comparison with 1; (2°) that this same time is long in com­
parison with the period of the frequency e&,lih Though in general the
latter condition is satisfied, the former one is not always compatible
with this second condition.

According to B h a b h a 13) the divergence of some results
obtained by a perturbation calculus, in which changes of momenta
of the order of magnitude me are involved, does not mean at all that
in other similar cases, where the calculation yields at least a conver­
gent result, those momenta should be cut off. To this argument may
be added that it is perhaps still a little premature to argue that the
results of the theory, in which such changes of momenta are in­
volved, are not trustworthy, as long as these results have not yet
been evaluated theoretically and verified experimentally. In the case
of the photomesic effect and the mesophotic effect, for instance, the
inapplicability of the theoretical results can be understood from the
approximative character of the calculations without introducing the
idea of a fundamental length, at which the theory breaks down. As
regards the increase of the cross sections for high energy heavy
quanta discussed in the foregoing, it must be remarked that, from a
theoretical point of view, the question is not yet settled (1°) at what
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energy the heavy quanta become really less penetrating than they
seem to be according to the experimental data, (2°) whether this
limit is the same for longitudinal and transversal mesons and for
spinless mesons; whereas, from an experimental point of view, the
dependence of the penetrating power of mesons on the energy is not
yet known with certainty. Even it is not yet excluded entirely that
the penetrating power of very high energy P r o c a-K e m m e r
mesons does not really exist at all; for a large cross section of the
photomesic effect some arguments can be adduced (see § 12), and
this may be connected with a large cross section for the mesop’hotic
effect.

Anyhow, it is interesting to investigate the possibilities of a quan­
tum theory, in which a fundamental length is introduced. Such an
altered quantum theory, however, should not be imagined as an
ordinary quantum theory, in which only some prescription is given
restricting the validity of the theory. This can only be an early stage
of the theory. The change that should be made would, indeed, be a
more revolutionary one.

For instance, one can imagine that the infinite static self-energy of
the point electron is removed by changing the 8-function in (110)
into a Z)-function, which is derived from a “relativistic ©-function”
in a similar way as the 8-function is derived from the relativistic A-
function depending on (r ±  ct) only. This would mean that the 8-
functions in the commutation relations are altered in such a way that
by an expansion of the wave-functions in series of plane waves the
amplitudes of states of high momentum would no longer satisfy the
usual commutation relations.

Then putting

ihJ> = IJ7) F/’]_ , (51)

the equations of motion, which in the present theory take the form
of the field equations following from a variational principle, would
no longer be differential equations in the altered theory, but would
take the form of integro-differential equations. The laws of conserva­
tion of energy, momentum and angular momentum 40) would no
longer be strictly valid, but would still be reasonable approximations
as long as no large momenta are involved.

The relativistic invariance of such a theory would be a problem in
itself.
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One should note, however, that then there would no longer be a
reason for ignoring the self-energies in the expression for the total
energy, and care must be taken that the energy of matter does not
appear twice in the H a m i l t o n i a n ,  for instance once in the
terms describing the fields of D i r a c  particles, and again in the
terms describing the (electromagnetic, mesic and neutrettic) quan­
tum fields 84) 85).

We must consider the possibility that the 8-functions, which we
have used in the theory of the (3-decay but have omitted in the
theory of the nuclon interaction, will obtain in such an altered theory
some finite value and will be of importance for the levels of the deu­
teron. Thus, if one assumes that it is necessary indeed to alter the
theory, one should not be too certain about the present deuteron
theory and about the determination of the order of magnitude of the
constant g2/hc, which again appears in all effects calculated by means
of the meson theory.

On the other hand it must be borne in mind that for the time being
it does not yet follow from the experiment that such a revolutionary
change in the theory is absolutely necessary. Therefore it may be
prudent not only to investigate the fundaments of quantum-mecha­
nics, but also to review its methods of calculation. Even more needed
are detailed experimental investigations on the energy-dependence of
the cross sections for the numerous processes, which are possible
according to the theory of mesons and neutrettos.

Finally it must be remarked that, until now, the meson theory has
one very unpleasant feature (apart from the divergencies and the 8-
functions); viz. the enormous number of constants, which must be
chosen in a convenient way in the hope to make the theory fit the
experiment. In a “pleasant” theory one should for instance expect
that the constants C0, Cx, C2, C3, C4 are all equal to zero (or perhaps
to 1), that the constants g0, gu g2, g3 and g4 are all equal to one value
i  g or to zero, and the constants g' in the same line. We have seen
that the possibility of such a simplification is at least questionable,
if we want to explain for instance the experimental data on the deu­
teron by means of the methods discussed in § 7—8. For instance, the
attempt of B e t  h e 32) (g0 =  gl — g3 — g4 =  0) did not succeed
very well (§ 8). This may be a consequence of our methods, or of the
incertitude of the experimental data, which are perhaps not all as
reliable as one should wish, partly on account of the indirect way, in
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which they are obtained. It may also be in the nature of things that
so many constants are involved. In that case the theory will become
satisfactory only, if the number of effects explained numerically by
the theory will appreciably surpass the number of constants.

Leiden, August 1939.
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SAMENVATTING

I. Undor-rekening en lading-conjugatie.
Onder "undoren van den w-den trap” verstaan wij grootheden, ge­

kenmerkt dóór 4" complexe getallen, die zich bij L o r e n t z -trans­
formaties lineair transformeeren als de 4" producten van de compo­
nenten van n D i r a c  sche golffuncties (§1). Indien de spiegelings-
transformatie van zulk een Di r a c  sche golffunctie zoodanig wordt
gedefinieerd, dat een dubbele spiegeling overeenkomt met een om-
keering van het teeken van de golffunctie, bestaat er een lineaire
operator, die uit den complex-geconjugeerde van een undor Y van
den «-den trap wederom zulk een undor vormt, den “lading-gecon-
jugeerde” (Y£) van Y, en wel zoo, dat Y ^  =  Y is (§ 2—3).

In het bijzonder onderzoeken wij undoren van den eersten (§ 1 —4)
en van den tweeden (§ 5) trap. Een undor van den tweeden trap ver­
tegenwoordigt een vijftal antisymmetrische tensoren (van den nul-
den, eersten, tweeden, derden en vierden trap). Deze tensoren zijn
reëel (afgezien van een willekeurigen constanten factor), indien de
undor YMl gelijk is aan zijn lading-geconjugeerde YfA of aan zijn
lading-geadjungeerde Y j^, waaronder wij YfA verstaan (§5). Un­
doren, die gelijk zijn aan hun lading-geadjungeerde, noemen wij
"neutrettoren” (§ 4—5).

Tenslotte leiden wij een “metrischen undor” af, waardoor aan eiken
gewonen (“covarianten”) undor een “contravarianten” undor wordt
toegevoegd (§ 6). Wij definieeren een gradient-undor en kunnen nu
undor-vergelijkingen in “covariante notatie” schrijven.

II. De undor-vergelijking van het mesonenveld.
Wij schrijven de P r o c  a-vergelijkingen voor het mesonenveld in

undor-notatie (§1). Het P r o c  a-veld wordt voorgesteld door een
symmetrischen undor van den tweeden trap. De vergelijkingen laten
zich uitbreiden tot die voor een veld, beschreven door een niet-sym­
metrischen undor van den tweeden trap (§ 2). Deze uitbreiding komt
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neer op het invoeren van een nieuw veld van spinlooze mesonen. —
Het veld van neutrale mesonen C'neutretto’s”) kan worden beschre­
ven door een neutrettorveld (§ 2).

Bij elke oplossing van de veldvergelijkingen bestaat er een "la-
ding-geconjugeerde” oplossing van de z.g. “lading-inverse” verge­
lijkingen (§ 3). Bij deze lading-inversie dient niet alleen de electrische
lading e van teeken te worden omgekeerd; indien men rekening
houdt met de anticommutativiteit van de golffuncties van nuclonen *)
en lichte deeltjes, moeten ook de mesische ladingen /  en g van teeken
omdraaien. -  Een beschrijving van het veld door middel dezer
ladmg-geconj ugeerde veldgrootheden noemen wij de lading-gecon-
]ugeerde beschrijving van het veld.

De electrische ladings-stroom-dichtheid laat zich op eenvoudige
wijze uitdrukken met behulp van den undor, die het mesonenveld
beschrijft (§ 4).

Door iteratie van de meson-vergelijking vindt men voor vrije
mesonen een K l e i  n-G o r d o n vergelijking. Houdt men rekening
met de wisselwerking der mesonen met het electromagnetische veld,
dan treden in deze vergelijking extra termen op, waarvan de belang­
rijkste kunnen worden opgevat als de beschrijving van een magne­
t o 11 moment van het meson, dat dan {e/2mc) maal het spin-impuls-
moment (%) van het meson blijkt te zijn (§ 4).

Wanneer men aanneemt, dat de quantum-mechanica een "lading-
tnvariante" theorie is, d.w.z. dat bij een lading-geconjugeerde be­
schrijving van het veld alle waarneembare grootheden op dezelfde
wijze kunnen worden berekend als bij een gewone beschrijving van
het veld, behalve dan dat alle ladingen met het andere teeken moeten
worden genomen, dan volgen uit deze veronderstelling een aantal
betrekkingen, die volledig bepalen, van welke deeltjes men moet
aannemen, dat zij aan de F e r m i - D i r a  c-statistiek voldoen en
welke deeltjes aande E i n s t e i n - B o s  e-statistiek moeten gehoor­
zamen. (Andere soorten van statistiek zijn in beginsel echter niet uit­
gesloten). Het blijkt, dat deeltjes met geheeltalligen spin aan de
h i n s t e i n - B o s  e-statistiek moeten voldoen, en deeltjes met heel-
plus-halftalligen spin aan de F e r m i - D i r a  c-statistiek (§ 5). Bo­
vendien kan men van de lading-invariantie van de theorie gebruik
maken om de uitdrukking voor de energie van het veld in een dus-

*) D.w.z. protonen, neutronen en hun antideeltjes.
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danigen vorm te schrijven, dat het duidelijk is dat alle vrije elemen­
taire deeltjes een positieve energie bezitten.

III. Toe-passing van de theorie der zware quanta op problemen der
kern-physica en der cosmische straling.

Wij geven een critisch overzicht van een aantal publicaties, die de
laatste jaren over de theorie der zware quanta (mesonen en neutret-
to’s) zijn verschenen. Na een korte inleiding (§ 1) wordt de theorie
der zware quanta geschetst, zooals deze door K e m m e r  en
andere schrijvers is ontwikkeld (§ 2—3). De grootte-orde van de in de
theorie optredende constanten wordt besproken.

Vervolgens worden de in zwang zijnde methoden, volgens welke men
het veld pleegt te quantiseeren, aan een critiek onderworpen (§ 4).
Het blijkt, dat het bewijs van de relativistische invariantie der theorie
nog moet worden gegeven. Van niet-relativistisch standpunt uit be­
keken, zijn de gangbare methodes niet zeer consequent, en wij hebben
aan een eenigszins afwijkende behandeling de voorkeur gegeven.

De wisselwerking van het mesonenveld met het longitudinale
M a x w e l  1-veld kan worden beschreven als een statische C o u ­
l o m b  sche krachtwerking tusschen de electrische ladingen (§ 5). De
H a m i l t o n i a a n  wordt afgeleid, die de wisselwerkingen van de
uitgebreide mesonen- en neutretto-velden met alle andere velden be-
heerscht (§ 6). De aard dezer wisselwerkingen wordt aangeduid. Van
bijzonder belang is het feit, dat de grootte van zekere matrixelemen-
ten van de gequantiseerde H a m i l t o n i a a n  de waarschijnlijk­
heid van veel-quanta-processen doet verwachten.

Vervolgens wordt de wisselwerking tusschen nuclonen door tus-
schenkomst van het veld der zware quanta besproken (§7). Hoewel
de afleiding van de uitdrukking voor deze wisselwerking veel over­
eenkomst vertoont met de afleiding van de B r e i t  sche wisselwer­
king tusschen electronen, blijkt de "effectieve potentiaal” in het
laatste geval een betere benadering te zijn dan in het geval der wis­
selwerking tusschen nuclonen.

De S c h r ö d i n g e  r-vergelijking voor het deuteron wordt opge­
schreven, de optredende moeilijkheden worden besproken en het
magnetische moment van het deuteron w.ordt ter sprake gebracht
(§ 8). Een kort overzicht wordt gegeven van den huidigen stand der
theoretische onderzoekingen omtrent het probleem der strooiing van
nuclonen door nuclonen (§9).
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Na een beschouwing over het spontane uiteenvallen der zware
quanta (§ 10) wordt de theorie van de ^-radioactiviteit behandeld in
het kader van de mesonentheorie (§11). Eenige belangwekkende bij­
zonderheden treden op door de uitbreiding van het mesonenveld met
spinlooze zware quanta. Het vraagstuk van de overeenstemming
tusschen theorie en experiment wordt nader in oogenschouw ge­
nomen.

Vervolgens worden de bestaande theoretische onderzoekingen om­
trent verschijnselen van “strooiing” en absorptie van mesonen door
atoomkernen aan een critische beschouwing onderworpen (§ 12).
Deze verschijnselen zijn van belang voor de bestudeering der cosmi-
sche straling. Longitudinaal en transversaal gepolariseerde zware
quanta blijken niet even sterk “als photon” te worden “gestrooid”.

Tenslotte worden argumenten vóór, bezwaren tegen en mogelijke
gevolgen van de invoering vaneen fundamenteele lengte in de quan-
tum-theorie besproken, en wordt de wenschelijkheid naar voren ge­
bracht van nadere experimenteele onderzoekingen omtrent de ener-
gie-afhankelijkheid van de werkzame doorsneden voor de verschil­
lende processen, die volgens de theorie mogelijk zijn (§13). Het groote
aantal constanten, dat in de theorie in zijn algemeenen vorm op­
treedt, wordt als een bezwaar gevoeld.
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THEORY OP HEAVY QUANTA -  errata et addenda:

page
»•

6,
69,

lin e
, 1

»* 92, »»

4, s a  sca lar, HEAD: i s  a scalar.
13, ji| -  (4^^ /d iv ) ƒ  + a ^ /c  , READ:

= t ! ( 4 * ^ / d i v )  f  -  ^ A/ c j ^

21, YiTfy,?)'-, READ: Y f  ̂ ‘
page 65 sqq (chap. I l l ,  § 5 - 6 ) ,  corrigenda: ;

The transformation with was needed by . F e r  m i , since in
h is  paper O l^lc  and W/c take the t part of and 0  in
our ease (as canonical conjugated momenta t o . O l^ and W ) .  For
u s, the transformation (76a) with 1 Jfj only su ff ic e s . In I 6, the
matrices a, B, c , d, 1, m, n , v f w are; components of the original
(not of the transformed) f ie ld .  Now, i t  can he shown that the usual|
expressions (compare B e l i n f a n t e ,  Fhysica 7» 449, 1940)
for  the to ta l energy, momentum, to ta l angular momentum, spin com­
ponent p ara lle l to  momentum (see (105) ) ,  charge density and to ta l
e lec tr ic  charge can he written as:

z/7.-tP'-f-rf", f - f ' - f - f " > J ~ J <+J \  <£>j\ ~ 2>u ' f  *P A  e = * ■
Here, a/" ' ,  Jp" and J "  are zero-terms (see page 65) ,  whereas the
TRANSFORMED operators (compare (73))

/ /* , J J ' , ’ö and <2>,|
are given hy the formulae (90) (see (109) ) ,  (102), (103) and (105)*|
(Por th is  reason, a*a etc .  (without transformation!) can he re­
garded as the TRANSFORMED operators of numbers of p artic les  or
quanta) ƒ ~M\. -

The equation (70) i s  not correot for instance for y  -  3/&0. Da
stead of the considerations of page 65, therefore, we must observe
that straight-forward calculation  from (41), (42),  (49),  (50) and
the e x p lic it  usual expressions for , JP* , T  , eto.  y ie ld s:

11 | f̂ V O; IS Ipllp B ; 111. v i SI ‘Wff

h f h  .,
Further, with fl defined hy a*a, . . . . ,  w*w, we find in  th is  way:

[N, Ï ^ ^ T ^ b h (%eto.
Thus, the dashed quantities can replace the orig in al q uan tities.

We remark that in  (76) a l l  f ie ld  components must he taken at soms
given time t  = t  in  order to  have jj| constant in  the expressions
for  d^/dt, d^/dt e tc . The equations of 5 5 -  6 , the formulae givei
above and the expression (90) for  the Hamiltonian n '  are, there­
fore , va lid  at t  = t^ only, hut th is  su ffice s  i f  the situ ation  i s
described hy y\h)= *~lF ^(t)  (see (60) - ( 62) ) with (compare|
(59) with (60)) .  Thus, ONLY AT t  a t Q, we have ( =

0 with (76 a+h), or:) ®7\ -  6eny Pi ** 0 with(76a) without
(76h).

*  0 *  4 6  >> 1 s .
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STELLINGEN

I
De door H e i s e n b e r g  en P a u l i  gegeven definitie van dif­

ferentiatie van een veelterm in ^-getallen naar een dezer ^-getallen
is onbruikbaar voor de ontwikkeling van een algemeene quantum-
theorie voor golf velden.

Z. Phys. 56, 1, 1929.
II

Ten onrechte meent S c h ö n b e r g ,  dat een uitbreiding van de
kanonieke theorie der gequantiseerde golfvelden van H e i s e n b e r g
en P a u l i  tot het geval van velden van deeltjes, die de F e r m i -
D i r a c  statistiek volgen, onmogelijk is.

Physica 5, 961, 1938.
. III

De wijze, waarop N o v o b a t z k y  het electromagnetische veld
quantiseert, verschilt in wezen niet van de methode van Fe r mi ,
doch om de nevenvoorwaarden te vermijden, waaraan volgens
den laatste de situatiefunctie zou moeten voldoen, wordt de
relativistische covariantie van het formalisme opgegeven.

Z. Phys. 111, 292, 1938.
IV

Er zijn redenen om aan te nemen, dat het voorschrift, volgens
hetwelk in de golfmechanica uit den operator Fop van een
waarneembare grootheid de gemiddelde waarde dezer grootheid
wordt berekend, bij z.g. tweede quantiseering der golfvelden slechts
dan tot den juisten operator voor de gemiddelde waarde dezer
grootheid zal voeren, indien de lading-getransformeerde en de
lading-inverse van Fop elkanders tegengestelde zijn.

F. J. Belinfante, proefschr. Leiden 1939, blz. 34.

V
Het is mogelijk, een algemeen voorschrift te geven, volgens

hetwelk men uit de L a g r a n g i a a n s c h e  functie een symme-
trischen energie-impuls-dichtheidstensor kan afleiden zonder ge­
bruik te maken van de methode van H i l b e r t .

Göttinger Nachr. 1915 , 395.
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VI
Het ware wenschelijk, proeven over adiabatische demagneti-

satie ook met waterhoudende ceriumzouten uit te voeren.

VII
Het ware van belang, de temperatuur-afhankelijkheid van de

ferromagnetische anisotropie van kubische kristallen ook in het
temperatuurgebied van vloeibaar helium te kennen.

VIII
Het ware wenscheüjk, bij het onderwijs in de natuurkunde

aan de scholen voor voorbereidend hooger en middelbaar onderwijs
de beginselen der quantum-theorie te bespreken aan de hand van
eenige demonstratie-proeven.

IX
Het verdient aanbeveling, bij het onderwijs in de wiskunde aan

de scholen voor voorbereidend hooger en middelbaar onderwijs
meer aandacht te besteden aan vraagstukken met strijdige, over­
bodige of onvoldoende gegevens.

X
Voor niet te groote waarden van het natuurlijke getal N kan men

op eenvoudige wijze door nacijferen de juistheid vaststellen van de
N  s N

formules .S ( '£ ? )  (ƒ) =  4" en .S ( - * ) ' ( » ) ( ? )  =  ** (’£)■
Indien deze formules algemeen geldig zijn, schijnen zij niet een­
voudig te kunnen worden bewezen door volledige inductie.

XI
Het feit, dat voor nieuw ontdekte deeltjes hamen als ’’positron",

"mesotron”, "deuton" e.d. in de litteratuur opduiken, wijst op de
wenschelijkheid van meer overleg tusschen physici en classici.

XII
Het gebruik van Esperanto voor wetenschappelijke doeleinden

is in beginsel mogelijk en zou de doeltreffendheid van internationale
wetenschappelijke congressen kunnen verhoogen.
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