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VOORWOORD

Bij deze bijzondere gelegenheid is het mij een behoefte, een woord
van dank te richten tot al degenen, die hebben bijgedragen tot mijn
vorming.

Het voortreffelijke onderricht van den heer H. Corver op het
Nederlandsch Lyceuwm te ’s-Gravenhage deed een sluimerende liefde
voor de natuurkunde bij mij ontwaken. Zijn lessen, doch ook een
voordracht van wijlen prof. dr. P. Ehrenfest aan deze school
en de raad van den toenmaligen rector prof. R. Casimir, bepaal-
den mijn latere studierichting.

In mijn eerste studiejaren aan de universiteit te Leiden had in het
bijzonder de kinetische gastheorie mijn belangstelling, waarin mevr.
dr.G.L. de Haas-Lorentz college gaf. Ik was nog een jaar
lang in de gelegenheid, de levendige colleges van prof. Ehre n-
fest tevolgen, die een diepen indruk op mij maakten.

Toen prof. Ehrenfest onsin 1933 zoo onverwacht ontviel,
waart gij het, mijn waarde prof. dr. H. B. G. Casimir, die, toen
nog assistent, een jaar lang als , invaller” het college golfmechanica
hebt gegeven. Hiervoor, maar nog meer voor de vriendelijke welwil-
lendheid, waarmee gij mij gedurende mijn geheele studie te Leiden in
wetenschappelijke moeilijkheden hebt willen helpen, ben ik U van
harte dankbaar.

U, hooggeachte Promotor, hooggeleerde K ra m e rs, ben ik veel
dank verschuldigd voor de belangstelling, waarmee U mijn studie
hebt gevolgd en gestimuleerd. Veel heb ik van U geleerd: op Uw
college, uit Uw college-dictaat, uit Uw boek over golfmechanica, op
het door U ingestelde ,,seminarium’’ voor theoretische natuurkunde,
maar het meest nog tijdens mijn assistentschap bij U uit gesprekken
en uit de studie, waartoe zulke gesprekken steeds weer aanleiding
gaven.

Een woord van dank past mij aan mijn ouders, die mij in de ge-

legenheid stelden, een wetenschappelijke opleiding te genieten en te
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voltooien. Het is ondoenlijk, hier verder al degenen te noemen, die
aan mijn vorming en opvoeding hebben meegewerkt. Mogen echter
z1j allen overtuigd zijn van mijn erkentelijkheid.

In 1938 werd ik door stipendia van de Nederlandsch-Amerikaan-
sche Fundatie en van het Lorentz-fonds in staat gesteld, den zomer-
cursus aan de University of Michican te Ann Arbor (Mich., U.S.A.) te
volgen. Door colleges van prof. dr. H. A. Bethe en prof. dr. G.
Breit maakte ik hier kennis met het onderwerp, dat in dit proef-
schrift wordt besproken. Prof.dr. H. A. Kramers stelde mij tot
probleem, de vergelijkingen voor het zware quantum neer te schrij-
ven in cen vorm, analoog aan de z.g. »photon”-vergelijkingen uit
De Broglie’s ,neutrino-theorie” van het licht. De onderzoekin-
gen, die hierop volgden, leidden niet alleen tot het ontstaan van dit
proefschrift, maar ook tot het publiceeren in het tijdschrift , Prysi-
CA" van een artikel over het spin-impulsmoment van golfvelden, en
tot verdere studién, die ik in de komende tijden hoop te mogen vol-
tooien,

In het eerste hoofdstuk van dit proefschrift wordt het formalisme
behandeld van de ,,undor-rekening’’ ; het derde hoofdstuk bestudeert
de algemeene theorie der zware quanta. Het tweede hoofdstuk vormt
hiertusschen de schakel. Ik ben den unitgever en de Redactie van
- PHYSICA", in het bijzonder prof.dr. A.D. Fokk er, zeer erkente-
Ik voor de door hen geschapen mogelijkheid, de eerste twee hoofd-
stukken te laten verschijnen als artikels in dit tijdschrift.




UNDOR CALCULUS AND CHARGE-CON JUGATION

Zusammenfassung

Grossen, welche sich transformieren wie Produkte 4-komponentiger
D ir a c scher Wellenfunktionen, werden , Undoren’ genannt. Zu jedem
Undor ¢ kann durch Linearkombination der Komponenten seines kom-
plex Konjugierten 4* ein neuer y2ladungskonjugierter’’ Undor * gebil-
det werden. Wenn ¢ = {¥, wird die Wellenfunktion ¢ ein ,Neutrettor"”
genannt. Undoren zweiter Stufe entsprechen gewisse Tensoren, Neutretto-
ren zweiter Stufe entsprechen reelle Tensoren. Mit Hilfe eines , metri-
schen” Undors zweiter Stufe werden , kontravariante” Undoren definiert,
welche sich kontragredient zu den gewdhnlichen (, kovarianten’’) Undo-
ren transformieren. Endlich wird der , Gradient-Neutrettor'’ eingefiihrt.

Resumo

Kvantojn, kiuj transformigas kiel produtoj de kvar-komponantaj
Dirac’aj ondofunkcioj, ni nomas ,undoroj’. El ¢iu undoro 4 per
unuagrada kombinado de la komponantoj de gia komplekse konjugito $*
nova ,Sarge konjugita’ undoro ¢* povas esti konstruata. Se ¢ = 5*3 ni

nomas la ondofunkcion ¢ ,neutretoro’”. DuaStufaj undoroj reprezentas
certajn tensorojn, duastufaj nettretoroj reprezentas realajn tensorojn.
Per ,metrika’’ undoro duaStufa , kontratvariantaj’” undoroj estas difi-
nataj, kiuj transformigas kontraiipaSe al la ordinaraj (,kunvariantaj"”)
undoroj. Fine la , gradiento-netutretoro’ estas prezentata.

§ 1. Introduction. It is well known that — with respect to the
restricted 1.oren tz group, excluding spatial reflections through
the origin — tensors can be expressed in terms of spinors?!) ?). As
soon as spatial reflections are taken into account, however, it is
necessary to consider pairs of spinors transforming one into the
other by a reflection through the origin. An example of such a pair
of spinors is the wave function of the Dirac electron.

In the following we shall investigate the properties of quantities
transforming like products of such D ir a ¢ wave-functions ). Such
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quantities we shall call “undors” *). They form a generalization of
Dirac wave-functions in the same sense as tensors form a genera-

lization of vectors. Just as the representations of the Lorentz
group by the transformations of most tensors are not ausreduziert, so
the representations by most undors are likewise reducible.

In particular we shall discuss, in the following, the relation between

50

undors of the second rank and tensors, and the analogon in undor-

calculus to real tensors: “neutrettors’” 4). Finally we shall deduce the
metrical undor and define the gradient undor. The whole set of
mathematical relations will be built up in such a form, that we shall
be able to apply it later on to the theory of mesons and neutret-
t05:9)©)"9):8) )

§2. The D irac wave-function (undor of the first rank). The D i-
r a c-equation of a positive particle (a positon or a proton according
to the value of x = mc/h) can be written in the following form:

{ix + (y.D) + BDg} 4 = 0, (1)
if we put
Y = Ba, (2)
— _— e - 1 ; e
) E: 9 ) J— % N (
D=Vt % h=ra—a kX (3)

Here ¢ is the elementary charge (¢ > 0) and 2, 9 is the potential
four-vector of the electromagnetic field. As in (1) the interaction
with keavy quanta is neglected, this equation does not account for
the anomalous magnetic moment of the proton 19) 3) ) 1),

We shall call quantities transforming like the four-component
Dirac wave-function 4, four-spinors or undors of thz first rank. In

the following we shall often use a representation of them, which is

ausreduziert with respect to the group of restricted Lorentz

transformations, and in which the first two components of a four-

spinor transform like the two-component quantity called a covariant

conjugated spinorby Van der Waerden!?), Laporte and

Uhlenbeck?), and called a regular spinor by Kramers 1?),

whereas the last two components transform like the spin-conjugated )

*) Derived from unda = wave.
) See 1. A, Kramers, loc. cit. 13), page 243,
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Explicitly:
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 4¢
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.' -
Yi/*
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5 4
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Y4/

0

o
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(
)

of such a quantity, called a contravariant regular spinor by Van

- U, 7 sin

(
1

Uy COS

Yy 7 sin

Dirac matrices are given in the representation (4) by

and

if we denote by

o

B=(4

- P20

Bp,)px

fx; Py, Pz and o {oy, oy, .}

9
2

)

‘\“i//)

(4\'.']
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the Pauli matrices!®) operating on the discrete arguments 7 and
s of the four-spinor

!
Y4
From 2 1 we deduce 4?2 — B? 1, therefore,

O 0 20

0 0 0
, (8)
B=l1n 0 00
|0 1500

with A =4 + B =1/(A — B).
Apart from a numerical factor the transformation-matrix of ¢ for
a spatial reflection through the origin ') must be equal to B:

V(—=% —y, —z ) =18V, v, z 1. (9)

As a double reflection should not change the geometrical meaning
of the four-spinor, j must be a square root of 41:

=41 (10)

By (4) a representation of the complete Lorentz group by
transformations of ¢ is not yet uniquely given. If we complete (4) by
making a definite choice for the representation of reflections, the
matrix @ will be fixed by (9), (10) apart from a square root of 4 1.
On the other hand we may choose % = 1, that is,

B = px; (11)
the representation by ¢ of the Loren tz group including reflec-
tions is then given by (9), (10) together with (4), apart from the same
factor 7 in the reflection.

In the following we shall denote the conjugate complex of a ma-
trix by an asterisk *; by a cross 1 the adjoint (“Hermitian
conjugate”) of a matrix. For instance

4' Y'*

Y1 Y1

.L v&*

2 . 2 : . .
] T I3k T & > [ s T 1% 0% .0 % 1%
v ' A x| and 9" = [OF g3 3 ¢4

Y3 Y3

N RS

Y4 v |
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Further, we put

for instance:
Y1 Y2 s Ya

We introduce the normalization- or densily-matrix &, which is
defined apart from a real numerical factor by
B'Y =98, a'9 =9%a, o' =29. (13)

Further, we shall postulate that under a linear transformation
by a non-singular matrix S to another representation:

’ 147 11Ct

51}, Y Y > 8 (14)

1
Y
T

B'=5SBS™, o« =SaS, (14a)

the real expression

shall be invariant, so that
9 =Sr19 S1, (14b)
The definitions (13) are indeed invariant under these transformations
(14a, b).
In our particular representation (4), in which

al =a, (15)

we have on account of (13), apart from a numerical factor,

[[1A] ©F ©: O
O |I/Al 0 O
9 a0y (16)
‘ [ O O |» O
0 QL 2.0 (N
‘ after the choice (11) of B we have, therefore,
\ S ==1" (17)

| The density operator will remain unity so long as, starting from
the representation (4), (5), (11), (17), we admit only unitary trans-
formations, for which

SSt=x 1 (18)
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In the particular representation (5), (11) it is easily verified that,
with regard to the complete Loren tz group,

V'ORY (19)
s a scal ar, and that
jle={t9ay with p = J19y (20)

together form a four-vector (like » with c¢#), which satisfies the conti-
nuity equation

div g

Q)
0

346 (21)

)
=~

as a consequence of (13) and the Dira c equation (1):

: £ 1 ¢
div (19 a ) = (19
. (. ’[ 1] .
(S pa oo, helo =,
Yo B a) S g ATk
ix(Y'B'9Y »;“3;3';)%1.;' YH(A o — B)9—9(A.a — V)Y =0
(1

[t is, therefore, possible to regard § and p as the probability cur-
rent-density and we shall normalize ¢-number solutions of (1) in
one-particle wave mechanics by

[[[dxdy dz (J'9y) = 1. (22)

In the following we shall confine ourselves mainly to those repre-
sentations, in which (17) is fulfilled, and we shall therefore drop &
practically throughout. As regards the representation (4), this
restriction (17) means taking A = A*, B = — B*in (6) and |A 1
in (8), so that

p* = p (17a)
becomes a Hermitian matrix. As regards transformations by

(14) to other representations, it means restriction to unitary trans-
formations (18).
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§ 3. Charge-conjugation of four-spinors. A matrix £ is defined
apart from a complex unity factor ¢ by *)

YE— — £y*, BE— — £P*, ££x— |, (23)

af=far, VgL‘ — £¢¥*, (23a)

where

6x = — 10,0y, cycl, (24)

so that in the representation (5), (6)

— (25)

In this representation (5), (8) this matrix £ is equal to
0 0 0 —[3l]
0

B = e ;) o/ )

I/l 0. 0 0 |

therefore the restriction (17) makes it equal to
£ =%, pioy (27)

in the representation (4), (5), (8).
| In the following the particular representation (4), (5), (11), (17),

(27) with ¢ 1 will be called the Kramers?'® Tepresentation:
o - p,d, g O & PyOy, I =0, (28)

By means of the matrix £ we construct from the conjugate com-
plex (4*) of the four-spinor wave-function (J) of a positive particle

(1), another four-component quantity
.‘."L‘ L,‘:'* (29)
From (1), (3) and (23) we can easily deduce that * satisfies the
equation 13)
{ix. + (y.D*) + BD§* =0, (30)
that is, the wave equation for a negative particle (a negaton or a
hystaton ) according to the value of »). For this reason {* is called

*) This matrix £ is identical with the matrix C* introduced by P auli, Joc. cit. ),

t) Hystaton (antiproton) is derived from-O6Tot0o3 last; proton from wpwtog first,
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the charge-conjugated *°) of &. From (30) we can conclude 1) that —
with respect to restricted 1. or en t z transformations — the charge-
conjugated of an undor of the first rank is again an undor 19).

As regards reflection: from (30) we can conclude only that the
transformation of J* must be again of the form (9). But the repre-
sentations of the complete Lorentz group by the transforma-
tions of ¢ and by those of 4* might be different with respect to the
sign of j. In order to examine this, we compare the charge-conjugated
four-spinor in the reflected system of co-ordinates, which is defined
by

P == S = LR YR, (31)

with the charge-conjugated four-spinor ¢* in the original system of
co-ordinates. This last, (29), will be transformed into (31) by (9)
with perhaps a different value of j, — say j'®:

Y& =0 e Y R ‘v‘* (32)
From (31), (32) and (23) we find
§¥ = — g¥, (33)

The charge-conjugated of an undor of the first rank is therefore
itself an undor with respect to the complete Lorentz group
(7 =), i

j = — 1* (so that j = -+ 7 on account of (10)). (34)

We can also prove directly that J* is an undor with the choice (34)
of 7, without making use of the equation (30). Let A be the linear
operator of some LLorentz transformation of the undor 4. Then *
transforms like an undor if

&&= AdP, (35)
or
EARA— AL (352)
that is, if
AL = £A*. (36)

Indeed this condition is satisfied for the restricted Lorentz
transformations on account of (23z). For the reflection (9) it is satis -
fied, if

TRBE = £7*B¥, (37)

or, on account of (23), if

§ims szt (34)
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This result of Majorana?) and Racah?'®) means that it
serves a useful purpose to define the reflection of a Dirac wave-
function in such a way that a double spatial reflection through the
origin inverts its sign. In the following we shall see that this same
definition enables us to describe the P roca field (that is, a field
consisting of a four-vector A, V and an antisymmetrical tensor of
the second rank E, H

Since according to (34) {* can now be regarded as a regular undor,
it is natural to postulate that by a transformation (14) to another
representation of undors, the undor J* shall be transformed in the

>

) by means of a symmetrical undor.

same way as all other undors ¢. This means that
P =t = = LIS (38a)
must be obtained from ¢* (29) by a transformation (14):

P = SYE = SEY* (385)

This holds independently of the choice of {, if £'S* = S&, or

g/ = SE£S*1. (14c)

Under the transformation (144, ¢) the definitions (23) are indeed in-
variant, thatis to say, if £ is defined in one representation in accord-
ance with (23) and is then transformed to another representation
according to (14c), the relations (23) will hold again between the
transformed charge-conjugator £ and the transformed Dirac
matrices ', &', etc. In the same way the relation

9L — £9°9% — (9£)°°, (23b)

which is valid in Kramers' representation, is invariant by a
transformation (14), ¢) and in consequence holds in every represen-
tation of undors.

It follows from (27) that

S (170)
holds in the representation (4), (17); and from (14¢) we deduce that
this relation (17b) holds in all representations (17), for which the density
matrix is unity, because (17b) is invariant by a unitary transforma-
tion (SH=tS=E1 895 = G¥=1)):

£e0 — St—lgoogeo — g o*—1 _ ¢
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If F is an operator, which operates on four-spinors, we can define
a charge-transformed operator I* by

(]." ';)C ’ ].‘!1 ,‘:JE' (39)

1.";

S i (40)

On the other hand, if F depends on the electric elementary charge
e, we can define the charge-inverse F* of I by

{F(e)}* = F(— e). (41)

Then we can summarize the connection between (1) or

~

. C ' > '
Hopl = ih—o =&, ¢ (1a)

and (30) or

Hopf = € = — EG I (30a)
by stating that
Hy = —HS, €5 =—E&. (42)

K ramers?®) has pointed out that a description of electrons by
means of ¢ and H,,, and a charge-conjugated description by means of
* and 11,’,,., should be equivalent. It can be shown that the meson
theory shows a similar kind of charge-invariance.

§ 4. Neutrettors of the first rank. We shall call self-charge-conjugated
four-spinors
U =4 (43)
neudrettors of the first rank *). These quantities are adequate for the
description of the neutral particles of the theoryof Majorana4).
[t can easily be shown that Majorana’s “real” Dirac wave-
functions are exactly what we call neutrettors. Proceeding by a
transformation (14) with

S =851 = (1 4 ipyoy)/V2i (44)

*

} The name “neutrinors” (in analogy to spinors proposed by me in a Letter to the

Editor in Nature 9)), seems to be less adequate, since it suggests that neutrinos can be

described by these quantities. By neutrettors, however, only photons and neutrettos are

described.
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from the Kramers representation (28) to a Majorana

representation

Larag I, Ouay 1, (45)
we deduce from (23):
BT{.I] —Baray, Y.’i‘uj Yarap a’fr.-u Oara g 3798 o -Gyay- (45a)

This is indeed the characteristic of the representation discussed by

Majorana?*). Four-spinors, which are sel/f-charge-conjugated,
are on account of (29) and (45) real in @ M ajorana representa-
tion. According to M ajorana?) noutreltors can describe neutral

particles 7).

For the purpose of building up a canonical theory of Major a-

na particles the Kramers representation is very convenient.

Denoting in this representation (28) the first two components of { as

a Kramers spinor by

(

\ and the last two components as the spin-conjugated v* of another

"3
‘) il ( ‘) (46a)
2 U

G- C-

Kramers spinor v by

Vs y$ s\*  [v;\®
o

we can write (29) in the following form:

= % |* ? .
"f = : 1.5 (47)
biAd 144
[ SO
o I 15 " :
Y- < — < = Y. (48)
us 1A

This four-spinor is a neutrettor, if

u . v o R
= = {* = _|, that means, if # = v. (49)

v us

*) The representation actually used by M ajorana is obtained from (28) not by
(44), but by taking S F/i. {px(1 oy) + pz(l + ay)} in (14).

t) Note added in proofs. The Majorana theory of neutral particles and the
transformation properties of £ have also been investigated by W. H. Furry, Phys

Rev. 54, 56, 1938.
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In other words, a neutrettor of the first rank consists of a two-spinor
and its spin-conjugated and can be written as

P S o (S0)

ina Kramers representation.
In a canonical theory of neutral particles only the two-spinor #
should be regarded as a canonical variable like ¥ in Dirac’s

theory; u* takes a place comparable with that of J* in Dirac’s
theory and #® can be expressed in terms of a*,

§ S. Undors of the second rank. We shall call a sixteen-component
quantity

WYir, = Yersr, (Riyk2=1,2,3,4; 5,7, 8, r,=4+3,—13) (51)
transforming like the product ¢, 4; = ¢, V., of two four-

spinors an undor of the second rank. With respect to the undor-indices
we regard it as a matrix with one column and 16 rows. Still, we shall
write it as a square matrix with 4 X 4 elements:
L\ S /S \ /SO | /)
| Fu Vi ¥y ¥y

| W Yoo Vs Wi,

e STARCS IR ¥ Bl 8 (52)
l 1 l 32 l 33 l 34
Yy Yo Y Yy

Matrices like py’, pf, o, ™, B™, YT”, al®, g™, 9, g SH.
etc. are assumed to operate on the argument %, of ‘¥';,. Taking
these operators as unity matrices with respect to the index, on which
they do not operate, we can regard them as matrices with 16 rows
and 16 colums.

With respect to the restricted 1.orentz group an undor of the
second rank represents one regular spinor, one conjugate complex
spinor and two mixed spinors of the second rank; it represents,
therefore 2) 12), two four-vectors K, K° and L, L° (transforming like
7, ¢t), two scalars I, and G,, one regular complex three-vector (the
Kennzahlen of an antisymmetrical self-dual tensor 2))

F = H, —iE, (53a)
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and one conjugate complex three-vector

G = H, + iE,, (53b)

where E,, H, and E,, H, form two antisymmetrical tensors of the

second rank. Generally all these quantities are complex. In the
Kramers representation (28) we can write:

¥ Vi Pia il F,—iF, Fo—F, K,—iK, —K'—K, |

Wy W W HE N i Lo F.—iF, K°—K, K,—iK, (5)
W3 W Wy ¥ 34| : L.—iL, L°—L, —G,+iG, Go+-G ‘. ’
‘[.41 "‘42 ‘Il-w ‘l.-Hl ! l‘ﬂ l’.‘ ['1 'I‘[,‘ '("',: i (' (’\ | 1("1

In an arbitrary representation of undors obtainable from (28) by a
transformation (14) we should replace the left hand member ¥ of
(54) by

Sin=1 g@)—r W (85)

| 3y spatial reflection through the origin the undor ¥ will transform

| according to (9) by

| ¥ — 2R BRY, (56)
In the representation (28) used by us we have B 12 = plllp)
so that this transformation (56) can be written, on account of (54),

as
K' =L, K% = - RL°, F' = — 2G, F! 12 Gy
a X ) ) ‘ (57)
| L =PK, IV =Pk G = ~ Pk, Ci=1{F,.
Putting
K (A. L Ii)j 7, KO (V 4 W)/,
L =(A—B)ifj, L°=(V— Wil
' (58)

F (}i — I'E-)j i, Fo=(—S—1iY)j/i,
G = (H 4 iB)ilj, Go= (S — iV)ilj,

the new quantities A, V; B, W; E, H: S and Y are still tensors with
respect torestricted Loren tz transformations (two four-vectors,
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an anti-symmetrical tensor and two scalars), whereas we can now
write (57) in the following form:

Al=—A VYV +V; E'=—E, H = + H;
s o (59)
B'=+B, W — W; Y’ —Y; S - S.

With respect to the complete 1. orentz group including reflec-
tions, an undor of the second rank consists therefore of a regular
scalar S; a regular four-vector A, V; an antisymmetrical tensor of
the second rank E, H (which can be regarded as a pseudo-tensor of the
second rank H, E); a pseudo-four-vector (that is, an antisymmetrical
tensor of the third rank) B, W, and a pseudo-scalar (anti-symmetric-
al tensor of the fourth rank) Y.

[t is often assumed %) that the meson field can be regarded as a
P roca field'7), that is, a field consisting of a four-vector A, V and
a six-vector E, H only (case (b)) of K e mm e r ¢)). Such a field can

be described by an undor of the second rank satisfying the relations

k 7 Vo, Yo = Y5 s
- & Ne o (60)
¥y =—71*¥5, Yy W, You=—1*¥Ya, You=—7° o

The most symmetrical method to achieve this and at the same
time the one and only possibility to achieve (60) in a way which is
independent of the representation of undors, that is, invariant under
the transformation

S D AR (55q)
is to postulate that the undor describing the P roca field must be
symmetrical with respect to its two indices, and at the same time
that for undors j2 in (9), (10) must be equal to minus unity :

e X .

! koks I kgkyr (61)

2= — 1. (61a)

Indeed, in general a symmetrical undor of the second rank repre-

sents:
(b). a regular 4-vector A, V and a 6-vector E, H, if j* = — 1;

(c). a pseudo-4-vector B, Wand a 6-vector E,H, ifj2=+1;
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whereas an antisymmetrical undor of the second rank represents:

(d). apseudo-4-vector B, W,ascalar S and a pseudo-scalar Y,
if 12 = — 1;

(62a)

(). aregular 4-vector A, V, ascalar Sanda pseudo-scalar Y,
if 72 = + 1.

Here (a), (b), (¢), (d) refer to the tensors composing the field in
the four cases considered by Kemmer 9).

Now we define the charge-conjugated of an undor of the second
rank by

(63a)

Then

1 £
Yk

T L T

£
I
k'-
>
<=
Sl
¢

(63b)
is a self-charge-adjoint undor of the second rank. Now we can ex (press
the tensors represented by ¥ in terms of those represented accord-
ing to (54), (58) by ¥ In this way we find from (28), (54) and (58):

A® = A* VE—V* E®—E* H®— H*

(64)

BE — B*, WE — W*: Y? — y*. §¢ _ g+

We observe that by the choice of constants made in (58) we have
achieved that the tensors represented according to (54), (58) by the
charge adjoint ¥'* of an undor of the second rank ¥, are the conju-

gate complex of the tensors represented by the undor ¥ itself *).

If now a neutrettor of the second rank is defined as a self-charge-
adjoint undor of the second rank, it represents by (54) and (58)
according to (64) a set of real tensors. Such neutrettors are therefore
adequate for the description of thc Maxwellian field 2 and of

K e m m e r's neutretto field 7). . \ specimen of a neutrettor of the
second rank is given by {f ¢, (63/)).

>~

*) The constants in the definition by (54), (58) of the tensors S;AV; l;; ll). w
and Y in terms of the components of the undor ‘I are unic
tions (59) and (64) apart from arbitrary real numerical §
all'chosen equal to unity in (58).

juely determined I»_\ 1hu condi-

actors to these tensors, which are
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Taking

§:="1 (34a)

in the following, in accordance with (34) and (61a), all factors ¢ and

i/j vanish from (58).

§ 6. Covariant undor calculus. The fact that the linear combina-
tions (29) (and, apart from linear combinations differing from (29) by
a numerical factor, only these) of the components of a conjugate
complex undor 4} form again the components of a regular undor ¢,
enables us to define a metrical undor g, that is, an undor of the
second rank, which connects contravariant and covariant undors with

each other.
Since, on account of (19), (23) and (13), the expression

Y1OBY = TBTSY = X U (BT9)%y = = (8B i Uy

k. koK
=3 (9*R*)* Yty = Z 4 (65)
k.k
is a scalar, we can regard

=T @)yl (66)

k
as a regular confravariant undor. We shall connect with this y* an

ordinary covariant undor y, by

n=2= Suyt = L S (9*(3*)1"1";2 . (67)
k

k&

Since ¥, shall be a regular undor and its components are linear
combinations of those of ¢}, the undor 7, must be equal to (%),
apart from some numerical factor, for which we shall choose
unity:

v = . (68)
As this result should be independent of ¢, we find

Zgu (3‘*(3*.]“ = ‘.';L. or gO*p* =£. (69)
k

We conclude:

g = LR+ (70)
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[In Kramers representation (90 = px, £ pyoy) the
metrical undor g, takes the following form:

0 —1

0
QNSO
0O O
0 —I1

that is,

] 14 1} ] \
h== =¥ = G=—§ ()

We observe that in this representation the metrical undor is anti-
symmetrical just as the metrical spinor is in spinor calculus and unlike

the metrical tensor in tensor calculus (which is symmetrical):

g =—8 (8u=—8n)- (72)
This property of the metrical undor is invariant under transforma-
tions (14) to other representations. This follows from (70), (14a, b, ¢):

gy = £ P*Y*1 =SER*P* 15 = SgS™ = X §5,/8, Sy, (144)

i

A consequence of this antisymmetry of g is

e o]

Py = —ga . (73)

Conjugate complex contravariant and covariant undors are con-
nected by the conjugate complex metrical undor

g = (8w)* = S LB (74)

Sk

This undorisin Kramers’ representation given by

o'=1 | 0 0]
o 10 a0 :
84=10 o0 0 1 \£44)
[0+ 0 =5 5y

and transforms to another representation by
g* — S*g*St (14e)
The contravariant metrical undor g™ is determined by
E gu g™ = ¥y (75)
or

gkm — g -1; g*h)' = g*ﬂ]. (75(1)
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In Kramers' representation we find from (71) and (744)

010 O | 010 O

gt —100 O' g —1:0.0 o’. (76)
000 —1| 000 —1|
001 0 001 o|

Transformation to another representation changes the contravariant
metrical undors g and g**” according to (144, ¢) and (75a).
Co- and contravariant undors are now connected by

J o N, 'k S T 3 * | *}
Y = 2 8p VY, Yi =8y
k -
k k
(77)
Ak N skm NEk __ S sxkm 1%
) = ""g Ymo ) 4 b= '-‘g Ym

o :l;

Here the summation must always be carried out with respect to
the last index of the metrical undor.
From (65), (68), (73) it follows that

PrOBY =2 ¢ = — T YEr (19a)
k k
In the same way we derive
'JYS' B‘:’ — 1'”' ,‘:Jt'*!: NEFILL) 1“*’\ ;t" (]9/’)

For the current-density four-vector (20) we can derive similar
expressions, for instance *)
jle=Z{* vy, o =SB Y (20a)

Inserting (464, b) into (71a) we findin Kramers’ representa-
tion

= IR 13 $2

=y, Vo= —up, = — 08, t =98, (78)

@

)
v
T

therefore, following Van der Waerden’s notation?) and
putting 9% = w:

Bl () 211

s ’ U3 " | 2 ul / | us* | ,
| ks ! (78a)

1 1 13

v ’ ( I\'l\l | Ik Ung | ( 'Zi']) 7 |

dy 02/ | # [\ 2,/ |

*) Compare P. A. M. Dirac, loc. cit. ¥), and W. Gordon, loc. cit. 19},
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The difference between our undor calculus and Van der

Waerden’s spinor calculus is, that we have taken care from the

beginning that the transformations of “contravariant’’ undors should

indeed be contragredient to those of “covariant’’ undors by all trans-

formations of the complete Lorentz group including spatial
reflections.

We might have derived (14¢) and (76) in a simpler way. Making
use of our knowledgeof Van der Waerden’s metrical spinor,

we conclude that the contravariant metrical undor g*” must have
the form

| O0aO O‘

J
—a 00 O
000 —b
00b O

in Kramers’ representation, in which the first two components
of a four-spinor behave like the components of a conjugate complex
covariant Van der Waerden two-spinor and the last two
components like a regular contravariant Van der Waerden
spinor. The ratio (a/b) is now determined by the condition that, if
and ¢ are two arbitrary regular covariant undors, the expression

8"y =0o>g ¢ (79)

shall be a scalar with respect to the spatial reflection (9), (10) (as
well as it was, on account of (76a), a scalar by restricted Lorent z
transformations). In Kramers' representation we find from

(76a), (9) and B = py (28):

a1 Y2 — 92 %1) — blps Yy — 94 3) =
alo1 Y2 — 92 Y1) — b(9s Ys — @4 43) =
a (@3 Vs — Py Yy) — b (o1 Y2 — 92 Y1),
therefore,
afh = — 12 = — 1/j~. (76b)

Choosing j according to (34) we find @ = b and (76a) becomes
identical to (76) for Kramers’ representation (28).
[f, now, we postulate that the scalar (79) shall be an invariant under
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transformation (14) to another representation, we find
(80 =S5l g=t Sl (147)

in accordance with (14d).

A still shorter way of deriving (71) is by making use of (54) and
(58). Since the metrical undor is supposed not to change its form by
Lorentz transformations and spatial reflections, it must repre-
sent a scalar. Therefore it must have, according to (54), (58), the
following formin Kramers’ representation:

0 —S 0 0

o) $ 0 OO0

2 TR
0 0-=S 0

Taking S = 2 we find (71).

We remark that g is a neutrettor of the second rank on account of
the special definition (63a) given for the charge-adjoint of an undor
of the second rank.

In the literature use is often made of an abbreviated notation for
the contravariant charge-conjugated of a regular undor ¢, or ¥ . :

¥ =yt ap =y,

Pekk — P 9192 BIRR) = P (80)

IFurther, we shall denote by e and y* (1. = 0, 1, 2, 3) the matrices

{a;, 0, a3} = {a!, o, &®} =a, a® =—0ay,=1,
(2a)
Y, Y2, Y3} =¥, Y. Y} =Y=Ba, Y¥Y=—1y,=8.
The probability density and current of a Dirac electron are
then given by
0L 9% 1y =idle; P=—10=0¢; 1*=¢T ¥ (200)
The relations (13), (23) and (23a) can now be written as

B’ — 9B, o9 —9a,

yE = — Ext¥ atf = Salt.

(81)

In undor calculus the gradient four-vector V¥ is, according to (54),
(58), (60), (64), represented by a symmetrical neutrettor. In Kr a-
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mers’ representation this gradient neutrettor has the following
form:

0

The Dirac equation of a free electron can now be written in
covariant undor-notation :

{ix + YV =0 —> dudy + Vudt = 0. (1b)

[ am much indebted to Prof. Kramers for many discussions
on the questions treated in the present paper.

Received July 14th, 1939,
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THE UNDOR EQUATION OF THE MESON FIELD

Zusammenfassung

Die Meson-Gleichung von Proca, Kemmer und Bhabha
wird mittels Undoren zweiter Stufe dargestellt. Eine Verallgemeinerung
der Gleichung fiihrt zu einer neuen Meson-Gleichung, welche im wesent-
lichen aus einer Kombination der Fille (b) und (d) von Kem mer be-
steht. Die Neutretto-Gleichung wird in dhnlicher Weise erweitert. — Das
magnetische Moment der Mesonen wird abgeleitet.

Die ladungskonjugierten Wellenfunktionen geniigen einer Gleichung, in
welcher die Vorzeichen aller Ladungen umgekehrt sind. Wenn man postu-
liert, dass sich bei Beschreibung des physikalischen Geschehens mittels
der ladungskonjugierten Grossen fiir alle physikalisch sinnvollen Gréssen
dieselben Werte ergeben sollen, lisst sich folgern, dass Teilchen mit ganz-
zahligem Spin der Einstein-Bose-Statistik, und Teilchen mit
halbzahligem Spin dem Ausschliessungsprinzip geniigen miissen.

Resumo.

La mezona ekvacio de Proca, Kemmer kaj Bhabha estas
prezentata per duaStufaj undoroj. Pligeneraligado de la ekvacio donas
novan mezonan ekvacion, kiu éefe konsistas el kombinajo de la kazoj (b)
kaj (d) de K e mmer Lanettreta ekvacio estas plivastigata en la sama
faniero. Ia magneta momanto de la mezonoj estas kalkulata.

[La Sarge konjugitaj ondofunkcioj kontentigas ekvacion, en kiu la
antaiisignoj de ¢iuj Sargoj estas inversaj. Se oni postulas ke Ce priskribo de
la fizikaj okazajoj per la Sarge konjugitaj grandoj por ¢iuj observebloj
devas rezulti la samaj valoroj, oni povas konkludi ke korpuskloj kun
entjera spino devas obei la statistikon de Einstein kaj Bose, kaj
ke korpuskloj kun entjerplusduona spino devas obei la statistikon de
Fermi kaj Dirac.

§1. The Proca-Kemmer meson equation in undor notation.
The usual meson equations of Kemmer?), Bhabha? and
Y ukawa?) can be written in the following form:

7.(:/(;- Sl ,/'Iv “,u') = I)I/L Qv = 1)/:. Py D, P s ll)

7'('?1‘ + &b ""r\) = D :,‘“'; (31'7\" == O’ 1’ 2’ ‘3)
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Here » can be expressed in terms of the mass m of the meson by
% = mc/h; u,, is an antisymmetrical tensor and v, is a four-vector
given by *):

. ' T . " -
Uy = (1 2). YN Yip Yo Yo Yy YN Yv¥YpPs
1

(2)
(Y VB Y =Ba"; (nv=0,1,2 23).

By ¢y and Y, we denote the wave-functions of the fields of neu-
trons and protons, so that after superquantization the expressions
(2) represent operators which possess non-vanishing matrix elements
for transitions of a proton into a neutron. The operators D, in (1)
are defined by [U.C. (3)

e s

A, V v S !

the ¢ ot ()

,
&
J

H® Y-.”-
We shall now write the Proca-Kemmer equations (1) in
vector notation. For this purpose we put

Cao = 8" = E,; G, Co =H,; 9a=A,; — 9, =¢"=V; (4
(a, b, ¢ being a cyclic permutation of 1, 2, 3).

[Further, we put

Uoq W' =e,, — u, Uy =h. o, =a, =1y, (5)
so that
e - YYiBay, h — YBoy; a = (tay, v = o, (6)

Then, the equations (1) read )

%(E s e) T-V (@/cot) A (efihc) (‘Jl-V — QiA-;_

y_(li - 1 h; rot A - (e/the) *)[ z{‘, (7)
(A -+ g, a) rot H + (3/cdl) E — (e/ifc) (3, H] - BE),
#(V'4- g, v) = — div E — (e/ikc) (A . E).

In order to write these equations in undor notation we can make
use of the Kramers representation of undors [U.C. (28)], in

*) For thé notation used in the present paper we must refer to the preceding paper of
the author on undor calculus 4). References to formulae from that paper will be indicated
by [U.C.]. In (2), (6) and (12) we have put & I [U.C. (17)].

1) rot curl.
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which the Dirac matrices a, P occurring in (6) are given by

01 0 0 0 sy 0 11 0 00
lio o o i 0 00 :o 1 00
% =lso ot 2 loel G Rl =T o 01 of
0:0 —1" D 0 0 —=i0] ‘o 0 01|
0010
0001
B=l1000f ®)
0100]

and the charge-conjugated ¢* of a Dirac wave-function ¢ is

given by

iooo 1

B, S e 9)
4 | 010 O
17-100 0|

In this representation the components of the tensors represented
by an undor of the second rank are related to the components of this
undor by [U.C. (54), (58), (34a)]:

| F,—iF, Fo— F, K,—iK, —K"—K,

‘_7:»,

) L SRREE GRS NI I GRERE RR
2, ’ Pimdl, IVl GG o GibG

—] 14 L.—iL, —Gy+G,; G, +iG, |3 (10)
K—A+B K=V+W, F=H—iE, F,=—S—1Y,

- - -

L =A—B, I°=V—W, G=H+1iE, Gy,=S8—:Y.

Here S is a scalar, A, V a four-vector, E, H a six-vector, B, Wa
pseudo-four-vector and Y a pseudo-scalar. In particular the undor of
the second rank

4\'1\,;‘.: = 2’92‘] ’;JA.: ‘1 l)

represents, according to (10), the following tensors

- — > —>

a=qlay, v=o'y; e=—¢liBay, h=—9¢'Boy;

b=—o¢'ay, w=—o'ys}; y=0"ivsBYy; s=0¢'BY.
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Here we have put

Oy - toot, eyel. s vei— — 100 Oy Ot . (13)

From (10) we see that the Pro ca field A, V:E, Hcan be repre-
sented by a symmetrical undor

s ur d
¥y ks i {1 kyky T ! koky)

= \l-;;_}t.\{. (]4)

Writing out the meson equations (7) with the help of (10)—(12) in

svm
terms of the undor components of ¥ &k, and of

sym

X JE | S
“Ahiky — YNy YPy YN

. Up, = Uk U (14a)

and collecting the ten equations into one undor equation, we find,
on account of (8) and (13):

sym sym

2i6(Wi, + fop Xap) + {BY (@V.D + D,)

+ B? (@?.D + D)Wy, =0, (15)
where

fop 1» {({(fp + &) (fs— ) Y5l ‘{52: (16)

is a scalar operator which, operating on an undor of the second rank

(10), multiplies in this undor E, H, Y and S by f,and A, Vand B, W
by g,. 3y an index in brackets we have here distinguished Dirac
matrices operating on each of the indices ky and %, of the undor.

We remark that (15) and (16) are invariant by transformation to
another representation of undors %).

Putting
0 0 D.<3D. * Bi—D:
0 0 DD’ =Dl
= e Spl L BD, 0 0 B (12
D—D, —b 3D, 0 0

we can write (15) at once in covariant undor notation 4) (compare
U.C. (82), (10))):
sy Sy sym sy
2’.’/-(‘“,/«: T ./'/.«,.f;f’[" X.g/._.) T I)A-,/l ‘l“':k.. Du_. ' .A-,]" = 0, (18)
where f, , " are the matrix elements of the scalar interaction oper-
ator f,, (16).
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This interaction operator would take a particularly simple form, if
the constants f, and g, should happen to be equal:

/’:, L",(’) (19)

A preliminary interpretation!) %) of the binding energy of the
deuteron in the (triplet) ground state and the attraction potential in
the singlet state, on which experimental data are available, seemed
to indicate that | /,/g, | did not differ much from unity indeed, but
later investigations ), which accounted for the charge-independence
of the nuclear forces between heavy particles 7), gave a different
result. The simplification (19) seems, therefore, not to be allowed
for the moment and we shall not make use of it in the following,

§ 2. The generalized meson equation and the neutretto equation. In
the preceding section we have discussed the equation for the P r o-
ca-Kemmer meson field (case (b)) of Kem mer?)). This field

sym

was described by a symmetrical undor %', and it interacted with

the symmetrical part X, of the undor X,,, 2%, Yp, - 1t is
. 172 i . e TV T Ry
plausible now to consider the generalization of the equations (15)
sym svm

and (18) by replacing these symmetrical undors ', and X, ,, by
the unsymmetrized undors ¥ ; and X, . The operator /,, can then
be replaced by a more complicated scalar operator which, operating
on an undor of the second rank (10), multiplies S by f,; A, V by g,;
E, Hby /,, B, Wby g, and Y by ;. The generalized meson equation

(Wi, + fop (208, ¥p,)} + {6 +¥2 . D) +
(BY + B®) Do} Wis, =0 (20)

can then be written, according to (8)—(13), in vector notation:

(S + f,8) =0; (210)
‘/.(A- g, a—) D, E. — ;1)-, H : %»(V4+gv) =— ("l) . -E.):
i i Y o S 2y (210)
»(E -+ fe) =—DA—DV, x»H-+fh) [D; A];
#(W + g, w) = — D, Y, '/.(B, L gdb; - ])Y
(214d)

«(Y + [1y) Dy W + D. B).
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Apart from the first equation (210), which defines the field compo-
nent S in terms of the components of the field of heavy Dirac
particles, these equations represent exactly the cases (b) and (d) of
Kemmer, that is, the meson field suggested by Meoller and
Rosenfeld®. The Proca field (b) describes mesons with a
spin angular momentum 7%, whereas the “pseudo-scalar field” (d)
describes spinless mesons ?).

According to Kemmer® the neutretto equation is obtained
from the meson equation by changing ¥ ¢p into (4% p — 4% Uy)
and D, into V,; and by postulating that the tensors representing the
neutretto field @, , shall be real. Thus (20) changes into
21"/-:‘1);;,1;: F fop (U5, jﬂ : ;‘i,‘ ':J_\‘,:‘): = (Y Y,L ) VE D, , 0 (22

'}

with the additional condition (see [U.C. (64)]) that

(D.".'«- gy g (([)‘ % )% (l),?_:'_,.;‘ (l);f'}l (23)

is a neutrettor of the second rank.

The compatibility of the condition (23) with the equation (22)
must be shown. For this purpose we multiply the conjugate complex
of (22) by — £ L"z‘ and find, on account of — £ YOr =y £
[U.C. (81)] and £ £@ (@, , )* = ®F, [U.C. (63a)

et , 2 0 vk B ) g
21/.-{(1),1;\.‘ - £ gl 2’/ «,(JI) Jl’ — N g.\'l“)(: ] lY)L T Y[f ) VI‘(I),;__;: 0,

or, interchanging &, and k,:

. L} 75 3 ' 1L ' (1) 15 )
2i%{ D5, /,‘.,.(';7,,;, Ve, — Yy Y )Tt (Vi + 42) VDR, =0, (24)

] (1) £(2) /% @)% ¢(1)%
fop = £V £ /3 £@* g% (25)
so that
f \£ £ o A (D¢
(fop Fre) o Y, - (2€)

Now /,, only multiplies the tensors represented by YV, by the
constant factors f,, g, f;, ¢¢ and /;, whereas, according to [U.C. (63),
(€3a), (64)], ('hur”v-mnju yation of an undor of the second rank char -
ges the tensors S; A, V;E H; B, Wand Y 1())1(«(11“(] by it accord-

g to (10), into —S*: A*, V*: F* Il“‘ B*, — W* and XK,
We conclude therefore from (26) that /5 1s the scalar operator multi-
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plying the tensors by the conjugate complex of the factors f,, g, /4
g4, 1. Now, assuming that these constants are real

o= =8 h=1h, =8, =/ (27)

we find
fop = fop- (27a)

If we make use of the fact that {f {,, is a neutrettor of the
second rank [U.C. (63b)], the Cquution (24) turns into
2in (B8, + fop (U, Yy, — Y vy )} + (¥ +¥2) V# DF, =0, (28)
This equation for @}, is identical with the original equation (22)
for @y ., so that the condition @y, = @}, (23) is indeed compatible
with (22), if the interaction constants (27) are real *).

§ 3. The charge-conjugated meson equation. Kramers') has
shown that if ¢ is a solution of the Dira c equation for positive
particles, then ¢* is a solution of the cquatwn for negative particles,
that is, of the equation following from the Dirac equation by
changing ¢ into (— ¢). In the present section we shall show that the
meson and the neutretto equations possess similar properties and
that, if ¥ is a solution of the equation (20) for positive mesons
(“theticons” 1)), then ¥* [U.C. (63)] is a solution of the equation for
negative mesons (“arneticons’ 1)).

For this purpose we proceed in a similar way as in the preceding
section ; only this time we shall not interchange the indices %, and ;.
In this way we derive from equation (20):

2ix (Wi, + 2% (U8, Yx, )} + (Y +¥2) D* Wiy, =0, (29)

where we have made use of
) (f Py )* = £@ Y LW of* — g o, (30)

Comparing (29) with (20) we observe that ¥, satisfies an “arne-
ticonic’’ equation (29) differing from the “theticonic” equation (20)
for W, by the inversion of the sign of ¢ (as D is replaced by D¥*)
and by the change of

fop (U, p,) it 5 (48, U,)- @31)

*) 1f neutrettors of the second rank were defined by ® = @£, instead of by ® = O¥, it
would have been necessary to take gy and fp real, but fo, g4 and [a purely imaginary.

+) These names are derived from 970z = positive and &avnmi203 negative.
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The electromagnetic potentials, being real, are not changed.

We must now remember that the interaction of mesons with heavy
particles, as described by the equations, should consist in the pOssi-
bility of the absorption of an arneticon or the emission of a theticon
by a proton which changes into a neutron, and vice versa. That is to
say, the wave-functions in the equations (20) and (29) should be
superquantized *).

If the wave-functions of anti-protons and neutrons (¢% and dy)
are assumed to be anticommutative with each other (an assumption
which simplifies the discussion of the canonical theory of quantized
wave-fields and which enables us to introduce the formalism of the
isotopic spin in a natural way), we can express (31) by stating that,
in order to change the equation for ¥ into that for ¥*, not only
should ¥ be replaced by W* and the electric charge e by

et - e*, (32)

but at the same time the “mesic” charges /,, g,, etc. should be
replaced by

lo=— 13 gk=—g fi=—f, etc, (32a)
and Y% by ¢y and ¢, by . There is no need to change the poten-
tials of the Maxwellian field occurring in the meson equation
(20). This field can be described by a symmetrical neutrettor of the
second rank, so that it is equal not only to its own charge-adjoint,
but also to its charge-conjugated.

In the same way the neutretto equation for @, is changed into
the equivalent equation for ®jx,. This is seen at once by interchang-
ing in (28) again %, and k, and by making use of the anticommu-
tativity of 43 with ¢, and of {% with Yy. Formally the infinities of
the 3-functions from the commutation rules of protons and of neu-
trons cancel each other.

§ 4. The charge cur rent-density and the magnetic moment o} mesons.
Proca!) and Bhabha %) have derived the electric charge
density and current of mesons with a spinzfroma Lagrangian,
which was chosen in such a way that the Proca equations
and the equations for the Maxwellian field could both be
deduced from it.

*) The question of the possibility of quantization of the fields in such a way that the

relativistic invariance of the theory is maintained, is not discussed in the present paper.
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In a similar way one can proceed for the generalized meson field ?)
If the field is normalized according to Kemme r?) insuch a way
that A*, E*, Y* and — W* are the canonical conjugates of E, A,
W and Y respectively, the expressions for the electric charge density
and current take the following from ®) 12):

eo = (¢/if) {(A* . E) — (E* . &) + Y* W — W* Y} = ¥, ¥,

Y
Y
Y

7o = (ofin) (TA* ) + (B K + )

V*E _B*V L Y*B— B*Y) = (¢/) . W1, ¥

Here g, and j,,/c are determined by *)

A :31 &‘2 p'lx | piZA

vop - vYop 2/1 )
e (34)
> » (1) Af(2) (2) Ap(1)
: % nam BN a® 4 B9 a
1ob]C = o]0 9 9@ -
lop Jot 211
or, in tensor notation,

y (D _1 «p(2p

=t — 992w g2 ¥ s Y (34a)

These expressions are invariant by a transfor mation [U.C. (14),
(14a, b)] from the Kramers represe ntall(m to any other repre-

sentation of undors. The matrices g,, and ],,/, ¢ take the place here
of the matrices & and S« (that is, 9By*) in the case ofthe Dirac
electron. In analogy to [U.C. (200)] it is convenient to write here
(see [U.C. (80)])

_gpe YR Y
=4 o o (33a)

The main difference between the density matrices of electron and
meson is that g,,, being a singular matr ix, cannot be made unity by
transformation to any repr esentation. A consequence of this singula-
rity of g, is that the meson equation (20) contains so called identities
between the field components (differential equations not containing

*) Compare L. de Broglie, loc. cit. 1), page 22. The factor (1/24) is a consequence

of Kemme r'x 1) way of normalizing the meson wave-function and of our choice of the

constants in (10). For instance, if the factor 2in (1C) is removed, the factor (1/2k) changes
into (1/84) ‘-_|.
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derivatives with respect to the time), viz. the equations in the right
hand column of (21).

We can split up (20) into the proper equations of motion and the
so-called identities by operating on it by (1 + B'VB®@)/2. Abbrevia-
ting again by X, 2';§'z..'91'1;. and splitting up W4, and Xy,
according to

. yrl \JrIz
'l kyky I kky 7 I keyky >

I ,__12(1 I p‘in.) \['] ll'll :1:(1 Blpz]\l"

we find the proper equations of motion of ¥/ :

(35)

20% (¥7 + fop X7) + (v 4 @ . D) W + (B0 + B2) DW= 0, (36)

and the so-called identities:

2% (P4 foo XM) + (¥ 4 Y% .D)¥! = 0. (37)
Comparing (36), (37) with (21) we observe without further calcula-
tion that ¥/ represents the field components E, A, W and Y, and

'¥'" the field components S, V, H and B. Only of ¥' the components
can be regarded as canonical variables, whereas the components of ¥/
must be regarded as derived variables, defined by the equations (37)
(like = rot A in quantum-electrodynamics).

If for the present the interaction of mesons with heavy particles
is neglected, the meson equation (20) takes the form

(21 - P DY WP (), (Fp =y + ) (38)
Putting y{!) —y{? I',~ and operating on (38) by (1/2ix) . DA
we find
D~ DAY + (1/2ix) T T, D) DF Y = 0. (39)
From
Y Yo =10 D == 2, (40)
we find
Iy l’“: =0, (41)

so that from (39) follows

D~ DAY = (i/8x) . (TP, — '™T,) (DD — DEDY¥. (42)
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From the definition (3) of D* follows
D) DE — DE DY = D DHl = (efihic) . VI* %M = (efihc) . D, (43)
where $™ denotes the Maxwellian field. The equation (42) can
therefore be written in the following form:

[ DMV = (¢/Bwe) . 9% Ty T, ¥ = (e/4me?) oY T T, (44)

©l /
Adding (44) to (38) we find the following “equation of motion” for ',
from which 8¥'/2f can be solved by multiplication by B

("./_ ! Y,\h 1)/\) 3 (e 81!1(‘2J \ '\3,\/1 r;\ T Y. (45)

“
The left hand member has the form of a “Dirac equation™ for
the first index k&, of the undor ¥'.
If this equation is iterated like the ordinary Dirac equation,
we find (compare (40) and (43)):
- 2 =/l 1) PPy (S T AR\ 7
(e/8Bmc?) . (— = + ¥, DP) (¥ T T, V)
L (1) NIA ) 1) ) A J
(< + % 1 Y/j! D¥ D* + } ) Y“‘l DY DHY Y
{(m2c2[h?) — D, DM—3 1’0;\‘“ . (e/ihe) &M} ¥, (46)
where we have put
YA Y = — 210, - (47)

If only a magnetic field is present (€ = 0), we have

> — > —>

}oll o™ (6™ . 9) — i(a™ . C) = (D .e™). (48)
Adding to (46) the corresponding equation with 01\2“' (where in the
left hand member 1‘;\ ) occurs with the opposite sign), we find after
multiplication by /?/2
{m2c® + papt — (eh/2c) . (H . " + o)} ¥
- (eh?/16mc?) . T2 DP 58 bl VIS 2 (49)

where

pa = (hfi) . D) (50)

is the operator of the kinetic momentum. In non-relativistic ap-

proximation we put

(‘/’“ = l“('z T Y == Cﬁur (51)
so that 7 is the operator of the non-relativistic kinetic energy. If,
further, according to Yu kawa?), the right hand member
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Bl el o DP(H™F) . (eh?/16mc?) of (49) is neglected in non-rela-
p 3 T J : A . ; ; g

tivistic approximation, this equation can be written asa Sch r &-

dinger equation (7T < mc?):

1on-rel l\l{‘\ \l' '/'\l'

(pop/2m — (eh/2mc) . 3 (6 + 6@ . HV W, (52)

so that the magnetic moment of the meson

Bop = (e/2mc) . 3 1 (a! ¢?) = (e/2mc) . S, (83)
is (¢/2mc) times its spin angular momentum *) I
Since the energy is given by ?) € = [\ op €op ', the non-relativistic
value of the magnetic moment is actually given by

=S¥ 0o pop ¥ (54)

As the value of the spin angular momentum is given in the same

i

way by ?) § = [W'p,, SL' ¥, the statement

= (e/2me) . S (85)
holds for the values of these quantities as well as for the operators
occurring in (53).

§ 5. Charge-invariance and statistics. It is well-known that in the
hole theory of electrons (superquantized theory of the Dirac
electron) there is an infinite c-number difference between the q-
number et (obtained by superquantization of the wave-function
¥ from the expression for the electric charge density e)' following in
the usual way from the Lagran gian of unquantized wave-
mechanics) and the g-number representing the correct (observable)
electric charge density. If the meson field is quantized, (33) must also
be corrected by addition of infinite c-numbers.

We have mentioned that to one description of Dirac particles,
mesons, neutrettos and the electromagnetic field by undor wave-
functions [U.C. (1)1, (20), (22) there is an equivalent r/u/)'gm‘un/'u:u-
ted description, in which some constants like e, / and g are replaced by

,I., ,’I

¢ and g* (32), (32a), whereas every quantized undor *) is replaced

by its charge-conjugated [U.C. (30)1, (29). This suggests a kind of

*) We assume that all fields are described by undors (reflection L’ i, [U.C.(9),

34 and not by “quasi-undors” (reflection B).
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symmetry between both ways of describing physical situations *).
By way of hypothesis one might assume that such a symmetry is a
fundamental property of nature. We shall call this possible property
the “charge-invariance’” of the physical world (not to be confused,
however, with the principle of conservation of electric charge!).

Therefore we shall postulate that every physically significant
quantity in quantum-mechanics (that is, every g-number correctly
representing the value of an observable) is invariant by transition
from one description of the fields of wave-functions to the charge-
conjugated description, or, in shorter terms, is charge-invariant.

This postulate can serve to distinguish between wave-mechanical
expressions, which after quantization cannot have a physical mean-
ing any longer, and other analogous expressions, which may repre-
sent observables. For the present we shall leave #his question out of
consideration, but we shall show here that the postulate of charge-
invariance implies directly that photons and neutrettos must be
neutral, that Dirac electrons must obey Fermi-Dirac sta-
tistics and that mesons must obey Einstein-Bose statistics.
The interesting fact is that this statistical behaviour of particles and
quanta follows much more directly from the postulate of charge-
invariance then from postulates concerning the positive character
of the total energy of free particles or quanta ).

From the Lagrangian of any kind of particles or quanta we
can always deduce expressions for the electric charge density, the
electric charge current, the total momentum and total energy of
these corpuscles.

The terms of the Lagrangian function depending on the
derivatives of the field quantities ¥ have always§) the form of 9)

tKYTBT, VA, (56)

If ¥ is an undor **) W, i, of rank N, then [U.C. (12)

N N y )
B=RBt—= Il g"; T, =&,y (e, =1); B*I*=T"B*;

ne=|

so that, if we put

Y ¢\
~ '

*) Compare H.A. Kramers, loc, cit. 10},

) Compare for instance H. A, Kramers!) and M. Fierz).

$) This and the following considerations apply af least to all particles and quanta
discussed by Dirac and Fierz') and by Kemmer 1),

#%) In the following, we confine ourselves to representations, for which & 1 (compare
[U.C. (17), (17a-b}])-
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we have

BE=(—1)"¢B* TI¢ B Bl (59)
From (56) we find that the electric charge

density, if it exists, is
equal to

¢p = (eK/hc) . WTBTI"W, (— infinite c-number). (60)

In the charge-conjugated description this expression is turned, on
account of (32), into

L (— eK/hc) . Y2 BT We (— infinite c-number), (61)

therefore, on account of (57)—(59) :

elol (— 1)V, (eK hic) PeoT o Booyrs infinite c-number). (62)
If the expressions (60) and (62) for the electric charge density are
postulated to be equal, the components of the wave-functions Y and
V'* oceurring in

(60) and (62) must be commutative (apart from an
infinite c-number term) if N is even, and must be anti-commutative
if N is odd.

It is not true, of course, that the commutation rules follow
rously from

rigo-

47
o e p-, (63)

since in (63) the sum is taken over the undor indices, and only the

wave-functions V' and ¥'* in one and the same point of space are
multiplied with each other. In this case the d-function -appearing in
the commutation rules becomes infinite ; its value corresponds for-

mally to the sum or the difference of the two infinite c-numbers in
(60) and (62). Since the infinite c-number in (62) must be the charge-
conjugated analogon of the infinite -number in (60), this mav be of

some help in the “evaluating’’ of such infinite c-numbers.

For photons and neutrettos it follows from (23) and from the
symmetry of the operator g,, with respect to both undor indices.
on which it operates, that

o o, ¥ ety ye yret 0,p ¢ ok, 64)
On the other hand we find from (63) and (32) for any particles or

quanta

x al 45
o | ol b

Comparing (64) with (65) we conclude that the electric charge

density of the fields of neutrettos and photons must vanish, if it is
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a charge-invariant expression. In a similar way we derive that by
means of neutrettors of the first rank only neutral patricles %) can be
described. It does not follow from this, however, that neutral par-
ticles should necessarily be described by neutrettors!
For electrons we deduce from (65) that
o= —C (66)
must be opposite equal to

ot ¢£1‘¢£ NCE (66a)

where CL takes the place of the infinite c-number C in the charge-
conjugated description. From this we deduce
P -+ PP = G+ Pt = E () s+ )
C 4 C* = c-number. (67)
Similar relations can be deduced by postulating the charge-
invariance of the quantized expressions for electric charge current,
total momentum and total energy. For instance, from

(02T g —c= (et Tgr—co = [4miTyr—c
(7 )9r—c*

follows

Jipt (V) + (V) %) =S )* (Vi) - (V) (L))

R .
- ( Ct) = ¢-number. (68)
2

It is obvious that relations like (67) and (68) are consistent with
the anticommutativity relations of Fermi-Dirac statistics
() * Yp(x') Y (2) Pa(x)* = S 3(x ) (69)
but not with Einstein-Bose statistics.
In a similar way we find for mesons from
) 1L pR
\P'fp qB P (70)
and __
L — it e e W oGt (70a)

(8}




that

\y"rBl B:ly l}!ﬁB: B

2h 2h

Applying (57) —(59) we find

\yi'[p; p;‘: (‘3‘ _Q; )

w W) owE G2 e2)
2h ’ 2h
or, on account of (35),
gl A (pop F1)2WI* — C L CL = c-number. (73)

Again, in (73) the sum must be taken with respect to the undor
indices, as in (67) and (68). It is obvious that (73) is consistent with
Einstein-Bose commutativity relations between the compo-
nents of ¥/ and w/*-

! k(%) WL (%) ¥, (%) ¥} i.(¥)* = c-number, (74)
and not with Fermi-Dirac anticommutativity relations.

[he commutation rules for the components of ¥/ must be derived
from those for ¥/ by means of the so-called identities (37), so that it
is not very alarming that we do not find any indication of them from
(71)—(74).

For neutral particles, indication of the commutation rules can be
derived in this way from the expressions for the total momentum
and the total energy, which are also obtained directly from the L a g-
rangian. Generally we can postulate that the fotal Lagran gian
itself (integrated over space and time) shall be charge-invariant on
account of the commutation rules of the field components. It is
therefore not ne essary to inwvestigate the sion of the ensrgy in order to
derive the statistical behaviour of the corpuscles concerned 14) 15),

It is true, however, that charge-invariance of the quantized
expression for the total energy tmplies that by quantization
according to the scheme of Pauli and Wei sskopf!?) the

so-called “states of negative enerey” of free corpuscles (depen-

ding on the time by a factor « ‘) can be interpreted, on ac-
count of the commutation relations (which do not need specifica-
tion here!), as states of positive energy *) of corpuscles with oppo-
site electric charge. We can understand this in the following way. By
charge-conjugation of the quantized wave-function these states pass
into charge-conjugated states of positive energy. If, now, the expres-
sion for the total energy is charge-invariant on account of the (un-

For the corpuscles under consid ration states with e =27 are of positive enc rgy




38 F. J. BELINFANTE

specified) commutation rules of the g-number amplitudes a (J o r-
dan-Wigner or Jordan-Klein matrices), the terms in this
expression arising from the so-called states of negative energy are
automatically equal to the terms in the charge-conjugated expres-
sion arising there from states of positive energy of the charge-conju-
gated corpuscles (which are described with the help of the charge-
conjugated g-number amplitudes b = a*). Using the latter (charge-
conjugated) expression for the description of these terms in the total
energy, the energy is given as a sum of only positive energies with
amplitudes a*a or b*b.

We observe that both the statistical behaviour of corpuscles and
the possibility of describing so-called states of negative energy (of

free corpuscles) as states of positive energy of charge-conjugated
corpuscles follow directly from the postulate of charge-invariance of
quantum-mechanical theories. The relation between the positive

character of the energy of free corpuscles and the charge-invariance
of energy seems to be still closer than that between charge-invariance
and statistics.
[ wish to thank Prof. K ra me rs for his interest in this work.
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THE HFAVY QUANTA THEORY OF NUCLEAR
AND COSMIC RAY PHENOMENA

§ 1. Introduction. In 1935 Yukawa suggested in a paper in
the Proceedings of the Physico-Mathematical Society of Japan?)
that the exchange forces between heavy particles (protons and neu-
trons) must be attributed to the action of an intervening field and, in
particular, may be regarded as a second order effect due to the
consecutive emission and absorption of charged “heavy quanta’, just
as the electromagnetic interaction between two charged particles can
be described by the quantized electromagnetic field. In order to
explain the range of about 2 x 1013 ¢cm of the nuclear forces, he
assumed that this quantum had a mass aboyt 200 times as large as
the electron mass: m a 200 m. In his original theory this field was
tentatively regarded as a scalar field. Then, however. it turned out 2)
that, if the energy of the field of heavy quanta was assumed to be
positive, the exchange force between a proton and a neutron became
repulsive in a °S state, in contradiction to the fact that this is the
ground state of the deuteron. Since in the mean time experiments on
cosmic ray phenomena %) 1) 5) 8) had suggested the existence of a
charged particle just having a mass of the order of magnitude 200 uz,
which might be identified with the quantum of Yukawa’s
theory 7), Yukawa expressed his intention to investigate whether
this difficulty with the sign of the proton-neutron force could be
removed by introducing a non-scalar heavy quantum field 2).

Then, from 1937 on, the non-scalar theory of heavy quanta was
gradually developed. In January 1938 its main ideas and applications
were announced by Kemmer®) and Bhabha? in Letters to
the Editor in Nature. It is this theory, partly in a generalized
form 10) 11) 12) which will be subject of the present dissertation.

As a name for the heavy quantum of nuclear physics were suggest-

ed “heavy quantum”, “U-particle”, “yukon”, “dynaton”, “bary-
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t(e)ron”, and for the particle composing the penetrating component
of the cosmic rays: “heavy electron”, “penetron” and “mesot(rjon”.
The last name was shortened afterwards to the more correct form
“meson’’ 13) 1) Though it seems to the author that the correct name
for a particle of intermediate mass should not be “meson”, but
“metrion’’, and though from a theoretical point of view the meson is
no intermediate electron, but only a heavy *) quantum, (that is, a
heavy Einstein-Bose particle), the name “meson” seems to
be already generally adopted, so that we shall use it in the following.

§ 2. The four types of meson fields proposed by K emm er and the
simplified deuteron problem. Inanimportant paper in the Proceedings
of the Royal Society of London ) Kem mer has discussed four
different types (a, b, ¢ and d) of a heavy quantum field satisfying the
Klein-Gordon equation

([ )Y =0, ( A — 02/c?01? * % me/h), (1)

if all interactions with other fields are neglected. In all four cases the
field consists of an antisymmetrical tensor of rank »n, the potentials,
and another antisymmetric tensor, of rank (1--1), the field strengths.
In the absence of other fields interacting with the heavy quantum
field, the field strengths are the (generalized) curl of the potentials
(like in the Maxwellian theory), and the potentials are the four-
dimensional divergences of the field strengths (unlike the theory of
the electromagnetic field).

In Kemmer's casesa, b, ¢ and d the number »n isequal to 0, 1, 2
and 3 respectively. Case (@) is identical with the field of quanta
discussedby Pauli and Weisskopf1) andusedby Y uka-

w a in his original papers 2). Case (b) is identical with the field dis-

cussed by Proca®) and quantized by Durandin and Er-
schow?), Kemmer?)), Bhabha?') andothers ') following
the same procedure of Pauli and Weissko pf'3). The proper-
ties of the field of case (¢) differ from those of the Proca field (b)
only with respect to the laws of transformation of the field compo-
nents by a spatial reflection. As a consequence of these different
transformation laws, however, the interaction of the heavy quanta
with the heavy particles (the proton-neutron, or “nuclon”, as we

*)  Baryteron” heavier.
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4]

shall call it briefly) must be introduced in a different way. Similarly,
case (d) differs from (a) only with respect to the reflection, as long as
no interactions are taken into account,

The interactions of these four types of heavy quanta with heavy
particles (nuclons) are then introduced by adding to the L a-
grangian function scalar terms, in which no derivatives appear;
they contain only inner products of the wave-functions of protons,
neutrons and heavy quanta. (We have called this a “F ermi-An-
satz”" in the following). The coefficients of the terms, in which the
potentials o of the heavy-quantum fields occur, are called g,, ¢,, o.,
gz In the four cases, whereas the coefficients /,, /,, /. and /, appear
in the interaction terms containing the field strengths €. The field
equations then take the following form :

#(Q.a, — fira . a) = (1 ) Vi@, ..a
\, v %)
%(PA,...A, SUN, ...A,) Vi b WD W
Here [2o3;...2,] denotes the sum over all even permutations of

2oy .. .2, minus the sum over all odd permutations: the ) are
linear combinations of the products ¥, of the components of the
wave-function ¢, of protons and the conjugate complex ¥ of the
wave-function of neutrons.

From (2) we conclude that in K e mm e r's theory ¢ and ¢ play
an equivalent part, contrary to the Maxwellian theory, where
the potentials cannot be derived from the field strengths and are not
uniquely determined by them (possibility of a gauge transforma-
tion). In the original paperof Bhabha?) the interaction described
by the term with f did not appear.

Kemmer calculated the proton-neutron force in each of the
cases (a), (b), (c) and (d), and found in non-relativistic approximation
the following expression for the effective potential W(z, 2) describing
the second order interaction between two nuclons I and 2 through the
medium of the field of (charged) mesons 19):

(C/#) (6V . V) (6@ . V,)} (e—*" 712)- (3)
Here x{, Ty, Tz are the isotopic spin operators operating on the
wave-function of the st particle; the meaning of the suffixes x, v. 2
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is only that these operators have the same form as the Pauli
matrices ?) oy, 6y, 6,; they have nothing to do with the co-ordina-
tes of space. We assume that ¢p and Yy are eigenfunctions of =,
belonging to the eigenvalues = = + 1 and = = — | respectively.

The constants 4, B and C in (3) can be expressed in terms of the
coefficients f and g occurring in the meson equations (2). If all types
of meson fields are present, in interaction with the nuclons, these
coefficients turn out to be equal to 1°)

A (/A7) (— | gal?
B = (c2/4%) (I/3 2 — | /:19)> (4)

C = (c®/An) (— | /o2 + | .12 — & ? + |gal)-

of

[t must be pointed out that in (3) some interaction-potentials of the
form of a 3-function have been omitted (compare § 7). In the
literature it is often tried '8) 1) to eliminate these 3-function inter-
actions by adding tothe LLagrang i a n some terms, which give
rise to a first order interaction between protons and neutrons. It is
of interest to remark that, though by these attempts the 3-functions
arising in the calculation from

A(l)r) = — 4m3(r) = — 4m8(x) (%) 3(2)

are taken into account, those arising from *)

> > - -

A ) B.V)(1)r) = —4nZ A, B3N % =

/

-

_(A.By (5a)

—> —> -

> 3 s e
= ""5"'("'5)3(") L y—5{3(4 .7) (B .7)

have been forgotten 18) 2!) (compare § 7). For the present problem
these 8-function interactions are of little importance **). Though
similar terms in the Lagrangian (which for the sake of
simplicity can be introduced in exactly the same form as the terms
yielding a direct (3-function) interaction between nuclons) are of
importance for the theory of B-disintegration, only the terms with
ordinary 3-functions (5) give rise to a direct (first order) Ferm i-
interaction between the nuclon field and the field of light particles *),
whereas the terms of the form of (54) can be neglected there (§ 11).

The terms with 4 and B in the expression (3) for the effective
second order potential between two nuclons are commutative with

#) For the definition of the longitudinal 8-function 811,”&‘,', we refer to the foot-note on

I ~ -
page 72. Generally: ViV (1/7) 4r Si'}'"‘ 7) o= =5 (3xixy — r*oij)— (""/”‘351'8(1)
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independent rotations of the spatial and the spin co-ordinates. so
that the energy levels of the two-particle problem can be character-
ized by quantum numbers I, s. 7, m;. The last term of (3) (with C),
however, is commutative only with a simultaneous rotation of spatial
and spin co-ordinates, so that this term will give rise to a coupling of
states with different quantum number /. As (3) is invariant with
respect to permutation of the ordinary spin operators, states with
different quantum number s are not coupled. Finally (3) is invariant
with respect to permutation of the isotopic spin operators, so that the
'S, %P, 'D, 3F. ... states, which are antisymmetrical functions of the
spatial and spin co-ordinates and thus symmetrical functions of the
isotopic spin co-ordinates, are not coupled with the S, 'P, 3D, IF, . .
States, which are just antisymmetric in the isotopic spin co-ordinates.
We conclude that the IS state of the deuteron is not coupled with
any other state by the term with C, but that the S state is coupled
with the °D, state. We shall discuss this question afterwards and, to
start with, we shall with Fréhlich, Heitler and Kemmer?)
neglect this coupling. Then we can write (3) in the form (compare § 8)

W® (1,2) (e x2 Ty %) {4 B’ (¢!, o2
B'=B 2C.
The effective potentials for the 3S and the !S state of the deuteron

are now given by

B W(r)=— (4 4 B)e—"ly

’

IS: W(r + (4 — 3B) ey,

The Schrédin ger equation of the simplified deuteron
problem is given by
(€ 4 (W2IM) A H e*r ¢ 0; (x me/h). (8)

Here

M = 2My Mp|(My + M,) = 1672, x 10-2. (9)

The eigenvalue problem (8) was numerically solved by Wi l-
son®) andby Sachs and Goe ppert-Mayer ), The for-
mer calculated

b = (JEM i)

as a function of

(— EM[W%2);
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the latter calculated

alb ( & ‘/ll‘/.)

as a function of b. The results of Wilson can be represented to a
good approximation by

a = 023, X (b — 1'70)?, (10.W)
those of Sachs and Goeppert-Mayer by
a = 019s x (b— 1'683)%, (b < 270), (10.S-GM)

The actual value of b for the *S ground state of the deuteron is in the
neighbourhood of 2:8. We remark that (10.W) and (10.5-GM) do not
fit exactly in this region.

We shall put
m 100 &m, (£ ~ 1'75 257) (11)

and calculate J{/fic as a function of . Writing (10.W) and ( 10.S-GM)
in the form

a = ags(b — by)?, (10)
we can express b as a function of £ by
b=by—+ (1/100&mc). V— EM |ay.
From the definitions of & and » we now deduce
JLlhc = 100 b, (m/M)E + V — E[Mca,.
Putting here M = 1°672; x 1024, m = 0909, X 10 27, ¢=2'9979 X
101°, and for the triplet ground state of the deuteron &
(= 2174 MeV) 3-45, % 10-¢ (erg), we find for the coefficient
in the potential of the °S state:
3 he = 005435 . bo& -+ 0:04795/+/ao. (12)
Substituting for @, and b, the values from (10.W) and (10.S-GM)
we find
3H[he = 0°092,% + 0:098, = 0°092, (2 + 1-06g) (12.W)
and

3H{/he — 0:0915 - 0:110 = 0°0915(% + 1-20). (12.5-GM)

So the difference between (10.W) and (10.5-GM) is equivalent with
an incertitude of a little more then ten electron masses in the mass m

of the meson.
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From experiments on scattering of neutrons by protons we know
that the virtual 'S level has an energy, which is small (& G:05 MeV)

in comparison with the binding energy of the deuteron (— 2-17

FAS W

MeV). We conclude that @ has for the 'S level only about 1/40 of the

value, which it has for the S level, and the opposite sign. Now, the

virtual levels of the Schrédin ger problem (8) have not vet

been determined. If we tentatively assume that for a < 0 (virtual

levels) an equation of the same kind as (10) 1s valid:

al ~ 02 % (b 1:68)2, (1Ca)

we find for the 'S level b 1:5,. In the literature the value of b for
the 'S level is usually supposed to be equal to b, ~ 168, that is, the
energy of the 'S level is entirely neglected %) 25). This may be a little
dangerous, since for virtual just as for real levels, (b — b,) may be

very sensitive for the exact value of a, if the latter lies in the neigh-
bourhood of zero. This, indeed, would follow from (104). From this
formula one finds (putting '€ ~ 0:05 MeV):

VH [lic 1006, (m/M) 2 VI€/Mca, ~ 0:09,% — 0-01,. (13)

Neglecting '€ entirely one finds:

1Hhe ~ 0:09,2, (13a)
If £ ~ 1'75, the difference between (12.W) and (12.S-GM) is about
3149, and that between (13) and (134) is as much as 109,

Comparing (13) with (12) we find
CH — T e ~ 0°1 ls, (13.W); ~ 012, (13.S-GM),

if (10a) is valid. Here we have put '€ A~ 0:05 MeV again.
Putting £ ~ 1'75 in (12) and (13), we find from (7):

Alhe ~ 016, B'lhe ~ 0°10.

From (4) and (6) we see that among Kemmer’s cases (@) (d)
only () offers the possibility of making alone both 4 and B’ positive.
This was the reason why K emmer and most other authors have
investigated this case in more detail, that is, they consider the meson
field asa pure Proca field. Of course it is also possible to consider
the meson field as a composition of several cases. The advantages of
doing so 1) will be discussed afterwards (§ 8).

We remark that the scalar field, originally discussed by:-Y u k a-
wa?®) (case (a)), gives the wrong sign for A (compare (4)).
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§ 3. The charge-dependence of nuclear forces. In a theory of charged
mesons the proton-proton force and the neutron-neutron force are
obtained only in a fourth approximation. For a field of Proca-
mesons the calculation was performedby Frohlich, Heitler
and K e m m e r ). The effective potential in the 'S state turns out
to be repulsive and very strong for r < 1 2v. The range is smaller than
that of the second order forces of the preceding section (§ 2). A simi-
lar short-range strong repulsion is found between a neutron and a
proton. This indicates that the theory does not allow to determine
the exact form of the effective potential between nuclons for small
values of », by taking into account a finite number of successive
approximations yielded by the perturbation method.

Experimental data on the scattering of protons by protons %) #7)
can be explained very well 28), if one assumes that the proton-proton
IS potential, in as far as not of electromagnetic origin, is (within 19%)
equal to the proton-neutron 'S potential *). It is obvious that the
meson theory as we have presented it until now does not explain this
fact. For this reason several authors have assumed the existence of
neutral mesons. One argument of B ha b ha ¥ for the existence of
these hypothetical neutrettos was, that it would make the theory
“more symmetrical”: charged and neutral particles wonld exist with
small, intermediate and large masses. We shall see, however, that
this argument is hardly tenable. Indeed, the neutrettos actually
introduced by the theory cannot be compared with neutrons or neu-
trinos, since the corresponding anti-neutrettos do not exist *). There is
more reason to draw a parallel between neutrettos and photons. If
the arguments of Bhabha were reversed, we should have to
expect the existence of “charged photons”’.

A theory of mesons and neutrettos and their interaction with
nuclons was developed in a very elegant way by Kemmer 20
According tohim, neutrettos are just as photons emitted and absorb-
ed by particles jumping from one state into th> other without chang-
ing their charge. If an antineutretto existed. it would be absorbable
by those particles that can emit neutrettos, and vice versa. It is
obvious that such a particle would behave exactly like a neutretto
behaves itself. Therefore it seems to be prudent, not to introduce two
kinds of neutral heavy quanta, which cannot be distinguished at all,
but to assume, just as in the case of the electromagnetic field, that
the neutretto field is to be described by real tensors *). or, in an
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“undor” terminology ), by means of “neutrettors’” 12). In a Sym-
bolic way we may say that the antineutretto is identical with a neu-
tretto, just as an antiphoton is a photon again. (The Jorda n-
Klein matrixina Fourier analysis of the quantizad photon
field, which should describe the antiphoton, is identical with one of
the Jordan-Klein matrices describing the photons: compare
§6).

The quantities fu, and guy.. in (2) have the form of
g,V e(ty 1%y) ¥, where ¢ is the wave function of a nuclon and w
isa combinationof Dira c matrices; g, denotes the constants / and
¢. The neutretto field Z, » should satisfy equations of the same kind
as (2), only fuy  and guy in these equations should now be of
the form of Ww(a, b, )b If ¥ and {, are real and if w is a
self-adjoint (Hermitian) matrix (e w'), we must assume 20)
(compare [M.F. (27)] *)) that all a, and b, are real:

b,. (14)

The effective (second order) potential between two nuclons. due to

the interaction through the meson field, turns out (compare § 7) to
be a sum of terms, which are proportional to

s T VT T Ty S TR 1Ty EY 1Ty
EmE 5 5 I S 5 5

In the non-relativistic approximation, only terms with m n
occur, so that the terms of this effective potential are simply pro-
portional to

T 72 T, (15)

This would still be true in the “relativistic” approximation 1), 7/
we assumed that it is possible to make al/ g, real at the same time by
a choice of the phase of the ma=son field -

- (16)

It is easily seen that the effective (second order) potential, due to

*) By [U.C.] will be referred to tormulae from the

culus ) (first chapter of

M.F.] to formulae from the paper

on the undor equation of the meson fi :1d 12) (secd

In Kemmer's papers 19) 39) terms with
him the condition (16) is not essential in this connection. Compare § /45
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the interaction through the neutretto field, will be a sum of terms,
which are proportional to
bixl) a, + 0,72 | a¥ + bit? a, + bum

2 2 ' 2 2

£

(IHJ

In non-relativistic approximation again there are only terms with
m — n. so that in this case the terms of the effective potential due to

the interaction through the neutretto field are simply proportional to

2 * (1) ) (1 2
': a, | 5(”% /’;: T dy /}::\/ (Tzl I le ) 1 l)l: 2 Tz‘ Tz fe

The total non-relativistic interaction is then a sum of terms pro-
portional to
a2+ |2, 2V . 7@) + (18,2 — |gu D) =i

3 (axb, Lo, b¥) () 4+ 22} (17)

Now, the proton-proton and the proton-neutron interaction in
states, which are antisymmetrical with respect to the spatial and spin
co-ordinates (so that (v . ©@) = 1), become equal in this approxi-
mation, if we assume

by |2 — | g l? ._I:((Ifif/),, La bty =0

On i

From nuclear physics we know that the non-electromagnetic proton-
proton forces are also approximately equal to the neutron-neutron
forces, so that

:].‘ (‘llﬂl‘ '}‘7; a, 1'7\) oS a, 2+ }'1:
These two conditions are satisfied, if we choose

b2 = |g,|?; a*b, = purely imaginary.
Now, in order to avoid in our theory the existence of antineutrettos,
we have already assumed in (14) that all @, and b, are real. Thus we
conclude:
/}n - g "l»: /‘;r = O. k 18‘

5n 1)

so that there are only two possibilities:
1°. the “symmetrical theory”, proposed by Kemmer

a, = O: /)n = | &n ’ (19’

30 -
) -

2°. the “newtral theory”, proposed by Bethe?®):
e i) (19a)

n
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In the latter theory, the nuclon interaction is entirely due to the
(electromagnetic and the) neutretto field, and mesons do not inter-

vene (g, = 0). Since from cosmic ray phenomena seems to follow

that the interaction between nuclons and charged heavy quanta

cannot be neglected, we shall mainly confine ourselves in the follow-

ing to Kemmer's symmetrical theory. Then, the second order

effective potential between nuclons is proportional to

(=" . @), (20)

The heavy quanta forces between nuclons are now independent of

the charge of the nuclons.

Comparing (20) with (15) we deduce from (3) the new form of the
non-relativistic effective second order potential between two nu-

clons:

W (z1,2) 1(xV . 2@ {4 + B(c" . o?)

(C) (6 . V) (6@ . V))} (e *™/ry,)  (21)

Here A, B and C are still given by (4). The potentials for a pure °S
state and for the 'S state of the deuteron are now given (compare
(6)—(7)) by

°S: W(r) 3(4 B') e=*"y, .
¥ _ B'=B 4 1C, (22)
S W) +3(4A — 3B/)e "/,

so that for Z 1'5 ~ 2:0 we find (assuming (10a) and (13.W) or
(13.5-GM)) :

m 1 m ” " }
Wilsos r<i
1/ (23)
Sachs-GM)
B[k 1 1 1
Comparing (22)—(23) with (4) and putting
g4 & | Ver'[Ar, ga= |fy| Verdldr, g, ga| Verdldn (24)

we find for a combination of the cases (b) and (d) of Kemme r:
7,

g3fhe = Alhe, (2¢3 + ¢3)/3hc = B’/hc,

2

so that gf/hc is of the order of magnitude 1/17 or 1/16, and g3/hc of the
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order of magnitude § ~ £, if g; = 0, and of the order of magni-
tude } ~ 4, if g3 &~ g,. In the latter case (g2 + 2¢3)/3hc is of the
order of magnitude 1/10. It must be remembered, however, that we
have here entirely neglected the coupling of the S state with the °D,
state by the term with C (compare § 8).

are real

With Kemmer?) we shall now assume that the g,

indeed (16). Then gu) and gity _take according to (19) the form of

gu = 1g¥ o (v — ity Y = gk wp;
(25)
r, Oy P r—— | 1t Ry s | (R4 1 R: '
gt = 3g' Wty = 3 8(YpwYp — Uy WUy).
Putting in a symbolic way 3°)
VYV =&, —i®
4 X Yy b
i (26)

| Y

(where V" is the meson field, ¥* its charge-adjoint *) and V' the
neutretto field), we can write the Lagrangian¥*)

L=—K/[{¥'B(2x— iYW + ¥B (2« — iLV) ¥ +
+2x[¥'B. fop U (x- -I.Ty)'\:/"*l—l—.*]))./:,,,"‘JETZ':J f-conj. compl.]+-....} (27)

in symbolic vector notation in the form of

I = — K/{(®.2*B[2x — iT)YV" @) +
+ 2% [(® . 8*Bf,,{¥ T y) + conj.compl.] + ....}, (28)
where
QOF, =L£VEA0F, = OF, = Dy, (29)

K e m m e r?) has pointed out that, if (16) is assumed, the effect-
ive potential between two nuclons in any higher than second order

approximation of perturbation calculus can, on account of the

“invariant’ vector form of (28), be written as

—>

W 4 (z) @) W, (20a)

where W’ and W’ are potentials depending on 7, and the spin co-

ordinates of the two nuclons only.

§ 4. Quantization and relativistic invariance of the theory. In 1929
Heisenberg and Pauli®)3) have developed a quantum

*) Compare the notation in [M.F.] %),
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theory for wave fields and have demonstrated its relativistic in-
variance. In this theory all components of a set of quantities ¢(x)
transforming irreducibly among each other by Lorentz trans-
formations are assumed to be canonical co-ordinates, as soon as one
of these quantities g is a canonical co-ordinate. Thus, if for instance
one component of a four-vector is a canonical co-ordinate, all com-
ponents are so. For this reason Kemmer®), Bhabha?) 18)
and Yukawa?) 2) built up their theory in such a way that all
components of ¢ in (2) were regarded as canonical co-ordinates q(x).
Apart from some possible normalization factor, the canonical conju-
gates of ¢, . are then given by p(ean,..) = Laa,...; the canonical
conjugates of ¥ by %ord,... Particularly by Bhabha 18)
the quantization of the meson field was performed in a logical way
starting from this point of view.

Then, however, a difficulty arose. From the antisymmetry
of LHian,.. it follows that %or,... does not possess a canonical
conjugate at all. Thus the scheme of Heisenberg and Pauli
cannot be applied. For in both proofs, given by them %) 34) for the
relativistic invariance of each of the commutation relations, an
essential use was made of the commutation rules holding for the
other co-ordinates ¢(x) transforming together with the co-ordinate in
question. The commutation relations assumed by Heisenberg
and Pauli, however, do not hold between %o).... and the other
canonical variables, if the meson equations are regarded as g-number
relations.

For instance, no 3-function is vielded by the commutator of
©o),... With its canonical conjugate, since the latter, being zero,
is (anti)commutative with any quantity. A similar difficulty appeared
in quantum-electrodynamics. There it can be removed in a natural
way %) 36) by assuming that the canonical conjugate & of the electric
potential is not identically equal to zero, but is a g-number which,
operating on the situation function, multiplies the latter by a
constant factor only, for instance by zero. This g-number must be
introduced as a new variable.

One may try, of course, to proceed in a similar way in the meson
theory. There it is possible, indeed, to introduce similar help-quanti-
ties U in such a way that finally every canonical co-ordinate q(x)
possesses a conjugated momentum. If ¢ is of rank #, we must
introduce a set of tensors U of rank (m—1),(n—2), ...., 1,0 for
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this purpose *). In this way it is possible to find a consistent set of
commutation relations, the relativistic invariance of which follows
automatically by an application of the arguments of Heisen-
berg and Pauli. It must be borne in mind, however, that these
commutation rules are not identical with those, which are in use in the
v 1s commutative ) with

current theory. Now, for instance, g,

ox,..,» and the “identities” expressing the ¢u . and ¢f), . in
terms of the L and Z* are no longer valid as g-number relations.
Thus the meson equations are affected and they can only be valid as
a condition imposed on the situation function (like in quantum-
electrodynamics), if we postulate that U, operating on the situation
function, multiplies the latter by a constant factor (for instance zero)
only. The advantage of such a procedure would be, that there would
exist some possibility of separating a part of the nuclon-nuclon
forces by a canonical transformation ') 37), like this is done in quan-
tum-electrodynamics, where the static Coulomb force is sepa-
rated and the longitudinal electromagnetic field is eliminated from
the theory %) ?¢) (compare § 5).

However, such a procedure is impossible in the theory of heavy
quanta, since from the condition “U = constant” imposed on the
situation function would follow that the situation function vanishes
itself. This is a consequence of the fact that in the meson theory U
will not be commutative with its own derivatives with respect to the
time (contrary to & in quantum-electrodynamics), as ¢g), . appears
itself in the left hand member of the field equation 8/i/3¢g,,

- — U replacing the “identity” 3/ 8gon,... = 0. From a non-relati-
vistic point of wview, again, this occurrence of g . in the corre-
sponding Lagrangian field equation (identity) means that tze
introduction of help-quantities U is entirely superfluous. The identity
can be regarded as a definition of ¢y . in terms of the other
canonical variables and can be used directly for the derivation of the
commutation relations of g . Thus ¢, . is no longer treated
as an ordinary canonical variable, but only as a “derived variable”,
in analogy to § in quantum-electrodynamics, and not fo the electric po-

*) For Kemmer's case (b) this reduces to a single scalar (and its conjugate com-

plex). If in this case, instead of @y and g}, the :\“ and :"\‘»‘n'n- rw.:.u:bul as canonical
co-ordinates, one must introduce a four-vector and a scalar, If =5 and A are regarded
7) 2)

as canonical co-ordinates, like it would be natural in an undor theory of mesons, one must
even introduce two scalars and a four-vector.
1) This is one of the conditions, indeed, on which an application of the scheme of

Heisenberg and Pauli is possible. It is not realized in the current meson theory.
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tential B. In this way we find the commutation relations, which are
actually in use in the literature. Indeed this treatment seems to be
the more natural one. But its relativistic invariance has never been
proved, though there seems not to be a particular reason to doubt its
existence. Perhaps the proof can be given on the basis of a suitable
generalization of the theoryof Heisenberg and Pauli.

Since by Kemmer, Bhabha and Yukawa only the
components of ¢ and ¢* are regarded as independent variables in
the Lagrangian variational principle, the other quantities
then must be “defined” by (2) in terms of these variables. Thus. the
L agrangian function, regarded as a function of the independent
variables only, is of the second degree in the sradient operator V. One
may call this an “L(VV)-theory”. The field equations following from
such a theory are of the second order; the first order equations are
arrived at by assuming some of them as definitions.

Although the elegance of such a procedure is questionable even in
electrodynamics, it can be defended there, since the field strengths
are uniquely determined, if the potentials are known as functions of
X, ¥, z, t. In these “definitions™ the variables describing other fields
do not occur. The potentials, on the other hand, cannot be expressed
in terms of the field strengths.

We have already seen that this is not the case in the meson theory.
There, of course, it is possible to introduce with Kemm e r 19) and
Bhabha?') the quantities y = ({ — fu), which can be expressed
directly in terms of the ¢; but the possibility remains of expressing
@ or at least (¢ + gu) = 7 in terms of the €. So it is not clear why
ima Lagrangian variational principle one of the sets of quan-
tities ¢ and € should be treated differently from the other.

For this reason it seems to be more elegant to derive directly the
complete set of first order equations from a L a grangian, which
is linear in the V operators, like the L a grangian in the wave-
mechanical theory of electrons. We shall call this an “L(V)-theory”.

A more serious objection against an L(VV)-theory of hardly known part-
icles seems to be the following. Since we know that the interaction of
Dirac particles with the Maxwellian field can be described by
changing in the Lagrangian function Viinto Dy = Vy + (e/ifi ) An,
whereever it operates on the wave-function describing the annihilation of
a positively charged particle or the creation of a negative particle, and by

D Vi — (e/ihe) Ay, whereever it operates on the conjugate wave-
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function describing the creation of positive and the annihilation of nega-
tive particles, we are accustomed to use the same scheme of introducing
the interaction with the electrbmagnetic field, for any hitherto unknown
particles. One might desire that this scheme is uniquely determined.

This happens to be the case, if L is linear in the gradient operators, like
the Lagrangian used as a rule for the electron wave field (L(V)-
theory), but in an L(VV)-theory the above-mentioned prescription
(V — D) is not sufficient to determine a unique interaction with the
Maxwellian field. We shall show this for Dirac particles.

Instead of deriving the Dira c-equation froma Lagrangian

L(V) = if¢'Blix + v V*) & (Yu = Baty), (30)
we can derive it from the (second order) Klein-Gordon equation *?) *¥)
(2 —DY =0, ( V), (31)

which is derived from a LLagrangian

L(VV) = [ B2 — D)y, (32)
L(VV) = [ !B (—ix + yaV?) (i% + v, V) & (33)
On account of y,y, + Y,Yp = — 28, the integrands appearing in the

two expressions (32) and (33) are identical; their difference is equal to
(—i/2) ' Boy, (VAVE —VEVA) 4 = 0. (20), = YaYe)-  (34)
If only first order derivatives are allowed, we can integrate (32) and (33)
by parts:
Li(VV) = 2[Ry + [(Va ) B (VEY), (32a)
LVV) = 2[Ry — [NV OBy T# ). (33a)

Now changing V) ¢ into D) ¢, the second order equations following from
(32a) are given by

(2 — D3¢ =0, (32b)

and those following from (33a) are given by

~
13,2

(%2 — D2 — (efihc) (.60 —iG . )} = O. (33b)

The latter equation describesa Dirac particle with a magnetic moment,

as it should be; but the former equation can at most describe a particle,

which does not possess a magnetic moment, though it has a spin angular

momentum *%),

Generally the interaction of a particle with the electromagnetic field is

not determined by the prescription V — D, so long as there is a possibility
of introducing some terms with (V,V, —V V)) before applying that

prescription. The procedure of starting froman L(VV) seems to be especial-

*) Generally from (31) follows iz + ¥, V# @ = ixg + v, VF ¢ = 0, where ¢ is another
undor. If the total field of the quantities satisfying the first order equations consists of

one undor only, we can conclude that either & © or J - .
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ly dangerous since the (wrong) expression (32) seems to be simpler than
the (right) expression (33).

The ambiguity here discussed can be removed by inserting ) in the

place of V in the first order equations instead of in the I. a grangian

itself. This, however, may be dangerous, since some first order equations,

such as for instance div H 0 and div A + V/ 0 in the case of the
meson field in empty space, may possess a character different from that
of the regular field equations (compare [M.F, (44)—(- 45)]!), and this can be
verified only by examining whether the equations in question can be
derived, without mtmdmmqmx\xh.n\ variables, froma Lagrangian
function that is linearin V.

Since no direct experimental data exist on the interaction between
mesons and the electromagnetic field, it seems to be necessar Y at least

for a satisfactory theoretical derivation of an expression for this inter-
action — to derive the first order meson equations (2) froma Lagran-
g ian, which is linear in the gradient operators, L(V). We shall see that
in this way we arrive exactly at the equations given explicitly by

Bhabha ') and Yukawa #). This is not very surprizing, since
they have changed V into D in the right first order equations.

So long as the theory of Heisenberg and Pauli has not
yet been generalized, there is as little direct proof for the relativistic
invariance of the procedure of quantization by starting from L(V), as
there was for the L(VV)-method used by the cited authors. When a
more general relativistic quantum theory of wave fields will be
formulated, it should be formulated in such a way that the invarian-
ce of the L(V)-method is generally warranted. Since this method
leads to the same Hamiltonian (quadratic in V) as the L(VV)=
method, the proof of relativistic invariance of both methods will be
substantially identical.

So we shall regard in the following both @ and ¢ and their conju-
gate complex as independent variables in the L a grangian
/'unrh'nn L(V); the Pasay.s Paray.> Goaa,.. and B kB o R s

, 2, 3) will turn out to be the canonical variables ¢ and ¢,

(m(l the variables Poss...s Poay...r Cagiay.., and Caaa,.. can be expressed

in terms of the canonical variables. The mmmumtion relations
for these “derived variables” are then derived from those for the
canonical variables, so that, if the interaction between mesons and
nuclons is taken into account, the derived variables of the meson field
will no longer be commutative with the wave- function of the nuclon field.
This is exactly the way, in which Kemmer, Bhabha and

Yukawa actually quantize the meson field. The only difference
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with the treatment of Bhabh al8) is, that we shall treat o,

from the beginning in the same way as the other derived variables
v

gy dy.

special arguments, which seem to be superfluous, since they do not

, whereas this is done by Bhabha only after some

prove the relativistic invariance of the theory.

We shall now write down the Lagrangian function L(V)
describing the fields of nuclons and light D irac particles, mesons
and neutrettos in interaction with each other and with the M a x-
wellian field. In the preceding dissertation of the author on the
undor equation of the meson field '?) a formal argument was given
for treating the cases (b) and (d) of Kem mer fogether. We shall
return to this question afterwards when we are able to discuss the
physical properties of such a generalized meson field (§ 8); only
experimental data can decide if the spinless i) mesons of case (d)
exist or not. For the present we shall introduce these spinless mesons.
Afterwards they can always be eliminated again, if it would turn out
that we do not need them, by putting /; g0,

We shall make a “Fermi-Ansatz” (compare page 41) for the
interaction between mesons and light D ir a ¢ particles, that is, we
shall assume that this interaction is given by adding to f# and gu in
(2) similar expressions /%" and g'w’, where the 2" are linear combina-
tions of the 4 x4 components of ¥ ,. Here ¢, is the wave-function
of a positon = and ¢, is the wave-function of the particle v called a
neutrino in the original theory of Fermi®) and called an anti-
neutrino by other authors #2) #). If &' is the 8-component wave-
function of the light particles, we can write

W = Yobs = § T o(m — it (35)
As for the interaction of light particles with neutrettos, we shall
make again the “C.1.”" (charge-independency) assumption of K e m-
m e r’s “symmetrical theory” ) (compare § 3: (25)):

(24 1’
wT,y .

o 4 1/.11 ' 1t ] = 5
W = 3(Yz WYz — YWW) = 39

(35(()

In the literature #’ is usually expressed in terms of the wave

functions ¢, = £ of the negaton ¢ and ¢, = ¢y of the anti-
particle o of the (anti)neutrino v. It is easily shown, however, that,
apart from some signs (which can be added to the constants /" and g’),
this does not make any difference, since on account of [U.C. (12),
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1 *) we have

' 1 G\ )k 1.69,1 % / R

W Yo E* Ll Yo e (—) Yo,
14 ! 1,6\ ("3 sk %, 1t (R
O A2 Yo L GL.‘J, J,, ‘o J(‘ ( ) Uy a./,,. (36)
J1ta 1.6 £ | ok | ok, % 1t
biBlr = (5oE*BLY: Yo P*e (—) 9ePo, et

The minus signs in brackets result from the anticommutativity of
e and §,, the other from [U.C. (23)]. Comparing (36) with [M.F. (11),
(12)] and [U.C. (62), (62a)] we observe that the tensors (U ewdy,)
arising from the symmetrical part of ¢} ¢, are changed into
(—) (Yiw,), whereas those arising from lhv ‘mlx\\ mmetrical part
change into (—) ( Yiwd,).

In the following we have called ¢ a neutrino and v an antineutrino.
following Konopinski and Uhlenbeck ). If a positon
is regarded as the counterpart of a proton, then the counterpart of a
neutron 1s called an antineutrino, in this te rminology. With this con-
vention a neutrino and a negative electron are 1«-".mln d as two states
of one and the same particle. Something can be said for returning to
the original terminology of Fermi®), but here we have not
done so.

A“Konopinski-Uhlenbeck Ansatz” for the interaction
of mesons with light particles, involving derivatives of the neutrino
wave-function, was tentatively tried l)_\' Yukawa ), We shall
return to this question in the discussion of the spontaneous meson
disintegration (§ 10).

We shall introduce at once the Fermi-variable &, in order
to avoid the difficulties with the commutation rules of a general
quantum-electrodynamical theory, in which gauge transformations
would be possible 31) 43) 4) The total Lagran gian function
then reads:

L = iK(Y'BT,VFY¥ + WIBI vﬂ).lh o VBT =
- (1/4m) (9., VA + ©VEN,) — 2« K(V'BY + ¥''BZ
Z'BY + Z'BC,Z + ¥Y'BY + V'BZ + Z'BY 4 Z'B(
Z mc'BY +- (1/8x) (3

2"
P,N,m»

o2 e &

DD + &) + (eK [he) W' BT, A+

%

) Compare the tirst foot-note on page 47,
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/0y, G|OZ,

0

Here the notation is the following: V# denotes {¢/cx,
— @&/cet}; ¥ is the undor of the second rank describing d((()l(iln to
[M.F. (10)] the components S; A, V.E, H; B W Y of the general-
1/ul meson field: ¥ is the neutrettor de scribing the ne ututtn field.

(Thus W' and ¥ cannot be varied independently). = PR,
F, ="+ Y2, Yu=PBa,; 0= — 1. X is a summation over
(P,...)

the wave-functions ¢ of the particles mentioned under the summation
sign. £, and A* describe the electromagnetic fie l(l in the usual way
(D12=9: H10=C,, Uy =%, W=—A,=B); Sisthe Fermi
variable.

Z is an undor of the second rank

Zus, = 2opVy Vop. + 2Uipll, b, (38)
representing according to [M.F. (10)] the following tensors (compare

M.F. (11) — (12))):

a = _‘\’),':JT\'G'.;J/) i ’),,'L:a';l-v, v (\hH\;‘I’ T .(\"’"‘:J:"‘:J:-.'
€= — fUhiBalp — filiBals, B = — [UiBols — /1UiBoYy;
w=—gallvslp —gili¥sle D =—gibhotr —gitjoty; 9
y ./“/';f\"'Ysp':J/-‘ /,/"J:IYspbw S /l‘\ LI 1 ’HBJT

(Vs = — tocoyex,.)

In a similar way Z represents the real tensors

loy (U ad, — dad,); ete. (39a)
We assume that all constants f,, g,, etc., are real (16).

The scalar operators C,, and €. » multiply the tensors s; a, v;

op
0, h; b, wandyinZ, (m(l_s - etc. in Z by the constant factors
Co G CoC o Gl A B O

still be arbitrarily chosen. It is a special assumption, that in the
terms with C,, and (,,,,, only products of the combinations (39)—
(39a) occur. This assumption is not essential for the theory. For

,Ll( 1(~])ut1\(l\ These constants can

instance, one might have introduced the products of the types
' ' ¥ ' + 5 + .1

WhUn (R Up), (b Un) (@b da) + (WhG) (N dp)} and  (Uh 4) (U] Ua)

with three different coefficients. For the sake of simplicity we have

not done it here.
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K in (37) is the normalization constant of the heavy quantum field.
In the literature this constant is not alw: ays chosen in the same way.

We shall make here a definite choice and put this constant acc ording
to Kemmer) equal to (¢/2) in the following.

The Lagrangian function (37) can be written easily in
vector notation. This should be done in order to remove at once the

supcrflnons quantity ¥, Integrating the terms, in which derivatives

of F_Z H or Y occ ur, by parts, /i = [ L dx dy dz dt takes the following
form (fletches over the vectors are here omitted: rot = curl: K is
put equal to ¢/2):

L = [ L dxdy dz dt; (40)
- L' = c{A*. (xA + rot H — E/c) — V* (xV -+ div E)
E*. (x<E 4+ VV + A/c) — H*. (xH —rotA)

W*(xW + Y/c) — B*. (xB — VY)
Y*(xY — div B — W/c) — xS* S}
F2e(E. (VV +AJc) - H.rotA — Y (div B + W)}
Fox (A2 — V2L E2—H?2 + W2 - B2 L V2§ +
F(1/47) {C. (VB + Ac) + 9. rot A - S (div A - B c)}
(1/8x) (€% — H? — &3
- \‘.: Y (mc*B— ihe o . V—ih 2/et) § "/'X';‘m.?( -B)d
(e/th) {E* . AV — V*U.E + A* . [A, H] + H*.[A, A]
-Y*U. B+ B*.AY — E*. VA + A*. BE —
W*BY + Y*BW)
Fex{A*.a— V*v L E* e — H*.h - W*w — B*.b
Y*y — S*s -+ conj. compl.}
2cx{A.a—Vv+E.e—H.h+Ww—B.b+Yy—Ss!
ex{Ci(a*.a — v*v) 4 C,(e*.e — h*.h)
C; (W*wW —Db*. b) + C, y*y — C, s*s

+Ci(a%—v?) + Cy(e2 — h2) 4 Cy(W? — b?) + C, y2— C52)

!

|

|

' Now using (40) instead of (37) as the L a grangian function
we can regard

AE,W,Y; A, W; % B; $p, Yy; Ynand, (41)
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asthecanonical co-ordinates ¢(x) ; the canonical conjugated momenta
p(x) are then given (on account of K = ¢/2) by
E* A* Y* — W*; 28 28z
C/4ne, — S/dmc; hiF, ihl¥; thiE and hlYF. (4la)
The commutation relations between these canonical variables are
now given by
gi(x); q;(x") g:(x) g;i(x") — ¢;(x) gi(x) = O; ]
(42.E-B)
pi(x); pi(x") 0; qi(x); pi(x") =11 8;;8(% — %)
for A,E, W, Y; A, W: A, %, and their canonical conjugates; by

q:{x); q;(x') g:(x) ¢;(x) q;(x") g:(x) 0: S

pi(x); pi(x) 0; [qi(x); p;(x) h d; 8(x — x')
for Up, Yy, s, ¥, and their canonical conjugates. Each of the cano-
nical Einstein-Bose variables is assumed to be commutative
with each of the canonical F ermi-Dirac variables.
The quantities
S,S* V,V*x H H* B,B*, S, V,H B and (43)
must be regarded as derived variables. They do not possess canonical
conjugates, nor are they canonical conjugates of other variables.
Varying these derived variables in
b _/. L dx (!‘.“' dz dt 0 (44)
we find the following “identities’’, which may be regarded as the
definitions of the derived variables:
%(V + v) 4+ div E -+ (e/ihec) (A.E) =0,
»(H -+ h) — rot A — (e/ihe) [A, A] =0,
»(B 4+ b) — VY — (efithc) AY =0, =»(S+s8)=0,

and conjugate complex equations; (45)
'/.{V ! \i) L div E = 0, «(B b) \_? =10,
»(H + h) — rot A =0, x(S + 8) =0;

H = rot .
From (42) and (45) the commutation relations for the derived

variables follow.




CANONICAL AND DERIVED VARIABLES, THE HAMILTONTAN 61

The ' Hamiltonian function is now given by
Zpq—L'=H.
This H' should be expressed in terms of the P and g, that is, the other
variables should be eliminated by means of (45). First, however, we
shall give a short expression for H’, in which this elimination has
not yet taken place. Since (40) is linear in the ¢ and does no more
contain any p, we find H’ by omitting from (40) all terms containing
derivatives with respect to the time. Now making use of (45) and
integrating by parts we can write the result in the following form *):

H = [ H dx dy dz; (46)
H=cx{S*S+A* A+ V*VLE*.E+H* H+W*W-LB* B Y*Y

S LR VLB B2 W24 B2 4T
(1/87) {€% + 9% + (1/4=) {(divA — 1 &) & - B (4mep — divE)}

2 Yt (me? B + ca e Loop) Y+ Z P (me2 B + ca Wl

(N, (P.1r)
cx {A*.a + E*.e + W*w | Y*y | conj. compl.}
2cx{A.a+E.e - Ww- ?;;

ez {C, (a*.a —v*v) L C, (e*. e — h*, h)

> (‘ (“v*“- — b* b) ! ('4 .‘a’y - C,8*s

Cy (8% — v?) + C; (€2 — h?) + C; (W2 — b?) 4 Csy? — C, 82

“

Here we have put

Sop =—1hV; it =—ihV — (o) %, (47)
and
ep = e Z Y + (efih) (A*. E — E*. A + Y*W — W*Y). (48)
(P,m)

The physical situation is described by a situation function 7, which
can be regarded — like this was originally done for instance by
Fermi®)3) _ a5a functional depending on the actual c-number
values of the field components; but it is simpler, to regard it as a
function of an infinite set of partition numbers (,, Besetzunoszahlen’)
Ny, N,, ...., denoting the numbers of particles or quanta in differ-
ent states 1, 2,

“WH #X pg
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According to F e rm i?®) %) the situation function satisfies the
special condition

0, (49)

Q)
™~

so that

((Y5

V&y = ASy = 0; Sy = Sy = e = (50)

The derivatives of the g-number field components with respect to the
time can be expressed in terms of the field components themselves
and their gradients, by means of the canonical field equations, which
can be obtained either from the Lagrangian variational
principle, or by

ih N =[JF;Hl_, (51)

making use of the commutation relations (42). In both ways we find

div € = 4nep — S,
. ' ) (52)
rot  — €/c = 4rej/c + VG,
and
¢ - V8 — Ae,
: (53)
s div A + Ve

In (52) we have put
ejlc= e 2 L’ab L (e/th) {{H*,A] + [A* H]

—

V*E — E*V + Y*B — B*Y}. (48q)
The continuity equation
o +divi=0 (54)

follows directly from (48), (48a) and the field equations for the wave-
functions of protons, electrons and mesons, asshownby Bhabh a.
From (52), (53) and (54) we deduce:

Slc = 4mep — div €,

Py o
S - AGS
© o,

~
-
~

so that

~
o~ —
W2 e
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From (50),

(52) and (53) we find

&y = (div A + B/c)y =0, (57)

and

- & o)y, = (div € — 4rep)y = 0,

s (58)
VEy = (rot H — €/c — 4rej/c)y = 0.

From (55) and (42) we conclude that & and its derivatives with
respect to time are commutative, so that the conditions (50) are
compatible with each other. From (55) we see that the relations (50)
do not impose other conditions on the situation function than the
relations (57) and (58).

The expectancy value of an observable J¢) is given by

FUO = 52 )%, (59)

(Summation over all possible values of the partition numbers.)

For actual calculations it is often more convenient to regard the
field components as matrices, which do not depend on the time; then
S is given by

SO = = 720 Fro), (60)

where y(#) is determined by
thy(t) = /‘[yﬂ). (61)
The condition (49) now takes the form of
E(x, v, 2) () = 0. (62)

In order to find out, how A operates on the function ¥(¢) of the
arguments ¢, N\, N,, . ... in (61), we must express H in terms of the
canonical vari: ll)]( s ¢(x) and p(x), and express these variables in terms

Jordan-Wigner and Jordan-Klein matrices operat-
ing on %(N,, N,, ....). This has been done explicitly for K e m-
mer’s case (b)) by Bhabha's) and by Kobayasi and
Okayama %),

Before we proceed to this treatment of the H a m i ltonian,
however, we shall first eliminate from it the longitudinal electro-
magnetic Iu Id and the help-quantity &
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§ 5. Elimination of the longitudinal electromagnetic field. F e r-
m i%) 36) has shown how to eliminate the longitudinal electro-
magnetic field from the Hamiltonian. Here, we shall apply
his method to the Hamiltonian given by (46).

For this purpose it is convenient to introduce the following nota-

tion. Let the operator (1/V), operating on an irrotational (longitudi-

nal) vector field ‘)l.;,,,:\.(.\’). be defined by

] 2 . 2 > eat
v+ Yiong (%) X)) = | Wooned8 — VX = Uy (63)

Let in the same way (1/div), operating on a scalar field g(x), be

determined by

1 7 SRS 4 ;
—o(x) = X(x) —> divX¥ =p, rot X =0. (64)
div
The operator (1/div) is identical with the operator — (1/47) New of
G 1bbs ). Finally we put
1 1 1
= = —. 65)
v dv_ A (
This operator is identical with the operator — (1/4x) Pot of G ibbs.
Splitting up € into a longitudinal and a transversal field, we can
write
i SR o4 [&,,. (66)
8r. 8t ¢ 8 T
Since from (52) follows
S 4dme ;
G"u)" i 1 . : 0, “37)
s div ¢ div *

we derive by an “integration by parts”:

1
div ¢

jg © 1
= /Q;,,:; div ¢ 3 8_./ CRVNT L

Here, we have made use of the commutativity of

~
=/c
2/ C

= 4rep — div € with Gy
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From (68) we find
(69)

On account of (50) the first term of the right hand member of this
equation, if operating on the situation function 7, does not give any
contribution. Such a term we shall call a zero-ferm. Now. all real *
zero-terms O inthe Hamiltonian are of no physical 1111:,-1'(-.\'1,
since the contributions given by such terms O to the commutators of
any observable J with H| have no matrix elements between states
satisfying Oy, = zero, which do not vanish. This follows from

Y ¥ /‘ () 72 £ :{' 1/ / ()/ Y (()/})//: Zero. {7(;))

For this reason we may change (1/8z) / 67, in the Hamilt o-
nian intothestatic Coulomb interaction

e [ [e(x) p(x) Sy
2,/ ke '7_, S (6%9a)
X — %
For the same reason the term (1/47x) (div A 3©)S may be

omitted fromthe Hamiltonian (46). Indeed these zero-terms
are of importance only in the Lagrangian function. where
they must serve for the construction of a consistent theory, but for
practical purposes they are of no interest.

The electrostatic potential occurs in the Hamilto nian in
the terms

(1/4) f B(4rep — div €) = [ BES/4ne. (71)
Also these terms can be omitted.
In order to remove the longitudinal vector- -potential from the

Hamiltonian we perform a canonical transformation, which
was indicated by F e r m i 38) %6). This transformation is given by

Al PO kel s (72)
so that
F=e—F FesF <3 (1nl) [LF): 5™, (73)

n

*) A g-number is called real, if it is a self adjoint (Hermitian) matrix with
respect to the partition numbers Ny, Ny, ... ..
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Here we have put

J =[S} +F19, LF; iFl = [{_F};iF1W,
generally (74)

Then
= Ao

S Tyl Doty (75)
N Nyyion :
so that the physical situation can be described by /’and / as well as
by J and 7. According to F e r m 12) %) one must put
F=F £F: (76)

; ; A : ;
1Fy = (tefhc) o Wyone (e/ihc) / Viome o, (76a)

J Y

iF, = (i/anhe) [ B div iy = (1/4mi0iC) | Wpog - VB, (760)

In order to eliminate Ny, from the Hamiltonian, thetrans-
formation with F, is sufficient. We shall calculate, how the variables
still occurring in the Hamiltonian are transformed by it.

For this purpose we must calculate the high-order commutators
occurring in the last member of (73). We remark that, among the
variables occurring in the Hamiltonian, only the wave-
functions of charged particles and mesons do not commute with (76a).
The longitudinal electric field strength, which does not commute with
Ny, has already been eliminated from the Ham iltonian in
the foregoing.

Now, from %)

ep = (efth) X Pgq (77)
q(P,m,mes)
(summation over all canonical co-ordinates ¢(x) describing the anni-
hilation of protons, positons or positive mesons, or the creation of
antiprotons, negatons or negative mesons), we deduce with the help
of the commutation relations (42):

%); p(«) - 3(x — &) q.(x), N
g.(x); p(*") ( ) 2.(x") (78)
p(x); o(x') - 3(x — x') p.(x),

for all canonical co-ordinates ¢, describing a decrease of the total
electric charge by e, and their canonical conjugates , describing an
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increase by e. Thus, we find the recursion formulae

e ]
the V-

{g.(x)}; ©F D =

Wone ) [{g.(2)}; 1F,]

4 ]

[(pelal}; 1R = + (<.

Wiong) {P(%)}; 1F,]™,

so that (73) yields

A A

==l q.; Pe="1Dy€ il
l (e/he) (1/V) . ¥,

long +

(80)

These formulae can be applied to §p, ¥, A, E, Y, W and their cano-
nical conjugates. From the fact that the wave-functions of the neu-
trons and neutrinos are not transformed at all it can be deduced that
S,V,a, ...., as defined by (39), transform like the ¢, according to
(80), whereas s*, v*, . ..., transform like the P

The derived variables were defined by the “identities” (45), which
contain the gradient operator and the vector potential in the com-
binations

\V + (¢/the) A} g, and {V — (efikc) A} p, (81)
only. By the transformation (72), (76a) these expressions change on
account of (80) into

(V + (efihe) U} . = " (V + (efic) A} q, + (VeW).q, —
= e {V + (e/ihc) Ay} q.; (82)

AV — (e/ihe) A} p. = ({V — (efitic) A, AN s
Thus the longitudinal vector-potential 9, is eliminated from these
expressions. In a similar way it disappears from the expression /% ;.
The transformed Hamiltonian

A

H '_/‘(‘xlg*:‘ ! A*. At , (46a)

in which the derived variables are “defined” by the transformed
identities

x(V + V) + (V + (efific) % . B) = 0, ete. (45a)
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can now be expressed in terms of the original matrices Y, A, E, .. ..,
by inserting the expressions (80) and (82) for the transformed vari-
ables into (46a)— (45a). Then all factors e and e" arising from
(80) and (82) cancel each other. The longitudinal vector potential
disappears entirely. Thus we find the transformed Hamiltonian
H expressed in terms of the original canonical variables, but the
matrices €., 8, © and UA,,,. do no longer occur in it.

[t must be pointed out, however, that, if we want to calculate the
matrix element of some observable by means of the transformed
situation function / we must use, according to (75), the transformed
g-numbers, and not the original matrices occurring now in the
Hamiltonian.

For instance, € is changed by the transformation (72)—(73)
(76a) into *) G =G (4me/div) p. Since from this expression the
original matrix of the longitudinal field €,,, has not yet been
eliminated, it is impossible to calenlate the expectancy value or a
matrix element of the clectric field, if (1°) the dependence of the
situation function on the partition numbers denoting the numbers of
longitudinal “photons”, or (2°) the way, in which €, operates on
this situation function, is not known. This means that, though the
Jlongitudinal field does no more occur inthe Hamiltonian, it
has not yet been eliminated entively from the theory.

For this purpose, the transformation with €7 was introduced by
F e r m i28) 36)_ It is easily seen from (73) and (76b) that among the
canonical variables only ¢, and & are changed by this second
transformation. It turns out that by the combined transformation

(76) €,,,, and & are changed into *)

Cione + VB + (4me/div) o = (4we/div) p Wyone/c.  (83)

. & —div A = Be. (84)

(Vs

From (83) and (52) we find
S = div Wyone - (85)

Now, from (72) —(73) and (50) follows

% =0, (86)

(Vs

/.

Q8

*) Compare the foot-note on page 72.
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so that we find from (84) and (85)

By = 0, (87)
div 9,,,, 7 = O. (88a)

Since rot Ay, = 0, we can write — always on account of (49)

Hiome 7 = O (88)

This means that by a description of the physical situation by
means of the fransformed situation function, the original matrices of
the scalar potential and the longitudinal vector-potential, if opera-
ting on the new situation function, multiply it by a quantity, which
does not depend on the time. Now the electromagnetic field stre ngths
are ‘1\(1\1)_\ compare (45), (83))

D = rot 5[,, rot 9, ,
(89)

(4me/div) p - A, /e,

tr

where we have omitted from (83) the term with ‘jl,,,,u., which on account
of (88) /mx mz/\' vanishing matrix elements between states satisfying
(49) or . If only 9, \[‘, and p are expressed in terms of Jor-
d a n- \\ igner and Jordan-Klein matrices operating on a
situation function, the dependence of which on the partition numbers of
the longitudinal field is not known, we still can compute the total
electromagnetic field strengths from (89), so that we m: 1y say that we
have succeeded in eliminating the longitudinal * "photons” completely
from our calculations *).

Thus was possible only since we had the extra condition (49) on the
situation function at our disposal. Since such an extra condition does
not exist for any of the field components of the meson field, a com-
plete elimination of some part of the meson field seems to be tmpos-
stble ') 37) (compare § 4).

¥)

That is to say, for the calculation of the matrix elements of V and ons themselves

ng
which are not transformed at all by the Fermi transformation (72)-(76) it

A
would be necessary to know the dependence of 7 on the numbers of longitudinal photons.

However, these quantities, which according to (87) and (88) are constants, are of no

interest for physical problems.
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§ 6. Discussionofthe Hamiltonian. Now wecan insert (45)
and (69) into the Hamiltonian H (46), omit all real zero-
terms (compare (70)), transform by (72) — (76) and express the trans-
formed g-numbersin terms of the original ones by means of (80) — (82).
In this way we find the transformed Hamiltonian expressed
in terms of the original canonical variables. The result can be written
in the following form (we write A instead of H in the following):

H = [ H dx dv dz;

(90)
H=H,+H;+H,+H

-H,+ H, +H,,.

Hy; = cx {A*. A + E*.E + W*W L Y*Y + A2 + E2 + W2 + Y%} 4
(¢/%) {(rot A*, rot A) + div E*. divE -+ (VY*. VY)
(rot A)? + (div E)? + (VY)%

(1/8x) {2 + (rot A,)? ,‘_. (nu B + ca. Pop) Y-
(PN

- @ [ [elx) e o
H, = : / / ‘7( ) § \ ) . (e is given by (48)).

27 - 7
X — X
H, =—eN, .79
efQ)c = e Z Ytad + (efihx) {{A*, rot A] 4 [rot A*, A]
(P,m) B :

E* div E — div E*.E 4 Y*VY — VY*. Y}

H,, = (&/cxh?) {(A.E*) (A.E) — (A.A*) (A.A) + A3(A*. A +Y*Y)},

H cx{A* a--E* e+ W*w- | Y*yt+a* Ate* E4+w*W-Ly*Y}
¢ {divE*.v — (rot A*.h) — (VY*.b) + v*divE —

— (h*. rot A) — (b*.VY)}
L 2ce{A.a+E.e+-Ww-+Yy}+2¢ ;di\'E—A(lﬁl.th) - (b.VY)}.
H, = cx{(1—Cy)s*s-+-C,a*.a+(1—C;)v¥v+Ce*.e+4(1—C)h*.h+
FCW W (1—Ca)b*.b+-Cy*y+-

- (1—Cp)s?+Cia2  +(1—C))Vv? -T( --(1-—7‘2)52
C,

l<l (yl

LCaW2  +(1—C5)b?
H

=— e Uy . 7,/C;

ej.jc = — (e/ih) {{A*,h] + [h*, A]—E*v + v*E-+ Y*b—b*Y]},

eg ~
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For a discussion of this Hamiltonian we expand all cano-
nical variables in series of plane waves. For this purpose we introduce
for every Fourier component of the field a set of complex unit

vectors ¢4 defined by
P

Ho ’ 5
3 ? )

T 1 o S i g S oy S . [0 anf .
S =p/p; & eoHG (BT o) =8 ; »\(.,U. — 17 ¢,
t 1

b ” P

As usual we shall expand the field components in a hypothetical
cube (volume = Q), in which the fields are assumed to be periodic:

I - -
A(,\‘) = D DA cH elilh) p.x
\ !..! » L 1 bu P

1 > - >
i Yo o 5 — 2 2 AN ok eTM e
\ Q - ® 1 P P

W., el px
V p

A I S e
\V*(“,) s d \_‘ Wﬁ‘,"unw[’,\
: V2 > b

In a similar way the amplitudes of E and Y will be called E. and

D
Y--. The real fields A, E, W, Y, %, G, will be expanded according to
P
= 1 ! g e e T
Aly) =—=Z 3 A, cheMbr. (A* = _ A )
\ Q ;e 1 b P R T P
— ] N > —— S
W(x) = 2 W, elihp-» s (W* EW L) (93)
Vi p ? P
N [ 1l ¢ ¥ N SN P #
W) = 52 & 0, cletMers (g e — Qi) lete:
V2 > 9=i1 Py oM b

From the commutation relations (42.E-B) between these canonical
field components, the commutation relations between the amplitudes
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can be easily derived, since *)

N N 2 ¢ X o, Ak o8
O O(x x') Y 2 () i(ch); e R Fx)
1 Q) S )
e U 11 P ‘
] / -:u.’* .;4 \ pli/h) ;,- .f'.' 1- / .- 8 N/ i I.\ (94]
0. “,,’, "’,,'" ax upr - 0(p — ') . |
Thus we find: 1
E. ; A% E* A, 1 —ihd,8p—p);
.1 Pt L Pilt ,'"./L" JApL (/ [h ’
WS W o = th 3(p — p'); -
Es A“ : A 5 Bl (¢h/2) 3, 8(p — P');  (95)
P P SR P \ J
Wi Y% Wi =S (zh/2) 3(p — P');
PP P b
e, ek i SR 4rihic 8., 8(p — P');
b P v’ P

all other pairs being commutative with each other.
Following the methodof Pauli and Weisskopf %) we put

h

W., i, (. 4+ c*.), W. i’ (m.. — m¥*.),
t b r2%» 3 P p V4 » 7

] h 1 h
Y. (a cx,), Yol { (m., m*.)

< M P Ly .7

1
H r X f
a. Varhc (L, — 1%, ), e, g, +/2m=he (L. +-T%, ).
M g, ] P o] M | P
P
A A )
*) For calculations like that of € (83) and © (84) in the preceding section, it is con

venient to introduce the lonoitudinal and the transversal 3-functions defined by 4

&8 (x x’) 3 (C=) .. (c—5) el/Mp-{x—2 ind
1 ) H g »'i
25" 9 {
D

I

Compare Novobatzky, loc cit. ¥9), formula
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i

Here fuoebotefion ol o f e Sd g, (n= 1) are real con-

i
) p,0 P P 4.0 P p,

(97)

We shall choose them afterwards in a convenient way. On account of

(95)—(96) the matrices a., b, ., ¢ T UG G s O o
b : _ P b P b By P P
satisfy the following commutation relations:

@ at (Rl m.; m* 3(p — p),
? rp! »
b. ; S d, ;d% RS Sy O(p — '), (98)
P P P P P Pl
% * N NS % : . / ’ 3 ~ LS S
I,T.,,' l'..’l’]’ O O(P —P');  (w.p 2 130,15 i 1);

all other pairs commuting with each other.
Soata,.,b* b, ,c*c.,d* d, I* L. m*m_ andn* n.
: i e e 3

2P P P P ¥ P Pk pm P ¥ L P

possess the eigenvalues0,1,2,3, . ... and the g-numbers introduced
by (96) can be regarded as ordinary Jordan-Klein matrices.
We shall now expand the particle wave fields Y in series of plane
waves according to 48)
4 l e

U(x) Z X (v, 4, +w*, ut, )eiMmps (99)
- \ Q = a 1 P.c p,o p,o p.c

where the #, are normalized four-component “spin-functions’’
p.o

(undors of the first rank *)). which satisfy

imeB + (p.a)} ., V(mey + p%.u,
oy PO (100)
(p.o) . Gp ., y (o 1);
so that the charge-conjugated 8) 31) of 4 _ satisfies
p.o
meB + (p.a)} ub., Vime)? + p2. ub,
o p.o
Ja (100£)
(p.o) u*, op u*.,
p.o p,0

The matrices v, and w., are ordinary Jordan-Wigner
?.0 p.o > o

matrices, since from (42.F-D) follows
[O 0% v, VX +uv* u, o (P — P');
P,o p’.o! p,o A plo! p.o

. - (101)
84}(1’ 8(/) E /”).
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all other pairs of Fermi-Dirac amplitudes being anticommu-
tative with each other.

Fromthe L agrangian function (37)—(40) we can derive the
total linear momentum, the (orbital) angular momentum, the spin
angular momentum and the total electric charge in the ordinary
way 1), Since the termsinthe Lagrangian (37) describing the
interactions do not contain derivatives, the expressions for these
quantities in terms of the canonical variables do not contain inter-
action terms, Inserting into these expressions ) the expansions (92),
(93), (99) of the wave-functions and substituting (96), we find the
following expression for the total momentum of the field:

£ic = X :
P=Zpl{a%a,+ Z b% b, +c.,ct4 2 d, df
S A I 1 b P A p=—1 Py Pp

a i (102)

} Limim, +m.om%)+ 2 i(nt n, +n, n% )4
P b i ? I 1 P Pp P Pp
YidE L 4L ) 2 2 (v —w. WY ).
n=41 PN P P PM (PNay) c=+1 PO PO po PO

In a similar way the total electric charge is found to be equal to

1
o=eX{a*a,+ Zb% b, + 3 Xviv,}—
> p ¢ L 1 Pk Pou (Pm) o 1 PO PO \
7 I ; g (103)
1
- . Sy *
—ed{cscxt+ S d, d& —32 2w, wl
> r P i 1 Pt D (Pm) o=+1 PO .0
S
The total spin angular momentum can be written as a sum
- 1
=32 2 caS, , (104)
»p=—| P P

where S.. can be expressed in terms of the amplitudesv.. ,w. ,
P .0 P.C

a,, b., b, ,ectc, v* , etc., belonging to the momentum  only.

P b PO P.c
We shall calculate only the spin-component parallel to the mo-
mentum

4 =, > «
> ..‘.(':.\",“. (105)
1 ;
/I
- S *
N - Y ph{b* b, +-d, d*t - iln* n, +n, n3 )}
? i 1 P Pp P Pt o O Pk Pt
St L +L )
N 1 P P P P
PN Y (6h/2) {(vX v, Wy Wk .
(PNmVv) o=41 p.c po p,o P.o
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Finally we shall compute the contribution to the total energy
from the term Hyof the Hamiltonian (90). We find

Ho=cx T {(WAW,+A* A, + S E* E. W21 A2

P p p,0 .0 7 1 M P P p,0

s E2 LR 22

1 [17] / fw p.0  p,0 7 !:,7} £m

Y24+ EZ - 3 A2 )} 4 (1C6)
PO p=i1 P
(1/8w) & X {e2 -+ (p*/h?) a2 }
- 7 1 P P

2 2 foX e, w.,. wX ) V(me)? + p2

- g 1 PO po .o P,0

f, =1, £, =1, V1 F P32 (= Ve, Jme?) :
P P P N7 X (107)
g, vV plh
b
We put

g = ¢V (me)? + $2; WEN = v/ (Mc)? + p2;

, = _ 2 X (108)
Wi = ¢/ (mc)? 4 $2; 14 eV (ue) + $2%;

where M, m, m and . denote the masses of nuclons, heavy quanta,
electrons and neutrinos respectively. Then H, takes the following

form:
- 1 1
Hy=ZXe¢{a*a, + 3 b* b, + c.c* >d, d*
] = ; P P pu=—] D P DB 1 P P
; !
imim,+m.m* + X Yn* n. +n. n* )
4 P P P 7 1 TR N e b.p
=
5 ; i
Sep DML + L 1)+ (109)
i 3 =1 2 9 P b
l o N y o
X IW,Z (v% v, —w, w*).
P,N,m v - o 1 p.c p,o p.o .0
3
From (98), (101), (102), (103), (105) and (109) follows the usual

| interpretation of the operators a*a ., etc. as numbers of particles/in

different states. The matrices a «...and v, , .... describe the
p,o
annihilation of a quantum or a pum le; the matrices @*, .... and

»
I

v , .... its creation.
p.0

Now the Hamiltonian (90) can be interpreted. H, is the




76 HEAVY QUANTA THEORY OF NUCLEAR AND COSMIC RAY PHENOMENA

energy when neglecting all interactions. H . isthestatic Coulomb
interaction between protons, electrons and mesons. It contains the
infinite electrostatic self-energies of the particles; for instance:

’

“2 . .‘;T.(.\')’ ‘;11('1«; .;T)(\’-) .:‘)l,("\,:)
2|
& x—%

) v vy ook

e* 'gp(.\'?‘ Up(x) Up(x') bp(x) | ;}“,(,\'18(:\'7 -x") Up(x')
2 || - 2 - (110)

’

S X —-% ghs y, At

The first term of the right hand member represents the ordinary
Coulomb forces together with the electrostatic exchange forces;
the second term is the infinite self-energy. H, is well known from
radiation theory. Here some terms are added to it, representing the
radiation of the moving mesons. This part of the Hamiltonian
gives rise to the creation or the annihilation of a photon (2,,) under
transition of a charged particle or a charged heavy quantum from
one quantum state into another or under creation or annihilation of
a pair of charged particles or heavy quanta (y*y or b il 4

The term H,, gives rise to direct two-photon effects, by which a
meson jumps from one state into another, or by which a pair of
mesons is created or annihilated. In the D ira c theory of electrons
such a term does not occur.

H, describes the interaction between heavy quanta and matter.
It gives rise to the following processes (Y * denotes a theticon or posi-
tive meson: Y an arneticon or negative meson; Y° a neutretto; P
denotes a proton, P~ an anti-proton (kystaton), N™ a neutron and
N~ an antineutron; = a positon, € a negaton, v an “antineutrino”’
(compare § 4) and o a “neutrino”; finally &v a photon):

Annihilation or creation of: (P—+N*+-Y*) or (P*4+N"+ Y )or
(PT4-P—4Y9 or (NT4+N—+Y9 or (e+v+Y™) or (w0 Y ) or
(r+2+YO or (v+o-+Y?). Further:

Pt Nt 4+Y%; N+T=P Y= Yte PH+ N—;
Pz NT+ ¥ N—=P= = ¥*; Y- =P 4+ NT';
™ =Y T vy, =7 AVt YT eae o
& =0 i 0o =¢ Y+ Y e Ly

Further: emission or absorption of a neutretto by a nuclon or by a
light particle jumping from one state into another without changing
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its charge ; and creation of a pair of nuclons or of light particles from
a neutretto or annihilation of such a pair tec a neutretto.

Especially the interaction between the nuclons and the heavy
quanta is of much interest, since the corresponding coefficients are
so large.

H,, describes a direct interaction of nuclons with nuclons, of
nuclons with light particles and of light particles with light particles
To some extent it can be compared with H ., since both terms in the
Hamiltonian donot give rise to the creation or annihilation of
a photon or a heavy quantum. This term H,, gives a first order
contribution to the £-disintegration of instable nuclei:

P > N r 7T o0, N - P ek ey T

The term H,, is of much importance. This term was given expli-
citly for the first time by Bhabha '8), though also Kemmer
drew attention to it in a foot-note 19). [t gives a first order contribu-
tion #°) to the matrix element for the “photomesic” processes

Y* 4+ Nt P+ 4 py, Y P+ 2= N+ 4+ By,

which couple the “soft”’ and the “penetrating”’ components of cosmic
radiation %). According to unpublished calculations the effect of this
first order term seems to be to compensate for a good deal the strong
second order transitions, in which first a photon is emitted by the
heavy quantum, and only “afterwards’” the latter is absorbed by the
nuclon (compare § 12).

If (96) and (107), (108) are inserted into (92) and (93), one finds:

; h : £
A(x) l S{eMrx(eo]/ 2p. 4§ :
‘ 20) - ; \& mes p.o § Ex B
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SR s me? P
div E@W=—|/5,6= pIJf T (b M= + iy o MESY,

: b
W(x) ' : S _ta, e P L gk g M pxy
: {a., : .
20= ) me? p ? :
(111)
h nme? > >
7 [ s h) P * 5 k) p.
Y(x) I 2()7' =l T — G g
VY () —i 1 b mvl"a o PR L o% o0 g—iMPEY:
gt 2hQ = % b e =
and in a similar way:
s // B anEST & Sor me?
A(x) 2 {eMINPE (Coy En, +2c¢k n, )+
‘ 4€) > pf mec po 7 PI & b
& WA I = - 2
PR B Thq/me
+ et P c.| En¥% Lc”:l n% )}, (112)
py MCe p,0 n P € pM

4Q - ) me P P
and:
> 2mrc ; > > >
0 =H)/ % l SiB (L g B e N 110)

The expansions (112) for the neutretto field are obtained from those
for the meson field (111) by changing v 'h/2Q into Vh/4Q and by
changing @ into m, ¢into —m, and b and d both into n.

The conjugate complex of (111) are obtained in a similar way by
changing b into d and d* into b*; a into —¢ and ¢* into —a*
Nothing else should be changed.

The expressions (112) and (113) are real themselves.

Cross sections @ for any of the cosmic-ray reactions discussed in

he foregoing are calculated in the usual way ) :
2% 1) .2 |0 (114)

L he . : !

o

(summation over all admitted final states);

0 = H, .:H"H‘f B ot

¢ fa ; ‘(:) =

a

wn
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Here v is the relative velocity of the impacting particle or quantum
and the “targets”; H,, etc., are matrix elements of the parturba-
tions H, H., H,, H /‘/;_k, and /—/;,, (Born approximation): a, 7
and / denote the initial, intermediate and final states. &€, denotes
the energy of the situation n.

e(€)d(€; — €,) is the number of final states with an energy in
the interval d€,, which can be reached directly or through the inter-
mediate states 7 from the initial state 2. We have written d(€, — &)
in order to indicate that it may be necessary to vary the initial state
together with the final state in order to ensure a non vanishing
matrix element between both, if the creation of an antiparticle is
described as the vanishing of a particle from the so-called continuum
of states of negative energy.

The ratio between the contributions to the “matrix element” () for
a given process from the #* and the (n + 2)" approximation has
the order of magnitude

5 ]ty

C.—& )C =& (116)

5

“d

1
The summation over 7, and 2y, Will often have the form of an

integral over a continuum of intermediate states 7,. In that case it
gives rise to a factor

[ (4=Q)ch¥) pede, (117)

where ¢ and p represent the energy and momentum of an extra
quantum emitted and absorbed again in the higher order process.
The factor Q will be cancelled by a factor (1/Q) from /—/;n i [—f bt
The dependence of the matrix elements H,; on the energy = will
generally not be sufficient to ensure convergency of the integral over
the intermediate states, which will diverge on account of the factors
in (117). Therefore high order calculations will often diverge, if a conti-
nuun of intermediate states is possible.

The ratio between the probability of a multiple process, in which
(# + 1) quanta are created, and the probability of a multiple process,
in which only # quanta are created, can b estimated, if one assumoas
that th= lowest order of approximation giving rise to such processes
will give a result of the right order of magnitude. Then, the creation

of (n + 1) quanta will b2 found by an approximation, which is one

order higher than that for the creation of quanta. The intermediate
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states are now determined (apart from their order of sequence and
the polarizations) by the final state, and the ratio of probability is
only of the order of magnitude

Yrpeds| HVQ

hoc2 A& (118)

M. [

The factor M denotes the number of possible polarizations of the
(n -+ 1)* emitted quantum; the integral has to be taken over all
energies ¢ of this extra quantum that are allowed by the conserva-
tion laws. The momentum of the quantum corresponding to ¢ is
denoted by p. A€ is the difference between the energies of the addi-
tional intermediate state and the initial (or final) state. In most
cases [ de/|AE? will be of the order of magnitude 1. Then the

ratio in question is given by

®,.,/0, ~ |H Q. pM/2=2h3c2. (119)
For the emission of photons we find from (90) and (113):
HANQ| ~ eheV 2x/pe, (120)
so that
O, . /0, ~ (M/%)(e*/hc) ~ 2/137=. (121)

For the emission of heavy quanta, however, we find from (90) and
(111) that the matrix elements H Q| are not all of the same or-
der. Those arising from >A—_,,. E and Y are only of the order of
magnitude

gheV 2x )z, (122)

where ¢ is one of the constants g, g, g; defined by (24). So these

terms would yield a ratio

D, . /P, ~ (3/2x) (¢%/he), (123)
if we take = & 2pc, M = 3. If we insert into (123) the values of
(¢2/hc) found in § 3, we find in this way

([)“ '

'(l)'. N e A~

The terms, however, arising from A,,., E, and W, have matrix
elements |H,V/Q|, which are larger by a factor (g,/mc?), and the
matrix elements of the terms with rot A, div E and VY are larger
than (123) by a factor (p/mc). We conclude that these terms may give
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rise to the production of an appreciable number of showers of heavy
quanta of high energv (s, — mc? = 1% eV), if the available amount
of energy is large enough ).

Finally it is useful to compare the matrix elements in (111)
describing the annihilation (creation) of a positive meson with a

momentum p, and those describing the creation (annihilation) of

a negative meson with a momentum — 4, since in a summation
over different intermediate states both effects will often occur in
terms, which must be added together. It must be remarked that
generally both terms will possess a different denominator (€, — &),
but in approximative calculations these denominators may some-
times be put equal to each other. Then we remark that in A, rot A
and their conjugate complex the matrix elements given by the
terms with b.. and d* . (or with b* and d - ) are (on account

P e P )\t

of ¢#* — () opposite equal to each other, whereas they are
"' ’h

exactly equal in E, div E and their conjugate complex. In a similar
way the matrices a., and ¢*., (or a* and ¢ ..) occur with the same

3 P l 3
coefficient in W and W*, but with opposite coefficients in Y, VY and
their conjugate complex.

Thus the product of the matrix elements describing creation and
subsequent annihilation of a theticon with a momentum $ and a
polarization p. will exactly be equal to the corresponding product
describing the creation and subsequent annihilation of an arneticon
with the same polarization but with a momentum — p. Only the
sign can be different. A different sign appears only, if the creation
and the annihilation are described by Jordan-Klein matrices,
of which one originates in (111) from E (or its divergence) and the
other from A* (or its curl), or one from A (or rot A) and the other

from E* (or div E*). For instance, if the creation of the arneticon is

described by A and its annihilation by E*, the product of the matrix
elements is opposite equal to that corresponding to the creation of a

theticon described by E*, and its subsequent annihilation described

by A. If, however, creation and annihilation are described for in-

and div E respectively), the pro-

stance by div E and E* (and E*
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ducts of matrix elements for both processes are exactly equal.

A similar rule holds for Y and W.

These rules will enable us to avoid some frequent but substantial
errors in sign *°) 45) in calculations like that of the second order con-
tribution to the matrix element () of the photomesic and the meso-
photic effects:

A,
74 L' > -

Y=(p") + hv(k) + P*(0)
Y- (/)) ])(O) : < 3 /;.\'(p') | /IV(/C)‘ (124)

XY (p)+ Y (—p)+N(p)
p=p + B

where the difference between the products H,H,, and H,,;,H,;, is
of the above-mentioned nature and where the denominators
(€, — &) are equal in a non-relativistic approximation.

§ 7. The heavy quanta interaction between nuclons. In the preceding
sections we have developed a quantum theory of the field of heavy
quanta. We shall now apply it to a number of important problems.
The first one we shall deal with is the force between proton-neutrons.

There are mainly two methods leading to the purpose. The first
one is that of a perturbation calculus; it was performed by several
authors 19) 19) 18) Tn these calculations the “recoil’’ of the nuclons by
the emission and absorption of heavy quanta was neglected. Assu-
ming Kemmer's “symmetrical” theory of mesons and neutret-
tos ) an attraction between nuclons was found in the second appro-
ximation. A fourth order calculation %) yielded a strong repulsion at
small distances (¥ < 1/2x). It is not certain, however, that calculations
of the successive higher order effects, if they give converging results
at all, will not yield still stronger interactions, the sign of which is
problematic. That much is certain that for small values of the dis-
tance between the nuclons the result of a perturbation calculus of
finite order is not trustworthy.

The other method was used by Y uk a wa 2). This method has
almost the form of a classical calculation, in which only “static”
interactions of the “static” parts of the nuclon fields are taken into
account. This method can also be used for the derivation of the
Breit interaction between electrons ). There, the “static’ inter-
action through the medium of photons takes the place of a similar
interaction through the heavy quantum field in our case.
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From the Hamiltonian H the equation of motion for the
quantized nuclon wave-function is derived according to (51). (It can
also be obtained directly fromthe Lagrangian by variation of
its canonical conjugate). The Hamiltonian contains the
nuclon variables in the terms H, H, and H,,. These terms are of
the form of

HQ['/:‘.I_/LH

g8

R 0 r N o\ 1+ A : i
/ Y opY T ~ Zn (14 W, ) T ‘7‘ w/:,

n

Here w, are some matrices operating on the undor-index and the
isotopic spin co-ordinate of ¢, whereas W', denotes the components
of the heavy quanta field and their derivatives with respect to the
spatial co-ordinates.

Now, it is well known that generally a superquantized Ham i l-
tonian of the form of

H = [ ${x)H(1),, (1) + 3 [N (2) Ut (2) W (1,2),, U(2) Y(2) (126)
yields an (*(]uminn of motion for the qu;mtizcd wave function
ih(1) = [U(1); H] = (1) 4 SH2) W (2,2)5m 4(2) (1), (127)

whereas the equation of motion (61) of the situation function 7. NOW
is equivalent toa “Schrédinger equation” for the » particle
problem of the form of

l/IJ( 2 s :.‘_Zl-f”(/\'),,‘,, -3 ll (R d(T,2, . ..., n). (128)
k=0
Here we have put
W (kD" = ${W (k1) + W (L,R)op}; (129)
(1,2, . , #) denotes the antisymmetric situation-(wave Jfunction

of the n lmd\ problem;so it is a c-number, contrary to the g-number
Y(1) in (126)—(127).
Though the actual Hamiltonian (125) has the form of (126)

with W(r,2),, = Z g2 wi! 'wiZ'3 (ry,) — if we neglect an infinite

n
-

szlf-energy ‘._. & [/ V1)l V3 (1,2) w? 9(2)3(7,,) — we cannot identify

Hy+ H, \\1th the first term of the right hand member of (126) and
C(m(lurh' to (128). For the field ¥, occurring in /—/ s not a given
external field, but is generated again by the nuc l<m field, as can be
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seen from the equations (2), or better from the second order equa-
tions, which are obtained from them by iteration. These second order
equations read, if all interactions with the electromagnetic field are
neglected :

( %) A — V(div a 4 v ¢) — »(roth Q c) %a,
( ‘/.2) E rot (rot e - h ¢) —x(V v a c) -+ x%e,
) . (130)
(0O — @AW = — div (VW + b/c) — xy/c %2W,
(0 —%%) X % (div b - w ) + #2y;
and:
(O — %) A T((,]i\'; Ly ¢) — »(rot h—e ¢) - 2, etc. (13Ca)

From these equations the heavy quanta fields V', (x, vy, z, f) can be
solved, if the nuclon field (x, y, z, ¢) is given %). Following the
method of Y uk awa, however, we shall now neglect all deriva-
tives with respect to the time in (130) and solve these equations only
for the static case. Then, these equations take the form of

(A — )WY = — 4= U, (131)

where U denotes combinations of s, v, a, e, h, etc., s, v, etc., and
their first and second order derivatives with respect to the spatial
co-ordinates. The solution of (131) is given by

W(z) = [dz . U(2)e™[ry, (132)

where the gradients occurring in U can be eliminated by an integra-
tion by parts

fdz VU (2)}e*fr)y = — [dz . U'(2) Vo (e [ryp).  (133)
Here V, denotes differentiation with respect to the set of co-ordinates
(1) OF Xy, Vs Zn-

The expressions (132)—(133) can be substituted into (125). Then,
however, it must be remembered that in (125) ¥ was essentially
commutative with ¢ and J*, whereas the expression (132) does not
commute with them, since U contains both ¢* and ¢. This is a result
of the omission of the derivatives with respect to the time from (130).

After the substitution of (132)— (133) into (125), the latter expres-
sion seems to take again the form of (126). Now, by the substitution,
H, seems to become a part of the term with W(z,2),, in (126). We
should make an error of a factor 2 in H,, however, if we would
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conclude from this new expression to the corresponding S c h r 6-
dinger equation (128). The cause of this error is again the fact
that by the substitution of (132) into (1 25) the commutator of H with
v, which was essential for the derivation of (127) (thus of (61)—
(128)) from H, is affected.

In order to avoid this difficulty it is more convenient to make use
of the commutation relations before substituting (132) into the H a-
miltonian?). Then (132) is inserted into the field equation
(127) instead of intothe Hamilt o nian (125). By this substitu-
tion a part (H) of the first term of (127) becomes a part of the
interaction term with Il'(I,.:),‘,",’”‘ again. The sum of this new con-
tribution to W(r,2)55™ (from F/;,) and the original interaction term
W(r,2)3" then can be regarded as the effective interaction operator
W(r,2).

The Hamiltonian (126) can be regarded as a convenient
expression, from which can be derived the wave equation (127)
describing the motion of ¢ in interaction with the field of heavy
quanta. This field of heavy quanta, however, does not interest us for
the present. We want to know only the motion of ¢ in interaction
(through the field of heavy quanta) with itself. This is described by
our new equation (127eff) of the form of (127), from which, however,
V" was eliminated, so that W3y was replaced by wey.

This new equation (127eff), on the other hand, can be obtained
directly from another effective “Hamilt o nian”, differing from
(125) since H does no more occur in it and since H',,,,, has been
replaced by W¢/. We remark that the transition from (127¢ff) to this
effective Hamiltonian (126¢ff), in analogy to the transition
from (127) to (126), takes place by adding the factor S (1) to the
first term, but a factor } S (1) to the last term of (127eff). Since this
last term was obtained from H. by omitting the factor / *(z) and by
substituting (132) -(133) for W, we find that the effective H a m i l-
tonian differs from the expression obtained from the terms (125) of
the original Hamiltonian by only inserting (132) — (133), by an
additional factor § to the term ' B

The “physical meaning” of such a factor 5 1s that, if the action of
one particle through the field on the other particle has been taken
into account by a term of the form of a direct interaction between
both particles tothe Hamilto nian, itisnomore necessary to
take into account the action of the second particle on the first, since
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this reaction is already contained in the term describing the first
action *).

The effective Hamiltonian has been chosen in such a way
that (51) remains valid for the nuclon field. So we can proceed from
(51) to (61) and from (61) to the Schrédinger equation (128), in
which now the effective interaction potential takes the place of Wg".

We must still remark that the procedure here discussed is allowed
only if the expression for W, obtained from (127) by (132)—(133),
is automatically symmetric in the co-ordinates of the two particles,
since an asymmetrical expression in the equation of motion can never
be interpreted as an effective interaction operator taking the place of
the automatically symmetric operator Wi in (127)—(128). It is not
allowed to symmetrize the effective operator afterwards, since (1)
and {(2) play a different part in the equation (127).

The actual way of calculation is now the following: In H, we
insert the solutions (132)—(133) of (131); we verify whether the
operator operating in the resulting expression on ¢(1)d(2), can be
written in a symmetrical form. It will turn out that, if derivatives
with respect to the time are neglected not only in the left hand
members, but also in the right hand members of (130), this is
possible indeed. Then we multiply this operator by 1, and add it to
the corresponding operator in H,,, which is of the form of

8
3 92 i w*,?’S()",z) (see above). The result represents the (effective)
interaction operator 1) to be inserted at once in the Sc hrodin-
g er equation (128).

As regards the infinite self-energy neglected from H,, in the fore-
going, it would give an infinite additional term to H,,, which does
not interest us for the moment. It represents the static part of the
“mesic self-energy” of the nuclons. In a complete theory, this term
is hoped to explain the heavy mass of the nuclons, like the mass ol
the electron is hoped to be explained as representing the electro-
magnetic self-energy of an electron. However, it is not clear, then,

*) Compare H. A. Kramers, loc cit. ), p. 301.

+) The same result can also be obtained by inserting (132)—(133) into the total H a-
miltonian including the meson terms in /'/,,A Then no factor § is required, since
e¢xactly half the term I/u is cancelled by the terms of ['/,, describing the heavy quanta.
The fact that both methods vield the same result indicates that by transition from (125)
to (12

26¢ff) the total energy of the meson field generated by the nuclons is accounted for

as interaction energy of the nuclons themselves.
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why the mass of a neutron should be larger than that of a proton.

We shall now give the result of the discussed calculation, if it is
performed for the Hamiltonian given by (90). Here and in
the following we shall put (compare (24)):

8 Kfow &= Kgs, ) Kfy, g Kgo, & Kfa;

(134)
K = + Vxd/4r.
Then, making use of
(@ — A) (e/r) = 4 3(r), (135)

we can write the resulting effective potential in the following form :
W(z,2)0p = 3(xV . 2 [g}1 — (@) ) — (153) (V. V) (@@ . V,)}
(8182/%) {BV ([0, a?].V)) + B@([6?, V)] . V)
1B V(M. V,) + 18 a2 . V,)} 4
+ R IR (e . 6@+ (1)) BB (a1, V,) (6 . V,) —
(1/)RVRA (o). V) (o2 . V5)} —
— (63/)(0.V1)(62.V,) — (gsgu ) (ivs"B M (.V,)
&R (e .V,)} + (136)

| "\’stl B-IYSZBZ (e—*"s ),12)
5

.l(T"]‘.T")(“ITT /"') ,‘\’2” n ()B | p.’,: —

- G0 BUYPBAI3(r,,).

The symmetry of this expression is obvious. Comparing it with the
expressions obtained by Kemmer ) by perturbation calculus
we observe that in his expressions the terms with £1¢, and with g,g,
are lacking.

In order to ensure charge-independency of the nuclear forces
(compare § 3) even with regard to the 8-function interactions, we
have put

Cop (137)

Cas
& (5
in (136). The choice of these operators made by Kem m er 1) and

by Bhabha in the first section of his paper %), was C, = 0

»




"/ Han ',«&t\dé"\ﬁlum'
+il "’T‘“}(““’/"/Eg (1- G)p P

?‘A”'J/“f :_(U(r“"‘/ n;'
+3 {L—,—-C,/(’”"’y-r ((.,*'/J/ /r

- 9, Qfﬂw/’f{‘ﬁf‘UY c(i/
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C,= — 1. Lateron, Bhabha changed his choice '®) into that of
Yukawa?), viz. C;, = C; = 0, hoping to avoid in this way the
3-functions entirely. From the formalistic point of view of (37) the
latter choice seems to be the more natural one. (Also C,p = 1 would
seem a reasonable choice from this point of view). It must be pointed
out, however, that even in the non-relativistic ;lppr().\'imzlliun
) ) : ey > 2) o=

Y =p@ =1; a - ol? = yi!! = y5'=10 (138)
this choice (C, = C, = 0) does not eliminate all 3-functions, since
(compare (5a))
(1/%3) (e . V,) (6@ . Vo) (e /ryp) =

(G (o), 6?) — 4(cV) . a@)}e " r + (4$AE)%(0,L'0,2)8%(;'7), (139)

where we have put

G, B ={4(a.b) — (@.nE. N+ Bfx) + B/} (140)

[nserting (139) and

(1), (e[r) = (1) Va (&™) = {1 + (1)} {r[r) (e 7), ,
(141)

into (136), we find

W (1,2)p .I_.(.’!'].T?')Vﬁ_’?":l 2(a? ., a?)— G (e, a'?))

L o281B2(3 (6.6'?) + G (c',6') 1 (aV.a®)— G (e, a) } -
[+

2((e!).6?) — G(a, ¢'¥)}
oo {iy B (6@ .r) — iy BP (6V )} (1 r){1 +(1 /%)
g “[r) 4 (142)

(-'( ( giC i1 —(a™

l a2(C,pVR?(c".0?) +- (C; - 1)@ (aV.a?)}

1 o2(1—C3){(6"V.6?) — vy} —giC,ys B B 13 (7)
»-}‘('r"‘.'r"z)(4: xz]‘é gioller) gieia?) )

L - 3R af) —(021e7)) (1) -

*)

(g - 3 (C,'H,-C )(Q‘wda’}+
;_j{d‘a( /}+

@.
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No choice of Cy, Cy, C,, C;, C, will eliminate the d-functions from this
2xpression. If we choose
Co=1, ¢;=0, C;=% ¢, -4, C, = arbitrary, (143)
the ordinary 3-functions disappear at least from the non-relativistic
approximation (138). This choice, however, does-not-eliminate the
terms-with th(‘—kﬂ-}gﬁk udinal-d-furetions Seera 0 62 s antifiend eno
The expression given by Breit?) for the interaction between
charged particles through the electromagnetic field was a reasonable
approximation since only retardation effects and non-secular high-
frequency effects are neglected in its derivation. Since we have
neglected not only the (22/2£2)-term of the left hand member of (130),

but also the derivatives with respect to the time of s, v, a, e, h, etc..
the approximation of the nuclon interaction given by (142) is much
worse. Indeed, the “velocity”’-dependence given by the terms with
a can hardly be regarded as well justified by such a derivation. The
velocity-independent part of (142), obtained by (138), will be a good
approximation for the effective potential between slow nuclons,
however. This non-relativistic approximation yieldsYif we ionore the
d-functions, which — according to Kemmer 2) — give “only”
an infinite contribution to the levels of the deuteron:

W(r1,2),, ~ Lx'V.x@) {4 4 B'(e'M.6?) 1~ C’ G(a! , a2 Y e—%r [y .

4=g(=0), ' =43+ 382 (=0), (144)
C'=gs— g2 (20).

It should be hoped that it will be possible to explain by this
interaction the experiments on scattering of neutrons by protons
and the binding energy, the magnetic moment and the electric
quadrupole moment ) of the deuteron. If this shall be possible, the
term with (¢!, 6/?), which couples the °S state with the °D, state
(compare § 2), cannot be neglected. It should be possible to calculate
the strength of the coupling directly from the measured electric
quadrupole moment and the magnetic moment of the deuteron,
Compare, however, the following section.

[t cannot be expected that the force derived in this section will
give an exact explanation of the binding energies of other nuclei t han
the deuteron, since the triple and multiple forces arising from a

“multiple exchange” of heavy quanta between nuclons 19) may be
of considerable importance there.
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It is hoped by Bhabha?®) and Iwanenko??) that an
entirely classical treatment of the heavy quanta field will yield an
expression for the interaction between nuclons, in which the velocity
of the nuclons will have been taken into account.

The solution of equations like

(O0—»¥)¥=—4=U (145)

is not given by (132) with “retardation” of U(2). The equation (145)
has been solved by Iwanenko ).

§ 8. The deuteron problem. Inserting (144) into (128) we find the
(non-relativistic) Schrédinger equation of the deuteron:

(€ + (W22MY)) Ay + (R3[2M3) Ay — W (Z, 2)op} Y(1, 2) = 0. (146)
Here M, is given by
Tz | 1l — <,

My - ! (147)

M, = s . i _

so that
-,

2

We shall introduce the relative co-ordinates

1 — Tz

(1/My) 5

1/M,, = (1 i (148)

r=t0,— 1y X =% — %, Y =Y1— V2 2=2 — 2}, (149)

and the co-ordinates of the centre of gravity

To(MY + MB) = r, MY + 7, ME, (150)
so that
S r; - 1: My — Mp 'r-, — 1; i) — g2
L Vi o M , . 151
7o 2 M. o My 2 ;) i)

Differentiation with respect to these new co-ordinates is defined in
the usual way (as if M) and M3 were constants). We shall put

2 1 1 E My — Mp

$ » > = 152
M T My M My ¥ My (152}
Then
L B (153)
ox1  ox; 0xp = Ox OX
2 2 E 2

yields
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Putting

we can write (146) in the following form :

> [,'2 > ‘7" i z"‘ y ' \
tar (1 8 =2 ) (AL 4A) — W(1,2),) §(z,2) = 0. (156)

e
{¢&

Since the wave-function of a deuteron is an eigenfunction of the
operator (t3!) -+ z2):

(157)

the isotopic spin operators vanish from the kinetic energy operator
in (156) and we can separate the co-ordinates of the ce ntre of gravity:

-0, (158)

where

Z, Gy, Gp). (159)

By 6, and =, we denote the ordin: iry and the isotopic spin co

ordinate of the »n* particle. In the 3S - -°D, state of the deuteron the
isotopic spin function 7is given by the antisymmetrical “singlet spin
function” 'y, (z), 7,); in the S state of the deuteron it is given by the

symmetric “triplet spin function " *10(%1, 72). The singlet and triplet
spin functions my,, are given by
Sy ,/, e s l ( fa \ ) 1
Swnglet: ‘yo(oy, 0p) = 5 12(01) B(oz) — (o) B(oy)},
\
Tyiblots 15 Al ) Ble
Lriplet: *yo(ay, 6,) 5 ta(oy) B(o2) + a(o,) B(sy)}, (160)
\ L
11(6y, 65) x(a;) a(6,), 7—1(61, 65) B(s,) B(a,)
where
o(0) = 0.0, Blo) =8, (161)

so that «(z) denotes the isotopic spin function of a single proton and
(=) that of a neutron.

In the 'S state of the deuteron the wave- function (159) takes the
form of

¢ = %y0(71, 72) - Yo(oy, 65) V(). (162)
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Making use of
(x™ . @) 367y, 52) b 390(71s %2)s

(163)

(6'V) . 6?) 1y4(0y, 05) =— 3 yo(61,62),  G(6', 6@) 'yo(oy, 62) =0,
we can reduce the Schrédinger equation for this 'S state of
the deuteron to

52 K

fig 1 BN —L—3pn & - | 1¥(r) = O. (164)

Comparing this equation with (8) we find

VH $ B’ — 14 (22a)

again. We have mentioned (§ 2) that the Schréodinger equa-
tion (164) has been solved numerically 2!) 23) for those values of 'Jf,
which yield a real level. Then, it is usually assumed that the actual
value of 'J{ is approximately equal to that value, for which the
energy of the level becomes zero. However, it is not impossible (see
§ 2) that this assumption introduces an error, which may amount to
perhaps 109, of the value of 'J{ (compare (13) with (13a)).

The eigenfunctions for the °S — 3D, state of the deuteron **) are

linear combinations of those of a “pure’ °S state:

s wu(7)
\‘ ® y ‘/,/ll.c'.' ﬂl?)' (I/\S/\
and those of a “pure’’ °D); state (j L)
P \
e 2U(7)
WL = O (9, 9, 61, 63)
=
(166)
!
@} = X al), Y5 (9, 9), “pu(or, 62)-
u 1
Here the functions Y7 (with |m - 1) are eigenfunctions of the

orbital angular momentum operators M2 and -V, belonging to the
eigenvalues /2/(l - 1) and /um respectively:

% (1 L) 6 T
AYP = — LT N ym A0p = — 2 0. (167)

2 72

[f thev are normalized according to

[dep /'"sin 9do | Y7 |2 = 4r, (168)
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they are given by 85) 56)
) (3 l ]5 I’ o]
SIN-“ 1 (
’ 8
-5 Yo 1S . y ‘
Yl (Y51)* ‘ 5~ SIN ¥ cos 9 . 2, (169)
2 : 2
. S s
Y9 ’ (3 cos? § — 1).
= 4

The triplet spin functions Y, are given by (160). They are eigen-
functions of the spin angular momentum operators 52 and 8. be-
longing to the eigenvalues 242 and ph respective ly. From (166) we
conclude that the *D -functions @7 as well as the triplet spin func-
tions %, satisfy the relations

(o' .c'?) 3y Y (o). o2 ) D) ¢ (170)
The coefficients a w1 (166) are now chosen in such a way that
the @ are eige nlnm tions not only of 7 \/ . belonging (on

account of (166)) to the eigenvalue hu, but also of

= M2 82 2(M . 8)
belonging to the e igenvalue /2 ‘I1(7 1). For | this choice of the
coefficients a 4 1S given by :

| .’ |
1 ¢
' 5 : Vit V3 \
| 4 [ "/:/1' VI;H
[ Vi Vi Vio |
1 1 2 7/ S
' % Vi \ I Vi |

We have “normalized’’ these coefficients in such a w: ay that the (l)
are normalized, just as the “Lu» according to

X ./'J',»/ sin & d9 DL 43, . (172)
a,0, 0

The spin functions “/u and the spin-angular functions @) satisfy
the relations

{3(c'!), g(2) (c'V.7) (62 .7) /72 7 £v2 . 00,
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Now, the triplet solution of (158) will be a linear combination of (165)

and (166):

5"{‘;& = l7.r('-1- —-2) . AE‘l'lL; S\l.;l. - ‘l .jx)ﬁ) 5 \l.‘;:’)‘]' (]74)
Inserting (174) with (165) and (166) into (158) and making use of

(167,) (170) and (173) we find the following equations for the radial

functions #(r) and »(r) *):

2 d*u : N ik . 3 3\ e

— =203 2, L3 y 4(’ I | o o
M dr? £ i ¥ e |1 P4 /2)’3) 7 2=l
W2 [ d% 6v - &

S — 1 3¢y + S H v -+
M ( dr? 72 ) - i (175)

: %, JaNTe=e
-C' (1 + ™ 2,2 J ) (v—u+/2) =0
Here we have put again
SH =4B" + $ 4. (22b)

Since the last terms of (175) are proportional to 1/7° these equa-
tions cannot be solved in the usual way by expansion in powers
of . This does not necessarily mean that the eigenvalue problem
(175) has no solution at all. But if first the potential is “cut off”” at
some distance 7,, the ground level will tend to — oo for 7, — O.

If (175) is not to be regarded as the limiting case for r,— 0 of a
potential, which is cut off at 7, it would perhaps be possible to
ignore entirely the solutions of (175), which do not converge for
¥ — 0. Then, in the ground state of the deuteron the terms with 1/
should necessarily have the character of a strong repulsion, making
the wave-function and its derivatives zero for » — 0. Though it may
be possible to remove the difficulty entirely in this way, the proce-
dure seems to be not very satisfactory since there are many reasons
why the interaction potential (144) is questionable for small distan-
ces.

First of all we have neglected all high order interactions, since
we have solved the meson field acting on the nuclons from (131), but
we have ignored the derivatives with respect to the time in the right
hand members of the original equations (130). Now, we know from
perturbation calculus 1) that the higher approximations yield inter-
actions, which for » = 0 become much stronger than the first order
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interaction, so that the theory cannot be trusted at
Further it is quite possible that qu

all in this region.
antum mechanics, in their present
form, are not competent for the discussion of problems,
distances r < », (< 1 %) are involved 7).

in which

Thus one can hardly trust any conclusion from the theory, for
which the form of the potential for small values of 7 is essential.
Then, it seems to be reasonable to “cut off’’ the

potentials entirely
at some distance »,(<

1/x) and to regard the ground level of the in
this way corrected equations (175) as the actual ground state of the
deuteron (though this state disappears for 7, — 0).

The cutting off radius %o then should be chosen of the order
magnitude of } or 1 of the

this region the hig

of

3 range” 1/x of the nuclear forces, since in
h order effects become strong. In the ground state
the interaction with 1/ may now have the ch
In the way indicated here the
Bethe?32) for the special case

aracter of an attraction.
deuteron problem was solved by

&1 =g =0. (176)
Then, the effective potential (144) takes a simple form. The two
remaining parameters g and 7, were chosen by Bethe in such a
way as to adjust the singlet and the triplet level of the deuteron. The
calculation was performed for K e mmer’s
of mesons and neutrettos as well as
cussed in § 3. Further the cutting off w
viz. W(r) = 0 or W() — W (r,) for »
quantum was assumed to be equ
level of the deuteron to be
equal to zero, but calcul

“symmetrical theory”’
for the “neutral theory” dis-
as made in two different ways,
< 7. The mass of the heavy
al to 177 electron masses, the triplet
—2'17 MeV. The 'S level was not put
ated from the cross section for the scattering
of slow neutrons by protons,

which was assumed to be equal to
183 X 107 cm2 The results

are the following 32):

Neutral theory

Symmetrical theory

Cut off: Zero

straight Zero straight
g2/hc*) 0-160 (177)
2 0
e 0-43¢
0 2:67
——— e

*)

The constant g,of Bethe corresponds to g,/1/2 in our notation.
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Here & is the percentage of °D wave-function contained in the
eigenfunction ¥ of the triplet level; Q is the electric quadrupole
moment of the deuteron in units 10~%” cm?. From experimental data
was calculated @ L 25, but this value 32) is uncertain since use
was made of approximate wave-functions of the hydrogene mole-
cule 54),

Comparing the figures in (177) we remark that Q <O for the
symmetrical theory, Q > 0 for the neutral theory. Since Q is defined
as the average value of (322 — 7?), if the z-axis has the direction of /
in the %S — 3D, state, ) > 0 means a “cigar shape” and Q <0 a “pill
box shape” 22). These signs of () can be understood by a simple con-
sideration about the region where the character of the potential will
be attractive and where the wave-function will be large (compare
Bethe, loc. cit. 32)). This region turns out to be more concentrated
at small values of » for the neutral theory, so that it can be under-
stood why this theory yields smaller values of Q. Essential for these
considerations is the assumption B’ = $C’ > 0, introduced by (176).

We remark that, if C’ had been chosen negative, just the neutral
theory would have yielded a deuteron of a pronounced “pill box™
character, whereas the symmetrical theory then would lead to a
“cigar’ shape. Introducing the field of spinless heavy quanta, that is.
choosing a convenient value for the constant g;, we can change the
sion as well as the value of the electric quadrupole moment predicted by
the theory. In this way theory and experiment can be fitted even in
the symmetrical theory. This seems to be the main advantage of the
generalized meson theory proposed by Mg Jler and Rosen-
f e 1d1). For, indeed, the symmetrical theory seems to be preferable
to the neutral theory, in view of the cosmic ray phenomena.

It is reasonable to expect that the percentage of *D,-wave-func-
tion in the triplet state can be calculated from the surplus magnetic
moment of the deuteron due to this D-state. The orbital magnetic
moment w”? can be expressed in terms of the mechanical moment M.
Neglecting the difference of My and M p we find for a deuteron by a

simple consideration

\1. (178)

orb __ ¢

- 1 -
£2Mpc

The extra factor } is a consequence of the fact that in the system, in
which the centre of gravity is at rest, the radius vector of the charged
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particle is only half the distance 7 of the nuclons. Generally we have,
on account of (148), (149), (151) and (154):

and

SO 1 4 Lz X =»
et I, : : Tz S

2 (70 $] — 13(r 40) }.

The expectancy value of this expression for the ground state of the
deuteron is given exactly by (178).

The magnetic moment in the direction of the total angular mo-
mentum _/is now easily calculated putting the quantum number m,
equal to j = 1. From (166) — (171) we find for the total magnetic

moment of the °D), state of the deuteron in the direction of 7:

D, ('/[

tho- ?QJ//-(- - Sy + w@p). (181)

[f now the wave-function of the ground state is expressed in terms of
normalized °S and °D, functions:

W = (09 4 W0 VT 52

% /(100 — &),
(183)

=

_/- v2dy / 71111.//",

then the effective magnetic moment p of this state is given, in units
()f ((';’1 2_111,('\, ll\'

W = [y + e + @ (F — dpw + wa)}].  (184)

o p

Taking wp = 2:78 and p;, — 0-85 ), we calculate from (184):

ol Bx = Wp 15 -+ 1°93

X

)

= 185
Ry - Kp 2[;1.1, Ii By 7 298 ()
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Taking for pp the value of Estermann, Simpson and
Stern®) (mp=246), and the value of Farkas??) for
wp/ep (= 3:8), we find pp, = 0°65 and

.2 Wy 1-81

30" = " 526 " (185a)
e

The magnetic moment py of the neutron was measured by the
method due to Bloch ) and improved by Frisch, Von
Halban and Koch?®). Thus, wy was found %) to be in the
neighbourhood of — 2. So if the formulae (184)—(185) can be
trusted, we must conclude that « is small and that the actual value
of | wy | lies a little below 1°93 (or below 1:81).

Then, it should be hoped that by a convenient choice of the con-
stants g,, g, and g; in (144) and of the cutting off radius 7, not only
the energy levels, but also the electric quadrupole moment Q and the
magnetic moment of the deuteron can be fitted with experiment, and
that the cutting off radius 7,, determined in this wayv, will turn out
to have a value between (1/x) and (1/10%). For this purpose calcula-
tions of the deuteron states for a choice of g4, g, and g, different from
(176) will be of great interest. Calculations of this kind exist for
potentials of the the form of a “square well”” %),

Even if it is possible to fit in this way theory with experiment, we
must bear in mind that, if some of the calculated quantities *€, '€,
Q, &, . ... will turn out to be sensitive to the value of », within the
interval 1/x ~ 1/10x%, the value of such a quantity following from
the theory can hardly be believed to be reliable, if no physical
meaning is given to the parameter rg.

[t is not certain, however, whether the fitting of the magnetic
moment will be possible at all. If it is true that new measurements of
| wy | vield a value, which is still higher than 2, there must be some
error in the derivation of (185).

In this connection it is of interest to remark that the charge density
and the charge current distribution [M.F.(33)] of the mesic field gener-
ated by the nuclons on account of (130)— (132) vanishes in the case of
the deuteron. Generally, this charge distribution is given by the ¢-

number

o(1) = 3 [fdzdz . Y1(2)U1(3) Q(1; 2, 3) U(3) ¥(2), (186)
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where Q is given in a non-relativistic approximation by
1

y—K(ry+1y ]

o.0. Y
fin-s 5182 % ¢
Qr;2,3) = — e (14 (1 |
he 8w %12 %73
(6 + 6O} [r1g, 7)) (+@2f) — 2P2D) = Q(1; 3,2). (187)

The expectancy value (59) of this g-number g(1) for the N body
problem is given by %4

0}

() =/...[ 4, 2, e N)LZEQ(x;m,m) . Y(1, 2, cooy N).  (188)

For the deuteron it is easily seen that (v{)z{? 7'72) possesses
non-vanishing matrix elements only for transitions from anti-
symmetrical states to symmetrical states and vice versa. Thus (188)
does not contribute anything to the charge distribution (and to the
electric quadrupole moment) of the deuteron in the ground state.

In a similar way it can be proved that the electric current density
of the meson field generated by a deuteron in the ground state must
vanish.

§ 9. The neutron-proton scattering. The cross section for the scat-
tering of neutrons by protons %%) *) is related to the situation of the
energy levels of the deuteron by the generalized formula ) of
Bethe and Peierls®). This formula, however, does not give
the right dependence of the cross section on the energy of the im-
pacting neutrons.

If the form of the effective interaction potential is known, the
scattering cross section can be calculated directly. For potentials of
the form of a square well ora Gauss error function this has been
done by several authors %) %%). A meson potential of the form of
(— JT. e ™[y) for the singlet state was used only for a comparison
of the scattering of protons and of neutrons by protons 28).

By a direct perturbation calculus the cross section for neutron-
proton scattering for slow as well as for high energy neutrons was
calculated by Bhabha '%). Here, g; was put equal to zero. In the
extreme relativistic case he finds the following differential cross
section for scattering through the angle 9, in the system of co-ordi-
nates, in which the centre of gravity of the proton and neutron is at
rest:

({(l)‘l‘_l\'.- ~ L s ”_i ;‘.2 ( l ’ (] L. cos 95)3 d cos 9. (18,))
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Here p, denotes the momentum of each of the collising particles in
the system of the centre of gravity, m is the mass of the mesons. The
calculation has been performed for an “asymmetrical’” meson theory
(without neutrettos), so that the particle scattered through an angle 9,
is changed from a neutron into a proton.

The factor p2 of (184) ensures large cross sections for high energies.
We shall see in the following, however, that for large energies the
cross sections for many other processes increase. This is connected
with the phenomenon of showers, which was discussed in § 6. If
quantum-mechanics must not be modified 57) at high energies
(> 108 eV), we can only say that, according to the theory, high
energy particles will give rise to a large number of very probable
effects, which manifest themselves as showers and nuclear explosions.

§ 10. The spontaneous disintegration of heavy quanta. In § 6 we
have mentioned that the term H,of the Hamiltonian posses-
ses non-vanishing matrix elements for the following transitions:

Y">n+0 Y —=e+v, YO>v+o0, Y°—m-+cz (190

Here o is a neutrino, ¢ is a negative electron and v and = are the neu-
tral and the charged state of the corresponding light antiparticles
(antineutrino and positon). Y, Y ~and Y%are a theticon, an arneti-
con and a neutretto respectively.

The transitions (190) are allowed by the conservation laws of
momentum and energy, so that we must expect that there exists a
transition probability for these first order effects. The probabilities
per unit time are easily calculated according to

= () B 0P (114a)
h
where the “matrixelement’ () isobtained directly from (90) with (111).

For Proca-Kemmer quanta the calculation was performed
by Yuk *wa in his third paper ). The probability is calculated
in the system, in which the meson is at rest, so that the terms with
derivatives with respect to the spatial co-ordinates in H, can be
omitted. In (1144) a summation is performed over both directions of
the spin of each of the created light particles of positive energy. In
the expression for the energy of these light particles the mass terms
can be neglected since 3 mc? > mc® Then the calculation becomes
extremely simple.




THE SPONTANEOUS DISINTEGRATION OF HEAVY QUANTA 101

The density of final states g(€) is easily calculated. The number
of states for one of the emitted light Dirac particles (with a
momentum p of about §me and an energy cp approximately), the
momentum of which is situated in the interval between pand p + dp
and has a direction within a solid angle dw, is given by

m?c?
327°h?

Now, the differential of the energy of the final state is two times that of
one of the emitted particles (since the conservation of momentum

e(€)dE = Q f dpde = Q dpde. (191)

requires that an increase of the momentum of one of the light par-
ticles is coupled with exactly the same increase of the momentum of
the other emitted particle), so that

dé 2«1//) (192)

From (191) and (192) we obtain
o) = Q0 _dw. (193)

In this way we find for the probability of disintegration per unit
time:

fora Proca-Kemmer meson at rest:

: Wy = 28" + g7 ) m(\:; (194a)
To : 6he h
for a spinless meson at rest:
1 22 me?
SRR e

For neutrettos the probabilities of disintegration have exactly the
same value; the probabilities for each of the processes Y° — v - gor
YO > x4 ¢ apart have half the value of (194).

In (194) we have introduced the notation

g=Kf. gi=Kg, @=Kfi g=Kegh e =K

- (134a)
(K= 4+ Vexd/4r).
If the heavy quantum is moving with a velocity » with respect to a
system A, the probability per unit time with respect to (an observer
‘ in) A is given by the Lorentz transformation of the time co-

ordinate, so that

= —0 (195)
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(probability per unit time proportional to the kinetic energy of the
decaying heavy quantum).

We remark that the formulae (194a4) and (195) for a Proc a-
K emm er meson were givenby Y uk awa inhisthird paper 2).
In his fourth paper #) Y ukawa has considered it necessary to
change (194a) by adding a factor 2. This is due to an error in the
interpretation of o(€). If we describe the process like Yukawa
by saying that by annihilation of a meson one light particle with a
momentum ¢ and a negative energy — cp is changed into another
light particle with the same momentum 4, but with a different isoto-
pic spin co-ordinate and with a positive energy -+ ¢p, the law of
conservation of momentum requires that the energy of the initial
state (€,), (which, from this point of view, is one among a conti-
nuum of states, like the final state), is varied together with the
energy of the final state (€). So in this description we have (com-
pare § 6):

o(€)d (€, — €,) = 2p(E)dE; (196)
with
d€; = cdp. (197)

The difference of a factor fwo between (192) and (197) is thus com-
pensated by an additional factor 2 in (196), which was overlooked by
Y u k a wa. This error is continued in the publication of Y uk a-
w a on the mass and mean life time of the meson %).

Instead of the “F e » m i-Ansatz’’ of § 4 for the interaction between
heavy quanta and light Dirac particles, Y uka wa ) hasalso
investigated the consequences of a “Konopinski-Uhlen-
beck Ansatz’, in which derivatives of the neutrino wave-function
with respect to the spatial and time co-ordinates occur. Though the
formula given by Y uka wa %) for the disintegration probability
of a meson in consequence of such an interaction is not entirely
correct *), it remains true that the expression for this probability

*) 1f again the mass term in the energy of the light particles is neglected, the equation
(68) of the paperof Yuka wa?*) should read:

2?2 me® me? (R . m RS o e AT m 5 2\
2he  h 2 LU Bl a7 el w500 ) Lt i

If the mass term is taken into account, the ,K.U."” interaction is corrected by a term of
the order of magnitude of the uncorrected term resulting from the ,Fermi” inter-
action. I am indebted to Dr. Podolans ki fortheseresults,
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possesses a factor (m/m)? in addition to factors of the kind of those
appearing in (194). This means that, if the constants g’ are chosen of
such an order of magnitude that the theoretical expression (194) for
the disintegration probability is in agreement with the experimental
data on this spontaneous decay of the heavy quanta 70) 7), which
yield a value of about To & 2 X 107 sec, the constants ¢’ must be
chosen much smaller, if a “K.U.” interaction is assumed, than if the
“Fermi” interaction of Kemmer is assumed. The difference
corresponds to a factor 3 x 1075, This means that the value of g
resulting from a “K.U."-Ansatz would yield a probability for the {-
disintegration of instable nuclei (compare § 11), which is too small by
a factor at least 72) of the same order of magnitude 23), Thus it seems
that it can hardly have any sense to introduce this complicate inter-
action into the meson theory *), since the original K.U.-Ansatz 12)
was introduced only as a possible explanation of the phenomena of
g-disintegration. For this reason we shall not discuss this interaction
in the following section, but refer to the paperof Yukawa ).
If we put 75 ~ 2 x 107 sec. and m = 100 Z m, we find from
(194):
(2¢12 + 229 /3he ~ (1'3/8) x 10—V (198a)
and
gllhe ~ (1-3/%) x 1017, (198b)

if we assume that the disintegration probabilities of spinless and of
Proca-Kemmer heavy quanta are of the same order of magni-
tude (an assumption, which does not necessarily follow from the
experimental data!). Thus we find, taking m ~ 175 m:

§%he &~ 3 X 10717; g ~ 13 x 1017, (199)

S11. The B-disintegration of instable nuclei. Like the nuclon-
nuclon interaction, the 8-disintegration is partly a first order effect
due to H,,, partly a second order effect due to H,. In the same way
as in the discussion of the nuclon interaction (§ 7) we can according
to Yukawa?) replace again the second order interaction
between heavy and light particles by an effective Hamiltonian
term of the same type as H,,. Then, the first and second order inter-
actions are described fogether by means of an operator, which can be

*) Of course, the arguments given here do not exclude the possibility of introducing the

K.U.-Ansatz in the terms ['/g,;nnl.\'.
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transformed into an expression of the same type as the ordinary
interaction term of Fermi®) (see below).

The calculation was performed by Y uk a wa ) for a combined
K.-U. and Fermi interaction, but we shall confine ourselves to
the latter (see § 10). The calculation runs exactly in the same way as
in §7. Only we now must take into account the interaction between
mesons and light particles as well as that between mesons and
nuclons. Thus

3 [ [(1,2) 2,4t (1) o}, (1) U(1) . g, (2) w,(2) 4(2) + conj. compl.
of (125) and (126e¢ff) of § 7 (where f(1,2) = f(2,1)) is now replaced by
(compare (38))
3 [ H(1,2){gnd' (1) ol (1) + g4 (1) )4 (1) g (2) w,d(2)

- gV (2)w, ' (2)} + conj. compl. (2C0)
where Y denotes the wave-function of the nuclons and ¢’ that of the
light particles.

We are now interested in matrix elements describing for instance
the reaction
Nt = P* 4 ¢+ w. (201)
These matrix elements arise from the terms

iy BTy Tx — 1Ty

3 ,/]‘/'(1.-’):.‘4.,,? () = w, (1) . gi't(2) > W, (2)
+ Tx Z.T K2 rrr T — I.T (A
gd'(2) = Y w,(2) - gndt(z) = 5 Y,y (.1)} (202)

of (200). Here w,, and :o are self-adjoint D ira ¢ matrices operat-
ing on the undor indices of the wave-functions only. Now, it is easily
seen that, on account of the symmetry of W(zr,2)#/in § 7 the required
matrix vlvmvnt\' can be deduced directly from (136) l)\ omitting the

factor ‘('r b, 72) «md by taking the matrix element of the operators
there (lmmtul by Y between the states of the vanishing neutron N
and the created proton P; and of the operators denoted by @
between the charge-conjugated of the state of the created negaton ¢
(that is, a positonic state of negative energy; compare (100)) and the
state of the created antineutrino v.

We shall now make use of the relation (135) in order to eliminate
from (136) all terms without a gradient operator, which possess a
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factor (¢*'/r). In that way we achieve that only two types of terms
remain: those containing a gradient operator V or A acting on a
factor (¢=*"/r), and those containing a 3-function. All matrix
U and the
light @ particles. All gradient operators V, can still be replaced by

elements are integrals over the co-ordinates of the heavy

Va2, since they operate on a function of 712 only. Then integrating
by parts over the co-ordinates of the light Dirac particles @, the
integrand can be changed into one, in which all gradient operators
operate on the wave-function of the involved light particles only.

Now, if the terms with gradient operators are compared with those
without a gradient operator but still proportional to (e—*"/y), (i.e.
those terms, which were eliminated by means of (135)), we first
remark that each of the gradient operators is accompanied by a
factor (1/%) = %/me. The gradient itself multiplies the matrix element
by the momentum  of one of the emitted light particles divided by
h, so that each factor (1/x) Vis equivalent to a factor p/me. Now, the
momenta of the light particles actually emitted by 8-active elements
are of the order of magnitude of at most 10 me. Since me is at least
100 mc (170 or 180 mc seems to be more probable), the factor p/me is
at most about 1/10 (or 1/20). We shall neglect these terms.

This means that we assume that the wave-functions of the emitted
light particles are nearly constant in a region of the order of magni-
tude (1/%), that is, inside the nucleus. Thus we can replace these
wave-functions by a constant.

Since the neutrino can be considered to be free, its wave-function
can be assumed to be a normalized plane wave. Then this wave-
', inside
the nucleus equal to the normalization factor 1/4/Q only, where Q

function is, apart from the four-component “spin-function’

is the volume of a large cube, in which all wave-functions are assumed
to be periodic.

The emitted electron cannot be regarded to be free, on account of
the Coulomb field of the nucleus (charge Ze). A reasonable
assumption is ) that the wave-function inside the nucleus (where
the electric field decreases towards the centre) is equal to the value,
which the wave-function of an electron in the Coulomb field of
a hypothetical point charge Ze would have at a nuclear radius
distance from this point charge. The wave-function should be one of
the continuum of states with an energy W > mec. If these wave-

functions are normalized in such a way that the density-in-phase of
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states is again equal to Q/7#%, the value of these wave-functions will,
apart from the “spin-function’’, be a function of the energy (W) of the
emitted electron and of the charge (Ze) of the nucleus after the
emission. This function +//(Z, W)/Q can be taken from one of the
papers on the 8-decay theory 4t) 42) 73) 74),
The terms remaining in the matrix element derived from (136) are
now of the form of
3 il T e R
g lf (ill(irz ( r12) (Uh(r1) ©,, Un(r1)) a5V HZ, W) (1) w,ue) =
2 (203)

0,2.1Q) VIZ, W) [dr, (Yh(r)) @m Ux(ry) - (16} @, 1E).

Here , is the four-component spin function of an antineutrino of
positive energy, ¢ that of a positon of negative energy (that is, the
charge-conjugated of the spin function #, of a negaton of positive
energy; compare (99)—(100)).

Since the heavy particles in the nucleus can be tre Att(l in non-

lmn\tl( dp])l()\lnhll]()ll we may in the factor with ,, replace B

by 1; vs, a « and ﬁa. by 0; Qc by & (compare (138)).

The probability per unit time of a disintegration, by which the
electron is emitted with a momentum between p and p 4 dp in a
solid angle dw, and the antineutrino with a momentum between
p’ and p’ + dp’ within a solid angle dw’, is given by (114a). Here we
must put:

o(€) d€ = (QIh®)2 p W AW de p' W' dW' de’ (204)
where
(W/ec)? = (me)? + p?; (W'[c)2 = (uc)® + p%, (108a)
and

d€ = d(W + W’), (so that AW dW' = dW dE). (205)
Further, on account of (203) and (136)—(135):
Q = (4n/»x?2Q) V(Z, W) . {(1 — Cy) gogolt4) P Bul) [Yhdn
(1 —C) gig1 () ‘H?)./'?':"?v
L (1—C)gags(ulod) . [ ¥habn-+ (1 —Co)gsgh(ulont) . [Ubelx}.  (206)

We remark that just those matrix elements, which yielded a po-
tential of the form of a 3-function for the nuclon-interaction, and

which were omitted in § 7, since they gave “only” an infinite contri-
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bution to the binding energy of the deuteron 22), correspond to the
terms, which give rise to a 8-disintegration *), Thus, by a convenient
choice of the constants C,, C,, C, and C; it will always be possible to
fit the total disintegration probability with the experimental data
without influencing the deuteron problem.

[tisinteresting to remark that the term in the Hamiltonian
with g.g; (which usually does not enter into calculations, as a conse-
quence of the special part played in the theory by S) yields a contri-
bution here to the 8-decay. It is a term of the same type as the origin-
al F e r m i-interaction 1) " which appears in our theory with the
constant (4rmg,g(/%2).

The probability per unit time P(Z, W) dW for a disintegration, by
which the electron has an energy between W and W - dW, is now
calculated in the ordinary way. The sum must be taken over both
directions of the spin of the emitted light Dirac particles; over
the solid angles dw and dew’ we have to integrate independently. The
summation over the spins brings in a new factor depending on the
energy of the emitted electron. Especially the (non-vanishing) cross
products of different terms of (2C6) are of interest, since they can
make the B-spectrum a little more asymmetric than the Ferm i-
distribution either for positon-emitters, or for negaton-emitters.
Putting

Wime =w, (1 — C,)eg,.g.lhc = g and M, = [{hwdy (207)
we obtain the following expression for P(Z, W):
P(Z, W) dW =
=(mc?/h) G2 |M(w) 20V w?—] (wo— @)V (wo—w)?>— (w/m)? dw, (208)
where

G? | M(w) |2

: 7 7 s el il wim ]
28 1M + 65 | M — B (209)
w Wy — W)

*) It should be remarked that it is possible to choose the constants C different in the
terms with ¢pdandGUp and with SEONUEY in Lagrangian and Hamil-
YPYNYNYF TPYNYy Yn
tonian,
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Here m and p. are the masses of electron and neutrino respectively;
w,is the total energy available for the emission of particles, expressed
in units of mc?. Finally nis equal to - 1:

7 i 1 for positon-emitters,
' i (210)
n - |1 for negaton-emitters.

As for the relative sign of g and gf, and of g5 and g5, we refer to
the equations (36). Thus, if in (39) gdhwdp -+ g'U) m;';,, is changed
into gdlwdp + g'Uiwy,, the signs of gogi and of gig; are changed.
Then, however, we must also reverse the signs of 7 in (210); so that
the result is exactly the same, as it should be.

If we assume p = 0, the factor | M(w) |? in (208)—(209) may be
written as

M(w) > = (A + nBlw), (211)
where @ =1 and | 2| < 4. From (211) we conclude that, if gig}
and ghgs are both positive, the spectrum becomes a little more
asymmetric and the total disintegration probability a little higher
for all positon-emitters (53 > 0), whereas these effects will be just
inverse for all m'yu{un—(-mittvrs"' or vice versa for gigi < 0> gdl
(3 < 0). If, however, grgi and ghg’ have different signs, the sense of
the deviation of the spectrum from the original F er mi spectrum
will depend on the relative value of the matrix elements M, and U

In order to investigate whether it is necessary to make use of the
possibility of choosing the constants C different from zero, we now

calculate

G2 = (8/x) (m/m)* (¢?/he) (g'?/hc). (212)

From
o2lhe ~ (9/7%) % 1071,
‘ (198c¢)
(m 100 £ m),
we {ind
2%/ he 1/5 1/10 1/16
(213)

105, G2 ~ | 2/(38%) | 1/(3%8) |-1/(58)

From the decay constants of light elements one can deduce 7%)
G? | M(w) 2 ~ 12 X 1075, (214)

Since in (209) several m:m‘ix elements occur, we conclude that,

roughly,

G2, ~ 6 X 1072, (214a)
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This means that only for small values of Z (m ~ 55 m) G2 is of the
right order of magnitude %). For £ a 14, however, we find from
(213): G§ ~ 0-02 x 102, In this case, which seems to be the more
probable one 73), the spontaneous meson disintegration in the nu-
cleus is not sufficient 2) in order to explain the order of magnitude
of the f-radioactivity, and it seems to be necessary to add “direct
Fermi terms” by a convenient choice of the constants C in the
Lagrangian and the Hamiltonia n (H,). This argu-
ment, however, is not conclusive since, after all, the 1‘;1(li<mcli\'ily
may be due to a large value of one of the constants gs or g5, which
were of no interest in the discussion of the deuteron problem and do
not enter into the expression for the probability of the spontaneous
meson disintegration,

Summarizing we can say that any serious disagreement between
the theory and reliable experimental data can at present be avoided
by a convenient choice of the constants.

§ 12. Scattering and absorption of mesons by nuclei. In this section
we shall briefly mention some processes of “scattering” or absorption
of mesons by nuclear particles.

>assing through the Coulomb field of a nucleus a meson can
emit photons (Bremsstrahlung) or be deflected (Rutherford
scattering). The theoretical cross section for I)’)'mzxsh'a/z/u11; 1S smal-
ler by a factor 10 or 10~% than the corresponding effect of elec-
trons ?). The effect is calculated from the terms H, and H. of the
Hamiltonian; it can be regarded as an ordinary Ruthe r-
ford scattering coupled with the emission of a photon.

The cross section for Ruther ford scattering is obtained in a
similar way as the corresponding expression for electrons. A differ-
ence arises from the fact that the expression for the electric charge
density of the field of the scattered particle, which enters into the
formulae, is more complicate for mesons than for electrons (compare
(48)). Laporte ™) hasshown that as a consequence of this fact
already in the first B oy n approximation an azimuth-dependence of
the differential cross section for R u t herford scattering of trans-
versal linearly polarized mesons into a given direction appears. This
effect, however, is very small for slow mesons (fourth order in v/c).

The meson can be virtnally absorbed itself by a nuclon and be re-
emitted. The cross section for this “anomalous Scattering” 19) or
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“Compton scaltering of mesons” ®) was calculated by Heit-
ler®) and Bhabha!®). The former simplified the calculation
by computing the cross section only for momenta, which are small in
comparison with Me¢ (~ 10 me). For a longitudinal meson impacting
with a momentum p and an energy = on a nuclon at rest, by which it
can be absorbed, (that is, a proton for the scattering of arneticons,
and a neutron for the scattering of theticons), Heitler obtained
in this “non-relativistic”” approximation the following differential
cross section for scattering into a given solid angle do:

dOW-R) — (1/%)? (g3/he) {(g? + 2g3)[he} (P2 me)? dw.  (215)

This result was obtained after summation over the three possible
directions of polarization of the scattered meson. If the incident
mesons are transversal, the factor (g?/hc) must be replaced by
(g3/he).

A relativistic formula was derived by B h a b h a 18). The compli-
cate formula, which was found by him for scattering nl unpolarized
mesons through an angle &, i1 the system of the centre of gravity into a
given solid angle dwy, tends according to him to

ADN-R) — 6(1/2)2 {(gy + g2)*/hey? {Mm/(M +m)(2M Lm)Pde, (216)

abha
for the non-relativistic case p, < me, and to

dOE:R), = % (1/%)?{(g3 + 2g3) [hc} (po me)? (1 + cos o) day, (217)

for the extreme-relativistic case p, > Mc; both expressions are diffe-
rential cross sections for scattering by a nuclon capable of absorbing
the meson (proton or neutron). Here p, is smaller than the correspon-
ding p in (215), since Bhabh a takes the momentum with respect
to the centre of gravity.

Comparing (216) with (215) we remark that the expressions do not
agree with each other, so that there must be some error. The extreme
relativistic equation of B habha (217) shows more simil: writy to
the formulaof Heitler (215) than Bhabha’s non- -relativistic
approximation (216).

Taking m ~ 175m (sothat 1/x ~ 2:2 X 10 B em) and g?/he ~ §,
we find by integration over angles the following total cross sections:

DR ~ 3 X 1072 X (p?/me)? em?. (215a)
ON-R) ~ 13 X 1072 cm?. (216a)

OER) &~ 3 % 10720 X (p/mc)? cm?. (217a)
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Bhabha himself states that his non-relativistic cross section
(216a) is of the order of magnitude 10-28 cm2. Heitler statesthat
his expression yields a cross section corresponding to an average
range of 2 ~5 cm of lead for p ~me, & ~ 2me? This result is
wrong by a factor 11 ~ 2} on account of too high a value of (g%/he)
used by him in that early stage of the theory (before Kemmer's
neutretto-hypothesis, compare § 3) and stil by a factor 8 by a slip in
the calculation. According to (215a) the range in lead for P ~ meis
about

207 1:67 X 10— 1

3 . : ~ 35 ¢ 18
207 — 82 ¥ @S ems i(21e)

for theticons (positive mesons), which are scattered by neutrons: and
for arneticons (negative mesons), which are scattered by protons:
. 207 1:67 x 10—2 1

A~ 85 - ¥ e ~ 50 cm (of lead). (218a)

According to the ("non-relativistic’’) equation of Heitler or
the (extreme relativistic) equation of Bhabh a the range would
decrease for high energies proportional to 1/c2. Then, however,
according to § 6 the probability of the creation of showers would
increase and the range would decrease even more strongly. The
probability of a third order effect

Y* 4+ N* (= Pt N X T P V- LY (219)
was estimated by Heitler ), According to a “non-relativistic”’
calculation (p < Mc ~ 10 me) the ratio of the cross sections for this

process (219) and for the single “anomalous scattering’’ (2154) would
be equal to

D219)/P 215 ~ (3/57) (o2 ie) (e/me?)2, (220)
Taking ¢?/lic ~ 1 we find
D216/ P15y & (/63 me?)2, (220a)

For high energies, however, the calculation is not reliable.

The cross section for the “C o m p t o n scattering” of the original
“yukons” (scalar mesons) was calculated by Yukawa?. For
these particles the cross section tended to zero for increasing energy.
For this reason it would be of interest to calculate the cross section
for high energy spinless mesons (casedof Kemmer).
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Slow mesons may be very well absorbed by an atomic nucleus with
subsequent emission of a nuclon (the analogon of the photo-electric
effect). The calculation was performed by Y uk a wa *) for yukons
andby Sakata and Tanikawa?) for Proca-Kemmer
mesons. The cross section for the latter process is given by 77)
262 me® [ P ome e ) I | :

| g :
3fc * e “\mic p " Mc*/ \e (22t)

D ~ 64:.(1 )“
b3

Here $ is the momentum of the impacting meson, and its energy
e = V/(me?)? + (cp)? is assumed to be small in comparison with the
rest energy of a nuclon (me? < € Mc?). I (~ 107 eV <¢) is the
binding energy in the nucleus of the nuclon emitted in the process.
For slow mesons we can write

e~ me?, p/me ~ vjc L V2m/M, (222)

so that we find (taking g2/hc = }, m = 175 m and [ 107 eV):
® ~ 1077, (c/v) cm? (per absorbing nuclon in the nucleus). (223)

Thus we find an absorption probability proportional to (1/v). For
v/c = 1/50 the range in lead for theticons has decreased to only about
5 cm. Very slow mesons are absorbed quickly. The arneticons are again
a little more penetrating than theticons in heavy elements, since the
latter contain less protons than neutrons.

Another important effect is the mesophotic effect and its reverse,
the photomesic effect (124). The possible intermediate states are

(p =P + /\'}:

<«~—> N (/>") EYH(—p) + Y (p) <

<> PH0) +Y(p) + hv(k) <

P+(0)+Y (/{) < — —————— N (/{’) - 11»(/3
s Bih) 4 PEH—B) + Y(f) =
«—>P+0) + P—(#) N*(p') <>

(224)
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The first order contributions (from F,,) to the matrix elements Q
for these processes (115) are of the same order of magnitude as the
second order contributions, but of opposite sign, so that some of the
terms in the differential cross sections tending to infinity for ¢ — co
are cancelled.

The calculation was performed in non-relativistic approximation
by Heitler*). Then in (224) the lower two intermediate states
can be neglected in both cases. The first order effect, however, was
overlooked by Heitler, so that his results cannot be trusted.
Moreover, there was a slip in the calculation, so that in the matrix
(h 'ment given by the formula (58) of his publication %) the vector
/> in the first term should change its \wn Then, in the first formula

on page 534 the terms with (p/p’) /) z’) do no longer cancel.

It is noticeable that the same error in sign slipped into the calcula-
tion of the photomesic effect performed by Kobayasi and
Ok a 'y am a?), though they started from the right matrix element.
The considerations of § 6 (page 81 —82), however, show that the terms
in the matrix element  arising from E* div E in H,H, cannot can-
cel each other by summation over the two first intermediate states
in(224). — Kobayasiand Okayama took into account the
first order contribution from H,, 43).

It is interesting to calculate separately the cross sections of longi-
tudinal and of transversal Proca-Kemmer mesons for the
mesophotic effect, since the non-relativistic cross sections for these
two polarizations of the meson (p < Mc) depend on the energy in a
different way. Making the same approximations as in the calculations
of Heitler®) andof Kobayasi and Oka yam a 1) (for
instance neglection of the recoil of the nuc lon) one finds for the cross
section for longitudinal mesons a non-relativistic expression, which
for increasing energies ¢ of the impacting meson increases proportio-
nal to €?; but for transversal mesons the non-relativistic cross section
increases only with the logarithmus of . In the former case the term
with ¢? is due to a contribution of the first order effect, from which
the high powers in ¢ are nof cancelled by a corresponding contribu-
tion of the second order effect to the matrix element Q. In the case of
transversal mesons the “high powers” of ¢ are cancelled, and the
logarithmical increase is due to the contribution of scatter ing through
angles & — 0. It must still be mentioned that, in order to get a not
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too complicate result, one should in the latter (transversal) case
average the cross section over both possible transversal polarizations
of the impacting meson.

The non-relativistic cross section of photons for a photomesic
effect increases always quadratically with the energy, since here the
sum must be taken over all possible polarizations of the emitted
meson ; but it is plausible to draw from the preceding considerations
the conclusion that, if high energy mesons are created in the atmos-
phere of the earth by the photomesic effect, longitudinal mesons
must be preponderant in the region, where they are created; though
at sea level this may be different, on account of a stronger absorption
of longitudinal than of transversal mesons.

These conclusions, however, are not certain, since nothing can be
said about the predictions of the theory on the high energy photo-
mesic and mesophotic effects before the laborious calculation of the
relativistic cross sections has been performed. Then, the lower two
intermediate states of (224) must necessarily be taken into account
(even when the angle between the momenta of photon and meson is
small!), and the terms with A*.a and E*.e in H, which are neglected
in a non-relativistic calculation, must no longer be forgotten. I't will
be a good policy to take into account even the recoil of the nuclon,
which may be considerable at high energies. For the photomesic
effect the creation of spinless mesons must be taken into account, if
g;and g, do not vanish; for the mesophotic effect the spinless mesons
can be treated separately.

Some relativistic calculation has been performed by Kobay a-
siand Okayam a %), but from their publication it is not clear as
to how far these calculations were approximative. — Anyhow, it
would be of interest to know exactly the dependence on the energy of
the cross sections following from the unaltered theory (without intro-
duction of a “fundamental length’’) for this process as well as for the
anomalous scattering of mesons (compare § 13).

It should still be added that it showld be hoped that the theoretical
cross section of photons for a photomesic effect is not too small for
high energy photons, since the creation of a sufficient number of
mesons is only in this way understood. Other effects, by which a
meson can be created, seem to be far less probable. Thus the intro-
duction of a fundamental length, which accordingto Kobayasi
and Okayama %) makes the cross section of the photomesic
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effect nearly constant for high energies, might endanger the explana-
tion of the large number of mesons observed in the cosmic radiation
even if only those effects are “cut off”, in which the change in mo-
mentum of the nuclon is only “smaller than”’, instead of “very small
in comparison with’’ the quantity (%/r;), where r, denotes the funda-
mental length 57) 78) 45),

In this connection it should be remembered that the original
scalar theory of Yukawa yieldeda photomesic cross section that
decreased with increasing energy of the photon ) ). This was then
regarded as an argument against the theory %),

Another interesting effect is the so-called meson-neutretto chain ?)

Y*¥+N*> P+ 4+ Y% or Y—4 P+ N+ L YO
with (225)
YO +P* >Nt Y+ or YO L N+ P+ L Y ¥

This process makes it possible for a heavy quantum to travel through
matter partly in the shape of a meson, partly in the shape of a neu-
tretto *). Measurements of Maass %) gave evidence of this
meson-neutretto chain, as discussed by Arle y and Heit-
Ler 8). The anti-coincidence arrays recently developed in France $2)
seem to furnish an adequate method for new experimental investiga-
tions in this direction. The question arises whether a beam of neu-
trettos is actually more penetrating than a beam of mesons, if the
processes (225) are probable.

S 13. Discussion of the limits and the value of the theory. In the
foregoing (pages 95 and 100) we have already mentioned the ques-
tion whether a fundamental length %7) must be introduced into the
theory in order to make it fit with the experimental data. This is
assumed, indeed, by several authors %) 78) 15), They assume that
processes, in which a nuclon changes its momentum by an amount,
which is much larger than %/r, ~ Jix, are forbidden. Wen t-
ze17) has pointed out that this cutting off would explain the
narrow angular spread of hard cosmic-ray showers, which should
exist according to the measurements of Sch meiser and
Bothe ). This procedure makes it also possible to avoid 19) the
infinite 1°) mesic self-energy of the nuclon. For the anomalous

*) In a similar wav, the mesophotic and the photomesic effects together give rise to a

meson-photon chain.
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magnetic moment of the nuclons, due to the magnetic moment of
the meson field generated by a single nuclon, Fréhlich, Hei t-
ler and Kemmer?) find in this way values, which are at least
of the right order of magnitude. It is noticeable, however, that the
finite binding energy obtained by such a cutting off at momenta
hx = me is only small in comparison with M¢?, so that the mass of
the nuclons cannot be “explained”’ in this way 19).

In the present stage of the theory and experimental data a conclu-
sion can hardly be drawn as regards the necessity or the impossibility
of such a cutting off procedure. B h a b h a ') has pointed out that
a great part of the present difficulties of the theory may rather be
due to the insufficiency of the methods of perturbation calculus,
which are generally used and which break down as soon as perturba-
tions are computed, which are too large. For instance by the applica-
tion of the method of the variation of constants, which is used in the
derivation of the equation (114), which we have used for all calcula-
tions of cross sections, it is necessary to postulate (1°) that the proba-
bility per unit time for the transition @ — f is calculated only for a
time, in which the total probability of any transition is still very
small in comparison with 1; (2°) that this same time is long in com-
parison with the period of the frequency e¢## Though in general the
latter condition is satisfied, the former one is not always compatible
with this second condition.

According to Bhabha®®) the divergence of some results
obtained by a perturbation calculus, in which changes of momenta
of the order of magnitude mc are involved, does not mean at all that
in other simzilar cases, where the calculation yields at least a conver-
gent result, those momenta should be cut off. To this argument may
be added that it is perhaps still a little premature to argue that the
results of the theory, in which such changes of momenta are in-
volved, are not trustworthy, as long as these results have not yet
been evaluated theoretically and verified experimentally. In the case
of the photomesic effect and the mesophotic effect, for instance, the
inapplicability of the theoretical results can be understood from the
approximative character of the calculations without introducing the
idea of a fundamental length, at which the theory breaks down. As
regards the increase of the cross sections for high energy heavy
quanta discussed in the foregoing, it must be remarked that, from a
theoretical point of view, the question is not yet settled (1°) af what
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energy the heavy quanta become really less penetrating than they
seem to be according to the experimental data, (2°) whether this
limit is the same for longitudinal and transversal mesons and for
spinless mesons; whereas, from an experimental point of view, the
dependence of the penetrating power of mesons on the energy is not
yet known with certainty. Even it is not yet excluded entirely that
the penetrating power of very high energy Proca-Kemmer
mesons does not really exist at all: for a large cross section of the
photomesic effect some arguments can be adduced (see § 12), and
this may be connected with a large cross section for the mesophotic
effect.

Anyhow, it is interesting to investigate the possibilities of a quan-
tum theory, in which a fundamental length is introduced. Such an
altered quantum theory, however, should not be imagined as an
ordinary quantum theory, in which only some prescription is given
restricting the validity of the theory. This can only be an early stage
of the theory. The change that should be made would, indeed, be a
more revolutionary one.

For instance, one can imagine that the infinite static self-energy of
the point electron is removed by changing the 3-function in (1 10)
into a D-function, which is derived from a “relativistic ®-function”
in a similar way as the 3-function is derived from the relativistic A-
function depending on (r - ct) only. This would mean that the §-
functions in the commutation relations are altered in such a way that
by an expansion of the wave-functions in series of plane waves the
amplitudes of states of high momentum would no longer satisfy the
usual commutation relations.

Then putting

ih = ‘N Ff]_, (51)

the equations of motion, which in the present theory take the form
of the field equations following from a variational principle, would
no longer be differential equations in the altered theory, but would
take the form of integro-differential equations. The laws of conserva-
tion of energy, momentum and angular momentum 19) would no
longer be strictly valid, but would still be rea sonable approximations
as long as no large momenta are involved.

The relativistic invariance of such a theory would be a problem in
itself.
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One should note, however, that then there would no longer be a
reason for ignoring the self-energies in the expression for the total
energy, and care must be taken that the energy of matter does not
appear twice in the Hamiltonian, for instance once in the
terms describing the fields of Dirac particles, and again in the
terms describing the (electromagnetic, mesic and neutrettic) quan-
tum fields 8%) $9),

We must consider the possibility that the 3-functions, which we
have used in the theory of the #-decay but have omitted in the
theory of the nuclon interaction, will obtain in such an altered theory
some finite value and will be of importance for the levels of the deu-
teron. Thus, 7f one assumes that it is necessary indeed to alter the
theory, one should not be too certain about the present deuteron
theory and about the determination of the order of magnitude of the
constant g*[hc, which again appears in all effects calculated by means
of the meson theory.

On the other hand it must be borne in mind that for the time being
it does not yet follow from the experiment that such a revolutionary
change in the theory is absolutely necessary. Therefore it may be
prudent not only to investigate the fundaments of quantum-mecha-
nics, but also to review its methods of calculation. Even more needed
are detailed experimental investigations on the energy-dependence of
the cross sections for the numerous processes, which are possible
according to the theory of mesons and neutrettos.

Finally it must be remarked that, until now, the meson theory has
one very unpleasant feature (apart from the divergencies and the -
functions); viz. the enormous number of constants, which must be
chosen in a convenient way in the hope to make the theory fit the
experiment. In a “pleasant” theory one should for instance expect
that the constants C,, C,, C,, C;, C, are all equal to zero (or perhaps
to 1), that the constants gy, g,, g5, g5 and g, are all equal to one value

g or to zero, and the constants ¢’ in the same line. We have seen
that the possibility of such a simplification is at least questionable,
if we want to explain for instance the experimental data on the deu-
teron by means of the methods discussed in § 7—8. For instance, the
attempt of Bethe?) (g, =g, = g3 = g, = 0) did not succeed
very well (§ 8). This may be a consequence of our methods, or of the
incertitude of the experimental data, which are perhaps not all as
reliable as one should wish, partly on account of the indirect way, in
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which they are obtained. It may also be in the nature of things that

so many constants are involved. In that case the theory will become

satisfactory only, if the number of effects explained numerically by

the theory will appreciably surpass the number of constants.

Leiden, August 1939.

1)
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SAMENVATTING

I. Undor-rekening en lading-conjugatic.

Onder “undoren van den n-den trap’’ verstaan wij grootheden, ge-
kenmerkt door 4" complexe getallen, die zich bij Loren t z -trans-
formaties lineair transformeeren als de 4” producten van de compo-
nenten van » D ira c sche golffuncties (§ 1). Indien de spiegelings-
transformatie van zulk een Dirac sche golffunctie zoodanig wordt
gedefinieerd, dat een dubbele spiegeling overeenkomt met een om-
keering van het teeken van de golffunctie, bestaat er een lineaire
operator, die uit den complex-geconjugeerde van een undor ¥ van
den #n-den trap wederom zulk een undor vormt, den “lading-gecon-
jugeerde” (W'*) van ¥, en wel zoo, dat ¥** =" is (§2—3).

In het bijzonder onderzoeken wij undoren van den eersten (§ 1 —4)
en van den tweeden (§ 5) trap. Een undor van den tweeden trap ver-
tegenwoordigt een vijftal antisymmetrische tensoren (van den nul-
den, eersten, tweeden, derden en vierden trap). Deze tensoren zijn
reéel (afgezien van een willekeurigen constanten factor), indien de
undor ¥, gelijk is aan zijn lading-geconjugeerde V5, of aan zijn
lading-geadjungeerde W3, waaronder wij W5, verstaan (§5). Un-
doren, die gelijk zijn aan hun lading-geadjungeerde, noemen wij
“neutrettoren’’ (§ 4—35).

Tenslotte leiden wij een “metrischen undor’ af, waardoor aan elken
gewonen (“covarianten’) undor een “contravarianten’”’ undor wordt
toegevoegd (§ 6). Wij definieeren een gradient-undor en kunnen nu
undor-vergelijkingen in “covariante notatie” schrijven.

I1. De undor-vergelijking van het mesonenveld.

Wij schrijven de P r o ¢ a-vergelijkingen voor het mesonenveld in
undor-notatie (§ 1). Het P r o c a-veld wordt voorgesteld door een
symmetrischen undor van den tweeden trap. De vergelijkingen laten
zich unitbreiden tot die voor een veld, beschreven door een niet-sym-
metrischen undor van den tweeden trap (§ 2). Deze uitbreiding komt
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neer op het invoeren van een nieuw veld van spinlooze mesonen. —
Het veld van neutrale mesonen (“neutretto’s”) kan worden beschre-
ven door een neutrettorveld (§ 2).

Bij elke oplossing van de veldvergelijkingen bestaat er een “la-
ding-geconjugeerde”’ oplossing van de z.g. “lading-inverse” verge-
lijkingen (§ 3). Bij deze lading-inversie dient niet alleen de electrische
lading ¢ van teeken te worden omgekeerd: indien men rekening
houdt met de anticommutativiteit van de golffuncties van nuclonen *)
en lichte deeltjes, moeten ook de mesische ladingen f en g van teeken
omdraaien. — Een beschrijving van het veld door middel dezer
lading-geconjugeerde veldgrootheden noemen wij de lading-gecon-
jugeerde beschrijving van het veld.

De electrische ladings-stroom-dichtheid laat zich op eenvoudige
wijze uitdrukken met behulp van den undor, die het mesonenveld
beschrijft (§ 4).

Door iteratie van de meson-vergelijking vindt men voor vrije
mesoneneen Klein-Gordon vergelijking. Houdt men rekening
met de wisselwerking der mesonen met het electromagnetische veld,
dan treden in deze vergelijking extra termen op, waarvan de belang-
rijkste kunnen worden opgevat als de beschrijving van een magne-
tisch moment van het meson, dat dan (¢/2me) maal het spin-impuls-
moment (%) van het meson blijkt te zijn (§ 4).

Wanneer men aanneemt, dat de quantum-mechanica een “lading-
invariante” theorie is, d.w.z. dat bij een lading-geconjugeerde be-
schrijving van het veld alle waarneembare grootheden op dezelfde
wijze kunnen worden berekend als bij een gewone beschrijving van
het veld, behalve dan dat alle ladingen met het andere teeken moeten
worden genomen, dan volgen uit deze veronderstelling een aantal
betrekkingen, die volledig bepalen, van welke deeltjes men moet
aannemen, dat zij aan de F e rm i-Dir a c-statistiek voldoen, en
welke deeltjesaande Einstein-Bos e-statistiek moeten gehoor-
zamen. (Andere soorten van statistiek zijn in beginsel echter niet uit-
gesloten). Het blijkt, dat deeltjes met geheeltalligen spin aan de
Einstein-Bos e-statistick moeten voldoen, en deeltjes met heel-
plus-halftalligen spin aan de F e rmi-D ira c-statistiek (§ 5). Bo-
vendien kan men van de lading-invariantie van de theorie gebruik
maken om de uitdrukking voor de energie van het veld in een dus-

*) D.w.z. protonen, neutronen en hun antideeltjes.
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danigen vorm te schrijven, dat het duidelijk is dat alle vrije elemen-
taire deeltjes een positieve energie bezitten.

II1. Toepassing van de theorie der zware quanta op problemen der
kern-physica en der cosmische straling.

Wij geven een critisch overzicht van een aantal publicaties, die de
laatste jaren over de theorie der zware quanta (mesonen en neutret-
to’s) zijn verschenen. Na een korte inleiding (§ 1) wordt de theorie
der zware quanta geschetst, zooals deze door Kemmer en
andere schrijvers is ontwikkeld (§ 2—3). De grootte-orde van de in de
theorie optredende constanten wordt besproken.

Vervolgens worden de in zwang zijnde methoden, volgens welke men
het veld pleegt te quantiseeren, aan een critiek onderworpen (§ 4).
Het blijkt, dat het bewijs van de relativistische invariantie der theorie
nog moet worden gegeven. Van niet-relativistisch standpunt uit be-
keken, zijn de gangbare methodes niet zeer consequent, en wij hebben
aan een eenigszins afwijkende behandeling de voorkeur gegeven.

De wisselwerking van het mesonenveld met het longitudinale
M a x w e ll-veld kan worden beschreven als een statische C o u-
1 o m b sche krachtwerking tusschen de electrische ladingen (§ 5). De
Hamiltoniaan wordt afgeleid, die de wisselwerkingen van de
uitgebreide mesonen- en neutretto-velden met alle andere velden be-
heerscht (§ 6). De aard dezer wisselwerkingen wordt aangeduid. Van
bijzonder belang is het feit, dat de grootte van zekere matrixelemen-
ten van de gequantiseerde Hamiltoniaan de waarschijnlijk-
heid van veel-quanta-processen doet verwachten.

Vervolgens wordt de wisselwerking tusschen nuclonen door tus-
schenkomst van het veld der zware quanta besproken (§ 7). Hoewel
de afleiding van de uitdrukking voor deze wisselwerking veel over-
eenkomst vertoont met de afleiding van de B re it sche wisselwer-
king tusschen electronen, blijkt de “effectieve potentiaal” in het
laatste geval een betere benadering te zijn dan in het geval der wis-
selwerking tusschen nuclonen.

De Schrodin g e r-vergelijking voor het deuteron wordt opge-
schreven, de optredende moeilijkheden worden besproken en het
magnetische moment van het deuteron wordt ter sprake gebracht
(§ 8). Een kort overzicht wordt gegeven van den huidigen stand der
theoretische onderzoekingen omtrent het probleem der strooiing van
nuclonen door nuclonen (§ 9).
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Na een beschouwing over het spontane uiteenvallen der zware
quanta (§ 10) wordt de theorie van de -radioactiviteit behandeld in
het kader van de mesonentheorie (§ 11). Eenige belangwekkende bij-
zonderheden treden op door de uitbreiding van het mesonenveld met
spinlooze zware quanta. Het vraagstuk van de overeenstemming
tusschen theorie en experiment wordt nader in oogenschouw ge-
nomen.

Vervolgens worden de bestaande theoretische onderzoekingen om-
trent verschijnselen van “strooiing” en absorptie van mesonen door
atoomkernen aan een critische beschouwing onderworpen (§ 12).
Deze verschijnselen zijn van belang voor de bestudeering der cosmi-
sche straling. Longitudinaal en transversaal gepolariseerde zware
quanta blijken niet even sterk “als photon” te worden “gestrooid”’.

Tenslotte worden argumenten vOor, bezwaren tegen en mogelijke
gevolgen van de invoering van een fundamenteele lengte in de quan-
tum-theorie besproken, en wordt de wenschelijkheid naar voren ge-
bracht van nadere experimenteele onderzoekingen omtrent de ener-
gie-afhankelijkheid van de werkzame doorsneden voor de verschil-
lende processen, die volgensde theorie mogelijk zijn (§ 13). Het groote
aantal constanten, dat in de theorie in zijn algemeenen vorm op-
treedt, wordt dls een bezwaar gevoeld.
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page

page

6, line 4, 8 a scalar, READ: is a scalar,
69, ,» 13, P=(amefaiv)p + O, /c , READ:

Ef ={l4ne/asw)p = da/efj
92, gy 2, VT19,9), e (0,%)  RBADY NSO Y (0,5)

65 sqq (chsp, III, 8 5 - 6), corrigenda:

The transfeoxrmation with: f;' was needed by .F e r m 1, since in
his paper - 0247 /e and 10/c +take the part of £ and ® in
our esse (28 eanonical conjugated momenta to. C%%r and % ). For
us, the transformation (76a) with ' F only suffices, In B 6, the
matriges g, B, ¢, 4, 1, &; 3, ¥, W are components of the original

(not of the transformed) field. Now, it can be showm that the usual
expressions (compare Be linfant e, Fhysica 7, 449, 1940)
for the total energy, momentum, total angular momentum, spin com-
ponent parallel to momentum (see (105)), charge density and total
electrie charge ean be written ss?

S s o 05

H=H*H",  P=P+P”, JeJel By =By pef a=8.
Here, = p-” and /” are zero-~-terms (see page 65), whereas the
TRANSFORMED operavors (aompare (73)) )

Hﬂl )i? o 2  and 5

are given by the formmliae (90) (see (109)), (102), (103) and (105).
(For this reason, gfg ete. (without transformation!) can be re-
gerded as the TRANSFORMED operstors of numbers of particles ox
quanta){f‘ﬁ)»

The equation (70) is mot eorrect for instence for F = d/d0, Im

stead of the considerations of page 65, therefore, we must observe

that straight-forward caleulstion from (41), (42), (49), (50) and
the explioit nsual expressions for 7/, ;ﬁ? . J7 , eto. yields:

X
r/)/?} /a [];, H Jx [f "/JA [»0;1_
(?A ;’i f] H' 1K : L{,‘;’i*_]{;‘, =0) -
[p; W= Lpi H'15 [ IHIS[ps WIHT s andd Hpbe W3 = Hoti H1Y

Further, with fi defined by &*a, ...., W'w, we find in this way:

[ W5 BI3=T N AT LR IR0 <LCR Ay B 105 I AR 1 etes
Thus, the dashed quantities can replace the original quantities,

We remark that in (76) all field components must be taken at somg
given time % = to in order to have r constant in the expressions
for qﬁth dA/dt ete. The equations of 8 5 - 6 , the formulae give)
above and the expression (90) for the Hamiltonian A are, there-
fore, valid at t = 0 only, but this suffices if the situation is
deseribed by ﬁ/w: e A () (see (60)=(62)) with 4vn;:4.(compare
(59) with (60)). Thus, ONLY AT t = %, we have (¥j = [l 7 =

= 0 with (76 a+b), or:) Oy = f&7/$ = 0 with(76a) without

\
(76b) «
Het kav weel elegarser Pedlicatis 21ges-17(ra o o
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STELLINGEN

I
De door Heisenberg en Pauli gegeven definitie van dif-
ferentiatie van een veelterm in ¢-getallen naar een dezer g-getallen
is onbruikbaar voor de ontwikkeling van een algemeene quantum-
theorie voor golfvelden.
Z. Phys. 56, 1, 1929.
[1
Ten onrechte meent Schénberg, dat een uitbreiding van de
kanonieke theorie der gequantiseerde golfvelden van Heisenberg
en Pauli tot het geval van velden van deeltjes, die de Fermi-
Dirac statistiek volgen, onmogelijk is.
Physica 5, 961, 1938.
IT1
De wijze, waarop Novobatzky het electromagnetische veld
quantiseert, verschilt 7n wezen niet van de methode van Fermi,
doch om de nevenvoorwaarden te vermijden, waaraan volgens
den laatste de situatiefunctie zou moeten voldoen, wordt de
relativistische covariantie van het formalisme opgegeven.
Z. Phys. 111, 292, 193
|AY
Er zijn redenen om aan te nemen, dat het voorschrift, volgens
hetwelk in de golfmechanica uit den operator F,, van een
waarneembare grootheid de gemiddelde waarde dezer grootheid
wordt berekend, bij z.g. tweede quantiseering der golfvelden slechts
dan tot den juisten operator voor de gemiddelde waarde dezer
grootheid zal voeren, indien de lading-getransformeerde en de
lading-inverse van F,, elkanders tegengestelde zijn.
F. J. Belinfante, proefschr. L iden 1939, blz. 34.

v

Het is mogelijk, een algemeen voorschrift te geven, volgens
hetwelk men uit de Lagrangiaansche functic een symme-
trischen energie-impuls-dichtheidstensor kan afleiden zonder ge-

bruik te maken van de methode van Hilbert.
Gottinger Nachr. 1915, 395.







VI

Het ware wenschelijk, proeven over adiabatische demagneti-
satie ook met waterhoudende ceriumzouten uit te voeren.

VII

Het ware van belang, de temperatuur-afhankelijkheid van de
ferromagnetische anisotropie van kubische kristallen ook in het
temperatuurgebied van vloeibaar helium te kennen.

VIII

Het ware wenschelijk, bij het onderwijs in de natuurkunde
aan de scholen voor voorbereidend hooger en middelbaar onderwijs
de beginselen der quantum-theorie te bespreken aan de hand van
eenige demonstratie-proeven. :

IX

Het verdient aanbeveling, bij het onderwijs in de wiskunde aan
de scholen voor voorbereidend hooger en middelbaar onderwijs
meer aandacht te besteden aan vraagstukken met strijdige, over-
bodige of onvoldoende gegevens.

X

Voor niet te groote waarden van het natuurlijke getal N kan men

op eenvoudige wijze door nacijferen de juistheid vaststellen van de
N 2N
L \ aN—2j 2y . N - § [4N—z2j 25 — AN (2N
formules /.‘_.” (¥=) (1) = 4" en ;L., (=) (=) () =45 ().
Indien deze formules algemeen geldig zijn, schijnen zij niet een-
voudig te kunnen worden bewezen door volledige inductie.
XI
Het feit, dat voor nieuw ontdekte deeltjes namen als "'positron”,

mesotron”, "’deuton” e.d. in de litteratuur opduiken, wijst op de
wenschelijkheid van meer overleg tusschen physici en classici.

XII

Het gebruik van Esperanto voor wetenschappelijke doeleinden
is in beginsel mogelijk en zou de doeltreffendheid van internationale
wetenschappelijke congressen kunnen verhoogen.
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