STRUCTUUR EN MAGNETISCHE EIGENSCHAPPEN VAN ENKELE COMPLEXE OXYDEN DER OVERGANGSELEMENTEN

P.F. BONGERS

BIBLIOTHEEK GORLAEUS LABORATORIA DER R.U. Wassenaarseweg 76 LEIDEN

STRUCTUUR EN MAGNETISCHE EIGENSCHAPPEN VAN ENKELE COMPLEXE OXYDEN DER OVERGANGSELEMENTEN

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE WIS- EN NATUURKUNDE

AAN DE RIJKSUNIVERSITEIT TE LEIDEN OP GEZAG VAN DE RECTOR MAGNIFICUS DR P. A. H. DE BOER, HOOGLERAAR IN DE FACULTEIT DER GODGELEERDHEID, TEGEN DE BEDENKINGEN VAN DE FACULTEIT DER WIS- EN NATUURKUNDE TE VERDEDIGEN OP DONDERDAG 4 JULI 1957 TE 14 UUR

DOOR

PIET FRANS BONGERS GEBOREN TE ROTTERDAM IN 1930

UITGEVERIJ EXCELSIOR - ORANJEPLEIN 96 - 'S-GRAVENHAGE

Promotor: Prof. Dr. A. E. van Arkel

Aan mijn Moeder Aan mijn Vrouw

INHOUD

1.	Algemene inleiding	7
	 1.1. Inleiding 1.2. Covalente binding in spinellen 1.3. Eventuele andere oxyden met vlakke covalente binding 	7 8 9
2.	Apparatuur en Analysemethode	11
	 De magnetische metingen De röntgenopnamen Bereiding en analyse 	11 11 11
3.	LiNiO ₂ en NaNiO ₂	14
	3.1. Inleiding3.2. Experimenteel gedeelte3.3. Discussie	14 15 16
4.	Deformatie van het spinelrooster	22
	 4.1. Inleiding 4.2. Experimentele gegevens 4.3. Discussie 4.4. Jahn en Teller effect in spinelroosters 	22 23 30 34
5.	Kation-lagenroosters I	36
	5.1. Inleiding5.2. Experimenteel gedeelte5.3. Discussie	36 36 41
6.	Kation-lagenroosters II	44
	6.1. Inleiding 6.2. Experimenteel gedeelte	44 44
	hoeksrooster 6.4. Discussie	48 51
7.	Slotbeschouwing	54
Sı	ımmary	57
L	iteratuur	60

Hoofdstuk 1

ALGEMENE INLEIDING

1.1. Inleiding

Verschillende onderzoekers hebben zich bezig gehouden met de vraag welke de waardigheden zijn van de mangaanionen in Mn_3O_4 en ZnMn₂O₄. De tetragonale Hausmanniet-structuur van deze verbindingen ¹)²) kan beschreven worden als een spinelrooster, dat uitgerekt is in de [100] richting.

De spinelstructuur wordt gevormd door een kubische, dichtste pakking van zuurstofionen, waarin 1/8 van de tetraederholten en de helft van de octaederholten gevuld zijn met positieve ionen. De valenties van de metaalionen in een spinel XYZO₄ kunnen 2-3-3, 4-2-2 of 6-1-1³) zijn. Men spreekt hier van 2-3, 4-2 of 6-1 spinellen. Beschouwen we een spinel XY₂O₄ - en schrijven we de ionen, die zich in octaederholten bevinden, tussen haken -, dan kunnen we twee gevallen onderscheiden:

 $X [Y_2] O_4$ een normaal spinel

Y [XY] O4 een omgekeerd spinel

Voor zinkmanganiet en Mn₃O₄, of wel mangaan-manganiet, zijn nu de volgende ionenverdelingen mogelijk:

$Zn [Mn^{3+} Mn^{3+}] O_4$	(1)	$\operatorname{Mn}^{2+} [\operatorname{Mn}^{3+} \operatorname{Mn}^{3+}] O_4$	(3)
$Zn \left[Mn^{2+} Mn^{4+}\right] O_4$	(2)	$Mn^{3+}[Mn^{2+}Mn^{3+}]O_4$	(4)
		$Mn^{2+} [Mn^{4+} Mn^{2+}] O_4$	(5)
		$Mn^{4+} [Mn^{2+} Mn^{2+}] O_4$	(6)

Drie verdere mogelijkheden met Zn-ionen op de octaederplaatsen kunnen buiten beschouwing gelaten worden, omdat zink in spinellen uitsluitend in tetraederholten voorkomt. Het lage geleidingsvermogen sluit een ionenverdeling met 2- en 3- of 3- en 4-waardige mangaanionen op de octaederplaatsen uit.

Zodat (4) en combinaties van twee of meer van de vermelde configuraties niet mogelijk zijn.

Splitsing van 2 Mn^{3+} in Mn^{4+} en Mn^{2+} vergt 9 eV. per mangaanion. Volgens Verwey e.a. ⁵) geeft een eventuele ordening van 2-en 4-waardig mangaan op de octaederplaatsen een energiewinst van 4.5 eV. per mangaanion. Het lijkt niet waarschijnlijk, dat de resterende 4.5 eV. opgebracht kan worden door polarisatie en door vermindering van de Bornse afstoting ten gevolge van tetragonale deformatie, zodat zowel ZnMn₂O₄ als Mn₃O₄ waarschijnlijk als normale 2-3 spinellen beschouwd moeten worden. (1) en (3).

1.2. Covalente binding in spinellen

8

Bij 1170°C is Mn_3O_4 kubisch (a = 8.64 Å)⁶). De assenverhouding c/a van $ZnMn_2O_4$ en Mn_3O_4 is bij kamertemperatuur 1.14 resp. 1.16²).

De electrische geleidingsvermogens van Mn_3O_4 en $Zn Mn_2O_4$ vertonen een duidelijke thermische hysterese resp. tussen 1075 en 1150°C en tussen 950 en 1125°C ⁸).

Aan de hand van deze gegevens besloten Goodenough en Loeb ⁹) tot een normale 2-3 configuratie voor de manganieten, waarbij zij de tetragonale structuur verklaren met behulp van een covalente vlakke binding tussen de Mn³⁺-ionen en vier zuurstofionen op de octaederplaatsen. We zullen een kort overzicht van deze theorie laten volgen.

Het Mn³⁺-ion heeft een d⁴ configuratie; hierdoor zal het gemakkelijk een lege vlakke dsp²-hybride ¹⁰) kunnen vormen, omdat hiervoor niet nodig is dat het totale spinmoment van het ion verlaagd wordt. Beschouwen we nu een Mn3+-ion, omgeven door zes zuurstofionen geplaatst op de hoekpunten van een regelmatige octaeder. De vier banen van de dsp2-hybride, die sterk uitgebreid zijn in de richting van de hoekpunten van een vierkant, zullen met de 3p-banen van vier der zes zuurstofionen interfereren. Indien het energieniveau van de dsp²-hybride vergelijkbaar is met de buitenste, met electronen gevulde, golffuncties en indien de golffuncties in voldoende mate over elkaar vallen, dan zullen electronen van de zuurstofionen overgaan in de dsp²-banen. Op deze wijze wordt een covalente binding tussen het Mn³⁺-ion en 4 zuurstofionen tot stand gebracht. Door deze extra binding zullen deze vier Mn-Oafstanden korter zijn dan de overige twee. Wanneer alle octaederholten in een spinel op deze wijze gedeformeerd worden, zal het totale rooster een minimale energie hebben als alle tetragonale octaeders hun langste as evenwijdig aan elkaar stellen. Het rooster zal tetragonaal zijn met c/a > 1.

De hysterese in het geleidingsvermogen kan nu als volgt verklaard worden: De hoogste met electronen gevulde energieband in het kristal zal de dsp²-band zijn. Bij hoge temperatuur zullen enige electronen uit deze band geëxciteerd raken. Hierdoor krijgen deze bindingen een ionogeen karakter en de Mn-O afstand zal iets toenemen. Deze dsp²-baan zal de zuurstofbanen in geringer mate overlappen, zodat de energie van de electronen in deze band hoger wordt. Hierdoor zullen nog meer electronen geëxciteerd worden. Het gevolg is, dat het losraken van de covalente dsp²binding een coöperatief verschijnsel is.

Er zal een toestand ontstaan, waarbij zoveel electronen aangeslagen zijn, dat het mogelijk wordt dat de dsp²-binding zich afwisselend instelt in de drie diagonaalvlakken van de octaeder. Hierdoor worden alle zes Mn-O afstanden van gelijke lengte, zodat het rooster kubisch wordt. Koelen we de verbinding af, beginnend boven de overgangstemperatuur, dat zullen enkele van de dsp²-bindingen voldoende met electronen bezet raken, waardoor deze bindingen als het ware ingevroren raken in een der diagonaalvlakken; hierdoor zal deformatie optreden. De energie van de dsp²-band daalt en deze zal sneller met electronen opgevuld worden. Echter zal door de andere assenverhouding op het moment, dat de overgang begint, bij afkoeling de overgangstemperatuur lager liggen dan bij opwarmen.

De roosterconstante van de kubische fase van Mn_3O_4 op 1170°C (a = 8.64 Å) is kleiner dan de langste celafstand c, welke overeenkomt met de ionogene Mn-O afstand van de tetragonale vorm bij kamertemperatuur (c = 9.42 Å).

Dit is in overeenstemming met het beeld van afwisselende instelling van de vlakke binding.

1.3. Eventuele andere oxyden met vlakke covalente binding

Juist door het feit dat Mn³⁺, als vrij ion en als covalent gebonden, vier ongepaarde electronen bezit, zullen magnetische gegevens geen uitsluitsel geven over de bindingstoestand van dit ion. We hebben onderzocht of er oxyden bestaan, die magnetische ionen bevatten in octaederholten met vier zuurstofionen dichterbij dan de overige twee, juist als in de manganieten, maar met als extra voorwaarde een verschil in spintoestand tussen het "vrije" ion en het ion met vlakke covalente binding. Alleen ionen met vijf of meer d-electronen komen hiervoor in aanmerking. Ionen met d⁵of d⁶-configuratie zullen echter covalente bindingen vormen met alle zes omringende anionen door middel van een zgn. d²sp³ hybride. Weliswaar moeten dan twee electronen hun spin "omklappen", maar daar staat tegenover dat covalente bindingen met zes i.p.v. met 4 zuurstofionen gevormd kunnen worden. In Co3O4 vormt het Co³⁺-ion (d⁶) een covalente d²sp³ binding ¹¹), evenals het Rh^{4+} -ion (d⁵) in Li₂RhO₃ ¹²).

Hoewel cupri-ionen in spinellen vlakke bindingen vormen, o.a. in $Fe[CuFe]O_4$; c/a = 1.08¹³), voldoen deze verbindingen niet aan de gestelde eisen, daar ionen met negen d-electronen altijd één ongepaard electron bezitten of zij een dsp² binding aangaan of niet.

Alleen geschikt voor ons doel zijn ionen met d^{7} - of d^{8} - configuratie.

Deze zijn:

d ⁷	d ⁸
Co ²⁺ , Ni ³⁺	Ni ²⁺ , Cu ³⁺
Rh ²⁺ , Pd ³⁺	Pd ²⁺ , Ag ³⁻
Ir ²⁺ , Pt ³⁺	Pt ²⁺ , Au ³⁺

Co²⁺ en Ni²⁺:

In oxydroosters vormen deze ionen geen covalente bindingen. Dit blijkt o.a. uit de magnetische momenten in de systemen CoO-MgO en NiO-MgO ¹⁴).

Pd² en Rh²⁺:

Tweewaardig palladium vormt vlakke configuraties in PdO. De palladiumionen bevinden zich hier echter niet in gedeformeerde octaederholten. De kristalstructuur van RhO is niet bekend. Oxydcomplexen van deze ionen worden in de litteratuur niet genoemd.

Cu3+

Klemm vermeldt de diamagnetische verbinding $KCuO_2^{15}$). De bereiding vereist een omvangrijke apparatuur en de kristalstructuur is niet opgelost. Deze verbinding werd niet verder onderzocht.

Pd³⁺en Ag³⁺

In NaPd₃O₄ ¹²) zijn de palladiumionen omgeven door vier zuurstofionen en twee palladiumionen. Oxydcomplexen van driewaardig zilver zijn niet bekend. Ag₂O₃ is niet goed watervrij verkrijgbaar en uitermate instabiel;

Ni³⁺

NaNiO₂¹⁶) voldoet volkomen aan de gestelde voorwaarden. Deze verbinding vertoont een overgang van kristalstructuur van monoklien naar hexagonaal bij 220°C. In de monokliene vorm zijn vier zuurstofionen op korte afstand en twee op iets langere.

Au3+, Pt3+ Ir2+

Oxyden van Pt³⁺ en Ir³⁺ met zes coördinatie voor de metaalionen zijn niet bekend. Au₂O₃ werd door ons niet onderzocht.

De magnetische eigenschappen van NaNiO₂ en LiNiO₂ worden besproken in hoofdstuk 3. De eigenschappen van LiNiO₂ waren aanleiding tot het onderzoek naar het gedrag van analoge verbindingen van de andere ijzergroep-elementen. Deze worden besproken in de hoofdstukken 5 en 6.

De kristallografische en magnetische eigenschappen van enkele manganieten van de typen XMn_2O_4 (X=Mn, Co, Ni, Mg, Zn) en ZnYMnO₄(Y=Al, Co, Ni) worden behandeld in hoofdstuk 3.

Hoofdstuk 2

APPARATUUR EN ANALYSEMETHODEN

2.1. De magnetische metingen

De susceptibiliteiten van de preparaten werden bepaald volgens de Faraday methode. De kracht, die het magnetisch veld uitoefent op het preparaat, werd gemeten met een torsie-balans. Tijdens de metingen bevindt deze balans zich in een geëvacueerde kast De gehele apparatuur wordt elders uitvoerig beschreven ¹⁷)¹⁸.

Als standaard voor de ijking van de balans diende NiSO₄. $(NH_4)_2SO_4$ 6H₂O. Hiervoor werd gebruik gemaakt van de formule, die Cossee ¹⁷) berekend heeft uit absolute metingen van Kamerlingh Onnes en Jackson ¹⁹):

$$\chi g = \left(\frac{3174}{T+2.5} - 0.30\right)$$
. $10^{-6} e \cdot m \cdot e$.

Alle χ -waarden zijn het gemiddelde van metingen bij tenminste drie verschillende veldsterkten. De nauwkeurigheid van de χ -waarden onderling is 1%, de absolute nauwkeurigheid wordt geschat op ~ 2% ¹⁷).

Tijdens de metingen bevond de stof zich in kleine kwartshouders. Voor hygroscopische of gemakkelijk oxydeerbare verbindingen werden afgesloten vaatjes gebruikt, die vacuum gezogen werden voordat zij werden dichtgesmolten. Enkele van de onderzochte verbindingen, die lithium of natrium bevatten, tasten bij hoge temperatuur kwarts aan. In die gevallen werden houdertjes vervaardigd van Pyrex- of Supremaxglas gebruikt.

2.2. De röntgenopnamen

Ter bepaling van de kristalstructuur en voor contrôle van de homogeniteit werden van alle preparaten poederopnamen gemaakt. Hiervoor werd gebruik gemaakt van een Unicam 9 cm. camera (voor omgekeerde film) en een Philips 11.5 cm. camera (Straumanis opname). Voor het vinden van de juiste indicering van enkele verbindingen met Hausmannietstructuur werden opnamen gemaakt met een Guinier-camera van Nonius. De intensiteiten van enkele reflecties van LiCoO₂ werden bepaald met een Hilger en Watts spectrometer met geigerteller en automatische registratie.

2.3. Bereiding en Analyse

Bij alle bereidingen werden goed bekende verbindingen als uitgangsmateriaal gebruikt (Tabel 2.1). Om gravimetrische analysen te vermijden werd voor alle verbindingen, indien dit mogelijk was, een kwantitatieve bereidingswijze gekozen. De volgende algemene methoden werden toegepast:

Methode A

Berekende hoeveelheden van de standaard verbindingen werden in een gewogen porceleinen kroes opgelost in HNO_3 , drooggedampt op infrarood lampen, verhit op 400° C in lucht en tenslotte afgekoeld en gewogen. Hierna werd het mengsel zorgvuldig gepoederd in een mortier en overgebracht in een schuitje van platina, zilver, magnesiumoxyde of aluminiumoxyde. Deze afgewogen hoeveelheid werd op de vereiste temperatuur gestookt. Het gewicht na deze verhitting moet nu overeenkomen met hetgeen berekend werd.

Methode B

Berekende gewichtshoeveelheden van de standaardverbindingen werden zorgvuldig gemengd in een mortier en direct op de vereiste temperatuur gebracht.

Het verschil tussen het berekende en gevonden gewicht van het preparaat is in de diverse tabellen in procenten weergegeven onder ΔW .

Verbinding	Metaalgehalte of kwaliteit	Wijze van bepalen	Afgeleide uitgangs- stoffen
Mn(NO ₃) ₂ opl.	2.14 ⁶ mg/cc	Mn ₂ P ₂ O ₇	
Mn(COOH)2. 2H2O	· 30.5%	Mn ₂ P ₂ O ₇	MnO , Mn_2O_3
Co(COOH)2. 2H2O	31.8%	Co ₂ P ₂ O ₇	Co ₃ O ₄
Ni(NO ₃) ₂ opl.	4.86 mg/cc	dimethylglyoxime	
Zn(COOH)2. 2H2O	34.6%	Zn-oxinaat	
ZnO	Merck p.a.	elander de sur a	Luger rel
Ga ₂ O ₃	Merck		
V ₂ O ₅	B. D. H.	V2O5	V_2O_3 , VO_2
Cr ₂ O ₃	Merck		
MgCO ₃	24.9%	MgO	MgO
Li ₂ CO ₃	p.a.		
Na ₂ CO ₃	p.a.		

Tabel 2.1

De verbindingen die gebruikt zijn als uitgangsstoffen zijn weergegeven in tabel 2.1. Na_2CO_3 en Li_2CO_3 werden voor gebruik gedurende 2 uur op 400°C in lucht verhit. Li_2O werd bereid uit $LiOH. H_2O$ door dit in een zilveren kroesje te verhitten op 500°C in lucht, daarna gedurende vier uur in hoog vacuum op 800°C. De zuiverheid van het Li₂O, bepaald door titratie met 0.1 N HCl, was altijd meer dan 96%.

Het gehalte actieve zuurstof van enkele verbindingen die Mn^{3+} , Mn^{4+} , Ni^{3+} of Co^{3+} bevatten, werd bepaald op de volgende wijze: In een klein Pyrex buisje met dunne bodem werd, samen met 1-2 gram KJ, 50-100 mg van de te bepalen stof afgewogen. Hierna werd het buisje vacuum gezogen en dichtgesmolten. Tezamen met 8 cm³ verdund HCl (1 : 4) en een glazen knikker werd dit buisje in een Carius buis gebracht. Deze buis werd vacuum gezogen met een waterstraalluchtpomp. Nadat de nog aanwezige zuurstof verdreven was door het kokende HCl werd de buis afgekoeld en dichtgesmolten. Door schudden werd nu met de glazen knikker het kleine buisje stukgestoten en de inhoud gemengd. Vervolgens werd de buis gedurende 10 uur op 150°C verhit. De ontstane jodiumoplossing werd onder stikstof atmosfeer met 0.05 N thiosulfaat getitreerd.

Hoofdstuk 3

LiNiO₂ EN NaNiO₂

3.1. Inleiding

De kristalstructuur van deze twee verbindingen werd bepaald door Dyer e.a. ¹⁶).

LiNiO₂ heeft een structuur, met de ruimtegroep D_{3d}^9 - R3m, die opgevat kan worden als een keukenzoutrooster, waarin de (111) vlakken die met positieve ionen bezet zijn afwisselend lithium en nil 'kelionen bevatten. Hierdoor ontstaat een rooster met hexagonale symmetrie, dat opgebouwd is uit op elkaar gestapelde lagen lithium, zuurstof, nikkel, zuurstof enz. In de lagen vormen de ionen een driehoeksnet (fig. 3.1).

↓ Li ♥ Ni ♥ O Figuur 3.1

NaNiO₂ heeft een monokliene modificatie bij lage temperatuur en is bij 400°C isomorf met LiNiO₂. Metingen van de soortelijke warmte geven aan dat de overgang van monoklien naar hexagonaal bij $220 \pm 10^{\circ}$ C ligt¹⁶). De monokliene vorm (ruimtegroep C³_{2h}-C2m) ontstaat uit de hexagonale wanneer de zuurstoflagen aan weerszijden van een nikkellaag in tegengestelde richting langs de [320] richting verschoven worden (fig. 3.1). Door deze verschuiving komen van de zes omringende zuurstofionen er vier op een kleinere afstand van het nikkelion (tabel 3.1).

	a	b	· c	β	4 Ni-O	2 Ni-O
NaNiO ₂ monoklien	5.33 Å	2.86 Å	5.59 Å	1100	1.95 Å	2.17 Å
NaNiO ₂ hexagonaal	2.96 Å		15.77 Å			
LiNiO ₂	2.88 Å		14.2 Å			

11	1	0	1
ı a	pe.	3.	Τ.

3.2. Experimenteel gedeelte

a. Bereiding

Li₂O en NiO (bereid uit Ni-oxalaat in hoogvacuum op 900° C) werden in molverhouding 1 : 1, na langdurige menging in een droogkast, in een magnesiumoxyd-schuitje gedurende 24 uur op 750°C in O₂ verhit. Door weging voor en na de verhitting werd de gewichtstoename bepaald. Het gehalte actieve zuurstof werd bepaald op de in par. 2.1 besproken wijze.

Wij slaagden er niet in, evenmin als Dyer e.a., alle Ni-ionen in de driewaardige toestand te verkrijgen. Door de vluchtigheid van LiOH ²⁰), ontstond, bij langdurig verhitten, ondanks de zorgvuldige droging van de zuurstof, een gering Li₂O verlies. Preparaten bereid met overmaat Li₂O werden echter evenmin volledig geoxydeerd. De verbinding, waarvan de χ -waarden in tabel 3.1 vermeld zijn, vertoonde bij bereiding een gewichtstoename welke 74.1% van de voor LiNiO₂ berekende toename bedroeg.

Actieve zuurstof: 9.32 m. aeq/gram. De juiste samenstelling kan nu als volgt berekend worden: Stel de samenstelling is $\operatorname{Li}_{v}\operatorname{Ni}^{3+}\operatorname{Ni}_{1*}^{2+}O_{1+\frac{1}{2}v+\frac{1}{2}x}$

Actieve zuurstof bepaling geeft:

$$x = 9.32 \cdot 10^{-3}(14.94 + 8x + 74.69)$$

De gewichtstoename:

$$8 \ge 0.741 = 14.94y + 8x - 14.94$$
 (2)

Uit (1) en (2) kunnen x en y berekend worden $x = 0.89^7$ y = 0.91^4

De juiste samenstelling is $Li_{0.91}Ni^{3+}_{0.90}Ni^{2+}_{0.10}O_{1.91}$, of wel $(Li_{0.95}Ni_{0.05})NiO_2$.

In een rooster zonder gaten moet de som der positieve ionen gelijk zijn aan de som der negatieve ionen, binnen de experimentele fouten voldoet deze samenstelling hieraan.

 $NaNiO_2$ werd op de volgende wijze bereid: NaOH en Na_2O_2 (gew.verh. 3 : 2) werden in droge zuurstof drie

dagen op 750°C in een nikkelen kroes verhit. De NaOH smelt werd

(1)

uitgegoten. De aan de wand van de kroes achtergebleven kristalmassa werd onder afsluiting van vocht en CO₂ gas gewassen met absolute alcohol totdat deze geen NaOH meer bevatte. De zwartglimmende kristalplaatjes werden in vacuum gedroogd. Bepaling van het oxyderend vermogen geeft 0.997 aeq/mol.

b. Magnetische metingen

De gemeten χ -waarden zijn vermeld in Tabel 3.2. (Li_{0.95}Ni_{0.05}) NiO₂ is bij 80°K ferromagnetisch. Beneden 430°K is de χ in geringe mate afhankelijk van de veldsterkte. De Curieconstante van het rechte deel, bij lage temperatuur, van de 1/ χ -T kromme (fig. 3.2) is C_{mol} = 0.628. Rekening houdend met 10% Ni²⁺ (μ_{xn}^{2+} = 3.2 μ_{p}) vinden we hieruit μ = 2.1 μ_{p} voor het Ni³⁺ ion.

Ni²⁺ ($\mu_{Ni}^{2+} = 3.2\mu_B$) vinden we hieruit $\mu = 2.1\mu_B$ voor het Ni³⁺ ion. De hysterese in de $1/\chi$ - T kromme van NaNiO₂ (fig 3.2) strekt zich uit van 430 tot 467°K. De punten in dit gebied zijn gemeten met tussenpozen van 1 tot 4 uur. Binnen de lus werden geen punten gevonden, zodat we kunnen aannemen dat hier thermische hysterese optreedt. Het moment voor Ni³⁺ in de monokliene modificatie is $\mu = 1.9\mu_B$. Wanneer we de χ -waarden boven het overgangspunt beschouwen als de som van een temperatuur afhankelijk en een constant gedeelte, kunnen we de gebogen $1/\chi$ - T lijn goed beschrijven met de formule:

$$10^{3}\chi = A + \frac{B}{T - \Theta} \qquad A = 0.164$$

B = 386
 $\Theta = 101$

Het moment voor het Ni³⁺-ion berekend uit B, is $\mu = 1.76\mu_{B}$. De berekende χ -waarden zijn vermeld in tabel 3.2. De afwijking met de experimentele χ -waarden bedraagt maximaal 8%.

c. Röntgenografische gegevens

De afbuigingshoeken van NaNiO₂ komen geheel overeen met de door Dyer e.a. gevonden waarden. Het poederdiagram van (Li_{0.95}Ni_{0.05})NiO₂ vertoont alle lijnen behorend tot de hexagonale structuur a = 2.88 Å c = 14.2 Å.

3.3. Discussie

a. (Lio.95 Nio.05) NiO2

Het ferromagnetisme bij lage temperatuur kan het gevolg zijn van een positieve wisselwerking tussen de nikkelionen, zodat in de lagen de momenten parallel gaan staan. Dan zou ook de zuivere verbinding LiNiO₂ ferromagnetisch zijn. Het asymptotische Curiepunt Θ moet dan ook positief zijn. Denkbaar is, dat de gevonden negatieve waarde van $\Theta = -25^{\circ}$ C, aan onjuiste extrapolatie te wijten zou zijn. Indien dit niet wordt aangenomen, kunnen de samenstelling van het preparaat en deze negatieve Θ op ferrimagnetisme wijzen. In een lagenstructuur met de samenstelling Li_{0.95}Ni_{1.05}O_{2.00} is 5% van de plaatsen in een lithium laag bezet met nikkelionen. De sterkste negatieve wisselwerking in de

Figuur 3.2

	NaNiO ₂ monoklien		NaNiO ₂ overgang			NaNiO ₂ Hexagona	Li _{0.95} Ni _{0.05} NiO ₂			
	Т	$\chi_{M} 10^{3}$	т	χ _M . 10 ³	т	$\begin{array}{c} \chi_{M} \ 10^{3} \\ \text{exp.} \end{array}$	$\chi_{M} \cdot 10^3$ ber.	т	χ _M .10 ³	
Magn. gegevens	80 196 289 295 333 416 438 443	$11.5 \\ 3.01 \\ 2.06 \\ 1.91 \\ 1.61 \\ 1.25 \\ 1.16 \\ 1.16 \\ 1.16 \\$	446 448 455 462 438 439 441 443 444 449 4453 455	$ \begin{array}{r} 1.15\\ 1.16\\ 1.15\\ 1.20\\ 1.26\\ 1.24\\ 1.25\\ 1.26\\ 1.34\\ 1.33\\ 1.33\\ 1.33\end{array} $	1 453 466 470 476 507 535 631 707 1 710 859 943	$\begin{array}{c} 1.33\\ 1.33\\ 1.28\\ 1.27\\ 1.25\\ 1.17\\ 1.11\\ 0.925\\ 0.82^4\\ 0.82^4\\ 0.68^6\\ 0.63^5\end{array}$	$\begin{array}{c} 1 & 33 \\ 1 & 32 \\ 1 & 28 \\ 1 & 27 \\ 1 & 25 \\ 1 & 16 \\ 1 & 10 \\ 0 & 92^1 \\ 0 & 82^3 \\ 0 & 81^9 \\ 0 & 68^7 \\ 0 & 63^3 \end{array}$	194 290 291 363 432 553 597 724 793	$5.31 \\ 2.19 \\ 2.25 \\ 1.74 \\ 1.43 \\ 1.13 \\ 1.02 \\ 0.83^9 \\ 0.77^9$	
θ°K	-	+ 72							- 25	
CM	0).425			1	0.386		0.	62	
μ_{Ni}^{3+} 1.85 μ_B			1.1.1.1.1.1.1		1.76µ.B		2.	1μ _B		
Tn		1.1					165°K			

Tabel 3.2

oxyden van de ijzergroep met keukenzoutstructuur is die tussen buren waarvoor de hoek Me-O-Me 180° is ²¹). Ieder nikkelion op een lithiumlaag heeft drie van dergelijke buren in ieder van de twee dichtsbijzijnde nikkellagen. Indien ook hier deze wisselwerking zou overheersen, zullen bij temperaturen beneden het Neèlpunt de momenten van deze zes buren tegengesteld en dus onderling evenwijdig gaan staan. Zo zou ieder nikkelion op een lithiumlaag een klein ferrimagnetisch gebiedje vormen.

Het gevonden moment voor $Ni^{3}\mu = 2.1\mu_B$, wat overeenkomt met één vrije electronspin, zal in de discussie over $NaNiO_2$ besproken worden.

b. NaNiO₂

In de monokliene modificatie zijn, volgens Dyer, vier zuurstofionen op een afstand 1.95 Å en twee op 2.17 Å van ieder Ni³⁺ion. Zoals in hoofdstuk 1 is uiteengezet verwachten we op grond van deze Ni-O afstanden dat er een vlakke covalente dsp² binding gevormd wordt met vier zuurstofionen. Hiervoor is het noodzakelijk dat de zeven d-electronen zich in de overige vier d-banen bevinden, zodat er dan één ongepaard electron aanwezig is. Het gevonden moment $\mu = 1.9\mu_B$ stemt hiermede goed overeen. De thermische hysterese bij het overgangspunt is volkomen in overeenstemming met de wijze van losraken van de covalente binding zoals deze besproken is in par. 1.1.

Beschouwen we nu de hexagonale vorm van NaNiO₂, welke isomorf is met LiNiO₂, dan blijkt uit het moment $\mu = 1.76_{\mu B}$ (berekend met de formule $\chi = 0.164 + 386/T-101$), dat hier, evenals bij (Lings Nings) NiO₂ één ongenezed electror

bij (Li_{0.95} Ni_{0.05}) NiO₂ één ongepaard electron aanwezig is. Alle Ni-O afstanden in de hexagonale structuur zijn gelijk. Indien de covalente dsp² binding zich afwisselend instelt in de drie diagonaalvlakken van de octaeder, zal de binding voor 1/3 "ionogeen" en voor 2/3 "covalent" zijn. De Ni-O afstand in de hexagonale modificatie kan nu, afgezien van de uitzetting van het rooster, berekend worden uit de Ni-O afstanden van de monokliene vorm.

$2/3 \ge 1.95 + 1/3 \ge 2.17 = 2.02 \text{ Å} (25^{\circ}\text{C})$

De zuurstof parameter van de hoge temperatuur modificatie is niet bekend. Voor a = 0.25 berekenen we Ni-O = 2.09 Å (400° C). Deze waarde is in ieder gevalkleiner dan de langste "monokliene" Ni-O afstand. De Ni-O afstanden in beide kristalvormen van NaNiO₂ zijn niet in tegenspraak met het beeld van de wisselende covalente bindingsrichting.

De spectra van vele complexen van ionen van de ijzergroep kunnen met succes verklaard worden wanneer men de invloed van het "kristalveld" op de energie niveau's van het ion in rekening brengt ²⁷)²⁸)²⁹). Om te onderzoeken of het inderdaad noodzakelijk is om aan te nemen dat er covalente binding tussen nikkel- en zuurstofionen in deze verbindingen optreedt, wordt in de volgende paragraaf onderzocht of de eigenschappen van NaNiO₂ en LiNiO₂ ook verklaard kunnen worden met behulp van een ionenmodel.

c. Invloed van het kristalveld op Ni³⁺

De vijf 3 d-banen van een ion omgeven door een octaeder van negatieve ionen splitsen in twee groepen: een hoger doublet (γ) en een lager triplet (ϵ) ²²)²³), (fig. 3.3). De hoekafhankelijke gedeelten van deze golffuncties worden o.a. gegeven door van Santen en van Wieringen ²³):

$$\varepsilon \begin{cases} \frac{\sqrt{15}}{\sqrt{4\pi}} \frac{xy}{r^2} = xy \cdot f(r) \\ \frac{\sqrt{15}}{\sqrt{4\pi}} \frac{xz}{r^2} = xz \cdot f(r) \\ \frac{\sqrt{15}}{\sqrt{4\pi}} \frac{yz}{r^2} = yz \cdot f(r) \end{cases} \qquad \gamma \begin{cases} \frac{1/4 \sqrt{10}}{\sqrt{2\pi}} \cdot \frac{2z^2 - y^2 - x^2}{r^2} = z^2 \cdot f(r) \\ \frac{1/2 \sqrt{15}}{\sqrt{4\pi}} \cdot \frac{x^2 - y^2}{r^2} = (x^2 - y^2) \cdot f(r) \end{cases}$$

De invloed van het electrisch kristalveld is groot vergeleken met de spin-baan interactie, zodat deze verwaarloosd wordt. De banen dxy, dxz en dyz zijn sterk uitgebreid naar de ribben van de octaeder, dz² wijst in de richting van twee, $d(x^{2}-y^{2})$ naar de vier overige negatieve ionen.

Indien het kubische electrische veld zeer sterk wordt, is het mogelijk dat een toestand met een kleinere multipliciteit een lagere energie heeft dan de normale grondtoestand. Dit wordt schematisch weergegeven in fig. 3.4.

Figuur 3.4

De splitsing van de d-banen in d γ en d ϵ , (fig. 3.3) geldt voor één electron. Van Vleck ²⁴) heeft erop gewezen, dat, wanneer het electrisch veld zo sterk is dat het de Russel-Saunders koppeling kan doorbreken, een toestand met laagste energie verkregen wordt indien alle d-electronen zoveel mogelijk het d ϵ niveau bezetten. Dit wordt schematisch weergegeven in figuur 3.4.

Indien we aannemen dat het Ni³⁺-ion zich inderdaad in een zo sterk electrisch veld bevindt, dan zal het ion een d⁷;t⁶ γ^1 configuratie hebben, zodat we een magnetisch moment van ~ 2 μ_B kunnen verwachten.

De tetragonale deformatie kan nu ook op andere wijze verklaard worden. Het γ -electron van $\varepsilon^{6}\gamma^{1}$ bevindt zich in de dz² en dx^2-y^2 banen. Wanneer nu de octaeder iets uitgerekt wordt in de z-richting, dan zal dz^2 een lagere energie krijgen dan dx^2-y^2 , omgekeerd zal een uitrekking in de x en y richting het niveau van $dx^{2}-y^{2}$ iets doen dalen. Zodat bij een dergelijke deformatie de energie van het Ni³⁺-ion verlaagd wordt (fig. 3.3). Deze tetragonale deformatie is een voorbeeld van een algemeen principe, afgeleid door Jahn en Teller 25), wat als volgt samengevat kan worden 26); wanneer een niet-lineair molecule een gedegenereerde electronentoestand heeft, is er altijd tenminste één vibratierichting, waarin het molecule gedeformeerd kan worden, ten gevolge waarvan de energie verlaagd wordt. De octaeder kan afwisselend in drie onderling loodrechte richtingen gedeformeerd worden. In een kristalrooster zal de deformatie van de octaeders. indien deze aanzienlijk is, zich voor alle octaederholten in één richting instellen.

Bij hoge temperatuur zal dx^2-y^2 meer met electronen bezet raken; de deformatie van het rooster zal hierdoor afnemen en het energieverschil tussen dz^2 en dx^2-y^2 eveneens. Het gevolg is, dat in een klein temperatuurgebied de tetragonale deformatie van de octaeders verloren gaat. Bij afkoelen zal de vervorming bij een lagere temperatuur optreden, omdat de splitsing tussen dz^2 en dx^2-y^2 bij het begin der overgang nu zeer gering is.

Het gevonden temperatuur-onafhankelijk paramagnetisme voor de hexagonale vorm van NaNiO₂ wijst op een of meer laag liggende energieniveaux boven de grondtoestand. De χ -waarden van Li_{0.95}Ni_{1.05}O₂ konden, doordat het kwartsvaatje door de verbinding werd aangetast, niet bij voldoende hoge temperatuur gémeten worden om uit te maken of ook hier de susceptibiliteit een temperatuur-onafhankelijk gedeelte bevat.

Zowel de beschrijvingswijze met een vlakke covalente dsp^{2} binding, als die met behulp van het kristalveld, geeft een goede verklaring voor de eigenschappen van de lage temperatuurmodificatie van NaNiO₂. Uit deze eigenschappen is niet af te leiden of de deformatie het gevolg is van covalente binding of wel van het z g. Jahn en Tellereffect.

De beschrijving met behulp van het kristalveld geeft een directe verklaring voor het moment van Ni³⁺-ionen in Li_{0.95}Ni_{1.05}O_{2.00} en in de hexagonale modificatie van NaNiO₂.

Hoofdstuk 4

DEFORMATIE VAN HET SPINELROOSTER

4.1. Inleiding

In hoofdstuk 1 is uiteengezet, hoe Goodenough en Loeb ⁹) de tetragonale structuur van Mn_3O_4 en $ZnMn_2O_4$ verklaren door aan te nemen dat het Mn^{3+} ion op de octaederplaatsen covalente dsp^{2-} binding vormt met vier zuurstofionen. De sterkte van deze covalente binding is afhankelijk van de mate waarin de banen van de dsp^{2-} hybride en de 3p-banen van de zuurstofionen over elkaar vallen. Het verschil in assenverhouding van Mn_3O_4 (c/a = 1.16) en $ZnMn_2O_4$ (c/a = 1.14) schrijven Goodenough en Loeb toe aan de invloed van het ion in de tetraederholte op de covalente dsp^2 -binding. Wij zullen een korte samenvatting van deze argumentatie geven.

Ieder zuurstofion is omgeven door 4 positieve ionen; drie hiervan bevinden zich in octaederholten, - deze zullen we B-ionen noemen -, en één in een tetraederholte - een zgn. A-ion -. De B-ionen liggen in drie onderling loodrechte richtingen van het zuurstofion verwijderd. Kiezen we deze drie O-B richtingen als assen van een coördinatiestelsel: [001], [010], [100], dan bevindt het A-ion zich in de [III] richting. De drie onderling loodrechte 3p-banen van de zuurstofionen zijn zeer geschikt voor het vormen van covalente binding met de drie dichtstbijzijnde B-ionen. Wanneer nu alleen covalente binding met deze B-ionen optreedt, zullen de 3p-banen van het zuurstofion niet naar het A-ion wijzen. Omgekeerd zullen de 3p-banen ver verwijderd zijn van de B-ionen als er alleen covalente binding tussen zuurstof en A-ion optreedt. Wanneer zowel A- als B-ionen stabiele covalente binding kunnen vormen, zal er een concurrentiestrijd ontstaan tussen deze ionen; beide ionen streven naar maximale interactie met de electronenbanen van het zuurstofion.

Ionen met geheel gevulde d-schil, zoals Zn^{2+} , vertonen een voorkeur voor vieromringing. Dit wordt toegeschreven aan de mogelijkheid van deze ionen tot het vormen van stabiele covalente sp³-binding met de vier omringende negatieve ionen ¹⁰). De covalente sp³-binding tussen zink en zuurstof in ZnMn₂O₄ verzwakt de covalente dsp²-binding tussen mangaan en zuurstof, zodat de tetragonale deformatie en dus ook de assenverhouding c/a in ZnMn₂O₄ kleiner is dan in Mn[Mn₂]O₄. Goodenough en Loeb nemen aan dat het Mn²⁺-ion (d⁵) op de tetraederplaats geen sp³-binding vormt.

Indien bovenstaande theorie juist is, moet de assenverhouding c/a toenemen als we in $ZnMn_2O_4$ een deel van het zink vervangen door een ion wat geen covalente binding vormt b.v. Mg^{2+} . De verbinding $Mg[Mn_2]O_4$ zou dan een assenverhouding c/a=1.16 moeten hebben.

Om na te gaan wat de invloed van het tweewaardige ion in de

manganieten op de tetragonale deformatie van het rooster is, hebben we de volgende verbindingen onderzocht: $Mg_xZn_{1-x}Mn_2O_4$ (x=0;0.2;0.5 en 1), $CoMn_2O_4$, $NiMn_2O_4$, $CuMn_2O_4$. Naar aanleiding van de structuur van NiMn_2O_4 werden ook onderzocht de verbindingen ZnNiMnO_4, ZnCoMnO_4, ZnMn_xAl_2_,O_4 (x=1;0.4;0.2), ZnCrMnO_4, CrMn_2O_4, GaMgMnO_4, GaCoMnO_4 en GaNiMnO_4.

4.2. Experimentele gegevens

a. Bereiding

Voor alle verbindingen werd één van de kwantitatieve bereidingswijzen toegepast. Deze worden besproken in par. 2.3. Gegevens omtrent de bereiding zijn opgenomen in de tabellen 4.1, 4.2 en 4.3. Cu Mn_2O_4 kon door ons niet in zuivere toestand verkregen worden. Pogingen om ZnCuMnO4 en ZnMgMnO4 te bereiden zijn mislukt. Slechts ongeveer 50% van het mangaan bleek vierwaardig te zijn. De bereiding van Mg Mn_2O_4 leverde moeilijkheden op. Pas na zeer lang verhitten op 1000°C werd een preparaat verkregen wat geen MgO meer bevatte *).

b. Magnetische metingen

De gegevens betreffende CoMn₂O₄, NiMn₂O₄ en Mn₃O₄ zijn weergegeven in fig. 4.2 en tabel 4.1. De $1/\chi$ -T kromme van ZnNiMnO₄ en ZnCoMnO₄ zijn gegeven in fig. 4.3; die van GaMeMnO₄(Me=Ni, Co, Mg) in fig. 4.4. De susceptibiliteiten van deze verbindingen zijn vermeld in tabel 4.2. Alle waarden van de susceptibiliteiten zijn gecorrigeerd voor diamagnetisme. Hiervoor werd gebruik gemaakt van de diamagnetische correcties voor de verschillende ionen, welke gegeven worden door Klemm⁷).

c. Kristallografische gegevens

De roosterconstanten van de verbindingen $Zn_{(1-x)}Mg_xMn_2O_4$ met x=0,0.2 en 0.5 werden bepaald met een Unicam 9 cm. camera met zgn. omgekeerde films. De diffractie-lijnen van MgMn_2O_4 zijn breed, zodat de roosterconstanten niet nauwkeurig bepaald konden worden. De reflecties van de verbindingen $ZnMn_xAl_{2-x}O_4$ zijn diffuus en zeer breed; alleen de lage reflecties komen voor.

 $ZnAl_2O_4$ en $ZnMn_2O_4$ geven, indien zij op dezelfde wijze bereid zijn, een duidelijk röntgendiagram. $ZnMn_2O_4$ is tetragonaal beneden 960°C. Indien deze verbindingen geen mengkristallen vormen bij 1000°C moeten we voor $ZnMnAlO_4$ een diagram krijgen met scherpe lijnen van $ZnAl_2O_4$ en $ZnMn_2O_4$. Aangezien de poederopnamen van $ZnMnAlO_4$ naast zeer brede lijnen van een kubisch spinel, zeer zwakke en vage reflecties van een tetragonale fase geven, moet worden aangenomen, dat bij de bereidingstemperatuur mengkristallen gevormd worden, maar dat ontmenging optreedt bij een zo lage temperatuur, dat de beweeglijkheid van de ionen te klein is om nog – voor röntgenstralen – grote kristalaggregaten te vormen.

*) Advies van Dr. G.H. Jonker, Natuurkundig Laboratorium N.V. Philips' Gloeilampenfabrieken.

Verbinding	nding Mn ₃ O ₄ CoMn ₂ O ₄		In ₂ O ₄	NiMn ₂ O ₄		ZnMn ₂ O ₄ Zn _{0.8} Mg _{0.2} Mn ₂ O ₄		$\mathrm{Zn}_{0.5}\mathrm{Mg}_{0.5}\mathrm{Mn}_2\mathrm{O}_4$		MgMn ₂ O ₄				
Bereiding Mn-oxalaat		Co(I Mn()	NO ₃) ₂ NO ₃) ₂	NiNO3 Mn-oxalaat		Mn O + Zn O		ZnO + MgO + MnO		ZnO + MgO + MnO		MgCO ₃ Mn-oxalaat		
Stooktemp. 11000		110	000	10	10000		500 500	15 uur 11500 20 uur 8500		15 uur 1150 ⁰ 20 uur 850 ⁰		60 10	uur 000	
ΔW %	- 1	0.1	+	1.0	+	0.9	- (0.4	+	0.3	- 1	L.O	- 1	0.4
χ-waarden	T	χ_{M} ,10 ³	Т	$\chi_{\rm M} 10^3$	Т	$\chi_{M} \cdot 10^3$	Т	$\chi_{\rm M}.10^3$	Т	$\chi_{M} 10^{3}$	Т	χ_{M} .10 ³	т	$\chi_{M} 10^3$
	80 196 288 289 370 481 514 520 653 772 901 1028 1130 1179 1242	$\begin{array}{c} 33.0\\ 14.5\\ 12.2\\ 12.3\\ 10.9\\ 9.63\\ 9.30\\ 9.12\\ 8.17\\ 7.40\\ 6.75\\ 6.22\\ 5.83\\ 5.63\\ 5.44 \end{array}$	194 295 451 609 693 781 851 921 1014 1089 1130 1139	$\begin{array}{c} 10.6 \\ \cdot 9.38 \\ 8.07 \\ 7.11 \\ 6.59 \\ 6.18 \\ 5.94 \\ 5.80 \\ 5.63 \\ 5.63 \\ 5.58 \\ 5.55 \end{array}$	194 289 297 486 669 834 983 1111	$17.3 \\ 11.5 \\ 11.6 \\ 8.74 \\ 7.16 \\ 6.25 \\ 5.58 \\ 5.11 \\ 9.11 \\ $	80 191 273 287 293 399 550 640 760 851	3.83 3.85 3.67 3.65 3.58 3.23 2.81 2.59 2.33 2.16	81 198 290 418 573 700 806 962 1 290	5.68 4.58 3.91 3.39 2.87 2.54 2.32 2.07 3.95	80 292 381 520 665 787 867 881 893 977 1097 1119	5.39 3.92 3.48 2.97 2.58 2.35 2.19 2.21 2.15 2.04 1.94 1.91	79 293 338 380 481 705 880 998 1164 291	$16.07 \\ 3.98 \\ 3.76 \\ 3.58 \\ 3.21 \\ 2.59 \\ 2.25 \\ 2.09 \\ 2.05 \\ 3.97 \\$
0°K	14	530	-	642	-	392	-	450		437		422	- 4	450
CM	9	.62	8	.84	7	.66	5	.62	5.	76	5.	66	5.	99
μ				1		4.	74µ _B	4.8	Ομβ	4.76	δµ, _B	4.90	ΟμιΒ	

Tabel 4.1

Voor verklaring der tekens zie tabel 4.2.

Tabel 4.2

Verbinding	VerbindingZnCoMnO4Bereid uitZn-oxalaat Co-oxalaat Mn-oxalaatTemp.700°C		ZnN	liMnO ₄	GaC	GaCoMnO ₄		iMnO ₄	$GaMgMnO_4$		
Bereid uit			Zn-oxalaat Ni(NO ₃) ₂ Mn-oxalaat 1000°C		Ga ₂ Co-0 Mn-	Ga ₂ O ₃ Co-oxalaat Mn-oxalaat		Ga ₂ O ₃ Ni(NO ₃) ₂ Mn-oxalaat		Ga ₂ O ₃ Mg(CO ₃) Mn-oxalaat	
Temp.					1000°C 800°C		1000º C 800º C		1050° C		
∆W %	(0.0	=	0.8	-	0.2	+	0.3	-	0.8	
Magn. metingen	Т	$\chi_{M}.10^3$	т	$\chi_{M}.10^{3}$	т	$\chi_{M} 10^{3}$	т	$\chi_{M} 10^3$	т	χ_{M} .103	
	80 197 290 451 573 759 875 1289	$\begin{array}{c} 20.3 \\ 10.4 \\ 8.11 \\ 6.33 \\ 5.41 \\ 4.43 \\ 3.95 \\ 8.16 \end{array}$	204 289 467 635 750 864 980 1290	$\begin{array}{c} 8.63 \\ 6.96 \\ 5.10 \\ 4.13 \\ 3.60 \\ 3.22 \\ 2.95 \\ 6.97 \end{array}$	199 291 437 579 748 909 1061 1162	$13.7 \\ 11.2 \\ 8.70 \\ 7.05 \\ 5.88 \\ 5.07 \\ 4.48 \\ 4.18 \\$	79 197 291 427 593 750 891 1018 1138	$\begin{array}{c} 38.1 \\ 12.7 \\ 10.2 \\ 7.50 \\ 5.79 \\ 4.81 \\ 4.16 \\ 3.70 \\ 3.36 \end{array}$	207 291 390 489 593 693	$\begin{array}{c} 9.39 \\ 7.44 \\ 6.02 \\ 4.96 \\ 4.17 \\ 3.64 \end{array}$	
0	-	260	-	- 200		264	-	150	-	112	
CM	4	. 50	3	. 41	5	.95	4.30		3.00		
μ	μ			The second				4.90			

Verklaring der tekens:

 $\Delta W = \frac{\text{berekend gewicht} - \exp. \text{ gewicht}}{x 100}$

berekend gewicht

 Θ = asymptotische Curie temperatuur χ_{M} = susceptibiliteit per grammolecule

 $C_{M} = Curie constante uit \chi_{M} = \frac{C_{M}}{T - \Theta}$

 \downarrow = gemeten bij dalende temp. T = absolute temperatuur

Ta	hel	4	2
1 a	Der	- Th -	0

Verbinding	Bereid uit	Meth.	Temperatuur	Atm.	∆w%	Structuur
CrMn ₂ O ₄	Cr ₂ O ₃ Mn-oxalaat	В	24 uur 1000°C	02	- 0.6	Hausmanniet $\begin{array}{c} c = 8.75 \text{ \AA} \\ a = 8.33 \text{ \AA} \end{array}$
ZnCrMnO4	Cr ₂ O ₃ Mn-oxalaat Zn-oxalaat	A	30 uur 10500	O2	- 0.9	Hausmanniet $\begin{array}{c} c = 8.62 \text{ Å} \\ a = 8.25 \text{ Å} \end{array}$
CuMn ₂ O ₄	Cu Mn-oxalaat	А	40uur 8500	O2	+ 0.1	poederdiagram vertoont naast spinellijnen nog andere lijnen
MnAl ₂ O ₄	$\frac{\mathrm{Mn(NO_3)_2}}{\mathrm{Al(NO_3)_3}}$	А	10 uur 11000	N ₂ +H ₂ 3:1	+ 0.3	spinel $a = 8.195 \text{ Å}$ $\mu = 5.65$
ZnMnA1O ₄	Zn(NO ₃) ₂ Mn(NO ₃) ₂ Al(NO ₃) ₃	А	30 uur 10000 8 uur 8000 24 uur 6500	lucht	- 1.0	zeer vage en brede spinel- en Hausmanniet- lijnen
ZnMn _{0.4} Al _{1.6} O ₄	Zn(NO ₃) ₂ Mn(NO ₃) ₂ Al(NO ₃) ₃	А	30 uur 1000° 8 uur 800° 24 uur 650°	lucht	- 1.0	zeer vage en brede spinellijnen
ZnMn _{0.2} Al _{1.8} O ₄	Zn(NO ₃) ₂ Mn(NO ₃) ₂ Al(NO ₃) ₃	А	24 uur 1000° 8 uur 800° 15 uur 650°	lucht	+ 0.6	vage en brede spinellijnen

Figuur 4.3

Figuur 4.4

In tabel 4.4 worden de celafmetingen en de structuur van de overige verbindingen vermeld.

	Eiger	ı metin	gen	Litteratuur				
	а	С	c/a	a	с	c/a		
Mn ₃ O ₄	8.151	9.450	1.159	8.157	9.454	1.1592)		
ZnMn ₂ O ₄	8.087	9.228	1.141	8.092	9.244	1.142^{2})		
Zn0.8Mg0.2Mn2O4	8.091	9.248	1.143					
Zno5Mgo5Mn2O4	8.095	9.278	1.146	125				
MgMn ₂ O ₄	(8.07)	(9.31)	1.15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
CoMn ₂ O ₄	8.10	9.31	1.15			1.15 32)		
NiMn ₂ O ₄	8.38		124					
CuMn ₂ O ₄	(8.30)			8.28 31)				
CrMn ₂ O ₄	8.33	8.75	1.05					
ZnCrMnO ₄	8.25	8.62	1.04					
ZnCoMnO ₄	8.25							
ZnNiMnO ₄	8.31							
GaCoMnO ₄	8.33			-				
GaNiMnO ₄	8.38			10000				
GaMgMnO ₄	8.35							

Tabel 4,4

Het verschil in verstrooiend vermogen van de verschillende ionen van de ijzergroep is gering. Alleen door zeer nauwkeurige intensiteitsmetingen is het mogelijk om uit te maken hoe de verdeling der ionen over tetraeder- en octaederholten is.

4.3. Discussie

a. Het systeem ZnMn₂O₄ - MgMn₂O₄

De assenverhouding c/a neemt toe naarmate meer zink door magnesium vervangen wordt.

 $(Zn_{(1-x)}Mg_x)Mn_2O_4$:

x=0	c/a=1.141
0.2	1.143
0.5	1.146
1	1.150

Dit is in overeenstemming met het beeld dat Goodenough en Loeb geven voor de invloed van covalente binding in de tetraederholte op de assenverhouding, zoals dit uitvoerig is besproken in par. 4.1. De assenverhouding van $MgMn_2O_4$ zou dan 1.16 moeten zijn. De experimentele waarde is kleiner c/a=1.15. Deze lagere waarde zou het gevolg kunnen zijn van een geringe omkering van $MgMn_2O_4$. Het moment van het Mn^{3+} ion $\mu=4.74-4.90\mu_B$ komt goed overeen met de "spinonly" waarde. ZnMn₂O₄ is antiierromagnetisch beneden ~ 200°K. Het antiferromagnetische Neelpunt verschuift naar lagere temperatuur naarmate het magnesiumgehalte in de verbinding toeneemt, (fig. 4.1). De kromming in de $1/\chi$ -T curve bij hoge temperatuur kan veroorzaakt worden door een overgang van tetragonale naar kubische structuur of door verhuizing van Mn-ionen van octaeder- naar tetraederholten.

b. Mn₃O₄

De sterke toename van de susceptibiliteit bij lage temperatuur en de negatieve waarde van $@=-530^{\circ}K$ doen verwachten dat Mn_3O_4 beneden $80^{\circ}K$ ferrimagnetisch wordt. De door ons gevonden χ -waarden komen goed overeen met de metingen beneden kamertemperatuur van Moore, Ellis en Selwood ³⁰). De Curieconstante voor het rechte deel van de $1/\chi$ -T lijn (fig. 4.2) is $C_M = 9.62$. Wanneer de Curieconstante berekend wordt uit de momenten, die gevonden zijn voor de mangaanionen in MnAl₂O₄(μ_{Mn}^{2+} = $5.65\mu_B$) en ZnMn₂O₄(μ_{Mn}^{3+} = $4.74\mu_B$), vinden we C_M ber. = 9.61.

c. CoMn₂O₄

Bij 80°K gedraagt CoMn₂O₄ zich als een ferromagnetische verbinding. De negatieve waarde van Θ =-730°K wijst erop dat tussen 80 en 194°K een ferrimagnetisch Neèlpunt ligt. De assenverhouding is c/a=1.15. Indien de tetragonale deformatie veroorzaakt wordt door de mangaanionen in de tetraéderholten, moet aangenomen worden, dat de Co²⁺-ionen zich voor een belangrijk deel in de tetraederholten bevinden. Een gebogen 1/X-T lijn (fig. 4.2) kan het gevolg zijn van óf een temperatuur onafhankelijk paramagnetisme óf een verandering van het moment van één der ionen. De gebogen lijn kan niet veroorzaakt worden door een toenemende omkering van het spinel bij hoge temperatuur, aangezien de susceptibiliteit bij kamertemperatuur na snelle afkoeling van af 1150°K dezelfde waarde heeft als voor de verhitting op die temperatuur.

Het is bekend dat Co²⁺-ionen in tetraederholten temperatuur onafhankelijk paramagnetisme vertonen ¹⁷). De 1/ χ -T kromme kan niet in zijn gehele verloop beschreven worden met een formule voor de susceptibiliteit χ =A+ $\frac{B}{T-\Theta}$. De sterke kromming bij hoge temperatuur zou er op wijzen dat één der ionen een met de

temperatuur zou er op wijzen dat een der ionen een met de temperatuur toenemend moment vertoont.

Het temperatuuronafhankelijk paramagnetisme van een ion wordt veroorzaakt door één of meer energie niveau's, die dicht boven de grondtoestand van het ion liggen. De afstand van deze niveau's tot de grondtoestand wordt sterk beinvloed door de symmetrie der omgevende negatieve ionen. Het Co²⁺-ion bevindt zich in CoMn₂O₄ in een gedeformeerde tetraeder van zuurstofionen. Vermoedelijk wordt de afbuiging van de 1/ χ -T lijn veroorzaakt door een toenemen van het moment van het Co²⁺-ion op de tetraederplaats.

De Curieconstante van CoMn₂O₄ is C_M=9.56. Indien we gebruik maken van het moment van Mn³⁺-ionen in ZnMn₂O₄ dan vinden we een moment μ =4.78 μ _B voor het Co²⁺-ion in CoMn₂O₄.

d. NiMn₂O₄

Deze verbinding is kubisch in tegenstelling tot de manganieten van Zn²⁺, Co²⁺, Mn²⁺ en Mg²⁺, welke tetragonaal zijn. Ionen met d³⁻ en d⁸⁻configuratie vertonen in spinellen een sterke voorkeur voor zes omringing ⁴). Het tweewaardig nikkelion heeft d⁸⁻ configuratie, zodat het waarschijnlijk is dat de verbinding de ionenverdeling: Mn [NiMn]O₄ heeft.

Wanneer we aannemen dat nikkelmanganiet driewaardig mangaan bevat, moet volgens de theorie van Goodenough en Loeb het Mn³⁺⁻ion in de octaederholte covalente dsp²-binding vormen. De verbinding Mn NiMn O4 zou dan tetragonaal moeten zijn, evenals dat bij koperferriet het geval is. De assenverhouding van deze verbinding, $Fe_xCu_{1-x}[Cu_xFe_{2-x}]O_4$ is afhankelijk van het aantal Cu^{2+} -ionen in de octaederholten ¹³): c/a=1.06 voor x=0.44 en c/a=1.035 voor x=0.37 (700°C). Het feit dat Mn NiMn O₄ kubisch is, zou er op kunnen wijzen dat deze verbinding niet driewaardig mangaan, maar alleen twee en vierwaardig mangaan bevat. De ionisatie spanning van het Mn4+-ion is niet nauwkeurig bekend. Volgens Verwey e a. 5) vergt de splitsing van 2 Mn³⁺ in Mn²⁺en Mn^{4+} 18 eV. Hoewel het Mn^{4+} -ion (d³) in een octaederholte extra stabiel is, - omdat de drie electronen zich in het lagere dɛ niveau bevinden -, lijkt het niet waarschijnlijk dat dit verschil in ionisatiespanning gecompenseerd kan worden door een gunstiger roosterenergie. Vierwaardig mangaan kan evenwel in een spinelrooster voorkomen: Uit de magnetische metingen blijkt, dat ZnNiMnO4 en ZnCoMnO₄ 2-4 spinellen zijn. Het moment van het mangaanion in de beide verbindingen kan berekend worden als we de momenten van tweewaardig cobalt en nikkel in octaederholten kennen. In de verbindingen GaCoMnO₄ en GaNiMnO₄ is het moment van de Co²⁺⁻ en Ni²⁺ionen in de octaederholten: $\mu_{Co}^{2+}=4.86\mu_B$ en $\mu_{Ni}^{2+}=3.22\mu_B$.

Met behulp van deze waarden vinden we voor het moment van het Mn^{4+} ion in GaNi $MnO_4\mu$ =4.1 μ_B en in GaCo $MnO_4\mu$ =3.6 μ_B . Het grote verschil tussen deze waarden kan het gevolg zijn van het feit, dat het moment van Co²⁺-ionen in octaederholten varieert voor verschillende verbindingen ¹⁷). De mogelijkheid dat de verbinding ZnCo MnO_4 driewaardig cobalt en mangaan bevat, is echter uitgesloten (zie tabel 4.5).

Second Plant In the second second	C _M ber.	C _M ber.	C _M exp.
	"spinonly"	$\mu_{Co}^{2+=4.86}\mu_{B}$	and the second second
ZnCo ²⁺ Mn ⁴⁺ O ₄	3.75	4.60	hill and
$ZnCo^{3+}Mn^{3+}O_4$	6.00	or table new parts	and high states
ZnCo ^{III} Mn ³⁺ O ₄ *)	3.00	State State State	
ZnCoMnO ₄ exp.	Server 17 the last	COLUMN STREET	4.50

Tabel 4.5

*) Co^{III} : diamagnetisch driewaardig cobalt.

Om uit te maken of alle verbindingen, die driewaardig mangaan in octaederholten bevatten, tetragonaal zijn, hebben we getracht een aantal spinellen te maken, waarvan de helft der octaederholten bezet is met Mn³⁺-ionen.

ZnMnAlO₄: een verbinding met samenstelling ZnMnAlO₄ is bij lage temperatuur instabiel. Het is waarschijnlijk, dat de roosterconstanten van het kubische ZnAl₂O₄ (a=8.086 Å) en het tetragonale ZnMn₂O₄ (a=8.09 Å, c=9.24 Å) teveel verschillen om nog een mengkristal van deze samenstelling te kunnen geven. (Vergelijk par. 4.2 c).

 $ZnCrMnO_4$ en $CrMn_2O_4$ hebben beide een tetragonale structuur met een assenverhouding c/a=1.04 resp. 1.05. Het is dus waarschijnlijk dat $CrMn_2O_4$ een omgekeerd spinel is en evenals $Zn[MnCr]O_4$ één Mn^{3+} -ion op de octaederplaats heeft. Het chroommanganiet heeft dus de configuratie $Mn^{2+}[Cr^{3+}Mn^{3}]O_4$.

GaMgMnO₄, GaCoMnO₄ en GaNiMnO₄ hebben een kubisch spinelrooster. Indien we aannemen dat het galliumion de tetraederholten volledig bezet, kunnen we uit de Curieconstante van GaMgMnO₄ (fig. 4.4) het moment voor Mn³⁺-ionen in octaederholten berekenen: $\mu = 4.89\mu_B$. Met behulp van deze waarde berekenen we voor het moment van Co²⁺-ionen in de octaederholten van GaCoMnO₄: $\mu = 4.86\mu_B$. Cossee ¹⁷) vindt voor het moment van het Co²⁺-ion in Co_{0.119}Mg_{0.881}O $\mu = 4.82\mu_B$.

Op dezelfde wijze vinden we voor het moment van de Ni³⁺⁻ionen in de octaederholten van GaNiMnO₄ μ =3.22 μ _B. Uit röntgenopnamen bij -150°C blijkt dat GaNiMnO₄ en GaCowlnO₄ ook bij deze temperatuur niet tetragonaal zijn.

De door ons onderzochte verbindingen A[BMn³⁺]O zijn tetragonaal voor $B=Cr^{3+}$ en $A=Zn^{2+}$ of Mn^{2+} en kubisch indien $A=Ga^{3+}$ en $B=Ni^{2+}$, Co^{2+} of Mg^{2+} is. Hieruit kunnen we concluderen dat het optreden van een gedeformeerd rooster afhankelijk is van de electronen configuratie der andere in het rooster aanwezige ionen.

Uit de kristallografische eigenschappen is dus niet af te leiden of nikkel manganiet nu de configuratie Mn^{3+} [Ni²⁺Mn³⁺]O₄ (1) of Mn^{2+} [Ni²⁺Mn⁴⁺]O₄ (2) heeft. Aangezien we niet weten wat het moment van Mn³⁺-ionen in tetraederholten is, zullen ook de magnetische gegevens geen aanwijzing kunnen geven of nikkel manganiet de samenstelling (1) dan wel (2) heeft.

Met de Curieconstanten van MnAl₂O₄ (tabel 4.4) en ZnNiMnO₄ (tabel 4.2) berekenen we voor de configuratie (2) C_M=7.60 (exp. 7.66). Wanneer de (1) de ware configuratie weergeeft, dan vinden we, - met behulp van Curieconstanten van NiMn₂O₄ en GaNiMnO₄ (C_M=4.30) -, voor het moment van Mn³⁺-ionen in tetraederholten μ =5.18 μ_B .

e. CuMn₂O₄

Het is ons niet gelukt deze verbinding zuiver te verkrijgen. Het röntgendiagram vertoont behalve spinel lijnen (a=8.30Å) nog andere niet geïdentificeerde lijnen. Volgens Kurlina e.a.³¹) is deze verbinding een kubisch spinel met a=8.28Å.

Volgens de theorie van Goodenough en Loeb moet deze ver-

binding tetragonaal zijn, daar zowel Mn³⁺- als Cu²⁺-ionen in octaederholten covalente dsp²-binding kunnen vormen, tenzij aangenomen wordt, dat deze verbinding een normaal manganiet met 2 en 4 waardig mangaan zou zijn.

4.4. Jahn en Teller effect in spinelroosters

In par. 2.3 c is gebleken dat de deformatie van het rooster van $NaNiO_2$ bij lage temperatuur, behalve door aanname van covalente binding, ook goed verklaard kan worden met behulp van de theorie van het kristalveld. In deze paragraaf zal onderzocht worden of de deformaties van het spinelrooster het gevolg kunnen zijn van een Jahn en Teller-effect.

De vijf d-banen van een ion worden in een octaederholte gesplitst in twee met hogere energie (γ) en drie met lagere energie (ε). Van Santen en van Wieringen ²³) hebben, rekening houdend met de Coulombafstoting, de verdeling van de electronen over ε en γ voor ionen met verschillende aantallen d-electronen berekend. Het Mn³⁺-ion met vier d-electronen heeft in een octaeder d⁴, $\varepsilon^{3}\gamma^{1}$ config ratie. Evenals bij het Ni³⁺-ion in NaNiO₂ is hier één γ -electron aanwezig. Het Mn³⁺-ion zal dus gestabiliseerd worden wanneer het zich in een tetragonaal gedeformeerde octaeder bevindt (zie par. 3.3 c).

De tetragonale structuren van CuCr₂O₄ en NiCrO₄ kunnen niet goed verklaard worden met behulp van covalente binding, zoals dat bij de manganieten het geval is.

Verbinding	c/a
$\begin{array}{c} CuCr_2O_4\\ NiCr_2O_4\\ CoCr_2O_4\end{array}$	0.92 ⁻ 1.025 1.00

Deze drie verbindingen zijn normale 2-3 spinellen ³³)³⁴). NiCr₂O₄ is kubisch boven 36°C. Wanneer een ion omgeven is door vier negatieve ionen in een tetraeder, is de splitsing van het d-niveau juist omgekeerd van teken als die van een ion in octaederholte ³⁵). De banen van het ε -niveau, dxy, dxz, dyz hebben dan de hoogste energie. De ionen Co²⁺, Ni²⁺ en Cu²⁺ hebben in een tetraedrisch veld resp. $\gamma^4 \varepsilon^3$; $\gamma^{3.8} \varepsilon^{4.2}$ en $\gamma^4 \varepsilon^5$ configuratie.

In eerste benadering zijn dus van de drie banen (dxy, dxz, dyz) van de ε -schil bij het Cu²⁺-ion twee banen en bij het Ni²⁺-ion één baan dubbel met electronen bezet. Uitrekking van de tetraeder in één richting (z) zal een der banen (dxy) stabiliseren. Inkrimping in de z richting en uitrekking in de x en y richting zal twee banen n.l. dzy en dxz stabiliseren, zodat het Ni²⁺-ion een lagere energie zal krijgen als de tetraeder in één richting uitgerekt wordt (c/a>1). Het Cu²⁺-ion zal gestabiliseerd worden als de tetraeder in twee richtingen uitgerekt wordt (c/a<1) Bij het Co²⁺-ion in tetraederholte zijn de drie ε -banen gelijkelijk met electronen bezet, zodat deformatie geen verlaging van energie ten gevolge heeft.

Conclusie

Spinellen, welke Mn³⁺-ionen in octaederholten bevatten, worden niet onder alle omstandigheden tetragonaal. Of deformatie op zal treden hangt nauw samen met de electronenconfiguratie van de andere positieve ionen. De deformatie van het spinelrooster kan het gevolg zijn van covalente dsp²-binding of van een Jahn en Teller effect. De tetragonale structuur van de chromieten kan niet goed verklaard worden door covalente binding, maar lijkt in overeenstemming met de beschrijving van de bindingstoestand der ionen volgens de kristalveldtheorie. Niet zeker is of deze laatste theorie in het geval van de manganieten een betere beschrijving geeft dan de voorstelling met covalente dsp²-binding.

Hoofdstuk 5

KATION-LAGENROOSTERS I LiCoO₂, LiMnO₂, Li₂MnO₃, Li₂RhO₃

5.1. Inleiding

Naar aanleiding van de magnetische eigenschappen van $(Li_{0.95}Ni_{0.05})NiO_2$ en NaNiO₂ werden, om een beter inzicht te krijgen in de bindingstoestand en de magnetische wisselwerking in een kation-lagenrooster, ook de overeenkomstige verbindingen van de overige driewaardige ionen van de ijzergroep onderzocht. De verbindingen LiCrO₂, NaCrO₂ ³⁶), NaCrS₂, KCrS₂ ³⁷)³⁸), LiVO₂ en NaVO₂ ³⁶), hebben hexagonale symmetrie en zijn isomorf met LiNiO₂. De kristalstructuren van LiCoO₂, LiMnO₂ ³⁹) en Li₂MnO₃ worden in de litteratuur niet vermeld. De laatste twee verbindingen vertonen orthorhombische symmetrie. LiCoO₂ blijkt isomorf met LiNiO₂ te zijn. De susceptibiliteit van Li₂RhO₃ werd bepaald tussen 300 en 700°K. Hiervoor werd gebruik gemaakt van één der preparaten welke door Scheer ⁴¹) reeds onderzocht werden bij lage temperatuur.

5.2. Experimenteel gedeelte

a. Bereiding

De verbinding LiCoO2 werd op twee manieren bereid.

1) uit Li₂O en Co₃O₄ in een magnesiumoxyde-schuitje op 900°C in droge zuurstofatmosfeer.

2) Een mengsel van Li_2CO_3 en Co_3O_4 werd in een zilveren schuitje in zuurstof op 800°C verhit.

De kleur van $LiCoO_2$ is zwart, de verbinding is stabiel in vochtige lucht. De oxyderende vermogens van de preparaten, die voor de magnetische metingen gebruikt werden, zijn:

LiCoO2	Ι	0.996	aeq	mol
LiCoO2	II	0.981	aeq	mol.

Nadat pogingen om LiMnO₂ te bereiden, door mengsels van Li $_2$ CO₃ of Li $_2$ O en MnO te verhitten in zuurstof, waren mislukt, werd deze verbinding vlot verkregen uit Li $_2$ O en Mn $_2$ O₃.

Een mengsel van Li_2O en Mn_2O_3 werd in een zilveren kokertje in een afgesloten vacuum kwartsbuisje gedurende 5 uur op 750°C verhit. Het gehalte actieve zuurstof is 0.993 aeq/mol. De verbinding is bruinzwart en niet hygroscopisch.

Li2MnO3 werd op drie verschillende manieren bereid.

a) Een mengsel van Li₂CO₃ en MnO werd opgelost in HNO₃ en ingedampt. Na verhitten in lucht op 500°C werd het mengsel overgebracht in een magnesiumoxydeschuitje en op 800°C in zuurstof gestookt. Gehalte actieve zuurstof: 2.12 aeq/mol.

- b) Een mengsel van Li₂CO₃ en MnO werd op 800°C in zuurstof verhit.
- Gehalte actieve zuurstof: 2.06 aeq/mol.
- c) Een mengsel van Li₂O en MnO werd in een zilveren schuitje op 700°C in zuurstof verhit. Gehalte actieve zuurstof: 1.96 aeq/ mol.

De verbinding is roodbruin en stabiel in vochtige lucht.

b. Kristallografische gegevens

De verbinding LiCoO₂ is isomorf met LiNiO₂ en heeft als celafmetingen: a=2.81Å, c=14.0Å (vergl. 2.1). De atoomposities in de ruimtegroep D_{3d}^5 -R3m zijn:

(000);
$$(1/3, 2/3, 1/3)$$
; $(2/3, 1/3, 1/3) +$
 $3Co in (0, 0, 0)$
 $3Li in (0, 0, \frac{1}{2})$
 $6O in (00z), (00\overline{z}).$

Van enkele lijnen van het poederdiagram werden de intensiteiten bepaald met een Hilger en Watts spectrometer met geigerteller. De zuurstofparameter, berekend met behulp van deze intensiteiten is z=0.275.

h k l	I _{exp.}	I _{ber.} met z=0.275
006	37	38
011	189	172
012	58	58

Het Co^{3+} -ion bevindt zich in een trigonaal gedeformeerde octaeder van zuurstofionen. LiMnO₂ wijkt, wat structuur betreft, af van alle andere lithiumverbindingen, die door ons onderzocht werden. De door ons gevonden afbuigingshoeken komen volledig overeen met de kortgeleden door Johnston en Heikes ³⁹) gepubliceerde waarden. De celafmetingen zijn a=2.81Å, b=5.76Å, c=4.58Å

Het Debye-Scherrer diagram van Li_2MnO_3 vertoont, behalve lijnen behorend tot eenzelfde hexagonale cel als voor LiCoO_2 gevonden wordt, nog enkele extra lijnen (tabel 5.1). Met behulp van een orthorhombische cel met gelijke c-as als de hexagonale cel kunnen alle lijnen geindiceerd worden. Een dergelijke cel wordt voor $\text{Li}_2\text{SnO}_3^{40}$) en $\text{Li}_2\text{RhO}_3^{41}$) gevonden; de c-as is voor deze structuur echter twee maal zo groot. Deze verbindingen Li_2MeO_3 zijn opgebouwd uit lagen lithium en lagen 1 Li^++2 Me^{4+} . In de gemengde lagen vormen de Me^{4+} -ionen een honingraatrooster; in het centrum van iedere zesring bevindt zich een Li^+ -ion. De zeer sterke reflectie 003 van Li_2MnO_3 wijst er op, dat twee opeenvolgende lagen positieve ionen, loodrecht op de c-richting, verschillend bezet zijn. Waarschijnlijk is ook het rooster van Li_2MnO_3 opgebouwd uit lithiumlagen en gemengde lithium- en mangaanlagen (1 : 2). De verdeling van de ionen in de lagen of de stapeling van de lagen op elkaar is anders dan bij Li_2RhO_3 .

Int.	h k l	sin ² ϑ exp.	sin ² ber.	Int.	h k l	sin ² 0 exp.	sin ² ber.
SS	003	0.043	0.042	S	208	0.451	0.451
Z	020	.052	.052	S	060	.465	.464
Z	021	.057	.056	MS	063	.505	.506
ZZ	022	.071	.070	ZZ	2010	.623	.618
ZZ	023	.094	.093	Z	0012	.669	.695
ZZZ	024	.127	.126	MS	404	.693	.695
MS	201	.161	.162	Z	2011	.716	.715
S	204	.229	.229	ZZ	407	.844	.848
ZZ	205	.271	.271	Z	408	.918	.917
MS	207	.381	.382	1.1.1.5.10	SILLEN.	11/2.1	119-10

Tabel 5.1 Poederopname van Li MnO : Fekg-straling

c. Magnetische gegevens

De gemeten χ -waarden zijn verzameld in tabel 5.2. De beide preparaten van LiCoO₂ zijn zeer zwak paramagnetisch. De susceptibiliteit is constant tussen 300 en 750°K (fig. 5.1). De metingen werden verricht in vacuum in een open kwartsvaatje. De toename van de susceptibiliteit bij hoge temperatuur kan niet het gevolg zijn van een geringe ontleding, omdat na snel afkoelen tot kamertemperatuur de susceptibiliteit weer dezelfde waarde heeft als voor de verhitting.

Indien we gebruik maken van een correctie voor het diamagnetisme van LiCoO₂ χ_D =-28.6x10⁻⁶ e.m.e., vinden we voor het temperatuur-onafhankelijk paramagnetisme van de preparaten I en II de waarden 0.125.10⁻³ resp. 0.130.10⁻³ e.m.e.

De diamagnetische correctie is samengesteld uit de waarden die Klemm 7) geeft voor de verschillende ionen. De geringe toename van de χ bij lage temperatuur wordt waarschijnlijk veroorzaakt door de toenemende susceptibiliteit van het zeer kleine percentage (~ 4‰) Co²⁺-ionen. De toename van de χ bij hoge temperatuur zal in par. 5.3 besproken worden.

De susceptibiliteit van Li₂MnO₃ volgt de Curie-Weisz wet over het gehele temperatuurgebied. Het berekende moment is μ =3.77 μ _B (fig. 5.2). LiMnO₂ heeft een anti-ferromagnetisch Neelpunt bij ongeveer 300°K. Het moment komt goed overeen met de "spinonly" waarde μ =4.91 μ _B (fig. 5.2).

De χ -metingen van Li₂RhO₃ zijn vermeld in tabel 5.3. De susceptibiliteit kan goed beschreven worden met de formule $10^{3}\chi=0.165+\frac{144.2}{T-35}$. Voor het moment van het Rh⁴⁺-ion vinden we uit deze formule $\mu=1.15\mu_{B}$. Scheer vindt uit metingen bij lage temperatuur $\mu=1.4\mu_{B}$.

Verbinding	LiMnO ₂		Li2MnO3		LiCoO ₂ I		LiCoO ₂ II	
Bereiding	Li ₂ O	+ Mn ₂ O ₃	Li ₂ O + MnO		$Li_2CO_3 + Co_3O_4$		$\text{Li}_2\text{CO}_3 + \text{Co}_3\text{O}_4$	
Temperatuur	7(DooC	900°C		70	0°C	80	00C
∆ w%		0.0	-	.0.9	+	0.1	+	0.1
Magn. gegevens	Т	$\chi_{M} \cdot 10^{3}$	Τ χ _M . 10 ³		Т	$\chi_{M} \cdot 10^{3}$	Т	χ _M . 10 ³
			81	14.9	79	0.165	82	0.142
THE REPORT OF	212	2.56	194	8.06	195	0.148	291	0.125
2753 1529	293	2.79	292	5.58	289	0.134	430	0.123
1 5 5 5 5 9 L 0	387	2.70	411	4.10	292	0.141	460	0.123
	483	2.55	439	3.80	398	0.130	561	0.125
3 . 1 . 1 . 6 .	593	2.38	504	3.29	488	0.130	621	0.122
61662403	696	2.22	534	3.13	581	0.130	640	0.125
	798	2.07	565	3.04	682	0.130	767	0.127
	895	1.93	No. Contra		709	0.131	883	0.133
0.075		0.00	-	0.0	800	0.131	931	0.149
OOK	-	660		- 28	883	0.139	988	0.150
μ	4.91µB		3.	$77\mu_B$	975	0.156	1073	0.176
T _N ^o K	~	300			1055	0.157		
1075/01873			1		1130	0.234		

Tabel 5.2

Zie tabel 4.2 voor verklaring der tekens.

Figuur 5.2

Tabel 5.3

Т	$\underset{exp.}{\overset{M}{}} 10^{3}$	$\chi_{M^{\circ}} 10^{3}$ ber.
291	0.727	0.727
387	0.580	0.573
496	0.476	0.476
603	0.418	0.417
706	0.378	0.378

5.3. Discussie

De zeer lage waarden van de susceptibiliteit van LiCoO₂ wijzen er op, dat het driewaardig cobalt-ion hier geen ongepaarde electronen bezit. Het vrije Co³⁺-ion zou een magnetisch moment $\mu = -4.8\mu_B$ hebben. De enige verbindingen waarin het cobalt een moment van deze grootte heeft, zijn - voor zover ons bekend -: K₃CoF₆ ⁴²) en LaCoO₃ ⁴³). De meeste cobaltiverbindingen zijn diamagnetisch of zwak paramagnetisch. Verschillende complexen van driewaardig cobalt, omgeven door organische groepen, vertonen een verlaagd diamagnetisme, wat verklaard wordt door het cobalt-ion een temperatuur-onafhankelijk paramagnetisme toe te schrijven, variërend van 0.03 tot 0.17x10⁻³ e.m.e. per gramion ⁴⁴)⁴⁵)⁴⁶). Cossee ¹⁷) vindt voor het driewaardige cobalt in ZnCo₂O₄ een temperatuur-onafhankelijk paramagnetisme van 0.1x10⁻³ e.m.e. per gram-ion Co³⁺. De door ons gevonden waarde: 0.13x10⁻³ stemt hiermede overeen.

De "diamagnetische" toestand van het cobalt-ion is zowel in overeenstemming met de beschrijving van de bindingstoestand volgens Pauling 10), indien het ion covalente d²sp³ bindingen aangaat met de zes omringende zuurstofionen, als met de beschrijving volgens Van Vleck en Penney en Schlapp ²⁴), indien aangenomen wordt dat het kristalveld zo groot is, dat we een toestand met lagere multipliciteit als grondtoestand krijgen (zie par. 3.3). De werkelijke bindingstoestand kan het gevolg zijn van beide effecten. Orgel 47) heeft er op gewezen, dat de magnetische eigenschappen van een complex geen aanwijzing geven of de binding voornamelijk covalent dan wel ionogeen is. Indien n.1. de electronen van het centraalion in een octaeder zich onder invloed van de ladingen van de zes omringende negatieve ionen in banen begeven, welke ver van deze ladingen verwijderd zijn (dxy, dzy, dyz), zal het centraalion in de richting der anionen electronegatiever worden. Electronen der negatieve ionen zullen op die plaatsen naar het centraalion toe bewegen, zodat een soort gerichte valentie ontstaat. Afhankelijk van de polariseerbaarheid van de negatieve ionen zal zo een zwakke dan wel sterke covalente binding optreden.

In LaCoO₃ is iedere zuurstofion symmetrisch omgeven door 4 La³⁺⁻ en 2 Co³⁺⁻ionen; de polarisatie van de zuurstofionen in het LaCoO₃ zal dus zeer gering zijn. Het Co³⁺-ion vertoont hier een normaal magnetisch moment, het electrische veld is hier niet sterk genoeg om de Russel Saunders koppeling te doorbreken. In LiCoO₂ is ieder zuurstofion asymmetrisch omgeven door 3 Li⁺-ionen en 3 Co²⁺-ionen (fig. 3.1). De zuurstofionen zullen hier wel gepolariseerd kunnen worden. Het electrisch veld is in LiCoO₂ op de plaats van het Co³⁺-ion sterker dan in LaCoO₃. Het ion is in de diamagnetische toestand, zodat het een goede benadering is als we de grondtoestand beschouwen als een $\varepsilon^6\gamma^0$ toestand (vergelijk par. 3.3 c).

Uit het feit dat in zuurstofroosters het Co^{3+} -ion zowel in de paramagnetische als in de diamagnetische toestand voorkomt, volgt dat in de verbinding LiCoO₂ het verschil in energie tussen de diamagnetische ($\varepsilon^{6}\gamma^{0}$) toestand en de paramagnetische toestand ($\varepsilon^{4}\gamma^{2}$) klein zal zijn. Wanneer kT van dezelfde grootteorde wordt als dit energie verschil ΔE , zal een aantal ionen in de paramagnetische toestand geraken. Dit aantal zal bepaald worden door een Boltzmann verdeling en de toename van de susceptibiliteit zal hiermede evenredig zijn. Hiervoor geldt dus:

$$\Delta \chi = Ce^{-\frac{\Delta E}{kT}}$$

De waarden voor $\Delta \chi$ voor beide preparaten zijn:

LiC	00,I	LiCoO, II				
T ^o K	$\Delta\chi$. 10 ⁶	ToK	Δχ. 106			
800	2	776	1.5			
883	10	883	8.3			
975	17	931	14			
1055	55	988	25			
1130	105	1073	51			

Als we aannemen dat het gevonden temperatuur-onafhankelijk paramagnetisme (χ =0.130x10⁻³) voor het hele onderzochte temperatuur gebied geldt, kunnen we met behulp van $\Delta\chi$ -waarden E berekenen. Het verband tussen ln $\Delta\chi$ en de temperatuur wordt voor

LiCoO₂II gegeven in fig. 5.3. Voor de preparaten I en II zijn de berekende waarden van ΔE ; 0.78 resp. 0.82 eV.

Tanabe en Sugano ⁴⁸) hebben, gebruik makend van de benaderingsmethode van een sterk kristalveld, de energieniveau's van de d⁶-configuratie in octaederomringing berekend. Uit het diagram dat zij geven voor deze energieniveau's als functie van het kristalveld, blijkt dat afhankelijk van de veldsterkte óf het $\epsilon^4\gamma^{2.5}F_2$ óf het $\epsilon^5\gamma^{1.3}F_1$ niveau het dichtst bij de grondtoestand ligt. Het door ons berekende energieverschil geeft de afstand tussen de grondtoestand en één van deze twee niveau's aan. Jörgensen ⁴⁹) vindt een zwakke absorptie bij 13000 cm⁻¹ voor Co(NH₃)₆³⁺-ionen in oplossing. Griffith en Orgel ⁵⁰) schrijven deze absorptie toe aan een overgang naar het $\epsilon^5\gamma^{1.3}F_1$ niveau. De door ons gevonden overgang van 0.8 eV (6500 cm⁻¹) is waarschijnlijk dezelfde als de door Jörgensen gevonden overgang.

Uit het moment van Li₂RhO₃ blijkt dat de 5d-electronen zich in het ε-niveau bevinden, waardoor er maar één ongepaard electron is. Ook deze verbinding vertoont temperatuuronafhankelijk paramagnetisme. Het onderzochte temperatuurgebied is niet groot genoeg om uit te kunnen maken, of ook het moment van het Rh⁴⁺-ion met de temperatuur toeneemt.

Hoofdstuk 6

KATIONENLAGEN ROOSTERS II. LiCrO₂, NaCrO₂, NaCrS₂, LiVO₂, NaVO₂ en LiTiO₂

6.1. Inleiding

Van de verbindingen $NaCrS_2$ en $KCrS_2$ is de susceptibiliteit door Rüdorff en Stegemann³⁸) bij lage temperatuur gemeten. KCrS₂ is ferromagnetisch bij 90°K; de verzadigingsmagnetisatie is niet bekend. Deze verbindingen hebben dezelfde kationenlagen-structuur als LiNiO₂ (fig. 3.1). De afstand tussen de chroomlagen in het rooster van KCrS2 is zo groot, dat wisselwerking tussen chroomionen van verschillende lagen verwaarloosbaar klein zal zijn, (Cr - Cr afstand in verschillende lagen is 7.36 Å; in één laag 3.62 Å), zodat aangenomen kan worden dat het ferromagnetisme van KCrS2 bij lage temperatuur het gevolg is van wisselwerking tussen ionen in de lagen. De verbindingen LiCrO2, NaCrO2, LiVO2 en NaVO2 hebben allen dezelfde structuur als KCrS2. In dit hoofdstuk worden de susceptibiliteitsmetingen van deze complexe oxyden gegeven. De mogelijkheid van een anti-ferromagnetische ordening in de lagen met positieve ionen wordt besproken in par. 6.3. Het blijkt dat LiTiO2 een keukenzoutstructuur heeft, waarin de Li en Ti-ionen statistisch verdeeld zijn.

6.2. Experimenteel gedeelte

A. Bereiding

 $LiCrO_2$ en NaCrO₂ werden bereid door Cr_2O_3 en Li_2CO_3 resp. Na₂CO₃ (verh. 1 : $\frac{1}{2}$) in een waterstofstroom op 800°C te verhitten. De gewichtsanalysen zijn gegeven in tabel 6.1.

NaCrS₂ werd volgens voorschrift van Rüdorff op de volgende wijze gemaakt: Na₂CO₃, S en K₂CrO₄ werden in gewichtsverhouding 25 : 25 : 1 in een kroes van aluminiumoxyde, welke door een porceleinen deksel was afgesloten, gedurende 1 uur op 800°C verhit. Nadat de smelt was afgekoeld, werd deze achtereenvolgens gewassen met 10% NaOH opl., verdunde alcoholische loog, 96% alcohol en aether. De zwarte kristalmassa werd nog eenmaal met overmaat zwavel en natriumcarbonaat gedurende een uur op 750°C verhit. De smelt werd op dezelfde wijze als na de eerste verhitting behandeld. Om geringe hoeveelheden zwavel te verwijderen, werden de groen-zwart glimmende kristalplaatjes gedurende 5 uur in hoogvacuum (10⁻⁶ cm) verhit op 450°C.

Het is ons niet gelukt kristallen van de verbinding KCrS2 te

Tabel 6.1

							11.0				0			
Verbinding	Li	CrO ₂	Na	CrO ₂	NaCrS ₂		LiVO ₂			NavO ₂				
Bereid uit:	Li ₂ C	CO3 en r2O3	Na ₂ C	CO3 en r ₂ O3	$Na_2CO_3 + S$ + Na_2CrO_4		Li_2O en V_2O_3		NaN ₃ en VO ₂			1		
Temperatuur		800	1	800		750	750			650				
Atmosfeer		H ₂		H ₂		N ₂	H ₂			205	Vacu	um	1.1	
AW%	-	0.9	-	0.8				- ().3					111
Magn, gegevens	Т	X M. 10 ³	Т	X M. 103	Т	X _M . 10 ³	т	$\chi_{M} 10^{3}$	т	χ _M . 103	Т	$\chi_{M}. 10^{3}$	Т	χ _M . 103
	80 191 273 290 391 456 492 551 595 604 671 700 759 790	$\begin{array}{c} 2.00\\ 2.03\\ 1.95\\ 1.90\\ 1.73\\ 1.65\\ 1.61\\ 1.52\\ 1.46\\ 1.45\\ 1.37\\ 1.34\\ 1.28\\ 1.26\end{array}$	79 192 273 292 381 487 596 705 785 828	3.60 3.12 2.81 2.80 2.47 2.16 1.92 1.72 1.60 1.54	84 193 291 302 378 466 594 703 758 808	30.8 11.2 6.82 6.62 5.21 4.17 3.23 2.63 2.42 2.28	79 197 289 292 384 420 433 466 478 491 511 571 668 738	$\begin{array}{r} 0.272\\ .206\\ .192\\ .194\\ .195\\ .198\\ .210\\ .288\\ .560\\ .794\\ .798\\ .782\\ .755\\ .734\\ \end{array}$	754 783 822 850 908 969	.713 .713 .694 .669 .633 .628	80 208 289 293 308 343 348 363 381 398 4373 4353 4321 493	$\begin{array}{c} 1.22\\ 1.02\\ 0.961\\ .970\\ .948\\ .937\\ .928\\ .939\\ .950\\ .964\\ .985\\ .996\\ .966\\ .921 \end{array}$	607 703 811 932 1054	0.860 .817 .764 .710 .674
0 oK	-	577	-	354	4	+ 30	- 540			- 900				
μ	3	$.71\mu_{\rm B}$	3.	81Hg	3.	78µ _B		2.74µ _B		3.2µ _B				
T _N °K	-	~200						~ .	450	1		~ ;	350	24 53

Voor verklaring der tekens: zie tabel 4.2.

verkrijgen volgens de bereidingswijze van Rüdorff en Stegemann. Ondanks herhaalde verhitting van Cr_2S_3 of amorf Cr_2O_3 met KCNS (gew.verh. 1 : 40) in een porceleinen kroes in N₂-atmosfeer, werd slechts een fijn poedervormig product verkregen. Aangezien KCrS₂ met alcohol en water ontleedt, was het niet mogelijk het KCrS₂ te scheiden van de overmaat KCNS en KCN zonder dat een aanzienlijke verontreiniging van het product met Cr_2O_3 ontstond.

LiVO₂ werd gemaakt uit Li₂O en V₂O₃ door een mengsel van deze verbindingen in een H₂-atmosfeer op 750°C te verhitten. De verbinding NaVO₂ werd op de volgende wijze verkregen: een mengsel van NaN₃ en VO₂(1:1) werd in een buis van Supremaxglas, welke aan een hoogvacuum apparaat bevestigd was, langzaam verhit tot 350°C. Over een periode van 6 uur werd de temperatuur langzaam opgevoerd tot 450°C. Tijdens deze periode ontleedde het natriumazide. Het ontstane natrium reageert met het VO₂. Indien de temperatuurstijging te snel plaats vindt, ontstaat er een stormachtige ontleding van het NaN₃ en vormt zich een natriumspiegel op de wand van de buizen van het hoogvacuumapparaat. Nadat de temperatuur nog gedurende één uur op 500°C was gehouden werd de buis dichtgesmolten. De toegesmolten buis werd gedurende 12 dagen op 650°C verhit. Bepaling van het vanadiumgehalte gaf 55.5% V (theor. 56.6%V).

LiTiO₂ werd bereid uit Li₂TiO₃, TiO₂ en titaanpoeder. Een mengsel van fijn titaanpoeder en TiO₂(1:1) werd in een afgesloten vacuum kwarts buis 24 uur op 1000°C verhit. Het mengsel werd hierna gepoederd en opnieuw 24 uur op 1000°C verhit. Het verkregen mengsel werd samen met een equivalente hoeveelheid Li₂TiO₃ in een gesloten vacuum kwartsbuis gedurende 24 uur op 900°C verhit.

B. Kristallografische gegevens

De verbinding LiTiO₂ heeft een keukenzoutstructuur. De Li- en Ti-ionen zijn statistisch verdeeld over de octaederholten van het zuurstofrooster. De roosterconstante is a = $4.190 \pm 0,003$. Behalve voor NaVO₂ komen de celafmetingen van de verbindingen met hexagonale structuur overeen met de waarden welke door Rüdorff en Becker ³⁶) gegeven worden (tabel 6.2).

C. Magnetische gegevens

De susceptibiliteiten van de preparaten van LiCrO₂ en NaCrO₂, welke bereid werden op 800°C, waren in geringe mate van de stroomsterkte afhankelijk. Dit effect was verdwenen na metingen boven 400°C. De preparaten, waarvan de susceptibiliteiten vermeld zijn in tabel 6.1, werden daarom eerst gedurende drie dagen in een afgesloten buisje van Pyrexglas op 450°C in vacuo verhit. De magnetische momenten van de chroomionen in NaCrS₂, NaCrO₂ en LiCrO₂ resp. 3.78, 3.81 en 3.71 μ_B komen goed overeen met de spinonlywaarde $\mu = 3.87\mu_B$. NaCrS₂ volgt de Curie-Weiss wet over het gehele gebied, waarin metingen werden verricht. De afname van de susceptibiliteit van LiCrO₂ tussen 191 en 80°K zou erop kunnen wijzen dat bij 200°K een antiferromagnetisch Curie-

Figuur 6.1

punt ligt (fig. 6.1). De susceptibiliteit van LiVO₂ vertoont een verandering bij 450°K (fig. 6.2). Over een gebied van 60°K verandert de χ van 0.210 x 10⁻³ (433°K) tot 0.794 x 10⁻³ e.m.e. (491°K). Beneden 290°K begint de susceptibiliteit wederom toe te nemen. Onder het overgangsgebied is de susceptibiliteit afhankelijk van de gebruikte stroomsterkte. Door de geringe helling van de 1/ χ -T kromme bij hoge temperatuur kan het moment van de V³⁺-ionen niet nauwkeurig bepaald worden. μ = 2.74 ± 0.15 μ_B wat dicht bij de spinonlywaarde ligt.

Tussen 300 en 380°K vertoont de susceptibiliteit van NaVO₂ een geringe hysterese. Het is echter mogelijk dat bij deze temperatuur een langzame overgang plaats vindt en dat de gevonden hysterese in werkelijkheid niet optreedt. Evenals bij LiVO₂ vertoont de $1/\chi$ -T kromme een maximum even onder het overgangspunt.

De $1/\chi$ -T curve van het LiTiO₂ vertoont eveneens een maximum en een minimum. Deze liggen bij ~500°K resp. ~720°K. De χ -waarden beneden 750°K waren niet reproduceerbaar. Na iedere nieuwe serie metingen van hetzelfde preparaat, werden steeds andere waarden gevonden (fig. 6.3). Het röntgendiagram was na de magnetische metingen bij hoge temperatuur niet veranderd.

6.3. Antiferromagnetisme in een tweedimensionaal driehoeksrooster

In een vlak rooster, waarin de magnetische ionen een driehoeksverdeling hebben, is een volledige antiferromagnetische ordening van de momenten onmogelijk, d.w.z. het is niet mogelijk dat ieder moment tegengesteld gericht is t.o.v. alle momenten van zijn naaste buren. Voor een dergelijk rooster, waarin alleen negatieve wisselwerking tussen naaste buren optreedt, hebben Yafet en Kittel ⁵¹), uitgaande van de theorie van het moleculaire veld volgens Weiss, berekend welke configuratie der momenten minimale energie heeft. Dit is een verdeling waarbij ieder

moment een hoek van 120° maakt met de momenten van zijn naaste buren. Voor de verhouding tussen het antiferromagnetische Curiepunt T_c en het asymptotische Curiepunt Θ vinden Yafet en Kittel - $\Theta/T_c = 2$.

We hebben onderzocht welke waarden van de verhouding $-\Theta/T_c$ mogelijk zijn, indien behalve wisselwerking tussen naaste buren, op afstand a, ook negatieve wisselwerking optreedt tussen de buren op afstand a $\sqrt{3}$ (fig. 6.4).

Een vlak driehoeksrooster kan onderverdeeld worden in drie gelijke onderroosters (A, B en C) met periode a $\sqrt{3}$. Ieder ion van rooster A heeft als naaste buren 3 B - en 3 C - ionen. De daaropvolgende zes buren zijn van hetzelfde onderrooster A.

Wanneer men het effect van interactie tussen beide soorten buren in rekening brengt, wordt het moleculaire veld, dat een ion van het onderrooster A ondervindt, weergegeven door:

$$\dot{H}_{A} = \dot{H}_{o} - 2pM_{A} - qM_{B} - qM_{C}$$

$$(6.1)$$

Het moleculaire veld dat de momenten van de onderroosters B en C ondervinden is:

$$\vec{H}_{B} = \vec{H}_{o} - 2p\vec{M}_{B} - q\vec{M}_{C} - q\vec{M}_{A}$$
(6.2)

$$\vec{H}_{c} = \vec{H}_{o} - 2p\vec{M}_{c} - q\vec{M}_{A} - q\vec{M}_{B}$$
(6.3)

Hierin is H_o het uitwendige veld, M_A , M_B en M_C zijn de magnetisaties van de onderroosters, de coëfficienten p en q zijn een maat voor de wisselwerking tussen naaste resp. daaropvolgende buren. Bij het absolute nulpunt is het systeem volkomen geordend. De energie bij afwezigheid van een uitwendig veld bedraagt:

$$\begin{split} \mathbf{E} &= -\frac{1}{2} \Sigma \vec{\mathbf{H}}_{i} \cdot \vec{\mathbf{M}}_{i} \\ &= -\frac{1}{2} [-2p(\mathbf{M}_{A}^{2} + \mathbf{M}_{B}^{2} + \mathbf{M}_{C}^{2}) - 2q(\vec{\mathbf{M}}_{A} \cdot \vec{\mathbf{M}}_{B} + \vec{\mathbf{M}}_{B} \cdot \vec{\mathbf{M}}_{C} + \vec{\mathbf{M}}_{A} \cdot \vec{\mathbf{M}}_{C})] \\ &= \mathbf{M}_{A}^{2} 3p + q(\cos\alpha + \cos\beta + \cos\gamma) \end{split}$$

 α , β en γ zijn de hoeken tussen resp. M_B en M_C, M_A en M_C, M_A en M_B. Deze energie wordt minimaal indien $\alpha = \beta = \gamma = 120^{\circ}$.

$$E = -3/2 M_A^2. (q - 2p)$$
 (6.4)

De verdeling van de momenten bij het absolute nulpunt wordt gegeven in fig. 6.4.

Bepaling van 0:

Boven het Curiepunt wordt het gemiddelde moment van ieder onderrooster slechts bepaald door het uitwendige veld H_o . De magnetisatie is een lineaire functie ($CH_{eff.}$)/T van het effectieve veld. C is de Curieconstante. De gemiddelde magnetisaties van de onderroosters zijn dus:

$$M_{A} = \frac{C}{3T} (H_{o} - 2pM_{A} - qM_{B} - qM_{C})$$

$$M_{B} = \frac{C}{3T} (H_{o} - 2pM_{B} - qM_{C} - qM_{A}) \qquad (6.5)$$

$$M_{C} = \frac{C}{3T} (H_{o} - 2pM_{C} - qM_{A} - qM_{B})$$

De susceptibiliteit is:

$$\chi = \frac{M_A + M_B + M_C}{H_o} = \frac{C}{T - \Theta}$$
(6.6)

Uit de vergelijkingen 6.5 en 6.6 volgt:

$$\Theta = -2/3(p+q)C$$
 (6.7)

Bepaling T_c

Beneden de Curietemperatuur T_c, bezitten de onderroosters een gemiddeld magnetisch moment, zelfs wanneer het uitwendig veld nul is. Dit geldt niet voor de som der magnetisaties van de onderroosters. Deze magnetisatie van een onderrooster is onder het Curiepunt geen lineaire functie van het effectieve veld. In de buurt van het Curiepunt zijn de magnetisaties gering, zodat de lineaire vergelijkingen 6.5 gebruikt kunnen worden voor de berekening van T_c. De Curietemperatuur T_c wordt dus gevonden als oplossing voor de drie lineaire vergelijkingen 6.5 indien H_o = 0. De oplossingen zijn: T_{c1} = T_{c2} = 1/3(q - 2p)C, T_{c3} = -2/3(p + q)C. T_c is negatief en heeft dus geen physische betekenis. De verhouding wordt:

$$\frac{-\Theta}{T_c} = 2 \frac{p+q}{q-2p}$$

Indien er alleen wisselwerking is tussen naaste buren wordt $-\Theta/T_c = 2$, zoals reeds door Yafet en Kittel werd berekend. Is er dus behalve wisselwerking tussen naaste buren ook negatieve wisselwerking tussen daaropvolgende buren, dan is $\frac{-\Theta}{T_c} > 2$.

Het is mogelijk dat de negatieve wisselwerking tussen op één na naaste buren zo groot is dat een ordening in de onderroosters A, B en C onderling optreedt. In dat geval wordt ieder van de roosters A, B en C in drie roosters met periode 3a onderverdeeld. Zo ontstaat een gecompliceerde samenstelling van de negen onderroosters.

Voor de verbindingen $LiMeO_2$ welke wij onderzocht hebben, is het uiterst onwaarschijnlijk, dat de wisselwerking tussen verre buren zou overheersen (zie par. 6.4).

6.4. Discussie

De momenten van de chromieten LiCrO_2 , NaCrO_2 en NaCrS_2 komen goed overeen met de spinonly waarde voor Cr^{3+} -ionen. LiCrO_2 heeft, evenals de andere verbindingen, een kationenlagen structuur; de afstand tussen de chroomionen in de lagen is 2.88 Å. De afstand tussen twee Cr^{3+} -ionen van verschillende lagen is 5.15 Å, zodat het ook hier niet waarschijnlijk is dat er magnetische wisselwerking tussen de chroomionen van verschillende lagen is.

Directe Me-Me wisselwerking is volgens Slater en Neèl ⁵²) afhankelijk van de verhouding d/δ , waarin δ de diameter van de 3d-schil van het metaalion is en d de afstand tussen deze ionen. Voor $d/\delta \leq$ ongeveer 1.5 is de wisselwerking negatief; boven 1.5 wordt het teken positief. Volgens Neèl is de Cr-Cr wisselwerking sterk negatief als de afstand 2.49 Å bedraagt. De diameter der 3d-schil van het Cr³⁺-ion in LiCrO₂ is niet te bepalen, maar zal kleiner zijn dan de waarde 1.82 Å, welke Neèl gebruikt voor chroommetaal, zodat de wisselwerking tussen de chroomionen, welke 2.88 Å van elkaar verwijderd zijn, zwak negatief of zelfs positief kan zijn.

Indien de wisselwerking via het negatieve ion verloopt, is deze volgens het "superexchange" model van Anderson ²¹), behalve van de Cr-O afstanden, afhankelijk van de Cr-O-Cr hoek. De interactie is des te sterker naarmate de hoek stomper is. In LiCrO₂ is, – indien we een zuurstofparameter 0.260 aannemen –, de hoek Cr-O-Cr voor naaste buren 94°; de Cr-O afstanden zijn 1.98 Å. Voor wisselwerking tussen daaropvolgende buren is de hoek 129°, de Cr-O afstanden zijn 1.98 en 3.49 Å. Aangezien een Cr-O afstand van 3.49 Å aanzienlijk groter is dan de som der ionenstralen (2.04 Å), zal de interactie tussen de electronenbanen van het chroom- en zuurstofion zeer klein zijn, zodat het waarschijnlijk is dat de wisselwerking tussen verre buren, ondanks de gunstiger Cr-O-Cr hoek, klein is t.o.v. de wisselwerking tussen naaste buren.

Voor LiCrO₂ is de verhouding tussen de asymptotische Curietemperatuur Θ en de Curietemperatuur T_c: $-\Theta/T_c = 2.8$. Volgens de berekeningen van par. 6.3 kunnen we een waarde $-\Theta/T_c = 2.8$ verwachten, indiener, behalve negatieve wisselwerking tussen naaste buren, ook nog negatieve maar zwakkere wisselwerking is tussen daaropvolgende chroomburen. De verhouding tussen de wisselwerkings-coëfficienten p en q zou dan p/q = 0.1 zijn.

Van NaCrO₂ zijn de metingen niet bij voldoende lage temperatuur bekend om het Curiepunt te kunnen bepalen.

Bij LiVO₂ is $-\theta/T_c = 1.2$, indien we aannemen dat de sterke daling van de susceptibiliteit bij 400°K een antiferromagnetisch Curiepunt aangeeft. Deze waarde $-\theta/T_c = 1.2$ zou alleen kunnen optreden, indien er tussen naaste buren en tussen daaropvolgende buren een wisselwerking van verschillend teken optreedt. De zeer sterke verandering van de susceptibiliteit in een klein temperatuur gebied, doet echter verwachten dat hier een overgang van kristalstructuur plaats vindt, waarbij een zeer sterke voorkeursrichting voor de magnetische momenten ontstaat. Voor het maximum in de $1/\chi$ -T kromme van LiVO₂ bij 300°K en voor de overgang met hysterese van NaVO₂ weten wij geen verklaring. Röntgenopnamen bij hoge temperatuur zullen uit kunnen maken of er bij de overgangspunten een verandering van kristalstructuur, dan wel alleen een verandering van de celafmetingen optreedt.

Een minimum en maximum in de $1/\chi$ -T kromme, zoals dat bij LiVO₂, NaVO₂ en LiTiO₂ optreedt, wordt ook gevonden bij TiCl₃ ⁵³); deze verbinding heeft een minimum bij 213°K en een maximum bij 130°K. De verbinding VO₂, die V⁴⁺-ionen, – isoelectronisch met Ti³⁺-ionen – bevat, vertoont een sprongsgewijze verandering van de susceptibiliteit bij 70°C, zonder dat de structuur verandert ⁵⁴). De slechte reproduceerbaarheid van de χ -waarden van LiTiO₂ beneden 750°K kan het gevolg zijn van een verandering van de ordening op korte afstand tussen lithium en titaanionen in het kubische LiTiO₂. Een röntgenopname, gemaakt na de metingen bij hoge temperatuur, toonde aan, dat er geen superstructuur in het keukenzoutrooster ontstaan was.

Van de onderzochte verbindingen LiMeO₂ en NaMeO₂, welke magnetische ionen in een vlak driehoeksrooster bevatten, vertoont alleen LiCrO₂ een normaal antiferromagnetisme. Andere structuren, waar ionen in vlakke driehoeksverdeling liggen, terwijl de afstand tussen deze vlakken groot is t. o. v. de afstand der ionen in de vlakken, zijn o. a. het CdCl₂- en CdJ₂ rooster. De overeenkomst tussen de structuren van LiCrO₂ en CdCl₂ is de volgende: beide structuren bestaan uit een kubische dichtste pakking van negatieve ionen. De helft der octaederholten is gevuld met Cr- of Cd-ionen en wel zó dat deze ionen in vlakken liggen waarin zij een driehoeksverdeling hebben. Bij LiCrO₂ zijn de overige octaederholten met Li -ionen bezet; in het CdCl₂ zijn deze holten leeg. Het CdJ₂ rooster heeft een hexagonale pakking der negatieve ionen.

De verbindingen NiCl₂, CoCl₂, FeCl₂ en MnCl₂ zijn isomorf met CdCl₂. Van NiCl₂, CoCl₂ en FeCl₂ wordt vermeld dat zij een antiferromagnetisch Curiepunt hebben bij resp. 50, 25 en 24°K ²¹). De asymptotische Curietemperatuur Θ is echter voor deze verbindingen positief. Leech en Manuel ⁶¹) hebben met metingen van de verzadigingsmagnetisatie beneden het Curiepunt aangetoond dat deze verbindingen ferromagnetisch zijn, maar een zo grote anisotropie vertonen, dat de ferromagnetische gebieden onderling volledig antiparallel gemagnetiseerd zijn. Hierdoor daalt de susceptibiliteit bij afkoelen beneden het Curiepunt, indien tijdens de metingen een tamelijk kleine veldsterkte wordt gebruikt.

 $CrCl_2$ heeft een negatieve $\Theta = -149^{\circ}K$ en een antiferromagnetisch Curiepunt bij 40°K ⁵⁵, zodat $\Theta/T_c = 3.5$.

VCl₂ vertoont geen afwijking van de Curie-Weiss wet tot. 14°K. (© = -565) TiCl₂ vertoont een sterke toename van de susceptibiliteit bij lage temperatuur, maar heeft een negatieve asymptotische Curietemperatuur Θ = -702°K ⁵⁵).

Resumerend kan opgemerkt worden dat er weinig verbindingen zijn waarbij magnetische ionen in vlakke driehoeksroosters aanleiding geven tot antiferromagnetisme. In het geval van LiCrO₂ en CrCl₂ is de verhouding Θ/T_c van dien aard, dat verwacht kan worden dat er zowel tussen naaste buren als de daaropvolgende buren negatieve wisselwerking optreedt.

Beschouwen we tot slot alle verbindingen $LiMeO_2$, Me = Ti, V, Cr, Mn, Fe, Co, Ni dan blijkt dat, wat structuur betreft $LiTiO_2$ en $LiFeO_2$ en in sterkere mate $LiMnO_2$ een afwijkende plaats in deze reeks verbindingen innemen. $LiTiO_2$ en $LiFeO_2$ hebben een keukenzoutstructuur met statistische verdeling der positieve ionen over de octaederholten van het zuurstofrooster.

Collongues ⁵⁶) vermeldt twee tetragonale modificaties van LiFeO₂, die door langdurig verhitten op 400°C of op 550°C ieder naast de kubische fase van LiFeO₂ ontstaan. De symmetrie van de positieve ionen zou voor de ene structuur dezelfde zijn als in chalcopyriet en voor de andere modificatie dezelfde als in het geordende CuAu. Uit de experimenten blijkt echter helemaal niet dat deze tetragonale modificaties inderdaad de samenstelling LiFeO₂ hebben.

LiMnO₂ heeft orthorhombische symmetrie (par. 5.2. b); de structuur is echter niet bekend. In hoofdstuk 4 wordt de afwijking van de structuur der manganieten t. o. v. overeenkomstige verbindingen (met spinelstructuur) van andere overgangselementen verklaard door de neiging van het Mn^{3+} -ion om de octaederholte, waarin het zich bevindt, te deformeren. De afwijkende positie, die de structuur van LiMnO₂ inneemt in de reeks verbindingen LiMeO₂ van overgangselementen der vierde periode, wordt zeer waarschijnlijk door hetzelfde effect veroorzaakt. Een dergelijk verschijnsel doet zich voor bij de trifluoriden van ionen der vierde periode. MnF₃ kan opgevat worden als een gedeformeerde VF₃ structuur ⁵⁷); de Mn-F afstanden zijn 2.09, 1.91 en 1.79 Å. De verbindingen TiF₃, CrF₃, FeF₃ en CoF₃ zijn isomorf met VF₃ ⁵⁸).

Hoofdstuk 7

SLOTBESCHOUWING

Het doel van dit onderzoek was tweeledig:

a. Het bepalen van de magnetische eigenschappen van enkele oxyden van overgangselementen der vierde periode. Deze zijn uitvoerig besproken in de hoofdstukken 3 t/m 6.

 b. Een beter inzicht te krijgen in de bindingstoestand van enkele oxyden. Hierbij werd uitgegaan van de theorie van Goodenough

en Loeb, die de deformaties van mangaanspinellen verklaren door covalente dsp^2 -binding tussen Mn^3 - en zuurstofionen aan te nemen. Naar aanleiding hiervan hebben we verschillende verbindingen met spinelstructuur gemaakt, welke twee-, drie- en vierwaardig mangaan bevatten. Onderzocht werd welke verbindingen tetragonaal en welke kubisch zijn. Tevens hebben we gezocht naar andere verbindingen, die dezelfde verschijnselen zouden kunnen vertonen als Mn_3O_4 en $ZnMn_2O_4$, nl. een overgang bij hoge temperatuur van een modificatie, waarin de octaederholten van zuurstofionen, die de metaalionen bevatten, tetragonaal gedeformeerd zijn, naar een kristalvorm, waarin alle Me-O afstanden gelijk zijn. In hoofdstuk 3 is aangetoond, dat bij NaNiO₂ de overgang van monokliene naar hexagonale structuur door hetzelfde verschijnsel wordt veroorzaakt als de overgang van tetragonaal naar kubisch bij de verbindingen $ZnMn_2O_4$ en Mn_3O_4 .

Bij alle verbindingen, waarin zich ionen met gedeeltelijk gevulde 3d-schil in gedeformeerde zuurstof omringing bevinden, werd onderzocht of de deformatie in overeenstemming is met het beeld van covalente binding tussen metaal- en zuurstofionen. Tevens werd onderzocht of de tetragonale structuur en de eigenschappen van deze verbindingen beschreven kunnen worden met de zgn. kristalveld methode. Beide beschrijvingswijzen zullen we nog eens naast elkaar beschouwen.

Zoals in hoofdstuk 3 reeds is uiteengezet, worden de vijf d-banen van een ion, dat omgeven is door een octaeder van negatieve ladingen, gesplitst in een groep van drie (dxy, dxz, dyz) met lage energie (ϵ) en een groep van twee banen (d(x^2-y^2), d z^2) methogere energie (γ). Deze splitsing geldt in principe slechts voor 1 d-electron. Als benadering worden deze één electron niveau's algemeen toegepast voor ionen met meer d-electronen. We kunnen nu twee gevallen onderscheiden:

a. De invloed van het kristalveld is groot t. o. v. de spin-baan interactie, maar niet groot genoeg om de Russel-Saunders koppeling te doorbreken, zodat de Hundregel zijn geldigheid behoudt.

b. Het kristalveld is zo sterk dat de Russel-Saunders koppeling doorbroken wordt. In dit geval zijn de ε - en γ -niveau's als afzonderlijke electronen schillen te beschouwen ²⁴). De electronen van het ion zullen eerst de ε -schil volledig opvullen voordat electronen de γ -schil bezetten. Het verschil tussen de kristalveld methode en de beschrijving met covalente binding bestaat o.a. hierin, dat in de eerste beschrijving de banen $d(x^2-y^2)$ en dz^2 zo mogelijk onbezet zijn, omdat zij een te hoge energie hebben. Volgens de tweede methode zijn deze banen niet beschikbaar voor electronen van het metaalion, omdat zij gebruikt worden voor covalente binding met de omringende negatieve ionen. In dit laatste geval wordt een grotere interactie en dus sterkere binding met de zes zuurstofionen verkregen, indien $3d(x^2-y^2)$ en $3dz^2$ samen met 4s en $4p_x$, $4p_y$ en $4p_z$ zes zgn. d^2sp^3 -hybriden vormen.

Voor die ionen, waarbij zich één, twee of drie electronen van het metaalion in het γ -niveau bevinden, is het slechts mogelijk covalente binding te vormen met vier van de zes omringende anionen door vier zgn. dsp²-hybriden, die sterk uitgebreid zijn naar de hoekpunten van een vierkant. Voor een ion met 3γ -electronen (Cu²⁺) is het noodzakelijk, dat een der 4p banen, welke niet in de covalente binding betrokken is, bezet is met één ongepaard electron ¹⁰). Orgel en Dunitz ²⁶) hebben erop gewezen, dat de aanwezigheid van een ongepaard 4p-electron bij tetragonale Cu²⁺-complexen niet in overeenstemming is met de spectra en paramagnetische resonantie van deze verbindingen. Ook het uitgesproken verzet van tweewaardig koper tegen verdere oxydatie is met deze conceptie van een ongepaard 4p-electron in tegenspraak.

Een ion met een oneven aantal (1 of 3) γ -electronen en een geheel of half gevulde E-schil heeft een doublet term als grondtoestand. We kunnen, aangezien $d(x^2-y^2)$ en dz^2 naar de negatieve ionen wijzen, dus een sterk Jahn en Teller effect verwachten (par. 3.3 c). De energie van het ion zal verlaagd worden, indien de octaeder in de z-richting wordt uitgerekt en in de x en y richting wordt ingedrukt. In het geval, dat er één γ -electron is, kan er een covalente binding gevormd worden met de vier negatieve ionen, die nu dichterbij zijn, waardoor de interactie met de $d(x^2-y^2)$ sp²-hybriden sterker is, zodat in het laatste geval covalente binding de Jahn en Teller deformatie kan versterken. Voor ionen in tetraederholten is het teken van de splitsing tegengesteld aan dat voor ionen in octaederholten. Het ε -niveau heeft dan de hoogste energie. Een Jahn en Teller deformatie kan dan verwacht worden voor ionen met één, twee, vier en vijf E-electronen en half of geheel gevulde y-schil in de grondtoestand.

In tabel 7.1 zijn de electronen-configuraties vermeld welke in tetraeder- en octaederholten aanleiding kunnen geven tot aanzienlijke deformatie van het rooster (Het Jahn en Teller effect voor ionen met één en twee electronen is zeer gering ⁵⁹)). De ionen, die in gedeformeerde zuurstof omringing voorkomen, zijn achter de verschillende electronen configuraties vermeld.

Octa	eder	Te	traeder	
$\begin{array}{c} \epsilon^{3}\gamma^{1} ; \\ \epsilon^{6}\gamma^{1} ; \\ \epsilon^{6}\gamma^{3} ; \end{array}$	Mn ³⁺ Ni ³⁺ Cu ²⁺	$\begin{array}{c} \gamma^2 \epsilon^1 \\ \gamma^2 \epsilon^2 \\ \gamma^4 \epsilon^1 \end{array}$	$\begin{array}{c} \gamma^{4}\epsilon^{2} \\ \gamma^{4}\epsilon^{4} \\ \gamma^{4}\epsilon^{5} \end{array}; \end{array}$	Ni ²⁺ Cu ²⁺

 Mn^{3+} en Cu²⁺⁻ionen komen voor in octaederholten van verschillende verbindingen met Hausmannietstructuur. Indien slechts de helft der octaederplaatsen met deze ionen bezet is, komen ook kubische structuren voor. De electronen toestand van de andere in het spinel aanwezige ionen zal mede bepalen of een verbinding tetragonaal of kubisch zal zijn. Aangezien onze beschouwingen hoofdzakelijk een kwalitatief karakter dragen, is uit de verdeling der verschillende ionen niet te voorspellen of een bepaald spinel al of niet tetragonaal gedeformeerd zal zijn.

 $NiCr_2O_4$ en $CuCr_2O_4$ zijn de enige voorbeelden van spinellen, waarvan de deformatie het gevolg zou kunnen zijn van een Jahn en Teller effect van ionen in tetraederomringing.

 Cr^{3+} en Mn^{3+} -ionen zouden in tetraeders de configuraties $\gamma^{2}\epsilon^{1}$ resp. $\gamma^{2}\epsilon^{2}$ hebben. Spinellen met Cr^{3+} of Mn^{3+} -ionen op de tetraederplaats zijn niet bekend. In de tetraederholte zouden de configuraties $\gamma^{4}\epsilon^{1}$ en $\gamma^{4}\epsilon^{2}$ alleen kunnen optreden als het electrisch veld sterk genoeg is om de Hundregel te doorbreken. Het is niet waarschijnlijk, dat dit kan optreden, aangezien het energie verschil in de splitsing in ϵ en γ slechts -4/9 maal de overeenkomstige splitsing in octaederholten van gelijke grootte bedraagt ²⁷).

Van de onderzochte verbindingen Na(Li)MeO₂ hebben LiMnO₂ en NaNiO₂ een afwijkende structuur. Bij NaNiO₂ kan het optreden van de monokliene modificatie verklaard worden door stabilisatie van het Ni³⁺-ion ($\varepsilon^{6}\gamma^{1}$) in gedeformeerde octaederholten. Vermoed wordt, dat de afwijkende structuur van LiMnO₂ veroorzaakt wordt door een dergelijk effect van het Mn³⁺-ion ($\varepsilon^{3}\gamma^{1}$) in zes omringing van zuurstof.

Tenslotte dient opgemerkt te worden, dat het merkwaardige verloop van de $1/\chi$ -T kromme van LiVO₂, NaVO₂ en LiTiO₂ ook gevonden wordt bij de verbindingen VO₂, TiCl₃ en TiCl₂. Het lijkt daarom niet waarschijnlijk, dat deze verschijnselen door de kristalstructuur bepaald worden. De oorzaak moet gezocht worden in het feit dat al deze verbindingen ionen met één of twee d-electronen bevatten.

SUMMARY

The present investigation was undertaken in order to acquire a better insight into the peculiar deformations of some oxide complexes in particular spinels. According to Goodenough and Loeb⁹) the tetragonal deformation of spinels containing Mn^{3+} or Cu^{2+} ions is due to the formation of four bonds by dsp^2 -hybridisation, leading to tetragonal MnO_6 or CuO_6 groups.

In order to test this theory a number of new spinels was prepared. The deformation, predicted by Goodenough and Loeb was observed in all spinels, in which all octahedral interstices are occupied by Mn³⁺-ions. However, when part of these positions are occupied by other ions, the deformation was observed in some (ZnCrMnO₄, MnCrMnO₄), but was absent in others cases (GaNiMnO₄, GaCoMnO₄, GaMgMnO₄). The degree of deformation turned out to depend on the other positive ions present. When the tetraeder positions are occupied by Zn²⁺-ions that show a strong tendency to form covalent bonds, electrons are withdrawn from the oxygen ions and the strength of the Mn³⁺-O bonds is reduced, as is evident from a decrease in the actual ratio c/a in the system MgMn₂O₄-ZnMn₂O₄. A similar deformation is to be expected for other compounds that contain positive ions with 4, 8 and 9 d-electrons in octahedral positions.

Compounds $A^+B^{3+}O_2$, in which A^+ is one of the smaller alkaliions-Li⁺ or Na⁺- and B^{3+} is an ion with a incomplete 3d-shell, usually have a structure that may be derived from a MgO lattice by the substitution: 2 Mg²⁺ $\longrightarrow A^+ + B^{3+}$. If the A and B-ions are distributed at random, the structure remains cubic. If there is ordering a hexagonal structure is formed, in which both A and B ions are in the centre of almost regular octahedral groups. Deformation of the octahedra would result in structures with orthorhombic or monoclinic symmetry. Usually, this deformation is so small that the structures can still be described as pseudo hexagonal or pseudo cubic. There is, however, a much more drastic change in LiMnO₂; although the positions of the ions in the orthorhombic structure of this compound are not yet known, it seems to be very likely that this structure is the analogue of the tetragonal Mn³⁺-spinels.

There are, however, a number of deformations that cannot be explained by the Goodenough and Loeb theory. According to this theory a deformation cannot be expected if octahedral interstices are occupied by Cr^{3+} -ions. Deformations to tetragonal structures therefore have not been observed in chromites, with the exception of NiCr₂O₄ and CuCr₂O₄. Since there is no doubt, that the Cr³⁺ions in these compounds occupy the octahedral positions, the deformation must be due to the Ni²⁺- and Cu²⁺-ions in tetrahedral positions. A deformation of tetrahedral groups cannot be explained by the Goodenough and Loeb theory.

A completely different explanation of the deformation of the

 Cu^{2+} spinels and other Cu^{2+} compounds has been given by Orgel 47), based on the so called Jahn and Teller effect. According to this idea, the deformation is due to the crystal field, that causes a splitting of the d-levels into two groups, i.e. one (ϵ) of three orbitals dxy, dyz and dxz and the other (γ) of two, d(x^2-y^2) and dz². Deformation will occur if the high energy orbitals, which do not fit well into the available interstices, are partly occupied by electrons. Deformation of octahedra is to be expected if they are occupied by ions with 4 or 9 electrons, or by ions with 7 electrons, if the crystal field is strong enough to force the electrons into a $\varepsilon^{6\gamma^{1}}$ configuration. Deformation of tetrahedral groups will occur if they are occupied by ions with 1, 2, 4 or 5 ε -electrons. The Jahn and Teller effect satisfactorily explains the deformations observed in NiCr2O4 and CuCr2O4, and predicts deformations in other types of compounds too. In the alkali compounds of the type ABO₂ in which B is one of the ions of the series from Ti^{3+} to Ni^{3+} , indications of the expected deformations were found in the Ni³⁺⁻ and Mn³⁺-compounds only, which is in complete agreement with the Jahn and Teller mechanism.

NaNiO₂ occurs in two allotropic forms. The form, stable at lower temperature, is monoclinic; the NiO₆ groups have tetragonal symmetry. From measurements of the magnetic susceptibility it can be deduced, that the ion is in a $\varepsilon^{6}\gamma^{1}$ state. In the high temperature modification all Ni-O distances are equal; the transition shows thermal hystereses of the same type as observed in the transition of tetragonal into cubic Mn₃O₄.

With Co^{3+} or Fe^{3+} ions no deformations have been observed. The Co^{3+} -ion in LiCoO₂ behaves exactly as in the cobaltic spinels. The magnetic moment is zero, but there is a temperature independent paramagnetism of the same magnitude as in $ZnCo \mathcal{O}_4$ ¹⁷). At about 800°C the increasing susceptibility seems to indicate a transition into a paramagnetic state. It was mentioned earlier that the anomalous crystal structure of LiMnO2 must probably be ascribed to a tetragonal deformation of the MnO6 octahedra. At high temperatures the magnetic moment of the Mn³⁺-ion equals the normal spinonly value for the trivalent ion. LiMnO2 is antiferromagnetic with a Curietemperature of ~300°K. The compounds LiCrO2 and NaCrO2 have an undeformed hexagonal structure; the magnetic moment in both compounds has the spinonly value for a trivalent ion. LiCrO2 is antiferromagnetic; the Curiepoint Tc and the asymptotic Curie temperature are in ratio 1:2.8. From this value it was concluded that the antiferromagnetic interaction is mainly due to nearest neighbour interaction; that between next-to-nearest neighbours being much smaller.

LiVO₂ and NaVO₂ are hexagonal, LiTiO₂ is cubic, with random distribution of the cations. The vanadium compounds and LiTiO₂ all show a very unusual magnetic behaviour at lower temperatures. For LiVO₂ $1/\chi$ -T curve shows a sharp minimum at ~450°K, followed by a maximum at ~290°K. The extrema are less pronounced in the Na⁺-compound. It is very probable that the behaviour of LiTiO₂ is essentially the same as that of LiVO₂. Accurate measurements, however, could not be performed, as the susceptibility changed during the measurements, and a final equilib-

rium state could not be observed. It is very remarkable that a similar behaviour has been observed for the compounds VO_2 , $TiCl_3$ and $Cs_3Ti_2Cl_9$. This anomalous behaviour seems to be independent of both the crystal structure and the properties of the ions surrounding the metal ion and it is therefore suggested that the anomalous susceptibility at lower temperatures is a property of the ion itself and must be connected with the fact that all ions in question have either one single or two d-electrons.

LITERATUUR

- 1) G. Aminoff, Z. Krist. 64, 475 (1926).
- 2) B. Mason, Amer. Min. <u>32</u>, 426(1947).
- 3) H.W. Joustra, 'Leiden, niet gepubliceerde gegevens Na₂WO₄.
- 4) E. W. Gorter, Philips Res. Rep. 9, 295, 321, 403 (1954).
- 5) E. J. W. Verwey, P. B. Braun, E. W. Gorter, F. C. Romeyn en J. H. van Santen, Z. Physik. Chem. <u>198</u>, 6 (1951).
- 6) H. F. MacMurdie, B. H. Sullivan, F. A. Maurer, J. Research Nat. Bur. St. <u>45</u>, 35 (1950).
- 7) W. Klemm, Z. Anorg. Chem. <u>244</u>, 377 (1940); <u>246</u>, 347 (1941); <u>250</u>, 223 (1942).
- 8) F. C. Romeyn, Philips Res. Rep. 8, 304 (1953).
- 9) J. B. Goodenough, A. L. Loeb, Phys. Rev. <u>98</u>, 391 (1955).
- 10) L. Pauling, The Nature of the Chemical Bond.
- 11) P. Cossee, Rec. Trav. Chim. 75, 1089 (1956).
- 12) J. J. Scheer, Academisch Proefschrift Leiden, 1955.
- 13) F. Bertraut, J. Phys. Radium 12, 252 (1951).
- 14) N. Elliot, J. Chem. Phys. <u>22</u>, 1924 (1954).
- 15) K. Wahl en W. Klemm, Z. Anorg. Chem. 270, 69 (1952).
- 16) L. D. Dyer, B. S. Borie Jr., G. P. Smith, J. Am. Chem. Soc. <u>76</u>, 1499 (1954).
- 17) P. Cossee, Academisch Proefschrift Leiden, 1956.
- 18) J. Volger, F. W. de Vrijer en C. J. Gorter, Physica <u>13</u>, 621 (1947).
- 19) L. C. Jackson, Trans. Roy. Soc. (London) A, 224, 1, (1924).
- 20) A. E. van Arkel, U. Spitsbergen en R. D. Heyding, Can. J. Chem. <u>33</u>, 446 (1955).
- 21) P.W.Anderson, Phys. Rev. 79, 350, 705 (1950).
- 22) H.A. Bethe, Ann. Physik 3, 133 (1929).
- 23) J. H. van Santen en J. S. van Wieringen, Rec. Trav. Chim. <u>71</u>, 421 (1952).
- 24) J. H. Van Vleck, J. Chem. Phys. 3, 807 (1935).
- 25) H.A. Jahn en E. Teller, Proc. Roy. Soc. (London) A, <u>161</u>, 220 (1937).
- 26) L.E. Orgel en J.D. Dunitz, Nature 179, 462 (1957).
- 27) J. Bjerrum, C. J. Ballhausen en C. Klixbüll Jørgensen, Acta Chem. Scand. <u>8</u>, 1275 (1954).
- 28) C. Klixbüll Jørgensen, Acta Chem. Scand. 8, 1502 (1954).
- 29) L.E. Orgel, J. Chem. Phys. 23, 1004 (1955).
- 30) T.E. Moore, M. Ellis en P. W. Selwood, J. Am. Chem. Soc. <u>72</u>, 856 (1950).
- 31) E. V. Kurlina, V. G. Prokhvatilov en I. T. Sheftel, Doklady Akad. Nauk. U. S. S. R., <u>86</u>, 305 (1952).
- 32) I. Aoki, J. Coll. Arts and Sci. Chiba Univ. 1, 150 (1954).
- 33) F. Bertraut, Compt. rend. <u>239</u>, 504 (1954).
- 34) F.K. Lotgering, Philips Res. Rep. 11, 190 (1956).
- 35) C. J. Gorter, Phys. Rev. <u>42</u>, 437 (1932).
- 36) W. Rüdorff en H. Becker, Z. Naturforsch. 96, 613 (1954).

- 37) J. W. Boon, C. H. MacGillavry, Rec. Trav. Chim. 61, 910 (1942).
- 38) W. Rüdorff, K. Stegemann, Z. Anorg. Chem. 251, 376 (1943).
- 39) W. D. Johnston en R. R. Heikes, J. Am. Chem. Soc. 78, 3255 (1956).
- 40) G. Lang, Z. Anorg. Chem. 276, 77 (1954).
- 41) J. J. Scheer, A. E. van Arkel en R. D. Heyding, Can. J. Chem. 33, 683 (1955).
- 42) R. Scholder en W. Klemm, Angew. Chem. 66, 461 (1954).
- 43) G.H. Jonker, J.H. van Santen, Physica 19, 120 (1953).
- 44) L. Kernahan en M. J. Sienko, J. Am. Chem. Soc. 77, 1978 (1955).
- 45) R. W. Asmussen, Dissertatie Kopenhagen, 1944.
- 46) E. Rosenbohm, Z. Physik. Chem. 93, 693 (1919).
- 47) L. E. Orgel, J. Chem. Soc. 1952, 4756.
- 48) Tanabe en Sugano, J. Phys. Soc. Japan 9, 753, 766 (1954).
- 49) C. Klixbull Jørgensen, Acta Chem. Scand. 8, 1502 (1954).
- 50) J.S. Griffith en L.E. Orgel, Trans. Faraday Soc. 53, 601 (1957).
- 51) Y. Yafet en C. Kittel, Phys. Rev. 87, 290 (1952).
- 52) L. Neel, Ann. Phys. [11] 5, 232 (1936).
- 53) W. Klemm en E. Krose, Z. Anorg. Chem. 253, 209 (1947).
- 54) W. Klemm en E. Hoschek, Z. Anorg. Chem. 226, 359 (1936).
- 55) C. Starr, F. Bitter en A. R. Kaufmann, Phys. Rev. 58, 977 (1940).
- 56) R. Collongues, Bull. Soc. Chim. France 1957, 261.
- 57) M.A. Hepworth, K.H. Jack, R.S. Nyholm, Nature, 179, 212 (1957).
- 58) M.A.Hepworth, K.H.Jack, R.D.Peacock en G.J.Westland, Acta Cryst., 10, 63 (1957).
- 59) J.H. Van Vleck, J. Chem. Phys. 7, 472 (1939). 60) D.J.W.IJdo, private communication.
- 61) J.W. Leech en A. J. Manuel, Proc. Roy. Soc. 69, 221 (1956).

Op verzoek van de Faculteit der Wis- en Natuurkunde volgt hier een overzicht van mijn academische studie.

Nadat ik in mei 1947 het eindexamen HBS-B aan het Vrijzinnig Christelijk Lyceum te Scheveningen had afgelegd, begon ik in september van datzelfde jaar mijn studie te Leiden.

Het candidaatsexamen scheikunde, letter F, werd in december 1951 afgelegd. De verdere studie geschiedde onder leiding van de hoogleraren Dr. A. E. van Arkel, Dr. E. Niggli en Dr. L. J. Oosterhoff. Met ingang van 1 september 1952 werd ik als assistent verbonden aan de afdeling Anorganische Chemie van het Laboratorium voor Anorganische en Physische Chemie te Leiden. In december 1954 kon onder leiding van Professor Dr. A. E. van Arkel een begin worden gemaakt met het onderzoek, waarvan dit proefschrift de resultaten bevat.

Het doctoraal examen met hoofdvak anorganische scheikunde en bijvakken theoretische organische chemie en kristallografie werd in november 1955 afgelegd.

1 juli 1956 trad ik in dienst bij het Natuurkundig Laboratorium der N.V. Philips' Gloeilampen fabrieken te Eindhoven. De directie van deze maatschappij ben ik zeer erkentelijk voor de mij geboden gelegenheid de voor mijn promotie noodzakelijke werkzaamheden te Leiden te voltooien.

Allen, die hebben bijgedragen aan de totstandkoming van dit proefschrift, ben ik zeer dankbaar; in het bijzonder de Heren Dr. J. H. van Santen, Dr. G. H. Jonker en Dr. E. W. Gorter, die mij vele waardevolle adviezen hebben gegeven over de interpretatie van de experimentele resultaten. Voorts de Heren Dr. P. Cossee en H. W. Kouwenhoven, die mij hielpen bij het practisch gedeelte en met wie ik waardevolle discussies voerde over de resultaten daarvan, tevens Mejuffrouw H. M. E. de Jonge en de Heren P. S. R. Radhakishun en C. A. G. Oedayrajsingh Varma, die enkele preparaten hebben vervaardigd en tot slot het gehele personeel van het laboratorium.

STELLINGEN

1. De door Burr voorgestelde transition-state, ter verklaring van 1-2 arylverhuizingen als gevolg van electronendeficientie in atoom 2, is onwaarschijnlijk.

J.G. Burr, Chemistry and Industry 1956, 798.

 De bewering van Perakis, Wucher en Karantassis, dat de cobaltionen in K₂Co(C₂O₄)₃. H₂O in twee-, drie- en vierwaardige toestand voorkomen, is onjuist.

N. Perakis, J. Wucher en T. Karantassis, Comptes Rendus <u>238</u>, 475 (1954).

3. De thans beschikbare gegevens duiden erop, dat in *Periplaneta americana L*. vergiftiging na contact met D.D.T. gepaard gaat met remming van de cholinesterase.

D. Stegwee, Biochem. Biophys. Acta 8, 187 (1952).

4. De experimentele omstandigheden van de onderzoekingen van Kirson over de katalytische werking van verschillende aminecomplexen van cupri-ionen op de ontleding van waterstofperoxyde, waren zodanig, dat een andere dan de gegeven interpretatie van de meetresultaten mogelijk is.

B. Kirson, Bull. soc. chim. France 1956, 1793.

5. De verklaring, die Orgel geeft voor het langgolvige absorptiemaximum van organische nitroso-verbindingen, verdient de voorkeur boven de verklaring, gegeven door Lewis en Kasha.

L.E.Orgel, J.Chem.Soc. 1953, 1276. G.N.Lewis en M.Kasha, J.Am.Chem.Soc. <u>67</u>, 994 (1945)

66, 2100 (1944)

 De nauwkeurigheid van de metingen van Wansink van de viscositeit van vloeibare ³He-⁴He mengsels boven het lambda-punt kan aanzienlijk verbeterd worden door wijziging in de apparatuur.

D.H.N. Wansink, Academisch Proefschrift Leiden 1957.

- 7. Het is gewenst, dat in de Faculteit der Wis- en Natuurkunde een candidaatsexamen met hoofdvak scheikunde wordt ingesteld, waarvoor meer toegepaste wiskunde wordt vereist dan thans voor de examens met letter E en F.
- 8. Bij de berekening van de electronen-polariseerbaarheid van moleculen uit optische gegevens verdient het aanbeveling uit te gaan van absolute brekingsindices.

9. Het is niet waarschijnlijk dat de door Cossee voorgestelde gedeeltelijke omkering van synthetische MgAl₂O₄ voorkomt in het mineraal spinel.

P. Cossee, Academisch Proefschrift, Leiden 1956.

10. Uit de verschijnselen, die Kolisko heeft waargenomen tijdens conjunctie of oppositie van Saturnus met andere hemellichamen van "ons" zonnestelsel, mag niet geconcludeerd worden, dat er een specifieke invloed uitgaat van genoemde planeet op het gedrag van loodionen in oplossing.

L.Kolisko, Sternenwirken in Erdenstoffen; Saturn und Blei, 1952.

