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INTRODUCTION.

W e have tried  to explain the anom alous behaviour of the
relative positions of singlet and trip let in  the D-series of the
Ca I spectrum . In the simple theory, described in  the §§ 1
and 2 the distance between singlet and trip let is given by
two times the exchange integral. In general we m ay expect
this integral to have a positive sign, while to explain the
observed positions in  the D-series it would have to be alter-
natingly positive and negative. W e have tried  to account for
this anom aly by investigating the perturbations of levels of
oth ter configurations, viz. the 1D levels of the 3<P and the
4p2 configurations.

F irst, however, we discuss in  § 3 the effect of perturbations
of the D-series of Mg and Cd which are of a sim pler type
and w here in  this way the anom alous position of the singlet
relative to the trip let can be explained. In § 4 we discuss on
the basis of Russell and Shenstone’s considerations on this
subject the general effect of perturbations in  the Ca I
spectrum.

In § 5 we will see that our num erical calculations give a
positive sign fo r the exchange integral fo r the whole D-series
of Ca I. In § 6 we then calculate w ith a rough appoxim ation
for the wave functions of the 3tf2 and the 4p2 configurations
the effect of the perturbations. The resulting displacements
fo r the levels were much too large.

In § 7 we discuss the cause of this disagreement. The posi
tions of the perturbing levels are not experim entally known,
but were calculated theoretically from  the positions of the
3P  levels of the sam e configurations. W e first try to get
agreem ent with experim ent by only varying these positions.
This, however, proves to be impossible. Rut, w ith a position

1



2
of the 1D level of the 4p2 configuration calculated semi-
em pirically from  the positions of the 3P  level and of the
probable 1S level of this configuration and w ith altered values
for the m atrix  elements, it is possible to get agreement fo r
the m em bers of the series from  4s 4d onwards. Agreement
fo r the 4s 3d level is not obtained in  this way, but a probable
reason fo r this is given. In  § 8 we discuss the anom alies in
the S-series.

In §§ 9, 10 and 11 we give m ore in  detail the calculation of
the wave functions, of the perturbation m atrices and of the
m atrix  elements.

The circum stance m entioned above tha t the m atrix  ele
m ents had to be changed could theoretically be traced back
to the fact that the one electron wave functions in the p2 and
d2 configurations certainly cannot be the same as in the
4s 4p and the 4s 3d configurations, as had  originally been
assumed. This is discussed in § 12.

Although we have not succeeded in  calculating the modified
wave functions w ith the precision required for our problem,
it can hard ly  be doubted that the experim entally observed
positions of singlet and trip let in  the D-series of Ca can he
in terpreted  as a perturbation from  the 4p2 and the 3d2
configurations.



C H A P T E R  I.

THE SPECTRUM OF AN ATOM W ITH  TWO
VALENCE ELECTRONS.

§ 1* Theory of an atom with two valence electrons.
In the following we shall consider the energy states that

m ay exist in an atom w ith two valence electrons, when these
electrons are excited. W e neglect the influence of the valence
electrons on the com pleted inner shells. The valence electrons
then will move in  the electric field, given by the nucleus
and the inner shells, which field m ay be represented by a
central field w ith potential energy V(r). The wave equation
fo r the valence electrons becomes then, when we use
H artree’s atomic units

1» +  A2 «Ji +  2 ( e — F(r!) — V(r2) — — - )  =  0, (1)

where Ax and a2 are the Laplace operators in  the space of
the first and the second electron, r lt2 is the distance between
the electrons and(J)(x1. .^ 2)is  a function of the six coordinates
of both electrons, norm alized to unity.

To get a first approxim ation of the wave functions, we omit
the interaction between the electrons *); the problem  then can
be separated and represented by the product

fl  (*1. yi, *l) • f2 (*2. #2. *2)

of the wave functions of the two independent electrons, ?1

*) In reality the interaction between the valence electrons is already to
some extend implied in V^) and V(ra) (these two functions need not even
be the same) but this is not of any importance for the following. For more
particulars about this see 2).
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and ®., being norm alized to unity and satisfying an equation
of the form

A Ta+ 2 ( £ - V ( r ) ) < p a = 0 .

W e can w rite the solution of this equation in  the form

* a < 0  W- /Q \ (2)
f a  =  — --------Y lm ( d a -  f a )  • '  '

w here R a depends only on the distance ra of the electron A
from  the nucleus and Ylm ($a, <pa) is a norm alized spherical
harm onic (/ =  0 ,1 ,2 ,...;  m ^ .1 ) .  The quantum  num ber of the
angular m om entum  of the electron is given by I and of its
com ponent in  the direction of the z-axis by m. W hen I has
the values 0,1,2,___ we say that the electron is in an
s,p ,d ,. . . .  state.

Until now we have not introduced the spin of the electron.
This m ay be done, when we neglect the interaction between
spin and orbit, by m ultiplying the orbital part of the wave
function w ith a function of the spin only. W e will call this
function u when the direction of the spin is parallel, and v
w hen it is anti-parallel to the z-axis.

Now the product ^  (xx .). 4>., (x, .) of the wave functions of
the electrons inclusive of the spin is not yet a true wave
function as this has to be anti-sym m etrical in the coordinates
of orbit and spin of both electrons. The real norm alized
wave functions become

y=  / f c f o -----)• 4*2 (*2 — ) — 'h  (*1 —  —  ))>

(*1 •) being the wave function, w ith the spin, of the first
electron.

The ground state of the atom  is w hen both electrons are
in  the lowest possible s-state. W e get the norm al term  series
w hen one of the electrons rem ains in this state, while the
other is excited to a higher state. W hen this electron is in
an s,p,d, . . .  state, then the resulting angular m om entum  for
the orbital motion of the electrons L  is also 0 ,1 ,2 ,.. ..  and
the atom is in an  S ,P ,D ,... state. As regards to the spins,
there are still two possibilities. They m ay be parallel; in
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this case the resulting spinmoment is 1, the state is a triplet,
as there are three possible values for the resulting total
impulsmoment J. The other possibility is that they are anti
parallel; then the resulting spinmoment is 0, and we get
a singlet.

The other, so called anomalous terms, arise when both
electrons are excited. W hen one of them has the orbital im-
pusmoment lx and the other 1%, then the resulting impuls
moment can have the values l\ +  h, h  +  h  — 1»....... | h —h  |.
For the spins there are in general the same possibilities as
above, so that we have a triplet and a singlet state for every
value of L. The only exception is in the case of two equivalent
states; then Pauli’s principle limits the number of possibilities.

In the case of the normal terms we can easily find the
wave functions belonging to singlet and triplet states. We
have seen that the wave function as a whole has to be
anti-symmetrical. Now the wave function is a product of
a part depending on the orbit only and a part depending
on the spin only. An anti-symmetrical wave function may
arise from a symmetrical orbital part combined with an
anti-symmetrical part from the spin, or from an anti-sym
metrical part from the orbit and a symmetrical from the
spin. For the spin, there are possible one anti-symmetrical

function^= (u(\)v(2 )  — u(l)u(2)^ and three symmetrical ones

u (1) u (2), v (1) v (2), and ^== (u (1) v (2) +  v (1) u (2)^ so that

we get for the four possible wave functions

y—  (91  (!) 92 (2) +  <p2 (1) 9i (2)^- ^h (I) v (2) — v (1) u (2)j

and
/ « ( l )u(2)

y =  (f t (1) 92 (2) -  f t  (1) f t (2)j. | y(1)ü (2)

( ^ =  ( i i ( l ) p  (2) +  d (1)h (2)\.

The three wave functions that come last belong to the
triplet state and it is seen directly that they have the same
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energy, as the energy operator in our appoximation only
contains the orbital coordinates and the only difference in
these functions is in the part, which does not contain these
coordinates.

In the case of the anomalous terms it is not so
simple to write down the wave functions i). According to
what was said above we can directly write down wave
functions which give a definite value of M[t as this is the
sum of the values of m l for each electron; the same holds
also for Mg. But in general several combinations of two
m t values give the same value for M., corresponding
to the fact that for all states with L ^ M ,  one component of
the multiplet has this same value. The wave functions
with this same value for M will give an energy matrix
which is not yet a diagonal matrix. To diagonalize it we
have to transform from the wave functions of the M. -space
to the L-space; the new wave functions are linear combi
nations of the original ones, each belonging to a definite
value of L.

§ 2. Energy difference between singlet and triplet.
We will now calculate the energy difference between

singlet and triplet term belonging to the same member of
the normal series2). The only energy difference can come

from the term — in the energy operator which alone con-
r i> 2

tains the coordinates of both electrons. As the spin functions
are normalized to unity, we get for the energy of the singlet

state of the part----  of the energy operator *)n. 2

ƒ I (1)I2-1T2 (2)|2 *1  * 2  +  ƒ <P! (1) (2)~ < P 2 (1) ?1 (2) * 1 d i 2

while for the triplet state

f ——• 1 Ti ( 0 12- lT2(2)|2dz1 dz2 — f  tpi (1) ?2 (2)-^—'f2 (l)'Pi (2)dz1dz2,
J ri '  2 J rl> 2

*) When ri,2 is given in H a r t r e e ’s atomic units, this formula gives
also the energy in these units. In all the following formulae we have made
use of these units.
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where dzx and dt2 are the elements of volume in the space of
the first and the second electron. From this follows for the
difference in energy between singlet and triplet the
expression

2 [<Fi (1) ?2 (2) —  92 (1) ?i (2) dii  dz2 =  2K , (4)
J ri< 2

where K is called the exchange integral.
We now will integrate K over the angular variables. To

this end we recall that according to § 1 (2), we may put for
the wave functions

0̂0 (». ?)>

Vlm(*>9)-

We develop l/rlt2 in spherical harmonics, which gives

rĥ  <•> * > (•* *>■ K>'J-
On substituting this, we get, after integration over the angular
variables,

00 00

K — 21 +  1 ƒ ri Ry (ri) (ri) dri j  y n rr  Ri (r2> r ï fa) dr2. (5)
o 0

The factor two proceeds from the fact that we have written
down only the integral for <  r2, and the part for >  r2
gives once more the same value.

Whether the singlet lies above or below the triplet depends
on the sign of K. Now it can be shown 3) that, when we
have a wave function, which is not wholly and improbably
different from a hydrogen function, we may expect K to be
positive. The way of reasoning to make this probable may
be indicated as follows: The only way in which the
integrand of the second integral can be negative is, when
in the first integration the sign of the integrand in a given
point is.different from the sign of the integral up to that
point. Coming from infinity at first the integrand does not
differ markedly from 0, then, when we get a perceptible
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value, integral and integrand will have the same sign, till
we come to the first node. When we have passed this point, at
first this will not be the case. As the integrand contains the
product of two different wave functions one possibility is
that their nodes do not lie in the same region. Then, as the
maximum value of the product before and after the node
will be of the same order of magnitude, the integrand will
increase rapidly in absolute value owing to the negative
power of r in the denominator; the integral then decreases
rapidly, till again integral and integrand have the same
sign. We expect, owing to the rapid decrease of the integral,
that this negative part will be smaller than the preceding
positive part. When the nodes of both wave functions lie in
about the same region, the negative part of the integrand,
which lies between them, cannot take on a considerable
value. As the same reasoning holds for their next nodes we
expect that the whole integral will take a positive value.
This would have as consequence that singlet lies above the
triplet. Experimentally this is very often the case, but
numerous exceptions occur.

The first possibility for an explanation of these exceptions
would be to see, whether interaction with the inner closed
shells can alter the energy difference between singlet and
triplet.

S l a t e r 1) has shown that an interaction of this kind
does not have this effect. To see this we have to bear in mind
that in reality we have a wave function depending on the
coordinates of all n electrons. This wave function can
approximately be written as a Slater-determinant of the wave
functions of the separate electrons. For the singlet we find
for this function, when we have developed in the elements
of two columns

=  b ) (o) X (b) +  X («) 4» (ö)||u(a)o(ö)-ü(a)u(&)|

and for one of the components of the triplet term in the
same way

3$  =  - r X ' ( a’ ft) $ <Ka)x(ft) — X(«)♦(*) ! “ (a)“ (*).
a , b (  7
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where the sum m ation has to be taken over all possible com
binations of a and b, fo r a < b ;  (a,b) denotes the Slater-deter
m inant fo r(n  — 21 inner electrons that does not contain the
coordinates of electron a and electron b; <|> and y are the
wave functions fo r the outer electrons. W e now w rite down
the expectancy values of 1 jrpq . This is, in  the case of the
singlet a sum of the integrals of expressions of the form

- —  (a, b) . ) <J»(a) x (b) +  x (a) <Kfc) | i « (a) v(b) — v(a)u(b)  (.
P, <7

(c, d ) . ) <Hc) x (d) +  X (c) 'J' (d) | \ u ( c ) v (d )  — v (c) u (d) (,
and in  case of the  trip let

7 —  (°>b)• ) 'I' (a) X (ö) — X (a) 4* (*) { u (a) u (b).
p , q

(c, d). ) <KC) X (d ) — x (c) «I» (d) ( u (c) u (d).
As m ay be easily seen, this gives a result differing fo r singlet
and trip let only in  the case of a = c = p  and b = d = q  and the
sum of these expressions just gives the energy difference
between singlet and triplet, as we have calculated it above
w ithout taking into account the interaction w ith the inner
shells.

The other possibility is that the anom alous position of the
singlet relative to the trip let is caused by a perturbation  of
one or both levels 3) .

Two states, the eigenfunctions of which in first approxi
m ation are represented in the w ay described above by m eans
of one one-particle wave function for each electron, perturb
each other when the energy m atrix  belonging to these states
is not a diagonal m atrix. W hen the wave functions of the
two states are ^  and <p2 the true wave functions m ay be
w ritten in the form  <Ji =  a +  b <p2. The constants are given
by the equations

(Hlt  —  E) a +  H 12b =  o
H21 a +  ( tf22 — E) b = o

where Ha b = J ' p a Hop yb d r, when Hopis the energy operator,

and E  is the energy of the perturbed  state. These equations
only have a solution when



10

From  this equation we can determ ine E, for which we find

two values, E— ~  +  / / 212. Each of these

values gives us a set a,b and a corresponding <|>. W hen the
perturbation  is small each >|> m ay be described as the
perturbed  wave function of one of the states originally
described by the ^-function. From  the form ulae follows
easily tha t the perturbing states repel each other.

States can be characterized as odd or even from  w hether
2 / is odd or even. Only states of the same parity  can perturb
each other, since the energy operator does not change after
reflection with respect to the origin.

W e have neglected the spin orbit coupling. Since in that
case the operators J, L and S commute w ith the energy
operator there can only be interaction between states with
the same value fo r J, L  and S.

A perturbation  of a term , of one of the norm al series (first
approxim ation wave function ®x) can in  this way be caused
by a term  of an anom alous series (first approxim ation
wave function ®2). W e have seen that generally a
given configuration gives rise to both a trip let and a singlet
term  of a certain sort — in this case a relative displacement
of singlet and trip let can be effected by a difference in their
interaction w ith the foreign level and also the singlet-triplet
splitting of the perturbing levels m ay be of influence.
In the case of two equivalent electrons there exist only either
a singlet or a trip let; in this case the perturbation affects
only term s of one m ultiplicity; a m arked change in  the
relative position of singlet and trip let term s of the norm al
series m ay be the result.

§ 3. Perturbations of the D-series in Mg and Cd.

The interaction w ith another configuration is used by
B a c h e r 3) to explain the anom alous relative position of
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the * *D and 3D-terms of Mg. In this case the singlet lies below
the trip let fo r all the term s of the norm al series. The Mg atom
contains 12 electrons; 8 of them  fill up the Is, 2s and 2p
shell; the other two are, in  the D-series, in a 3s and nd
state*). The 3p2 configuration gives the lowest anom alous
terms. This configuration contains a ^D-term and no 3D-
term **) The \D-term is not known experim entally with
certainty, but B a c h e r  can calculate its position theoreti
cally by m eans of the wave functions and the position of the
3P-term , which is known. The other anom alous configurations
will give terms, which lie m uch fu rther away, so we may
limit ourselves to the influence of the 3p2 configuration.

W ith  the wave functions fo r the electrons in the 3s and 3d
state B a c h e r  first calculates the exchange in tegral for
the 3s 3d  state and finds indeed a positive value. H e now
calculates the position of the XD term  of the 3/j2 configura
tion and its interaction w ith the singlet term  of the 3s 3d
configuration. F or this the wave functions of the XD  and
3P  term s are required. As the 3p2 configuration contains
only a XS, a 3P  and a XD  term  these wave functions can be
w ritten down directly, fo r we are sure that the wave function
w ith Mt =  2, M g =  0 represents the 1D state, while the func
tion w ith M t =  1, M s =  1 represents a 3P  state.

W ith these wave functions he finds fo r the expectancy
value of the p a rt 1 //i,2 ° f  the energy operator, which alone
gives rise to the energy difference between the 3P  and the
lD states, afte r integrating over the angular coordinates,

R d — £ Re =  energy of the 3P-state
Rd +  i s R e —  energy of the E s ta te ,

and  fo r the complete set of fou r m atrix  elements of l//],2
corresponding to a transition between the XD states of the
3s 3d and the 3p2 configuration

* ) In accordance with the usual notation, the number preceding the letter
indicating the value of I of the electron, gives the principal quantum number.

* *) The suffixes 1 and 3 denote the multiplicity of the term.
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3s 3d 3p2
3s 3d Ra i  Rb =  Rn + 2 ^ R c =  Hn

3p2 + 2VS*c =  tf21 Rd +  TW Re =
where

OO 00

dri ƒ  d r 2 — RJ (ri) RJ  (ra) ’^b=jir1ƒ  * 2  ^  (>ï) Rm (ri) • fa) R3d (r2) ;
o o

o o

00 00 00 00

=  J d r 1 ƒ  dr2 - -  R3p2 fa) /?3p2 fa ); /?e = ƒ  d/ï fdr2 ff3p2 fa) /?3p2 fa ) ;
3 0 0

00 00

RC = J  drl ƒ <fa —  ^3*(rl) 3̂p (rl) /?3p(rs)
0  0

ra is the smaller, rb the larger of rx and r2. When B a c h e r
calculates the value of these integrals with his wave functions
he finds: Rb == 10190 cm-1 , Re =  25620 cm-1 , Rg =  29940 cm-1 .
The value of Re places the 1D  level at —3365 cm—i, far above
the ionization-potential. When he calculates the position of
the levels after the perturbation he finds that the singlet lies
about 4000 cm-1  below the triplet, whereas its actual position
is only 1500 cm-1  below. On repeating his calculations with
the same wave functions we found for Re the value 21340 cm-1
instead. This places the singlet at 15992 cm-1 , which is
2280 cm—i below the triplet; a much closer agreement.

Now we want to estimate the influence of- this perturbation
on the following members of the normal 1D sequence. We
can do this with fair accuracy, without calculating the
matrix elements of l/rll2 with the wave functions correspon
ding to the electron configurations of these members. We
may suppose, indeed, that the form of the wave functions
is the same for all d-electrons in that particular region,
which alone contributes appreciably to the matrix elements,
this contribution coming from a region in the r-coordinate
where we still have a reasonable magnitude of the wave
function of the s-electron. In classical theory, this is that part
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of the orbit, which lies inside the orbit of the «-electron. The
larger the principal quantum  num ber, the better the sup
position that this p a rt is the same fo r different cf-eleotrons
w ill cover the truth. The probability of finding the d-electron
at a distance from  the nucleus sm aller than  the  rad ius of the
orbit of the «-electron equals the tim e the electron needs to
travel along this part of its orbit in  proportion to the time
of revolution. As the form er tim e is approxim ately the same
for all the d-electrons, this probability will be proportional
to the inverse of the tim e of revolution, which tim e is
proportional to n*3,n* being the effective quantum  num ber
defined as n* =  ^ R / T , w here R  is the Rydberg constant
and  T  is the term  value. On the other hand the probability of
finding the electron in  a given place is proportional to the
square of the wave function, so that calling the wave function

we find <|>d on n ~3'2. As the form  of the wave function is
the same in  the region which contributes to the integrals Rb
and Rc the ir values are only different because of the nor
m alization; we find for them Rb 00^2 oo n*-3; Rc cn <|id oo n*~312.

By m eans of these form ulae we can calculate these integrals
fo r the higher mem bers of the n\D series, when we know
them  for 3xjD. W ith these values we get the following posi
tions of the perturbed  levels, which are given in  the follo
wing table

n ID (cal.) n W  — n  ID (cal.) n ®D — n 1D  (exp.)

3 15992 — 2277 — 1554
4 9641 —21o2 — 1058
5 6389 — 1685 — 660
6 4534 — 1305 — 420
7 3352 — 999 -  279 (I)
8 2521 — 781 — 193
9 2017 — 609 — 137

10 1624 — 488 — 99
11 1326 — 390 -  76
12 1103 — 319 — 61
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All values in  this table are given in  cm- 1. The first column
gives the principle quantum  num ber fo r the d-electron, the
second the position of the *D  level as it has been calculated,

’ D -t
: r

2000

FIG.1

1000

0

-1000

o

-2000 X CALCULATED
A  EXPERIMENTAL
0 EXCHANGE EFFECT 0NLV

-3000

4000

Fig. 1. The difference between SD and 1D levels for the normal series of Mg.

the th ird  and the fourth  respectively the difference between
singlet and trip let as following from  the positions of the
levels, as we have calculated them and as they are experi-



15

m entally given *). Our results are also given in fig. 1. W e
have plotted for each state the difference between singlet
and triplet as we have calculated it, as it is given by experi
ment and as the exchange integral would give it without
perturbation. That the agreem ent is better for n = 3, than for
the following levels m ay easily be due to the fact that the
method for obtaining the o ther m atrix  elements is a very
rough one, especially as we start from  a 3d electron, where
our supposition regarding the sim ilarity of different nd-wave
functions will be w orst fulfilled. The 3d function, which has
no nodes, cannot be said to behave, fo r sm all r-values, in
exactly the same way as all the following nd  functions which
do have nodes. This would m ean that the above rough cal
culation gives us values that are too large when we deduce
the m atrix  elements for the o ther m em bers of the series
from  those for the 4s 3d state. F or the exchange in tegral this
would be m ore m arked than for the m atrix  elements giving
the interaction, as the first contains the nd  function twice.
The true distance between singlet and trip let would then be
sm aller than the calculated one, exactly w hat we need to get
better agreem ent w ith experiment.

F or the norm al D-term s of Cd the singlet also lies below
the triplet. In this case we have not m ade any num erical cal
culations but we have estim ated the effect of a perturbation
by the 1D -term  of the 5p* configuration, which would also
here be the principal source of a perturbation. This term  is
not known, but two mem bers of the SP term  of the same
configuration lie at —1458 c m -i and —2207 cm -i. W e can
estim ate in  the same m anner as was done in  the case of Mg
Rb and Rc fo r the other m em bers of the series, when we
know  them  for one of them. So we have in total three
unknow n constants: Rb and Rc for the 6s 5d state and Re.
W e can calculate these constants by requiring that the
5 D, 6 D, TD  term  of the series get the correct positions.
There rem ains then to be seen w hether we get possible values
for these constants and w hether w ith these constants we get
a correct position for the last m em ber of the series fo r which

*) The term values are taken from 4), the values for the effective quan
tum numbers from 5).
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both singlet and trip let are known, the 81D term. W e find for
the \D-term  of the 5p2 configuration —2656 c m -i, so the
1D term  Hes above the 3P, as we should expect. F o r the
exchange^ integral we find 92.1 c m -1, a positive value and
for 2 V U . Rc we find 2725 cm ~i. W ith  these values we get
for the *D level of the 6s 8d  state the position 3264 c m -1,
which gives fo r the separation of singlet and trip let 127 cm -ij
while experim entally we find  109 c m -1, a fa irly  good
agreement.

C H A P T E R  II.

THE CA SPECTRUM.

§ 4. Perturbed series.

W e will now consider the Ca spectrum  m ore in detail. As
regards the relative position of singlet and triplet, there is
an anom aly in  the Z>-series. Both singlet and trip let are
known for five mem bers and here the singlet lies alternatively
above and below the triplet. Since, according to § 2, the
exchange integral m ay be expected to be always positive,
we shall try  to explain this by a perturbation of the series
by one o r m ore corresponding levels of another configuration.

Now this anom aly is not the only indication of a pertu r
bation in the Ca spectrum . From  classical theory we know
that for two successive members of a series the values of the
effective quantum  num ber n * will differ by one unit and the
difference n n *, called the quantum  defect, will in a norm al
series rem ain approxim ately constant. W henever in a series
this is not the case, there is a possibility that this can be
explained by a displacement of the levels by a perturbation.
In the case of Mg and Cd, where the singlets were supposed
to be perturbed, the quantum  defect was in accordance with
this nearly  constant for the trip let and variable for the singlet.

R u s s e l l  and S h e n s t o n e « )  have investigated w ith the
help of the classical Rydberg form ula the perturbed series for
a num ber of atoms, among them  Ca. W ith this form ula they
can, when they know the position of the perturbing level,
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estim ate the displacem ent caused by this perturbation  in  a
first approxim ation; we will use one of their results la te r on.

The first exam ple they give and which they trea t ra ther
extensively, is the 3D series of Ca. Here, as in some other
exam ples the quantum  defec t5) shows a rap id  rise of almost
one unit. They explain this by supposing that one of the
levels included in the series really is the perturbing level and
belongs to another configuration. This level w ill lie in  the
m iddle o f the region, where the rapid  rise is. In  the case of
the 3D series of Ca this is the level commonly ascribed to
the 4s 9d state; they suppose that this level belongs to the
configuration 3d 5s (see fig. 2). W hen this level is left out
of the series, the quantum  defect of the following members
is one unit lower and the result is tha t the points representing
the quantum  defect come to lie on a hyperbolic curve, as
should be expected when the level ascribed to the 4s 9d state
is in  reality  a perturbing level.

F o r the 1D series the quantum  defects lie very irregularly
and as only five members of the series are known, R u s s e l l
and S h e n s t o n e  do not give any calculations in this case,
but only say, that there is possibly a perturbation  by the
'D  levels of the configurations 4p 2 ,  3cP and 3d 5s. These
levels are not known experim entally, though there have been
reported possible positions fo r the 4pP level and fo r one of
the o ther two configurations.

As perturbing level fo r the series they take at first the
level at 12573 cm *, which they concluded from  evidence of
the intensities to be foreign to the series and to belong to the
configuration 3d 4p. W ith  this supposition they did not get
good agreement of their calculations w ith experim ent, but
when they removed the level at 5372 cm ~l, ascribed to the
configuration 4s 7p, from  the series, as we would conclude
from  fig. 3, and supposed this level to be the source of the
perturbation, they got good agreement.

Of the 3P series only three members are known; they m ade
calculations w ith the known level of the 3d 4p  configuration;
the 3P  level of the 4/j2 configuration will not pertu rb  this series,
as this configuration is not of the same parity.

The 3S  series shows no perturbation but the 1S  series does
2



18

A N

17

1.»
1.S

1.4

1.3

12

FIG. 2.

AN.

2 .t

2 .f

2 .7

2.A

2.5

2.2

2.1

2 0

I . *

4 5 -3 0  4 5 -4 0  45 -3 0  49-AD 4 5 -7 0  4 3 -«0 4 5 -9 0  49-100 45-110 4 5-12 0  45-130 45-140 45-150

-‘16 3.

4 5 -4 7  4 5 - V 4 5 “ 67 4 5 -7 7  4 5 ' i f  4 5-9P 45*107 45-117 4 5 " 1 2 f  45 -137  45~14P

FIG.4.

„  x  x  X X  *

4 5-5  S 45-6 S 4 5 -7 S  45-A S  45-9S  45-10S  45-11S 45-12A

Fig. 2. An* for the *D series; the term 4s 9d is the foreign level.
Fig. 3. An* for the ip  series; the term 4a7p is the foreign level.

Fig. 4. An* for the lS series.



19

(fig. 4 ); from  the fig. we should suppose the perturbing level
to lie near the 4s 6s level, bu t somewhat lower. This could
be the 'S  level of the 4p* configuration which is reported at
8614 cm i 4). The calculations they m ade w ith this level did
not, however, show a good agreement.

The F series does not show a perturbation  and the XF  series
is perturbed by a level at 8767 cm—i belonging to the 3d  4p
configuration, w ith which level they get good agreem ent with
experiment.

In the case of a m ultiplet, there m ay be still another indi
cation of the perturbation  of a series. W e shall consider the
differences between the components of the term s of the 3D
series of Ca in the following table 4)

(II)
n 3 4 5 6 7 8 9 10 11

3A - !A 13.9 3.6 1.7 1.5 1.8 3.7 10.2 4.2 2.0
3D2- w 3 21.7 5.6 2.8 1.8 2.4 5.2 9.9 7.9 2.5

n denoting as usual the principal quantum  num ber, and 3D
the 8Z)-term w ith j  =  k. W hen we consider the total splitting
of the triplets tha t is, the difference 3D 1 —  *D3, we see
tha t from  n =  3 up to n  =  6 this difference decreases, then
it increases till n =  9 and then it decreases again. F o r an
undisturbed series we m ay expect it to decrease along the
whole series.

Now, according to the supposition of R u s s e l l  and
S h e n s t o n e ,  the term  indicated w ith n =  9 really
belongs to another configuration, which disturbs the other
term s of the series; this m eans that the wave functions of the
other term s are not the pure wave functions corresponding
to the electron configuration of the norm al series, but that
they contain also a p a rt that corresponds to the disturbing
electron configuration. As the total splitting of the disturbing
level is much larger than the splitting of the levels of the
series, this m eans that these levels will show a total splitting
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that w ill be larger, than  it would be if  there w ere no per
turbation. The influence of the perturbation will be greater,
w hen the level lies nearer to the perturbing level and then
also the change in the total splitting will be greater; for the
levels near the perturbation this might easily dom inate over
the nature l tendency of this splitting to become sm aller and
so cause just the observed facts.

A very rough calculation of the m agnitude of this effect
showed tha t in  this way the course of the to tal splitting may
be represented correctly fo r the whole series. The method
fo r the estim ation was too rough to allow definite conclusions,
bu t only gave an indication that in the case of the aD  series
the hypothesis of R u s s e l l  and S h e n s t o n e  m ay be con
firm ed  by the behaviour of the splitting of the triplet.

§ 5. Relative position of singlet and triplet for the 1D-series
of Ca.

W e m entioned in the preceding paragraph  that fo r the
D-series of Ca the singlet lies alternatively above and below
the triplet. To see, w hether our supposition regarding the sign
of the exchange in tegral was correct in  this special case and,
if this proves to be so, w hether we then indeed can explain the
anom alous position of the singlet relative to the trip let as
due to the perturbing term , we have m ade num erical cal
culations. To this end we have to know in  the first place
the wave functions of the electrons, when one of them  is in  a
4s and the other in  an nd  state. F or these, as well as for
the other num erical calculations, the results of which are
used in  this chapter, we refer to Chapter III.

W ith  these wave functions we have first calculated the ex
change integrals, the result being given in  the folowing table

(III)

4s 3d As Ad 4s 5d 4s6cf A s ld

2 A (cm -1) +4936 +535.2 +241.8 +135.2 +83.0

1D—W  (cm -1) —1497.3 +454.3 —173.8 +  60.8 —5.7



21

where K  is defined by § 1 (4), so 2 K is  the difference we
would find between singlet and trip let w ithout a pertu rba
tion. By 1D— aD  is m eant the difference between singlet and
triplet, as it is found experim entally 4), taken positive when
the term  value of the singlet is larger than that of the triplet.

W e see in  the first place that, in  accordance w ith our
supposition, the sign of the exchange in tegral is always
positive. In fig. (5) we give the experim ental positions of
singlet and trip let and the position of -the singlet, relative
to the triplet, as the exchange integral would place it; the
difference between this position and the observed one we
will now seek to explain by interaction w ith other levels (in
the figure this m eans that we w ant the perturbations to
displace the levels from  the dotted to the full-draw n position).
W e see that the direction of this displacem ent is the same
for all the members of the series. This was also the case for
Mg. (§3 ), bu t while there the displacem ent steadily decreased
in  going to higher m em bers of the series (fig. 1), here we
need a displacem ent that is greater for the 4s 6d  level than
for the 4s 5d  level. This is already an indication of the fact,
that here the perturbation  is not so simple as in  the case of
Mg. The reason fo r this is that here we have to expect an
interaction w ith at least two levels.

In  the norm al Ca spectrum  the first D -term  lies abnorm ally
low — in the same neighbourhood as the first P - te rm __and
this m akes it probable, as we will find  confirm ed by experi
ment, that the term s belonging to the configuration 3d2 will
also lie not very fa r  above the term s, belonging to 4p2. Both
the d2 and the p2 configuration contain a XD  term  and no1 SD
term . From  experim ent there are only know n the 3P  term s
for both configurations, the 8P  term  of 4p2 lying at
10826.7 cm 1 and of 3d2 at 762.9 cm i. Though we do not
know the positions of the 1D levels, we m ay suppose that
they lie in  about the same region as the 3P  levels. Now the
SP  term  of 4p2 lies between the 1D  levels 4s 4d  and 4s 5d  of the
norm al series, while the 3P  term  of 3d2 lies well above all the
levels in  question. A sim ilar position of the 1D  levels could just
explain the observed facts. In this case the displacem ent for
the 1D  level of 4s 5d  would be very small, just as we need it,



FIG. 5.
TRIPLET SINGLET

4S -7D

4S- 6 0

CM” '

5000

4 S -  5 0

4S- 4 D

10 000

15000

20 000

4 S - 3 D

25000

30000

Fig. 5. Energy levels for the Ca D-series. The levels of the observed spectrum
are drawn full, while the dotted lines indicate the position of the singlet,
as it is given by the exchange integral, without other perturbations. Vertically

the energy is given in cm—1.



23
because here, fo r the first time, the perturbations from  both
configurations act in  the opposite direction. The displacement
fo r the 4s 6d  level could very well be g reater again, though
generally the displacem ent caused by a given level tends to
diminish, when we go to higher quantum  num bers. But then
here also the displacement caused by the 4p2 level would
dim inish and, as this acts in  the opposite direction, the result
m ight vey well be that in  total the displacem ent in  the
direction we w ant is larger in this case.

There is still another configuration tha t m ight give rise
to a perturbation that would cause an energy difference
between singlet and triplet. As we have seen in  § 4 the 3D
series is, according to R u s s e l l  and S h e n s t o n e ,  per
turbed by a level at 1849 cm-1 , ascribed to the configuration
5s 3d. This configuration also contains a \D level. The in ter
action m atrix , tha t is the m atrix  fo r the p a rt \/rlt 2 of the
energy, can be w ritten down im mediately, fo r we know
already the result of the integration over the angular varia
bles, as the angular factors are the same as fo r the diagonal
elements. The results of th e  integration fo r the diagonal
elements are given in  § 2 (5), so w ith this we find  fo r the
interaction m atrix

4s nd, JD 4s nd, 3D 5s 3d, lD 5 s 3 d ,3D

4s nd, 1D Ra +  i  Rb 0 Ra ~̂ 0

4sn d , 3D 0 1 o R a \ R b

5s 3d, iD Ra +  0 R'a +  tR 'b 0

5s 3d, 3D 0 Ra O R 'a - lR 'ö

where Ra, R 'a, Rb, R 'b are of the same form  as Ra and Rb in § 3,
w hen we substitute the rad ia l functions belonging to the state
we consider and when by RA and RB are m eant
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00 00

RA=j drr ƒ dr2 -  R4s fa )  R5s fa )  RM fa) /?nd fa),
O O

00 00

RB= J d r 1J d r 2-— Ris(r1) Rnd fa ) R5s(r2) RM(r2), w ith ra< r b.
O o

Now r j r b <  1 and RB contains in the integrand a factor (ra/rb)2
m ore than RA. The other factors in the integrands are the
same, but their argum ents are different. Still it seems very
probable that RB, at most, will be of the same order as
RA. On the other hand when, in first approxim ation,
the effect of the energy difference between singlet and triplet
in causing a difference in  the displacement is neglected, this
difference depends only on the relative m agnitude of RA and
Rb- In  the m atrix  elements RB is still m ultiplied with the
factor 1/5; we feel justified in  supposing, that RA >  £ RB, and
this would m ean tha t the difference between the displace
m ents of singlet and trip let is sm aller than the displacement
of the trip let term  itself. These displacements, as estim ated
approxim ately from  the calculations of R u s s e l l  and
S h e n s t o n e 6), are given in  the following ta b le :

(IV)

4s 3d 4s 4d 4s 5d 4s 6d 4s Id

A  3D (cm -1) 135 66 57 54 72

W hen we com pare these values w ith the displacements we
w ant (fig. 5), we see that the la tte r are, except in  the case
of 4s Id, m uch larger than the displacements given here for
the 3D term  and as the difference between singlet and triplet
caused by this perturbation  is even sm aller than these values,
we m ay neglect its influence in  first approxim ation; fo r the
other perturbations, if  they give an explanation of the ob
served facts, have to give m uch larger displacements.
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§ 6. Effect of the perturbations as calculated with our
wave functions.

W e shall now calculate the displacements of the energy
levels of the 1D series by the perturbations caused by the
XD  levels of the 4p2 and 3cP configurations. To this end
we first have to know the m atrix  elements, giving the in ter
action between the levels of these configurations and the
levels of the norm al series. The interaction m atrix  between
the 1D  states of the 4p2 and the 4s nd  configurations is
already given in  § 3 (6). The calculation of the m atrix
elements of l/r ll2 which give the interaction between the
configurations, are fo r the interaction w ith the 3<P configura
tion, given in Chapter III, § 10. W e shall now w rite down the
interaction m atrix  fo r all three configurations

4s nd 4 p2 3 d 2

4s nd Hu =  Ra + ! Rb H12 =  + 2 Rc HlS~  y~8~6 Rk (7)

4 pl Hzi =  +  '4 y ̂  Kc — Rd +  Vs Re

yr Y>

=  — j/y Rm

3<P " *  f ir .R* H32 — — i y f k , — -fy y=Rm H33= R f — +

w ith Ra, Rb, Rc and Re as given in § 3 (6), only w ith 3s and
3p  substituted by 4s and 4p and

00 00

R f  =  ƒ ƒ d r2 j r R 3d2(r i ) R 3dH r 2) ;  .
0 o

00 00

- ƒ * J  {̂ r2 jTE ^3d2 (rl) ^3d >
O O

00 00

* H = f  * 1  ƒ
o o
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R k = * 2  f s R 3d  (r l )  ^4» ( r l )  ^ 3 d ( r 2)

00 00

o o
00 00

R 3d fa) #4p fa) 3̂d fa) #4p fa) ;dri dr2

R 3d fa )R *p fa) R m  fa) R \p  fa)»d/i ƒ dr2

o o
00 00

o o

w here ra <  r  F or the energy level of the 8P  term  from  the
3d2 configuration we have found: Rf + \ R g — -j4t Rh.

To calculate these integrals we need, besides the wave
functions fo r the 4s nd  configuration, also those fo r the 4p2
and the 3d2 configurations. To obtain these we have used
the 4p  and 3d functions for the single electron as calculated
w hen the other of the two electrons is in a 4s state; this
m eans that fo r the potential field  in  which the electron
moves, we take the central field from  the nucleus plus the
inner electrons, to which field is added the field of the other
valence electron when it is in a 4s state *).

Actually this is not the field in  which the electron moves,
bu t the actual field  cannot easily be calculated because of
the strong interaction between the electrons. W e shall see
la te r on (com pare § 7) that the present m ethod of finding
w ave functions for the 4p* and the 3d2 configurations
presum ably is the cause of considerable errors.

F irst we have calculated the values of Re, Rg and Rh , which
enabled us to calculate from  the observed positions of the
3P term s the 1D term s of both configurations. The results
were, w hen we give them  in  cm-1 , which units we use for
the com parison with the experim ents, Re — 19710 cm-1 ,
R  =  42180 cm-1 , Rh =  25480 cm-1 , which values place the

level of the 4/j2 configuration at 6097 cm-1  and that of
the 3d2 configuration at 2439 cm-1 . W e see directly that the
level of the 3d2 configuration lies indeed above all known

*) See Chapter III, § 9.
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singlet levels of the 4s nd  series, bu t tha t the \D level of the
4p2 configuration lies just above the 4s 5d  level, instead
of between the levels of 4s 4d  and 4s 5d, which position we
assumed in  § 5. The perturbed energy levels we have to cal
culate from  the following equation

Hn  — E  Hn # 1 3

Hn #22— E # 2 3 =  0 (8)

# 3 1 # 3 2  # 3 3  —  E

where H l l t H 12, are the m atrix  elements of energy m atrix  (7).
From  the values of the rad ia l integrals, which we will give

in  Chapter III, § 11, we have calculated H 2 3 =  2778 cm—1,
while the values of H 12 and H 13 are given in  the following
table

(V)

4s 3d 4s 4d 4s 5d 4s 6 d 4s 7d

# 1 2  (cm -1) 7024 5360 3000 2330 1770

# 1 3  ( c m -1) —2841 —309.8 —246.5 —211.7 —166.8

W ith  these values the perturbation  m atrix  is known and
the energy levels can be calculated from  an equation of the
th ird  degree, which equation we have solved graphically.
In the following table we give the difference between singlet
and trip let for the series, as it is given experim entally  and
as it would follow from  these calculations, both taken posi
tive when the singlet lies below the triplet

(VI)

(in cm—1) 4s 3d 4s 4d 4s 5d 4s 6 d 4s 7d

lD —3D, exp. —1497.3 +  454.3 — 173.8 +  60.8 — 5.7

lD—3D, cal. —2375 +3033 +3124 —599 —64.4
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W e see at once, w hen we com pare these values w ith those
of the exchange integral, given in  table III, tha t except for
the 4s 3d state, the agreem ent w ith experim ent is even worse
than w ithout the influence of the perturbation.

Now the position of the XD  level from  the 4p2 configuration,
as we calculated it, can be the reason that our calculations do
not show the typical change of sign of the difference 1D—aD
from  the 4s 4d to the 4s 5d state. F o r as we have seen in fig. (5)
this corresponds w ith the fact tha t fo r the 4s 5d  state the dis
placem ent caused by the perturbation should be very small
and we have seen in § 5 that this could be expected when the
position of the level from  the 4p2 configuration was between
the levels of the configurations 4s 4d and 4s 5d. But a dis
placem ent of this level would certainly give no better
agreem ent, fo r such a displacem ent would m ake the diffe
rence 1D—3D  fo r the 4s 4d state even greater, so here the
disagreem ent w ith experim ent would become even worse.
As to the 4s 5d state here the difference would get the proper
sign, bu t would rem ain m uch too large, as the distance of
the perturbing level would not be altered greatly.

So it seems that there are only two alternatives. The first
is to suppose that, while the m atrix  elements giving the
interaction between the levels rem ain as we calculated them,
the positions of the perturbing levels differ from  the cal
culated ones; if the position of the XD level from  the 4p“
configuration were in reality  m uch higher than the calcula
ted one, the displacem ent would become sm aller fo r the
first three m em bers of the series. W e see at once that in this
case the agreem ent fo r the 4s 3d state would be spoiled. The
other possibility is to suppose tha t our approxim ations for
the wave functions of the 4p2 and 3d2 configurations are
so bad tha t also the value we calculated fo r the m atrix
elements, giving the interaction between the levels, are
w rong*). In  this case, of course, the calculations of the

*) This would not be in contradiction with the fact that B a c h e r’s
results for Mg were fairly correct, as he calculated the wave functions of
the 3P2 configuration by quite different method, making use of functions
of the type proposed by S l a t e r  (see 3) p. 264 and 8).
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positions of the perturbing levels also lose their value. W e
will now see in  the next paragraph  to w hat conclusion both
suppositions lead us.

§ 7. Discussion of the effect of the perturbations, with
altered values for the matrix elements.

The results of the first supposition, nam ely tha t only the
position of the XD  level from  the 4p2 configuration has to be
altered, are easy to calculate. The position of this level we
can calculate now w ith the help of equation (7) by substi
tuting fo r one of the m em bers of the series, besides the other
m atrix  elements, also the energy of this level as the experi
m ents give it. Then we can calculate the perturbation  for the
other levels in the usual way.

W e have seen above that fo r the configuration 4s 3d we
should not get the correct results in  this way. So we used
the 4s 4d level fo r the calculation of the unknow n level
because this level has the largest values fo r the m atrix  ele
ments, so small errors will here have the least influence.
W e found fo r the position of the 1D level of the 4p? configura
tion — 19006 cm- 1. As the 3P term  of this configuration was
given a t -f- 10826.7 cm-1 , the difference between 1D term  and
3P  term  of the same configuration seems abnorm ally large.

Still we have calculated the energy w ith this position for
the perturbing level for the other mem bers of the series and
the results are given in the following table fo r the  difference
between singlet and triplet, where the experim ental values
are  given com parison

(VII)

in cm—1 4s 3d 4s 4d 4s 5d 4s 6d 4s 7d

lD—3D, exp. —1497.3 +454.3 —173.8 +  60.8 —5.7

lD—*D, cal. —3768 4 454.3 +  119 +102 +74

W e see at once that, though the agreem ent is somewhat better
th an  previously, the peculiarities of the experim entally given
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difference between singlet and trip let are by no m eans
accounted for. W hen we consider fig. 6 which gives the
energy levels of the undisturbed 1D  state, as calculated
w ith the exchange integral and of the disturbed levels as
calculated here, we see that the displacem ent of the levels
diminishes steadily w hen we go to higher quantum  num bers,
w hereas the displacem ent we need has a m uch m ore irre 
gular course (fig. 5). So we m ay conclude that the first
supposition not only gives an impossible position for the 1D
level of the 4p2 configuration, but also tha t it does not
explain the relative position of singlet and trip let fo r the
norm al D series.

W e w ill now discuss the other possibility, nam ely tha t the
m atrix  elements giving the interaction between the levels
have other values than those calculated in  § 6. As in  this
case the calculations fo r the positions of the perturbing levels
also lose their m eaning we shall have to m ake a supposition
about the position of at least one of them  in  order to be
able to m ake any calculations. In  § 5 we have seen that a
position of the level belonging to the 4p3 configuration
between the levels of the 4s 4d  and the 4s 5d  states of the
series could explain the experim ental facts. Now we have
seen in  § 4, tha t the XS series shows a perturbation, which
could be explained by a perturbation  from  the term  of the
4p2 configuration, taken by experim enters a t 8614 cm- 1 ;
this level we should theoretically expect at Rd + 1 R  (see § 8),
while the 1D and the SP  term  of the same configuration lie
respectively at Rd + ^  Rg and Rd — £ Rg. W hen we suppose
the level at 8614.2 cm-1  to belong indeed to the 1S term  of
this configuration, this, together w ith the knowledge of the
3P term  at 10826.6 cm *, enables us to calculate the position
of the x£> term , for which position we find 9941.6 cm—i. This
position is used as a basis fo r the following considerations.

In § 3 we have seen tha t it is possible to calculate the m atrix
elements, giving the interaction between the levels, fo r all
members of the series, when we know them  fo r one. W e have
only to assume that, in  those distances from  the nucleus
from  which come the chief contributions to our integrals,
the form  of the wave functions is fo r all members of the
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series the same, the only difference being the m agnitude, which
is inversely proportional to the square root of the norm aliza
tion integral. In  the case of the 1D series this is indeed the
case, except fo r the 4s 3d state. This m eans that, though the
calculation of H 12 and H 13, giving the interaction of the levels
of the series w ith a foreign level, are wrong, they give their
relative m agnitude correctly. Their true values m ay then be
found by m ultiplying the old ones w ith a factor which is the
same fo r all mem bers of the series.

This limits the num ber of unknow n constants to H23,H33
and to the values of H 12 and H 13 fo r one of the members
from  the series. It would be possible to determ ine these con
stants from  the experim ents and see w hat values we get.
But as there are only five levels and the level 4s 3d has to
be left out o f these considerations, these levels would just
suffice to determ ine these constants and we would have no
fu rther verification for the theory. So we only determ ined
H 12 and H 13 w ith the help of the 4s 4d and 4s 5d states,
supposing the level H33 to be the same as given by the first
calculations and taking fo r H23, first, the same value as in
the first calculations and, second, a value derived from  the
first by m ultiplying w ith the product of the factors with
which we have m ultiplied H 12 and H13. These factors are
chosen ra th e r arbitrarily , but the choice will enable us to
com pare the results we get w ith unvaried H23 and with a
variation of H23 which lies wholly w ithin the range of possi
bilities.

W e rem ark  that fo r the lowest mem bers of the series,
that is fo r the states 4s 3d and 4s 4d, the influence of the
3d8 configuration is still sm all; so, when we first determ ine
H12 in  such a way that the perturbation  from  the 4p* con
figuration gives fo r the 4s 4d state the right displacement,
and  then determ ine the real value of H12 when we also take
the influence of the 3d2 configuration into account the results
will not differ greatly. Therefore m istakes in  this second
interaction will not have m uch influence. As we indeed do
not know  the interaction w ith the 3d2 configuration very well,
because the position of the 1D level is not known exactly, this
is ra th e r fortunate, fo r now we can still be fa irly  sure that
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the value we find for H 12 will be roughly correct.
We have found in this m anner H 12 (new) =  0.265 H 12 (old)

and H13 (new) =  2.702 H 13 (old). The unvaried value of
H23 was 2778 cm-1  and for the varied value we took
H23 =  2000 cm-1 . The results with these matrix elements
are given in the following table for 1D—3D

(VIII)

in cm—1 4s Ad 4s 5d 4s 6d 4s Id

1D—SD, exp. +454.3 —173.8 +60.8 — 5.7

cal.
H<& =  2000

+454 —174 +41 +150

W —m ,  cal.
//js =  2778

+453 —172 +  1 +  77

We see that the results seem somewhat better for
H23 =  2000 cm-1 . In fig. (7) we give the positions of the
energy levels as given experimentally, the positions of the
undisturbed levels determined with the help of the exchange
integral and the disturbed levels as calculated here. We see
that the displacements are given correctly with our assump
tions. That the agreement for the 4s Id  state is not better
might be due to the fact that the exact position of the level
from the 3cP configuration which here has considerable
influence is not known. Also here interaction with the 5s 3d
state might begin to have a perceptible influence (see § 5).

So fa r we have not mentioned the 4s 3d state. We have
seen above that here the method for the calculation of the
m atrix elements H 12 and H 13 cannot be expected to give good
results and indeed with the matrix elements calculated in this
m anner we got a displacement that was much too small. On
the other hand, when we leave all m atrix elements the same
as in our original calculations except H22 which we give
the value corresponding to the new position of the 4pa
level we find for 1D—aD the value —1928 c m -1, where the
experimental value is —1497.3 cm-1 . So we now get a dis-

3
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Fig. 7. Energy levels of the 1D series. The dotted lines give the position
of the undisturbed levels, calculated with the exchange integral. Of the
full-drawn levels the one to the left gives the experimentally observed level
and the one to the right the level as calculated with such values of Hu
and H\8 as to give good agreement for the 4s 4d and the 4s 5d states,

while Hss has also been altered.
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placement which is still a little too small, but which at any
rate is of the right order of magnitude. As the influence of
the 3(P configuration is still very small in this case, we can
be sure that the only possibility to get a displacement of the
right order of magnitude lies in assuming a value for H12
which is at any rate not smaller than the value as we have
originally calculated it. In Chapter III § 12 we shall see that
it has indeed been possible to construct a modified 4p func
tion which at the same time gives H12 for the 4s 3d and
4s 4d states the correct value; the value of H12 for the 4s 3d
state was very susceptible to small variations of this modi
fied wave function, which left that for the 4s 4d state about
uchanged, so that whatever be the influence of the 3d2 level
we can be sure that it will be possible to find a wave function
that gives the correct value for H12.

Although, owing to the fact that the wave functions of the
perturbing states are not sufficiently known, it has not been
possible to make exact theoretical calculations, we conclude
that these perturbations can cause the observed pecularities
of the relative positions of singlet and triplet.

§ 8. The 1S series.

In § 4 we have seen that, from the magnitude of the quan
tum defects, we should conclude that the XS  terms are
perturbed and also that this perturbing level lies in the
neighbourhood of the 4s 6s level. We remarked that this
perturbation might be due to the *S level of the 4p* con
figuration, which was indicated at 8614 cm—i and we used
this position for the 1S level in the preceding paragraph to
determine the position of the 1D level of this configuration.

We have made some numerical calculations with this
perturbation in order to see, whether this perturbation did
indeed explain the observed positions of the levels. From
fig. 4 we should conclude that the level 4s 6s is the most
strongly perturbed, due to the fact that this level lies very
near to the perturbing one. We planned to make exact
numerical calculations for the 4s 6s state first and then,
from these matrix elements to calculate those for the other
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states, as we did for Mg (see § 3). The wave functions were
determined as in the case of the 4s nd configuration.

The perturbation matrix for the 4s 6s state is (see § 10)

4s 6s, XS 4s 6s, 3S 4p2,is

4s 6s, a o 0
jT s c

4s 6s, 3S 0 R a R b o (8)

4p2,!S
/»

0

where Rd and Re are as defined in § 6 (7) and
00 00

R a = f  d r i  ƒ  d r 2 ~ R 4s2 ( r i ) R 6sH r 2) ;

o o
00 oo

R b =  j  d r l  ƒ  d r 2 ̂  R is  ( r l )  R Ss f o )  R 48 ( r2> R 6s  (r 2> /

o o
00  00

R e = f d r !  J  d r 2 J l  R *p t o )  R is  ( r i )  R tp  ( r2> (r 2)> w h e r e  ra < r b.

o o

When there was no perturbation the difference between
singlet and triplet would be 2 Rb and the singlet would lie
above the triplet when Rh had a positive value.

We then calculated the position of the other XS levels
with the help of the values of Rb and Rc of the 4s 6s state;
these values were calculated from their integral expressions
by means of the 4s and the 6s wave functions.

This calculation, however, did not give any satisfactory
results, the singlet-triplet splitting becoming about four times
too big. We then tried to redetermine Rh and Rc in a semi-
empirical way, calculating them from the observed positions
in the 4s 6s and the 4s 7s states. The results of these calcula
tions are given in table IX
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IX

State 4s 5s 4s 6s 4s 7s 4s 8s 4s 9s 4s 10s 4s 11s 4s 12s

rf iS -rf iS  (exp.) — 1294 —1311.9 —295.8 -1 0 5 .5 —58.5 —37.8 —25.5 —16.3

rflS—n3S  (cal.) -I- 285 —1312 - 2 9 6 - 1 0 0 —63 - 3 8 - 2 8 —20

Here the difference between singlet and triplet is taken
positive, when the singlet has the biggest term value. We see
that the agreement with experiment is close except for the
4s 5s state. The last disagreement might be ascribed to a
break-down of the method of determining the values of R.
and Rc from the values of these quantities for another state.

The value of the exchange integral found in this way was
about one fourth of the value which we had found originally.
As we have here a two s-electron problem, it is not so very
surprising that with wave functions of a first approximation
we do not get correct results. In this case the interaction
between the electrons will in fact be strong and insufficiently
accounted for by our method of calculating the wave func
tions (see § 12). In the case of the S  terms of He it is
reported 2) that no agreement at all is obtained with wave
functions in first approximation.

C H A P T E R  III.

NUMERICAL CALCULATIONS.

§ 9. Calculation of the wave functions.

The wave functions of the electrons, which we needed to
calculate the matrix elements used for the calculations given
in the preceding chapter, we have calculated with the W.K.B.
method. A detailed description of this method is given by
Zwaan 7), to whom we refer for all particulars and whose
results we have used as fa r as possible.

To find the wave functions for the 4s nd  state of neutral
Ca we have neglected the influence of the (/-electron on the
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s-electron. This will give us an approximation for the wave
function, which will be better the higher the principle quan
tum number of the d-electron is, for higher n means greater
distance of the two electrons from each other. Zwaan has
calculated the potential field of the nucleus and the inner
electrons and also the wave function of the 4s electron for
ionized Ca. W ith the help of these we can calculate the
potential field in which the d-electron moves, by adding to
the potential field, which Z w a a n  gives, the field of the 4s
electron, which field we can calculate because we know the
wave function. W e can consider this as a first approximation;
a second approximation might be obtained in calculating with
this wave function for the d-electron a new potential field
and so a better wave function for the s-electron, etc.

The potential field we have calculated in this way for the
d-electrons could not directly be used for the calculation of
the wave functions, as it does not yet satisfy the condition
that the phase integral is equal to n - l - \  for all the states we
consider, a condition that has to be satisfied when we use
the W.K.B. method (see Z w a a n ) .  To obtain a potential field
which satisfies this condition we had to alter slightly the
calculated potential, in such a way that the condition was
fulfilled as well as possible for all states. In the following
table we give, in the units used by Z w a a n ,  which differ
by a factor 2 in the energy from the units introduced by
H a r t r e e ,  the potential field v (p) deduced from Z w a a n
in which the s-electron moves and the field we calculated
for the other electron, modified in such a way, as to fulfill
the condition for the phase integral
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X

I

p (in units n
r  m e 2

— p2 v (p )
given by Zwaan for

the s-electron

— p2 v(p)
field in which the

second electron moves

0.1 2.88 2.87

0.2 4.71 4.68

0.4 6.52 6.41

0.6 7.37 7.21

0.8 7.83 7.64

1.0 8.20 7.97

1.2 8.44 8.12

1.4 8.68 8.29

1.6 8.80 8.39

1.8 9.06 8.52

2.0 9.45 8.59

2.4 10.51 8.77

2.8 11.88 9.04

3.2 13.42 9.29

4.0 16.49 10.11

5.0 20.32 11.29

6.0 12.40

7.0 14.10

With the potential field given in the second column we
have calculated all the wave functions. The results we give
in the following table together with the wave function for
the 4s electron, given by Z w a a n
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3d  4 d 5 d  6 d l d  4p  6s

0.04 + 0.190 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.080 + 0.187
0.08 + 0.071 + 0.005 + 0.005 + 0.005 + 0.005 + 0.005 + 0.199 + 0.209
0.16 — 0.226 + 0.053 + 0.056 + 0.055 + 0.053 + 0.053 + 0.333 — 0.004
0.24 — 0.324 + 0.173 + 0.175 + 0.175 + 0.171 + 0.175 + 0.344 — 0.251
0.4 — 0.074 + 0.467 + 0.461 + 0.462 + 0.478 + 0.466 + 0.098 — 0.350
0.6 + 0.357 + 0.703 + 0.699 + 0.706 + 0.712 + 0.701 — 0.310 — 0.010
0.8 + 0.543 + 0.833 + 0.818 + 0.824 + 0.818 + 0.804 — 0.566 + 0.372
1.0 + 0.495 + 0.906 + 0.883 + 0.875 + 0.873 + 0.871 — 0.631 + 0.587
1.2 + 0.304 + 0.946 + 0.896 + 0.886 + 0.874 + 0.862 — 0.570 + 0.625
1.4 + 0.055 +  0.938 + 0.869 + 0.864 + 0.839 + 0.834 — 0.411 + 0.523
1.6 — 0.198 + 0.912 + 0.814 + 0.779 + 0.778 + 0.776 — 0.206 + 0.331
1.8 — 0.434 + 0.857 + 0.727 + 0.677 + 0.678 + 0.678 + 0.019 + 0.105
2.0 — 0.645 + 0.800 + 0.624 + 0.564 + 0.561 + 0.541 + 0.244 — 0.138
2.4 — 0.956 + 0.664 + 0.376 + 0.302 + 0.278 + 0.270 + 0.650 — 0.579
2.8 — 1.119 + 0.530 + 0.114 + 0.028 — 0.010 — 0.028 + 0.965 — 0.891
3.2 — 1.181 + 0.435 — 0.143 — 0.142 — 0.302 — 0.337 + 1.198 — 1.052
4 — 1.039 + 0.361 — 0.672 — 0.778 — 0.849 — 0.847 + 1.440 — 0.966
5 — 0.750 + 0.287 — 1.233 — 1.294 — 1.351 — 1.320 + 1.455 — 0.147
6 — 0.448 + 0.223 — 1.682 — 1.600 — 1.581 — 1.593 + 1.285 + 0.597
8 — 0.135 + 0.125 — 2.165 — 1.580 — 1.359 — 1.347 + 0.772 + 1.521

10 — 0.035 + 0.065 — 2.223 — 0.919 — 0.452 — 0.407 + 0.411 + 1.440
15 — 0.001 + 0.011 — 1.524 + 1.416 +  1.766 + 1.806 + 0.065 — 0.925
18 — 1.008 + 2.324 + 1.990 + 1.770 + 0.019 — 2.080
22 — 0.344 + 2.601 + 1.084 + 0.318 — 2.773
25 — 0.275 + 2.522 — 0.325 — 1.024 — 2.557
28 — 0.162 + 2.186 — 1.492 — 2.008 — 1.828
30 — 0.095 + 1.891 — 2.098 — 2.362 — 1.428
38 + 0.844 — 3.010 — 0.918 — 0.424
42 + 0.512 — 2.828 + 0.452 — 0.200
45 + 0.336 — 2.478 + 1.479 — 0.102
50 + 0.156 — 1.829 + 2.823 — 0.032
54 — 1.333 + 3.336
58 — 0.935 + 3.440
68 — 0.341 + 2.580
76 — 0.133 + 1.660
82 + 1.129
90 + 0.578

105 + 0.154
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Here p is given in the units introduced by H a r t r e e  and
R  (p)/p means the radial part of the wave function (see § 1
(2)). We see that the wave functions of the d-electrons from
4d onwards are almost equal in the region with p <  8, beyond
which the 4s function becomes negligible, a circumstance
we have used in § 7. These functions as given above are
not yet normalized; we will give their normalization inte
grals in the following table.

(XII)

State 3d 4 d 5 d 6 d 7 d 4P 48 6s

00r
]RHp)dp
0

2.01 48.6 115.6 201.1 351.5 9.68 3.86 96.6

As we have already remarked in § 7, we have here cal
culated the 4p  function for the configuration 4s 4p, while
we really need it for the configuration 4p2. We see that
the distance from the nucleus for the 4p  electron is some
what greater than for the 4s electron, so when the second
electron moves in the field of a 4p instead of a 4s electron
it will have a tendency to get nearer to the nucleus. As we
will see in § 12 the real wave function for the 4p2 configura
tion, which we estimated from the values we need for the
matrix elements, is indeed displaced in this sense.

§ 10. Pertubation matrices.
In § 3 we have seen that for the 4p2 configuration we can

directly write down the wave functions for the 3P and the XD
states and so we can also write down immediately the energy
of these states and then also the interaction with the normal
lD series. But for the 1S  state of this configuration and for
the 3(P configuration this is not the case. Here the final
wave functions are a combination of the original ones (see
§ 1)* which combination has to diagonalize the energy matrix.

We will first calculate the wave function and at the same
time the energy that comes from l/r1>2 for the 1D and the 3P
states of the 3cP configuration. This configuration contains a
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1S,a 3P,a 1D,a SF and a *G state. W e can construct im m edia
tely, as a S l a t e r  determinant of the wave functions of
the two electrons, a wave function with a given total value of
M{ and Ms and of their sum M.. All states with L >  Mt and
J  >  Mj can be represented by a wave function with these values
of Mt and Ms , so in order to m ake things as sim ple as
possible w e shall take Mj equal to the value o f 7 for the state
of which w e want to know the energy.

Here as w e want the XD state, w e shall consider all wave
functions w ith M. =  2. As for one of the 3P  states also 7 =  2,
these wave functions w ill also represent this 3P state. W e w ill
now first write down what states of the 3d2 configuration
can be represented by a wave function with M  =  2. W e give
in the follow ing table the values of ml and ms for each electron
in all combinations that give for M. a resultant value 2 —  as
w e have equivalent electrons, states which proceed from
each other by the exchanging of the electrons are counted
as the same state. W e find

XIII

1 2 m. Mi

1 (V2. 0) (72.1) 1 1

2 ( 7 2 .- 1 ) (7a.2) 1 1

3 (72. i) ( - 7 2 .  1) 0 2

4 (72.0) ( - 7 * 2 ) 0 2

5 ( - 7 2 .0 ) (7*2) 0 2

6 ( - 7 2 .  1) ( - 7 * 2 ) —1 3

where the first column numbers the states, the second gives
the values for m and ms, (a,b) signifying that ms has the
value a and ml the value b, the third gives Mg and the fourth Mv

The w ave functions corresponding to these states give for
the part 1 /rj. 2 of the energy the matrix, which we give below
after integration over the angular and the spin coordinates
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1
2

3
4
5

A
M
0

0
0

Af

B
0

0
0

0
0
D
N

—N

0
0
N
E
C

0
0

-N
c
E

0
0
0
0
0

6  0  0 0 0 0 “ïl

with
A  =  R f  +  Ï 9  R g  —  ê  R h , B  R f  4 9  R g  +  3 .4 9

B  —  R f  Ï9  R g  Ï 4 9  R h t B  R f  4 9  R g  4 9  R f l '

D  —  R t  +  è  R g  +  in R h >

n f *  i n  f *

M = * y T R , - & 7 j R „

i f *  1 n
r * _ * d ® /?^ 4 9  3 .4 9  n h >

with Rr Rg and Rh as they are defined in § 6 (7). When we
diagonalize this matrix we find the energies for the aP, 1D,
*F and 1G states and the wave functions for these states.
In this way we have found for the contribution of 1 //i, 2
to the energy of aP and 1D state:

energy from  1 /rll2 for 3P = R f + ± R g — ± Rh,

energy from  1 frv  2 for 1D =  Rf — - R g+ -  Rh.
As to the wave functions, we are only interested in that

of the 1D state, which we need for the calculation of the
interaction with the 1D levels of the other configurations.

We have found for it tjn0 =  ~  (3) — (4) +  — (5), where

by (3), (4), and (5) are signified the wave functions of the
states 3, 4, 5 as given in table XIII. The interaction as calcu
lated with this wave function is given in § 6 (7).
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Secondly, in § 8 we have used the interaction matrix of

the x5  state of the 4p2 configuration with that of the 4s 6s
configuration. In the same m anner as above we calculate
the m atrix elements belonging to 1 /rll2» this time for the
states with Mj =  0. As we need only the 1S state and as
there are no m atrix elements between states with different
M  we need only to consider states with Ml =  0. We give these
states in the following table where the meaning of the sym
bols is the same as above

XIV

1 2 Ms Mi

1 (V *  1) ( - 7 2 . - 1 ) 0 0

2 ( - 7 2 . 1 ) ( 7 2 . - 1 ) 0 0

3 (V2. o ) ( - 7 2 . 0 ) 0 0

The matrix elements fo il/r1)2 which we found with the wave
functions corresponding to these states are, after integration
over the angular and the spin coordinates

1 2 3

1 R d  + k R e ~ k R e k R e

2 - S R . R d + k R e ~ k R e

3 k R e ~ k R e R d + k R e ’

where Z?dand Rg are defined in § 3 (6), only with 3p substitu
ted by 4p. After diagonalization of this m atrix we found

for the wave function of the *S state: (Jils =  ̂ =^(3) — (4) +  (5)^,

and with this wave function we have calculated the interac
tion m atrix given in § 8 (8).
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§ 11. Calculation of the matrix elements.
In Chapter II we have used the numerical values of several

radial integrals. We will now give some particulars about
their calculation. All integrations had to be carried out gra
phically. In the first place, there are the exchange integrals
K, the numerical values of which are given for the 1D series
in table III and for the 4s 6s state in § 8. The definition of K
is given in § 2 (5). In fig. 8 we give the integrand of K for

FIG. 8.

-0  08

Fig. 8. Integrand of the exchange integral for the 4s 4cf state. With /> is
meant the distance from the nucleus in atomic units and A is given by

oo

Pi ƒ * .  (ft) Rid (ft) d ft-
ft

the 4s 4d state; we do not give it for the other members of
the series, as it is for these of exactly the same type. We see
that this integrand is precisely as was predicted in § 2, when
we wanted to show that we expected for K a positive value.

This is not the case for the integrand of K for the 4s 6s
state, which we give in fig. 9, though also here there results
a positive value for K. We never get here a considerable
negative value for the integrand; this is due to the fact that,
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as we see in table XI, the 4s and the 6s function are for the
values of p that come into account here very well in phase.
We will not give more particulars about the other radial
integrals that come into consideration for the 4s 6s state, as

FI 6.9.

Fig. 9. Integrand for the exchange integral for the 4s 6s state. By p is
meant the distance from the nucleus in atomic units and A is given by

ao

#4a (ft) Rfa (ft) (  R4a (ft) R6s (ft) — d  ft-J  ft
ft

they are not of real interest, since the value of K makes it
already impossible that a perceptible perturbation would
give correct results (§ 8 ).

We shall now calculate the matrix elements R giving the
interaction with the 4p2 configuration; Rc was defined in
§ 3 (6). In order to calculate it we have to devide it into
two integrals R ' and R",  defined for the 4s 3d state as

00 00

R c — f  dPl • Pi R 3d (Pi) R ip  (pi) ƒ  dP2 ̂ 2  R*a (p2> /?4p(p2> and
0 pi
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FIG.10.

Fig. 10. Integrands of Rc and Rc for the 4s 3d state. By p is meant the
distance from the nucleus in atomic units, and by A the integrand as

defined in the text.
Fig. 11. Integrands of R'e and R"c for the 4s 4d state, where p is the
distance from the nucleus given in atomic units and A is the integrand

as defined in the text.
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r° r°
Rc ' —J  dPi • Pi Ris (pi) #4p(p 1) ƒ dp 2 ~ 2  # 3<t(Ps) RipiPï), so that

0 ft
+  * /•  p or the 4s 4d state ƒ?/ and R ” could be defined

in the analogous way, but for convenience we define here the
integral

OO Pi

R C ƒ dpi ;  Rip (p i)  Rid  (P i) J  dp2 • P2 #4* (P2) Rip  (P2).

o  O
which integral has the same value as with the other definition.
We give the integrands of RJ and Rc"  for the 4s 3d state in
fig. 10 and for the 4s 4d state in fig. 11. For the other mem-

FlG.12.

F ig . 12. In teg ran d s  of R'k a n d  R "k for th e  4s 4d  s ta te  w h ere , p is th e
d is tance  from  th e  nucleus a n d  A is th e  in teg ran d  as defined  in  th e  text.



bers of the series the integrands are similar to those for the
4s 4d state (see § 7).

The matrix elements giving the interaction with the 3d2
configuration, Rk, defined in § 6 (7) have also to be divided
into two parts, which are for the 4s 4d  state

00 00

Rk' =  ƒ d p i • Pi2 R3d (p i) R 4d (Pi) ƒ d P2 ^ 3  R *s (Pa) R Zd (P2) a n d
o n

0 0 «
R k  =  ƒ d p i -^3 R3d  (pi) R td  (p i) ƒ dp2 • P22 Ris (P2> R 3d (P2>-

o o
R "  can also be defined in the same way as R ”, as an integral
from Pl to oo. In fig. 12 we give these integrands. For the
4s 3d state Rk is not of great interest and for the other mem-
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Fie.13.

Fig. 13. Integrands ol Rt and Rm, where P is the distance from the nucleus
and A the integrand as defined in the text.

4



bers of the series the integrands are again similar to those
for the 4s 4d state.

There remain the integrals R{ and Rm, also defined in § 6 (7).
We find for them

00 oo

R t =  2  ƒ dpi . pi Rm  (pi) R ip (pi) ƒ dp2 ~ 2  Rid (P2) R 4p (P*)»
o pi

00 00

and Rm= f  rfPl • Pi3 (Pi) R4p (Pi) ƒ dP2 R3d (p2) R4p (p2>-
O Pi

We give these integrands in fig. 13. For Re, Rg and Rh
we have not given any figures.

The results of these calculations were, given in the atomic
units of H a r t r e e  R̂  =  0.0368, Rm =  0.0255, while the other
results are given in table XV

50

(XV)

As 3d 4 s 4 d A s5d 4 s  6rf As I d

Rc —0.0621 +0.0474 +0.0265 +0.02059 +0.01564

Rk —0.0262 +0.00417 +0.00332 +0.00285 +0.00225

§ 12. Discussion of the effect of a modification of the
wave functions.

We have seen in § 7 that, while with the matrix elements
calculated with the original wave functions we get impossible
results, the pecularities of the relative position of singlet
and triplet are explained when we allow different values
for these matrix elements. When we calculated what values
we needed to explain the observed facts we saw that the
values for Rc and Rk in thei case of the 4s 4d state have to be
strongly altered, while the value of Rc for the 4s 3d state
has to remain almost unaltered. On the other hand we have
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seen in  § 9 tha t the wave functions fo r the  4p  and  the 3d
electrons of the 4p2 and the 3d2 configurations m ight easily
differ from  the calculated ones so that the real wave function
of the 4p2 state w ould bring the electrons neare r to the
nucleus.

W e have tried  to construct a m odification of the wave

FIG.W.

Fig. 14. Wave functions for the 4p  electron. The curve indicated as
“calculated” gives the wave function as calculated from the 4s 4p  confi
guration and the other one gives the modified wave function for the
4 ffi configuration that gives the correct values for the matrix elements.

function which would give the desired m atrix  elements for
both the 4s 4d and the 4s 3d states. The result we show in
fig. 14, which gives the original 4p function and the m odified
one, both functions having the same norm alization integral.
This new wave function is a m odification in  the sense indica
ted above that is the electron is generally situated neare r to
the nucleus. W ith  this wave function we obtained fo r the
4s4dsta te , in  H a r t r e e ’ s units,Rc=  0.0122, whereas accord
ing to § 7 we w ant Rc — 0.0126; fo r the 4s 3d state we find
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Rc=  0.0668, whereas originally we had  Rc=  0.0621, so here the
m atrix  element has not been strongly altered.

The value of Rc fo r the 4s 3d state is, however, very sensi
tive w ith respect to a small change in  the m odified 4p
function. In fact when we calculated Rc w ith a wave function,
which was m odified in a slightly different way, we obtained
fo r the 4s 4d  state almost the same result, but fo r the 4s 3d
state 0.0896 instead. W e expect, as we have seen in  § 7, that
the true  value will not differ m uch from  the one originally
calculated; so it seems that the first m odification of the wave
function gives about the correct results. But as the influence
of sm all variations, which leave the value of Rcior the 4s4d
state alm ost unchanged, can be considerable fo r the 4s 3d
state, we are sure, w hatever the influence of the 3d2 con
figuration m ay be that it is possible to get the correct value
fo r R  fo r both states w ith the same wave function.

W e w ill now first discuss qualitatively w hat effect this
m odification of the wave function will have on the value
of the integrals Rt and Rm. The integrands of both integrals
contain an integration from  p to « ; this m eans that only the
values of the wave function fo r larger p than  the one, at
which the in tegrand is considered, come into account. W hen
we com pare fig. 13 and fig. 10 we see that the curves are
sim ilar in  both cases, showing a m axim um  at about the same
place. This m eans tha t a  variation of the 4p  function alone
will probably not greatly affect the values of Rt and Rm,
at any ra te  not in  the same m easure as Rc of the 4s 4d state.

As to the wave function of the 3d2 configuration, it has
little sense to try and construct here also a modification of the
wave function, which would give the correct results fo r the
m atrix  elements R. ; owing to the fact tha t we do not know
the position of the perturbing level, we cannot tell exactly
w hat values fo r the m atrix  elements are required. F urther
more, as any value fo r the m atrix  element of the 4s 3d state
will do, this state cannot, as in  the case of the 4p function,
give us a test fo r the usefulness of the m odification. Lastly,
owing to the fact tha t the 3d function has no nodes, it is
m ore difficult to construct a plausible modification.

The only thing we can say here is that, in  contrast to the
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4p function, here the m axim um  value of the wave function
lies nearer to the nucleus than tha t of the 4s function, so
we m ay expect that this m axim um  fo r the true wave function
comes fu rth er away. W hen we consider fig. 12 we have to
bear in  m ind tha t the integrand of Rk contains an integration
from  p to oo and that of Rk" one from  0 to p. Originally the
m axim um  value of the wave function was situated at about
p =  1.4. W hen we consider the effect of a displacem ent of
this m axim um  to a larger value of p, we see tha t though it
is ra th e r difficult to predict exactly how Rk will behave, still
it seems probable that its value will become larger.

To m ake m ore sure of this we calculated the behaviour of
the integrals fo r a m odification of the wave function in the
sense that was indicated above. W ithout m aking exact calcu
lations we saw tha t in this way we got indeed a greater value
for Rk just as was needed.

As to Rt and Rm we see from  fig. 13 tha t if only the 3d
function was m odified these integrals would probably in 
crease. As, however, also the 4p  function has been modified,
it was not possible to predict in  w hat direction the integrals
would change w ith both modifications together. To try  and
m ake num erical calculations seemed useless as we could not
predict how in  the region of p =  3, where the m axim um  value
of the integrals lies, the 3d function would behave.

It would certainly be of interest to try  to obtain the modi
fied wave functions of the 4p2 and the 3d2 states by strictly
theoretical methods.

To conclude we recall that in  the case of the S series the
use of the first approxim ation wave functions for the indivi
dual s-electrons gave wrong results fo r the m atrix  elements
(§ 8 ). In this approxim ation we have neglected the influence
of the 6s electron on the 4s electron; in contrast to the case
of the 4s np and the 4s nd  states this reaction of the outer
valence electron on the inner one m ay be considerable. Indeed,
when we consider the wave functions we see that the large
value of the exchange integral is due to the fact tha t the wave
functions are very well in  phase in the region from  which
comes the chief contribution to our integral (§ 11). Interaction
between the electrons would change this, since they repel
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each other. The effect of this would surely be that we get a
smaller value for the exchange integral, i. e. just the kind of
change that is required by the semi-empirical considera
tions (§ 8).
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SAMENVATTING.

Dit proefschrift is een poging de anom alien in  de relatieve
ligging van de singulet en de trip let term en bij de D-serie
van het Ca I spectrum  te verklaren. Het energie verschil
tussen singulet en triplet term  w ordt in  de elem entaire
theorie gegeven door tweem aal de plaatsruilings integraal.
In  het algemeen kan  verw acht worden, dat het teken van
deze integraal positief is; in  dit geval zal de singulet boven
de trip let liggen. Bij de Ca D-serie is dit niet het geval; h ier
ligt afwisselend de singulet term  boven en onder de triplet.
Een mogelijkheid voor een verklaring van een „verkeerde”
ligging van singulet ten opzichte van trip let is aangegeven
door B a c h e r. Hij verk laart deze in  het geval van de 3s 3d
term  van Mg door de storende invloed van een andere con
figuratie. De vraag was nu, of bij het Ca de experim entele
feiten op een dergelijke wijze verk laard  zouden kunnen
worden.

In het eerste hoofdstuk w orden eerst de form ules voor
de afstand tussen singulet en trip let gegeven. Vervolgens
w ordt besproken welke oorzaken er kunnen zijn voor een
„verkeerde” ligging van singulet en triplet. Hierbij w ordt
tevens aangetoond dat wisselwerking van de beide buiten
electronen met de afgesloten binnenschillen geen invloed
op deze afstand uitoefenen.

Vervolgens w ordt de veronderstelling van B a c h e r  bespro
ken en m et behulp van een ruw e methode uit de m atrix  ele
m enten van de ene term  die voor de overige D term en van het
Mg geschat. De resultaten, die we op deze wijze gevonden heb
ben zijn enigszins in  overeenstemm ing m et de experim enten.
De afwijking kon w at richting betreft begrepen w orden uit de
wijze w aarop de m atrix  elem enten geschat waren. Op deze
wijze w ordt ook de D serie van het Cd behandeld en ook
hier zijn de resultaten bevredigend.

In  het tweede hoofdstuk gaan we over tot het Ca. Eerst
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w ordt het stuk van R u s s e l l  en S h e n s t o n e  besproken,
w aar deze met behulp van de effectieve quantum getallen de
invloed van een storing op een hele serie bespreken. Ver
volgens worden de resultaten van onze berekeningen be
sproken. Voor de plaatsruilingsintegralen worden positieve,
voor de hele serie regelm atig afnem ende, w aarden gevonden.
Vervolgens w ordt aangegeven welke configuraties een storen
de invloed zouden kunnen uitoefenen en, in  tegenstelling met
het Mg, komen hiervoor twee configuraties in  aanm erking,
de 4p2 en de 3cP configuratie. In § 6 w ordt dan de storings
rekening uitgevoerd en we vinden, dat de resulterende ver
schuivingen veel te groot zijn. In § 7 w orden de resultaten
gegeven met nieuwe w aarden voor de m atrix  elementen. W e
zien, dat het mogelijk is m et gewijzigde w aarden voor de
golffuncties van de 4p2 en de 3<P configuraties overeen
stemming m et de experim enten te krijgen.

Vervolgens w orden in  § 8 de anom alien in  de S-serie be
sproken. Deze kunnen h ier m et behulp van een storing van
de 1S  term  op semi-empirische wijze verk laard  worden.
W elisw aar gaven de zuiver theoretische berekeningen met
behulp van de golffuncties h ier niet de juiste resultaten. Dit
kon echter ook niet verw acht worden, daar reeds uit de
litte ra tuu r bekend was, dat in het geval van S term en met
golffuncties, die een eerste benadering voorstellen, geen over
eenstemming van de theorie met de experim enten te ver
w achten is 2).

In  het derde hoofdstuk w orden de num erieke berekeningen
gegeven. In § 9 w ordt in het kort de methode, volgens welke
de eigen-functies berekend zijn, beschreven; tevens w ordt
aangegeven wat de oorzaak kan zijn van het feit, dat we met
de golffuncties van de 4p2 en de 3cP configuraties slechte
resultaten kregen. Vervolgens worden in  de §§ 10 en 11 de
storings m atrices afgeleid en de berekening van de m atrix
elementen gegeven.

In  § 12 w orden de wijzigingen van de golffuncties der 3cP
en 4/r* configuraties besproken. In het geval van de 4p2
configuratie hebben we een gewijzigde golffunctie gecon
strueerd en gezien dat we met deze golffunctie goede resul
taten krijgen voor de hele serie.
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STELLINGEN
i

Het is mogelijk uit het thermo-electrisch gedrag van een metaal
boven het sprongpunt te voorspellen, dat het metaal bij verdere
afkoeling super geleidend zal worden.

W. H. K e e s  om  en C. J. M a tt  h ijs, Physica, Jan. 1938.

II

De verhandeling van F. B o p p, Zeitschr. für Physik. 9,10,1937,
bevat geen essentieel nieuwe gezichtspunten over het wezen
der super geleiding.

III

Ten onrechte maken J. S t a r k en K. S t e i n e r bij hun metin
gen gebruik van een galvanometer met korte slingertijd.

J. S ta r k  en K. S te in e r ,  Phys. Zeitschr. 38a 277, 1937.

IV

Het is ondoelmatig de toestand van een super geleider met
ingevroren krachtlijnen para magnetisch te noemen.

J. S ta rk ,  Phys. Zeitschr. 38( 269, 1937.

V

Ten onrechte betitelt K. F. N i e s s e n de eerste twee termen
van de reeks van E u l e r - M a c  L a u r i n  met de naam „erwei-
terte Eulersche Formel”.

K. F. N ie s  sen , Physica, 1, 783, 1934.





VI

Het verdient aanbeveling de storing van een spectraal serie
te onderzoeken in een geval waar de eigen functies in een
voldoende benadering berekend kunnen worden.

VII

De door B a c h  e r  gegeven berekening van de ligging der
3s3d termen bij Mg is onjuist.

F. B ach  er, Phys. Rev. 43, 264, 1933.

VIII

Het ontbreken van philosophische vorming wordt door vele
studenten in de exacte vakken als een leemte gevoeld. Het is
onjuist te menen, dat hieraan niet dient te worden tegemoet
gekomen.
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