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PROPOSITIONS

I
Measurements of the beam power losses which are based
on the analysis of the time average velocity distribu—
tion function of the beam electrons at the beam cen
tre, as done by Shustin et al., are not trustworthy.
- Shustin, E.G. et al. (1967), 8th Int.Conf.Phen.

Ionized Gases, Vienna, p.376.
- This thesis, chapter V.

II
The essentially different shapes of the envelopes of
the electron plasma and electron cyclotron instabili
ty bursts can be qualitatively explained on basis of
the quasilinear theory of plasma waves with a three-
dimensional k spectrum.
- This thesis, chapter V.
- Bernstein, I.B., Engelmann, F. (1966), Phys.Fluids

9, 937.
- Sagdeev, R.Z., Galeev, A. A. (1969), "Nonlinear

Plasma Theory", W.A. Benjamin Inc., p.51.



Ill

The measurements of Levitskii et al., concerning the
fine structure observed on the beam velocity distri
bution function can be explained by a resonant inter
action between the beam electrons and a discrete set
of large amplitude waves related with the boundary
conditions of the system.
- Levitskii, S.M., Nuriev, K.Z. (1970), JETP Letters

L2, 119.

IV

The conclusion drawn out by Cabral et al., about the
interrelationship between the transverse and the
axial energy of the beam electrons, is unjustified.
- Cabral, J.A. et al. (1970), 4th Europ.Conf.Contr.

Fusion Plasma Phys., Rome, p.69.
- This thesis, chapter VII.

V

In beam-plasma experiments it is intrinsically more
difficult to study the spatial coherence of the in
stability bursts than their temporal coherence.
- Yaremenko, Yu.G. et al. (1970), Soviet Phys.

Techn.Phys. J4_, 1158.
- Cabral, J.A., Hopman, H.J. (1970), Plasma Physics

12, 759.



VI

Kadomtsev, making some approximations, proves that
the total momentum is conserved during the quasi-
linear development of Cerenkov instabilities. On
basis of simple arguments it can be demonstrated
that the consideration of the diffusion process of
the resonant electrons alone is sufficient to esta
blish the conservation of the total energy as well
as the total momentum of the system.
- Kadomtsev, B.B. (1965), "Plasma Turbulence", Aca

demic Press, London, p.18.
- Vedenov, A.A. (1967), "Reviews of Plasma Physics",

Leontovich (editor), New York, vol.3, p.229.

VII

The calculation of Bandrauk, concerning the total
cross section for charge transfer between K and Br,
is incorrect.
- Bandrauk, A.D. (1969), Mol.Phys. J_7, 523.
- Fluendy, M.A.D. et al. (1970), Mol.Phys. \9_, 659.

VIII

The arguments referred to by Cottrell et al., to
prove that the vibrational relaxation time of the v.

-7 1mode of the NH^ molecule is smaller than 10 s, are
questionable.
- Cottrell, T.L. et al. (1966), Trans.Faraday Soc.

62, 2655.



IX
Concerning experimental communications to be publi
shed in the Proceedings of International Congresses,
which are usually rather limited in extension, it is
advisable that the authors should give preference to
a careful presentation of the data and of the associ
ated working conditions above the tentative of draw
ing out some hasty explanations of the results.

X

The presence of a relatively large percentage of
guest workers, coming from under-developed coun
tries, in the proletariat of a country of advanced
capitalism can be unfavourable to the latter popula
tion group and eventually slow down the democratic
evolution of that country.

J.A. da Costa Cabral Leiden, 21 april 1971.
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CHAPTER I

1. GENERAL INTRODUCTION

Nowadays it is quite unnecessary to stress the increasing import
ance of the new branch of science which is called plasma physics. There
fore, in this short introduction, we shall only be concerned with the
development of one of its particular aspects, namely beam-plasma inter
action.

During the last years, considerable attention has been paid to the
problem of the interaction between a beam of charged particles and a
plasma. Indeed, the understanding of the mechanics of this interaction
helps to explain a number of effects appearing in several important do
mains of recent research. Among these effects we can name, for example,
the plasma heating, the production of fast particles, the generation of
microwaves, etc. Science branches which are particularly interested in
the beam-plasma interaction are the astrophysics (study of the cosmic
plasmas), the nuclear physics (controlled nuclear fusion) and the solid
state physics.

In a beam-plasma experiment, as well as in natural plasmas, one is
often faced with the fact that a small fraction of the particles of the
system, possessing a relatively large velocity in comparison with the
thermal velocity, can play a dominant role in the behaviour of the sys
tem. High energy cosmic particles and the so-called "runaway" electrons
in the fusion experiments are examples of these minority particles.

The first experiments in which the excitation of plasma waves was
detected were carried out by LANGMUIR (1925), PENNING (1926) and LANG
MUIR et al., (1929). These experiments were hot cathode discharges, in
which intrinsically were present beams of fast electrons. Therefore they
are usually referred to as the first beam-plasma experiments.

Soon the experimental physicists became aware of the fact that in
beam-plasma systems the beam particles suffer an anomalously large dis
sipation of energy, which could not be explained by the consideration of
binary collisions (MERRILL et al., 1939). The first attempts to explain
these results were made by PIERCE (1948), BOHM and GROSS (1949,1950) and
AKHIEZER et al. (1949). It was, at last, proved that it is the passage
of the beam through the plasma that leads to instabilities. The beam ener-
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gy losses were then related with the excitation o£ the plasma instabi
lity. These losses were explained on basis of a coherent interaction
between the beam and the plasma. The beam was assumed to be modulated
in velocity by an alternating voltage existing at the plasma boundary.
Due to this velocity modulation the beam would become bunched. Related
with the formation of these bunches an explanation was given for the
appearance of zones of intense radiation in the plasma (GABOVICH et al.,
1959) and for the high energy losses, some 40 to 80 eV/cm, suffered by
the beam electrons (KHARCHENKO et al., 1960, 1962). ROMANOV et al.
(1961) write that it is not necessary to consider the bunch formation
on the beam to explain the anomalous phenomena arising in beam-plasma
experiments. It is enough to assume that the beam-plasma system is un
stable. Kinetic equations describing the growth of the plasma waves and
the time variation of the beam velocity distribution function began to
appear in literature (KLIMONTOVICH, 1959; ROMANOV et al., 1961). A re
view of the theory of beam-plasma interaction was then written by CRAW
FORD et al. (1961).

Gradually, the increasing number of theoretical as well as experi
mental publications lead to the appearance of the so-called quasilinear
theory of plasma waves (VEDENOV et al., 1962; DRUMMOND et al., 1962;
SHAPIRO et al., 1962). With the development of the modern nonlinear
theories of beaut-plasma interaction, from which a review was written by
EINAUDI and SUDAN (1969), we notice a very pronounced progress in the
understanding of the phenomena appearing in beam-plasma experiments.
It is interesting to remark that the most recent approach in the theory
of beam-plasma interaction (KADOMTSEV et al., 1970) takes again in con
sideration the formation of bunches in the electron beam, as the driving
source of the instability. Reviews of the present research related with
beam-plasma interaction were written by FAINBERG (1968) and HOPMAN (1969)

Among the most interesting experimental results of the last years
we should refer to the production of very energetic electrons (SMULLIN
et al., 1966; KRIVORUCHKO et al., 1968; NEIDIGH et al., 1969), the gene
ration of harmonics of the fundamental beam-plasma instabilities (CRAW
FORD, 1965; NEZLIN et al., 1966; KOGAN et al., 1968; DUSHIN et al., 1968)
the nonlinear transformation of waves (MIKHAILOVSKII et al., 1966; FEDOR-
CHENKO et al., 1967; LEVITSKII et al., 1969), the observation of the so-
called plasma wave echoes (MALMBERG et al., 1968) and the generation of



very hot plasmas (JANCARIC et al., 1969; NEIDIGH et al., 1969).
Associated with all these effects, there are nowadays many theo

retical studies, which as a whole constitute a rather braod and compli
cated domain of the modern physics.

Concluding, it is well known today that, when a beam of charged
particles passes through a plasma, it gives rise to the excitation of
instabilities. These instabilities, excited at the cost of part of the
kinetic energy of the beam, appear under the form of growing waves.
Therefore we treat, in chapter 11, the problem of the linear oscilla
tions in a collisionless plasma. We show that the frequency and the
wave number of the plasma waves are in general complex quantities that
satisfy the dispersion equation of the beam-plasma system. The linear
theory of beam-plasma interaction is quite adequate to describe the
initial stage of the development of an instability. However, as this
theory predicts an unlimited exponential growth of the instabilities,
we see that it loses very quickly its applicability for the study of
the unstable processes occurring in real plasmas. Indeed, it is well
known that the growth rate of an instability is experimentally seen to
decrease with the increase in the amplitude of the instability. These
instabilities, in general, occur in bursts, which means that, after
an initial exponential growth, a saturation mechanism appears and is
usually later followed by a decaying process. Other experimental re
sults which can not be explained within the framework of the linear
theory of beam-plasma interaction are, for example, the broadening of
the excited spectrum of oscillations and the changes in both the beam
and the plasma parameters, which accompany the development of the in
stabilities. These effects are related with nonlinear phenomena. Al
though restricted by a large number of conditions of applicability,
the quasilinear theory of beam-plasma interaction, can anyhow explain
a great part of the experimentally observed nonlinear effects. By this
reason, and especially because in the quasilinear theory a rather ge
neral physical formalism is clearly presented, we make, in chapter III
a review of the most salient aspects of this theory.

Chapter IV deals with measurements of the spatial development of
the beam-plasma interaction and some nonlinear effects are observed,
which agree with the predictions of the quasilinear theory.



In chapter V we make a detailed study of the lSt-2n regime transi
tion in the plasma. In this chapter we related the extension of the
axial velocity spread in the beam as well as the beam power losses to
the existence of a trapping mechanism is which the beam electrons become
trapped in the cyclotron wave potential well.

In chapter VI a numerical study is made to test the validity of the
trapping mechanism assumed in chapter V.

Finally in chapter VII we present some measurements of the trans
verse energy of the beam electrons. An expression, permitting the ob-
tention of the 3-dimensional velocity distribution function at the beam
centre, is derived and applied to the study of interrelationship between
the transverse and the axial energy of the beam electrons.
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CHAPTER IX

LINEAR OSCILLATIONS IN A COLLISIONLESS PLASMA

2.1. General considerations

The plasma being a collection of particles, its state can be
rather well described by a statistical theory, based on the definition,
made for every type of particles, of the density of probability in
phase space. For simplicity let us assume, for the moment, that the
plasma can be represented by an ensemble of particles of a single type.
The probability density in phase space D, is then a function of time
and of the coordinates and momenta of all the N particles of the con
sidered type. By definition we have (DELCROIX, 1963):

CO

| D d?,dvjd?2dv2 .... d?NdvN - 1
“00

(2.1)

Because actually we can not distinguish between two particles of the
same kind, we define the state of our system by the velocity distribu
tion function f (r,v,t) which results from the integration of the pro
bability density D over the coordinates and momenta of all the consi
dered particles but one. We shall use throughout this work always nor
malized velocity distribution functions in the sense that:

00

no I f t*»*»*) » n (r,t) (2.2)

Here nQ is the average density of the particles and n(r,t) is their
instantaneous density.

When we are interested in a less detailed description of the plasma
(macroscopic description) it is usual to characterize it by the moments
of the distribution function. Among these ones we are especially inter
ested in:

The average velocity u(r,t)
• n1 o

o
n

- The temperature icT(r,t) = —3 n

v f(r,v,t) dv (2.3)

|(v-u)|2 f(r,v,t) dv (2.4)

- The heat flux vector q(r,t) “ i nG j m|(v-u)|2 (v-u) f(r,v,t) dv
(2.5)

where k is the Boltzmann's constant.
Let us now consider the problem of the time evolution of the velo-
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city distribution function* It is wellknown that, starting from the
Liouville theorem, we can arrive to the Vlasov equation. This one is a
particular case of the following general equation for the time evolu
tion of the velocity distribution function (DELCR01X, 1963)

li + S .  ~  dï,dv = 0
3t £  m  3V Lm m 3V 2 2

where f 2(r,r2, v,v2, t) is the double distribution function represen
ting the correlation existing between the position of a certain parti
cle (at r with velocity v) and the location of another one (at r2 and
with velocity v2) which exerts on the first one a force F ]2. The dou
ble distribution function permits to study the macroscopic effects of
the interaction among the particles. ^

Equation (2.6) implies that the external forces, represented by F,
satisfy the following conditions;

As the Lorentz force obeys conditions (2.7), these ones are generally
satisfied in all practical cases.

Equation (2.6) expresses the fact that the time variation of the
distribution function results from three different types of phenomena.
Diffusion (second term), action of the external forces (third term) and
interaction among the particles (last term).

Equation (2.6) cannot be solved without a prescription concerning
the double distribution function. Depending upon the simplifying hypo
thesis made about f,2, (2.6) can lead to the equations of Boltzmann,
Vlasov, Landau, Fokker-Planck, and so on. If we neglect the correlation
between the location of the particles in phase space, then the double
distribution function is simply given by

f12(r» r2' *2* “ £(r’ V’ ^  X f2(r2’ V2’ C) <2,8)
Under these conditions, if we admit that the force exerted among the
particles is independent of the velocity, it is possible to arrive to

the Vlasov equation

if + - if + r * F' . 21 „ o (2.9)
• £  » 3w
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where F' is the average force exerted on a particle by all the other
ones:

r£

F"'(r»t) * | F]2f2(r2,v2>t) d?2dv2 (2.10)
— CO

a real plasma contains at least three different species of
particles: the neutral particles, the ions and the electrons. This means
that in equation (2.6) we must consider new terms related with the in
teraction between a particle of the considered species and all the
particles belonging to the other species. These additional terms are
formally identical to the last one in equation (2.6) and the generaliza
tion is evident. Thus, when we write the Vlasov equation as in expres
sion (2.9), we must consider F' to be the total average force exerted on
one particle by all the other ones. In the absence of external forces,
and neglecting the influence of the neutral particles, this equation can
be written as

H  + V . fiUJxS] .ii.o (2.. 1)
3r 3v^ Bwhere E and H = —  are the average electric and magnetic fields produced, y t

at the point r at time t by all the particles of the system.
With a higher accuracy equation (2.11) should still have a colli-

sional term. Among the different types of collisions one is particularly
important for the study of the plasma: — the Coulomb collision. This
one is defined by the scattering of one charged particle on another.
This scattering is associated with a rapid variation of the electromag
netic fields felt by these two particles. The very essence of the Vlasov
equation consists in the fact that we can neglect these collisions, and
let the behaviour of one particle to be determined only by the average
fields E and H.

The neglect of the Coulomb collisions can be justified if the num
ber of particles contributing to it is much smaller than the number of
those which produce the average fields. The existence of a shielding
limit on distant interactions (Debye length) reduces the former state
ment to the condition that the number of particles inside a Debye sphere
must exceed considerably the number of those which are responsible for
the Coulomb collisions. These last ones are expected to be found inside
a sphere of radius (j/-) , of the order of the square root of the
Coulomb collision cross section a. (j /it)* being in general much smaller
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than the Debye length XD> Coulomb collisions may therefore be neglected.

4e
0 *  ------ 2--------724ite (3 *T)o

Indeed, the ratio between

XD

these

e <T11o
“  2In eo
two distances

(2.12a)

/Oxl
V  1 - L  (2.12b)
“ !—  3 N
XD 6" n0 V D

is in all practical cases a very small number, of the order of the in
verse of the number of particles inside a Debye sphere, Nj,. This fact
gives to the Vlasov equation a great accuracy to the study of low den
sity high temperature plasmas. This equation, by the nature of the
approximations made in its derivation, is best suited to the study of
longitudinal electrostatic oscillations in a collisionless plasma.

Because we are dealing with a system of charged particles the
Vlasov equation must be associated with the Maxwell equations. The

following system results

M + v . —  + £ (E + v x b ] . 4 * °
3t £  “ 3v

? . D ■ nfl e f(v) dv - nQ e - p

(2.13)

(2.14)

(2.15)

V . B - 0

V x H - + n0 e v f (v) dv - + J

(2.16)

(2.17)

In these equations f(v) is the velocity distribution function for the
electrons of our system. The plasma ions are assumed at rest and uni
formly distributed in space with a density nQ , equal to the average
electron density (charge neutrality). This means that we neglect the
influence of the ions in the electron oscillations in which we are es
pecially interested. The consideration of the motion of the ions would
only lead to a very small correction to the results obtained with the
above assumption, due to their very large relative mass.
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Equations (2.13) to (2.17) constitute the self-consistent field
equations or Vlasov equations. They describe the evolution of our system
with the complete neglect of correlation among the particles.

2.2. Longitudinal plasma waves - Derivation of a dispersion equation

Throughout this chapter we shall only consider the case of pure lon
gitudinal oscillations (k parallel to E) in the electrostatic approx-
imation (H«0) in an infinite plasma. It is also supposed that there are
no external fields acting on the plasma. Under these conditions the
self-consistent field equations reduce to

e -*

f(v) dv

(2.18)

(2.19)

3E “o e { - -► -
a t ---------7̂  J v  f  ( v) d v (2.20)

Equations (2.19) and (2.20) are not independent as they are related
through the continuity equation:

V . J + - 0 (2.21)

To solve the system of equations (2.18) and (2.19) it is usual to de
compose the velocity distribution function into a sum of a zero order
term f (v) (time independent and uniform in space) with a first order
one fj(rtv,t) which represents the rapid fluctuations of the distri
bution function due to the plasma oscillations. Equations (2.18) to
(2.20) are identically zero for the zero order distribution function
f (v) which obeys the following relations:

f0(y) dv ■ 1 (2.22)

_ --T. T  ff (v) v dv (2.23)

The last term in the Vlasov equation (2.18) is nonlinear. It con
tains the product of two first order quantities. When we think of
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linearization we must make an assumption over the time variation of
these quantities. As pointed out by SAGDEEV and GALEEV (1969) there
are two fundamentally different approximations which correspond to the
cases when we can hold one of the two unknowns (f and E) constant. If
the amplitude of the wave changes much more quickly than the first
order distribution function, then it is allowed to replace in (2.18)
3f/i»v by 3f /3v. This was the linearization procedure used by Landau,o
Keeping the wave amplitude constant and looking for the time evolu
tion of the distribution function is the process used by Sagdeev and
Galeev.

We shall follow the first linearization process. Then, the self-
consistent equations are written as:

f. dv

(2.24)

(2.25)

To solve the Vlasov equations there are two wellknown different
approaches: The method of Landau, that will be treated here, and the
more recent treatment of VAN KAMPEN (1955). Both methods lead to
essentially the same results.
Following LANDAU (1946) we introduce Fourier transforms in space and
Laplace transforms in time:

f, (£,v,u) ej“t (f f,(r,v,t)e ^k "r dr) dt
o  - *

(2.26)

E(k,u) ejut (j“E(?,t)e-j*-? d?) dt (2.27)

o “GO
We must now perform a Fourier~Laplace transformation of equation
(2.24). The Laplace transform of its first term is:

00

111 dt - (eju,t f,1* - ju | ejt,t f,(r,v,t) dt (2.28)
o o
In order to proceed we must admit that for t > 0 there exist two

numbers M and a  that satisfy |f,(r,v,t)| <  |M e \ for any value of t.
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In carrying out the inverse transforms we must then integrate in u along
a line with > a in the complex w plane, and u are respectively
the imaginary and the real parts of u.

The inverse transforms are then:
oo+j a

f j (r,v/,t) e - M  ( f j (k,v,u>) ejk.i

-oo+ja

dk . du
y  2ir(2*) (2.29)

»+ja
E(r,t) e"jut (

»+ja
ECk.u) ejS.r dg

(2ir)3' 2it
(2.30)

The integration in' u along the line with to- = a is necessary in order
to assure that both f. and E are zero for t < 0. With these assumptions
the Laplace transform of the first term of (2.24) is simply given by

fj(r,v,t-0) - ju fj(r,v,w) (2.31)

The transformation of the other terms of (2.24) is similar and we ob
tain _ 3f

-  Em r2 “ g(k.v)
f.(k,v,w) ----------- — ----  (2.32)

j O ü - Ê . v )
where g(k,v) is the Fourier transform of the initial perturbation of
the distribution function fj(r,v,t“0) = g(r,v).

The transformation of equation (2.25) gives:

ÊÖt.u)
j n e•* o

c ko
f.(k,v,w) dv (2.33)

Substitution of (2.32) into the last expression leads to:

g(k,v) *
n e ko

E(k,u) Eok ui - k.v

1 +
n eo
me ko

3f
t  . - 2

in - k.v

(2.34)

The physical interpretation of this mathematical treatment is that
we are considering an initial value problem. At t*0 we admit that our
system is in a state of non-equilibrium with the distribution function
slightly different from the equilibrium one f (v). The essential problem
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is to deduce what are the electron oscillations which arise or, in
other words, what is the response of our system to the considered per
turbation g(r,v) on the distribution function.

From now on we will consider a one-dimensional problem. For
• • •  -► # # tsimplicity we choose the z-axis to be in the k-direction. So hereafter

v will be the z-component of the velocity and f (v) will be the
partial integral of the distribution function over the other two com
ponents of the velocity (v and v ). By the same way

oo ^

g(k,v) - | g(k,v) dvxdvy (2.35)

and equation (2.34) becomes

E(k,u>)

n eo
e ko

oo

g(k,v)
kv-di dv

kv-u)
n eo
me ko

(2.36)

Equation (2.36) permits to compute the Fourier-Laplace transform
of the electric field of the plasma oscillations. The transform of the
first order distribution function is then determined by (2.32).

Inverse transformations of E(k,ui) and f,(k,v,u>), according to
equations (2.29) and (2.30), represent the complete solution of the
initial value problem considered.

We recall that, integrating along the Bromwich contour in the to—
plane, as implicit in (2.29) and (2.30), both integrals in (2.36) are
free from singularities arising from the term (kv-m) because we use
values of u> that exceed the highest value associated with all the
singularities of E.

An easier way to perform the inverse transformations is to carry
the integration in the complex ui plane along an equivalent contour in
troduced by LANDAU (1946). The contribution to the integral from all
parts of the new contour can be neglected except in the neighbourhood
of the poles of E(k,u). But this last contribution is nothing more
than the sum of the residues of these poles that we denote by

E(k,t) * £ e ° Res a[E(k,u)l (2.37)
a
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However, the integrals involved in the Laplace transformations are
only meaningful for ^  >_ a, as we admitted when deriving equation
(2.32). Anyhow it is possible to use the Landau contour for the inte
gration in i, provided that we define the proper analytic continuation
of the function E(k,u) defined previously only for u. > a.

This question of the analytic continuation of the function E(k,u)
has been extensively treated in literature (STIX, 1962; SIMON, 1965-
BRIGGS, 1964), since the appearance of the work of LANDAU (1946). This
procedure requires that the integrals in v in equation (2.36), which
could (for >_ a) be taken along the real axis, must now be performed
along a special contour. This one avoids lack of continuity in the
final solution of the considered problem for t > 0, resulting from the
poles, which eventually cross the real v axis when we move in u from
“i - “ to uj < 0. This means that above this new contour in the complex
v plane there must appear all the poles which, for w . >_ a, „ere found
with v. > 0 and only these ones.

The final expression for the electric field of the plasma oscil
lations can now be written:

E(k,u)

I

n e r° g(k,v)
e k J k v-u dv

2n eo
me ko

3fo
3v

k v-u dv

(2.38)

c
where subscript c indicates integration along the Landau contour in
the velocity plane.

Under these conditions, the time variation of the electric field is
completely determined by its poles in the complex u plane as expressed
in (2.37). If there is a pole u^ which possesses the greatest value of
ui then tlie contribution of all the other poles will be, for any finite
value of t, exponentially small compared with its own contribution and
the response of the plasma to the initial value problem will be of the
form (STIX, 1962):

-j- £
lim E(k,t) - e M [ (u - u.,) E(k,u) ]
t“" “J”UM (2.39)

If g(k,v) and are both analytic functions of v and in
particular entire functions, the integrals in (2.38) are both entire
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functions of the complex variable u> (integration along contour c).
Equation (2.38) is, under these conditions, the ratio of two entire
functions, and so the singularities of E(k,u) are all due to the zeros
of the denominator of this equation.

But the poles contributed by the denominator of (2.38) are in
dependent of the initial perturbation on the distribution function.
They depend only on the details of the zero order distribution function
f (v). These poles occur wheno

, n2 __o
, „ 2°f_ -22—  dv (2.AO)me k k v-fc>o c

and, by the last considerations, they represent the natural modes of os
cillation of the plasma electrons. This fact justifies that we call to
(2.AO) the dispersion equation for longitudinal electron plasma waves.

Due to the analytic continuation of E(k,w) an equivalent dispersion
equation can be easily derived by partial integration of (2.AO) and the
result is

1

2n eo
■ eo c

f O < V >

(kv-u)I 2
dv (2.A1)

2.3. Particular solutions of the dispersion equation

With equations (2.AO) or (2.A1) we can now study some particular
cases of dispersive propagation of longitudinal electrostatic plasma
waves.

2.3.1. Dispersion of a cold plasma

A particular solution of the dispersion equation can be easily ob
tained for the case of a zero temperature plasma. In this case no sin
gularities arise, for any finite value of u, as v*0. So we can write
f (v) » 6(v) and equation (2.A1) immediately gives:o

2 2n_ e , , n e
I *» ■■■—  ■ or (!)=&) = -----  (2.A2)2 p me„me (d °o
We see that the result of a perturbation made on an electron gas

at zero temperature, immersed in a neutralizing ion gas, is an oscil—
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lation at the so-called electron plasma frequency to . This one is inde
pendent of the wave number k and so there is no propagation of the
perturbation along the space as the group velocity (dto/dk) is zero.

2.3.2. Interaction betueen a cold electron beam and a cold plasma

A second particular solution of the dispersion equation corresponds
to the case in which we have two groups of electrons with zero tempe
rature and average velocities respectively equal to zero and to v. .b
This case is a theoretical limit of the experimental situation
resulting from the passage of a monoenergetic electron beam through
a cold plasma. In this case the combined electron distribution function
can be written as

f0 (v> “ ÏT ̂ np 6(v) + nb 6(v - vb*l (2.43)o v
where n^ is the density of the electrons at rest (plasma electrons) and
n^ is the density of the electrons with average velocity equal to v,
(beam electrons). nQ is of course the total electron density

(no “ np + V -
Substitution of (2.43) into the dispersion equation (2.41) leads to

2 2
GO to .

1 = -jr + --- 2--- j (2.44)
o) (w - kv^)

where tô  and to b are respectively the plasma frequencies of the corres
ponding groups of electrons.

This is the wellknown linear dispersion equation for an infinite
beam-plasma system. This equation has, for real k, complex conjugate
solutions for u. This means that, for certain values of k, the beam-
plasma system is unstable. KLIMONTOVICH (1967) gives an approximate
solution for waves with a phase velocity v ^ » w/k very close to the
beam velocity v^. This solution is:

t o .
<0 - (k v.) [ 1 + " ---1 (2.45)

/  ((k vb)2 - up2]

From this equation it is clear that, if the wave number k satisfies
the following condition

(k vb)2 < to 2 (2.46)
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there are two complex-conjugate roots of (2.A5) revealing instability.
This means that due to the presence of the beam the propagation of plas
ma waves with frequencies below becomes possible,
effect. Expression (2.A5) is a good approximation to the dispersion
equation only for long wavelengths and when the beam density is much
smaller than the main plasma density np . A dispersion diagram (plot of k
against u>) representing the complete solution of equation (2.AA) can be
found in BRIGGS (1965).

A slightly modified dispersion relation

2 2u r 3k v,T + [ (l> - (S.vb)l
(2.A7)

is referred by ALLIS (1967) for the case of the passage of a monoener-
getic beam through a plasma with finite temperature. Here vT = (icT/m)
is the thermal velocity of the plasma electrons.

2.3 .3 .  E lectron o s c il la tio n s  in  a Maxwellian plasma

The third particular case we will treat is the one in which the
zero order distribution function is Maxwellian, with temperature T:

fo (v) (■ r)
-mv /2xT

2 it kTJ
Substitution of this expression into (2.AO),

equation (SIMON, 1965; KLIMONTOVICH, 1967)
J

dt = 02 2' ♦ k V + -t
t - z

(2.A8)

leads to the following

(2.A9)

where z - ^(ra/2icT)*, t=v (m/2icT) * , and Xp is the Debye length.

In the limit of long wavelengths this equation leads to the follo

wing solution:

<o>rV 2 , xT . 2o> + 3 —  k. p m
2 2♦ * V k > (2.5Q)

(wj)
1

2(kXD)2 (2.51)
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These are the famous results obtained by LANDAU (1946). The imag
inary part of the frequency is negative and so the obtained solution
corresponds to damping. Simon proves that in the other extreme limit
(short wavelengths) equation (2.49) leads to heavily damped modes, with
the logical conclusion that collective oscillations with wavelengths
much shorter than the Debye length can not be maintained in the plasma

Equations (2.50) and (2.51) were obtained with the assumption that
the damping coefficient («.) was much smaller than the real part of the
frequency. From these equations we verify that this happens when kX << 1.

Under these conditions the phase velocity of the plasma waves is
approximately given by

LU A  A  A  W

(2.52)

and is so considerably greater than the electron thermal velocity v_ =
WpXp. From (2.52) we see that the plasma is a dispersive medium as the
phase velocity depends on the wavelength.

It can be proved (KLIMONTOVICH, 1967), that when kX ~  1 the imag
inary part of the frequency w. becomes comparable with its real part u ,
and equations (2.50) and (2.51) are no longer valid.

Equation (2.50) can be directly obtained from (2.41) if we expand
its denominator in terms of the small parameter k. The result, valid of
course only for large wavelengths, is

2 2 2 f 2 am = u + k I v fQ(v) dv + 0(k j (2.53)

For a Maxwellian plasma with temperature T we obtain (2.50) neglecting
the term of the order of k*.

Differentiating (2.53) we can see that the product of the group
velocity (v^ = du/dk) by the phase velocity (vplj = w/k) , for small k,
is equal to <v >the mean square velocity of the zero order distribu
tion function f .o

du) u
dk k > . 2v f (v) dvo (2.54)

As the phase velocity of the plasma waves is much greater than the
electron thermal velocity we see from (2.54) that these waves are char
acterized by relatively small values of the group velocity.
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We have thus seen that perturbations made in a plasma in thermodi-
namic equilibrium lead to oscillations at frequencies close to the plas
ma frequency. These oscillations are found to be damped. This damping
mechanism, which would absorb energy in a collisionless plasma, has been
the subject of large controversy. Indeed how can a damping process be
derived from the Vlasov equation, which, as it is. wellknown, has the
property of conserving the entropy of the system? VAN KAMPEN (1955)
writes that it may be surprising to find a damping process resulting
from the Vlasov equation which is invariant for time reversal. But he
also states that this apparent irreversibility has its foundations on
the incomplete definition of the assumed initial state.

ALLIS (1958) points out that it is delicate to apply perturbation
techniques to an arbitrary solution of the Vlasov equation written as
zero order. With the simultaneous neglect of collisions and of the zero
order electric field the Boltzmann equation is degenerate and the Max-
well-Boltzmann distribution is only one of the multiple solutions of
this equation.

A similar reasoning is referred by KLIMONTOVICH (1967) which says
that the selection of a definite solution of the Vlasov equation goes
out of the framework of the first moment equations, which means that
this choice makes use of higher moments or of correlations among the
particles. Indeed the Maxwell—Boltzmann distribution is quite attached
to the existence of binary collisions.

The answer to this question seems to be that there is no contradic
tion between the damping of a macroscopic parameter of our system (like
the electric field or the first order density perturbation) and the
conservation of the entropy. VAN KAMPEN et al. (1967) clearly explain
the apparent paradox of the Landau damping. According to them only the
distribution function must follow a reversible transformation. Due to
the fact that collisions are completely neglected in the Vlasov theory
there are no linear differential equations for the macroscopic quanti
ties characterizing a Vlasov plasma. So, these macroscopic quantities
are allowed to suffer irreversible or dissipative processes.

SIMON (1965) makes a detailed study of this problem. From equation
(2.32) we see that for large values of the time, when the electric field
of the oscillations had decayed to zero due to Landau damping, the first
order distribution function can be written as:
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f I (kfV|ui) g(k, v)
i (2.55)j(u-k.v)

representing the existence of a pure oscillating term. We see that al
though the electric field damps away, the first order perturbation in
the distribution function does not. By inverse transformation of (2.55)
Simon finds that

(|(r»v »t) * fj(r-vt, v, t-0) (2.56)

meaning that the distribution function, after the decay to zero of the
electric field, settles down to the value it would have if only free
streaming of the plasma electrons had occurred. Since all the initial
information of the problem was contained in the distribution function
(Landau initial value treatment) we see that this information has been
conserved. Thus the Landau damping conserves the entropy of the system.

2.4. Landau damping

A simplified derivation of the Landau damping decrement can be
done starting with the linearized Vlasov equation written- in the first
order (2.24). We do not consider anymore an initial value problem and
so we are allowed to take Fourier transforms of the form ej('cz-ut) £n
time and space. If we remember the considerations presented before for
the way of performing the inverse transformations, we obtain easily an
expression for the perturbed distribution function:

and

f,(k,v,u) j (kv - ui)
The perturbed electron current density is simply given

so

(2.57)

by n evf,o I

n e
(2.58)

In this way it is possible to calculate the partial work done on
the particles by the electric field per second and unit of volume:

(E.J)V = j (2.59)

An integration over the electron velocity leads to the total power
density
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(E.J)
n e

(2.60)

c
where the subscript c refers to the integration contour c in the velo

city plane.
If we assume that the damping rate is much smaller than the oscil

lation frequency << the imaginary part of the1velocity is also
much smaller than the real part (v ** w/k) and we can admit that the
pole lies close to the real v axis. Then, the integral in (2.60) can be
written as the sum of a real principal part with a pure imaginary con
tribution from the residue of the referred pole. We see that the prin
cipal part of the integral leads to reactive power and that the only
real contribution to the work comes from the residue term and is given

by ,

(E.J).
it n eo , (v)E2 u (— 2--

*■ k v 3v -) (2.61)
=i.\/k

We see that the work done by the electric field on these resonant
particles (V “ w/k) is proportional to the wave energy and to the velo
city derivative of the distribution function taken at the point where v
is equal to the wave phase velocity. This result is given by SIMON

(1965).
Writing now the expression for the Poynting theorem in the absence

of applied fields and in the electrostatic approximation

. e E2
f | (E.J) + 2 (-^-) 1 d? = 0 (2-62)

it is possible to find an expression for the time variation of the
electrostatic energy and so for the damping rate. The factor 2 in equa
tion (2.62) comes from the virial theorem which states that if we give
to an electrostatic wave a certain amount of energy one half of it goes
into its electrostatic energy and the other half goes into kinetic energy
of the bulk of particles which sustain the wave. Using (2.61) we obtain

3E
ot 2l>£ E (2.63)

where
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“i
* P
I 7 ' “ (t £)dV

(2.b4)
v=u/k

The derived results agree with the usual expression for the Landau
damping (DAWSON, 1961)

3
t*> o l  ,  ,^ P / O\ / | k OU» / r\

‘ ’ 2 k|k| vu/k •■‘k>
for the case of waves witli group velocity much smaller than the phase
velocity, a characteristic'of the electron plasma oscillations.

Expression (2.64) for the rate of change of the wave energy has a
simple physical interpretation. If a wave propagates with a phase velo
city v k it exchanges energy preponderantly with those electrons which
travel with velocities around v ^ (Cerenkov effect). Now, due to the
action of its electric field, the wave has a tendency to accelerate elec
trons with velocities slightly smaller than v ^ and to retard the ones
which travel a little faster than the wave itself. Then if 3fQ/3v is nega
tive, this means that the number of electrons which absorb, in this way,
energy from the wave exceeds the number of those which give up energy to
it. By this reason the wave is forced to damp. By a similar reasoning
we can see that distributions with 3f /3v > 0 can lead to growing waves.

2.5. Criterium for instability

We have seen that one of the particular solutions of the disper
sion equation given in section 2.3 showed for certain values of k
complex conjugate solutions for u. This means that the Vlasov equations
can, under certain conditions, describe unstable states of our system.
Inspecting equation (2.65) we can verify that if we can create distri
bution functions which show for some range of velocities a positive
slope, the Landau coefficient y is positive and the wave will grow
instead of being damped. From (2.64) we see that a necessary condition
for the presence of an instability in our system is the existence of
a rising part (v3fQ/3v>0) on the velocity distribution function.
However, we shall see that this condition alone is not sufficient to
lead to instabilities.

As we know the natural oscillation modes of our system are com
pletely determined by the zero order velocity distribution function. It
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is therefore interesting to have a criterium to distinguish the stable
from the unstable distribution functions.

One of these criteria is due to PENROSE (I960). To derive it we
can write the dispersion equation (2.40) in the following form:

df /dv
(2.66)

Now, if an unstable root exists for some real value of k, the fre
quency must be complex and with a positive imaginary component. Because
2 9 .k /w is positive (k is real) a necessary and sufficient condition for

instability is that the function Z(^) defined in (2.66) has a positive
real value for some u in the positive imaginary uj plane (SIMON, 1965).
The existence of such roots can be predicted by applying to this pro
blem the wellknown Nyquist criterium (PENROSE, 1960; STIX, 1962; SIMON,
1965). The result of this procedure is the so-called Penrose criterium.
This one states that if a distribution function f (v) characterizes ao'
system which is unstable, then there must exist a certain value v_ ofR
the velocity v for which the following conditions are satisfied:

3f 32f
<-57) - 0 (— ^ )  > 0 (2.67)

v=v^ 3v v=vr

From these relations we can conclude that the presence of a minimum in
the distribution function is a necessary, although not sufficient, condi
tion for instability. The complete condition for instability also re
quires that the following relation must be satisfied:

fc(v) fcJV dv > 0
(V - VR)‘

(2.68)

From (2.67) we can conclude that only distribution functions which
are double-humped can lead to instabilities. As a corolary of this
criterium one can immediately say that a single humped distribution
function, even when it shows for some values of v a positive slope,
can not originate instabilities. We still notice that not all the
double-humped distributions represent unstable states. Indeed condi
tion (2.68) expresses that a considerable separation between the two
maxima in f(v) is required for the system to attain an unstable state'.
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CHAPTER III

QUASILINEAR THEORY OF PLASM WAVES

3.1. Introduction

In chapter 2, treating the problem of the linear oscillations in
a collisionless plasma, we were able to see how important is the know
ledge of the electron velocity distribution function. Indeed, if we
know the average (or zero order) distribution function, equation (2.AO)
permits to determine the dispersion characteristics of the plasma
waves. However, in cases in which unstable situations arise, we must
inquire about the validity of linearization. In the last chapter we
linearized the Vlasov equation (2.18) assuming that the wave amplitude
varies much quicker than the velocity distribution function. We now
remember that the wave growth rate y depends (equation 2.6A) on the de
tails of the average velocity distribution function at the so-called
resonance region (u = kv). As the wave grows, electrons which possess
velocities around the wave phase velocity can become trapped in the
wave potential well. This means that, in this resonant velocity region,
the distribution function will be considerably modified due to the
action of the wave. The time for this change to occur is of the order
of the oscillation period t of an electron in the wave potential well
(DAWSON, 1965). Thus, a necessary condition for the validity of the
linearization procedure referred in chapter II, is that t must be much
larger than the inverse of the wave growth rate, and so we have

Condition (3.1) imposes a limit on the amplitude of the instability
electric field, as the period t is approximately given by (STIX, 1962;
WHARTON et al., 1968):

YT »  1 (3.1)

T ” 2tr (-m/eEk)* (3.2)

Thus (3.1) becomes:

/ 2 2_ myE «  ---H —-ek (3.3)
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When the electric field does not satisfy condition (3.3) the
linear solution of the Vlasov equations is no longer valid. In the
other extreme situation yx << 1 the linearization procedure referred
by SAGDEEV and GALEEV (1969) becomes applicable. When yx ~ 1 the pro
blem is essentially nonlinear.

If we want to follow the development of the plasma instabilities
to amplitudes which approach the limit value given by (3.3), we must
consider a nonlinear solution of the Vlasov equations. The question of
the search for a general nonlinear solution of the self-consistent
field equations is far from being solved. One can only obtain particu
lar solutions of this system of equations, making some special assump
tions, which lead to certain plasma models not always easy to compare
with real plasmas. One of these particular solutions was obtained al
most simultaneously by VEDENOV, VELIKHOV and SAGDEEV (1962) and
DRUMMOND and PINES (1962). This approach is known as quasilinear
theory of plasma waves and describes the interaction between the reso
nant electrons (v = w/k) and the plasma waves.

3.2 .  Deduction o f  the q u a s ilin e a r  equations

The quasilinear approximation in the dynamics of a collisionless
plasma is based on the assumption of weak turbulence. By weak turbu
lence we mean the state of the plasma in which the total wave electro-

5 ) is small corn-static energy density (Qw “ ^ wk with \
pared with the thermal energy density (W^ = nQ kT) but much greater
than the value related with the fluctuating fields in thermal equili
brium

-no3/2e3

co3/2(kT)^

(EINAUDI and SUDAN, 1968).
Essential in the quasilinear theory is the existence of a broad

spectrum of oscillations, constituting an almost continuum of modes.
The phases of these plasma modes are assumed to be randomly distributed,
so that the electron velocity can not become coherently related with
the electric field of any particular mode. With this assumption, usual
ly known as "random phase approximation", the resonant electrons are
expected to perform a kind of "Brownian" motion in velocity space, due
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to the simultaneous and incoherent action of the different plasma modes.
Using now (2.12) for the Debye length, the condition for weak tur

bulence can be written as

i >- 1nxT ** ND (3.4)

where N is the number of electrons inside a Debye sphere.
One can ask why is the condition of weak turbulence necessary. To

answer this question we note that the Vlasov equation (2.18) is not
exact. Indeed its validity was based on the assumption that N_ was a

-I ®
large number. So, N is a small parameter in terms of which we can ex
pand the exact motion equations for the particles. But in the case of
weak turbulence there exists another small parameter, namely Qy/nQKT.
Zero order in these two small parameters lead to the Vlasov equations
(2.18) to (2.20). First order in the expansion in N * leads to the
appearance of Fokker-Planck type collisional terms in (2.18), which
contribute to a slow diffusion of particles in velocity space due to
binary collisions. However, the plasma electrons are submitted to the
random effect of the electric field of the different plasma waves and
this fact also leads to their diffusion in velocity space. The rate of
diffusion of the particles due to the action of these waves is propor
tional, as we shall later see, to the wave energy density. Then the
"collisional diffusion" can be neglected in comparison with the "wave
diffusion" if our second small parameter Qy/n kT is much greater than
Nq , as expressed in (3.4). Therefore, the reason for considering the
plasma in a state of weak turbulence is this: - In the quasilinear
theory we intend to neglect the binary collisions and only take into
account the diffusion effect due to the plasma waves. If the plasma
would be in a state close to thermodynamic equilibrium the two referred
diffusion processes (wave and collisional) could not be treated sepa
rately, and collisions could not be neglected.

In the derivation of the quasilinear equations we will follow very
closely the work of VEDENOV (1963, 1967). We begin by considering the
self-consistent field equations. As in the second chapter we will only
consider the case of longitudinal electrostatic waves in the absence of
external fields. The plasma is assumed to be infinite and the ions con
stitute a neutralizing background for the electron oscillations. Again
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we consider a one-dimensional problem with the notations introduced in
the last chapter. So, in what follows, k will be parallel to the elec
tric field E and both directed along z. Under these conditions the
Vlasov equations are:

3f Jf eE 3f _ .-- + V T—  + —  ——  Udt 3z m 3v (3.5)

V.E
n e OO

f(v) dv
— 00

I)

3E
3t

n eo
OO

v f(v) dv
— OO

(3.6)

(3.7)

In the last chapter we derived a general equation (2.40) for the
dispersion of the longitudinal waves starting with (3.5) and (3.6).
However, we can also use (3.5) and (3.7) to derive quickly an equa
tion describing linear plasma oscillations in the particular case of
long wavelengths (k •* 0). Indeed if we linearize (3.5) and if we ex
pand both f and E in a Fourier series

f = f +o
ejkz (3.8)

E - Z z. ejkz 0-9)k k
3fk . . .  3£k __ .

we arrive, neglecting v ~~ J^v ^  *n coinPar^son 91 k
as allowed by the long wavelength assumption (k «  io/v) , at

3f (v)o
3v (3.10)

n eo
eo

OO

(3.11)

These last two equations when combined permit to obtain the wellknown
linear harmonic oscillator equation,

o
m c o Ek 0 (3.12)

which describes undamped oscillations occurring at the electron plasma

frequency.
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Let us assume that at t=0 our plasma is in a state of weak turbu
lence, manifested by the presence of the different plasma waves consis
tent with the random phase approximation. If the electron velocity dis
tribution function shows a rising part (v 3f/3v > 0) at the resonance
region (v * u/k), the plasma becomes unstable and a mechanism of energy
exchange takes place between the resonant electrons and the plasma
waves. This mechanism leads to the following two effects: 1) the aver
age energy of the plasma waves varies in time and 2) the distribution
function of the resonant electrons changes.

To obtain equations describing these phenomena we suppose that
the resonant electrons constitute a very small minority group in the
electronic population of our system. So, it is assumed that their pre
sence does not modify any of the macroscopic plasma parameters as well
as any of the wave properties, exception being made for the growth or
damping rates. In other words this assumption means that the waves are
supposed to be sustained by the non-resonant electrons alone and that
the presence of the resonant electrons has no other effect than to
modify the wave amplitude. Then, the distribution function of the non-
rcsonant electrons can be represented by the Fourier series (3.8). For
the resonant electrons the distribution function f can be written as
the sum of a rapidly varying term f. (following the different waves)
with a slowly varying one fQ (t,v). For the electric field we assume
that its mean value is zero and that the amplitudes of the Fourier
modes E.(t) also vary slowly in time.

With this approximation the quasilinear equations will only be ac
curate within a term of the order of y/u. y/u is the small expansion
parameter of the quasilinear theory and it is related in a certain way
with the ratio between the respective number of resonant and non-reso-
nant electrons in the system.

Given the smallness of y/u it is adequate to assume that the plasma
oscillates in frequencies around its electron plasma frequency. So, for
the oscillating part of the distribution function and of the electric

(t,v) + Z f ejkz
k kr f„,(t,v) + f (3.13)

E = Z E. (t) e^kz
k K <3.14)
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field, an average in time over periods much greater than the period of
the plasma oscillation (or in space over distances much greater than
the wavelength) leads to a zero value. Thus, an average in time and
space of the Vlasov equation, written for the resonant electrons, leads
to

3f0r(t,v) „ eE 8flr' v --- -- — --- >m 3v
a p » , _ »- 1 4- -  (IE. f. + E. f, )

1 3v m . k kr u3t ~ m 3v * 3v m 'Z k kr k kr

Subtracting (3.15) from the Vlasov equation we get

(3.15)

3flr 3flr . eE 3f0r(t’V>----  + v ■ ■ - + --------„3t dz m 3v Ï  £  <Ef,r - •= E£lr >  > 0 'l6)

In this equation all the terms at the left are first order and
the ones at the right are clearly second order and represent the in
teraction of the waves with themselves. In the case of weak turbulence
the difference between these second order terms can be neglected
(DRUMMOND and PINES, 1962) and we have by (3.13) and (3.14):

♦ jkv f. -  Em k
3f0r(t’v) (3.17)

Equation (3.15) is the first of the two starting equations neces
sary to the construction of the quasilinear theory. To obtain the
second one we take the time derivative of the Maxwell equation (3.7),
considering separately the contribution of the resonant and non-
resonant electrons. Using (3.10) for these last ones we can arrive to
(VEDENOV, 1967)

»V 2 .— s—  ♦ « E..2 p K
n eo

3t (3.18)
3t * ° - „

which still represents plasma oscillations but differs from (3.12) in
the fact that the new term introduces the time variation of their ampli
tude.

To obtain the quasilinear equations we begin by integrating
(3.17) in time. The result is:

fkr(t) f. (0) e”jkvt - ^  [ E. (t ’)kr m j k
3f0r(t',v) -jkv(t-t’)

3v 6 dt’

(3.19)
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Still following VEDENOV (1967), we substitute this result in
(3.15) and (3.18). The equation which results from (3.18) is then mul-Jb
tiplied by SE^ /3t, and to both sides of the resulting equation we add
the respective complex conjugate abreviated by C.C. Then we get:

3f0r(t’v) | - f  u N f ,  (0) e'jkvt* m 3v . k krvk

- I I  V c’>
3f0r(t',v) -jkv(t-t') dt'} + C.C. (3.20)

* 2
3Ek 3 \  2 d{— 5~ + u2 E. } + C.C. - 4 - {at 3 2 p k dt '+ w2 |E I2}p 1 k 1

n e 3E. r
---------I v {- jkvf, (0) e J Vt + -  jkv .
0 3t > kr m

V t'i .-jkv(t-f) Jt, .

e 3f0r(t,v)-  E. ----------  } dv + C.C.m k 3v (3.21)

In these last equations we can now make explicit the time depen
dence by substituting E^ by |E^|e ^  is the frequency associated
with the wavenumber k. For long wavelength oscillations, which is the
case we are considering, the frequency is approximately equal to the
electron plasma frequency (expression 2.53). After this substitution
we can take the assumed slowly varying functions of time (|E, | and
3fjj (t,v)/3v) out of the integrals over t'.

In the resulting equations we can now look for the limit t -*• <»,
and this procedure leads to (VEDENOV, 1967):

3f0r(t’v) 3 r e2 . .2 3ffw«,v)
“ 37 1 IEk I * 6 <“v ~ kv) ----,---Jv m k R k 3v3t > (3.22)

j|Et|2 IE I2 2— rr---E. ’t u3t 1 K 1 p
3f0r(t*v) , #

v ---- ----- « <“k kv) dv (3.23)



We can write these equations in the simplified form

3fn„(t,v)
{ Mt) (3.24)

2 Yk (t) |Ek | (3.25)

where the values of the parameters Dk (diffusion coefficient) and Yk

(growth rate) are given by:

(3.22) and (3.23) are the fundamental quasilinear equations. The
first one has the form of a diffusion equation with a time dependent
diffusion coefficient. In (3.23) we recognize the formulas of the
linear theory (2.63) and (2.64) with the only difference that the
growth rate is now a slowly varying function of time.

The quasilinear equations constitute a closed system in the sense
that the diffusion coefficient in velocity space depends linearly on
the wave energy density, which in turn depends on the details of the
distribution function of the diffusing resonant electrons.

Let us now consider the time variation of the total energy density
Q in our plasma. This energy is made up of contributions from the kine
tic energy of the resonant electrons, the electrostatic energy of the
plasma waves and the kinetic energy of the nonresonant electrons. Due
to the relatively small number of the resonant electrons, the electro—
static energy associated with the wave is, by the virial theorem,
approximately equal to the kinetic energy of the nonresonant electrons
which, as we supposed, sustain the wave by their coherent motion. Then

Dk (t) Z |Ek | 6(u,
m k

(3.26)

Bf^U.v)
kv) dv (3.27)

we can write

2 2n mv eo 1 kd£ = _d_
dt " dt Or (t,v) dv + 2 Ek

(3.28)
— oo

2 2
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If we now use the quasilinear equations (3.24) and (3.25) for the
time derivative of both the average distribution function of the reso
nant electrons and the electrostatic energy density, it is easy to find,
integrating by parts, that the total energy in our system is conserved

^  » 0 (3.28a)

3.3. Quasilinear development of plasma instabilities

The quasilinear equations can be used to study several processes
occurring in a plasma. Among these processes we are especially interes
ted in the growth of perturbations arising in an unstable plasma. Before
specifying the type of unstable situation let us first simplify the
quasilinear equations for the case of a one-dimensional problem. If the
wave spectrum is one-dimensional the wave number k and the velocity of
the resonant electrons v, that coincides with the wave phase velocity
(Cerenkov effect), are simply related by v = v ^  = ii^/k =: Up/k.

Then, the quasilinear coefficients can be simplified to

Dk (v,t)

Yk (t)
(ft)1 JL-

2 k2
■3f0r(t»v)'

3v v - W k

(3.26a)

(3.27a)

where [l] represents an unit of length, arising from the passage from
the sum in k to an integral in dk/2ir.

The quasilinear equations can now be written as

!!°r
31 3v { B W (3.29)

3W
at

where the coefficients A and IS are given by (equation 2.42):

A

B

2IT U VP

(3.30)

(3.31)

n mvo
(3.32)
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and U is the wave electrostatic energy density, W * J c |e |̂ .
Hereafter, it is more convenient to consider W(t,v) as a function

of the wave phase velocity v = u /k rather than as a function of k.
In (3.29) and (3.30) f^^ and W are both slowly varying functions

of time. The quasilinear coefficients A and .B are time independent.
The system of quasilinear equations possesses an interesting

property. If we substitute W 3fg /3v obtained from (3.30) into (3.29)
we obtain

£ tf W)] -0 (3.33)3t Or 3v —
and we verify that the quantity {fgr(t,v) - 3/3v [BA * W(t,v)]} is
conserved during the interaction between the resonant electrons and the
plasma waves. This fact permits to determine the final amplitude of the
plasma oscillations. From (3.33) we can write

f0r(” ,v) - [BA"' W(»,v)] - f0r(0,v) - [BA'1 W(0,v )] (3.34)

and an integration over the velocity leads to

W(»,v) - W(0,v) - AB •1
[f0r ) ~ f0r(0,v'^ dv' (3.35)

If we now consider waves with a phase velocity equal to v, we see
that the final energy density W(°°,v) can be determined from (3.35) if
we are able to know the final average distribution function for the re
sonant electrons fQr(“ ,v). Both the initial wave energy density W(0,v)
and the distribution function f-^iOjV) are supposed to be known, as
they are the main parameters which characterize the state of the plas
ma at t=0. For a certain initial distribution function (a given y )
the coefficients A and 15 are only functions of the velocity v.

So, we are faced with the question of how to determine the final
distribution function for the resonant electrons. A physical picture
for the interaction process must then be given. As we are dealing with
an unstable situation, the initial distribution function (t“0) must
exhibit a rising part for some range of velocities. An example of such
an unstable distribution, known as "bump on the tail" distribution is
represented in figure 3.1, where Vj and V2 are assumed to be consider
ably greater than the thermal velocity of the plasma electrons.
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The noise level at the beginning of the quasilinear development of the
mstsbilitigs (t =0) is assumed to be of thermal origin everywhere ex-
cept in the small range of velocities comprised between Vj and V2  where
it is large enough to satisfy the condition of weak turbulence of the
plasma.

Under these circumstances the plasma waves which have phase veio-
cities in the resonance region (Vj < v < V2 ) will begin to increase in
amplitude due to Landau growth ((2.63) and (2.64)).

At the same time the diffusion process begins to flatten the dis
tribution function in this resonance region (3.29) and this leads to a
decrease of the wave growth rate (3.27a). However the waves still con
tinue to grow, increasing the diffusion coefficient in velocity space
(3.26a). This means that the flatning process on the distribution func
tion becomes quicker and this results in a faster decrease of the wave
growth rate. The process goes on until we attain the saturation of the
wave amplitude (y-0). At the end of the quasilinear relaxation process
both the wave exiergy and the diffusion coefficient attain their maxi
mum value. Anyhow due to the uniformity of the distribution function in
the resonance region (3fgr/3v = 0) the quasilinear equations (3.29) and
(3.30) are identically zero.

Thus the system has attained a stationary state in which the aver
age distribution function is forced to be constant in the resonance
region. Due to the thermal character of the wave energy density outside
the resonance region it can be assumed that the average distribution
function for the nonresonant electrons does not change during the quasi—
linear relaxation process. This last assumption is only approximately
correct and we will return to this point when treating the so-called
adiabatic contribution in the quasilinear theory.

The considerations just presented permit to compute f (»,v). We
now know that the average distribution function will only be different
from the initial one inside the resonance region, where it is forced to
change to a plateau. Then the determination of the height of the pla
teau is simply based on the expression for the conservation of the
density of the plasma electrons,

I V°-’> dv
Vm

(3.36)



v,_ and v are the extreme values of the range of velocities where theM m
plateau has been formed. These limits are easily obtained stating that
(figure 3.1)

f0(0’vm> ” £0r<"> - £0(0* V  (3‘37)
In other words vm and v^ constitute the only pair of velocities,

possessing the same value of f^, which makes the establishment of the
plateau compatible with density conservation.

V| Ya

lW(0D,v|

V| Vu Y? ^

Fig. 3.1. -Initial and final velocity dependence of both the average ve

locity distribution function and the wave electrostatic ener

gy density under the excitation of the electron plasma insta

bility.
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With the knowledge of f (°°), equation (3.35) eonipletely determines
the final value of the wave energy density as a function of the phase
velocity v or equivalently as a function of the wavenumber k =■ /v.
In a more explicit form (3.35) can be written as

3 vnn mv r
W(~,v) = -r-y---  [f0r(») " f0r(0’v,)1 dv’ + W(° ,V) <3-38)‘ *“P Im
In figure 3.1 we present the initial (t=0) and final (t=°°) velocity

dependences of both the average distribution function and the wave elec
trostatic energy density. We notice that the wave energy is maximum for
phase velocities near the centrum of the resonance region. We also
notice that due to the interaction process the resonance region broadens
in the course of time.

As a result of the quasilinear development of the plasma instabili
ties we see that some electrons are transferred from regions of higher
to regions of lower velocity. This means that the resonant electrons
lose a certain amount of energy which is necessary to the build up of
the final supra-thermal spectrum of plasma oscillations. From (3.38) we
can write

a) /vP m dk[W(»,v) - W(0,v)]
M

n mvo
/VM Vm

[f0r (") ” fQr (0»v')] dv’dv

(3.39)

Integration by parts of the right hand side of this equation leads
to an energy conservation relation (VEDENOV, 1967):

w /v v 2P c m ,, /M n mv
2 j [V(-,v) - W(0,v)] - - - - —  [f0r(») - f0r (0,v)] dv

U / Vw vP M m (3.40)

We see that the energy lost by the resonant electrons equals twice
the increase in the electrostatic energy of the plasma waves.



3.4. Conditions of applicability of the quasilinear theory

As we wrote before, the quasilinear equations, as deduced here fol
lowing VEDENOV (1967), are only approximately correct. Indeed they can
be looked upon as being the lowest order expressions in the expansion on
the small parameter y / u . Before considering the necessary corrections
let us now make a brief résumé of the conditions of applicability of
these equations.

First of all the plasma must be in a state of weak turbulence.
In deriving the quasilinear equations, use was made of time and

space averages. If these averages are to be valid, the resonant elec
trons are not allowed to undergo fast processes. This means that this
resonance interaction must be rather slow, and that the trapping of the
resonant electrons in the potential well of any individual wave is
therefore forbidden to occur. Then, the spread in the wave phase veloci
ty must be greater than the capture velocity (as determined in the wave
reference frame) of the highest amplitude wave. This condition can be
expressed by (VEDENOV et al., 1963; EINAUDI et al., 1969):

A(-̂ -) ■ Av > (-eE/km) ̂ (3.41)

where E is the amplitude of the electric field of an individual wave.
Another condition assumed when deriving the quasilinear equations

requires that the changes in the average distribution function and in
the wave amplitude must be very small over several plasma oscillations.
This implies that the growth rate and the reciprocal of the relaxation
time (equation 3.50), must both be much smaller than the oscillation
frequency.

The quasilinear theory applies only for the situations where the
wave growth rate depends on the velocity gradient of the electron dis
tribution function (velocity space instabilities). As, in the exposed
theory, the growth rate depends linearly on 3fgr/3v, this derivative
is not allowed to take very large values in order to avoid violation of
the adiabaticity of the interaction.

Fundamental is the condition which states that the wave-particle
interaction must be rather sharp in velocity space. In other words,
this means that the interaction of a particular wave with the resonant
electrons must take place in a narrow band in the total resonance velo-



city region (VEDENOV, 1963; IVANOV et al.,
1970). This condition can be expressed by

Av » >k

1967.a: KLOZENBERG et al.,

(3.Ala)

This is equivalent to say that the value of the velocity distribution
function at the resonance region must vary weakly over a velocity in
terval equal to Yk/k- Only so can we go over from (3.20) and (3.21) to
(3.22) and (3.23), the fundamental quasilinear equations.

Because the final supra—thermal spectrum of oscillations is rather
broad it is also essential that the plasma dispersion equation (2.AO)
must not allow any kind of resonant mode coupling or, by other words,
that neither the sum nor the difference of two excited frequencies can
be equal to the natural frequency of another plasma mode.

3 . 5 . Adiabatic contribution in the quasilinear theory

As we have seen, the simplified derivation of the quasilinear
equations leads to the conclusion that the distribution function changes
only inside the resonance region where it becomes a plateau. In this
way, we immediately see that the plasma electrons lose energy as well
as momentum. Anyhow, by the virial theorem, we could prove that energy
was conserved during the interaction process, as the energy lost by
the resonant electrons was found in the total energy associated with
the plasma waves. The fact that one half of this energy must appear
under the form of kinetic energy of the nonresonant electrons (which
constitute the bulk of particles which subtain the wave) is quite in
contradiction with the invariance of the average distribution function
of these electrons. Further, even with the problem of energy conserva
tion solved, we can verify that the quasilinear equations, as we presen
ted them, do not conserve momentum.

To analyse this problem we need to consider a less restrictive de
duction of the quasilinear equations. DRUMMOND and PINES (1962) arrive
to formally the same equations as VEDENOV et al. (1962). Equation (3.23)
remains unchanged and the diffusion equation (3.22) differs only in the
fact that the diffusion coefficient is written with more generality.

In the treatment of Drummond and Pines the equivalent of (3.26) is
written as
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Dk (t) 2 lm k
Yk(t)

(<ok-kv>2 ♦ Yk2
(3.42)

However, in the resonance region we have v = o> /k and, due to the
fact that y << u), , we see that the denominator in (3.42) displays ak k
characteristic resonance behaviour. So we can write

y. (t)
------ j = n & (uk~kv) (3.42.a)
(<Vkv) + Yk

which transforms (3.42) into the simplified expression (3.26).
The approximate diffusion coefficient is quite adequate to des

cribe the interaction between the resonant electrons and the plasma

waves.
However, when considering the nonresonant electrons, (3.42.a) is no

longer valid and we must take for Dk the value given by (3.42). From
this expression we see that the diffusion coefficient is strongly
peaked at the resonance region and that it decays with the increase in
I (w -kv) |. Because for the nonresonant electrons (iuk-kv) >> Yk we
verify that their diffusion coefficient is much smaller than the cor
responding one for the resonant electrons. But the number of nonresonant
electrons being much greater than the number of the resonant ones,
their diffusion can not be ignored.

These two diffusion processes (resonant and nonresonant or thermal)
are essentially different in character (SAGDEEV and GALEEV, 1969). The
diffusion of the resonant electrons leads to the establishment of the
plateau in the distribution function and constitutes an irreversible
process. The diffusion of the nonresonant electrons, or adiabatic dif
fusion, is responsible for the increase in the oscillatory kinetic
energy of these electrons when the plasma waves increase in amplitude.
This last diffusion process is reversible.

KADOMTSEV (1965), making use of the diffusion coefficient for the

nonresonant electrons arrives to

[l]«
f o^'

t (0,v)o
( e 2 (t==>J bk

1
(w-kv)

(3.43)2 3v 2tt.



This equation permits to determine the final shape of the average
distribution function of the nonresonant electrons. Kadomtsev writes
that all the momentum and one half of the energy lost by the resonant
electrons for the growth of the plasma waves are transferred to the
thermal electrons and this results in the distortion of their distri
bution function. According to Kadomtsev the final shape of the distri
bution function will be similar to that presented in figure 3.2. Due
to momentum conservation the final distribution function is slightly
shifted to the right in relation to fQ (0,v) and so it has the maximum
for some small positive value of the velocity.

It can be proved (GALEEV and SAGDEEV, 1969) that, as a result of
the quasilinear interaction between the resonant electrons and the
waves, the nonresonant particles (or the main plasma) appear to be
heated. The increase in the plasma temperature is given by:

e |e. In 1 k 12
(3.44)

\f0(oo.vl

0 vi V

Fig* 3*2* — Initial and final average velocity distribution function re

lated with the excitation of the electron plasma instability*
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The quasilinear theory is of course only valid if (equation 3.4)
the increase in temperature is negligible when compared with the initial
plasma temperature. This heating is attained without increase in the
entropy of the system, as the adiabatic diffusion process is a rever
sible one. In other words if the waves will later be damped by any other
mechanism, the plasma temperature will accordingly also decrease.

This adiabatic contribution from the thermal electrons to the dif
fusion process can be quite important for the study of processes occur
ring in a plasma in which no resonant interaction exists (EINAUDI and
SUDAN, 1969) or for example when considering the enhanced diffusion in
a plasma (KADOMTSEV, 1965).

3.6. Relaxation kime for the quasilinear interaction process

We have seen that the quasilinear development of the plasma insta
bility leads to the establishment of a plateau in the distribution
function and to the saturation of the wave amplitude. We are now inte
rested in obtaining the order of magnitude of the time needed for the
appearance of these simultaneous results.

Let us first consider that the "bump in the tail" distribution, in
the resonance region, can be approximately represented by the tangent
taken at the point fQ(va) as indicated in figure 3.3.

We begin by considering the expression (3.35) for the final wave
electrostatic energy. From this equation we see that (figure 3.1) the
wave energy is maximum for waves with phase velocity equal to the aver
age velocity in the resonance region vfl. This maximum energy density is
then given by:

W(",v ) - [ [f0r(“ ,v) " f0r(0,v)1 dV (3.45)

and with the approximation just made it can be written as:

W(«*,v ) - ABa —
-1 (Av)2 (2for.

8 V 3v v„
(3.46)

with Av = W  . u
The maximum value of the diffusion coefficient is then given

(3.29) by:
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Fig. 3.3. - Approximate representation of the "bump in the tail" distri

bution function in the resonance region.

D(»,va) - F < - . V  - -  <^-)v ^ T ~  * 2^>v ^  (3-A7>a a

the last expression being obtained with the help of (3.30) and (3.25).
Then, the minimum time for the quasilinear interaction process to

be finished is

(Av)2 4 „
Tr = D(“ ,va) (y)v (3.48)

a
We see that the quasilinear relaxation time is of the same order

as the inverse of the maximum initial growth rate for the plasma waves.
If we notice that the density of particles which lost energy as a

result of the quasilinear interaction (darkened area in figure 3.3),
6n, can be written as

2 3f
4n ■ no j [f0r(0’v) " f0r(“ 'v)] dv = no 0-49)

v aa
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we can give to (3.48) a more adequate form.
Indeed, if we recall (3.27a) for the growth rate, substituting u/k

by va> and make use of (3.49), it is easy to find that the relaxation
time of quasilinear theory can be given by:

1 1 ,Av.2 "o
Tr * 7  IT {~ } 6"p a n

(3.50)

which is the expression generally found in literature.
If the conditions of applicability of the quasilinear theory are

fulfilled t is large when compared to the oscillation period 2it/u)p.
Finally let us consider the total electrostatic energy density

in the plasma waves, at the end of the quasilinear relaxation process.
From (3.47) and (3.32) we can write:

W(“ ,va)
(Y)v (4v)‘

a
n m vo a

(3.5!)
4 u [1]

An integration in k leads approximately (Ak Av) to

I \  “ Ü  W ( “ *V a )k

3 *Y^v ~_L {£!} --- * n m v 28tt 1 v u) o aa p
(3.52)

In order to compare 0 with the thermal energy density of the
plasma electrons = nQm vT2 ■= nQ kT, we can write (3.52) under the

form

Thus, even at the end of the qualilinear interaction process, the
condition of weak turbulence (3.4) is fulfilled as the total energy of
the final spectrum is rather small (of order y/u) compared with the
thermal energy of the plasma electrons.

In the quasilinear theory, as we have seen, the only nonlinear
effect considered was the reaction of the plasma oscillations in the
zero order velocity distribution function. The average quadratic effects
produced by the rapidly varying part of the distribution function on the
development of the instability lead, as we verified, to the establish
ment of the plateau in the velocity distribution function and to the
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saturation of the amplitude of the plasma waves. These results are,
in the exposed theory, stationary in the sense that they represent the
response of our system when t -► «• .

However, slow plasma processes (which occur in times much longer
than t ) such as collisional diffusion, coupling of different plasma
modes, excitation of cyclotron branches (if a magnetic field is present
in the plasma), etc., will lead to the slow destruction of the quasi-
linear plateau and to the decrease of the wave amplitude. Eventually,
after a sufficiently long time, a Maxwellian distribution function will
be attained with the amplitude of the plasma waves reduced to the noise
level.

3.7. Stationary solution of the quasilinear equations

If we inject a beam of charged particles into a plasma it is well
known that the resulting system becomes generally unstable. However the
resulting beam-plasma interaction has a different character in the two
extreme situations: I) when the beam is dense and almost monoenergetic
the instability frequency and the associated growth rate must be deter
mined with the consideration of the entire beam-plasma system (BRIGGS,
1964); 2) but when the beam has a rather low density and exhibits a re
latively large velocity spread, it can be expected that the result of
its passage through the plasma will be the excitation of the natural
plasma oscillations with a small growth rate (y << u>̂ ) determined by the
beam (SEIDL, 1970). In other words the plasma oscillations are assumed
to satisfy the dispersion equation of the plasma alone and the beam has
no other property than to modify the wave amplitude by resonant inter
action.

The quasilinear theory, as presented here, applies only to the
study of the interaction of the second type of beams with a plasma. In
deed the derivation of the quasilinear equations (3.22) and (3.23) is
only valid if the extension of the resonance region in velocity is
larger than l/kxr (equations 3.41a and 3.48), where x is the quasi
linear relaxation time. Using (3.50) this fundamental condition can be
written as

( - )  »  < lM 3b p (3.53)
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where the beam density is here identified with 6n, the density of
the fraction of the resonant electrons which lose energy in the quasi
linear wave—particle interaction (figure 3.3). So this theory can not
be used to study the interaction of monoenergetic beams with a plasma.

The combined beam-plasma electron velocity distribution function
is assumed to be similar to the one presented in figure 3.1, the so-
called "bump in the tail" distribution. In section 3.3 we analyzed
the homogeneous solution of the quasilinear equations. We are now in
terested in obtaining their stationary solution, as, when treating
problems of injection of beams, it is more adequate to consider the
spatial variation of the beam-plasma interaction. We assume phat we
inject our beam in the z—direction and again we consider a one
dimensional problem. The initial conditions are now associated with
z«0, the coordinate of the plane of injection of the beam into the
assumed infinite plasma. The limit t -*■ « becomes z -*• «■ and all the
derivations made in the last section are valid leading to similar re

sults.
In this case a new system of quasilinear equations can be written

using the obvious substitutions

3f0r , 3f0rat v az and
aw aw— — ■+• V T—at g 3z (3.54)

where v is the group velocity of
g

f  (B w ^ £av —  3v

the plasma waves:

(3.55)

aw
3z•2—  = A W

(3.56)

The consideration of a one—dimensional model is justified as, in
practice, the most unstable modes always travel in the direction of
the beam. The physical picture for the interaction is similar to the
one presented in section 3.3 and so we conclude that when z •* » a
plateau is established on the distribution function in the resonance
region. The essential difference between this spatial treatment and
the former temporal analysis lies in the fact that the quasilinear in
teraction conserves now another quantity. Instead of (3.33) we have
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Ti <v f0r ' li <5± ' v W)] = o (3.57)

from
Thus the final energy density for the plasma waves is computed

-1 v
W(»,v) = W(0,v) +

V ' [f0r("*V,) " f0r(0*v,)1 dv' (3.58)

The plateau is established between vm and VfI which are now given by

V t0 r ^  dv V f0r*0,v  ̂dv (3.59)

which states the conservation of the current density (DRUMMOND, 1964),
So, the height of the plateau is determined by

f0rW 2 2
VM - v

v f0r(0,v) dv (3.60)
m v

together with equations (3.37).
Energetic considerations are identical and we can see that, at

2=«o the energy density of the plasma waves must be much greater than at
z=0, as the beam loses part of its kinetic energy during its passage
through the plasma. Multiplying (3.58) by the group velocity v we can
• g *integrating by parts, arrive at

Cü /vp at2 v g  J [W(»,v) - W(0,v)] +

V VM

I" mv2
+ "o i v —  [f0r(u>) ~ f0r(0'v)] dv * 0 (3.61)

This equation represents the conservation along the space of the total
energy flux.

Comparing (3.58) with (3.35) we verify that, roughly speaking, the
final electrostatic energy density in this case is a factor vL/v erea-

b g
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ter Chan in the homogeneous case. This is due to the fact that kinetic
energy is quickly transported to a certain region by the beam electrons,
while the electrostatic energy is rather slowly taken out from this
region by the plasma waves (small value of the group velocity).

3.8. Recent development of the quasilinear theory

In the last 5 years a considerable number of theoretical publica
tions appeared in literature related with the quasilinear theory. Gene
rally speaking, the authors of these publications intended to make the
use of this theory less restrictive. In the last sections we derived
the quasilinear equations making a large number of assumptions. Among
these ones we remembers 1) The instability frequency is very close to
the electron plasma frequency; 2) There are no external fields acting
on the plasma; 3) The plasma is assumed to be infinite; A) The plasma is
assumed to be homogeneous; 5) The beam has a relatively large velocity
spread; 6) The excited spectrum of oscillations must be rather broad and
consistent with the "random phase approximation"; 7) The spectrum is one
dimensional .

With all these assumptions it is not surprising that the theoreti
cians have been trying to extend the quasilinear theory to cases in
which one or more of these conditions is not fulfilled. In this way the
quasilinear theory has been extended to:

1) the study of other types of instabilities. For example SIZONENKO
et al. (1966) and KOVRISHNYKH (1967) consider the quasilinear relaxation
occurring under the presence of ion-acoustic waves; ROWLANDS et al.
(1966) treat the case of the ion cyclotron instability. VOLK (1967) de
velops the quasilinear theory for the two-stream instability. IVANOV et
al. (1967.b) treat the case of potential drift waves with the electron
temperature exceeding the ion temperature. SHAPIRO et al. (1968) mention
the quasilinear relaxation process occurring due to the excitation of
cyclotron instabilities due to the anomalous Doppler effect (u-kv= —tó ).
RYUTOV (1967) introduces the quasilinear theory of runaway electrons.
ZASLAVSKII et al. (1968) apply the quasilinear approximation to the
study of the stochastic instabilities of trapped particles.

2) The consideration of the presence of a magnetic field in the
plasma has been reported by SHAPIRO et al. (1962), DRUMMOND (196A),
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SIZONENKO et al. (1966), BASS et al. (1966), ROWLANDS et al. (1966) and
SHAPIRO et al. (1968).

3) Semi-infinite plasmas are considered in the works of DRUMMOND
(1964), FAINBERG et al. (1965), IVANOV et al. (1967-a) and CARNEVALE et
al. (1967). Drummond also considers the case in which the plasma is
immersed in a magnetic field and possesses a cylindrical synmetry with
a density gradient perpendicular to the magnetic axis.

4) The quasilinear relaxation of an electron beam in an inhomoge
neous plasma is studied by IVANOV et al. (1967-b), RYUTOV (1970) and
BREIZMAN et al. (1970).

5) The interaction of almost monoenergetic beams with a plasma is
considered by SHAPIRO (1963), FAINBERG et al. (1965,1970) and IVANOV
et al. (1967.a).

6) The consideration of a narrow spectrum of oscillations (almost
monochromatic waves) is made by AL'TSHUL' and KARPMAN (1966).

7) The quasilinear relaxation process under the presence of a
three-dimensional spectrum is studied in detail by BERNSTEIN et al.
(1966).

With all these different new approaches in the quasilinear theory,
a rapid progress is noticed in the understanding of the interaction be
tween charged particles and waves in beam-plasma systems.

From all the referred publications we shall now select and present,
without great details, the most important contributions. These ones
have, in one way or another, influenced the measurements done in our
beam-plasma experiment.

Perhaps, the main disagreement between the exposed theory and our
experimental situation lies in the fact that we inject an almost monoener
getic beam into the plasma. But, following FAINBERG and SHAPIRO (1965),
when a monoenergetic beam is injected into a plasma, it loses very
quickly its monoenergeticity and becomes sufficiently spread out in
velocity space so that'its subsequent interaction with the plasma can
be followed within the framework of the quasilinear theory. So, let us
follow with a little more detail the work of these authors.

Wien an electron beam is almost monoenergetic.it is clear that it
will resonate, as a whole, with any plasma wave which will have a phase
velocity close to the beam initial velocity v^. Thus in the first stage
of its interaction with a plasma the nonlinear effects will appear much
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sooner in the beam than in the plasma. This means that the plasma waves
are rather well described by the linear theory to which the beam only
contributes through its macroscopic parameters (density, average velo
city and temperature).

So, during this first phase of the interaction, the evolution of
the beam—plasma system will be determined by the evolution of the beam.
This one can be followed within a hydrodynamic description based on the
moments of the beam velocity distribution function (equations 2.3 to
2.5). These quantities obey the conservation laws derived from the
kinetic equation for the distribution function. Such an analysis leads
to the conclusion that, in the interaction with the plasma waves, the
beam average velocity decreases slightly and the beam temperature in-

-1 1/3creases. These changes occur in times of the order of u (n /n^)
and so rather small compared with the quasilinear relaxation time t

(expression 3.50).
After this short time the interaction can be followed with the

quasilinear equations. In their paper, Fainberg and Shapiro consider
the non-stationary inhomogeneous solution of the equations (3.22) and
(3.23), with the obvious substitutions

+ v and
3|E, 3 + v

(3.62)

They also assume that at t“0 the electron beam begins to be conti
nuously injected at z=0 into a semi-infinite plasma. The problem is one
dimensional.

Due to the continuous injection of the beam (the same happens in
our experiment) the excitation of the plasma waves takes place conti
nuously as new electrons are injected in the plasma. If the wave group
velocity is much smaller than the initial beam velocity, as expected
in the case of the excitation of the electron plasma instability, the
energy lost by the beam during the quasilinear relaxation process ac
cumulates in a transition layer near to the plasma boundary.

Fainberg and Shapiro consider from now on two regions in the
plasma: - the region of large z (z '> v^t .̂) attained by the beam elec
trons in a time large compared with the relaxation time, and in which
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the boundary effects are unimportant; - and the region of small z
(z 4 Vjt ) in which the distribution of the electric field intensity
is highly inhomogeneous. In the region of large z nothing new is ob
tained and the results of the presented quasilincar theory are applica
ble.

In the region of small z the change in the total wave energy is
equal to the energy transported by the beam into this region. Thus the
wave energy, during the first stages of the quasilinear interaction,
increases with time due to the continuous injection of the beam. There
fore, as the field amplitude increases, the relaxation of the beam
becomes more rapid and the relaxation length is reduced. In this way
a high intensity layer is formed which is seen to be displaced, in the
course of time, towards the plasma boundary.

An approximate expression for the relaxation length is given by
-t/T -t/t

zr(t) " vbTr e + vgTr [l " e 1 (3.63)

The minimum value for this relaxation length is then attained for
t““ and is

zr(t— ) - vgxr (3.64)

The maximum wave energy density is reached at this distance and
is given by

W(z )
it n m vo

3 v

r t—  U V [I]p g v ’ [f0r(o,) * f0r(0'v,)1 dv’ (3.65)

This value coincides with the one given by expression (3.58) ob
tained for the stationary case.

At z - zr(t« ») the quasilinear plateau is established in the dis
tribution function and the instability amplitude attains its maximum
value. For larger values of •z, and for times of the order of the relax
ation time, the field amplitude must decrease,as the beam does not carry
anymore any transferrable kinetic energy (9f /iv = 0) and the waves
have not yet had time to transport to these large distances the asso
ciated energy, due to the smallness of their group velocity.

Related with the first stage of the beam-plasma interaction,
namely the loss of the monoenergeticity of the bèam, another layer of
intense fields is predicted by Fainberg and Shapiro. This one is anyhow



60

less intense and it appears naturally closer to the plasma boundary.
In conclusion, it is proved that the relaxation process of a monoener-
getic beam in a plasma leads to the appearance of two high intensity
field layers in the plasma. These layers are expected to be formed in
a time of the order of the quasilinear relaxation time.

Another important publication was written by IVANOV and RUDAKOV
(1967~a). These authors consider the evolution of the quasilinear re
laxation process towards equilibrium. They investigate the temporal
variation of the distribution function of a weak beam, satisfying the
quasilinear requirements, which is injected into a plasma. The beam
initial distribution function is shown in fig. 3.4. As we see,the beam
initial velocity is assumed to be much larger than the thermal velo
city of the plasma electrons. Also a region exists in velocity space
where f is zero,o

The quasilinear theory is applied by these authors who start the
study of the relaxation of this beam with equations (3.22) and (3.23).
The frequency of the instability is assumed to be the electron plasma
frequency and the problem is one-dimensional.

Dimensionless variables and functions are introduced according
to: n

F • i —— v, f t “ to -^ t (3.66)
np b p nb

w
W. uk P

3n m vP
V v

With these new symbols the quasilinear equations become

3F
3t

_3 _
3V w**» (3.67)

3v ..2 9F /o—  - w V  w  (3.68)

where F is normalized to:

F dV - tt (3.69)

2 3FSubstituting wV -r— from (3.68) into (3.67) and integrating in tdV
we get
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F (w - w ) (3.70)

F̂ j and Wg represent the distribution function and the wave energy
at t * 0. Using (3.70) we can eliminate F from (3.68) and obtain an
equation which only contains w (V,t).

- , 3^(w-w_) ~ 3F_3w „2 0 . 2 __0_ = V w  -----=—  + V w -rrr- (3.71)3t „„2 3V

In the region separating, in velocity space, the zones occupied by
the beam and the plasma, F_ is zero and so 3Fq /3V is also zero. Then
equation (3.71) is, for that region, written as

3w
3x

2 3 (ww0)
V w ...._— (3.72)

Equation (3.72) remotely resembles the equation describing the pro
pagation of heat in space when the thermal conductivity is a power func
tion of the amount of heat. By similarity with this type of heat propa-

Fig. 2.4. -  Evolution of the beam velocity distribution function accor

ding to Ivanov and Rudakov.



gat ion along space, the authors state that the beam distribution func
tion will move in velocity space as a "wave" with a steep front, as in
dicated in figure 3.4. It is also stated that the diffusion of the beam
electrons in velocity space will depend on the fine details of the
distribution function only at the very beginning of the interaction
process, when the distribution function begins to flatten. For the later
phases of the interaction,the evolution of the beam distribution func
tion will depend only on the total beam initial energy density. This is
based on the fact that in the similar problem of the heat conduction,
the front of the thermal wave at large distances from an explosion does
not depend on the temporal history of the explosion but rather on the
amount of heat released in it.

A very important result of this self-similar study is thus the
fact that it is predicted that the beam velocity distribution function
will always show a plateau during the course of the interaction process.
The height of this plateau will depend on time, decreasing while the
plateau extends towards lower velocities. The quasilinear relaxation
process will end when the front of the beam velocity distribution func
tion will touch the main plasma distribution function.

An expression is derived for the time needed for the quasilinear
relaxation of the beam to occur in the velocity interval (v^-Av, v, ).
This one is

J_ _1_ (Av)^
it cj n. 2p b vb

i log W(t)
W(0) i log W(t)

W(0) (3.73)

where W(t) and W(0) are respectively the final and the initial wave
energy density.

If the initial noise in the plasma was of thermal origin, the loga
rithm in equation (3.73) can be a large number. So this type of relaxa
tion is seen to be much slower than the normal quasilinear relaxation
process. Indeed, the time given in (3.73) can be, under typical experi
mental conditions, an order of magnitude larger than the quasilinear
relaxation time (equation 3.50). From (3.73) we can see that the velo
city of the wave front is determined by the wave growth rate.

The physical picture for this type of interaction, given by Iva
nov and Rudakov, is the following: - After a time of the order of t
the "wave" front has traversed a path in velocity space approximately
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equal to 2Av/log{W(Tr)/W(0)^ and a plateau is formed on the distribu-
tion function behind the "wave" front. At the same time supra-thermal
noise is excited in the same resonance velocity interval. If the noise
level ahead of the front was null this situation would be definitive,
and the relaxation process was then finished. But the existence of
thermal noise near to the "wave" front continues the interaction pro
cess until that 3f/3v becomes negative or zero for all values of the
velocity. This only happens when the two distribution functions (beam
and plasma) are joined together (case 3 of figure 3.3), finishing the
quasilinear relaxation of the beam.

This type of relaxation is then btated by the authors to be reaso
nably applicable to a broad class of initial beam distribution functions,
even when there is no separation in velocity space between the beam and
the plasma. The generalization of this theory to other cases is demons
trated to be valid if the plasma waves will firstly grow in the vicini
ty of the initial beam velocity, where the linear growth rate is maxi
mum. In the other velocity regions it is expected that the noise will
keep its initial thermal character until the "wave" front will reach
these values of the velocity. If the initial growth rates are found to
be significative in the entire velocity space, then the relaxation
process must be conventional and characterized by a relaxation time of
the order of t .

Ivanov and Rudakov also consider the difficulty which arises from
the existence of the steep front on the "wave" in velocity space because,
for not too small ratios n, /n , the velocity derivative of the beamD p
distribution function at the "wave" front can become very large. Then,
the condition of adiabaticity (v «  u ) can be violated, as well asP
condition (3.41.a).

This type of relaxation of the beam distribution function is then
treated in the stationary approximation (spatial variation of the in
teraction) with similar results. The distance z at which the width of
the beam velocity distribution function becomes equal to Av is given by

W(z)v tg 1 1 "p (Av)2
2v (i) n,P b v. 2“  vg 108 Ü M (3.74)

where v is naturally the wave group velocity.
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To finish this chapter we should shortly refer the work of SHAPIRO
and SHEVCHENKO (1968). In this paper it is stated that, when a strong
magnetic field is present in a plasma, the quasilinear plateau which
results from the excitation of Cerenkov instabilities (u - kv) is un—
stable against the excitation of oscillations due to the anomalous
Doppler effect (u - kv * - <»>ce) •

When ui »  ai the quasilinear relaxation of the electron beamce p
takes place in two phases. The first one leads to the growth of the
Cerenkov instability up to the saturation level and to the concomitant
establishment of the plateau in the distribution function. The second
and slower phase of the interaction leads to the excitation of the
anomalous Doppler effect instability.

As a result the resonant electrons diffuse along the lines

2
V1

2+ vz

On these
z

lines we have

cons t. (3.75)

dv̂
dv

u. /kK z
kzvi

< 0 (3.76)
V1

and so we see that the diffusion is accompanied by an increase of the
transverse energy in the beam and by a decrease of its longitudinal
energy. This leads to an inclination of the plateau and the axial distri
bution function becomes everywhere a decreasing function of the velocity.

When u 00 these effects are expected to be negligible. Indeed
it is predicted that the time in which this second phase of the beam
relaxation takes place will be an increasing function of ace/up*

The theoretical statement that, under the excitation of instabili
ties brought about by the anomalous Doppler effect, the energy lost by
the beam goes over essentially into the increase of the beam transverse
temperature was already advanced by these authors in (1962).
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CHAPTER IV

NONLINEAR EFFECTS OCCURRING DURING THE DEVELOPMENT OF BEAM-PLASMA

INSTABILITIES

4.1. Experimental set-up

Our beam-plasma experiment, schematically drawn in figure 4.1, was
described in detail in former publications (VERMEER et al., 1966; VER
MEER, 1968). Essentially it consists of a cylindrical interaction
chamber (0 - 8 cm) with a length variable from 25 to 80 cm, where the
background pressure amounts to 3 « 10~7 Torr. The interaction chamber
is filled with Helium at pressures of the order of 10 Torr. The axial
magnetic field is constant along the experimental tube (within 1Z) and
can be varied between 0.01 and 0.1 Wb m-2. An electron gun continuously
injects a beam of 1500 eV and current variable up to 20 mA. In general
the beam has a diameter of a few mm. The injection is parallel to the
magnetic field. The beam, after interacting with its own created plasma,

Window

E nrgy  a m ty a r

pf°bt-iL_ — ^

Fig. 4.1 - Schematic drcuing of the experimental set-up.



66

is collected on the external wall of an electrostatic energy analyser
which permits the measurement of velocity distribution functions. An
electromagnetic resonant cavity for density measurements and several
probes are also available in the experiment.

For a given set of the fixed external parameters (beam potential
V^, beam current i, , Helium pressure p, magnetic field B and interaction
length L), the state of the beam-plasma system can be reasonably des
cribed if we are able to measure some important internal parameters.
Among these ones we are specially interested in the plasma density
n^, the plasma temperature T , the beam energy spread and the excited
spectrum of oscillations arising from the beam-plasma instabilities.
Spatial variation of these quantities provide extra information about
the state of the beam-plasma system. Indeed, all the internal para
meters depend on the axial distance from the electron gun z, as well
as on the radius r, at which they are measured (LEVITSK1I et al.,
1967.a).

A brief summary of the diagnostic methods is given in the follow
ing paragraphs.

4.2. Conventional diagnostic methods

4.2.1. Measurements o f  the plasma density

Plasma densities were determined with the conventional method of
measuring the shift in the resonance frequency of a microwave electro
magnetic resonant cavity (BUCHSBAUM et al., I960; 1962). For our mea
surements we used (fig. 4.1) an 8 cm cylindrical cavity which works in
the TMqjq mode at 3460 MHz. This cavity is placed directly after the
electron gun. A cylindrical hollow quartz tube (0 3 0.8 cm) confines
the plasma near to the cavity axis. For the conversion of frequency

9 —3 — 1shifts into densities we used the constant value of 8 x 10 cm MHz ,
which results from considering the plasma to have, inside the cavity,
a diameter of 0.35 cm and a homogeneous density profile. As these as
sumptions constitute a rather rough approximation, absolute values of
the plasma density can not be obtained. Thus, the experimental results
are only to be considered in a relative way. However, we believe that
they agree in order of magnitude with the real values of the plasma
density.
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4.2.2. Analysis of the beam-plasma waves

The beam-plasma instabilities are studied analysing the r.f. sig
nals taken out from the plasma by Langmuir probes. The fundamental des
cription of these instabilities is based on the analysis of the excited
frequency spectrum. Frequency spectra are measured on a "Polarad" Spec
trum analyser which covers a band extending from 10 to 4000 MHz. These
measurements, which are time integrated, present the frequency dependen
ce of the amplitude of the beam-plasma waves. For a given instability,
the time dependence of the amplitude of its electric field can be mea
sured by selecting, with the use of an adequate filter, only this insta
bility from the total signal captured by the probe and using a fast de
tection system. This technique reveals the existence of bursts and pro
vides information about their duration and growth as well as decay
rates. The only disadvantage of this technique is the loss of the exact
value of the frequency of the bursts. However, the use of a "Tektronix"
sampling oscilloscope permits the observation of the temporal variation
of the instability field down to the nanosecond. Bursts with frequencies
as high as 1000 MHz can be clearly recorded giving a complete time de
finition (figure 5.1.c). The total integrated microwave power received
by the probe can also be measured on a "Hewlett-Packard Microwave
Power Meter (bolometer) in the entire band extending from 10 to 10.000
MHz. This amount of power is a measure for the strength of the beam-
plasma interaction.

4.2.3. Measurements of the beam axial velocity distribution function

The beam velocity distribution functions are measured with the
use of an electrostatic energy analyser (BEREZIN et al., 1964; ETIE-
VANT, 1964). Several improvements in the design of our analyser lead to
the possibility of measuring both the axial and the transverse energy
spread in the beam. In this paragraph we will be concerned only with
the measurement of the axial distribution function. The problem of the
transverse energy of the beam electrons is treated in chapter VII.

Figure 4.2 presents a scheme of our electrostatic analyser, which,
as we remember, terminates the interaction chamber. The electron beam
is therefore collected on the analyser's external wall, which has a
very small entrance hole (0 - 0.2 mm). This wall is kept at earth po-
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tential. As the beam diameter, at the end of the interaction chamber,
is of the order of 3 - 10 mm, we see that only a very small fraction of
the beam is analysed. The first internal electrode (plate 2) is kept at
a positive potential (100 V) to reflect the plasma ions. The second
electrode (plate 3) receives the variable retarding potential (0 to
-2.000 V) necessary to determine the beam velocity spread. Plate 4 can
eventually be used for an extra velocity modulation of the parallel
electron velocity but it is in general kept on earth during these mea
surements. Electrons which were able to pass the analyser's potential
barrier are then collected on the assembly of plates 5 and 6. These
two collectors have adequate positive potentials to avoid the effects
of the secondary electron emission in the measured currents.

As a complementary instrument we used a "Tektronix" oscilloscope.
Its horizontal amplifier operates with a small fraction of the retar
ding potential in the analyser, in order to create a linear energy
scale. This retarding potential is continuously varied (50 Hz) from
0 to -2.000 V; The vertical amplifier of the oscilloscope detects the
current collected by the two plates (5 and 6) of the analyser through
a load of 1 k& which permits a fast analysis (RC better than 100 ns)
with sufficiently large amplitude signals. In this way we obtain the
so-called energy analyser characteristic, that is to say, the plot of
the collected current j as a function of the retarding potential V.

In a measurement of the beam distribution function with the help
of an electrostatic energy analyser we obtain the current density of

oelectrons with an axial energy equal or greater than U = eV = J mv ,
with V being the applied retarding potential on plate 3 of the analyser*
This collected current density, measured at a distance r from the beam
axis, is given by

where nQ(r) is the total electron density in the beam-plasma system.
The distribution function, which is, as usual, normalized to unity, is
then determined by differentiation with respect to v:

j(v,r) - no(r) e f(v',r) v'dv' (4.1)
v

m dj(v,r)
n-(r)e mv dv n (r)e

m dj(U.r)
dUf(v,r) (4.2)
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Fig. 4.2. -  Scheme of the electrostatic energy analyser.

So, the beam velocity distribution function is directly obtainable from
the energy analyser characteristic j = j(U,r) by differentiation with
respect to the energy.

4.3. Dispersion equation for the beam-plasma waves under the presence

of a magnetic field

In the previous chapters we only considered the excitation of the
electron plasma instability resulting from the Cerenkov effect. But,
when a finite magnetic field is present in the plasma, a new type of
resonance appears, namely the cyclotron resonance. This one usually
leads to the excitation of both the ion cyclotron and the electron cy
clotron instabilities. Thus, we need to consider a dispersion equation,
more general than (2.40), which will describe the linear stage of the
electron plasma as well as the electron cyclotron instabilities. For
cylindrical geometry, which is the most adequate to our experimental
situation, the dispersion equation for the case of a cold beam-plasma
system is given by (ETIEVANT, 1964; BRIGGS, 1964; HOPMAN, 1969):

p2 + k2 D(w,k) - 0 (4.3)
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where D(u,k) is

M
1 - I ----E2—

a (w-kv y
D(w,k)--------------- 2£2_------  (4.4)

fa)
I -  z --------------E£L______

a [(io-kv ) -u 2]oza ca

In this expression the summation is over all species of charged par
ticles in the beam-plasma system, v is the zero order axial velocity
and <i>c/2ir is the cyclotron frequency, u / 2 u is, as usual, the plasma
frequency. In equation (A.3) p is the transverse wave number which is
a function of the geometry of the beam-plasma system. If a is the ra
dius of the plasma cylinder, then p is determined by

2

p m J /a ( r c\r nm
where J is the n-th zero of the Bessel function J (p r).nm m K

If we neglect the influence of the plasma ions on the electron
oscillations, then we can consider that in our system we have only two
types of particles, namely the plasma electrons, with a zero average
velocity, and the beam electrons with an average velocity equal to v ,
directed along z, the direction of the magnetic field lines. In this
case equation (A.3) can be written as

P2 { 1
2toP

2 2
to “ (1)ce

} + K(w—kvbr ■toce

2

to

2to ,Pb
(to-kvb)2

- 0

(A.6)

This is the wellknown dispersion equation for a cold beam-plasma sys
tem, in a magnetic field. We notice that if the transverse dimensions
of the plasma are infinite (p=0) then the longitudinal oscillations
of the beam-plasma system are characterized by the formerly derived
dispersion equation (2.44). Also, if there is no magnetic field in the
plasma (w *0), then, even for finite transverse dimensions of the
system, the non-trivial solution of (4.6) is given by (2.44).

Equation (4.6) can be numerically solved, giving either u as a
function of the real variable k or conversely the complex, value of k
for real u). In figure 4.3 we present a solution of this equation
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(dispersion diagram) for a set of parameters similar to the ones we
used in some measurements. This dispersion diagram has, at least, the
great advantage of permitting the identification of the most important
instability regions in the (u),k) plane. In figure 4.3 we can see that
the beam-plasma system shows two resonances, respectively for the elec
tron plasma frequency and for the electron cyclotron frequency (u ■

f\ C ®  n  I
eB/m),and a cutoff for the upper hybrid frequency, f , ■ (f L + f .uh pe ce

Throughout this work we will call to instabilities appearing with
frequencies below f , plasma instabilities, Instabilities above fP “ ce
are cal l e d  c y c l o t r o n  instabi l i t i e s .

Instabilities are also frequently named according to the mechanism
responsible for their excitation. So we have: 1- Cerenkov instabilities
(regions 1 and 4 in figure 4.3), characterized by the fact that the beam
particles feel an almost DC electric field and can in this way interact
effectively with the longitudinal plasma waves (u-kv =0); 2- Anomalous

k (cm*')

1200

Fig. 4.3. - Dispersion characteristics of a cold beam-plasma system.

Parameters are: ƒ  ̂  - 300 MHz; f
MHz; = 2.5 x 1(P cm 8 ;̂ p

present the real part of the frequency as well as of the

wave number. Dot—dash lines represent the imaginary
parts of f and k.

pe 600 MHz; fog = 900

7 2 cm . Dashed lines re-
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Doppler effect instabilities (regions 2 and 3) characterized by the fact
that, during their Larmor gyrations around the magnetic lines, the beam
electrons will feel the transverse electric field almost in phase so
that a considerable gain of transverse energy can be achieved (w-kv = “»ce>•
3- Normal Doppler effect instabilities (u-kv * u>ce) are generally not
excited in normal beam-plasma systems as region 6 represents a situation
of heavy damping and region 7 leads to an instability which can only be
excited at the cost of a decrease in the transverse energy of the beam.
If initially the beam possesses a rather high amount of transverse
energy, then the excitation of this last instability becomes possible
and, as a result, the beam will loose part of its transverse energy and
at the same time will gain axial energy, as the instability phase veloci-
ty is negative (SHAPIRO et al., 1962)#

A look at figure 4.3 indicates that in our beam-plasma system we
expect to have mainly instabilities brought about by the Cerenkov effect,
to which the theory presented in chapters 2 and 3 has been derived. These
Cerenkov instabilities have indeed the greatest growth rates (imaginary
part of the complex frequency)(KHARCHENKO et al., 1964). Also important
effects are expected to be found due to the excitation of Anomalous
Doppler effect instabilities especially in what concerns the transverse
interaction between particles and waves (APEL, 1969.a; SEIDL, 1970).

4.4. General considerations

As we have seen, the theory presented in chapters 2 and 3, valid
for the development of Cerenkov instabilities, predicts a number of
effects to appear in a beam-plasma system. First of all, the linear
theory, exposed in chapter 2 and section 4.3, predicts that beam-plasma
systems are usually unstable. This means that we should expect to find,
in our experiment, growing waves or instabilities. The amplitude of
these waves is therefore expected to increase exponentially in time (ab
solute instabilities) or in space (convective instabilities). However,
the quasilinear theory predicts the saturation of the instability am
plitude at a rather low level (weak turbulence). This saturation of
the wave amplitude is expected to be accompanied by an increase of the
energy spread in the beam and by an enlargement of the excited spectrum
of oscillations due to the increase in the extension of the resonance
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velocity region (figures 3.1 and 3.4). We have also learned that the
quasilinear relaxation process can be followed in space if we inject
a beam through a plasma (sections 3.7 and 3.8). Further it was predic
ted that the relaxation of the beam would take place in a time large
compared to the oscillation period (and so in a distance large compared
to the wavelength) and this fact indicates that we should be able to
follow these processes experimentally in a beam-plasma experiment.

4.5. Experimental results

4.5.1. Dependence of the beam-plasna internal parameters on the inter-_

action length

We will begin this study by considering the spatial variation of
the experimental parameters which, partially characterize a beam-plasma
interaction. We will keep throughout this work the beam energy always
equal to U. * 1500 eV. The main external parameters will then be the
beam current i, , the Helium pressure p, the magnetic field B and theb
interaction length L.

In the first experimental situation we will keep constant the beam
parameters (V, = 1500 V, i, = 16 mA) as well as the Helium pressure

-4 " . . .(p “ 4.8 x 10 Torr. Thus we are interested in the spatial evolution
of the interaction between a given beam and the plasma that it creates
while crossing the same Helium atmosphere, with the magnetic field as
a parameter. For a given value of the magnetic field, the variation of
the interaction length permits to study in a certain way the develop
ment of the beam-plasma instabilities. The main limitation to a good
interpretation of the results is the change in the plasma characteris
tics (density and temperature) due to the variation of L. But this is
an intrinsic limitation of beam-created plasmas, as the variation of
any other experimental parameter will lead to a modification of the
plasma. Another limitation could arise due to boundary effects, name
ly the reflection of the beam-plasma waves by the energy analyser wall
which terminates the interaction chamber. However, as no resonant in
teraction can take place for the reflected wave, we expect that,
exception made for the immediate viccinity of the collector, the boun
dary effects will not lead to any new phenomena. Further it has been
experimentally verified that the reflected wave is strongly damped
(HOPMAN et al., 1969; LEVITSKII et al., 1967.b).



The beam-plasma system is characterized, for every set of values of
L and B, by measurements of the plasma density, the excited spectrum of
oscillations, the radiated power, and by the beam energy spread. These
experimental quantities were determined with the formerly referred diag
nostic methods.

Figures 4.4 and 4.5 present, as a function of the interaction
length, the excited spectrum of oscillations, the energy spread in the
beam and the plasma density, measured respectively for B = 0.0325 and
B- 0.0540 Wb m“2. We define in this chapter the beam energy spread by
the width of the energy range in which the collected current due to the
beam electrons decreases from 952 to 5Z of its maximum value.

In figures 4.4 and 4.5 it can be seen that the behaviour of the
beam-plasma system is essentially different for low and high magnetic
fields. In the case of low magnetic field (figure 4.4) there is a sudden
jump in the beam-plasma characteristics, at a certain value of the in
teraction length, representing the so-called ist-2nd regime transition
(SMULLIN et al., 1962; KHARCHENKO et al., 1964; KOGAN et al., 1968).
At high magnetic fields the transition of regimes in the plasma takes
place gradually (figure 4.5). By first regime in a beam-plasma experi
ment we mean the states in which the plasma is mainly created by the
inelastic collisions between the beam electrons and the neutral atoms.
These states usually represent weak beam-plasma interactions and they
are characterized by thin and rather quiescent plasma columns with dia
meters of the order of the beam diameter. The transition 1 -2 regime
is defined by the onset of another ionization process in which the
neutral atoms are ionized by the plasma electrons. These ones were
heated by the beam-plasma instabilities. This last ionization process
is usually referred to as high frequency ionization. Second regime
states are characterized by the fact that the dominant ionization mecha
nism is the high frequency one. These states have in general high densi
ties, compared with the first regime ones.

Returning to figure 4.4 we can observe that, until L « 43 cm, only
the cyclotron instability is present, the density does not exhibit sig
nificant fluctuations and the beam has a narrow energy spread.

Between L - 43 and L - 48 cm the only new feature is the appear-
ence of the plasma instability accompanied by a small increase in the
beam energy spread and the onset of density fluctuations. After the
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transition (L = 49 cm) the plasma density has a much higher value due
to the high frequency ionization of the Helium (HOPMAN et al., 1968),
the beam is almost completely spread out in energy and the spectrum at'
tains its maximum width, with a plasma peak extending from 0 to 1000
MHz. The cyclotron peak also jumps to higher frequencies in agreement
with the fact that it occurs near the upper hybrid frequency. For the
next 10 cm the state of the system remains the same. After L = 60 cm
we notice a decrease in density, in the beam energy spread, and in the
width of the spectrum.

dCflcntf

20001

1000-

L(cm ) 70

Fig. 4.4. -  Variation of the plasma density, axial energy spread and

excited spectrum of oscillation with the interaction length

for a case of low magnetic field. Conditions: V. -  1500 Vs
-4 —2

i£ =  16 mA; p = 4.8 * 10 Torr; B = 0.0325 Wb nf .
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Similarly, figure 4.5 presents the results for a case of high mag
netic field. Again the system only shows the cyclotron instability for
small L. The plasma instability appears sooner (in L) and is followed at
L - 46 cm by its second harmonic. At L - 53 cm these two plasma peaks
join together and we notice an increase in the plasma density and the
steepest increase in the beam energy spread. For still larger values of
L the beam-plasma interaction continues to gain in strength, opposite

to the case of low B.
In figure 4.6 we made a plot of the total time integrated radiated

(MHz)

Hem) 70

Fig. 4.6. - Variation of the plasma density, axial energy spread and
excited spectrum of oscillations with L, for a case of high

magnetic field. Conditions: = 1500 V; ib = 16 mA;
p = 4.8 * 10~* Torr; B - 0.0540 Wb m .
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power collected by an axially movable pin probe, as a function of the
distance z from the electron gun, for different values of the interact
ion length. In the lower part of this figure we can see that the radia
ted power, for the case of low magnetic field, remains practically con
stant along the experimental tube. The amount of power was independent
of the collector position. In the upper part of figure 4.6 we have the-2 .results obtained for B= 0.0540 Wb m , and we notice that the power be-

PldBm)

L= 60cm 64 68 72 76

-184--- r ....... 1------- 1------- 1------- 1------- r-
30 40 50 60 70 80

z (cm)

P(dBm)

z (cm)

Fig. 4.6. - Plot of the total radiated high frequency power as a func
tion of the distance from the electron gun at which it is

measured, for different values of L and under the conditions
presented in figures 4.4 and 4.5._p — 9
(a) - B= 0.0540 Wb m ; (b) - B = 0.0325 Wb m .
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gins to increase exponentially with z, attains a maximum and then de
creases with z (SHASHURIN, 1967; ARTEMOV et al., 1968; MALMBERG et »1.,
1969). The maximum power is measured at z - 53 cm, the place occupied
by the collector when, in the study of the spectrum as a function of L,
the two plasma peaks merged. To analyse if this region of maximum power
was eventually related with the boundaries of the system, we varied L
and repeated the power measurement. The conclusion was clear: -For
z < 36 cm the radiated power is completely independent of the collec
tor position. Of course by shortening the interaction length we expect
a decrease of the strength of the interaction, and so a decrease in
the radiated power. However, the region of maximum plasma radiation
was found at z - 52 - 53 cm for every L. We found, in the first half
of the experimental tube, an exponential growth in space of the total
radiated power (convective instability). The further decrease of the
power is believed to be due to phase mixing and incoherence (APEL,
1969.a) although nonlinear transformation of waves can also play an
important role (LEVITSKII et al., 1967.c).

It was also verified that the spectrum corresponding to the radi
ated power for a given value of L only varies in amplitude with z,
but maintains the same shape.

Similar analysis made for other values of B, namely B - 0.0215,
0.0430, 0.0650 Wb/m-2, lead to the following conclusions: -

(a) - Beam energy spread - With exception of the case of B *
0.0215 Wb/m"2, in which the beam was not able to spread to energies
outside of the interval 1200 - 1700 eV, all the other cases lead to
second regimes in which the minimum energy of the beam particles is of
the order of 100 - 200 eV and the maximum energy lies in the range
1800 - 2000 eV. The lSt-2nd regime transition takes place abruptly
for B < 0.0430 Wb/m2 and becomes more and more gradual with the increase
in the magnetic field.

Independent of the magnetic field we verified that the beam velo
city distribution function (equation 4.2) suffers always the same type
of evolution. In the first regime (figure 4.7.a) the energy spread is
small, and there are no significant fluctuations. At the 1 -2
regime transition (figures 4.7.b and 5.6.a) there are strong fluctua
tions in the energy analyser characteristics. These fluctuations are



79

Fig. 4.7. - Some examples of energy analyser characteristics represen

ting the evolution of the beam velocity distribution func

tion as a function of the interaction strength. Conditions:

Vb = 1500 V; p = 4.8 x 10~4 Torr.

a) i-L -  10 mA; L = 46 cm; B -  0.0540 Wb m  2

b) i. — 10 mA; L = 73 cm; B — 0.0405 Wb m

c) i-L -  12 mA; L = 73 cm; B - 0.0405 Wb m 2

d) it. = 16 mA; L = 73 cm; B = 0.0270 Wb m~2

Horizontal scale: 200 eV/cm. Definition of the axes can be

seen in figure 5.6.

not only related with density variations but they are also due to the
existence of different states of energy spread in the beam, which appear
in correlation with the different beam-plasma instabilities, as we shall
see in chapter 5<

Going into a moderate second regime (figure 4.7.c) the fluctuations
disappear and the energy spread is large. Deep second regimes are charac
terized by an almost complete relaxation of the beam (figure 4.7.d) with
velocity distribution functions which have a "plateau-like" character
in the energy range between 200 and 1800 eV.
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ISiiSi

■ i - 1

Fig. 4.8. - Some examples of typical spectra of oscillations. Horizontal

scale: ZOO MHz/cm. Frequency increases from right to left

between 0 and 2000 MHz. Conditions: V. = 1500 Vi p =

4.8 x 10 4 Torr.
a) B = 0.0215 Wb m ; i. = 16 mA; L = 42 cm

b) B = 0.0435 Wb m~2; i. = 16 mA; L = 40 cm
-2 bc) B = 0.0325 Wb m ; i. - 16 mA; L = 68 cm
-2 bd) B = 0.0435 Wb m ; =  16 mA; L = 68 cm

(b) - Excited spectrum - For all values of B, the cyclotron insta
bility is the only one present for small L. Figure A.8.a presents a
typical spectrum of a first regime state with low B. This spectrum shows
a large amplitude cyclotron peak. For the case of B ■ 0.0215 Wb m we
noticed, before the appearance of the plasma instability, the presence
of the second harmonic cyclotron instability. For this low value of the
magnetic field the plasma instability is not observed in the first re-

-2 . . . .gime of the plasma. The case of B * 0.0A30 Wb m is qualitatively simi
lar to the one presented in figure A.A. For the highest magnetic field

_2(B = 0.0650 Wb m ) we observed, for A6 L < 5A cm, besides the plasma
instability the presence of its second and third harmonics. These three
plasma instabilities join together at L = 58 cm and so they constitute
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a single broad peak extending from 0 to 1300 MHz.
Figure 4.8.b shows a first regime spectrum for a high value of the

magnetic field. We verify that in this case the plasma instability is
stronger than the cyclotron one.

Figures 4.8.C and 4.8.d represent second regime spectra. These
ones, as we see, are rather similar. We notice the existence of a broad
plasma peak with high amplitude and an equally strong cyclotron peak.

-2 , .(c) - Radiated power - For B _< 0.0430 Wb m we verified that the
power remains constant along the experimental tube. For the higher
values of B we always observed an exponential increase in space, and
the appearance of a radiation maximum in the neighbourhood of the coor
dinate z corresponding to the value of L at which the different harmo
nics of the plasma instability merge into a single broad peak. After
reaching this maximum we did not observe a saturation of the emitted
power but rather an exponential decay in space.

At a fixed point z we verified, varying the beam current, that the
maximum radiated power was always associated with the lst-2n regime
transition (APEL, 1969.b). Going deeper into a second regime results in
the decrease of the plasma radiation. For the larger magnetic fields
the cyclotron instability has a small amplitude and it hardly contri
butes to the measured power.

4.5.2. Dependence of the beam-plasma internal parameters on the beam

current and on the Helium pressure

In this section we intend to analyse shortly the development of
the beam-plasma interaction for a given value of the interaction length
(1* = 73 cm) as a function of either the beam current or the neutral
gas pressure, keeping the magnetic field as a parameter.

We verified that the beam-plasma system passes by the same phases
if we increase the interaction strength in no matter what way. Thus,
the succession of states from a weak first regime to a deep second re
gime can be simulated by keeping two of the following three parameters
(ifct P. L) constant and increasing the value of the other one (SHUSTIN
et al., 1969).

As nothing new is obtained, we present only the results correspon-
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2000 H

1500-Ui

B= 00325 Wb m-2
B= 00540 Wb m-2
B= 00755 Wb m-J

Fig. 4.9. -  Variation of the beam energy spread as a function of i, for

several values of the magnetic field. and Um represent

respectively the maximum and minimum energy obtained by the

beam electrons according to the definitions introduced in

section 4.5.1. Conditions: V. = 1500 V, p = 4.8 * 10 * Torr,

L = 73 cm.

ding Co the analysis of the axial velocity distribution function of both
the beam and the plasma electrons. For the beam energy spread we used
again the definition introduced in section 4.5.1. Figure 4.9 presents
the results obtained for the beam energy spread as a function of the

. - 4beamjeurrent for a given value of the Helium pressure (p ■ 4.8 x 10
Torr) and three values of the magnetic field. Figure 4.10 presents a
similar measurement, but now as a function of the Helium pressure for a
given value of the beam current (i. = 12 mA). In these two figure we can
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• B=0 0325 Wbm'2
o B=00540 Wbm"2
♦ B= 0.0755 Wbm'2

X) 1
p 110 ‘ Torr)

Fig. 4.10. - Variation of the beam energy spread as a function of the

Helium pressure for several values of the magnetic field.

Conditions: \'b = 1500 V, i. = 12 mA, L = 73 cm.

again verify that a low value of the magnetic field leads to an abrupt
I -2 regime transition and that higher values of B lead to a gradual
passage from the first to the second regime. Also we can observe that
the higher the magnetic field the sooner the transition of regime in
the plasma is attained.

The passage from the first regime to a deep second regime is also
characterized by the enlargement of the excited spectrum of oscilla—
tions. The variation in the spectral appearance is for all practical
purposes identical to the one observed in the study of the development
of the beam-plasma interaction as a function of L. The same happens
with the radiated power which is again found to be rather peaked at
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the parameter regions which lead to the transition of regime in the
plasma. The plasma density increases again when the beam-plasma system
enters the second regime due to the high frequency ionization, and this
increase is smooth for the higher values of B and abrupt for the lower
value of B. In the latter case we observe that the density increases
suddenly with a factor 4, as in figure 4.4.

A look at figures 4.7.c and 4.7.d permits to verify that the plas
ma electrons can also be detected in the energy analyser (SHUSTIN et al.
1969). Figure 4.11 presents, with an enlarged horizontal scale, the
contribution to the collected current arising from the plasma electrons.
We verified that these plots of the collected current against the re
tarding potential in the analyser have an exponential character. As the
velocity distribution function is obtained by differentiation with
respect to the energy (expression 4.2) we see that the temperature of
the plasma electrons can easily be obtained from these plots. Table no.
4.1 contains the numerical results.

+100-— V 0 -100

♦ »'«S

»•!»**

Fig. 4.11. ~ Determination of the plasma temperature from the energy

analyser characteristics. Conditions: Vg - 1500 V.
a) i. - 0.1 mA; p - 2 x 10 * Torr; B - 0.0810 Wb m ; L=73 cm.

b) i, = 16 mA; p = 4.8 * 10 * Torr; B = 0.0270 Wb m ; L=73 cm.
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TABLE 4.1

TEMPERATURE OF THE PLASMA ELECTRONS (B - 0.0540 Ub m 2)

a) beam current dependence (V^-1500 V, p = 4.8 * 10 Torr, L = 73 cm)

ib (mA) 1 2 3 4 5 6 7 8 9

Tp(eV) 1.5 3.5 4.5 5.0 6.0 6.5 8.0 8.0

ib (mA) 10 11 12 13 14 15 16 17 18

Tp(eV) 8.0 8.0 8.0 6.1 6.0 6.0 5.1 5.2 5.6

b) pressure dependence (V^-1500 V3 —  12 mA, L = 73 cm)

p(6xl0 Torr) 1 2 3 4 5 6 7 8 9

Tp(eV) - 3.5 6.0 6.0 6.0 6.5 9.0 8.0 7.5

p(6xIO ^ Torr) 10 11 12 13 14 15 16 17 18

T (eV) 6.5 6.5 6.5 6.5 7.0 9.5 9.5 9.5 10.0

We emphasize that with an electrostatic energy analyser we can not
obtain trustful results about the absolute energy of the plasma elec
trons. In other words, we can measure the important quantity which is
their temperature but we can not have a good idea about their real ener
gies. Ue only verify that there are some electrons which are able to
pass potential barriers of the order of 25 eV. However, due to the
presence of the sheath in front of the analyser, these electrons can
have much higher energies. Thus, we only measure the tail of the elec
tron velocity distribution function.

An estimate for the temperature of the bulk of the plasma elec
trons can also be obtained by other methods, namely spectroscopically
or by the analysis of the Langmuir probe characteristics LEVITSKII et
al., 1967). However, these two methods are not applicable in our beam-
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plasma system as the first one requires a rather homogeneous plasma
column and the second one can not furnish information over the distri
bution in the centre of the plasma column as the probes become incan
descent when immersed into the energetic electron beam. So, we verified
that the plasma temperature is of the order of 5 - 10 eV (LEVITSKII et
al., 1966; SEIDL et al., 1967; MORSE, 1969). The analysis of its current
dependence proves that the plasma temperature increases in the first
regime of the plasma and has a maximum for the conditions which lead to
the lSt-2nd regime transition. For the case of the pressure dependence,
the former conclusions hold with the difference that for large values
of p the temperature shows a second increase. Finally we verified that
a temperature of about 8 eV is necessary to start high frequency
ionization. The high energy tail of the electron distribution function
apparently contains electrons, with energies of the order of 3 - 5 kT,
as the Helium ionization energy is 24,6 eV. The plasma heating is
generally believed to be related to the stochastic character of the
beam-plasma instabilities (JANCARIK et al., 1969; ASTRELIN et al.,
1969).

4.6. Conclusions

From the presented set of measurements we verify that the magnetic
field strongly influences the beam-plasma interaction. The obtained
results confirm the fact that a high value of B favours the develop
ment of the convective plasma instability while a low B value favours
the growth of the absolute cyclotron instability, as predicted by
linear theory (JANCARIC et al., 1969; SEIDL, 1970).

Especially for the case of high values of the magnetic field we
verified that most of the effects predicted by the quasilinear theory
could be observed in our experiment, in which we were able to simu
late the spatial development of the beam—plasma interaction. Namely,
we could observe the formation of the plateau in the velocity distri
bution function, the enlargement of the excited spectrum of oscilla
tions and the growth and saturation of the power associated with these
oscillations.

In section 3.8 we referred to a paper by IVANOV and RUDAKOV
(1967). Following these authors, the distribution function of an ini-
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tially monoenergetic beam, injected into a plasma, will have the shape
of a plateau developing towards lower velocity values, during the
quasilinear interaction process. We verified experimentally this pre
diction, as the velocity distribution functions, obtained as a function
of L, had always a "plateau-like" character.

Our results are in good agreement with those published by LEVITS-
KII et al. (1967.b; 1969), and they constitute an extension of their
work, due to the possibility of displacing axially the energy analyser.

If we assume that the group velocity of the beam-plasma instabili
ties is of the order of the initial beam velocity (LEVITSKII et al.,
1967.b; IVANOV et al., 1967) as suggested by the dispersion diagram
(figure 4.3), a good agreement between the coordinate of the region of
maximum plasma radiation (z = 52 cm) and the value of the theoretical
quasilinear relaxation length (equation 3.74) is observed (CABRAL et
al., 1969). APEL (1969.b) gives an empirical expression for the relax
ation length of the instabilities, which is of the order of 5 wavelengths
of the most unstable wave. Applied to our experimental parameters, his
expression leads to values of the relaxation length which are at least
a factor 4 smaller than the ones we obtained.

It would be interesting to perform measurements in the immediate
vicinity of the electron gun, but unfortunately our movable measuring
devices (probe and energy analyser) could not be brought closer than
24 cm from the gun. Indeed, if the group velocity of the plasma waves is
really much smaller than the beam velocity, as assumed in the theory
(chapters II and III), we can expect regions of high inhomogeneity close
to the entrance of the beam into the plasma.

Results which can not be explained by the formerly presented quasi
linear theory, besides the increase in the plasma density, are the
strong exponential decrease of the microwave power, which immediately
follows its saturation (figure 4.6.a), and the acceleration of beam
electrons to energies exceeding the beam initial energy.

The decay of the microwave power is presumably due to nonlinear
transformation of waves.

In what concerns the fast electrons (v > vfc), their presence in
beam-plasma systems has been theoretically explained either by consider
ing the inhomogeneity of the plasma (RYUTOV, 1970), or by the excitation
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of normal Doppler effect instabilities (SHAPIRO et al.f 1962). In a
completely different approximation, we shall explain their existence,
in chapters V and VI, just by considering the nonlinear interaction
between the beam electrons and a monochromatic wave representing a
certain beam-plasma instability.



CHAPTER V

STUDY OF THE 1ST-2ND REGIME TRANSITION IN A BEAM-PLASMA EXPERIMENT

5.1. Introduction

As we have seen in chapter 5t the beam-plasma interaction is
stronger for conditions which lead to the so-called |st-2n regime
transition. Therefore, in the present chapter, we intend to study with
more detail what happens at this transition of regime in the plasma.

We verified that, despite the continuous operation of the experi
ment, the analysis of the oscillation spectrum usually shows that more
than one instability is present in the system for the same set of ex
ternal parameters. These instabilities have a discontinuous character,
as they appear in bursts with typical durations of the order of 100
ns. Bursts of the various instabilities alternate quickly in time (VAN
WAKEREN et al., 1969) and they produce rapid changes in the internal
beam-plasma parameters. Thus, if we want to perform measurements on
parameters related to the presence of a single instability, we must
have rather fast measuring devices and means of correlating the
appearance of the bursts of this instability with a certain level of
the fluctuations observed on the considered parameter.

In this chapter we present measurements that could be correlated
with the existence of a single beam-plasma instability (CABRAL et al.,
1970). So, the main line of investigation is now the correlation be
tween changes in the time resolved beam-plasma parameters and the
presence of a certain instability. We will present measurements of the
excited frequency spectrum, plasma density and especially of the beam
energy spread, taking the magnetic field as a parameter. A brief des
cription of the correlation technique will now be made.

5.2. Correlation technique

The correlation between the variations in the internal beam-plasma
parameters and the occurrence of a certain instability was obtained
with intensity modulation of the oscilloscope beam. This z-modulation
was made using pulses derived from the instability fields in the follow
wing manner: - A Langmuir pin probe takes from the plasma the rf sig-



90

nals associated with the propagation of the different beam-plasma waves.
These signals are delivered to a "Polarad" Spectrum Analyser which is
used as a narrow band pass filter (Af = 5 MHz), converting any chosen
frequency of the excited spectrum into 60 MHz. The rectified 60 MHz
output signal contains information about the time dependence of the
amplitude of the bursts appearing with the chosen frequency. This out
put signal consists of a series of fast pulses which, after adequate
amplification, serve for the intensity modulation of the oscilloscope
beam. This means that the oscilloscope screen is only illuminated by
its own beam when the selected instability is excited. By this way we
were able to correlate the appearance of a certain frequency of the
excited spectrum with a certain level of the fluctuation on the measured
signals coming from the beam-plasma experiment. These signals are of
course continuously displayed in a conventional way on the oscilloscope.
Due to the very small bandwidth of its active filter ('Polarad ) this
correlation method has the great advantage of being able to distinguish
between beam-plasma states which are associated with different frequen
cies belonging to the same instability peak in the excited spectrum.

Because of the fast character of the plasma bursts this correla
tion technique was checked* by using simulated bursts (rise time — 5 ns,
duration down to 100 ns). In order to obtain a good autocorrelation
of the test pulses it appeared necessary to use a delay cable in the
circuit feeding the vertical amplifier of the oscilloscope. The delay
time, mainly due to the use of amplifiers in the correlation circuit,
was about 300 ns, independent of the frequency of the simulated bursts
in the range 200 — 1000 MHz.

5.3. Experimental results

5.3.1. Fast analysis of the beam-plasma instabilities

One of the characteristics of beam—created plasmas is the dis
continuous radiation of microwave power under the form of bursts be
longing to different instabilities.

We verified that the bursts of the cyclotron instability in the
first regime of the plasma are rather well defined in time. Typical du
rations are of the order of 100 ns. Figure 5.1.a. gives an example of
the time dependence of the amplitude of the bursts of the electron
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100 ns

••‘ MJij.Wii

'■La .

*  11 ■ 5 ns  —
(cl

Fig. 5.1. -  (a) Envelope o f the electron cyclotron bursts, (b) Time de
pendence o f the e lec tr ic  f ie ld  o f  the cyclotron in s ta b ility ,
(c) Proof that the frequency o f  the d ifferen t consecutive
bursts o f the electron cyclotron in s ta b ility  is  highly co
herent. These three photographs were obtained with a sam
pling oscilloscope. Conditions: -  2500 V; i^  = 10 mA;
p = 4.8 x 10 Torr; B= 0.0210 Wb m ^; L = 73 cm.
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cyclotron instability. The three photographs belonging to figure 5.1.
were obtained with the use of a sampling oscilloscope. Figures 5.1.b.
and 5.1.c. show that the frequency of the different consecutive bursts
of this instability is highly coherent. We also verified that the num
ber of oscillation periods (about 8Ü) in a cyclotron burst was almost
independent of the magnetic field.

Bursts of the electron plasma instability are usually much longer
than the cyclotron ones. Their typical durations are of the order of a
few ys. In general they have rather short growth and decay times (HOP-
MAN et al., 1968-a; FRANK, 1968) and they keep the same amplitude during
a relatively long time. These bursts often show amplitude modulation
related with the excitation of the ion instabilities (APEL, 1969.a).

5. 3.2. Beam-plasma parameters at the l8L,-2n^ regime transition

As the measurements will be performed along the boundary between
the two regimes of the plasma, we present in figure 5.2 a parameter dia
gram defining, in the plane of i. vs B, the onset of the plasma insta—

o n o  •__2 regime
X X X

0 Q02 QCK 0.06 , Q08
------------- -- B (Weber/m)

Fig. 5.2. - Parameter diagram defining the onset of the electron plasma
instability and the transition ls^-2n<̂  regime. Conditions:

V■ = 1500 V; p = 4.8 * 10 4 Torr; L = 73 am.
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bility and the boundary between the 1st and the 2° regimes in the plas
ma, for a certain value of the Helium pressure. In this diagram we can
see that the cyclotron instability is always observed in the first re
gime of the plasma, even with very weak currents. On the contrary, the
plasma instability is only observed for relatively large beam currents
and can not be excited in the first regime of the plasma for B < 0.0250

-2 , # #
Wb m . Unless otherwise specified the experimental conditions in all
further measurements are those presented in figure 5.2.

5.3.3. The frequency spectrum

The frequency spectra were, as before, obtained with the "Polarad"
Spectrum Analyser. We observed that the frequency spectrum at the trans
ition of regime was qualitatively independent of the axial position of

(MHz)

2000-

1000-

006
—  B (Weber/m2)

Fig. 5.3. - Excited spectrum of the beam-plasma instabilities at the

regime transition. The higher frequency peak belongs to

the cyclotron instability. The louter frequency one to the

plasma instability. Dots and triangles represent the fre

quencies utilized for correlation purposes. The line sepa

rating the tuo peaks corresponds to the theoretical cyclo

tron frequency. Conditions presented in figure 5.2.



the probe. In a typical spectrum we notice a series of small peaks in the
range from 10 to a few hundred MHz and two large amplitude peaks identi
fied with the electron plasma and electron cyclotron instabilities.

Figure 5.3 shows the excited bandwidths associated with these two
instabilities and the values of the frequencies used in the measurements
for correlation purposes. Both instabilities occur at frequencies that
show a linear dependence on the magnetic field. Due to the finite trans
verse dimensions of the beam-plasma system the plasma instability appears
with frequencies below f (NEZLIN et al., 1966).

5.3 .4 . The plasma density

Plasma densities were again measured with the electromagnetic reso
nant cavity. In figure 5.4 we plotted the square root of the plasma den
sity, at the transition of regime, as a function of B. We see that the
density exhibits large fluctuations (shaded area) between well defined

*v-«„
(10‘c m 3 /ï)

0.06— -  B tW b rrr2)

Fig. 5.4. -  Square root o f the plasma density as a function o f  the mag
n etic  f ie ld . Dots represent the maximum and minimum values
observed. Straight lines indicate the values o f  J n corres
ponding to plasma frequencies equal to %, % and 1 times the
cyclotron frequency. Conditions are presented in f ig . 5.2.



limits. These fluctuations were found to occur with a repetition frequen
cy of about 30 kHz which was independent of the magnetic field. All the
other beam-plasma internal parameters showed fluctuations with this same
repetition frequency, which presumably results from the excitation of a
low frequency ion instability (VERMEER et al., 1967; FEDORCHENKO, 1967;
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Fig. 5.5. -  Example o f a correlation measurement o f  the plasma density
with an electromagnetic resonant caoity. The curve a t the
le f t  aide is  the resonance o f  the cavity in the absence o f
plasma. The displacement o f  the resonance curve to the right
is  proportional to the plasma density. The densities were
measured: (a) uncorrelated, (b) during the bursts o f  the
plasma in s ta b ility , (c) during the bursts o f  the cyclotron
in sta b ility . Conditions: V, = 1500 V: i ,  -  12 mA: v =

-4 b -9 b5 x 10 Torr; B= 0.0380 Wb m ^ .
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LEVITSKII et al., 1969). A relaxation regime with the same repetition
frequency is referred by FRANK (1968).

The measurements presented in figure 5.4 permit us to conclude
that, at the regime transition, the plasma frequency lies in the range
0.25 - 0.65 times the cyclotron frequency. In order of magnitude these
values agree with those published by B0TT1GLI0NI (1969) and JANCARIC
et al. (1969).

Figure 5.5 shows an example of a correlation measurement of the
plasma density. For a given value of B these measurements permit us to
conclude: - The plasma instability is observed when the density is
minimum; - During the cyclotron instability the plasma density always
exceeds this minimum value (HOPMAN et al., 1968-b); - The higher the
frequency in the cyclotron peak, the higher the corresponding value of
the plasma density. Though the magnetic field is kept constant in each
measurement, this last result agrees with dispersion theory because
the excited bandwidth of the cyclotron instability appears near the
upper hybrid frequency.

5.3.5. Axial energy spread in the beam centre

The beam axial energy spread was obtained with the electrostatic
energy analyser in the manner described in section 4.2.3. We remember
that the beam axial velocity distribution function is determined from
the so-called energy analyser characteristic j - j (V,r), by different
iation with respect to the energy (equation 4.2).

Figure 5.6.a shows an example of an uncorrelated energy analyser
characteristic and figure 5.6.b another one, but now correlated with
the cyclotron instability.

The z-modulation technique gave the following results:
(1) During the electron plasma bursts the beam has a narrow energy

spread almost symmetric around its initial energy. The energy spread
depends little on B (fig. 5.7).

(2) For the cyclotron instability the energy spread depends on the
frequency selected in the associated peak. The higher the frequency the
larger the energy spread. The largest energy spread is also plotted in
fig. 5.7.

(3) The shape of the energy analyser characteristic resembles in
every case a trapezium (fig. 5.6.b), showing that the beam distribution



function, at the transition of the regime, has always a plateau.
A set of measurements made as a function of the magnetic field

leads to the results presented in figure 5.7. In this figure we can see
that, in the centre of the beam: ~ The maximum energy gain is indepen-
dent of B; - The maximum energy loss varies with B and shows, for the
case of the cyclotron instability, a clear decrease with increasing
magnetic field.

j(V,r)

1000 V(Volt) 2000

(•)

(b)

1000 V(Volt) 2000

Fig. S.6. - (a) Example of an unoorrelated energy analyser characteris

tic at the beam centre. Conditions: V. = 1500 V; i. = 8 mA;

p -  4.8 x io lorr, B — 0.0485 Wb m . (b) A trapezoidal

energy analyser characteristic, correlated with the electron
cyclotron instability. Conditions: - 1500 V; i. = 9 tnA;
p = 4.8 * 10 4 Torr; B = 0.0325 Wb m~2.



At the transition of the regime in the plasma the relaxation of the
electron beam is not yet complete. Plateaus extending to energies of the
order of the thermal energy of the plasma electrons are only found in
the second regime of the plasma as we verified in chapter IV. Such a
complete relaxation of the beam requires an increase of either the beam
current or the neutral gas pressure of about 50% of the values corres
ponding to the lSt-2nd regime transition (figures 4.9 and 4.10).

J" • plasma instability
cyclotron instability

Fig. 5.7. ~ Extension of the axial energy spread in the beam centre as a
fu n c tio n  of the magnetic field. The smaller energy spread is
correlated with the plasma i n s t a b i l i t y  and the larger one is
the maximum that can be observed in correlation with the
cyclotron instability. Conditions presented in figure 2.
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5.3.6. Radial dependence on the axial energy spread in the beam

For these measurements we have to analyse the radial profiles of
the beam. This was realized by deflecting the electron beam to both
sides of the energy analyser entrance hole. This deflection was performed
by using two long rectangular shaped coils (200 x 50 cm) disposed along
the experimental tube and making an angle of 90° in relation to each
other. In this way they can create, in combination, a homogeneous trans
verse magnetic field with any desirable orientation in the transverse
plane. Each of these two coils is made of two independent windings,
one of which was always DC operated in order to centre the beam in the
energy analyser hole. The second winding of one of these transverse
coils is fed by a 50 Hz sinusoidal current, which permits the observa
tion on an oscilloscope of the beam radial profile (figure 7.2). The
horizontal amplifier of the oscilloscope was operated with the potential
difference obtained by the passage of the 50 Hz current through a small
resistance. The vertical amplifier is operated by the current collected
on the last plates of the energy analyser (figure 4.2).

Because the beam diameter is much smaller than the length of the
experimental tube, the angle a over which the beam is deflected is very
small. This fact, together with the assumption that the guiding centres
of the beam electrons follow the magnetic lines of force, permits the
calculation of the beam diameter d from

B1 B
d “ 2L T  as 0 ' tg 0 * 1  ' J  (5.1)

where L is the interaction length and B^ is the variation on the trans
verse magnetic field necessary to deflect the beam, on the energy analyser
external wall, over a distance equal to its radius (B^ «  B). Results re
lated with the determination of the transverse energy of the beam elec
trons from measurements of the beam diameters are presented in chapter VII.

Using the deflection technique described above, we determined the
radial dependence of the beam axial energy spread, during the bursts of
the cyclotron instability. It is assumed that our beam-plasma system is
rotationally symmetric so that the analysis along one beam diameter is
sufficient. Deviations from the assumed symmetry were negligible. The
results presented are obtained by averaging over two beam radii.

We verified that the energy analyser characteristics, current densi-
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ty versus retarding potential for a given radius r, j “ j(V-,r), remain
approximately trapezoidal as in the centre of the beam (fig. 5.6.b) for

. -2all values of the radius. Measurements for B < 0.04 Wb m appeared to
be rather difficult and did not reproduce well.

Results are presented in figure 5.8, where a plot of the extension

V
(109cm s ’ )

II— * — * — * - • * ■

Fig. 5.8. - Radial dependence of the extension of the velocity plateau

obtained in correlation with the cyclotron instability for

different values of the magnetic field, r ^ n is the radius

of the beam in the absence of instabilities. Crosses repre

sent B = 0.0405 Wb m ^. Filled dots, B - 0.0485 Wb m .2 -2 • •
Circles, B = 0.0675 Wb m . B = 0.0540 * • Conditrons: ̂ “ 4 “ 4 —y, = 1S00 V; i. = 12 mA; 3.4 * 10 < p < 4.6 * 10 Torr.
Ü  v  C  t  Yld
The pressure was adjusted in order to lead to the 1 -2

regime transition.
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of the plateau in a velocity scale is made as a function of the product
r.B/B , a kind of normalized radius. The beam axial velocity distribu
tion function, is for every radius, a plateau extending from v (r) to
vM (r) (figure 5.8) with an amplitude proportional to j(0,r)/(U„ - U ),•* 2 M  ID
where U = J mv (equation 5.8). In figure 5.8 we see:

- The beam electrons are only accelerated to velocities greater
than the initial beam velocity if they are inside a cylinder with a
diameter of the order of the minimum beam diameter (diameter in the ab
sence of instabilities).

- The electrons collected outside this cylinder always experienced
an axial deceleration.

- The curves for the minimum velocity v ■ v (r) are found at lower

j(ftr)
j«U»

- T T - t e m . )

Fig. 5.9. -  normalized beam radial profiles. Conditions are the same as

in figure S.8.
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values of v for lower values of the magnetic field.
- The average velocity vgv = £ (v^ + v ) remains practically con

stant over the beam cross section. This average velocity is an increa
sing function of B in the entire beam cross section.

In fig. 5.9 we plotted the normalized beam current density, j(0,r)/
j(0,0), also as a function of the normalized beam'radius. These plots
define the beam radial profiles. We notice that these three normalized
profiles are rather similar. The differences between them are more
accentuated* for values of r corresponding to regions outside the beam
minimum diameter.

5.4. Interpretation of the results

We have thus seen that during the bursts of both the plasma and
the cyclotron instability the beam suffers drastic changes in its radial
profile and axial energy spread.

In the case of excitation of the lowest mode, the linearized theory
of electrostatic modes, in a cylindrical waveguide filled with plasma,
predicts radial variations of the fields according to a J Bessel func
tion for the axial electric field and a J. Bessel function for the
transverse field. In the electrostatic approximation the parallel and
transverse electron velocities are respectively determined by the paral
lel and transverse components of the electric field. The axial velocity
spread in the beam is therefore only determined by the parallel electric
field. Because of the predicted radial dependence of the electric field
we split the discussion of the results into two sections (4.5.1 and
4.5.2), respectively for the beam centre, r = 0, and for r ^ 0.

Actually, given the considerable transverse energy in the beam
(CABRAL et al.*, 1969-a), the finite Larmor radius effects cannot be ig
nored. In cases where the Larmor radius becomes comparable with the
transverse dimensions of the beam (low magnetic field) the analysis real
ized at a fixed value of the beam radius becomes difficult, as particles
coming from other values of r also enter the energy analyser hole. The
Larmor orbit of the beam electrons is rather complicated due to the
radial variation of the electric field components. In this sense the
measurements presented can only be considered as averages valid for the
immediate neighbourhood of the measuring coordinate r.
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S.4.1. Analysis of the results obtained at the beam centre

According to the last considerations we expect the electric field
at the beam centre to be parallel to the axial magnetic field. Thus in
the beam centre the transverse field is assumed null.

Let us first consider the case of the cyclotron instability. We
found that during the bursts of this instability the beam attains its
maximum energy spread. In order to explain these results we begin with
the determination of an approximate value for the phase velocity of the
cyclotron wave, under the referred experimental conditions. We know,
from wavelength measurements, that in our beam-plasma experiment the
cyclotron instability is excited by the slow beam space-charge wave.
Then it is possible to compute theoretically an approximate value for
the wave phase velocity. This value is given by (fig. 5.10)

b f + f .ex pb
(5.2)

where v^ is the initial beam velocity, f is the excited frequency in
the cyclotron peak given in fig. 5.3, and f b is the beam plasma fre
quency (APEL, 1969-b). The values of f ^ were computed from the know
ledge of the beam potential, beam current and beam diameter, assuming
a homogeneous beam. These beam plasma frequencies were in the range
135 - 165 MHz.

In fig. 11 we have plotted, now in a velocity scale, the extension
of the plateau of the beam distribution function, obtained in correla
tion with the cyclotron instability, at the beam centre. In this figure
we can see that the line corresponding to the wave phase velocity al
most divides the plateau into two equal parts. Indeed the average velo
city of the beam remains very close to the wave phase velocity for all
values of the magnetic field. This result suggests a trapping mechanism
to explain the extension of the plateau. As a matter of fact the excited
spectrum is relatively narrow and sampling measurements (figures 5.1-b
and 5.1-c) performed on the bursts of the cyclotron instability proved
that the frequency remains practically constant during these bursts.
This fact justifies the use of the theory for the motion of beam elec
trons in the field of a monochromatic large amplitude wave (O'NEIL,
1965; DAWSON et al., 1968).
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Fig. 5.10. -  Simplified dispersion diagram for the cyclotron instabili
ty.

30 J  v(109 cm s '1)

- *  * *

0.02 0.04 006 B (Weber/rri2)

Fig. 5.11. -  Some important velocities in the plateau obtained in correl
ation with the cyclotron instability. Conditions are presen
ted in figure 2.
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The condition for trapping is

E > Ec (5.3)

where v . » u/k is the wave phase velocity. E is the minimum electricph c
field which is required to trap an electron with an axial velocity equal
to v. The amplitude of the E field necessary for trapping depends on
the phase difference between the wave and the electron movement (CABRAL
et al., 1969-b). Then, if almost all the beam electrons are trapped in
the potential well of the cyclotron wave, due to phase mixing in their
relative motion, they will have a tendency to form a distribution func-
tion which is symmetric around the wave phase velocity. Condition 5.3
alone is not enough to assure the symmetry of the distribution function.
Another condition requires that during its short travelling time (t *
3.10 sec) the beam electrons perform several oscillations in the wave
potential well in order to attain phase mixing in their relative motion.
This means that the period of this oscillation must be considerably
smaller than the transit time of the beam electrons. An approximate
expression for the oscillation period is given by (STIX, 1962; WHARTON
et al., 1968):

t - 2ir (-m/eEk)^

If we substitute into (5.4) the values of the axial
deduced from equation (5.3), considering v ^ = vav and v

VM °r V
electric field
equal to either

mk rVM " vm,2
4e 1 2---* (5.3a)

we obtain for the period t of these oscillations

T 41
(VM * V

(5.5)

where 1 is the cyclotron wavelength. Typical values for this period are
of the order of 5 - 7 nsec which is considerably smaller than the elec-
tron transit time.

In chapter 6 we will make a rigorous numerical study of the nonlin
ear equation of motion of the beam electrons under the presence of a
large amplitude monochromatic traveling wave in the plasma. In that chap-
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ter we will see that all the considerations just presented seem to sus—
tain the conclusion that, in the case of excitation of the cyclotron
instability, the velocity plateau results from the trapping of the beam
electrons by the potential barrier of the parallel electric field■

The same type of considerations can be made for the case of the
plasma instability. But now the energy spread (fig. 5.7) is rather small.
Apparently in the plasma instability the wave phase velocity is much
smaller than any velocity attained by the beam electrons during the
bursts of this instability and so trapping does not occur. The corres—
ponding measurements are better explained on basis of the nonlinear
interaction between the beam and the plasma wave as it was done by
CABRAL et al. (1969.b). in that paper we obtained, numerically, pla
teaus developing around the beam initial velocity just by considering
the spatial evolution of the beam distribution function under the action
of a pure longitudinal travelling wave.

5.4.2. Analysis of the radial dependence of the axial energy spread in

the beam

We have seen that, at the beam centre, the measurements obtained in
correlation with the cyclotron instability can be explained on basis of
the trapping of beam electrons by the parallel electric field of this
instability. If this trapping mechanism applied to all values of the
beam radius, the velocity plateau would remain symmetric around the
wave phase velocity. In fig. 5.8 we see that this happens only in regions
of the beam near its centre. For larger values of r we notice that the
beam average velocity begins to decrease with r. A possible explanation
for this effect can be based on the inhomogeneity of the axial electric
field which, as we admitted, varies over the Larmor orbit of the beam
electrons. It is possible that, in their Larmor gyrations, the beam
electrons can be retarded by an axial field which is stronger than the
one that accelerates them half a cyclotron period later in their outer
most position. In this way the velocity plateaus for large radius would
be found to develop asymmetrically around v ^ and with a preponderance
for the lower values of the velocity, in agreement with the measurements
of fig. 5.8. However the variation of vgv with r is relatively small and
so we will assume that the trapping mechanism proposed for the beam
centre can be applied to all values of r.
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(lO ^cm 2!-2)

Fig* 5.12. - Radial dependence of the axval electric field of the cy
clotron instability E|| - (mk/4e)(vM  - . The lines

passing by the experimental points are JQ Bessel function

dependences. Conditions are the same as in fig. 5.8.

According to our interpretation, the axial electric field is pro
portional (equation (5.3.a)) to the square of the total velocity
spread in the beam. The linear theory of electrostatic modes propaga
ting in a plasma filled waveguide predicts a JQ Bessel function depen
dence on the radius for the axial electric field. So, an attempt was
made to fit a J Bessel function curve through the experimental points,
obtained by plotting the square of the velocity spread as a function
of the radius. The agreement was far from being acceptable. On the
basis of the proposed deceleration mechanism, mentioned above, we
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plotted in fig. 12 the square of the difference between the maximum at~
tained beam velocity and the wave phase velocity, as a function of the
normalized beam radius. This time we found radial Bessel function de
pendences for all three cases (EGOROV et al., 1970). We think that only
that part of the velocity spread which is symmetric around the instabi
lity phase velocity can be associated with the axial electric field.
Electrons found with lower velocities have presumably experienced a
decelaration process due to the finite Larmor radius effect. From fig.
5.12 it seems that the axial electric field of the cyclotron instabili
ty has a null at the beam edge.

5.5. Momente of the beam distribution function

In this section we intend to draw some conclusions about the radial
variation of the moments of the beam distribution function. As we have
seen, in the case of the excitation of the cyclotron instability, the
energy analyser characteristics are approximately trapezoidal in energy
(figure 5.6.b). This means that the beam distribution function is
approximately a plateau extending from v (r) to v„(r) with an amplitudeID M
equal to (equation (4.2)):

f(v,r) m_______ j(0,r)
n (r)e (UM (r) - U (r))o n m

(5.6)

We remember that we normalized the electron velocity distribution
function to unity (equations (2.2) and (4.1)). This means that

j f(v,r) dv - 1 (5.7)
—  CO

We must now distinguish between the beam and the plasma electrons.
As we have verified in the last sections the relaxation of the beam dis
tribution function is not complete at the ls^-2nt̂ regime transition. As
the minimum energies possessed by the beam electrons are of the order
of 500 eV we expect to have the two electron distributions (beam and
plasma) separated in velocity space. Indeed the plasma temperature is
rather low (section 4.5.3 and Table 4.1) and there was no evidence for
the presence in our system of electrons with more than 25 eV above the
energy corresponding to the plasma potential. So we can write:
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v (r)finV r) " no(r) £(v,r) dv (5.8)

nb<r) “ n0<r> f(v,r) dv (5.9)

V r>
If we consider the beam as an independent fluid, we can then study

the radial dependence of the first moments of its velocity distribution
function. These ones are defined by

u(r) no<r>V r) f(v,r) v dv
v (r)

T„ (r) no(r>
<nb(r) m f(v,r) [v - u(r)]Z dv

v_(r)m

(5.10)

(5.11)

where tc is the Boltzmann's constant.
Substituting in these expressions the value of the velocity distri

bution function given by equation (5.6) we get the following results:
The beam density is:

nb<r>
j(O.r)
evav(r)

(5.9.a)

Because we have seen (fig. 5.8) that the average velocity in the plateau
does not depend significantly on the beam radius, the beam density has
approximately the same radial variation as the beam profile (fig. 5.9).

The beam directed velocity u(r) coincides with the average veloci
ty in the plateau

u(r) - v#v(r) . (5.10.a)

The axial beam temperature Tjj (r) is:

T» <r) ■ ITT (VM " V 2 • (5.11.a)

In fig. 13 we have plotted the radial dependence of the axial velo
city spread on the beam. We verify that this velocity spread also shows
a JQ Bessel function variation with r. Thus the beam temperature shows
a J dependence on r. Typical values of the axial beam temperature, at
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Fig. 5. IS. - Radial dependence of the axial velocity spread in the beam.

The velocity spread is proportional to the square root of

the beam axial temperature. Conditions are the same as in

figure 6.8.

the beam centre, are of the order of 35 - 70 eV, at the lSt-2n regime
transition.

6.6. Energy considerations

The axial power density is given by
oo

P|l (r) * nQ(r) j f(v,r) | mv3 dv (5.14)
o

where, for simplicity, f is here identified with the beam distribution



function alone. Using equation (A.2) we obtain

V(j,r)dj’ j(V,r)dV (5.15)

The last translation is possible because j(V,r) is a monotonically
increasing function of eV, by definition tending to zero when eV tends
to We see that the areas under the energy analyser characteristics
j=j(V,r) represent directly the power density in the beam, at radius r
(SHUSTIN et al., 1969). To get the total power in the beam, in the
axial direction, we must integrate the power density P||(r) over the en
tire beam cross section

00 •  00 ®

j(V,r)dV 2*r dr - j Py (r) 2irr dr
o o o

(5.16)

The initially injected power is given by the product of the beam
potential Vb and the beam current, and so can be determined from

Vb £b “ Vb j (0,r) 2itr dr
o

(5.17)

Applying these relations to our measurements of the radial depen
dence of the axial beam distribution function, we can determine the
axial power losses during the electron instability. In percentage these

are given by

n { 1 - ~  } * 1002
in

(5.18)

The numerical results are presented in fig. 5.1A, as a function of
the magnetic field. We find that the beam losses decrease with the mag
netic field.

This decrease of the beam losses with B can be easily understood.
Indeed the energy analyser characteristics are approximately trapezoi
dal and so we can write
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Pil <r > j ( V ,r )  dV = j ( 0 , r )  V (5 .1 9 )

w ith  * (.— ) (Ujj + Um) • B u t, from  f i g .  5 .8 ,  we can e a s i l y  v e r i f y  th a t

th e  average p o te n t i a l  does n o t v a ry  s ig n i f i c a n t ly  w ith  r .  Under th e se
c o n d it io n s  th e  t o t a l  power i s  ap p ro x im ate ly  g iv en  by

j ( 0 , r )  2xr d r  = V (5 .2 0 )

and th e  power lo s s e s  a re  th e n  o b ta in e d  by

V
100 Z * (I -  -ZZ) x 100 % =  (1

2
- ^ - )  X 100 z
V.

(5 .2 1 )

* 0 -

30 -

0 - |-----------------------------1---------------------------- 1—
0 002 004 Qj06 — *■ BlWbfiH)

Fig. 5.14. -  Axial power losses, in percentage, verified during the
cyclotron in stab ility . Crosses represent the calculated
losses obtained with equations (5.16-5.18). Circles rep
resent the approximate value for these losses obtained
from the measurements made at the beam centre (equation
(5.21)). Conditions are the same as in figure 5.8.
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The last equality in equation (5.21) is only qualitatively correct
as the velocity corresponding to the average potential is larger than
v . which is assumed to be the average velocity in the plateau (equa-ph’
tion (5.26)).

Using equation (5.2) for the cyclotron wave phase velocity we can
write (5.21) under the form

„ = 2 ^ = 2 ^  (5.21.a)
ex ce

and so we verify that the beam power losses are then directly determined
by the magnetic field and by the beam density (beam plasma frequency).
As at the ist-2n<* regime transition f b does not vary significantly with
B, we see that the beam losses decrease indeed with B.

A test on the accuracy of the power calculations was always done,
computing with equation (5.17) the value of the beam current used. We
found experimental errors of the order of 5 per cent. A test of the
effectiveness of the beam injection was also done and we found that, in
the absence of instabilities, the beam transverse energy was very small
(of the order of 0.5 per cent of the axial energy).

We finally want to stress that the power density at the beam centre
during the cyclotron instability is only 30 per cent of the power densi
ty in the beam in the absence of instabilities. This is partly caused by
the increase in the beam diameter. This value would indicate an apparent
power loss of 70 per cent if the radial analysis was not done. The more
reasonable value of 20-30 per cent is recovered with the integration
over the beam cross section. Because of the unknown value of the power
flowing into the radial direction the values given in figure 14 cannot
be identified with the total loss of kinetic energy of the beam.

5.7. Conclusions

From the results presented in the last sections, related with the
electron cyclotron instability at the transition of plasma regime, we
can conclude:

(a) A certain percentage of the beam initial power (30.7 per cent
— 9 “ 2for B = 0.0405 Wb m and 20.3 per cent for B = 0.0675 Wb m ) is not

found in the axial direction This power must have been delivered partly



to the plasma for building up the oscillations and partly converted in
to a transverse energy flow.

(b) From the beam initial power only 41.3 per cent, for B = 0.0405
-2 , -2Wb m , and 75.7 per cent, for B - 0.675 Wb m , remains in the axial

direction, inside the cylinder occupied by the beam in the absence of
oscillations.

(c) The remaining axial power percentage (28 per cent for B =
-2 -2» . .0.0405 Wb m and 4 per cent for B = 0.0675 Wb m ) is found outside

that cylinder.
Thus, due to the interaction of the beam particles with the cyclo

tron wave, a reasonable part of their energy is converted from parallel
into transverse energy.

It is important to stress that an analysis of the power density at
the beam centre is not enough. An integration over the beam cross sec
tion is necessary to obtain trustworthy results.

If we substitute in equation (5.3.a) the experimental values for
the maximum and minimum velocities in the plateau (figure 5.11) and the
values of k determined from the knowledge of the excited frequency
(figure 5.3) and of the wave phase velocity (v ® ^ vm + vm ^ ’ we °^-
tain the interesting result that the electric field of the cyclotron
instability at the lSt-2 regime transition is, at the beam centre,
independent of the magnetic field. Indeed we find for all the cases
values of E equal to 150 + 5 V c« (SEIDL et al., 1967).

If our interpretation of the results in terms of trapping of the
beam electrons in the potential well of the cyclotron wave is correct,
there is reason to believe that it is this trapping mechanism that is
responsible for the saturation of the cyclotron bursts (fig. 5.1.a).
Indeed, after the trapping of the beam electrons, there cannot exist
any further net energy transfer from the beam to the wave. The beam
electrons will only interchange their positions in velocity space with
out any further loss of kinetic energy.

A last result in favour of our interpretation of the velocity
spread in the beam is the agreement, in order of magnitude, between the
energy density associated with the propagation of the electrostatic

2 . ,wave (2 » j eqE ) and the energy density which would be obtained if the
total energy lost by the beam, during the growth of the wave, were
equally distributed inside the cylinder occupied by the beam. The ener-
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gy density associated with the wave is about 2 x 10 J m . The densi
ty of the energy lost by the beam under the above conditions is 3.3 x
—3 —3 • . A10 J m This last value was obtained assuming a beam of 1500 V, 10

mA, 20 per cent energy loss, diameter of 0.55 cm and taking L, the in
teraction length, to be 75 cm. The growth time for the cyclotron wave
was assumed 20 nsec (fig. 5.I.a).

Finally we can verify that the electrostatic energy density in the
cyclotron wave (which is the highest attained during the !S -2n regime
transition) is anyhow smaller than the plasma thermal energy density,
as required by the condition of weak turbulence (equation 3.4). Indeed,

_2 ,for the case of B= 0.0540 Wb m , we determined the plasma temperature
at the transition of regime in the plasma (T^ = 8 eV). The plasma densi
ty, attained during the bursts of the cyclotron instability, was for

10 —3this value of B (figure 5.4) np * 1.1 x 10 cm . So the plasma thermal
energy density (W = 14.1 x 10 J m ) is an order of magnitude larger

 ̂ .o -3than the wave energy density (Q„ = 1 0  J m ). The assumption of mono-
chromacity of the cyclotron wave (absence of turbulence in the plasma)
would be subjected to a serious criticism if the electrostatic energy
density of the cyclotron wave would be found to be larger (or of the
same order) than the plasma thermal energy density.

For the case of the plasma instability, apparently the electric
field is weaker than the critical field necessary for trapping to occur.
Linearizing the exact equation of motion for the beam electrons acted
by a monochromatic wave (equation 6.11) for the case in which the elec
tric field is much smaller than the critical field necessary for trap
ping, we obtain

v = v. + — r- (5.22)M b m(w-kVjj)

- 2eE
vm b m(tii-kv. )b

(5.23)

We see that in this case the velocity spread increases linearly with E.
From the last equations we can determine the value of the electric field

E " S  (vph - vb)(vM • vm> (5’-24)
If we compute the phase velocity of the plasma waves still with

equation (5.2) we can determine the values of the electric field of
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these waves at the transition of regime in the plasma. We stress that in
this case the approximation for the wave phase velocity is less accurate.
Anyhow our intention is only to determine the order of magnitude of the
electric field. Using equation (5.7.4) we obtained for E the value of
40 + 2.5 V cm . Typical values for the minimum field necessary to trap
electrons with an initial velocity equal to v, were, for the considered
values of the wave phase velocity, in the range 90 - 150 V cm .

Therefore it seems that the two instabilities (electron plasma and
electron cyclotron) which appeat at the lst-2n regime transition in the
plasma, have electric fields which are independent of the value of the
external magnetic field and so independent of the value of their frequen
cy (figure 5.3).

We can now explain qualitatively why is the electric field of the
st „nd •cyclotron instability almost independent of B at the 1 -2 regime

transition. We verified that the beam velocity distribution function is
a plateau extending from vm to v,,. We also verified that this plateau
develops symmetrically around the wave phase velocity. To this distribu
tion function corresponds an energy analyser characteristic which is a
trapezium (like the one in figure 5.6.b). We have seen (equation 5.15)
that the areas under the energy analyser characteristics represent di
rectly the power density in the beam. Therefore a beam with a plateau in
the velocity distribution will have no more power losses if the average
energy in the analyser characteristic U^v = J(U^ + U^) will coincide with
the beam initial energy U. .

The average energy is

* m (vm2 + vM2> (5.25)av m

If the average velocity in the plateau is equal to the wave phase
velocity we can write the average energy as

,VM “ Vmx2
Uph - > " (---2---} (5.26)

with Uph ■ | m vph2.
The maximum attainable velocity spread will then be, according to

the considerations presented in section 6.5.3, the one which leads to
the equality between the average energy and the beam initial energy.
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Therefore we have:

(VM " vL ■ I <«b - v (5.27)

Using now equation (5.3.a) for the electric field associated with this
value of the velocity spread, we get for the maximum value of E

Sax “ 2i (Ub ' V (5.28)

If we recall equation (5.2) for the phase velocity of the cyclotron wave
we can write:

2it f

V' - ce

(5.29)

■ 2 2 fpb,
Uph “ * ""b (1 ' ~ i )

(5.30)

assuming that (£pi,/£ce) <<: 1 and that the excited frequency is close to
the electron cyclotron frequency.

Substitution of these results into equation (5.28) leads to

^ax
2n V.
---- - £ Kvb pb

(5.31)

which is the equation we intended to derive.
We can see that the maximum electric field attainable during the

development of the cyclotron instability, under the referred conditions
is practically independent of the cyclotron frequency and so of the mag
netic field.

On the other hand we see that the maximum value of E varies linear
ly with the beam velocity and with the plasma frequency of the beam.
Therefore the beam seems to determine completely the final amplitude of
the electron cyclotron instability. We can then expect that beams of
high energy and with a high density will lead to strong cyclotron inter
actions.

Substitution into (5.31) of our experimental parameters leads to
values of the maximum attainable electric field of the order of 550 V
cm However, because the beam must loose 20 to 30Z of its power to
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build up Che instabilities, we see that the electric field must there
fore be smaller than this limit value, as it was experimentally verified.
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CHAPTER VI

NUMERICAL STUDY OF THE NONLINEAR L'lTERACTIOi! BETWEEN A KONOENERGETIC

ELECTRON BEAM AND A PLASMA WAVE IN A BEAM-FLASMA

SYSTEM OF FINITE LENGTH

6.1. Introduction

In the last chapter we assumed that, in the lst-2n<* regime tran
sition, the velocity spread obtained in correlation with the cyclotron
instability could be explained by the consideration of the trapping of
beam electrons in the wave potential well. We thus expect that the non
linear interaction between an initially monoenergetic beam and a large
amplitude monochromatic wave propagating along the plasma column, as
studied in this chapter, will be a reasonable approximation for the
real beam-plasma interaction occurring under similar conditions. There
fore the purpose of this chapter is to study, numerically, the non
linear response of the beam electrons to the electric field of a beam-
plasma instability under conditions obtained from the experimental re
sults presented in the last chapter.

We will see that the formerly obtained results (concerning the
beam axial velocity spread and its power losses), can be qualitatively
explained, just by considering the nonlinear Lorentz force equation,
with a simple model for the wave-beam interaction.

6.2. Numerical determination of the axial velocity distribution func

tion and of the pouer losses of the beam at the end of the inter

action chamber.

We suppose that an electrostatic wave has been set-up in the plas
ma as a result of the development of a beam-plasma instability. As in
a collisionless plasma a single particle only feels the electric field
of the wave, we replace the complete beam-plasma system by the wave
alone. We then want to study the nonlinear behaviour of a single beam
electron moving along the interaction chamber in the presence of this
wave. We also assume that the passage of the beam electron does not
perturb the wave. By separating the collective from the individual res—
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ponse of the particles, the back coupling of these ones to the plasma
wave is lost. The treatment is therefore nonadiabatic.

Restricting ourselves to a one-dimensional calculation, we start
with the assumption that the plasma wave propagates along the z-direc-
tion with a phase velocity vph“<o/k. Thus we write: E(z,t) ■
E cos(ut-kz). In cases when the growth time of the wave, as seen by
the test electron, is longer than the time needed by this electron to
cover distances of interest, the wave amplitude E may be assumed con
stant. This is certainly the situation when the bursts of the beam-
plasma instabilities attain their maximum amplitude.

The test electron is injected into the wave at z-0 and t-0, when
the wave has a phase $. The behaviour of this electron, under the re
ferred conditions, is completely described by the Lorentz force equa
tion (6.1), with the following boundary conditions: z(t”0) = 0
z(t-0) “ v. .

x ■ eE cos (wt - kz + $)/m (6.1)

Our fundamental problem is to determine the electron velocity at
a certain distance L as a function of the initial phase $. Varying $
in steps of one half degree from 0 to 359.5°, we simulate a continu
ous electron stream. It is then possible to compute, from the knowledge
of the 720 final velocities (at z«L), the beam velocity distribution
function, averaged over one oscillation period, at that distance from
the injection plane (z**0). This is simply done by counting the number
of values of $ which lead to a final velocity comprised between v-}Av
and v+jAv, with Av «  v.

The power losses, in percentage, are then given by

n - (i - r y- -) x loo z
« 720 v.-*

(6.2)

Equation (6.1) is exactly soluble in terms of elliptic integrals
(O'NEIL, 1965; BAILEY et al., 1970). To solve it we make the substitu
tion:

0 ■ wt - kz (6.3)

where z, the coordinate of the electron, is a function of time. 0 is
the phase variation (relative to t=0) in the electric field felt by the
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electron during its movement along z. With this substitution we have:

0 = — eEk cos(0+(j>)/m (6.4)

Multiplying both sides of this equation by 20 and integrating we

0 ■ y “ 2eEk sin(0+$)/m (6.5)

The integration constant y is determined by the initial values
0(0) » u - kv. and 0(0) m 0:

Y “ (id ~ kv^) + 2eEk sin $/m

Then equation (6.5) is written as

20 (w - kv. )^ - [sin(0+$) - sin $]D ID

(6.6)

(6.7)

Separating variables in equation (6.7) and integrating again we
obtain:

t 0
d0

o + J (w- kv, )^ - [sin(0+<J>) - sin $]
(6.8)

This is the integral equation which is to be solved numerically.
Because v, exceeds v .. the relative phase 0 is, in the beginning ofD pn
the interaction process, a decreasing function of time. In other words,
the electron always begins to overtake the wave. For simplicity let us
first consider the case in which trapping of beam electrons in the wave
potential well does not occur.

6.3. Solution in the absence of trapping

Inspecting equation (6.8) we verify that, if the electric field
obeys the following condition

2 2-m(u)-kv. ) -m(u>-kv. )
E < --  b £ -------- ---------- ; - E (♦)

2ek |[sin(0+i)>) - sin $]|
(6.9)

the integrand in 0 remains finite. This means also that 0 (equation 6.7)
keeps its initial negative sign and so 0 is a monotonically decreasing
function of time. The electron continuously overtakes the wave and its
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velocity is therefore always greater than the wave phase velocity. In
this case, from the two mathematically valid solutions of our equation,
we must choose the one with the negative sign in the denominator of
(6.8) . By convention, from now on, all radicals are taken to be positive.

A  9 ,
If we call 0 the value of 0 at the time t of arrival at the dis-

A A

tance z=L, then 0 is simply related to t by: 0 = u>t - kL. Equation
A

(6.8) , written for t=x, takes the form of an integral equation in 0 .

. A0 + kL
M

0*
' ___________________ d0_______________

o /(u-kv.)2 - [sin(0+$) - sin $]b m

(6 .10)

This equation can be numerically solved and so, for each value of
E, we can determine the phase 0 as a function of <)>. Knowing 0 we can
compute 0*(t) given by (6.7), and finally the electron velocity is cal
culated from v=z=(io-0)/k.

v(T) - £  + I  /  (o>-kvb)2 - ^  [sin(0*+$) - sin *] (6.11)

With the knowledge of the final velocities as a function of <J> the
problem is formally solved (CABRAL et al., 1969).

6.4. Solution in the presence of trapping

Let us now consider the case in which the electric field is so
large that condition (6*9) is not fulfilled for a great percentage of
the values of In this case the first thing we ought to do is to
verify if» for a certain value of <J>, trapping occurs or not. Trapping
occurs of course when a beam electron is seen to stop in the wave referen-
tial. At that particular instant of time 0 must then be zero. So in con
clusion» trapping will occur if we can find real roots for the following
equation:

(w-kv,)^ - ^-e—■- [sin(0+$) - sin <J>] ■ 0 (6.12)b m

Let us assume that we are dealing with a case in which trapping does
really occur. Then, among the infinity of solutions of the last equation

0 * arc sin [sin $ + (w-kv^) ] ” $ (6.13)
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only two of them are physically interesting. These ones are respecti
vely the first positive and the first negative solution of (6.12). In
deed, in our case 0(t«O)«O and, because v. exceeds v . , the relativeb pn
phase 0 begins to become negative with the passage of time. 0 continues
to decrease until 0 becomes zero. This happens when 0 attains the va
lue of the first negative root of (6.12), which we call 0 . At thatIB
moment the electron velocity is equal to the wave phase velocity (equa
tion 6.11). The action of the wave electric field then inverts the
electron movement in the wave referential, so that 0 is now positive;
0 will then increase from its minimum value 0^ to higher values; in
the course of time 0 will pass again through zero and becomes positive.
In the wave referential the electron will again stop when 0 attains
the value of the first positive root of (6.12) which we call 0„. After-
wards 0 will again decrease due to the action of the electric field of
the wave and so we see that the relative phase 0 will be forever com
prised between 0 and 0...m M

We can now analyse the behaviour of the integrand of the integral
in 0 in equation (6.8). For 0=0 this integrand is | (oi-kv̂ ) | * and it
approaches infinity when 0 tends towards 0 or 0„. However, except whenm M ■
0j,-0m“2ir, the improper integral

Kr  d0----- 1 (6.14)
0B » (w-kv^)^ - [sin(0+$) - sin 4]

is convergent. When 0 -0^“2w (limit that separates the trapping regime
from the free running one) this integral diverges.

To solve the integral equation (6.8) when trapping occurs, we can
look at figure 6.1, which helps to understand our numerical method of
integration. In the lower part of this figure we represented by
eVw*eV (0) the potential of the plasma wave. The electron is injected
into the wave at the point A with a velocity v^ > v As it becomes
trapped in the wave potential well, it therefore oscillates in the wave
between points B and C.

To solve our equation we begin to remember that the integral in 0
represents time, as stated in (6.8), and so it must be a monotonically
increasing function of the periodical variable 0. In this way we define
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t (rad)

Fig. 6.1. -  Schematic drawing helping to understand the numerical way o f
solving equation (6.8) when trapping occurs. The electron is
injected at point A and then oscillates between points B and
C. I t  arrives to z=L at point D. Points 2, 3, 4 and 5 repre
sent the position o f the electron injection respectively for
$ = 0, tt/2 ,  it  and 3it/2.
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_______________ d0______________
J (trlcv. [sin(0+i)i) - sin $]

(6.15)

to be the time elapsed since the injection of the electron into the wave
until its first stop in the wave referential. The minus sign is again
due to the fact that v^ > v . . We also define the oscillation period in
the wave potential well by

__________________ dgT - 2
0 /  (*Hkvb) 2eEk

(6.16)
[sin(0+$) - sin $]

In figure 6.1 the almost horizontal straight line representsA
(0 +kL)/u, the l.h.s. of equation (6.10), which as we know (section 6.3)
represents the total travelling time x of an electron arriving at z=L,Jk
as a function of its relative phase 0 . x =kL/w is the time needed for

^  JU
the wave to travel from z=0 to z=L. The straight line (0"+kL)/w simplyA
states that if an electron has overtaken the wave (0 < 0) its travelling
time must be smaller than kL/u and vice-versa. For a trapped electron the
minimum and the maximum time of flight are respectively given by

kL + 0 kL + 0
(6.17)

Looking again at figure 6.1 we can see that the integral equation
can be written as

0 + kL
0'

2 T T
♦ n 2

d0

/(uH(u»-kvb)< 2eEk [sin(0+<f>) - sin $]

(6.18)
for the even values of n and as

0 + kL
0"

(n+1) I d0

J (u>—(w-kvb) - 2eEk [sin(0+6) ~ sin
(6.19)

when n is odd; n is a parameter, to be determined for every value of t,
which approximately represents the number of half oscillations in the
wave potential well. This number n must satisfy the following simulta
neous cond i t ions:
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witn n = even (6.20)
To ♦ (»♦!) J  > tm

or:
To * n I - tM

. with n = odd (6.21)
To - (n+1) | > xm

We thus see that ascertaining a value to n is equivalent to saying
that the solution of the integral equation will be found, starting from
t=T , after the passage of n half periods of oscillation and before theo
passage of n+1 of these periods. It is also easy to verify that when n
is odd the final electron velocity will be greater than the phase velo
city of the wave. Conversely when n is even the arrival velocity will
be smaller than vph- Thus the final electron velocities are easily de
termined if we can solve equations (6.18) and (6.19) and obtain, for

A
every $, the corresponding value of 0 , the relative phase of the elec
trons at the arrival at z=L.

The arrival velocity is then computed from

v - Ü  - 1  / ( u-kvu)2 - ^  [Sin(0%) - sin *] (6.22)k k o m
when n is even, and from

v « + X J (ui-kv, )^ - — ——■ [sin(0 +$) - sin $] (6.23)k k b m

when n is odd.
From figure 6.1 it is also easy to verify that, when trapping does

not occur for a certain value of $, this fact is simply characterized by
giving to n the value n = - I. With this value of n (odd) equation
(6.19) indeed becomes equal to equation (6.10). We have also verified
that equation (6.10) can be used either in the case of the free running
regime (no existence of real solutions for equation (6. 121) or in the
case when the stopping time Tq exceeds the minimum value of the flight
time t (condition b.21).iuIn short, we developed a computer program which was able to deter-
mine, for every value of «, the following quantities:
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a) The values of 0^ and 0^ (equation 6.13)» or the information that
trapping does not occur. In this last case it gives to n the value
n - -1.

b) The period Tq and the oscillation period T (equations 6.15 and 6.16),
c) The maximum and minimum values of the electron traveling time, tM

and t (equations 6.17).
d) The value of n (conditions 6.20 and 6.21).
e) The solution of equation (6.18) if n is even or the solution of

(6.19) if n is odd. These solutions are represented by the value 0
of the relative phase 0 at the time of the arrival of the electron
at z-L.

f) The value of the electron final velocity (equation 6.22 if n is even
or 6.23 if n is odd).

So, we can obtain numerically the value of the final electron ve
locity for every value of if. The computation of the final velocity
distribution function and of the percentual power losses (equation 6.2)
follows in precisely the same way as in the case in which trapping does
not occur.

6.5. numerical results

6.5.1. Results obtained without trapping

We used the following parameters: u = 5 x 109 rad s~*, «
2.30 x 109 cm s *, vph - 0.9 x vb, Av - 0.01 x 109 cm s'1. With these
conditions the critical field E is always greater than 18.1 V cm ^
(equation 6.9).

In a first study we analyzed the influence of the amplitude of the
electric field on the beam distribution function at z = 75 cm (length
of our experimental tube). We found that the width of the distribution
function in velocity space increases monotonically with E, as expected.
Remarkable is the result that the distribution function becomes almost
a plateau for the higher values of E in agreement with our former
measurements (chapter 4). This result was predicted in a completely
different approach by the quasilinear theory (IVANOV et ai., 1967). We
stress that these results are obtained in cases in which there is no
resonant interaction (the beam electrons are always faster than the
wave).
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Z =75cm.Z =10cm.

vb ---- ► 220225 vb — -

Fia. 6.2. - Spatial evolution of the beam distribution function for
*  q 9 - 1

E = 16 V cm , u = S * 10 rad s , v. = 2.30 x io cm s ,
9 — 7V * = 2.07 * 10 cm 8 .ph

Figure 6*2 presents the distribution functions obtained at z = 5,
10, 15 and 75 cm for the case of E *> 16 V cm .We notice that for small
z the shape of the distribution function resembles the theoretical one,
calculated on basis of a linearized theory. For large z the distribution
has a "plateau-like" character.

Analysis of the z dependence of the width of the beam distribution
function showed (figure 6.3) that the maximum and minimum velocities are
periodic in space but with different periodicity, as a result of both
the nonlinearity of the equation of motion and of the spread in the
average energy of the beam electrons. For z < 5 cm the linearized theory
holds and we notice that the beam velocity spread increases linearly in
space (or time) and proportional to E.

Figure 6.4 shows the beam energy losses after the passage through
the plasmas as a function of z for the same parameters.

The beam energy losses were computed from
p = (1 - I V < 100% (6.24)

$ 720 v ~
D
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Fig. 6 .3 . -  Beam v e lo c ity  spread as a fu n c tio n  o f  z  fo r  severa l values
m Q « 1

o f  the e le c tr ic  f i e l d ,  oi -  5 * 10 rad s  i  v, = 2.30 *
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Fig. 6 .4 . -  Beam energy lo sses  as a
E. u •= 5 x io^ rad s  *s
2.07  x 10^ cm 8

fu n c tio n  o f  z fo r  severa l values
v^ = 2.30  x iff* cm 8 ^j V ^  =

o f



We see that the beam loses and gains energy periodically. The dis
tance between two consecutive regions of maximum (or minimum) losses
(~ 25 cm) is in good agreement with Avb/(vb~vpb)* the mean distance
traveled by a beam electron, during the time needed by it to cross one
wavelength in the wave referential. The wavelength is in this case
A = 2.6 cm.

The maximum energy losses are of the order of 3%. From the conser
vation of energy we can predict that, under these conditions, the plas
ma wave will periodically be amplified and damped by the beam (BARTLETT,
1968; WHARTON et al., 1968; DRUMMOND et al., 1970).

Linearization of equation (6.1), considering that the beam velo
city will not differ much from v, , leads to

v * —  cos [(u-kv. ) t + $] (6.25)m D

By integration we obtain
sin [(« - kv. ) t + <|>]eE b________

v " vb + m (w-kvb) (6.26)

In figure (6.5) we plotted a family of curves representing solu
tions of the form of equation (6.26) for several values of the initial
phase $. The result of this procedure is that we verify that the linear
theory of wave—beam interaction predicts that the beam distribution
function will become periodically a Dirac function 6(v-vb). This means
that, even for low values of the electric field, the consideration of
nonlinearity is important. Indeed, the nonlinear treatment of the equa
tion of motion, as we verified, indicates that the beam will not become
again monoenergetic, but rather will acquire an almost constant velocity
spread (darker line on figure 6.5). Thus we expect that, for sufficient
ly large values of z, the "plateau—like11 distribution shown in figure
(6.2) will not change much with z.

We thus verified that the results presented in chapter 4 (figure
4.7a), related with the beam energy spread in the first regime of the
plasma, can be explained with this simple model for the beam-plasma
interaction. This is especially true for the case of excitation of the
plasma instability as its amplitude remains practically constant during
a great part of the burst duration. This one is of the order of 1000
oscillation periods (a few ps) which is extremely long compared with the
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Fig. 6.5. - Comparison between the velocity spread in the beam as a

function of z, obtained respectively with a linearized

equation and with the presented nonlinear treatment.

Conditions are the same as in figure 6.2.

transit time of the beam electrons (~ 30 ns).
Although the present treatment explains the energy spread in the

beam (and so its power losses) it can not give an explanation for the
saturation of the plasma instability amplitude at such a low value of
the electric field. "Why do the electron plasma bursts saturate quickly,
remain a long time with constant amplitude and then decay all of a
sudden?"

6.S.2. Detailed study of a particular case of wave-beam interaction

when trapping occurs

Before considering the wave-beam interaction in a more general
way, let us first study in detail a particular case of this interact
ion, which will reveal all the potentialities of this numerical ana-

. 9 -1 9lysis. We choose for parameters: u> = 5 * 10 rad s , v. = 2.30 * 10
cm s , v , = 0.9 x v Av = 0.05 x 10^ cm s *, L = 75 cm, E = 150 V_j Ph h
cm
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In figure 6.6 we plotted as a function of the initial phase $ the
values of the maximum and minimum relative phases (0,, and 0 ). We seeN m
that in the interval 230° <_'$<_ 310° trapping does not occur. No matter
how large the electric field will be, there^ always exist some values of

around $ m 3it/2, for which trapping can not occur (provided that
v, 1 v as we are injecting the beam electron at the top -of the po-b ' ph
tential barrier.

In figure 6.6 we also see that the trapping oscillations have a
minimum amplitude for <p “ tt/2 (injection at the bottom of the potential
well while the instantaneous value of E is zero). The difference (0„ ~
0 ) tends towards 2ir for the values of (p which separate the region inm
which trapping occurs from the region of free running of the beam elec
trons along the wave.

In figure 6.7 we plotted, also as a function of $, the oscillation
period in the wave potential well T and the stopping time T . We see
that the oscillation period depends on $ and so (figure 6.6) on the
amplitude of the trapping oscillation (0^’- 0m) as is wellknown. In this
case it varies from the minimum value T=8.12 ns (for <j> - n/2) to 00 for
the values of $ corresponding to the so-called separatrix (line separa
ting in phase space the trapping from the free running regimes) (BEST,
1968). T has a minimum for $ ■ 9 , and becomes also 00 at the separa—
trix.

Linearizing eqution (6.4) for small amplitude oscillations, in the
case of $ * ir/2, we obtain

0 -
eEk (6.27)

the wellknown linear harmonic oscillator equation. The period of these
oscillations then is

T • 2w(-m/eEk)^ (6.28)

Substituting in this equation our parameters, we get

T - 7.87 ns.m
We verified that, in the neighbourhood of ♦ = n/2, the oscillation period
is only some 32 higher than this limit value.

The approximate number of half oscillations n made by the beam elec-
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.  6.6 . -  Maximum and. minimum values o f  0  as a fu n c tio n  o f  Condi-
9 , - 1  9 —1tio n s: u> = 5 * 10 rad s ; v. — 2.30  x  10 cm 8 :  y  „ -

9 - 1  b -1  Ph2.07  X lCT cm 8 ;  L = 75 cm; E = 150 V cm 1.

6.7. -  O sc illa tio n  period  T and stopping time T as a fu n c tio n  o f
4>. Conditions are the same as in  fig u re  6.6.
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trons in the wave potential well during their trajectory along the in
teraction chamber varies from n * - 1 for the separatrix up to n • 8
for values of $ close to <|> “ it/2.

Figure 6.8 presents the corresponding velocity distribution func
tion at z • 75 cm. In this figure we separated the distribution into
two parts respectively related with the trapped part of the beam and
its free part. We Verify that the distribution function of the trapped
part of the beam develops in a velocity region which is symmetric in
relation to the wave phase velocity, as was discussed on pure physical

Fig. 6.8. - Velocity distribution function obtained at z-75 cm under

conditions presented in figure 6.6. The darkened area is

limited by the distribution function of the trapped elec

trons.
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grounds in chapter 5. Further we verify that the total distribution is
also quite symmetric in relation to the line v = v The untrapped
part of the beam has of course a preponderancy to the higher energies.
In this case the percentages of the beam electrons which become trapped
in the wave potential well is 77.5%.

The result presented in figure 6.8 seems a little bit disappoint
ing, as the distribution is far from being a "plateau". However, what
we experimentally measure is not directly the beam distribution func
tion but rather one of its particular integrals, representing the
current density due to electrons with an axial velocity greater than
a certain value (equation 4.1). Thus if we want to compare the numer
ical results with the experimental ones we should integrate the obtain
ed distribution function to regain the energy analyser characteristics
j * j(V). The computer program included the calculation of this charac
teristic. So, in figure 6.9 we can see that although the distribution
function is double-humped, the computed energy analyser characteristic
is not far from having a trapezoidal shape, in agreement with our for-

V (volt)
-500 -1000 -1500

Fig. 6.9. -  Theoretical energy analyser characteristic corresponding

to the beam distribution function presented in figure 6.8.
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roer measurements (figure 5.6.b).
Therefore we should emphasize that the acquisition of data related

with the beam distribution function from measurements done with electro
static energy analysers must not be taken too seriously, as only quali
tative results are obtained. Indeed, the unavoidable integration will
mask for a big part the fine structure of the velocity distribution. Re
cently, this same limitation of the electrostatic energy analysers was
discussed by LEVITSKII et al. (1970), who could observe a series of
small humps in the beam distribution function, using a cylindrical capa
citor analyser. However, the use of the conventional retarding field
analyser makes the humps on the distribution function unnoticeable.

6.5.3. Generalization of the results obtained when trapping occurs

In this section we will study the influence of the amplitude of
the electric field of the beam-plasma instability on the behaviour of
the beam electrons which pass through the interaction chamber. For the

9 —| onumerical calculations we used: u = 5 x 10 rad s , v, 1 2.30 x 10 cm
s- * v . - 2 x JO9 cm s” *, Av - 0.05 x 109 cm s 1, L - 75 cm. These

phconditions are approximately representative of the real beam-plasma
interaction for B - 0.0270 Wb nf2, at the lSt - 2nd regime transition
and at the beam centre (figures 5.3 and 5.11), in case of the excit
ation of the cyclotron instability.

In figure 6.10 we plotted the results related with the extension
of the velocity spread in the beam and with its percentual power losses.
In figure 6.11 we present some of the obtained velocity distribution
functions.

We can verify that the velocity spread (figure 6.10.a) begins to
develop around the beam initial velocity for the low values of E as no
trapping can occur. In this case we see that the electron velocity
always exceeds the wave phase velocity. As soon as the electric field
attains 31.8 V cm ^ the minimum value of the critical field (equation
6.9), the trapping mechanism starts. For higher values of E the distri
bution function will have a tendency to develop symmetrically around
the wave phase velocity. This is seen to happen for E > 60 V cm .
For still larger values of E the distribution remains practically
synsnetric around vpl). For E = 150 V cm"1 the theoretical velocity spread
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25Ö\
ElVcm'l

Fig. 6.10. - Velocity spread in the beam and the corresponding power
losses as a function of the amplitude of the electric

field of the instability. Conditions: w - 5 x Iff* rad s~^,
= 2.30 x 10® cm s *, v . = 2 * 10? cm s *, L = 75 cm.

agrees with the experimental one (figure 5.11).
Related with this spread in the electron velocity it is to be expec

ted that the beam power density will also vary with the amplitude of the
electric field. Indeed we see in figure 6.10.b that the beam loses
energy for E < 250 V cm *. For higher values of E the beam, on the con
trary, gains energy from the wave. This fact can be easily understood if
we think that the obtained distributions have in general a "plateau
like" character (figure 6.11), at least in the sense formerly referred
(figure 6.9). Therefore the energy balance will be as follows: For very
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small values of E the beam will have also very small power losses
(figure 6.4). When trapping starts, a fraction of the beam is forced to
have an average velocity equal to the wave phase velocity and so it
will lose a considerable part of its initial energy (v^ > v . With
the increase of E the fraction of the beam which becomes trapped also
increases and so the beam power losses increase. But, because the
distributions remain symmetric around a constant velocity v ^ , when
the velocity spread will exceed a critical value (which corresponds to
the maximum power losses) the situation will change. Indeed, the power

E=»0 Vcm-'

v(109cm s'1)

Fig. 6.11. -  Some examples of the theoretical beam velocity distribur-

tion functions for the condition referred to in figure

6.10.



is made up of individual contributions proportional with v . Therefore,
when the velocity spread increases beyond the critical value, symmetri
cally around v then, the increase in the contribution to the power
coming from the fast electrons (v > vpj,) will begin to surpass the si
multaneous decrease in the contribution from the slow electrons
(v < Vp^). This is of course only true if, not only the velocity spread
(figure 6.10.a), but also and fundamentally, the distribution function
itself, will develop symmetrically around a constant velocity (v ■ vph^’
as it is seen to be the case (figure 6.11). This is the reason for the
decrease of the beam power losses with E for large values of E.

For electric fields greater than 250 V cm we even verify that
the beam gains energy from a wave which is slower than itself! These
energetic considerations lead intuitively to an explanation for the sa
turation of the amplitude of the cyclotron bursts in our beam-plasma
system. Actually, due to the unavoidable losses of the system, the beam
must loose a certain amount of energy so that the beam-plasma system
becomes able to sustain an instability. We have verified, with the pre
sented simple model, that the result of a further growth of the insta
bility, beyond a critical value, can only be obtained at the cost of
a reduction of the beam power losses. But these losses are just neces
sary to maintain the instability. For still larger values of the
electric field (E > 250 V cm *), we arrived at the absurd conclusion
that the wave can only grow at the cost of a decrease in its electro
static energy, as conservation of energy states that the energy that
the beam gains must be equal to the energy that the wave looses and
vice-versa. We therefore conclude that, f<jr the conditions given above,
the maximum electric field of the instability must lie between 125 and
250 V cm ^. This is in rather good agreement with our former measure
ments (chapter 5) in which we found for E the value of 150 V cm at
the 1st - 2n regime transition.

Table 6.1 presents the numerical results, obtained for the differ
ent values of E, concerning: a) the percentage B of the beam electrons
which becomes trapped; b) the maximum number of half oscillations in
the potential well n , made by the beam electrons during their transit
along the interaction chamber; c) the percentual power losses n; d) the
extension of the velocity spread in the beam.



TABLE 6.1

NUMERICAL RESULTS

E (V cm *) 50 100 150 200 250 350

e (Z) 40.9 62 69 73.5 77 80
nmax 3 6 8 10 11 13
n (Z)
<v-v )M m (109 cm s *)

6.25
0.90

16.40
1.15

15.85
1.40

10.01
1.55

-0.06
1.70

-7.06
2.05

Parameters: u - 5 x 109 rad s-1; v. - 2.30 x ;o9 cm «” *;

v_h “ 2 x 109 cm s' ; L - 75 cm.

6.6. Final considerations

Concluding this numerical study we should consider one of its fun
damental limitations: - We assumed that the electric field can be con
sidered constant along the interaction chamber. This will not be, almost
certainly, the experimental situation. Indeed, not only the plasma den
sity and temperature vary significantly with z (LEVITSKH et al., 1967),
but and fundamentally, the beam-plasma instabilities, especially the
electron plasma ones, can have a convective character. Therefore, if the
beam-plasma bursts will be coherent in space, we expect that their am
plitude will increase with z. This fact however, does not change the
most important results of the present numerical analysis, namely the
formation of the "plateau-like" distributions. Anyhow, if the wave am
plitude saturates quickly in space, the presented model for the wave-
beam interaction can become quite reasonable.

Therefore we stress the importance of future measurements of the
correlation length in the plasma for the different beam-plasma insta
bilities (YAREMENKO et al., 1969, 1970; LAVROSKII et al., 1967, 1970;
GASHEVSKI et al., 1969). Only this type of measurements can support or
reject the assumed model for the beam-plasma interaction, by.furnishing
information about the spatial distribution of the instability electric
field during a beam-plasma burst.Only measurements of this type can
give an answer to the fundamental question: "Are the beam-plasma bursts



local phenomena or are they spread over the entire interaction chamber?"
We have thus seen that the measurements referred to in chapter V

can be reasonably described by the trapping mechanism described in this
chapter. For the measurements presented in chapter IV we are now faced
with the question: "What is the mechanism involved in the development
of the instabilities?"

We think that the results obtained in the first regime of the plas
ma are better explained on basis of the presented model for the inter
action. Indeed, the spectrum of oscillations is narrow and fast analysis
of the bursts reveal the almost monochromatic character of the insta
bilities. The width of the spectrum is probably due to the amplitude
modulation of the instabilities (bursts) and to the formation of side
bands arising from nonlinear wave-particle interaction (trapping). The
reason for the saturation of the instabilities at such low values of
the electric field and for the sudden disappearance of the instability
is stiir obscure. However, the variation of the internal beam-plasma
parameters, which accompany the excitation of these instabilities, can
be on the basis of these effects.

For conditions which lead to the ist-2n<* regime we think that the
state of the system can be described by a relaxation type oscillation
of low frequency (ion instability) which periodically makes possible
the excitabion of the weak plasma instability and the strong cyclotron
one. The model considered in this chapter is assumed to be valid for
the instantaneous description of the state of the beam-plasma system.

In strong second regime states the situation can be completely
different and this will be the subject for future investigations. In
deed in these states the spectrum of oscillations is rather broad, the
radiation of the plasma decreases in relation to that measured at the
transition of regime, and the velocity spread is extremely large and
without fluctuations. Therefore we think that in these last states the
presented model is not applicable. It is possible that the conditions
of applicability of the quasilinear theory will become fulfilled. In
deed the existence of a broad spectrum suggests weak turbulence and
the fact that we verified experimentally the formation of a plateau
in the distribution function, which extends to very low energy values,
is in good agreement with the predictions of this theory. As the dis
tribution function does not show appreciable fluctuations and the



radiated power is relatively small, the interaction process must change
of character when the plasma enters the second regime.

Finally, we should stress the importance of the recent studies
on the behaviour of trapped particles in beam-plasma systems. Indeed,
trapped particles can, in general, give rise to some interesting effects
(LYAMOV et al., 1968). Among these ones, some can have an important role
in beam-plasma systems, like for example:

- the formation of side bands in the spectra of the excited insta—
bilities (WHARTON et al., 1968), due to the nonlinear exchange of energy
between the trapped particles and the wave;

- the nonlinear Landau damping of large amplitude plasma waves
(DAWSON et al., 1968; RAND, 1968; ELDRIDGE, 1970).

- the excitation of a new type of instability, the so-called
trapped particle instability (ZASLAVSKI1 et al., 1968; KRUER et al.,
1969; SHAPIRO et al., 1970).



CHAPTER VII

MEASUREMENT OF THE TRANSVERSE ENERGY OF THE BEAM ELECTRONS

7.1. Introduction

As we have seen (section 3.8) theory predicts that the development
of beam-plasma instabilities resulting from the anomalous Doppler ef
fect will be accompanied by a considerable increase in the beam trans
verse energy (SHAPIRO et al., 1962, 1968). In fig. 4.3 we can verify
that there are two instabilities which arise due to the anomalous Dop
pler effect: one appearing with a frequency slightly above the electron
cyclotron frequency (SMULLIN êt al., 1962) and another with a frequency
below the electron plasma frequency. These two instabilities have
rather small growthrates when compared with the ones related with the
excitation of Cerenkov instabilities. However, a significant increase
in the beam transverse energy can be attained when the Doppler shifted
frequency of the instabilities, as seen by the beam electrons, becomes
equal to the electron cyclotron frequency. In this way, the beam elec
trons will feel the transverse field of the instabilities always in
phase and this leads to a coherent increase in their Larmor radius.

Measurements of the transverse energy of the beam electrons only
recently began to appear in literature (MORSE, 1969; SCHUSTIN et al.,
1969; CABRAL et al., 1969, 1970). In general it is still rather diffi-
cuit to obtain a clear picture of the radial dependence of the beam
transverse velocity distribution function. In our measurements we suc
ceeded in obtaining some information about the beam transverse energy
in two particular cases: — The first one deals with measurements made
at the beam centre and makes use of a new possibility of our electrosta
tic energy analyser. The second particular type of measurement was to
obtain an estimate for the transverse energy at the beam edge. This
method is based on the experimentally observed increase in the beam dia
meter during the bursts of the beam-plasma instabilities (KHARCHENKO et
•1*., 1962). Let us now consider the last case.



7.2. Measurement of the transverse energy at the beam edge

7.2.1. General considerations

An estimate for the transverse energy of the beam electrons near to
the beam edge can be obtained by measuring the increase in beam diameter
due to the excitation of the beam-plasma instabilities. For these measure
ments we have to analyse the beam radial profiles. These ones were ob
tained with the deflection technique referred to in section 5.3.6. As we
remember, the beam diameters were computed from

where L is the interaction length and B, is the variation in the trans
verse magnetic field necessary to deflect the beam, on the energy analyser
external wall, over a distance equal to its radius.

Considering the determination of the transverse energy we must relate
this quantity with the experimentally observed increase in the beam dia
meter. Let us assume that, when the instability starts, the beam is cold
and has its minimum diameter (measured under optimal conditions in a good
vacuum). Let us also admit that the final diameter is attained due to the
increase in the transverse energy of the electrons which were initially at
the beam edge. Under these circumstances these ones will acquire at least
a Larmor radius equal to one half of the measured increase in the beam
diameter. These assumptions lead of course to a minimum value for the
transverse energy Uĵ , which is computed from the Larmor radius assuming
that the electrons rotate with the cyclotron frequency.

Ui * J n u  ̂  r.̂  (7.2)J- ce L

In this section we will present measurements obtained under condi
tions similar to those of chapters IV and V.

7.2.2. Time integrated measurements of the transverse energy of the beam

electrons during the development of the beam-plasma instabilities

The measurements which will be presented were obtained under the ex
perimental conditions referred to in chapter IV. We remember that we let an
electron beam interact with its own created plasma in an interaction cham
ber of variable length. The beam current, beam potential and the Helium
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Fig. 7.1. - Final and minimum values of the beam diameter and the asso
ciated transverse energy as a function of L for two values

of B. Conditions: = 1500 V, i. = 16 mA, p = 4.8 * 10~4

Torr. — o — e—  B = 0.0540 Wb nr2- — s--B = 0.0325 Wb m~2.

pressure are kept constant in these measurements in which the main para
meters are the interaction length L and the magnetic field B.

Figure 7.1.b presents the measured values of the beam diameter as a
function of L for two values of the magnetic field. For each value of L
we measured the maximum attained beam diameter as well as its minimum
value. The minimum beam diameters were measured by adjusting the back
ground pressure to an optimum value in the neighbourhood of 10 ^ Torr.
It was- observed that for still lower values of the pressure the beam
diameter increases again. This is possibly due to the fact that, for
these rather low values of the pressure (~ 10  ̂Torr), the plasma densi-



ty can become smaller than the beam density and so the beam is not neu~
tralized by an ion background. Therefore its transverse energy can take
appreciable values due to the space charge field.

In figure 7.1.b we can verify that the minimum beam diameter in
creases with L. This means that the beam-plasma system is always unsta
ble, even at very low values of the Helium pressure. From this figure
we can presume that the diameter of the beam, when this one is injected
into the plasma, will be of the order of 2 mm, a reasonable value if we
take in consideration the design of our electron gun. This leads to the
conclusion that, during its interaction with the plasma, the beam ac
quires a considerable amount of transverse energy.

Figure 7.1.a presents the computed values for the transverse ener
gy obtained under the assumption that the Larmor radius is equal to
one half of the difference between the final and the minimum diameters of
the beam, measured at the distance L. This procedure leads of course to
minimum values for the transverse energy. Even so, we verify that, es
pecially for values of L which lead to the ]st-2nt* regime transition,
the transverse energy can be as large as 285 eV.

The dependences on L of the transverse energy obtained in these two
cases, permit also to distinguish the completely different behaviour of'
the beam-plasma system for low and high values of the magnetic field as
referred to in chapter IV. Indeed the ist-2n<̂  regime transition has an
abrupt character for low values of B and a continuous character for high
values of B. Interesting is the result that the transverse energy in the
second regime (high values of L) decreases substantially with L for low
values of the magnetic field. We have thus verified that the transverse
interaction between the electron beam and the plasma waves is more in
tense under conditions which lead to the regime transition in the plasma.

7.2.3. Correlated, measurements of the transverse energy of the beam elec

trons at the ls^-2n regime transition

We now present measurements obtained under the experimental condi
tions referred to in chapter V. This means that we are interested in the
obtention of correlated measurements made at the 1 -2 regime transi
tion. The beam radial profiles show, under these circumstances, two well
defined configurations. Using the correlation technique, described in sec—
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Fig. 7.2. - Example of a correlated measurement of the beam profile
(Horizontal scale — 1 rrm/div). a) correlated with the cyclo
tron instability; c) correlated with the plasma instability;

b) superposition of both profiles. Conditions: - 1500 V;

i. = 8 mA; p = 5 x 10 * low; L = 73 cm.

tion 5.2, we could distinguish in the beam (figure 7.2) two states ob
served respectively when the electron plasma and the electron cyclotron
instabilities are present.

With a series of similar measurements, made at other values of the
magnetic field, we could obtain the results presented in figure 7.3.
There we plotted the different values of the beam diameter as a function
of the inverse of the magnetic field. For every value of B we determined
the minimum value of the beam diameter as well as those obtained respec
tively in correlation with the plasma and the cyclotron instabilities.
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Plasma instability
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Fig. 7.3. - Beam diameters occurring during the plasma and the cyclotron

instabilities. Conditions: = 1500 V; i^ = 8 mA;

3.9 x 10 ^ <_p <_ 5.4 x io ^ Torr; L = 73 cm.

The minimum beam diameters were again obtained by adjusting adequately
the Helium pressure (p ~  10 Torr).

From figure 7.3 we can conclude:
a) The minimum diameter remains practically constant for all values

of the magnetic field;
b) The largest beam diameter is attained during the bursts of the

cyclotron instability;
c) The diameters occurring during both instabilities show a linear

increase with the inverse of the magnetic field.
According to our former assumptions, the electron Larmor radius is

equal to one half of the difference between the final and the minimum
beam diameters. Then, using equation (7.2) we arrive at the results pre
sented in Table 7.1, where we can verify that, especially for the case
of the excitation of the cyclotron instability, the beam electrons pos
sess rather large transverse energies. This means that if a magnetic
mirror would be applied to our experiment, it would be possible to build
up a high temperature plasma directly from beam electrons. The formation
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of plasmas with a high electron temperature is a well known characteris~
tic of beam-plasma experiments in a magnetic boLtle (SMULLIN, 1968).

TABLE 7.1

TRANSVERSE ENERGY OF THE BEAM ELECTRONS AT THE BEAM EDGE

B rL [mm) U± (eV)

—A -2(10 Wb m ) plasma
instab.

cyclotr.
instab.

plasma
instab.

cyclotr.
instab.

270 - 3.15 - 635
324 1.5 2.4 208 530
378 1.25 1.9 196 455
432 0.9 1.35 132 300
485 0.57 0.9 67 168
540 0.3 0.52 23 67
594 - 0.2 - 12

7. 3. Measurement of the transverse energy at the beam centre

7.3.1. General considerations

Returning to figure 4.2 we can see that the first collector of the
electrostatic energy analyser (plate 5) has also a hole (0 » 0.2 mm) in
its centre. Electrons which pass through this hole are then collected on
the second collector (plate 6). The assembly of these two internal col
lectors can be moved into the transverse direction over a maximum dis
tance of 9 mm. This transverse scan of the second hole of the analyser
is accomplished by 200 turns of a motordriven axis equiped with a heli-
pot for X-Y recording. This permits a very precise measurement of the
"maximum" electron Larmor radius in a direct way. Indeed if we make a
plot of the current collected on the second collector as a function of
the radial distance r over which the assembly of the two collectors has
been displaced, we obtain a curve peaked at r = 0 (figure 7.5) and de
creasing with the modulus of r. The position r = 0 represents the situa
tion in which the two holes of the analyser are aligned with the magne-
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tic field lines and with the analyser's retarding field structure. How
ever the leak current between the two collectors (~ 1 0 10 A), due to
the applied potentials, is noisy and so it sets a limit to the accuracy
of the measurements. For the determination of the "maximum" transverse
energy we assume that we only collect electrons on the second collector
if its current is at least a factor 2 higher than the value* it has in
the absence of the electron beam. Even so we still have a good accuracy
in the measurements as this limiting current is always a factor 104 -
10̂  smaller than the maximum collected current (measured at r = 0).

Now if we call rM the distance from the axis at which the collec
ted current decreases to its limiting value, then there must exist at
least some electrons which possess a Larmor radius equal to

rL “ 1 <2tm  " 61 - 62) (7.3)
where 6. and 62 are the diameters of the two holes on the analyser.

The reason for performing the measurements at the beam centre is
that only there we expect rotational symmetry, which is a necessary
condition for the validity of expression (7.3).

Our measurements were done with the axial retarding potential
continuously swept (50 Hz) between - 100 V (to reflect the plasma elec
trons) and - 2000 V (to reflect all the electrons). In this way the
helical electron path inside the analyser, which has a length of about
12 cm, varies periodically in pitch. Thus we can, in first approxima
tion, expect that when the beam electrons arrive at the first collec
tor (second hole) they will have the same probability of being at any
particular position of their transverse circular orbit. This means
that, no matter what their parallel velocity is, there will be some
instants of time at which the beam electrons will strike the first
collector at their maximum distance from the analyser's axis. This is
an important point to stress, as without this sweeping technique the
measurements of the "maximum" transverse energy would not be trust
worthy.

The values of the transverse energy are then determined, by the
knowledge of the Larmor radius (equation 7.3) and of the electron cy
clotron frequency, according to equation (7.2).
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7.3.2. Experimental results

We began by measuring the "maximum" transverse energy possessed by
the beam electrons, as a function of the beam current, for several
values of the magnetic field. Figure 7.4 presents the obtained results.

In this figure we can verify that:
a) For all values of B, the transverse energy begins to increase

with the beam current i. , attains a maximum and then decreases with a
further increase in the beam current

b) The value of i. associated with the maximum transverse energy is
some 20% lower than the one corresponding to the so-called lst-2n<* regime
transition.

B-Q0405 Wb m-2

Fig. 7.4. - "Maximum" transverse energy of the beam electrons as a

function of the beam current for different values of the

magnetic field. Conditions: -  1500 V; p - 4.8 *  10~* Tor*;

L = 72 cm.
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c) The higher the magnetic field the higher the transverse energy.
It was also verified that the dependences on the beam current of

both the transverse energy and the total radiated microwave power
(measured with a bolometer) are rather similar. Thus, the transverse
energy is almost certainly related with the high frequency instabili
ties .

7.4. Determination of the 3-dimensional velocity distribution function

of the beam electrons at the beam centre.

7.4.1. Theoretical considerations

Let us now try to derive an equation for the measurement of the
3-dimensional velocity distribution function of the beam electrons at
the beam centre. These measurements will be based upon the plots of
the current collected on the second collector (j) as a function of the

/  A  f \

r ( m m)

Fig. 7.5. - Plot of the current collected on the second collector as a

function of r for different values of the fixed retarding

potential in the analyser. This one is varied in steps of

200 V from -800 to -2000 V. Conditions: V. = 1500 Vi i. -

17 mA; p -  4.5 *  10 Torr; L = 73 cm. B = 0.0675 Wb m .
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radial distance (r) over which the collectors assembly is displaced.
As we wrote before these plots are curves peaked at r=0 and decreasing
with the modulus of r. Figure 7.5 presents some examples of these curves
related with the measurement of the beam transverse velocity distribu
tion function. The small ripple is due to the rotation of- the axis of
the driving mechanism of the collectors assembly (about 200 turns for
a 9 mm displacement) and represents deviations of the order of 0.02 mm
from the ideal rectilinear continuous movement of the analyser second
hole. From identical curves we are now interested in obtaining an ex
pression for the determination of the total velocity distribution.

In figure 7.6 we make a sketch of the projection on a transverse
plane of some electron trajectories inside the analyser. The position
of the first hole of the analyser is represented by r“0. For simplicity
it is assumed that this first hole has no physical dimensions. So all
electron trajectories begin at r=0. The second hole, with a diameter
equal to 6, is placed at a distance r' from the analyser axis (6 << r').
From figure 7.6 it is clear that only electrons with Larmor diameter
equal or greater than r' can be collected on the second collector.

Now, if we define f(v^, V||) as the time averaged beam velocity dis
tribution function, then, due to the expected rotational symmetry of
our system, the distribution function per unit of transverse speed is

f(vl ’ v||> “ 2irvl f(Yl« |̂|) (7.4)

As the transverse speed v. and the electron Larmor diameter r are
related by

vi " 1 “Ce r (7.5)

f(v^, V||) can be written as f(r,v..), which of course satisfies the nor
malization relation

n Jo 1 f(r,Vn) dvii dr (7.6)
o o

In this equation n, is the beam density and n = n + n, is theb o p b
total electron density of the beam-plasma system (sections 2.1 and
2.3.2). So, we have from (7.4) and (7.5)

ce f(vif v„)f(r,Vi.) = mu r (7.4.a)
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We are now interested in obtaining an expression for the current
density j(r) based on the value of f(r,Vn). This current density is made
up of contributions from electrons with Larmor diameter equal or greater
than r'. Let us then imagine that we have an anular slit centered at r=0
with an average radius equal to r' and a width equal to 6 (figure 7.6).

For every trajectory (and this means for every pair of values of v.
and Vu), the first condition for the entrance of the respective electron
through the second hole of the analyser is that its intersection point
with the plane of plate 5 (figure 4.2) will fall inside this slit. The
probability for this to happen is, due to the formerly referred sweeping
technique (modulation of Vi.), simply given by

P1
2A(r)
nr (7.7)

where 2A(r) is the portion of the electron transverse orbit comprised be-X g
tween r' — x  and r' ♦ y  . Now, due to rotational symmetry and because
actually we do not have a slit but rather a hole with a diameter 6,
there is another probability factor p.,for the electron passage through

Fig. 7.6. - Projection on a transverse plane of some electron trajec

tories inside the analyser.
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the hole, which is independent of its Larmor diameter. This one is

p2
6

2 it r' (7.8)

Now we must analyse how do electrons with a certain axial energy
contribute to the current measured at plate 6. We remember that the re
tarding potential in the analyser (plate 3) was continuously swept from
-100 to -2000 V by a 50 Hz sinusoidal voltage. Then during a fraction
a(U|| ) of the sweeping period (20 ms) , electrons can not reach the col
lector as they are reflected by the potential barrier of the analyser.
o(Uj|) is of course a decreasing function of U... So we verify that fast
electrons are favoured in relation to the slower ones, in what concerns
the build up of the collected current, by two reasons: First, by the
greater fraction of time in which they can be collected and second,
simply because they are faster.

Under these circumstances, we can finally write the expression for
the current density to be measured at a distance r*r' from the analysers
axis:

j(r')-
b) n eóe o r f(Vĵ ,v.|) A(r)

irr V|| [l-a(V||)] dV|| dr (7.9)
r' o

Without any prescription for the total velocity distribution func
tion it is not possible to derive f(v^,v„) from the knowledge of j=j(r).
Anyhow, if there is no correlation between the transverse and the axial
velocities of the beam electrons, the total distribution can be written
as a product of two terms (MORSE, 1969; SEIDL, 1970)

f(v V  “ * f<V||) (7.10)

In this case we can simplify equation (7.9) to
2 <» <*>n eow r r

j(xV)» " *CC jf(v^) A(r) dr x lf(V||) Vy [l-a(V|| )] dvy (7.11)
r 1 o

As the last integral is independent of r', we obtain, by different
iation

Ir* j(r')l -  Mr*) ^  (7.12)

Thus, we can determine the transverse distribution function if we
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know A(r'). Looking again at figure 7.6 we verify that 4(r), which is
approximately equal to 6 for r »  r', increases when r approaches r'.
When r-r', A(r) will be of the order of

6(r') « (2r'6)^ (7.13)

Thus, the final expression for the transverse velocity distribution
function can be written, in general, as

~  r * x [r x j (r) ] (7.14)

We recall that expression (7.14) is only valid if the three funda
mental assumptions are satisfied:

1) There is no correlation between v^ and Vu .
2) The system is rotationally symmetric.
3) There is an equal probability to find the beam electrons at any

particular position oh their transverse circular orbit (sweeping techni
que).

A particular case of the first assumption (equation 7.10) is the
case in which the beam is axially monoenergetic. In this case its dis
tribution function can be written as

f(vL,V||) - f(vx ) x 6(V||-vb) (7.15)

where ^(vn-vi)) *-s a Dirac function, and so equation (7.14) is valid.

7.4.2. Experimental results

7.4.2.1. Proof that there is no correlation between the transverse and

the axial beam velocities in strong second, regime states of

our beam-plasma sustem

Under our experimental conditions the beam usually shows rather
large velocity spreads. So, the determination of its transverse veloci
ty distribution function can not be obtained directly from the analysis
of the plots of the total collected current as a function of r. Anyhow
we still have the possibility to investigate if, under our experimental
situation, the transverse velocity of the beam electrons is or is not
correlated with their axial velocity. To this end we use the following
technique: — We choose states of our beam-plasma system in which the



axial velocity spread is large (second regime states). Then we reflect
from the analyser electrons with axial energies smaller than a certain
value U.| , without disturbing the contribution of the faster ones to the
collected current. In other words, we are interested in having a(Uu) = 1
(permanent reflection) for U < IL while keeping unchanged the values of
a(U.i ) for electrons with U > U... This is simply done by applying to
plate 2 (figure A.2) a fixed negative potential V.. , and operating plate
3 under the formerly referred manner (sweeping technique). The positive
potential for reflection of the plasma ions is applied to plate A. With
this technique we cut from the collected current the contribution of
electrons with U < IL without changing the contribution of the faster
ones.

This procedure leads to a family of curves with U., as parameter
like in figure 7.5. In this figure U» was varied in steps of 200 eV.
From this type of measurements we can determine the differential con
tribution to the total collected current arising from electrons with
a well defined axial energy (between U.| and U., + AU). These differential
plots represent the collected current originated by an almost axially
monoenergetic beam of average energy equal to U.. + J AU.

So, we verify that, although we can not use expression (7.1A) a
priori to the total curve j«j(r), at least we can apply it to the
differential curves Aj=Aj (r ,Uii ). We have normalized these last curves
to the same level (Aj(r*0) = Cte), and we have presented them on a
single graph as a function of r (figure 7.7). We see that the radial
dependence of Aj(r,U||) is practically independent of Un . Therefore, as
similar measurements made for other values of the magnetic field lead
to the same conclusions, it seems that in our experiment the beam trans
verse velocity at the beam centre, is not correlated with its axial
velocity.

In chapter 5, we explained the extension of the axial velocity
spread at the ist-2n<* regime transition, in terms of trapping of the
beam electrons in the cyclotron wave potential well. If this trapping
mechanism is also valid for the second regime of the plasma, then why
should indeed the transverse velocity of a particular electron depend
on the phase of its trapping oscillatory movement, which as we verified
has a period short compared to the electron transit time?! On the con
trary, the experimental observation of a strong dependence of v^ on v.. ,
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4J=Ajlf.U/)
(au)

0.8

0.6

• 1000-1200 eV
• 1200 -UOOeV
• 1400-1600 eV

1600—1800 eV
• 1800 *  2000eV
• above 2000eV

1
— »  r(mm)

Fig. 7.7. - Proof that the transverse velocity distribution function is

independent of the axial velocity. Conditions presented in

figure 7. S.

as predicted by theory (SHAPIRO et al., 1968), would immediately lead to
a severe criticism about the assumed trapping mechanism. These last
measurements are therefore in agreement with the considerations made in
chapters V and VI.

7.4.2.2. Quantitative results

In figure 7.7 we plotted six differential dependences of the type
Aj * Aj(r,Uy). The curve traced on this figure represents the average
variation of Aj with the Larmor diameter r. This curve permits the ob-
tention of the beam transverse velocity distribution function. Indeed,
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for each of the six dependences summarized by this single curve, the
axial velocity was practically constant and equation (7.14) is therefore
valid.

We verified that the so obtained distribution is constituted by a
cold bulk of electrons and a hot tail which is found to be Maxwellian.
With the conditions of figures 7.5 and 7.7, the temperature of the hot
tail is as large as 31 eV and electrons are found with transverse ener
gies of the order of 125 eV.

Similar measurements were done, as we wrote before, to other values
of the magnetic field. We verified that the shape of the distribution
function was in every case always the same, with the cold bulk of elec
trons and the hot Maxwellian tail. Figure 7.8 presents the obtained

-2distribution functions for the case of B - 0.0270 Wb m , with the beam
current as a parameter. This figure is quite representative of the
behaviour of f(v.) as a function of the beam current, and so we can
conclude:

- The temperature of the hot tail begins to increase with i, ,b
reaches a maximum and then begins to decrease with a further increase
on the beam current. This current dependence is similar to that of the
"maximum" transverse energy (figure 7.4) and of the total radiated
microwave power measured with a bolometer as referred to in section
7.3.2. Therefore we see that the transverse temperature is directly
related with the average (time integrated) electrostatic energy of ^he
beam-plasma waves.

- The ratio £ between the density of heated electrons and their to
tal density increases however monotonically with the beam current. This
ratio seems to be related with the percentage of time occupied by the
beam-plasma instabilities, which as we know appear in bursts. £ varies
from the small value of 3.8Z, shown in figure 7.8, up to 45Z for B =

-20.054 Wb m and i^ = 20 mA. In this last case, fast analysis of the
r.f. signals coming from the probes reveal that the time is almost
filled with instabilities. On the contrary, in the case of low magne
tic field (small £) instabilities are very few and well defined in time
(isolated bursts) and most of the time the plasma is silent.

- The temperature of the cold bulk of particles is always very low,
in the range 0.5 - 4 eV.
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14 mA

^Oib = 6mA

Ui (eV) 30

Fig. 7.8. - The influence of the beam current on the transverse velo

city distribution function of the beam electrons for a gi

ven value of the magnetic field. Conditions: V, - 1500 Vs

B = 0.027 Wb m ; p = 4.8 *■ 10 Torr; L = 73 cm.

-  The fact that we find Maxwellian distributions probably reveals
the stochastic nature of beam-plasma instabilities. Indeed the ampli
tude of the beam-plasma instabilities (bursts) seems to be randomly
distributed in time (LAVROSVSKII et al., 1970). As the measurements of
the transverse energy were heavily time integrated (RC ~ 1 ms), the
obtained distributions are averages taken over many instabilities as
well as over various amplitudes.

- At last we notice that the transverse temperatures of the beam
electrons, although of the same order of magnitude, usually seem to be
larger than the temperatures of the plasma electrons when measured under
similar conditions (Table 4.1).

- The numerical results obtained for other values of the magnetic
field are summarized in Table 7.2, where we can verify that both £ and
the transverse temperature increase with the magnetic field.
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TABLE 7.2

TRANSVERSE TEMPERATURE OF THE BEAM ELECTRONS AT THE BEAM CENTRE

B *b e T

»A -2(10 Wb m ) (mA) (X) (eV)

270 6 3.8 6.4
270 8 6.0 8.0
270 10 8.4 7.2
270 14 10.4 12.8
270 20 II.0 11.2
405 8 6.6 20.5
405 20 17.5 15.6
540 8 20.0 20.7
540 20 45.0 22.2
675 17 27.2 31.0

7.5. Conclusions

From the presented results we can verify that the electron beam
acquires a considerable amount of transverse energy during the inter
action with its own created plasma. Indeed we were able to observe in
our experiment the presence of electrons with transverse energy as
high as 635 eV.

Especially for the case of the lower values of the magnetic field,
the transverse energy is seen to be much larger at the beam edge than
at the beam centre. In section 5.4 we mentioned the fact that theory
predicts radial variations of the electric field of the instabilities
according to a J Bessel function for the axial field and to a J,o I
Bessel function for the transverse field. In chapter V we could present
measurements which sustain the hypothesis of the existence of a J
Bessel function dependence of E..'on the radius. In this chapter we
could only observe that the transverse energy is rather small at the
beam centre and that it can attain large values at the beam edge. These
results are therefore in qualitative agreement with theory and we can
expect that E^ will have a dependence on the radius which will not
differ much from a J. Bessel function. These results are in good agree
ment with those published by EGOROV et al. (1970), who also verified
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that the axial electric field has a maximum at the axis of the plasma
column and that the transverse electric field has the maximum close to
the boundary of the plasma waveguide.

At the beam centre, we could determine the transverse velocity
distribution function. We verified that the distribution is a monoto-
nically decreasing function of the transverse velocity. According to
SEIDL (1970), this is a sufficient condition for the excitation of the
Anomalous Doppler effect instabilities. Therefore we can relate the
acquisition of transverse energy by the beam electrons to the excita
tion of these instabilities.

We have also verified that, at the beam centre, there is no cor
relation between the transverse and thé axial velocity of the beam
electrons. Thus, we think that the axial velocity spread in the beam
is determined by the intensity' 6f the Cerenkov instabilities, which
eventually can originate thé trapping of a fraction of the beam in
the wave potential well. Accordingly, we also think that the trans
verse energy of the beam electrons is directly related with the exci
tation of Anomalous Doppler effect instabilities. Presumably, during
its passage through the interaction chamber, a beam electron can ex
perience the effects due to the excitation of these two types of
instabilities.

In section 3.8 we referred to a paper by SHAPIRO and SHEVCHENKO
(1968), in which it is theoretically predicted that the acquisition
of transverse energy by the beam electrons should be accompanied by a
decrease in their axial energy. We verify that this is in contradic
tion with our experimental observations made at the beam centre. How
ever, at the beam edge, our results are in agreement with this theo
retical study as we verified (figure 5.8) that the electrons found
outside the minimum beam diameter always experienced an axial dece
leration. We therefore conclude that, in the regions of the beam in
which the transverse electric field is supposed to be large (beam ed
ge), there is indeed a conversion of axial into transversal energy.
This process of energy conversion is presumably not a straightforward
one. The beam electrons can, for example, loose axial energy to the
build up of the Cerenkov instabilities, which in turn can change the
beam-plasma parameters in a way which permits the excitation of the
Anomalous Doppler effect instabilities. Finally, these last instabili-
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ties can give back to the beam electrons a fraction of the energy lost
before, now under the form of transverse energy.

Concluding we can remind that the observed variation in the beam
diameter can lead to an appreciable change of the growthrate of the
different instabilities (SEIDL, 1970), and so it can be related to the
quick alternation of the different beam-plasma instabilities.

Finishing this study it is interesting to mention that the trans
verse energy distribution function of the plasma ions, measured by
FUMELLI et al. (1969), in a Penning Discharge in a magnetic bottle,
has precisely the same shape as the distributions presented by us in
figure 7.8. The temperature of the hot tail also increases with the
magnetic field, but, opposite to our results, the percentage of heated
particles C decreases with B.
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SUMMARY

We begin this thesis by giving, in chapter I, a short survey of
the development of the theory of beam-plasma interaction as well as of
the most salient aspects of the experimental research on this subject.

Chapter II is a review of the linear theory of plasma oscillations.
A dispersion equation is derived for pure longitudinal electrostatic
oscillations in an infinite and homogeneous collisionless plasma. Par
ticular solutions of the dispersion equation are analysed. Namely, we
establish the unstable character of beam-plasma systems and we consider
the problem of Landau damping. The damping (or growth) rate of the plas
ma oscillations is then related with the velocity gradient of the dis
tribution function of the plasma electrons. The existence of unstable
states is predicted and a criterium for instability is presented.

In chapter III we treat the quasilinear approximation in the
dynamics of a collisionless plasma. The quasilinear equations are de
duced following A.A. Vedenov, and applied to the study of the develop
ment of the velocity space instabilities. The conditions of applica
bility of the theory are analysed. The problem of the adiabatic dif
fusion of the nonresonant electrons is considered. We also obtain an
estimate for the relaxation time of the quasilinear interaction process.
Finally a review of the recent development of the quasilinear theory is
made, and three publications are analysed with some detail, as they
make a bridge between the exposed theory and our experimental situation.

In chapter IV a short description of our beam-plasma experiment
and of some conventional diagnostic methods is made. A dispersion dia
gram for the beam—plasma waves is presented and the most important in
stabilities are theoretically identified. Varying the length of the
interaction chamber, while keeping the other external parameters con
stant, we simulate the spatial development of the beam-plasma instabi
lities. We verify that the increase in the interaction strength is
accompanied by an increase in the beam velocity spread, in the width of
the excited spectrum of oscillations and in the plasma density. These
variations in the beam-plasma internal parameters characterize the
passage of the plasma from a weak first regime to a deep second regime.
The lS*’-2n regime transition occurs abruptly for low values of the mag
netic field and smoothly for higher values of B. In the latter case an



exponential spatial increase of the total radiated microwave power of
the beam-plasma oscillations is observed (convective instabilities). For
the case of low values of B the radiated power remains practically con
stant along the interaction chamber. It is verified that the general
evolution of the interaction does not depend on the way by which we in
crease its strength. A typical evolution of the beam axial velocity
spread as well as of the excited spectrum of oscillations is described.
The temperature of the plasma electrons is measured. Finally, we compare
the obtained results with the predictions of the quasilinear theory of
beam-plasma interaction. The plateau of the beam velocity distribution
function and the value of the relaxation length for the interaction
are results which are in good agreement with theoretical predictions.

In chapter V the lS^-2n regime transition is studied as a func
tion of the axial magnetic field. The beam-plasma system is character
ized by time resolved measurements of the excited frequency spectrum,
plasma density and beam axial velocity spread. These parameters show
strong fluctuations with a repetition frequency of about 30 KHz.
Correlation measurements permit us to identify in the plasma, despite
the continuous operation of the experiment, two completely different
states, observed respectively when the electron plasma and the electron
cyclotron instabilities, which occur in bursts, are excited. These two
instabilities alternate in time. Special attention is paid to the beam
velocity distribution function which always has a "plateau-like*' charac
ter. The largest velocity spread in the beam is attained during the
excitation of the electron cyclotron instability. In this case the velo
city plateau is explained by the trapping of the beam electrons in the
potential well of the cyclotron wave. Under these conditions, the elec
tric field, at the beam centre, is found to be independent of the mag
netic field. A radial analysis of the extension of the axial velocity
spread in the beam is made for the case of the excitation of the cyclo
tron instability. Theoretical JQ Bessel function dependences on the
radius are verified for the axial component of the electric field. The
beam axial power losses are calculated. These losses are found to de
crease with the magnetic field. On the basis of the referred trapping
mechanism an explanation is given for this fact as well as for the
saturation of the cyclotron instability at an amplitude which is inde
pendent of B.
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In chapter VI we make a numerical study of the nonlinear interac
tion between a monoenergetic electron beam and a large amplitude mono
chromatic traveling wave, in a beam-plasma system of finite length. This
study is made to test the validity of the trapping mechanism referred to
in chapter V. The main purpose of this numerical analysis is the obten-
tion of both the velocity distribution function of the beam electrons,
when leaving the interaction chamber, and the associated value of the
beam power losses. We can verify that, even with low values of the elec
tric field (absence of trapping), the velocity distribution function, at
the end of the interaction chamber, has always a "plateau-like" charac
ter, in agreement with our measurements of chapter IV. For the larger
values of the electric field, for which a great percentage of the beam
electrons becomes trapped in the wave potential well, we verify that the
velocity distribution function is practically symmetric in relation to
the wave phase velocity. A good agreement is found between the theoreti
cal and the experimental results concerning the beam velocity distri
bution function and the beam axial power losses. Therefore the trapping
mechanism assumed in chapter V is reasonably supported by this study.
Finally it is theoretically proved, just by a simple power balance, that
the growth of the wave, at the cost of a part of the kinetic energy of
the beam, can not supass a certain value.

We finish this thesis by presenting, in chapter VII, some measure
ments of the transverse energy of the beam electrons. The first part of
the chapter deals with measurements of the transverse energy at the beam
edge. We verify that the transverse energy is maximum at the Is -2n
regime transition. Correlation measurements made at this regime transi
tion permit us to verify that the transverse energy attained during the
electron cyclotron instability bursts is larger than that attained during
the electron plasma bursts. The transverse energy is seen to attain re
latively large values (of the order of 40% of the beam initial energy).
In the second part of this chapter we are concerned with measurements of
the transverse energy at the beam centre. Also here we verify that this
energy is maximum for conditions leading to the lSt-2n<* regime transi
tion. The acquisition of transverse energy by the beam electrons is seen
to be directly related with the excitation of the beam-plasma instabili
ties. The 3-dimensional beam velocity distribution function, at the beam



centre, is determined. We verify that, the transverse velocity of the
beam electrons is uncorrelated with their axial velocity. The transverse
velocity distribution function of the beam electrons, at the beam centre
is found to be constituted by a cold bulk of electrons and a hot Maxwel
lian tail. The percentage of heated electrons, as well as their tempera
ture, are seen to increase with the magnetic field. The theoretical pre
diction of a Jj Bessel function dependence of the transverse electric
field on the radius of the plasma column is qualitatively verified.
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