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Chapter I
INTRODUCTION

1.1 Subject and plan of the thesis

This thesis deals with the thermodynamic properties of the in-
trinsic type Il superconductor niobium in the superconducting, mixed
and normal states. Specific heats of three specimens of this transition
metal with different degrees of purity have been measured in the pre-
sence of magnetic fields ranging from O to 9.4 kOe in the temperature
interval 1 £ T < 10°K, with the aim of gaining insight into the charact-
eristic features of type II superconductivity. For one of the samples
the magnetocaloric effect (connected with the field dependence of the
mixed state entropy) was also studied, together with the measurement
of the specific heat as a function of the field, at a given temperature.
The thesis consists of 6 chapters. After a short introduction (I),

type Il superconductivity is characterized and a brief survey of theory
presented together with the thermodynamic relations used in the anal-
ysis of the data (II). In Chapter III the experimental method is de-
scribed. In Chapter IV the experimental results are presented, dis-
cussed and compared with theory. In Chapter V a comparison is made
between the field dependence of the magnetocaloric effect, specific
heat and isothermal magnetization, at the same temperature. The thesis
ends with a small chapter (VI) with concluding remarks, followed by
summaries in Dutch and in Portuguese and curriculum vitae.

1.2 Possibilities and advantages of calorimetric measurements in the
study of the propersties of type II superconductors

Specific heat measurements, although a classical method, have
remained a useful research tool. For superconductivity, the pioneer
calorimetric measurements done in Leiden in the thirties (Keesom,
Van den Ende, Kok, Van Laer) laid down basic information for the
understanding of the thermodynamic properties of what are now known as
type I superconductors. Type II superconductors brought into research
a new superconductive phase - the mixed state, whose properties can
be studied calorimetrically. In this thesis it will be shown that from
specific heat results obtained with type II superconductors it is poss-
ible to extract quite an amount of information about several questions
relevant to type II superconductivity. Thus, besides the usual determin-
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ation of the parameters 7y (the Sommerfeld constant) and ® (the Debije
temperature), characteristic of the normal state, one can obtain inform-
ation on: 1) the energy gap at 0°K which exists in the energy spectrum
of the superconducting electrons of a superconductor in zero magnetic
field; 2) the nature of the transitions that take place when the phase
lines Hcl(T) and ch(T) are crossed; 3) the thermodynamic critical
field HC(T); 4) the phase diagram of the superconductor; 5) the revers-
ible magnetization M(H) near ch even in the case of hysteretic mag-
netic behaviour; 6) the Ginzburg-Landau parameter x and the temper-
ature dependence of the parameters K1 and Ko and, last but not least,
one can prove 7) that the energy gap, in the presence of a field H >
HCX(O), is ineffective in determining the behaviour of the specific
heat ("'gapless’’ superconductivity).

Calorimetric and magnetic results are correlated so that, in
principle, a comparison between them can be established or, alternat-
ively, one set of results can yield the other (case 5) mentioned above).
Thus, the two sorts of measurements appear to be equally suitable for
studying the thermodynamic properties of superconductors of both types.
However, for type Il superconductors, in practice (when there is not
completely reversible magnetic behaviour), results obtained with mag-
netic measurements can be considerably disturbed while, as shall be
shown, calorimetric results can even in such a case yield the thermo-
dynamic parameters of interest. Of course, for irreversible behaviour,
even calorimetric results obtained with measurements performed in the
presence of a magnetic field will be disturbed but, in favourable cases
(annealed samples), the effect is only apparent in a restricted temper-
ature region in the mixed state (near the phase transition line HCI(T)).

Close to the transition from the mixed to the normal state (in
fact, for H 2 HC(T) for the annealed samples Nb-2 and Nb-3) specific
heat results are hysteresis-free so that(with the help of thermodynamic
relations), magnetic results can be predicted in this region. As the
reciprocal appears to be, in general, not true, results derived from
calorimetric measurements are more reliable than the usual magnetic
data. The most striking difference between the possibilities of the
two sorts of measurements lies in the determination of the thermo-
dynamic critical field Hc of a type II superconductor not displaying
completely reversible behaviour (unfortunately, the usual situation).
The determination of Hc can be accomplished with reasonably accurate
calorimetric results obtained in zero magnetic field and in the normal
state being thus free of hysteresis disturbances. In contrast, mag-
netic measurements in such a case will be unable to yield this thermo-
dynamic parameter within acceptable accuracy. The parameter « and
its analogues «; and K, defined in Chapter II, Section 2.3 are obtained




13

from calorimetric results in the region where reversible behaviour is
obtained (or approached in the worst case) so that they correspond to
thermodynamic equilibrium situations and are therefore reliable for
comparison with the theoretical predictions. In the restricted region
near the H_ l(T) phase transition line, where the effects of irreversibil-
ity are most apparent in calorimetric measurements, no definite con-
clusion can be drawn about the nature of the transition unless the
sample is of extremely high purity and free of physical defects, which,
unfortunately, was not the case.

The cooling produced by adiabatic magnetization of a type II
superconductor in the mixed state (magnetocaloric effect) can be used
for measuring the specific heat as a function of the applied field at a
given temperature, kept constant within narrow limits. As the behav-
iour of the specific heat and the magnetocaloric effect is very sens-
itive to the shape of the magnetization curve, in the absence of a
theoretical treatment of the thermal properties derived from first princ-
iples, calorimetric results provide a means for testing the theories
that predict explicitly the magnetization.

1.3 Choice of niobium as a suitable sample

Niobium was chosen since it was the only known intrinsic type II
superconductor (even in a state of high purity this transition metal
displays type II superconductivity). Later, vanadium was also found
to be in this class. Niobium also offers the advantage of having a
relatively high Sommerfeld constant ¥ and high Debije temperature ®,
thus favouring an accurate separation of the electronic contribution
(the only one of interest in superconductivity) from the measured spec-
ific heat. Moreover, the high transition temperature TC of this super-
conductor makes it possible to reach low enough reduced temperatures
t = T/'I'C using a *He cryostat. Impure, non-annealed niobium offers
a wider range of the mixed state and therefore seems to be, in principle,
a desirable sample for studying this phase. However, it turned out
that the enhanced effects of hysteresis associated with inhomogene-
ities were very disturbing in some cases (high fields), complicating
the results and their discussion. For this reason, the greatest amount
of information was obtained with one of the high-purity annealed
samples, Nb-3. The sample characteristics will be described in Chap-
ter III, Section 3.2.
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Chapter 1l
BRIEF SURVEY OF THEORY

2.1 Introduction

In this chapter the two types of superconductors are character-
ized and a brief description is given of some fundamental aspects of
theory as far as it is pertinent to the experimental results. Simple
presentation rather than exhaustive derivation will be given, emphasis
being placed on the relations used in the analysis of the data.

The thermodynamic description of superconductors requires the
knowledge of the magnetization. For type I a set of useful thermo-
dynamic relations follow directly from perfect diamagnetism which
occurs in the whole range of superconductivity from zero field up to
HC in the case of zero demagnetizing coefficient. For type Il some
of these relations are also valid while others can be established on
basis of Abrikosov’s vortex model describing the magnetic behaviour
in the mixed state. In particular, an expression was derived for the
specific heat in the mixed state near ch, the region where the magnetiz-
ation is explicitly given by theory.

2.2 The two types of superconductors

It was known from early work that impure metals, compounds and
alloys can exhibit superconductivity up to much higher values of the
magnetic field than those usually quenching the superconductive
properties of pure metals (de Haas and Voogd” in Leiden, Mendelssohn
and his Oxford groupz), Shubnikov’s group in thxrkova)). The peculiar-
ity of such materials is that the transition from the region of complete
Meissner effect (zero magnetic induction B inside the superconductor)
to the normal state (B = H, H being the applied field) does not take
place abruptly at a well defined field HC as happens in ''soft’’ super-
conductors, e.g. tin, lead or aluminium, but extends instead, over
quite a range of high fields ("’hard’’ or "*high-field"’ superconductors).
Abrikosov has shown many years later that in the Ginzburg-L.andau
(GL) theory‘” is implicit the existence of two types of superconduc-
tors®). After this, ’soft’’ superconductors became generally known as
type I and ’hard’’- or "’high-field’’ superconductors as type II. The
persistence of superconductivity in high fields had at first been
ascribed by Mendelssohn?’ to inhomogeneities of the material resulting
in a mesh-like superconductive structure of thin filaments embedded
in the bulk normal body (sponge model).




15

This simple view could not resist the impact of experimental
evidence. For instance, the results of specific heat measurements on
the '’high-field’’ superconductor VaGae) could be explained by the
sponge model only by assuming that the density of filaments was so
great that they fill most of the volume”’, Thus, contrarily to the former
expectation, high-field superconductivity behaves as a bulk property.
Further, some high-field superconductive alloys display nearly revers-
ible magnetic behaviour3'8), this being inconsistent with the irrevers-
ibility that one expects from a multiply connected filamentary structure.

In principle, a microstructure of alternating superconducting and
normal regions (layer model) can also account for the behaviour of
'"high-field'’ superconductors 9,10,11,12,12a,13) 5p the basis of a
""negative’’ surface energy a o at the boundary of the two phases. As
will be shown in Section 2.3, there are in superconductivity two
characteristic lengths - the coherence length £ and the penetration
depth A - the relative magnitude of which determines the type of behav-
iour. The coherence length measures the range of order or correlation
between the electrons responsible for superconductivity and the
penetration depth measures the distance at which the applied magnetic
field extends into the superconductor. The existence of a non-zero
range of coherence prevents the abrupt variation of the degree of
superconductive order at a normal-superconducting phase boundary.
The resulting gradient of the order parameter is accompanied by an
extra positive term to the free energy of the condensed (superconduct-
ive) phase. The penetration of the external field results, on the con-
trary, in a decrease of the magnetic energy of the diamagnetic sample.
The resulting interphase surface energy a . is given approximately“)
by: (£ — K)H:/BW. a . can be either positive or negative according
the relati ve magnitude of & and A, the general behaviour of the super-
conductor depending critically upon the sign of a A positive C
will prevent a superconductive sample submitted to an increasing
external field H from splitting into normal and superconducting regions
unless at part of its surface the local field is higher than the external
field H (then this local field prematurely reaches H_ which leads to
the formation of the intermediate state). Such a superconductor with
a > 0 is called type I. A type I superconductor, in the absence of
demagnetizing effects, resists the penetration of the external field
(Meissner effect) up to a value HC(T) such that the magnetic work
done by H on the superconductive body per unit volume equals the
condensation energy density

HC(T)

MdH

_HAT

87

=G (TH) =G (T, 0) . (2-1)
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Here M = —H/47r is the magnetic moment per unit volume of the super-
conductor (magnetization) and G the Gibbs free energy density (the
indices n and s stand for normal and superconducting respectively).
On the contrary, when a . is negative, it will, at a given value Hcl(T)
of the external field, be energetically more favourable for the super-
conductor to have a mixed composition of alternating thin normal and
superconducting regions, the normal regions being much thinner than
the superconducting ones. Upon increasing the external field H above
HCI(T) the superconductive regions also become thinner and thinner,
so that the magnetic field penetrates more and more into the super-
conductor. The magnetic moment of the sample (its absolute value)
thus decreases from HCX(T)/47T at HCI(T) to zero!?) at such a field
ch(T) that

i Z(T) 2
< HZ(T)
= f MdH = G (T.H_p) ~ G,(T.0) = —=— . (2-2)

(o}

This kind of behaviour is characteristic of type II superconductors for
which the thermodynamic critical field HC(T) does not indicate any-
more a first order phase transition|but is a simple parameter meas-
uring the condensation energy. For HCI(T) < Hi< ch(_T) the super-
conductor is said to be in the mixed state. The lower critical field,
HC , represents the limit of complete Meissner effect for an increasing
field, while the higher critical field, Hc2' represents the limit of
stability of the normal state for a decreasing field. There are materials
with ch of the order of a few hundred kOe. The two types of revers-
ible magnetic behaviour are depicted in Fig. II.1 where the isothermal
magnetization - 47M is plotted against the applied field H (Hc was
taken as the common unit).

Accordingly, the phase diagram of a type II superconductor in-
cludes (for bulk properties) two transitions lines HCI(T) and ch(T)
and three phases while for type I superconductors there is only one
line HC(T) and two phases, as shown in Fig. II.2, where the symbols
s, m and n stand for superconducting (or Meissner), mixed (or Shubnikov)
and normal states, respectively. The nature of the transitions at Hcl(T)
and ch(T) can be either studied by calorimetric or magnetic meas-
urements. Usually, calorimetric measurements are performed at con-
stant magnetic field, increasing the temperature (line 1) while magnetic
measurements are performed isothermally (line 2). The layer model of
Van Beelen and Gorter!?) yields a first order transition at HCI(T) and
a second order one at ch(T)'




Fig. II.1 The two types of reversible magnetic behaviour
of superconductors.

a. type I b. type II

Fig. I1.2 Phase diagram of a type I (a) and a type II (b)
superconductor.

Despite giving not so good an agreement with some experimental
results as compared with the more sophisticated Abrikosov's model

of the mixed state involving flux quantizationls), layer models have

the merit of showing very simply that superconductors with negative

interphase surface energy have a reversible magnetic behaviour different
to those with positive a .

s
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2.3 The Ginzburg-Landau-Abrikosov-Gor’kov theory

The Ginzburg-Landau (GL) theory‘” inspired by the Landau-
Lifshitz cnalysisls) of second-order phase transitions, accounts
explicitly for the existence of an extra term in the energy of the con-
densed superconductive state connected with the space variation of
the internal order parameter |¢,|2 at a normal-superconducting inter-
phase boundary. Y is a kind of "effective wave function’’ of the super-
conducting electrons; l\,blz is related to the concentration of super-
conducting electrons n, or to the energy gap that according to the
microscopic theory of Bardeen, Cooper and Schrieffer!”) (BCS) exists
in the energy spectrum of the superconducting electrons. Near a second-
order phase transition the order parameter becomes very small so that
the difference between the Gibbs free energy of the superconductive
phase and the normal state can be expanded in powers of !L,/J IZ plus
the extra term connected with the existence of a gradient of Y. In the
presence of a magnetic field H derived from a vector potential A,
taking 2e as the effective charge of a superconducting carrier (Cooper
pair), according to GL., we have

G,(H,T) = G(T) +a(T) [y 2 + %B(T) [y 14 +4 +d [(~ihy - 26472,
(2=3)

Here e is the electron charge, m its mass, i Planck’s constant divided
by 27, c the velocity of light while @ and 8 are temperature dependent
coefficients. @ and B are related to HC and |\/Jo |2, the zero field equil-
ibrium value of |y [?, by I\/}o |2 = — /B and Hg = 4a?/B; B is pract-
ically temperature independent near the transition. The so-called GL
equations (equilibrium equations) are obtained by minimizing (2-3)
with respect to Y and A'®)

a('I‘)¢:+,B(T)|\/J]2\,b+é—m(—iﬁV—2iA) $ =0 (2-4)

C

i=?_ﬁ(¢'v¢—¢v¢')_i'iz YYA . (2-5)
im mc

(2—4) gives the equilibrium value of the order parameter in the pre-
sence of an external field and (2—5) gives the density of shielding
currents with which the superconductor reacts to the applied field.
If the applied field is weak (weak field limit) the ''effective wave
function’’ does not deviate much from the zero field equilibrium value
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(Y=, VY =0)and the GL equation for the current reduces to the
London-type equation!! )

2 '
j==22 | PA. (=5

In connection with the space variation of the order parameter there is
a characteristic length, the range of coherence or coherence length £(T)
that prevents rapid variations of . It measures the distance to which
extends a local perturbation of i under an external constraint and is
given (ref.18) p.178) by

EXT

j wilic (2-6)
2m|al °

For a pure material, near the temperature Tc of the transition to the

normal state in zero field the temperature dependence of & is given
(ref.18) p.178) by

- r v
£AT)= 074 & (=S i (2=7)

where g’o is the range of coherence at the absolute zero.

Equation (2—5') implies the exclusion of the external field from
the bulk of the superconductor (Meissner effect) and introduces another
characteristic length which is also temperature dependent, the '"weak
field penetration depth’’ A(T), given by

2
>\2 = mc 2—-8
M = (2-8)

as can be seen treating equation (2—5) in one dimension. For a pure
metal in the free electron approximation, according to BCS A(T), near
Tc,is given (ref.18, p.180) by

T
(]

)% (2-9)
T -T

A(T) == A (0) (

where AL(O) is the London penetration depth at absolute zero, given
by
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47rne?

where n is the number of free electrons per cm?.

Near Tc, A(T) and &(T) both diverge (\,/(J)-O) but their ratio
k = N(T)/&(T) remains finite

T-T. &(T) " X “2eh 27

c

Kk is called the GL parameter of the superconductor.
For a pure metal, from (2—7) and (2—9) one gets, approximately

ALO)

K, = 0.96 (2-12)

&

S0

Consequently, ¥ is approximately temperature independent near TC.
x measures the relative magnitude of A in terms of & and thus deter-
mines the value and the sign of the surface energy a . ata normal-
superconducting boundary. Within the approximation &= (& - K)Hz‘/877
one may say that at a critical value in the order of « = 1 lies the
division between the two groups of superconductors.

From the relations lk,bo 2 = - a/B, Hg = 4ma?/B, (2-6) and
(2—8), follows

; %o , (2-13)
2mV2 A(T) &(T)

H_(T) =

where ¢° = ch/2e = 2.067 x 10~7 G.cm? is the flux quantum.
Near Tc, from (2—11) and (2—13) we have

k = 2/2mH_(T) AA(T)/¢, . (2-13")

o

When superconductivity has been quenched by sufficiently high
field, upon decreasing the field, superconducting regions may begin to
nucleate in the bulk of the material at the value of the applied field!®

H . .=x/2H . (2—14)
c2 c

H represents the highest value of the applied field for which the

c2
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GL equation for the order parameter has non zero solutions (y # 0) in
the whole volume of the superconductive body. For superconductors
with « < 1/V2 (type 1), c2 < H is u supercooling field. For super-
conductors with x > 1//2 (type II) c2 is higher than HC and the
persistence of superconductivity above HC implies the disappearence
of the Meissner state at a field Hcl < H 15)

According to Abrikosovls), in the mixed state (H = < ch),
the partial penetration of the magnetic flux through the superconductor
occurs in the form of a vortex structure of quantized flux threads
(fluxoids), parallel to the applied field. The fluxoid consists of an
inner core (radius~ &) surrounded by a vortex of supercurrent (radius
~A). Each fluxoid carries a single quantum of magnetic flux ¢°.

In the cores of the fluxoids the energy spectrum of the electrons
is quite different from the superconducting ground state. While in the
Meissner region there is a forbidden energy gap, from which results
the exponential BCS!7) behaviour of the specific heat, in the mixed
state according Caroli et al.'?) low energy exitations are permitted
in the cores of the fluxoids. From these normal-like excitations results
a quite different kind of behaviour for the specific heat in the mixed
state.

The lower boundary of the mixed state H o1 Wwas calculated by
Abrikosov!®) for the case x >> 1 to be

V2 kH_,/H_= Ink + 0.08 (2-15)

and numerical solutions for all k¥ were obtained by Harden and Arp.zo)

Ideally, one may imagine that flux first enters the specimen at
Hcl in a rather abrupt way until the uniform density of fluxoids corres-
ponds to a spacing between next neighbours of a few A, at which
distance they begin to interact. Thus, their mutual repulsion sets a
limit to the initial penetration. Upon increasing the external field the
density of fluxoids increases until the point when the interfluxoid
distance becomes of the order of £&. Then the cores begin to overlap.
The penetration of the superconductor by the magnetic flux of the
external field is complete at ch. From (2—-13), (2—13’) and (2—-14)
we have

H ) s/ —8___ =

Thus, a ''high-field’’ superconductor has a small range of coherence.
Upon alloying a pure superconductor its range of coherence
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decreases and the penetration depth A increases (Pippard“)),the
dependence of A on the mean free path of the electrons implying a
non-local relation between current density and the vector potential
(Pippardzn). The combined effects on £ and A due to reduction of the
mean free path of the electrons lead to the enhancement of «, this
explaining why type II superconductors are mainly concentrated alloys

and dirty metals. However, since, according to the BCS theory”)

R (2-17)
B ) AR

(where Vp is the Fermi velocity and k the Boltzmann constant), one

may expect that even a pure superconductor with low Ve and high TC

might be (intrinsic) type II. So far as is known, these requirements

are fulfilled only by the two transition metals Nb and V22! which, in

fact, were found to display type II behaviour in a state of high purity.
From (2—13') and (2—14) we have

4m\3(T) HX(T)
ch( ) =¢*‘: . (2—18)
(o]
This relation provides a means for testing the validity of the GL
theory when experimental values of ch, A and H _ are known. Accord-
ing to the original two-fluid model of Gorter-Casimir?3), A (t) = A (0)(1—t4)—"%
and Hc(t) = HC(O)(I—tz) where t = T/Tc. Thus, on phenomenological

grounds, the following temperature dependence is expected for HC2

2
1t (2—19)

where H_,(0) = 477H§(O) )\2(0)/¢°. Although this relation was first
explicitly used by Tinkham?*) it is called after Ginzburg?®) who first
suggested the validity of relation (2—13’) at temperatures T << Tc in
the case A> £ (London limit), using for A(t) and Hc(t)the expressions
of the two-fluid model.

Near the transition to the normal state the Abrikosov vortex
model 1) yields explicitly the magnetic moment M of the specimen as
proportional to the first power of ch—H, H being the applied field

H,,~H

2—-20
B(2xk% —1) : :
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The coefficient B depends on the symmetry of the vortex structure
(B = 1.18 for a square lattice, B = 1.16 for a triangular lattice, the
latter being more stable in the whole mixed state 26'27)). According
to eq. (2—20) the transition at ch is of second order.

Attempts were made to extend the validity of the GL theory to
all temperatures. In the limit T — ¥ £ Gor'kov?®) succeeded to derive
equations formally identical®?? to those of GL with a Green’s function
reformulation of the BCS theory, using a position-dependent pair wave
function A(r) in an applied magnetic field. Since A(r) goes continu-
ously to zero at a second order transition, by linearizing the Gor'kov
equations for small A(r), it became possible to obtain SOlUthﬂSH (T)
for T << T.. In this way he calculated H (O) in the pure, clean hmit
(infinite mean free path ! of the electrons) arriving at the following
interpolation polynomial for HCZ(T)ao)

H_,(t) = xH_(t) [1.77 — 0.43 t? +0.07 t*] . (2-21)

The Gor'kov expression (2—21) gives a much weaker temperature
dependence for H 2(t) than Ginzburg’s (2—-19).

Maki? extended the Gor'kov treatment to account for impurity
scattering, in the limit of small 1. He showed that the Abrikosov vor-
tex structure in the neighbourhood of ch, at arbitrary temperature, is
characterized by egs. (2—14) and (2—20) with different temperature

dependent parameters, Kl(t) in

H_,(t) = v2 «,(t) H_(t) (2—-22)

c2

and Kz(t) in

7™ =
-2 #
f‘[2»< l] (2—-23)

both converging to the GL « for t = 1. In the dirty limit (Z = O)Kl(t)/K
is predicted to increase 20% from t =1 to t =0, compared to 25%
according to Gor'kov’'s calculation (2—21) for Il = o,

For Kz(t)/K Maki predicted a decrease of 30% fromt=1tot =0
and from such a behaviour he derived the thermodynamic properties
of hypothetical type IIl syperconductors. Experimentally K, was always
found to increase upon decrease of temperature. Kz(t) was recalcul-
ated by Caroli et al.®?) in the dirty limit with the result « K (t
for all t, within 2%. For the clean limit, Maki and Tsuzuki 33) denved
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relations identical to (2—22) and (2—23) with results tor (t) rather
similar to those of Gor'kov. For Kz( t) they predicted a more rapid in-
crease upon decreasing temperature than for « (t) with a logarithmic
singularity at t = 0. Recently Eilenberger®?4) has calculated « (t) and

2(t) for arbitrary impurity concentration. He showed in parncular that
the singularity in Kz(l) at t = 0 disappears when a slight impurity is
present.

The BCS - Gor’kov model on which the calculations of Kl(t) are
based assume weak electron-phonon interaction and a spherical Fermi
surface.

For comparison of experimental and theoretical results for H 2(t)
Helfand and Werthamer®®) introduced the reduced quantity

Hc2(t)

—(dH_,/dt),_,

h*(t) = (2—24)

Theoretically, h*(t) as Kl(t)/K is not very sensitive to impurity. At
the clean limit h*(0) = 0.727, this corresponding to K](O)/K= 1.263
while at the dirty limit h*(0) = 0.693 (or KI(O)/K = 1.203). In the case
of pure Nb the strength of the electron-phonon coupling has no apparent
effect on h*(t)3%). It then follows that the discrepancies between
experiment and theory regarding ch are likely to be due only to Fermi
surface anisotropy. In fact, Hohenberg and Werthamer®”) showed that
when such an effect is taken into account h*(0) is enhanced with
respect to the value obtained on basis of a spherical Fermi surface,
although they have not yet been able to compute the new value.

In attaining the derivation of the GL theory from first principles,
Gor'kov has expressed the phenomenological constants of this theory
in terms of microscopic characteristics of the metal, such as the
electron mean free path,!, the Fermi velocity, Ve and the density of
states (for one direction of spin) at the Fermi surface, N(0). For the
GL parameter « Gor'kov2?) derived the general expression x = KO/X(p),
where gAR 0.96 >\L(O)/§o corresponds to the pure metal and x(p) is
a function of the parameter p =0.884 £ /Il. In terms of measurable
quantities, Goodman'?) has approximatgd Gor'kov’'s expression for
K as

(2-25)

k=K, +7.5x10% g y*

where P, is the normal state residual resistivity in (Q.cm and 7 the
Sommerfeld constant in erg.cm™3, K ™2,
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2.4 The thermodynamics of superconductivity

2.4.1 Type I superconductors

The thermodynamic description of the reversible behaviour of
superconductors is based on the magnetic Gibbs free energy

G(T,H) =U — TS — MH (2—26)

where U is the internal energy, T the absolute temperature, S the
entropy, M the magnetic moment of the specimen and H the applied
magnetic field. Assuming that the specimen is a very long ellipsoid
parallel to the magnetic field, the demagnetizing factor of which may
be neglected, the magnetization is uniform and the Gibbs free energy
density is everywhere the same for a given T and H all over the volume
of the superconductive body. For the sake of simplicity the specimen
volume is taken equal to unity so that M is the magnetization and G
the Gibbs ‘free energy density.
Since dU = TdS + HdM we have

G = — SdT — MdH , (2-27)
and
5 =-(2G) (2—28)
TH
and
oG
= AoAS] 2-29
(BH)T ( )

= T(98y . = _ 723G ~30
C = T2y = = T(EFy - (2-30)

Upon isothermal magnetization the Gibbs free energy of the super-
conductor increases with the applied field H

H
G,(T,H) = G_(T,0) —JMdH : (2-31)

For a type I superconductor M = — H/47 and therefore
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G(T.H) = G(T,00 +Z . (2-32)

At the transition to the normal state GS(T,HC) - Gn(T,HC). H_ is the
thermodynamic critical field at the temperature T, related to the con-
densation energy density Gn(T,HC) —GS(T,O) by eq. (2—1). Experiment-
ally, Hc was found to have, approximately, a parabolic temperature
dependence Hc(t)ch(O) (1-t?) (see Fig. IV.16). Neglecting the
small normal state magnetic susceptibility, Gn, Sn and C_ are field
independent quantities.

From (2—28) and (2—32) one gets
S(T,H) =8_(T,0),
and from (2—30) and (2—33) we have
C.(T,H) = C_(T,0) . (2—34)

Therefore, complete diamagnetism implies field independent specific
heat and entropy.

From (2—1) and (2—28) the entropy difference between the super-
conducting and the normal state is obtained as

(2-35)

At T =T, the transition to the normal state is second order in Ehrenfest’s
sense >®! since HC(TC) =0 and therefore AS(T_) = 0. At T =0 the third
law of thermodynamics implies dHC/dT =0, For T #0 and T, the
transition is first order with a latent heat T A S.

From (2—30) and (2—35) the difference between the specific
heat in the superconducting and normal state is derived as

dH d%H
AC(T) = C.(T.0) —C.(T) =L [(=9)2 +H_. —=
(T) = C(T,0) = C(T) = T [(=9% + H, —

§ s

At T = T_ we have the Rutgers’ relation

AC(TC) 1 dHc 2

o 2 ; (2-37)
T_ 4m dT T,

relating the magnitude of the specific heat jump at the transition to
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the normal state in zero field to the slope of the thermodynamic critical
field at T = Tc.

The quantities AC(T) and AS(T) can be calculated from the
temperature dependence of Hc (derived from magnetization measure-
ments). Reciprocally the thermodynamic critical field can be obtained
from calorimetric results by two integrations, as follows

f [& o 14T = AS(T) (2—38)
Fans T

and

H2(T)

87

AS dT = G_(T) — G(T,0) = (2-39)

2.4.2 Type II superconductors

Adopting for type II superconductors the concept of thermo-
dynamic critical field H as given by relation (2-2), egs. (2—35),
(2—36) and (2—37) hold mdependently of the type of the superconductor.
Obviously, relation (2—33) and (2—34) are also valid for type II super-
conductors but restricted to fields H < H

However, since in the mixed stcxte the entropy is a function of
the applied field, as shall be discussed in Chapter V, relation (2—35)
says nothing about the nature of the transition to the normal state
except in the cases H =0 and T = 0. On basis of Maki’s extension of
Abrikosov’'s prediction for the magnetization near H o2 (ea. (2-23)),
the transition to the normal state should be second order for all T,
which is confirmed by experiment, down to the lowest attained temper-
ature.

The area under the isothermal reversible magnetization curve
yields Hc (eq. (2-2)). In practice, such a calculation is inevitably
affected by hysteresis and is therefore not free from error. Calori-
metrically, HC can be calculated freely of disturbances by hysteresis
even in the case of the most irreversible magnetic behaviour. By using
relations (2—38) and (2—39), HC is derived from zero field and normal
state specific heat results which are independent of the degree of
reversibility of the magnetic behaviour.

It remains yet to be established on microscopic grounds the
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analytical treatment of the behaviour of the specific heat of intrinsic,
low k, type Il superconductors in the mixed state. However, on basis
of Abrikosov’s vortex model that yields explicitly linear magnetization
M e (H—ch) (eq. (2—23)) near the transition to the normal state, it is
possible to derive expressions for the entropy and therefore the spec-
ific heat in that region. These expressions provide a means for a
rather severe test of Abrikosov’s prediction for M(H) near H_, since
the calorimetric quantities are very sensitive to the exact shape of
the magnetization curve.

Assuming that ch(t) is a second (or higher) order phase trans-
ition line, the electronic Gibbs free energy density in the mixed state
at temperature T and applied field H is given by

G_(H,T) =G_(T) — MdH , (2—-40)

c2

where G (T)=-%yT? (2—-41)
n

is the normal state, field independent, electronic Gibbs free energy
density (¥ being the Sommerfeld constant).

In the immediate neighbourhood of the transition to the normal
state, according to Abrikosov - Maki (eq. (2—23)) we have, for all T
in the mixed state

M =y, (H—H_,) (2-42)

where  y = (3M/9H) = 1/4mB[2k(T) — 1] (2-43)

is the field independent differential magnetic susceptibility in the
mixed state, for ch — H <« ch. ch, M and X, Gre temperature
dependent quantities.

From (2—40), (2—41) and (2—42) we have

G, (HT) =-% yT2 - % x,(H,, - H)?. (2—44)

The entropy in the mixed state near ch per unit volume is then given
by

dx, . dH_,
Sp(H,T) = YT ¢ %h—= (H , —H)® + x (H, —H) —<2 . (2-45)

This expression yields in fact a transition of second or higher order
when the applied field H reaches the upper threshold field H_,. Thus,
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for T =T, HeH (T,) we have Sm(ch,TS) =y T, =8 (T ). At T=0
the third law of thermodynamics implies: dch/dT = dxm/dT =0 and
consequently from (2—22) and (2—43), dKZ/dT = dxl/dT =0, for T =0.

The specific heat in the mixed state in the immediate vicinity of

ch is given (per unit volume) by

C HD =T deXmH 02 e Xmgy ) Pez
Blen R Es S RS RS So (LR ) e
dH d’H
= ey 2
& o e Lk P ]. (2—46)
At the transition to the normal state we have the Ehrenfest!29:39)
type relation
C (T)) - T dH
m(;y_s =y c2y2 (2—-47)
T AT

relating the discontinuity in the specific heat AC(TS) = Cm(Ts)—Cn(Ts)
to the temperature of the transition Ts, the differential magnetic sus-
ceptibility in the mixed state at ch and the slope of the phase trans-
ition line. This relation makes it possible to derive from specific heat
results the values of y = (9M/9H), for H = H_, and, therefore, the
parameter Kz(t) through relation (2—23). Expression (2—46) holds for
all T and in the limit T —=0 it yields an interesting result. Defining
v'(H) ='%‘imo(Cm(H,T)/T), one has

0 d%H
+’L"L)[HC2(0)—HJ(—MT°§)T=O-

(2—48)

Experimentally it was found (Section 4.2.7.4) that Xm(T) is at the
lowest temperatures a non vanishing, slow decreasing function upon
decreasing temperature so that the term in dzx /dT? for T =0 is
negligible, at least for H_,(0) —H << H_,(0). crinzxm/de at T=0
will be even zero if, as a first approximation (which experiment appears
to confirmw)), we take near the absolute zero

H_,(t) = H_,(0) (1 — at?) . (2—49)

G2 pT (2—50)
dT

Then we have




d?H
and dng =p (2-51)

where p = —20Hc2(0)/T2 ‘ (2-52)

Experimentally it was found (Section 4.2.7.1) that, for T not too close
to TC, the magnitude of the specific heat jump at the transition to the
normal state varies as

AC(T) = €T2
T

where € is a numerical coefficient.
From (2—47), (2-51) and (2—52) it is therefore concluded that near
the absolute zero, Xe is temperature independent and non zero

Xm(0) =:—2 - (2—54)

If the expression for the temperature dependence of H_, includes
terms of power greater than the second then (d?y /dTZ)T:O?’ 0 but
remains small. Neglecting in (2—48) the term in nzdzxm/de

have

v'(H) "
Y

2

0 d2H
1 +X;—”[HC ) — H) (), -

By means of relations (2—51), (2—52) and (2—54) expression (2—55) be-
comes

y'(H) 1 —a.+a}__i_
Y Hc2

eTg

2ay §

(i (2-56)

where q = (2-57)

The behaviour of the mixed state specific heat in the neighbourhood
of the absolute zero and at high fields (ch(o) — H << ch(o) is there-
fore expected to be quite different from the zero field specific heat
which vanishes exponentially at absolute zero due to the existence
of a forbidden gap in the excitation spectrum of the superconducting
electrons (BCS'7)). On basis of the sole assumption that near ch
the magnetization is given by eq. (2—42) with X field independent,
the specific heat for T =0 and H = ch(O) is expected to contain a
term linear both in the temperature and the applied field.
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This linear term was first predicted by Gorter et al.41:42) 5
thermodynamic grounds. Assuming that the transition at H (T) is
always of second order and that dch/dT vanishes at the absolute
zero, the entropy at all temperatures and the specific heat divided by
the absolute temperature, C/T, in the limit H— ch(o)' cannot vary
discontinuously. Thus, %irg [Cm(H,T)/T] is of the order of 7 for
H=H_,(0).

The linear term owes its origin to the low energy excitations

which the energy spectrum of the superconducting electrons contains
in the cores of the Abrikosov vortices (Caroli et al.!9)).
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Chapter III

EXPERIMENTAL METHOD

3.1 Introduction

In this chapter a description is given of the method and apparatus
used for the measurements of the specific heat of niobium. The specif-
ic heat C of a specimen is defined as

L AQ
G T=lim: =2 (3—-1)
AT-0 AT

and thus can be obtained directly by determining the increase AT in
the temperature T of the sample to which a known quantity of heat
AQ has been supplied.

In general, the same AQ produces different AT's on the same
sample at the same temperature, according to the conditions under
which the energy is supplied. Throughout this thesis the condition
is that of constant applied magnetic field. In terms of the magnetic
Gibbs function, G, Cy is given by Cy=— T(BZG/BTZ)H (Section
2.4.1). Defining a magnenc enthalpy E cxs

E =U—- HM (3-2)

where U is the internal energy, H the applied magnetic field and M
the magnetic moment of the sample, it can also be shown that

_oE
Cy = (ﬁ)H : (3-3)

Although the index H in CH has been dropped everywhere, the mean-
ing of C in the text is that of CH

The heat capacity, Ct, of the calorimeter plus sample plus
addenda (heater and thermometer) is directly measured. The (molar)
specific heat of the sample is calculated by subtracting from C the

heat capacity of the calorimeter plus addenda as measured in sepamte
runs.

Basic to accurate low temperature calorimetry are the following
requirements: 1) good thermal insulation of the calorimeter from the
surroundings, achieved by means of high vacuum and by minimizing
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the thermal conductance of the suspension threads and electrical
leads; 2) heater and thermometer in good thermal contact with the
sample and mounted in such a way that heat flows from the heater to
the thermometer mainly through the bulk of the sample; 3) low thermal
relaxation time 7 (7 measures the rate at which the sample approaches
a homogeneous temperature distribution after heat has been supplied
locally). In particular, 7 should be kept smaller than the response
time of the apparatus with which temperature variations of the sample
are recorded., Otherwise the interpretation of the heating curves is not
straightforward.

The order of magnitude of 7 is given” by 7= C/kL where C is
the heat capacity of the sample, « its thermal conductivity and L a
linear dimension of the sample. For superconductors, 7 may vary
considerably with the magnetic field and temperature through C and «
For a type Il superconductor near HCI(T) both C and « display anomal-
ies in the direction of increasing 7. In the extreme case of Nb-3, near
Hcl(T) 7 was calculated to increase by a factor in the order of 100
with respect to the normal state values. In the normal state, at 4.2 %K,
7 was in the order 10~° seconds. Even so, the calculated value of 7
did not reach the response time of the recording apparatus (in the
order of a few seconds) although relaxation effects were apparent at
HCI(T).

For reducing the error produced by the heat leak to the surround-
ings during the heating time it is required that the heat lost during
the time 7 be much less than the energy AQ supplied to the sample:
7Q << AQ (Q is the heat leak per seco.nd). This condition was certain-
ly fulfilled since typical values of 7Q/AQ were in the order of 10—4
for a temperature difference between sample and bath of one degree.

3.2 Samples

Nb-1 was a bundle of 2200 impure unannealed thin niobium wires
with a total mass of 0.0745 gram-moles closely packed in a calori-
meter (1 gram-mole = 92.91). Each wire has a diameter of 0.1 mm and
a length of 44.1 mm. Since hysteretic behaviour was expected, thin
wires were chosen in order to reduce the effects of irreversibility.
The wires were cut from a coil supplied by Fansteel Metallurgical
Corporation.

The annealed samples each consisted of 8 wires of diameter
0.76 mm and length 42.5 mm (Nb-2) and 45 mm (Nb-3). The masses
were 0.0138 (Nb-2) and 0.0145 (Nb-3) gram-moles. The wires making
up samples Nb-2 and Nb-3 were cut from two refined annealed niobium
wires received from the General Electric Research Laboratory,
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Schenectady, New York, through the kindness of Dr. W. de Sorbo who
carried out the heat treatment. The origin of this material is the same
as that mentioned in ref.2), where it was referred to as Stauffer Temes-
cal - an electron-beam melted (one-pass) ingot of Nb. The two wires
have been heated separately by passing an electrical current of about
24 A through each of them in a vacuum of approximately 5 x 10~ "mm Hg.
Total heating time was 8% hours for Nb-2 and 7% hours for Nb-3. The
annealing temperature, measured with optical pyrometer was 1830 °C
for Nb-2 and 1800 °C for Nb-3.

The result of annealing and outgassing appears to depend critic-
ally on the annealing temperature, time and vacuum. Notwithstanding
the similarity of the thermal treatment undergone by the two samples,
the slightly different annealing times and temperatures may account
for the different characteristics of the two specimens. In an attempt
to remove strains introduced by the cutting procedure, each end of the
wire segments constituting samples Nb-2 and Nb-3 was etched by
dipping it for a few seconds in a 50-50 volume mixture of concentrated
HNO3 and 48% solution of HF. The resistance ratio R(273 °K)/R(4.2 °K)
of the three samples measured potentiometrically after the measure-
ments were performed, were 7, 47 and 145 respectively for Nb-1, Nb-2
and Nb-3.

The chemical analysis of the samples gave the results shown in
Table 1.

Table 1
Results of the chemical analysis of the three Nb samples
stamett 1o N iC sk e “Fe. Co Mg NUCAL g M s
sampl®
Nb-1 (wt %) 0.16 <0.005 0.05 0.01 0.12 0.008 0.02 0.001 0,01 0.003 0.001 0.03 <0.002
Nb-Z(rmd Nb;3 £30 ~30 ~300 ~60 <10 < § 10 <10 < 5 <50 < 5
pepom.

Ag was not found in Nb-2 and Nb-3 and the C concentration could not
be calculated because the mass available for analysis was too small.
All samples were polycrystalline.

3.3 Apparatus and cooling procedure

For many years it was usual in Leiden to cool the calorimeter
by using gaseous helium to establish thermal contact with the surround-
ing bath of the cryogenic liquid (exchange gas method). The measure-
ments on the first sample (Nb-1) were performed in this way. It was,
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however, soon learned that when the cooling was brought into the
neighbourhood of 1°%K it was not possible to remove the residual traces
of the contact gas no matter what the pumping time. Thus, satisfactory
thermal insulation of the calorimeter from the surroundings could not
be achieved at the lowest temperatures. Moreover, the desorption of
the exchange gas in the course of the run affected the results.

Although the difficulties associated with the use of contact
gas were reasonably well overcome by pumping it out at a somewhat
higher temperature and by removing its residual traces from the calori-
meter surface, suspension threads and electrical leads by a cryopump
effect, an alternative means of establishing and breaking thermal
contact between sample and bath (a thermomechanical switch) was
devised for the measurements with samples Nb-2 and Nb-3. This last
cooling procedure introduces no disturbances and allows the immediate
starting of the measurements after the cooling to the lowest temper-
ature.

For both cooling procedures, before each measurements, the
vacuum jacket surrounding the calorimeter was pumped at room temper-
ature with a '"Speedivac’’ oil vapour diffusion pump model 203B. The
highest vacuum that could be reached with this pump was in the order
of 10~7 mm Hg, measured with a Philips Special Ionization Vacuum
Gauge type PW 7902. When exchange gas (“He) was used it was intro-
duced into the vacuum system at room temperature and at a pressure
low enough to prevent condensation at the lowest temperature to be
reached.

The temperature of the bath was reduced by pumping its vapour
with the central pump of the laboratory to 1.4°K and below that by
means of a 'Speedivac’’ vapour booster pump model 9B3 with which a
temperature of about 0.9 °K could be reached.

Next, a description is given of the apparatus used with each
cooling procedure, reference being made only to the parts that vary
between one method and the other.

3.3.1 Apparatus using exchange gas (A)

Apparatus A is shown in Fig.IIL.1 at the level of sample location.
The thin niobium wires constituting sample Nb-1 were packed in a
calorimeter ¢ having the heater h at one end and the thermometer th at
the other end. The calorimeter was suspended by means of four silk
threads s from four stainless steel vertical rods p attached to the top
of the vacuum jacket j. These silk threads were maintained under
tension by means of two phosphor-bronze springs sp. The electrical
leads of the thermometer (constantan) and those of the heater (Nb-20% Zr)
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passed through the Pt-glass seal g on the top of the vacuum jacket.
‘He exchange gas could be introduced or high vacuum established
inside the jacket through the pumping line p! made of German silver,
in which some copper radiation shields r were placed. Through the
small Pt-glass seal f a small amount of helium contact gas was intro-
duced into the calorimeter in an attempt to improve the thermal con-
tact between the wires.
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Fig. III.1 Apparatus 4 using the exchange gas method.

The heater was a constantan wire wound anti-inductively with a
room temperature resistance of 120€), The parts of the calorimeter
in connection with the heater and the thermometer were made from
electrolytic copper while the middle part was made from stainless
steel. In that way the flow of heat through the calorimeter wall was
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decreased so that overshoots in the recording of the temperature of
the sample were avoided.

In spite of the conventional design of apparatus A the disturb-
ances caused by the use of contact gas were removed by the following
cooling procedure: as soon as the calorimeter was cooled to about
1.6 °K by the 4He exchange gas, the jacket j was evacuated and the
temperature of the liquid helium bath was reduced to about 0.9%K in
order to restrict the subsequent cooling to that due to parasitic heat
leaks. This procedure required several hours of waiting in order to
reach 1.3°%K but it was thus possible to suppress desorption effects
of the *He exchange gas at the lowest temperatures. Such effects can
be very disturbing if the heat capacity to be measured is very small.
The required magnetic field was established at 1.6 °K just before
pumping out the exchange gas. After each measuring run contact gas
was again admitted into the vacuum jacket for the calibration of the

thermometer.

3.3.2 Apparatus using a thermomechanical switch (B)

The modified apparatus B used in the measurements on samples
Nb-2 and Nb-3 is shown in Fig.IIl.2. The caleorimeter ¢, made of electro-
lytic copper, was kept in position by means of six silk threads s. In
order to avoid over-shoots in the recording of the sample temperature,
the thermometer th was attached to a separate sheet of copper placed
near one end of the sample w. The thermal contact between the wires
of the sample and between the sample and the heater h and thermo-
meter was requlated by means of four small brass screws b. Surround-
ing and concentric with the upper (cylindrical) part t of the calorimeter,
there were two copper pieces cp thermally connected to the wall of
the vacuum jacket j by means of 4 copper braids cb. The inner surfaces
of these pieces cp were covered with a layer of indium to improve
thermal contact. The pieces cp were attached to rotatory teflon seg-
ments rp in such a way that rotation of rp resulted in horizontal lin-
ear pincer movement of the pieces cp. A phosphor-bronze spring sp and
a tungsten wire tw were attached to each of the two rotatory segments
rp at the same point P. A stainless steel wire ! was passed through
the pumping line pl and attached at the cryostat cap to a bellows m,
the other end being connected with the movable segments rp, via the
wire tw. Radiation shields are indicated by r; g is a platinum-glass
seal through which pass the electrical leads to the thermometer and
heater.

Pulling on the bellows brings the pieces cp into strong contact
with the upper part of the calorimeter, thus thermally connecting it
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with the bath. Upon releasing the pulling force on the bellows, (which
is then pressed down by the atmospheric pressure) the springs sp,
being under tension recall the contacts cp, thus insulating the calori-
meter from the surroundings. Because of friction, the temperature of
the sample rose somewhat when opening the contacts, this effect
being most apparent in zero magnetic field at the lowest temperatures
where the heat capacity of the sample is the smallest, Even so, the
warming up of the calorimeter amounted only to 0.36 °K, corresponding
to an energy development of 280 ergs at about 1°K. With the sample
in the normal state, this warming-up at the same temperature did not
even reach 0.1 °K because of the higher value of the heat capacity.

Fiqg, II1.2 Apparatus B using a thermomechanical switch.
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With the thermal switch closed, the temperature of the calori-
meter was reduced to about 0.9°K by pumping on the vapour of the
helium bath and then the required magnetic field was established.
Upon opening the thermomechanical contact the sample became therm-
ally insulated from the surroundings and the measurement could thus
be immediately started. In the course of each measuring run the temper-
ature of the bath was periodically adjusted (up to 4.2 °K) in order to
minimize the parasitic heat exchange between sample and environment.
The whole temperature range of interest (maximum 1 %K to about 10 °K)
was thus passed at constant magnetic field in a single run, the temper-
ature being increased by the very process of measuring. Once the
normal state was reached (for fields crossing the mixed state) the
thermomechanical contact was closed and the calibration of the thermo-
meter in the liquid “He region performed while again cooling the
sample (with the magnetic field on) to the lowest attainable temper-
ature. Then, in the great majority of cases, a second measuring run
was performed after the sample had been cooled in the presence of
the magnetic field. For zero magnetic field and normal state measure-
ments the calibration of the thermometer was performed during the
cooling of the sample prior to measurement.

3.4 Heater and thermometer circuits

The energy input AQ was calculated by measuring the time t
during which a constant current i passed through the heater at a con-
stant voltage V : AQ = Vit. The duration of the heat pulse (heating
time) was measured by means of a Jaquet clock type 309d, C,operated
simultaneously with the heating circuit by means of a relay R, via
switch k, as shown in Fig.lll.3. Switch k; was used for continuous
heating of the sample or for regulation of the heating current with the
dummy resistance D and the variable resistance Rv (the dummy resist-
ance can be included in or excluded from the circuit by means of the
switch k2). The voltage V over the heater was measured by means of
a 5-digit Solartron millivoltmeter (Type LM 1010), D.V. The heating
current i was measured by switching the millivoltmeter over a standard
resistance NR in series with the heater. Typical heating times ranged
from 5 to 25 seconds and the power supplied varies from 0.3uW at 1°K
to 140uW at 10 °K.

The temperature rise AT produced by the heat pulse AQ was
derived from the heating curves displayed on a Philips recorder R(type
PR 2200 A/21) receiving the amplified signal from the unbalanced
Wheatstone bridge containing the resistor th used as thermometer. The
thermometer circuit is presented in Fig.Ill.4. During the calibration
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of the thermometer the amplifier A (Leeds and Northrup stabilized d-c
microvolt amplifier No. 9835-B) was used as a null-detector. AT values
ranged from a few millidegrees at 1°K up to few tenths of a degree
at 10°K. The voltage input to the bridge remained constant within
1% from 1°%K to 10°K with the result that the power dissipated in the
thermometer was smallest at the lowest temperature, where the resist-
ance was largest. This power dissipation amounted to 3.8nW at 1°K

and was four times larger at 10 °K.

LaLs p
2500 R
| UM ey —
heater 13V
Fig. II1.3 Heating circuit. Fig, 1I1.4 Thermometer circuit,

3.5 Thermometry

Two carbon resistors were used as thermometers, one for the
measurements on Nb-1 and the other for the measurements on Nb-2 and
Nb-3. This kind of thermometer is suitable for low temperature calori-
metry since it has a high sensitivity and a low heat capacity. Both
thermometers were prepared by the F.O.M. group for research on metals
at the Kamerlingh Onnes Laboratory. They were found to be reproduc-
ible while kept at low temperatures but the reproducibility was lost
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once they had been warmed up to room temperature. Magnetoresistance
effects were also observed. Thus, calibration of the thermometer was
required for each measurement. The secondary standards used for
calibration of the carbon thermometers were the vapour pressure of
liquid hydrogen (using the L-60 scale of temperaturesa)) helium-4
(using the 1958 ‘He scale of temperatures?) and helium-3 (using the
1962 3He scale of temperaturess)). The pressure of the bath vapour
was read on a Hg manometer by means of a cathetometer. For 1.4 < T
< 2.2°%K the vapour pressure of the 4He bath was measured with an oil
manometer. Below 1.4°K the calibration was performed against the
vapour pressure of the 3He condensed in a little vessel attached to
the vacuum jacket and connected to another oil manometer through a
stainless steel capillary. Standard temperature and gravity corrections
were applied as well as a hydrostatic correction when required. For
T < 1°K, a thermomolecular correction®) was also applied.

The interpolation between the boiling point of 4He and the triple
point of H, for the thermometer used with the measurements on Nb-1
was made usmq de Vroomen’s method’’). With a restricted number of
calibration points (R,T) in the liquid H2 and the *He temperature
region, a reduced plot log (RO/R) versus log R was made, (RO,T) being
the tabulated values of the calibration curve of a similar thermometer
once calibrated in the whole temperature region 1.2°K - 30 °K. From
such a plot the calibration curve R(T) in the interval 1.3°K - 10°K and
its derivative dR/dT in the interval 1.6°%K - 10°K were constructed;
dR/dT was calculated by means of the relation’) dR/dT = R/7y where
= g (1+s) and s = (d/d log R) log (R /R) The values (¥ _,T) are
also tabulcted The maximum value of s found with this thermometer
was 4%.

Later on, the calibration procedure described by Moody and
Rhodes®) was adapted for the whole temperature interval (1 - 20 °K)
using an Electrologica X-1 electronic computer. With five experimental
calibration points in the liquid H, temperature region and twelve in
the liquid 4He region an mterpolotxon was made by fitting the cali-
bration data to a polynomial of the form®’

9y (InR)” , (3—4)

n
<
2.
=0

|-

v

where the a, are constants and v is an integer. The method of least
N

squares was used, the minimized quantity being f [(I/Ti— l/Tf)Tf]Z,

i
where Ti is the value given by relation (3—4) for the experimentally
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found R(Ti) while N is the number of experimental calibration points.
The calibration programme included an adjustable rejection criterion
so that every experimental point deviating more than 3 mdeg in the
liguid iHe region and more than 10 mdeg in the liquid HZ region from
the value given for T by relation (3—4) is excluded from the minimiz-
ation process. In general, a value of n =3 in relation (3—4) was
sufficient to include all deviations within this criterion.

For the temperature, the two calibration procedures agreed within
0.1%. For dR/dT it was found that they agreed within 0.2% for 3.6 <
T < 9.3% but larger differences appeared at lower temperatures, as
is shown in Fig.Ill.5 where A(dR/dT)/(dR/dT) = [(dR/dT)MR — (dR/
dT)de\,]/(dR/dT)MR is plotted versus T. As it is well known that
below 1.6°K the values of Y, in the de Vroomen tables are affected
by an error larger than 1%, the calculation of dR/dT by means of this
method at the lowest temperatures was avoided from the beginning
and instead a numerical method was used.
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Fig. 111.5 Difference between the values of dR/dT calculated
by means of Moody-Rhodes’ (MR) and de Vroomen's
(de V) methods in % of (dR/dT)MH, plotted versus T.

The two types of points refer to calibrations of the
thermometer used with the measurements on Nb-1 in
two different runs.
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For the thermometer used with the measurements on Nb-2 and
Nb-3 the experimental calibration data were also fitted by a third
degree polynomial of the form (3—4) using a minimization procedure
and computer programme similar to that described above and with
equally satisfactory results. Recently, the calibration data of similar
carbon thermometers in the whole temperature region 1.2 - 77.5K have
been fitted by a different polynomialg) T =% aj (In R)!, the a be-

j=0

ing constants and j an integer. In the range 0.9 < T < 20°K such a
relation does not yield values for T and dR/dT much different from
those obtained with the Moody-Rhodes polynomial. With m =6 and n = 3
the maximum difference found in T was 0.2% (for 7.5< T < 10°K), while
the maximum difference in dR/dT was 0.5% (for 6 < T < 8°%K).

3.6 The calculation of AT

The sample temperature was recorded by means of the apparatus
described in Section 3.4. The drift T(t), due to the heat leak, of the
sample temperature towards that of the bath has an exponential char-
acter!?) with a time constant given by C/1, ! being the heat leak per
second and unit temperature difference between sample and bath and
C the heat capacity of the sample. With good thermal insulation and
a not-too-small heat capacity, the time constant becomes so large
that the recorded line appears straight in relatively large time inter-
vals. In the present case C/l was of the order of a few hours at 1°%K.
Heating the sample at a rate of p watts the temperature rise produced
by the heating is given as a function of the time t bym)

t
AT =Tp(1 —e ) W (3-5)

OlL

For small 1/C values this expression becomes AT =p t/C, so that
if p and C remain constant during the heating time, AT(t) has a linear
character. When heating is stopped at t =t,, the energy AQ = pt,
supplied tothe sample has produced a temperature increase AT: = AQ/C.
For t > t, (after-period) the temperature of the sample drifts again to-
wards that of the bath with about the same value of the time constant
(for not-too-large AT) as in the fore-period (t < 0). In the present case,
with the exception of the regions where the specific heat displayed
anomalies, the recorded lines T(t) were straight and their extrapol-
ations in the fore- and after-period parallel to within a few tenths of
a percent over the heating interval. The use of the Keesom and Kok
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method!?) for the calculation of AT was thus reduced to a simple and
accurate procedure - the determination of the distance Au between
the fore- and after-period straight lines, at the middle of the heating
period and perpendicular to the time axis.

The increase AT in the temperature of the sample due to the
supplied heat AQ produces a decrease AR = (dR/dT)AT in the resist-
ance R of the thermometer; this decrease appears as a shift Au in the
output of the recorder. Au is related to AR through the sensitivity s
of the system Wheatstone bridge-amplifier-recorder, defined as s=Au/AR.
For a given bridge nearly in balance s depends upon the thermometer
resistance R and the amplification factor of the system amplifier-
recorder. The relation s(R) (actually s~ 1(R)) normalized to a given
range of amplification was determined from data taken in the course
of the measuring run. In the interval 5 < R(k{2) < 21 corresponding to

the temperature region 1 — 10°K, it was always found that s~ ! = cR,
c being a constant.
/ = 7
|
|
l
|
R4y 'np
: au'
i
time 2
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recorder output
_
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Fig. I111.6 The recorder output and the extrapolation procedure
used in the calculation of AT.

The recorder output and the interpretation of the heating curves
are shown in Fig.lIl.6. The measuring sequence was as follows: First-
ly, the null-point line np corresponding to balance of the Wheatstone
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bridge was recorded for a short time (by switching off the voltage over
the bridge). Secondly, the variable branch R, of the bridge was ad-
justed to a value Rk somewhat less than that corresponding to balance
and the fore-period line was recorded for a few seconds. A heat pulse
of known power was then fired during a measured time t, the thermo-
meter responding to the heating without notable relaxation. When the
after-period line was recorded during a time interval allowing an
accurate extrapolation to the middle of the heating period, Rv was
decreased to a value R, ,,, thus reversing the out-of-balance situation,
Ay’ being the shift produced in the recorder output. The value of R
that brings the bridge into balance is (Rk k+1)/2 for heating curves
symmetrical with respect to the np line, so that the value (R, — Rk+1)/
nAu’ of s~} corresponds to the thermometerresistanceR = (R k+l)/2n
(n = 10 is the bridge factor). The whole cycle fore-heating- cmd after-
period and decrease of R is repeated thereafter a number of times
depending upon the width of the temperature region to be covered and
the required degree of resolution of the experimental curve.

The specific heat, being a function of temperature, varies in the
course of the heating period and so the:-measured mean value corres-
ponds to the sample temperature at the middle of the heating period.
If the heating curve was perfectly symmetric with respect to the np
line, the sample temperature at the middle point M of the heating curve
would correspond to the following value of the thermometer resistance:
R =R " R /n, Ry and R__ being the values of the thermometer

re51stcnce at pomt M of the heatmg curve and at the crossing of the
np line, respectively. If not, R will be given by R, = R o -d(s_l)Rnp,
where d is the dxstcnce between point M of the heatmq curve and the

np line, and (s~ )Fl is the value of the reciprocal of the sensitivity

for the value R nI:Sk/n of the thermometer resistance. The positive
sign holds when M falls to the left of the np line. If M falls to the
right of the np line the sign of the correction is negative. Summing
up, the increase AT in the sample temperature produced by supplying
heat AQ = Vit, is given by: AT = (Au.s~1)/(dR/dT), so that C =
Vit(dR/dT)/Au.s~ 1.

The tedious and time consuming computations of the specific
heat were performed on a desk calculator for sample Nb-1, the temper-
ature being read as a function of R and dR/dT as a functionof T in
large scale graphs constructed on the basis of the described cali-
bration methods. For speeding up the work a computer programme
yielding directly the molar specific heat was used with the samples
Nb-2 and Nb-3. The input to the computer included:

1. the coefficients of Moody and Rhodes’ polynomial (3—4) previously
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obtained by means of the calibration programme; 2. the sample mass
(in moles); 3. the temperature dependence of the heat capacity of the
calorimeter plus addenda; 4. a rejection criterion for the calculation
of the line s—!(R) on basis of experimental data (Au’, Rk - Rk+1)7
5. the power supplied to the sample for each point; 6. the ranges of
amplification that have been used; 7. the sequence: the number of the
point, Au, the distance from the beginning of the ideal heating period
to point M (see Fig.II1.6), Au’, Ryt

The use of the described method introduces a considerable error
in the calculation of the specific heat whenever this quantity varies
discontinuously during the heating period, the jump in the specific
heat appearing as asudden change in the slope of the heating curve.
This happens at the transition at ch and was also observed for Nb-2
and Nb-3 in the mixed state region near Hcl, whenever Tsomple>
Toath® A method was especially devised for calculating the specific
heat in these cases. This method is described in Section 4.2.5.4, to-
gether with the interpretation of the anomalous shape of the heating
curves observed near the Hc] phase transition line.

3.7 The magnetic field

The magnetic field was provided by a water cooled electromagnet
capable of producing a maximum field of about 10 kOe with a distance
between pole pieces of 10.8 cm. The magnet was calibrated using
proton magnetic resonance in water molecules for field strengths
above 1 kOe and below that with a gaussmeter using a Hall effect
probe. Below 5.1 kOe no variation in the ratio field-current was detect-
ed. The uniformity of the field in the region where the sample was
located was better than 0.1%.

3.8 Errors

The main source of error in the measured specific heat was the
interpolation procedure used in the calibration of the thermometers,
via dR/dT. However, this error, having a systematic character, parti-
ally cancels by subtraction of the heat capacity of the calorimeter
and addenda from the total measured heat capacity. The random error,
calculated on the basis of the instruments’ characteristics and the
accuracy of the procedure used in the determination of AT, was in the
order of 1%. The scattering of the experimental results was in this
order in the absence of perturbations (vibrations and, mainly, hyster-
esis). The scattering is best illustrated by the results of the heat
capacity of the calorimeter and addenda used in the measurements on
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Nb-2 and Nb-3, as shown in Fiq.IlI.7. The minimum measured heat
capacity amounted to 62 ,uJ.°K_l at T = 1.046 %K. Irreversible effects
were responsible for a greater scattering of the results in the mixed
state, these effects being largest for Nb-1. For sample Nb-3, the
thermal relaxation effects and other disturbances observed near the
phase transition line HCX(T) introduced further uncertainties, quite
apparent in the results obtained at the location of the peaks in the
specific heat at the transition from the Meissner to the mixed state.
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Fig. II1.7 Heat capacity of the calorimeter and addenda used
with the measurements on Nb-2 and Nb-3.

Due to the small mass of the samples, the subtraction of the heat
capacity of the calorimeter and addenda increases the relative error
in the specific heat of the sample. This effect is strongest in zero-
field and for H < Hcl(O) at the lowest temperatures, the calorimeter
then making the main contribution to the total measured heat capacity.
For that reason the specific heat C_ in zero field below 2°%K was
determined with an error of about 5%. This error decreases rapidly
upon increasing the temperature, being 3% at 3°K and 2% at3.5°K.
With the exclusion of C_ below 3.5% and the anomalies (peaks) at
the entrance into the mixed state, for fields H = Hcl(O),the systematic
errors in the absolute values of the specific heat due to inaccuracies in




49

the calibration of the thermometer, extrapolation of heating curves,

voltmeter and clock readings, and to calorimeter and addenda cor-
rections, should not exceed 2%.

The error in the magnetic field is expected not to exceed 0.5%.

The error limits explicitly given in Chapter IV refer to the standard
deviation for the quantity concerned as calculated by the computer in
the analysis of the data with the least square method.
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Chapter IV
EXPERIMENTAL RESULTS. DISCUSSION

4.1 Introduction

In this chapter the results obtained in the measurements of the
specific heat of three samples of niobium:Nb-1(x = 2.36), Nb-2(x= 0.992),
Nb-3(x = 0.893) are described and discussed. The behaviour of Nb-1
is the one characteristic of an inhomogeneous sample. Although similar,
the behaviour of the two annealed high-purity samples Nb-2 and Nb-3
is not identical. Since Nb-3 appeared to be the best one (higher resist-
ance ratio, I, lower «, sharper anomalies inthe specific heatatHcl(T)'l
more measurements were performed with this sample than with Nb-2.
When not stated otherwise, for results obtained in the presence of a
magnetic field H < Hc2(0), the field was established after the sample
had been cooled down to the lowest attainable temperature.

4.2 Experimental results and discussion

The specific heat results obtained in several longitudinal mag-
netic fields covering the three states of superconductive niobium in
the temperature range from about 1°K to about 10°K are displayed in
Fig.IV.l for Nb-1 and Fig.IV.2 for Nb-3, where the specific heat C
divided by the temperature T is plotted versus T2. The results for
Nb-2, partially shown in Fig.IV.3, are very similar to those obtained
with Nb-3 but have less sharp peaks.

4.2.1 The specific heat in the normal state

The normal state specific heat Cn was measured in a magnetic
field H = 9.4 kOe (Nb-1) and H = 7.05 kOe (Nb-2 and Nb-3) and for
each sample the results agree, within experimental accuracy, with
those obtained in the other measured magnetic fields in the temper-
ature region beyond the bulk superconductive phase.

For the separation of the electronic (Cen) and lattice (Cln) con-
tributions the results were analysed in the usual way by means of the
Sommerfeld-Debije expression1

n en

C_=C,_ +C, =7T +1944 x 10° (%)3 mJ.mole~1.°K ™!, (4-1)

where 7 is the Sommerfeld constant and ® is the Debije character-
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Fig. IV.]1 Specific heat results of Nb-1 for the following values of the
magnetic field:

AH=0 d H=734 Oe 0O H = 4337 Oe
@ H 194 Oe B H = 2000 Oe V H = 5760 Oe
® H =519 Oe ® H = 2848 Qe O H 9400 Oe (normal state).

The field was off during the cooling prior to each measurement.

"

istic temperature. It was found for each of the three samples that in a
plot of Cn/T versus T2 one single straight line did not fit all exper-
imental points in the measured temperature region as one would expect
for constant ¥ and ®. The points below about 3°K lay on a straight
line with a slope smaller than defined by points obtained at higher
temperatures, the difference being greater than the experimental accur-
acy, as is shown in Fig.IV.4 for Nb-3. A similar result has been found
for different samples of Nb by other investigctorsz‘3'4). The inclusion
of terms higher than third power in the usual T2 lattice contribution
would account for the results but gives too low a value for ® in com-
parison with the values determined from ultrasonic measurements. A
possible solution can be found by assuming ® to be temperature de-
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Fig. IV.3 Specific heat results of Nb-2 for the following values of the
magnetic field:

H=0

e H = 7050 Oe (normal state)

A H = 1480 Oe (field off during the cooling)

A H = 1480 Oe (field on during the cooling)

O H = 2895 Oe (field off during the cooling)

B H = 2895 Oe (field on during the cooling) -

pendent above the temperature at which the straight line Cn/T versus
T2 changes slope. This assumption is supported by further exper-
imental evidence that shall be presented below.

A least-squares-fit of the normal state data below about 3°%K
with the expression C_/T =7 + AT? with A = 1944 x 10%/8° will then
yield v and @ for T < 3°K. In Table I are shown the values of ¥, ®
and TC, the transition temperature in zero magnetic field, corresponding to
the three Nb samples. For comparison, other recent calorimetric results
for Nb are also given.

For Nb-2 and Nb-3 the higher values of ® at the lower temper-
atures are in agreement with the results obtained from the low temper-
ature (T = 4.2°K) elastic constants of niobium of similar quality:
® =277°K?), ® =271 +5°K®) and @ = 272°K?), Taking ¥ = constant
(as determined at the lower temperatures), ®(T) can be found with the

aid of eq. (4—1). O(T) is depicted in Fig.IV.5 for Nb-3.




Fig, IV.2 (Nb-3)
Specific heat C, divided by
the absolute temperature 7,
plotted versus 72 for the

following values of the mag-
netic field (when not stated
otherwise the magnetic field
was off during the cooling).

DVH =0
© H = 17050 Oe (normal state)
d H=194 Oe

(field off during the cooling)

@ H=1%94 Oe
(field on during the cooling)

0 H=597 Oe
A H = 1480 Oe
© H =1732 Oe
» H = 2488 Oe
V H =2895 Oe
® H =3610 Oe
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Plot of Cn/T versus T?' for Nb-3 at the lowest temperatures,
showing the change in the slope of the normal state specific

2

heat line at about T“ = 9°K2. The experimental points refer

to values of Cn obtained in the following values of the field:

O H = 7050 Oe A H=36100e 0O H =2895 Oe.
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Fig. IV.5 The calculated temperature dependence of ® for Nb-3.




Table 1
Values of ¥, ® and Tc obtained in recent calorimetric measurements on Nb

I = R,,50x /B, g0 ¥ 8(T =0) | O(T = 10)
(mJ.mole~1.°K~2) (°K) (°K)
This thesis Nb-1 | 7.59 £0.03 250 +4 241 +1
This thesis Nb-2 7.78 £0.01 274 £3 243 £1
This thesis Nb-3 7.82 £0.01 276 3 246 £ 1
Leupold and Boorse?! 7.80 275 241
Van der Hoeven and Keesom®’ 7.79 275 238
Heiniger®) 7.80 278 244+)
Shen et al.® 24 7.79 277
Shen et al.® 110 7.85 277

*) This value was estimated graphically in Fig.11 of ref.4!

Examining the results presented in Table I, it can be concluded
that the state of purity and the degree of internal defects of the Nb
sample affect the values of both the parameters ¥ and @. This is
clearly seen in the case of the two extreme cases of Nb-1 and Nb-3.
Comparing the values of ¥ and @ for these two samples one concludes

that both parameters increase with the refinement of the quality of the
sample. A similar result was found with vanadium!?), According to
Heiniger et al.4) the ® value of a pure element is in general lowered
by the addition of a small amount of impurity. Yet it remains to be
seen how far and in which direction internal strains, lattice disloc-
ations and the state of ordering affect the lattice specific heat. It
should be of interest to separate the effects of the physical defects
from those caused by the chemical impurities.

4.2.2 The specitic heat for H =0

In the measurements in zero field the samples were screened
from the earth’s magnetic field and the stray field of the laboratory
by means of a u-metal cylinder. The general trend of the line CS(T)
is the same for the three samples but for Nb-2 and Nb-3 the corres-
ponding results are lower than those obtained with Nb-1 on account
of their higher transition temperature.

The width ATC of the transition to the normal state is highly
dependent upon the quality of the sample (46 mdeg for Nb-1 in con-
trast with about 1 mdeg for Nb-2 and Nb-3). In the heating curves
which include the transition, this can be seen as a change in the slope
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from the value corresponding to the superconducting state to the value
corresponding to the normal state. Actually, a sharp break was ob-
served in the cases of Nb-2 and Nb-3. The increasing sharpness of
the transition with the purity of the sample is associated with the
increasing of the rangeof coherence & (Pippard!!!). For niobium it was
found by De Sorbo!2) that TC is very sensitive to the presence of
dissolved gases, mainly oxygen, decreasing with the solute concen-
tration below the solubility limit. Although T, for Nb-1 is lower than
for Nb-2 and Nb-3 due to impurities, it also reflects the opposite effect
due to strains.

The values of the specific heat jump AC(TC) from the super-
conducting to the normal state at T _for the three Nb samples were
124, 137 and 139 mJ.mole~'.°K~! respectively for Nb-1, Nb-2 and
Nb-3.

The electronic specific heat Ces was obtained by subtracting
the lattice contribution Cls (taken to be the same as in the normal
state, Cln) from the specific heat measured in zero field, Cs.

The procedure described for the analysis of the normal state
data implying a temperature dependent ® above about 3°K yields a
lattice contribution C to the specific heat C,, such that Cs approaches
Cl when the temperoture is sufficiently reduced as shown in Fig.IV.6
for Nb-3. C o being an increasing exponential function of temper-
ature 3!, becomes negligible at the lowest temperatures, so that
C, = C,,+ Thus, when the temperature is rather low (T = 1°K), the
spemflc heat measured in zero field, C , is not much different from
the lattice contribution, C = which appears to be the same as C a
seen in Fig.IV.6.On the other hand if one uses the slope of the strcuqht
line C /T versus T2 defined for 3 < T < 10°%K for calculating C,
all measured temperatures, then the usual separation of the specmc
heat C_ in two terms C,, and Ces will imply Cyy # CinorC,. <0 if

es
we assume Cls = Cln, as also seen in Fiqg.IV.6. There is still another

arqument for ascribing reality to the deviation of normal state specific
heat points from the straight line defined above 3°K. In view of the
second order character of the transition from the superconducting to
the normal state in zero field, the entropies in the two states at the
temperature T of the transition have to be the same: S (T ) S (T )
Within expenmentc] accuracy it is only possible to have thxs condlnon
fulfilled when the line C (T)/T passes through the experimental points
obtained below 3 °K.

In Fiq.IV.7 is shown a semilogarithmic plot of Ces for Nb-3
versus the reciprocal of the reduced temperature 1/t =T /T For
1.9 < 1/t < 6.1, C__ follows the BCS exponential law 13}
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Coa T¥T a0 (4-2)

with a = 8.0 and b = 1.53 to be compared with the BCS values a = 8.5
and b = 1.44. Nb-2 gave the same results and for Nb-1 the values a=9.7
and b = 1.62 were found. For the three samples, for T = TC the elec-
tronic specific heat is larger than the BCS prediction. Thus, while
according to BCS theory Ces(Tc)/ch = 2,43, the value 2.91 was
found for all three Nb samples. The original two-fluid model of Gorter-
Casimir!?) predicts for this ratio the value 3. According to the avail-
able data'®) the values of ceS(Tc)/ch for known superconductors
range from below the BCS prediction up to above the value given by
the original two-fluid model in apparent correlation with TC/G that

T T 1 1
1.6 F 1 T
mJ. mote™. Ok2?
1.4} -
1.2} %
1.0} B
o8} -
o)
C
0.6} % (6 = 246%)
oal|Ss,Cin Sin (g =276%)
TR T
0.2F -
[e] 1 L 1 1 1 1
o T2 110 20 3.0 40 5.0 60 °k?
—

Fig. IV.6 The low temperature specific heat of Nb-3 in the Meissner
region, CS, compared with the lattice contribution to the
normal state specific heat cln' calculated for two different

values of 8.
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Fig. IV.7 Semilogarithmic plot of the electronic specific heat Ce , of
Nb-3 in zero field (0 ) and in the field H = 1480 Oe (0),
divided by the normal state electronic specific heat at T_,

¥T _, versus 1/t =T _/T.
c ¢

1
—«— according to the BCS (heory'3).
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measures the strength of the electron-phonon interaction responsible
for superconductivity, through the relation!3:16)

1

TC - 0.85 —N(O)\'
'3 .85 e (4-3)

N(0) being the density of states at the Fermi level for one spin orient-
ation and V the electron-phonon interaction parameter. The validity
of BCS theory being restricted to low values of TC/Q (weak coupling
limit, Tc/@ ~ 10~3), it is no surprise that at T the ratio Ces(Tc)/”)’Tc
deviates from the theoretical prediction for those superconductors
that do not fuifil the BCS restriction as is the case of Nb(T /0 = 3.4 —
3.8 x 10~2), 3
Melik-Barkhudarov!”?) has made an attempt to calculate the ratio
Ces( C)/’)’T without the restricting BCS assumption of weak electron-
phonon couplmq. His results, however, turned out to deviate in the
direction opposite to that one would expect on the basis of experimental
results. That author calculates that for superconductors with the
highest T /0 (Hg and Pb) the ratio C_ /yT should be lower than the
BCS predlctlon. Recently two other Rusﬂan authors, Geilikman and
Kre51n18), have succeeded in developing a theoretical treatment on
basis of the two-band model that accounts for the inequality CeS(TC)/
)’T > 2.43 by noticing that superconductors for which this inequality
holds are characterized by the presence of overlapping bands. Each
band has its own energy gap and the condition for the verification of
the mentioned inequality is that the larger gap corresponds to the
narrower band. The existence of a smaller gap is expected to increase
the electronic specific heat in zero field at the lowest temperatures
as was observed in Nb by Shen et al. ) and in V by Radebaugh and
Keesom!?), In the case of Nb-3, at the lowest temperatures, notwith-
standing the scattering of the zero-field data, Ces appears to have
the tendency to rise somewhat above the exponential line defined

at higher temperatures, as can be seen in Fig.IV.7 for 1/t > 7.

4.2.3 The thermodynamic critical field H_

As already stated in the general introduction, calorimetric results
make it possible to calculate the thermodynamic critical field HC(T)
free from the effects of irreversibility even in the case of supercon-
ductors with hysteretic behaviour. Following the procedure described
in Section 2.4.1 (eq. (2—38) and (2-39)), H_ was obtained by double
integration of specific heat results in zero fleld and normal state. At
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0°K the values 1864, 2004, 2014 Oe were found for H_, respectively
for Nb-1, Nb-2 and Nb-3. For high-purity, annealed Nb Leupold and
Boorse” found H (0) = 1994 Oe with specific heat measurements while
Finnemore et al. 19) found H (0) =1993 Oe with magnetization measure-
ments on extremely reverqlble Nb samples. In Table II are given the
computed values of H ( ) for Nb-3 together with the deviation from
a parabolic law H_(T) = H_(0) (1-T?/TZ), which follows from the
original two-fluid model}4),

Table II

The deviation of H _ from the parabolic law (Nb-3)

T H,
(°K) t (Oe) h t2 Ah

0.00 0.0000 | 2014 1.0000 | 0.0000 0.0000
0.50 0.0539 | 2009 0.9974 | 0.0029 | +0.0003
1.00 0.1078 | 1991 0.9886 | 0.0116 | +0.0002
1.40 0.1509 | 1969 0.9779 | 0.0228 | +0.0007
2,00 | 0.2155 | 1922 0.9544 | 0.0464 | +0.0008
2.40 0.2586 | 1881 0.9338 | 0.0669 | +0.0007
2.80 0.3017 | 1831 0.9091 | 0.0910 | +0.0001
3.20 0.3448 | 1773 0.8804 | 0.1189 | —0.0007
4,00 | 0.4310 | 1634 0.8113 | 0.1858 | —0.0029
5.00 | 0.5388 | 1417 0.7036 | 0.2903 | —0.0061
5,50 0.5927 | 1292 0.6413 | 0.3513 | —0.0074
6.00 | 0.6466 | 1155 0.5736 | 0.4180 | —0.0084
6.50 0.7004 | 1008 0.5005 | 0.4906 | —0.0089
7.00 0.7543 850.2 | 0.4221 | 0.5690 | —0.0089
7.50 0.8082 681.9 | 0.3386 | 0.6532 | —0.0082
8.00 0.8621 503.5 | 0.2500 | 0.7432 | —0.0068
8.50 0.9159 314.7 | 0.1563 | 0.8383 |—0.0048
9.00 | 0.9698 116.4 | 0.0578 | 0.9405 |-0.0017
9.10 0.9806 75.19| 0.0373 | 0.9616 |-0.0011
9.20 0.9914 33.91| 0.0168 | 0.9829 |—0.0003
9.28 1.0000 0.00 | 0.0000 | 1.0000 0.0000

The deviation Ah(t) = (t)/H Oy =(—#¥)y= h - (1 — t2) is plotted
versus t2 in Fig.IV.8 for Nb- 1 Nb-2 and Nb-3, where for comparison
the deviation curves for prO) Al%21) gnd that according to the BCS
theorylg) are also presented. The deviation curves for the three samp-
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les are rather similar. The main features of the function Ah(t?%) for the
three Nb samples are that Ah is positive for t% < 0.095 and the ob-
served maximum negative deviation is only about 1/3 of the BCS
prediction for Nb-1 and 1/4 for Nb-2 and Nb-3. According to the BCS
theory, valid in the weak coupling limit, the departure of H (T) from
the parabolic law should always be negative. Superconductors with
rather low values of TC/G as e.g. Al (2.7 x 10~3)21) follow very well
the BCS prediction for H (T)Zl) Hg and Pb with the highest known
values of T /8 (5.9 x 10_ and 7.5 x 10~ respectlvely) have a posit-
ive devmtlon Ah in the whole temperature rcmqe 0.21) This consti-
tutes a second example of an empirical correlation between a super-
conductive property and the strength of the electron-phonon coupling.
Niobium, having an electron-phonon interaction of intermediate strength
is thus in agreement with such a correlation scheme.

+0.020

+0.010

-0.010

-0.020

-0.030

-0.040

Fig. IV.8 The deviation of H (T) from a parabolic law H (T) = HC(O)
(1—t ) plotted as Ah =h—(1—t ) versus 12 for the three nio-
bium samples. The deviations of szo), Alzn
to the BCS theory!>)

and according

are given for comparison.
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As a check of the correctness of the computed values of Hc near
TC use was made of the Rutgers’ relation (2—37) established in Sec-
tion 2.4.2 and relating the specific heat jump at Tc to the slope of the
thermodynamic critical field at the same temperature. The results are
shown in Table III where a comparison is made between the values
of (dH_/dT)y calculated from a) the computed H_(T) and b) the
measured jump® '\C(TC) in the specific heat at TC, by means of eq. (2—37).
For each of the three samples the agreement between the two values
is within experimental accuracy.

Table III

The values of (dHc/dT)T calculated from
a) HC(T) s
b) .’SC(TC)/TC, by means of eq. (2—37).

—(dH_/dT)p  (Oe.K™1)
sample g
a) b)
Nb-1 411 408
Nb-2 419 416
Nb-3 420 417

If the formalism of Kok??) and Gorter-Casimir!4) is accepted it can
be shown that

L (4-4)

where V is the molar volume and ‘¥ the Sommerfeld constant. The ex-
perimental results confirm the dependence of (dHc/dT)T on 7 accord-
ing eq. (4—4) inasmuch as the former was found to vary Tis the square
root of the latter. Thus, in the so-called law of corresponding states,
relating TC, ¥ and HC(O):

"/Ti/HE(O) = 0.17 according to the BCS theory 2

= 0.159 according to the formalism of Ko

Gorter-Casimir!?4),

k22) gnd

all the three parameters are found to vary with the degree of purity
of the sample. This conclusion does not quite confirm the results of
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De Sorbo!?) who found from resistivity measurements on niobium with
different amounts of dissolved gases (0 and N) that (dHc/dT)T

c
(and therefore ) was independent of impurity contant. In the present

case, the C values for ¥ Tg/Hg(O) are 0.152, 0.153, 0.154 respectively
for Nb-1, Nb-2 and Nb-3.

4.2.4 The energy gap 2A(0) at the absolute zero

From the BCS expression for the difference in free energy at
0°%K between the normal and superconducting states, Goodman2?3) has
derived the relation

280)_ 4 HEOV
kT, /3 (SW)TZ ‘ sl
where 2A(0) is the gap in the energy spectrum of the electrons at
absolute zero (BCSH)), k the Boltzmann constant and V the molar
volume. This relation brings the calculatjon of the energy gap at the
absolute zero within the scope of specific heat measurements. The
calculated values of 2‘3(0)/kTC for the three samples are given in Table
IV (using V = 10.8 cm3/mole?),

Table IV
The values of 25(0)/1(1‘C computed from relation (4-5)

sample 2A(0)/kT
Nb-1 374
Nb-2 3.70
Nb-3 3.69

These results confirm Anderson’s prediction?®®) that the energy gap
is not much affected by the presence of non magnetic impurities.

Using the Goodman relation (4—5), Finnemore et al. 19) from magnet-
ization measurements on Nb calculated for 2A(0)/ch the value 3.66 while
the value 3.69 was calculated from calorimetric measurements by Leupold
and Boorse?), Also for Nb, electron tunneling measurements gave the
values 3.59%%) and 3.84 + 0.06%°) and ultrasonic. measurements the
value 3.63 * 0.06%) and 3.75 % 0.052%%), The BCS theory predicts for
2A(0) the value 3.52. It is known??) that there is also a correlation
between 2A(O)/ch and TC/G, the BCS prediction being only verified
for superconductors with the lowest values of Tc/ﬂ.
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Introducing an effective interaction parameter N(0)V" larger than
the value of N(O)V calculated from Tc/ﬁ on basis of eq. (4—3) Sheahen?®)
carried out a semi-empirical extension of the BCS theory to intermedi-
ate and strong-coupling superconductors. He derived relations between
A(0), H_(0), T, L\C(Tc), ¥ and the slope of H_ near T _ in reduced
units (dh/dt)t=l (h = Hc(t)/Hc(O), t = T/Tc), the conclusions being

Ac(T,)

-0.27 AO)3 - 0.27 ( |y |)? . (4-6)

t=l
c c

The last equation of (4—6) is identical with the empirical relation
(Toxen?2?))

2800) _ 2T dH

= &N

c 4-7
kT_ H_0) dT)TcI' o u

known to hold for nearly all superconductors.

The correlation found by Sheahen is confirmed in the present
case although the values of A(0) calculated from (dh/dt)t:land from
AC(TC) are somewhat higher than the values obtained according
Goodman'’s relation (4—5). For Nb-3 one gets 2/\(0)/ch = 3.87 from
(clh/dt)l:l = — 1.93, and 3.84 from AC('I‘C)/7TC = 1.91.

We conclude this section by reminding the reader that the values
of the quantities AC(T_)/yT_, ZA(O)/kTc and Ah(t) = h — (1 — t2) are
expected to depart in the observed direction from the BCS predictions
if retardation and damping elfects in the effective electron-interactions
are taken into account for strong-coupling superconductors3?’, In part-
icular, agreement with experiment is found for 2A(0)/kT _ and Ah(t) in
the extreme case of Pb3!), A

Probably such retardation and damping effects also play a not
negligible role in the zero field properties of intermediate-coupling
superconductors like Nb, which properties also differ from the pre-
dictions of BCS theory.

4.2.5 The specitic heat in tields H < HCI(O)
4.2.5.1 Nb-1

The specific heat line for low fields was found to coincide with
the zero field curve until, at a certain temperature depending upon the
applied field, it began to depart smoothly upwards. This smooth vari-
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ation of the specific heat extends nearly up to the temperature T

where the jump to the normal state occurs. Although the specific heat
was not reproducible just below Ts it was always possible to resolve
the jump unambigously. The results obtained with Nb-1 at the mag-
netic field values H = 194, 519 and 734 Oe are included in Fig.IV.1.
From the figure it can be seen that the specific heat displays an anom-

aly besides the one associated with the transition to the normal state.

Fig. IV.9 The dependence of the specific heat upon the way in which
the sample Nb-1 has been cooled down before the measure-
ment.,

n normal state
s zero field

1 H =519 Oe, with the sample cooled down in the absence
of the field

H 519 Oe,with the sample cooled down in the presence
of the field

4337 Oe,with cooling in the absence of the field
4337 Oe,with cooling in the presence of the field.
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The cooling procedure prior to the measurement had an effect on the
specific heat, When the sample had been cooled down from the normal
state in the presence of the magnetic field, the specific heat is higher
than that at zero field in almost the entire temperature range and no
indication of a peak is ever observed. The jump to the normal state is
now smaller as can be seen in Fig.IV.9, line 1, for H = 519 Oe. The
effect is due to incomplete flux expulsion (trapped flux) during the
cooling in the presence of the field.

4.2.5.2 Nb-2 and Nb-3

Just as observed with Nb-1, the specific heat for low fields was
found to be the same as in zero field up to a certain temperature which
is a decreasing function of the applied field. Above this temperature,
it rose steeply to a rather sharp peak in the case of Nb-3, as can be
seen in Fig.IV.2 for fields H = 194, 597, 1480 and 1732 Oe. For Nb-2
the results were similar, to those of Nb-3 with somewhat lower peaks
as can be seen in Fig.IV.3 for H = 1480 Oe (it is presumed that the
hump following the main peak is not a characteristic of the sample but
rather of its topology, as discussed in Section 4.2.5.3.

Increasing the temperature above the value at which the peak
was found, the specific heat C increased roughly as T3 up to a temper-
ature Ts at which it jumped to the normal state. In the case of the
lowest measured field (194 Oe) the jump to the normal state did not
appear resolved from the peak, as can be seen in Fig.IV.2.

Contrary to Nb-1, for Nb-2 and Nb-3 the anomaly in the specific
heat was quite reproducible forthe lower fields (cf. results for H =194 Qe
in Fig.IV.2) no matter in which way the sample was cooled down,
whether in the presence or absence of the field. But for H > 1480 Oe
the peak was totally missing both for Nb-2 and Nb-3 when the field
was on during the cooling of the sample; this is shown in Fig.IV.3
for Nb-2 and Fig.IV.10 for Nb-3. The effect of trapped flux is quite
apparent at the lower temperatures, as an increase of the specific
heat over the zero-field values. However, both for Nb-2 and Nb-3, for
temperatures at which the applied field was greater than HC the spec-
ific heat was independent of the way in which the sample had been
previously cooled. The reproducibility of the mixed state specific
heat of Nb-2 and Nb-3 in the region TI K Ts where '1"l is defined
by HC(TI) = H and T, by ch(Ts) = H, H being the applied field, con-
trasts markedly with the hysteretic magnetic behaviour of both samples
in the whole range of superconductivity as will be seen in Section
4.2.5.4,
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l : ¥ T T r—
36— ‘ -
(m J. mole-! °k-2)

Fig. IV.10 The dependence of the specific heat upon the way in which
the sample Nb-3 has been cooled down before the measure-
ment, for H = 1480 Oe.

A with field off during the cooling prior to the measurement
A with field on during the cooling prior to the measurement
s zero field specific heat curve
n

normal state specific heat curve

4.2.5.3 The phase transition at HCI(T)

Below the Hcl phase transition line the specific heat is ex-
pected to be field independent on account of the Meissner effect as
seen in Section 2.4.1. This is confirmed, within experimental accur-
acy, for the three samples. Accordingly, it is tempting to identify H_
with the applied field at the temperature at which the specific heat
line begins to deviate from the values corresponding to zero field.
This should be correct in the absence of demagnetizing effects, i.e.
for a needle-shaped sample aligned along the magnetic field direction.
For any real geometry other than an ellipsoid the knowledge of the
demagnetizing coefficient is complicated by the fact that it is not
constant along the sample. In the present case (wires in a longitudinal
field) the demagnetizing effects are maximum at the ends of each wire
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and minimum at its mid-point with the consequence that the transition
to the mixed state at constant applied field will not take place for the
whole sample at a given temperature but rather within a small range
of temperatures.,

The nature of the specific heat anomaly (at constant field) as-
sociated with the phase transition at HCI(T) is closely related to the
change undergone by the magnetic moment M of the sample at this
boundary when increasing the applied field at constant temperature.
This can be seen from the Ehrenfest-like relation for the phase tran-
sition line Hcl(T)32'33'3“

Cm —Cs =(dHcl)2 [(aMm) oM

L dT "3H

where the indices s and m stand for superconducting and mixed state,
respectively. If (BMm/BH)T at H = H_, is finite but different from
(3MS/BH)T, the transition is second order. A jump in the magnetiz-
ation will imply a transition of first order, with latent heat. On the
other hand, a logarithmic singularity in the mixed state differential
susceptibility will imply a A-type transition.

There has been much discussion about the nature of this tran-
sition. From the theoretical point of view the most recent predictions
seem to be in favour a transition of A-type?3:38) of the order (1 +2K)37)
(for a definition of K see ref.37)). The Abrikosov vortex model yields
a A-type transition at HCI (Goodman38)),

Experimentally, a logarithmic singularity in the magnetic perme-
ability (BB/BH)T at H = H_, was reported from magnetization measure-
ments in high-purity annealed Nb3% (I" = 500). But Finnemore et al.!®)
also performing magnetization measurements in high-purity annealed
Nb (I" = 2000), did not confirm that result. They reported instead a
large but finite discontinuity in (BM/EH)T at H = Hcl, (this implying
a second order transition) shortly followed by a rapid decrease of
(?’M/BH)T at a slightly higher field. It was further claimed that the
field interval in which the rapid variation of the magnetization took
place could not be accounted for by the demagnetizing coefficient of
the sample, which was too small. However, it is not clear whether or
not this might be due to smearing out of a A-type or first order tran-
sition followed by a rapid variation of (82(3/8H2)T in the mixed state.
Demagnetizing effects are expected to truncate a A -type transition38)
and to change an ideal first order transition into two of second order
as in the case of the intermediate state in type I superconductors49’.
Hysteresis and inhomogeneities further complicate the transition.
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The departure of the specific heat lines from the values corres-
ponding to zero field and the observed peaks are clearly associated
with the mixed state where the entropy and therefore the specific heat
are field dependent. However, the results deviate from those one
should expect for a type II superconductor in thermodynamic equil-
ibrium. In particular, the location of the peak in the phase diagram as
will be seen in Section 4.2.5.6 (Fig.IV.16) for Nb-3 lies too close to
HC(T), this indicating retardation in the penetration of magnetic flux
into the bulk of the sample. This effect is most apparent in the case
of Nb-1 for which the peak lies very close to the transition to the

normal state.
Ideally, for any value of the applied field HCl <H <Hc2, at a

given temperature, there is an equilibrium uniform distribution of flux
threads inside the type II superconductor, the flux density correspond-
ing to the thermodynamically reversible M(H) curve at this temper-
ature. Upon changing H or T the fluxoids must adjust themselves to a
new equilibrium configuration. However, in practice, the movement of
the fluxoids may be countered by local changes in the superconducting
parameters produced by inhomogeneities of the sample, from which
results pinning of the flux??), For an increasing field, flux pinning
increases the absolute value of the magnetization above the value

corresponding to thermodynamic equilibrium, the opposite occuring

in a decreasing field??), Thermal activation counteracts flux pinninq“)

so that for a sample with a not-too-high defect concentration thermo-
dynamic equilibrium might in principle, be approached or even attained.
However, at Hcl, even for a defect-free sample there is an energy
barrier??) that prevents flux from penetrating into the specimen or
escaping from it. In fact, hysteresis is hardly absent at Hcl although
surface flaws and end effects as well as thermal activation may coun-
ter the effects of the surface barrier.

Considerable magnetic hysteresis was found in a Nb sample of
the same origin as Nb-1 as can be seen in Fig.IV.11 where the mag-
netization curve for T = 6.95°K (obtained by Goedemoed et al.249) is
presented, both for increasing and decreasing fields. The magnetic
behaviour of Nb-2 and Nb-3 also showed hysteresis as can be seen in
Fig.IV.12. The relative magnitude of the residual paramagnetic moment
due to locked-in flux when H has been reduced to zero from above
ch, compared to the maximum diamagnetic moment at H = HCI, is
minimum for Nb-3 and maximum for Nb-1.

During the measurements of the specific heat of sample Nb-3,
when the temperature approached the region of the anomaly (peak), the
recording of the heating curves for H > 1480 Oe showed unusual effects.
For the same power supplied to the sample as used at lower temper-
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atures, the rate of variation of the temperature of the sample, with
the time decreased abnormally and a sudden cooling was sometimes
observed while supplying heat from outside. On other occasions the
temperature of the sample stayed constant for short periods during the
heating process. Also, when the temperature of the sample drifted to-
wards the bath temperature (Tbmh %Tsample) in the fore- and after-
periods of the heating curves, a number of sudden small coolings
were observed. These cooling effects might be due to the creation

of a large number of vortices, this producing the sudden cooling of the
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Fig. IV.11 The isothermal magnetization of Nb-1 at T = 6.95°K plotted
as —47TM versus the applied field H for increasing and de-
creasing field, measured by Goedemoed et al.44a),
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Fig. IV.12 The isothermal magnetization for increasing and decreasing
field, for

a. Nb-2 at T 44b)

4.20°K, measured by Goedemoed
45)

b, Nb-3 at T

n

4.22°K, measured by Van Kolmeschate
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superconducting matrix in which they are embedded. It is likely that
the observed sudden cooling effects indicate non-equilibrium states,
since they occurred in a region of the phase diagram very near the line
defined by the values of the thermodynamic critical field H_ > Heye
Anyhow they disturb the measurement of the specific heat. The hump
that follows the main peak for H = 1480 Oe (Nb-2) as can be seen in
Fig.IV.3 seems unlikely to be caused by a change in the structure of
the magnetic lattice of fluxoids threading the superconductor in the
mixed state. In fact, it appears to have definitely been shown46:47)
that the triangular lattice is more stable than the square lattice over
the whole range of the mixed state. On the other hand the peculiar
effect is of not systematic occurrence. In connection with this unex-
pected behaviour of the specific heat it is of interest to know whether
the topology of the sample may have any influence on preventing flux
penetration in some of the wires, especially the inner one. This wire
may have been screened somewhat from the applied field by the seven
outer ones (these form a kind of superconducting hollow cylinder the
wall of which is very thin where the wires touch each other). Thus,
for such a wire, the entrance into the ‘'mixed state may be delayed
beyond Hcl' the effect being, apparently, superheating. Recent the-
oretical work of Matricon and Saint James48) predicts the persistence
of superheating in superconductors up to fields Hsh > Hc, the ratio
Hsh/HC being a decreasing function of «, the GL parameter of the
superconductor. For Nb-2, (x = 0.992) the corresponding value osth/Hc
according to Matricon and Saint James, is about 1.3. The temperature
interval where the secondary peak in the specific heat is located for
the case of H = 1480 Oe for Nb-2 corresponds to 1.02 < H/Hc < 1.09
(Hc represents the values of the thermodynamic critical field at the
temperatures of the beginning and the end of the hump, while H is the
applied field). Recently, superheating was observed by Renard and
Rocher?®) on Nb samples screened from end effects. Most of their
results gave 1.04 < H$h/Hc < 1.10. The present result isin this range.

The sporadic occurrence of the effect might be due to different
pressure in the contact of the seven outer wires of the sample. No
further attempt was made to study this effect.

4.2.5.4 The enthalpy balance

Combining the definition of magnetic enthalpy given in Section
3.l as E=U —MH, with the first principle of thermodynamics dU=dQ+HdM,
(dQ being the heat supplied to the sample at constant field), we have
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dE = C dT— MdH . (4-9)

Thus, the variation of the enthalpy between two states (T,H), one,
for instance, (0,0) and the other on the ch phase transition line
(TS, ch), can be calculated as the sum of the magnetic work done
isothermally at T = 0°K on the sample by the external field between
0O and H = ch(Ts) and the integrated values of the specific heat, C,
measured at constant field, H, between 0 and TS. For a closed path
in the phase diagram like ABCDA in Fig.IV.13 one has ¢dE =0 or,
in an equivalent way

H T5
—/ M(0)dH +f CdT = En(Ts) F (4—10)
o) o}
T(_' TS
where En(TS) = CSdT - CndT is the field independent enthalpy in
o
Cc

the normal state at the temperature Ts of the transition at ch (point
F in Fig.IV.13), referred to the zero-field enthalpy at the absolute
zero. If, in practice, for H < Hcl(O) one finds

Fig. IV.13 Closed paths ABCDA and A'B/C’D’A’ in the phase diagram
used in the enthalpy and entropy computation.
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H T
AE=En(TS)—[—/ M(0) dH+[CdT]>O, (4-11)
o} o
H
sincef M(0)dH = H?/87 corresponds to reversible behaviour (perfect

o)

Meissner effect), it is evident that the enthalpy difference, AE, is
caused by too small values of the measured mixed state specific heat
Cm. The lowering of the measured Cm results in fact, from an error
introduced bv the calculation of the specific heat by means of the
usual Keesom and Kok’s method (Section 3.6) whenever the specific
heat varies largely and discontinuously during the heating time, and
this might happen near the HCI phase transition line, in some con-
ditions, as described below,

Suppose that near HCl the adjustment of the Abrikosov vortex
structure®?) to a new equilibrium configuration, corresponding to a
different temperature at constant field, octurs without (or little) relax-
ation for increasing temperature but with a large time lag when the
sample is allowed to cool down somewhat from a state (Tl’ H) to a
state ('1"1 — AT, H). Upon warming up the sample once again frem the
temperature T1 — AT, when there is no (or little, short lasting) flux
pinning one expects the vortex structure to remain unchanged up to
T1 (or somewhat above) when it begins to react upon the temperature
increase. Thus, the heating time comprises two different regimes and
the specific heat may vary significantly from one to the other. The
inability of the flux to escape from the sample near Hcl, when it is
cooled a little, is probably a surface effect. Accordingly, the heating
curves at the transition to the mixed state for the case that Tsample
T must show a break in the slope at the temperature T, at which
the sample has been brought in the preceding heating. This break
corresponds to the jump of the specific heat from the value, Cl' cor-
responding to the static regime of trapped flux either for cooling or
warming up to the higher value, Cz, corresponding to the entrance of
flux (creation of vortices). Samples Nb-2 and Nb-3 showed clearly
this effect at the temperature region where the peak in the specific

heat was located, whenever T > T . The effect was not
sample bath

at all present when the sample did not cool down near H_, (Tyaen >

T ). This was, for instance, the case for H = 1732 Oe (Nb-3) at

which field the transition at Hcl takes place below the boiling point
of “He.
In Fig.IV.14 is shown a succession of heating curves forH =597 Oe
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R, =56.33kQ

Ry=56 44 kR

Ry=56.44 kQ

Ry = 56 54 kR

time

Ry= 5654 kQ

Ry = 56.80 kR

Ry = 56.80 kR
recorder output

Fig. IV.14 Succession of heating curves obtained with Nb-3 for H=5970e
in the region of the specific heat peak. The shift Au’ produc-
ed by decreasing the variable resistance of the Wheatstone
bridge (see thermometer circuit, Fig.lIl.4 and the recorder
output, Fiq.lll.6) has been omitted without changinq the
time. At the middle of the lowest curve T = 7.576 °K while
T =7.671°K at the middle of the highest; Thath = 4-2°K.
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(Nb-3) taken at the temperature region where the peak in the specific
heat is located. For showing how exactly the break in slope occurs
at the temperature Tl from which the sample cooled downto T —-AT,
due to heat losses to the bath (TMmple > Tba!h), the shift %\u due to
decrease of the variable branch R of the Wheatstone bridge (see
thermometer circuit Figs.II.4 and III.6, Sections 3.4 and 3.6) has been
omitted (each fore-period has been shifted a distance Au’ to the right
perpendicularly to the time axis). Let us call Cmetm the specific heat
determined in the usual way, by extrapolating the fore- and after-
period to the middle of the heating time (see Section 3.6). Obviously,
C < Cmean < C From the temperature T to T the net enthalpy
mcrement is C (T - T ) (the specific heat is taken as constant in
the small temperature 1ntervals considered). It is, then, evident that
an enthalpy difference, AE > 0, appears if one takes Cmem’(Tl T,)
as the heat supplied to the sample in the interval from T, to Tl. For
Nb-3 the error thus introduced by the calculation of the specific heat
by the usual method produced a systematic enthalpy difference, AE > 0,
(defined by eq. (4—11)) for fields H < H 1(O) whenever the measure-
ment had been performed with Tsam - > Ty ath De€ar the Hcl phase
transition line. For this sample AE was maxrmum for H = 597 Oe (8.5%
of the normal state enthaply E_ at T_ = 8.16 %K, the temperature of the
transition to the normal state) This value drops to 1.1% when the
specific heat is properly calculated (values C2) For all the other
fields in which an enthalpy difference, AE, was observed by inte-
gration of the values C e AE drops to values within the accuracy
of the measurements when the enthalpy is calculated on basis of the
values C, of the specific heat. In the worst case, H = 1480 Oe (Nb- 3),
for which measurement another kind of disturbance was encountered
in the H_, region, namely small coolings during the heating period,
AE/E (T SS was only 1.7%.

The corrected value C, of the specific heat, (differing from
C as much as 35% at the top of the peak for H = 597 Oe (Nb-3))

mean

was calcu]ated fromC_ .. by means of the equationC_ _ AT =C AT+

’\T AT is the temperature increment produced by the supplred
hert /\‘,, determined in the usual way described in Section 3.6 and
/\T is the part of AT before the break in the slope of the heating curve,
whtle '\T = AT — AT C, was calculated on basis of the fore- and
after- perrod of the heatmq curves (see Fig.lll.6) as follows. For

T AT the intersections A and B (not shown) of the null

sample bath'’

point line np, with the extrapolations of the straight lines correspond-

ing to an after-period and the next fore-period (after decreasing the

varrable resistance R, of the Wheatstone bridge from the value R
k ]) give, by means of the calibration curve R(T) of the carbon
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thermometer, the temperatures T' and T'’ of the sample at two different
times t; and t,. The temperature change T''—T' corres?onds to a heat
e_xchange between sample and surroundings given by Q(t]—tz). (where
Q is the heat exchange per unity time) such that C(T"'—T’) = Q(tl—tz),
C being the specific heat of the sample in the temperature interval
from T’’ to T'. The time interval t, —t, is given by the guotient of
the distance between points A and B on the np line to the constant
speed of the recording paper. In the temperature region just before and
just after the specific heat peak, where no bre ak appears in the heat-
ing curves, the fact that the specific heat (calculated in the usual
way) is known, makes it possible to calculate Q as a function of the
temperature and t.herefore to interpolate it in the restricted region of
the peak. Once Qis known, the reversing of the method yields the
specific heat Cl of the sample at the temperature intervals T1 —T2
(see Fiqg.IV.14) where the sample was allowed to cool down after the
heating period. The method gives good results when the temperature
of the bath has been stabilized and the fore- and after-period are well
inclined with respect to the np line.

The fact that enthalpy balance is obtained within the accuracy
of the measurements by calculating the specific heat (CZ) in the way
described above, confirms the initial assumption that the specific
heat is the same (Cl) in the interval Tl -—'T2 (see fig.IV.14) for in-
creasing and decreasing temperature.

For Nb-3, for low fields (H < 1480 Oe) the specific heat at the
peaks (Fig.IV.2) has been calculated by means of the method described
above. For Nb-2, the results shown in Fig.IV.3 for H = 1480 Qe were
calculated by the usual method described in Section-3.6. The maximum
at the peak is expected to increase approximately 1.13 times after the
correction has been applied.

For fields H > HCI(O) the enthalpy for a closed path in the phase
diagram like A'B'’C’'D’A’ in Fiq.IV.14 was balanced within exper-
imental accuracy in the case of Nb-3, for which a magnetization curve
at the absolute zero could be most accurately derived.

4.2.5.5 The entropy balance

For all paths at constant field that cross the mixed state, for
Nb-1, and in the restricted range of fields 597 Oe < H £ Hcl(O) for
Nb-2 and Nb-3, it was found that the integrated values of C/T (C be-
ing the measured specific heat), from the absolute zeroup to the temper-
ature T_ of the transition to the normal state, were systematically
lower than the corresponding rise in entropy



T
s
J %dT ST, (4—12)

where Sn(Ts) is the normal state entropy at T_.

The irreversible behaviour implied by this inequality is due to
the mechanism that retards the transition into the mixed state and/or
prevents the Abrikosov vortex structure to adjust itself, at each
temperature, to the equilibrium pattern. In the case of Nb-3 evidence
for metastable states appear, at the temperature region of the peak in
the specific heat, as irregularities in the heating curves (see Section
4.2.5.3). An analogous conclusion can be drawn from the fact that the
peak in the specific heat lies very close to HC, the thermodynamic
critical field, as will be seen in Section 4.2.5.6. Since for Nb-2 and
Nb-3, in part of the mixed state, the specific heat is independent of
the way in which the previous cooling has been performed, and given
the second-order character of the transition to the normal state (Sm(Ts) =
= Sn('l"s),Sm being the entropy in the mixed state), one may calculate
Sm(T) in the following way: starting at T = T_ with Sm(Ts) =S,(T.)
the entropy Sm(T) in the mixed state was ccﬁculated by subtracting

) i
from Sn(Ts) the values f (Cm/T - Cn/T)dT. In this way the temper-
iL

s

ature of the transition at Hcl was approached from above, passing
through the reversible region of the specific heat curves. Starting from
the low temperature side, Sm(T) was calculated by adding to SS(T)
the entropy in the pure superconducting state the values of

T
| (€ /T —C/T)dT,
Tl
where Tl is the temperature at which the specific heat curve begins
to depart from that for zero field. In this way the entropy production
T
defined as AS = Sn(Ts) —IS(C/T)dT was located in the neighbourhood
o
of HCI(T), reasonably far from the regions where the specific heat
was found to be reversible. In the case of Nb-3 the irreversible en-
tropy production was negligible for H = 194 Oe and H = 597 Qe
(AS/S_(T,) < 1%) and was the highest for H = 1809 Oe (AS/S_(T_) =
= 13.5%. For the same sample the electronic entropy Se(H,T) is de-
picted in Fig.IV.15.
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Fig. IV.15 The temperature and field dependence of the electronic
entropy (Nb-3)

s zero field and H < Hcl(T) d H = 1732 Oe
n normal state e H = 1809 Qe
a H =194 Qe f H = 2488 Oe
b H =597 Oe g H = 2895 Qe
c H = 1480 Oe h H = 3610 Qe

These results, together with the fact that for Nb-2 and Nb-3 the
effect of irreversibility disappeared (AS = 0) for H > HCI(O), seem to
rule out the idea that there might be an "’intrinsic’’ irreversibility
associated with the motion of the Abrikosov vortices. The irrevers-
ible entropy production was the largest for Nb-1, the sample which
displayed the highest magnetic hysteresis and, as already mentioned,
for this sample the effect of irreversibility was seen for all measured
fields.The increase of AS with the field up to HCI(O), clearly observed
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in the case of Nb-3, might be caused by the broadening of the non-
equilibrium region as the temperature decreases.

4.2.5.6 The temperature dependence of Hc1

The identification of Hcl is not exempt from difficulties. In
magnetization measurements two criteria are available for determining
H. a) deviation from complete Meissner effect (H; ) and b) strong
penetration of the magnetic flux .into the bulk of th.e sample (H;;).
In specific heat measurements Hcl is defined as H (T ) = H (where
T, is the temperature at which the specific heat departs from the zero-
field curve and H is the applied field) while Hc is defined as Hcl(Tz)
=H, T2 being the temperature where the peak in the specific heat is
observed. None of the two cxrtena yield H cl corresponding to thermo-
dynamic equilibrium since H is too low 1n view of local demagnet-
izing effects and HCl is too hrqh because of hysteresis due to the
surface barrier and/or flux pinning. The magnetization curves for all
three samples (most apparent for Nb-1 and Nb-3) show that the end
of the perfect Meissner effect occurs at somewhat lower fields than
those corresponding to the maximum (absolute) value of the magnet-
jzation (cf. Figs.IV.11 and IV.12). Likewise, in the specific heat
results, the tempera&ures Tl and 'I‘2 defined above were different. The
values H' =1 and H for Nb-3 are plotted in Fig.IV.16, where H is
also given for comparzson It is apparent that the values H 1 lie very
close to H_. The equllrbrrum value of H_, is expected to be some-
where between H and H . Finnemore et al.'®) found in magnetiz-
atron measurements on Nb with almost reversible behaviour that

C (0) 1736 Oe. Our Nb-3, having a higher « value, should be ex-
pected, if it behaved reversibly, to have a lower value of H (O) than
that found in reference 19).

The results presented in Fig.IV.16 confirm, near Hcl, the related
behaviour of calorimetric and magnetic results: where the complete
Meissner effect ends (H;l), the specific heat departs from the zero-
field curve; where the magnetization has its most rapid variation
(H ) the specific heat has its maxima. The most pronounced anom-
ahes in the heating curves (small coolings, intervals of constant
temperature) appear at H

cl’

For Nb-2 the values of H and H' 1 were near the correspond-
ing values for Nb-3 for the same reduced temperature (not shown). For
Nb-1, H;l was systematically lower than for Nb-2 and Nb-3 and, in
particular, H (0) obtained by extrapolation, was found to be 1.14k0e
(also not shown) This behaviour is what one should expect for a
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superconductor with a higher « -value. Because of the ambiguity in the
identification of Hcl, no further attempt was made to study its temper-
ature dependence. Despite this, a remark on the ratios between HC

and H c2 and H may be made. Abrikosov’s calculation of H 59}
valid only for hxgh k values, has been extended by Harden and Arpsn
to all values of the GL. parameter greater than 1/v2. They qxveH /H

as a function of ch/Hc‘ From the experimental values of H (Table
II) and H o (see Section 4.2.7.2) the dashed curve H (t ) deplcted in
Fig.IV. 16 was obtained for Nb-3. Although for T T there is no
disagreement with the calculation (H;1 < HC < H 10 as expected) at
lower temperatures HC] is higher than predicted by the calculation.
Similar results were found for Nb-1 and Nb-2.

2.2

2.0

Fig. IV.16 The temperature dependence of the lower critical field for
Nb-3, defined as:

a, the end of the Meissner effect (H::l' line -.-) from magnet-
ization results (points --) and from specific heat results
(points O );

b. the locus (H;], line -..~) of the specific heat maxima (points 4A)
or the magnetization maxima (points 3{). Points (0 ) loec-
ate the most pronounced irregularities observed in the
heating curves.

The temperature dependence of Hcl according to Harden and

ArpSI) is represented by the dashed line. The thermodynamic

critical field Hc is represented by the full line.
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4.2.6 The specific heat in fields H,;(0) <H < H ,,(0)

4.2.6.1 Irreversible behaviour of Nb-1

For Nb-1, considerable disturbances and irreqularities were
encountered in this region of the phase diagram. In the course of runs
with applied fields H > Hcl(O), erratic drifts in the direction of warm-
ing up were observed in the temperature of the sample and some of the
heating curves correspond to an abnormally large temperature increment
for the usual heating time, from which results too small a value for
the specific heat. All these complications might be ascribed to the
inhomogeneity of the metal caused, for example, by impurities, lattice
dislocation, strains*!), Such structural defects pin down the Abrikosov
vortices, thus creating macroscopic flux gradients inside the samplesz)
and producing, therefore, hysteresis. Warming up of the sample is to
be expected when this anchored, non-equilibrium magnetic structure,
moves rapidly towards a pattern of equilibrium. The occurrence of
irreversibility when the sample was heated up in the course of the run
accounts for the observed anomalously low integrated values

T

f - (Cm/T)dT, systematically smaller than the corresponding rise in
0

entropy Sn(Ts) (Cm is the measured mixed state specific heat). The
observed erratic drifts in the temperature of the sample in the direction
of warming up and sudden decrease of the slope of the heating curves
might be associated with flux jumps. Such flux jumps have also been
observed in magnetic measurements on hard superconductors? 1,42,53,54)

The specific heat of Nb-1 has been measured for the following
fields between Hc](O) and HCQ(O): H = 2000, 2848, 4337 and 5760 Qe.
In Fiq.IV.1 the corresponding results are presented when the sample
has been cooled down in the absence of the field. The cooling proced-
ure has an effect on the specific heat as can be seen for the case of
H = 4337 Oe depicted in Fig.IV.9 (lines 2 and 2’ respectively). When
the cooling took place in the presence of the field the observed spec-
ific heat values were larger and less irreqularities were met. The
specific heat curves for the two cooling procedures converge in the
neighbourhood of the transition to the normal state.

On account of the irreqularities mentioned avove, all points
whose heating curves presented anomalous shape have been rejected.
In repeating the runs only the points that appeared to be reproducible
have been retained (these were the higher ones). The lines depicted
in Fig.IV.1 and lines 2 and 2' in Fig.IV.9 have been defined using
this criterion.

'
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For the field H = 2000 Oe the results were particularly affected
by the irreversible effects. The points at the lowest temperatures lie
above the line corresponding to H = 0 but, as the temperature increases,
they fall below this line and remain there, however scattered, until
the transition temperature is approached. Here the measured points
appear again above the line for zero field and they define in the usual
way the transition to the normal state. Probably these observed effects
were due to a rather pronounced metastable state of magnetization of
the sample. In fact, such a field of 2 kOe lying relatively close to
HCI(O) = 1.14 kOe crosses the region of the phase diagram where the
magnetic moment has its highest values. In view of the anomalous
behaviour for this field, only two sets of experimental points, (one set
containing those at the lowest temperatures and the other one, those
close to the transition to the normal state) are shown in Fig.IV.l;:these
two sets have been connected by a ficticious broken line.

4.2.6.2 Reversible behaviour of Nb-2 and Nb-3

For fields not too close to Hcl(O) the specific heats of Nb-2 and
Nb-3 were found to be independent of sample history (in the case of
Nb-3 aslight manifestation of irreversibility,still appeared for H=2488 Oe,
for T < 2°K). The results obtained with Nb-3 for the fields H = 2488,
2895 and 3610 Oe are shown in Fig.IV.2. For Nb-2 the results ob-
tained in the field H = 2895 Qe are shown in Fig.IV.3. For H > 2895 Oe

5 )

f s(Cm/T)dT was found to be equal, within 1%, to Sn(Ts) — the en-
o

tropy in the normal state at the temperature of the transition. For the
annealed samples, irreversibility is thus restricted to the mixed state
region near the ch(T) phase transition line for T « Tc. For a fairly
homogeneous type II superconductor there should be not much flux
pinning and thus no high flux gradients. Near ch, when the temper-
ature increases, the almost overlapping Abrikosov vortices move
slowly towards positions of thermodynamic equilibrium. Thus, as the
temperature increases, the variation of magnetic flux threading the

sample is a quasi-static process in the high field region of the phase
diagram.

4.2.6.3 The linear term in the specific heat

From Fig.IV.1, IV.2 and 1V.3 one concludes that
y'=1lim C(H,T)/T #0 for H > Hcl(O). For Nb-3 the quantity y'/y
T-0
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is plotted in Fig.IV.17 against H/ch(O), both for cooling in the ab-
sence and presence of the field (7 is the coefficient of the normal
state electronic specific heat, H is the applied field and ch(O) is
the upper threshold field at the absolute zero, given in Section 4.2.7.2).
From the results one concludes that when the field was applied after
the previous cooling of the sample, the mixed state specific heat for
fields H > ch(o) contains a linear term ¥'T, of which the coefficient
' increases with the applied field, H, more rapidly for H\cl 3 (0) than it
does near Hc2(0). When the sample was cooled down in the presence
of the field the linear term appeared in a wider range of fields being
only zero for the lowest ones. For the same value of the applied field
the linear term was larger when the field was on during the cooling
prior to the measurement, except for H > 2895 Oe where it was inde-
pendent of sample history.

It was shown in Section 2.4.2 (eq.(2—56)) that the mixed state
specific heat forfields H such that ch(o) =i H & ch(O) was expected
to contain a term, linear both in T and H, under the sole assumption
that at all temperatures the magnetization near chis given by Abrikosov's

results®®) M = y (H — H_,) with temperature dependent (Maki®®
Maki and Tsuzuki55a)), but otherwise field independent y . For Nb-3,

o 0.2 O4MHclHc (0) o8 1.0 1.2 1.4 1.6

Fig. IV.17 The field dependence of the coefficient 7Y' of the linear
term in the mixed state specific heat of Nb-3, plotted as
Y'/Y versus H/HC2(0):

O with sample cooled down in the absence of the field
O with sample cooled down in the presence of the field;
line a : expected results according eq. (4—13)

line b : expected results according eq. Y'/Y = H/HC7(0)57'59).
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the calculated value of the constant a in eq.(2—56) (for the numerical
values see Sections 4.2.7.1 (for €) and 4.2.7.2 (for a)) is a = 0.65, so
that eq. (2—56) becomes

Y =0.35 +0.65H i (4—13)
Y H_,(0)

The field dependence of the coefficient ' of the linear term in the
mixed state specific heat according eq. (4—13) is represented in
Fig.IV.17 by the straight line a. One can see that the field depend-
ence of ¥’ do not quite follow what is expected on basis of the assum-
ed assumption that the mixed state differential susceptibility p
(EM/BH) near H_, was given by eq. (2—42).

The behaviour of the mixed state specific heat in the neighbour-
hood of the absolute zero for fields H > H (O) contrasts flagrantly
with the exponential variation of the specxflc heat with temperature
in the Meissner region, where a field independent energy gap in the
energy spectrum of the electrons sets a lower limit to the excitations
above the Fermi surface. The existence of the linear term suggests,
therefore, the depression of the energy gap in part of the specimen
volume to such a low value that normal-like excitations can cross it,
even in the neighbourhood of the absolute zero. Then, although the
zero field gap may persist in the remaining part of the superconductive
volume, it will be not anymore effective in determining the behaviour
of the specific heat ('’gapless’’ superconductivity).

According to Caroli et al.®®) the energy spectrum of the elec-
trons in the mixed state is allowed to include excitations of low
energy in the cores of Abrikosov’s vortices. The energy gap for these
excitations is of the order f&g,/EF where A is the zero field gap and
Er is the Fermi energy. Because of the smallness of the energy gap
in these regions they will behave in several respects like normal
regions with a linear term in the specific heat. The empirical first
evidence for the existence of such quasi-normal regions in the mixed
state came from results on microwave surface resistance of a number
of type II superconductors by Rosenblum and Cardona®?’. From the
results these authors had suggested that in the mixed state a fraction
of the superconductive material, proportional to the applied field, H,
behaves as being in the normal state, this implying a term in the
specific heat, linear both in T and H which was in agreement with
an earlier prediction of Gorter and Gorter et al., made on thermodynamic
grounds (see the end of Section 2.4.2 and ref. 41,42), Chapter II). They
had re-examined the specific heat results of Hake and Brammer®®’ on
a V-Ta alloy and found it in accordance with their suggestion.
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The field dependence of the linear term resulting from Rosenblum
and Cardona assumption is in agreement with an approximate treatment
due to Gorter®®! for H = H_,(0), which yields ¥'/y = H/H_,(C) and is
represented by the straight line b in Fig.IV.17. Such a result was
used in an earlier analysissg) of the data obtained on impure Nb(Nb-1).
The actual field dependence of the linear term for H = H (0) 1s not
much different from that given by ¥'/y = H/H (O) to which eq. (2-56)
is reduced for a = 1.

For superconducting alloys Maki®®) has calculated that in the
field region just below ch, the specific heat can be expanded in
powers of T due to the fact that the energy gap in the excitation
spectrum vanishes in this region. According to this author there should,
in qualitative features, not be much difference between the behaviour
of the specific heat of pure and dirty type Il superconductors. For
Nb, the experimental results for fields H > H (O) at the lowest temper-
atures, are of the form C =y'T + BT? However. while according
Maki®®) the coefficient B should be field dependent for all three Nb
samples B was found to be practically field independent.

Marcus®!) has studied the mixed state using a cellular approxim-
ation and derived also a linear term in the specific heat as the result
of the change with temperature of the magnetic structure of Abrikosov’s
vortices. According Marcus'’ predlctmnsl) v'/7y should be somewhat
larger than H/H (O) which is in agreement with experiment. For Nb-1
and Nb-2 the dependence of '/ on H/H »(0) has a similar form to
that found in Nb-3. The value of a in (2— 56) is 0.65 for Nb-1 and 0.70
for Nb-2.

For vanadium®?) the field dependence of '/ is rather similar
to that found in Nb.

The calculated values of '/7y according to eq. (2—56) depend
on the way according to which the extrapolation of the phase line

(t) to t =0 is made, through the constant a. Although the slope
oi the straight line corresponding to (2—56) could be somewhat reduced
by fitting the expenmentql values (ch t) below t = 0.5 by a parabolic
relation H (t) (0) (1—at?), still a difference of 7% remained at
H/H_ (0) = 0 T between the calculated and experimental values of ¥'/ .

The assumption made in the derivation of eq. (2—-56) was that
the slope of the magnetization curve versus the applied field is field
independent near ch If this does not hold (M(H) not varying strictly
linearly near H_ ) '/~ would not be linear as a function of H either.
The resulting shght curvature of M(H) near H_, brings the calculated
values of '/ nearer the experimental ones. Then the straight line corres-
ponding to relation (2-56) should give the limiting slope at H = ch.
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The magnetization data obtained with Nb-3 (see Fiqg.IV.12b) do not
rule out this assumption and non-linearity of M(H) near ch might be
connected with the small value of the GL parameter « for high purity
Nb (x(Nb-3) = 0.893), this implying a narrow field range for the mixed
state. In Chapter V further evidence is presented in favour of non-
linear magnetization near H_,.

4.2.7 The phase transition from the mixed to the normal state

In isothermal magnetic measurements on type Il superconductors
when the applied field reaches H c2 the magnetization goes to zero
with a finite discontinuity in the slope this indicating a second-order
transition in the Ehrenfest sense. In specific heat measurements such
transition appears as a finite jump ﬁC(T )=C (T y—-C (T ) from the
mixed state value C (T ) to the normal state vclue & (T ), its mag-
nitude AC(TS) being relcted to the change in the dlfferentml magnetic
susceptibility (BM/BH) at H o DY the Ehrenfest relation (2—47). The
temperature T of the transxtlon is reached when the constant applied
field H equals H c2* Actually, due to inhomogeneities of the sample
and non- unlformlty of the magnetic field, the transition is spread over
a temperature interval AT which increases with the applied field
and the impurity content of the specimen. For Nb-3 the transition in
zero field was extremely sharp as already mentioned in Section 4.2.2.

For Nb-2 and Nb-3 in low fields, T could be determined directly
from the heating curves being the temperature at which a break in
slope occured due to the discontinuous change of the specific heat.
For higher fields, the transition at ch could hardly be directly ob-
tained in that way in view of the decrease of ’\C(T ) and the increase
of ’\T with the field. In such cases T_ was taken ct the middle of the
temperature interval ’\T in which the actual transition to the normal
state took place as seen in the specific heat curves.

For Nb-2 and Nb-3, near T = the phase transition to the normal
state could not be separated from the specific heat anomaly associated
with the entrance into the mixed state as can be seen for Nb-3 in
Fig.IV.2, for H = 194 Oe, This is due to the proximity of the two phase
transition lines Hc (T) and H 2('T') In those cases the magnitude of
C (T ) required for calculatmg AC(T S) was derived from the analysis
of the fore- and after-period lines, using the procedure described in
Section 4.2.5.4. For all the other cases the magnitude of (‘m(Ts) was
determined by extrapolating the mixed state specific heat line Cm(T)
to the middle of AT _.
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4.2.7.1 The temperature dependence of the specific heat jump at Hc

2

The temperature dependence of AC(TS) is depicted in Fig.IV.18
as AC(TS)/Ts / AC('I‘C)/TC versus t% for Nb-1, Nb-2 and Nb-3. For
the three samples the values depicted in this figure were determined
by extrapolating to TS the mixed state specific heat curves obtained
when the magnetic field was established after the cooling of the
sample. For Nb-1 the values determined from the curves obtained
when the sample was cooled down in the presence of the field are
somewhat lower®?) (not shown). At the lower temperatures, corres-
ponding to the ''gapless’’ region, the magnitude of the specific heat
jump has a similar behaviour for all samples, vanishing at the absolute
zero and varying as a function of the temperature as T3: AC = €T3,
Close to Tc a markedly different behaviour appears. While for Nb-1,
AC(TS) becomes less steep, for-Nb-2 and Nb-3 the increase of AC(T)
with temperature becomes steeper. For Nb-2and Nb-3€ =0.197mJ.mole~" .
°K—* while for Nb-1 the mean value € = 0.207 mJ.mole~1,°K~4 was
found.
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Fig. IV.18 The temperature dependence of the magnitude of the specific

heat jump at the transition to the normal state compared to
the jump in zero field.

A and } experimental points for Nb-1
O and ¢ experimental points for Nb-2
O and éexperlmental points for Nb-3 .

The values for t —+ 1 were calculated by means of eq. (4—14)
using the values of K given in Table V.
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The fact that A =lim AC(T_)/T, /BC(T )/T_# 1, is directly
T-T €

connected with the fundamenctal condition put forward by Maki:
lim «; =lim K, = K when T-T . (see eq. (2—22) and (2-23) for the
definitions of x, and Kz). In fact, using Rutgers’ (2—37) and Ehrenfest’s
relations (2—47) and eq. (2—22) and (2—23) (with 8= 1.16) one gets

2K2 2k?
A = lim = - (4—14)
T=Te 116(26% — 1) 1.16(24% — 1)

The specific heat of type Il superconductors in low fields near the
transition to the normal state is thus a function of the GL. parameter x
of the material. For « =1.91 the specific heat jump AC(T ) varies
continuously near T For 1/V2 < x < 1.91, AC(T ) in low flelds is
larger than the Jump in zero field ’XC(T ), approachmg infinity for
k =1/V2. For k> 1.91 the jump for low fxelds near T is smaller
than in zero field. For type II superconductors with hxgh k values the
ratio A is much less sensitive with respect to x than in the case of
materials with low « values, the lowest value of A (for x = ®) being
0.86. Marcus®! pointed out the explicit dependence of A on «, although
that could have already been inferred from earlier conclusions (Gorters‘”).
The different behaviour of AC(TS) near T _ for the three Nb samples
is thus in agreement with that which one should expect from the respect-
ive k values according to eq. (4—14). The transitions at H_, for low
fields and zero field are in reality quite different transitions. The
former occur between the mixed and the normal stdate while the latter
occur between the Meissner state and the normal state.

4.2.7.2 The temperature dependence of H_

The upper threshold field H cg is an equ111bnum quantity well
defined in spec1f1cheatmeasurements at least on annealed samples.The
uncertainty in the determination of ch increases with the transition
width .’XTS. For the three samples ch was, near T _, found to vary

linearly with the temperature, with slopes (dch/dT)T given in Table
c
V, those slopes increasing with the x value of the sample. For temper-

atures not too close to T. the experimental data (ch,t) was well
represented by the empirical relation

Hog(t) = H_,(0) (1 +at? + bt* +ct®), (4-15)
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The values of ch(o)' a, b and ¢, obtained by means of a computer
are given in Table V for the three samples.

Table V

The values of ch(O) and coefficients a,b,c from relation (4—15),
(dch/dT)T‘ and « for the three Nb samples. (dch/dT)T was ob-
Cc

tained from a linear plot of the data neat Tc.

~(dH_,/dT)y | H_,(0)

c2
sample K (OE‘. OK—I) (Oe) a b ¢
Nb-1 2.36 370 9087 £ 55 [— 1.58 | 0.82 | — 0.23
Nb-2 0.992 588 4450 + 15 [— 1.55 | 0.72 | — 0.17
Nb-3 0.893 530 4116 £ 7 |—1.67 | 0.94 | — 0.27

The values of k¥ were calculated by means of the relation

dH,/dT
k= lim k, = dsep el , (4-16)

T=Te  V2(dH _/dT),
c

derived from eq. (2—22). The numerical values of (dHc/dT)Ture given

in Table III for the three samples (the values from column a) were
used.

The linear character of ch(T) near TC is in agreement with
the results obtained by Ohtsuka and Takano®5) on a high purity Nb
single crystal (resistance ratio [’ = 1000) for which they found
(dH /dT) = — 53] Oe.®K~! (due to uncertainties in (dH _ /dT)

they gave for this sample « = 0.92 and 0.84, the last value belng more
likely as will be shown in Section 4.2.8). The value H 7(0) 16 £7 Qe
for Nb-3 differs little from the reported values for Nb samples of some-
what hlgher purity namely H (0) 4035 18 Oe (Ohtsuka and Takano®3?)
and (0) = 4040 Oe (anemore et al.!?®)), Ohtsuka and Takano
analysed their data for ch using, below t = 0.25, the expression

c2(t) Cz(O) (1 — at ) with the result already mentioned for H_ (0)
and a = 1.49. Fitting the three highest experimental values of H (t)
(for 0.28 < t < 0.44) with the expression used by Ohtsuka and Tckano
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for t < 0.25, one gets for Nb-3 a = — 1.47 and H (0) 4070 Oe. How-
ever, at the lowest temperatures, the absence m the expression for
H 2(t) of powers of T greater than the second, together with the well
established fact that AC = €T? in the same region, would imply
(aM/aT) (and therefore Maki's parameter x, defined by eq. (2-23))

to be lempemture independent in that region, as shown in Section 2.4.2.

According to theoryssa) in the limit of infinite mecm free path
of the electrons for t << 1, H,_ (t) is given by H (t) (0) (1—at?)
where a is temperature dependent and should have a loganthmlc
singularity as T— 0. In real cases, the existence of a finite transport
colhslon time might remove this singularity in the coefficient of the
term in t2 , as has been predicted for concentrated alloysss)

There are three ways in use to compare the temperature depend-
ence of H(__2 with theory, none of which has led, so far, to complete
agreement in the case of pure type II superconductors. In the first one
the relative variation of H o referred to H, (0) as a function of T is
considered. In the second one ch is studled~ in comparison with the
extrapolation to lower temperatures of the temperature dependence
just below Tc. In the third the temperature dependence of ch/Hc is
studied.

In Fig. IV.19 the data obtained with the three Nb samples for
ch are compared with the results of Finnemore et al.!®) obtained
with a purer Nb sample and with two theoretical predictions, one a
phenomenological one (Ginzburg’s eq. (2—19)) while the other is
derived from first principles (Gor'kov's, eq. (2—21)). Experimental and
theoretical results are brought to common agreement att = 1 and t =0
by using reduced values: H 2(t)/H 2(O) in the plot. It can be con-
cluded that the higher the purity of the sample, the more the results
deviate from Gor'kov's prediction for the limit of infinite mean free
path [ of the electrons. Empirically, it is known that type II super-
conductors with low « values have H_ (t) closer to Ginzburg's ex-
pression (2—19) while high x materials (concentrated alloys) have H
values in agreement with Gor’kov's prediction (eq. (2— 21)56)) The
coincidence of results for Nb-1 and Nb-2 might be caused by too high
a value of H_ (0) for Nb-1, which has the highest uncertainty in H (t).

Another alternanve way of comparing the experimental vclues of
ch(t) with theoretical predictions is to be found in the use of a
reduced quantity normalized at t = 1 as qiven by eq. (2—24).
Fig. IV.20 the experimental values of h*(t) = (t)/ (dH _ /dt)
for Nb-1, Nb-2 and Nb-3 are compared with the theoretlcal predlctlon
of Helfand and Werthamer®7). For the less pure sample (Nb-1) was ob-
tained a value h*(0) = 0.765, already higher than the theoretical pre-



Healt)

Hea®© M N
b \ -
o N
02 NG N ~
~N
2 N\ -
~
(oA N N o =)
2 N\
L t NG
(o] T VT | 1 | r—l==y=ct L 1 rom GRS S U
o} 0.1 0.2 03 04 (o .3 0.6 0.7 0.8 0.9 1.0

Fig. IV.19 The experimental values of Heg for Nb-1(0 ), Nb-2 ( A) and
Nb-3 (o), compared with theory (Ginzburg’s eq. (2—-19),

line -.- and Gor'kov’s eq. (2—21), line -..-). Values of HC2
for a purer Nb sample (Finnemore et al.lg)) (line- - =) are
also given to confirm the observed dependence of HC2 on

purity.

diction for the pure,clean limit (I = o) (h*(0) = 0.727). For Nb-2,
h*(0) = 0.820 and for Nb-3, h*(0) = 0.836. Ohtsuka and Takano®®) re-
ported a value h*(0) = 0.823 for their Nb sample, while Kim and Strnad®®’
chve the value h*(0) = 0.84 for a Nb sample with a resistance ratio
[" = 1550 and « = 0.9.

The results qualitatively confirm the theoretical prediction
regarding the decrease of h*(t) with impurity concentration67) the effect,
however, being larger than is predicted by theory. The 15% discre-
pancy between h*(0) for high-purity Nb and the maximum theoretical
prediction might be due to anisotropy of the Fermi-surface alone,
since Werthamer and McMillan®®) have shown that h*(t) is practically
insensitive to the strength of the electron-phonon interaction. In fact,
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Fig. IV.20 Comparison between the experimental values of ch for

Nb-1 (@), Nb-2 (4 ) and Nb-3 (0 ) and the theoretical pre-
diction for the pure line —+— ) and the dirty (line -..-)
limit, using the reduced quantity h* defined in the text.
The lines fitting the experimental points (..... for Nb-1,
-+ = for Nb-2 and - — —for Nb-3) are extrapolated to t — 0 using
the ch(t) values given by eq. (4—15) with the numerical
coefficients from Table V.

the discrepancy also exists for V®2) which is a weak coupling super-
conductor. Recently, Hohenberg and Werthamer’©) were able to prove
qualitatively that, as regards to the role of the shape of the Fermi-
surface, anisotropy enhances the theoretical values of h*(t), thus
bringing them closer to the experimental results.

The most usual comparison of the experimental Hc (t) and theory
2
is made in terms of the parameter Kl(t) relating ch(t) to Hc(t) (eq.

2—22). The experimental values of Kl(t)/K for the three Nb samples
are compared in Fig.IV.21 with the theoretical prediction of Gor'kov
(eq. (2-21)). Upon decreasing temperature K, rises more rapidly than
theory predicts, reaching a maximum value of Kl(O)/K = 1.62 for Nb-3
while theory gives for the clean limit KI(O)/K = 1,25 (Gor'kov (see
eq. (2—21))) or 1.26 (Helfand and Werthamer57)). For-the dirty limit
theory gives KI(O)/K = 1.20. For Nb-2, KI(O)/K = 1.58 and for Nb-1
Kl(O)/K = 1.46. The values of KI(O)/K reported in the literature for
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annealed high purity Nb range from 1.54 to 1.8319'65'58‘7”. Incorrect
evaluation of Hc is mainly responsible for the differences among the
results. For instance, the value Kl(O)/K = 1.73 reported by Ohtsuka
and Takano®®) using a parabolic behaviour for H_ is reduced to 1.63
when the experimental behaviour of Hc(t) is used instead. For vana-
dium, also an intrinsic type Il superconductor, the value 1.50 for

Kl(O)/K was obtained by Radebaugh and Keesom®2),
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Fig. IV.2]1 The temperature d-ependence of the parameters K, and K2
plotted as Kl/K and K2/K versus t, for Nb-1, Nb-2 and Nb-3.
The experimental values of KI/K are compared with the
Gor'kov prediction for the pure limit (line—.-). The exper-
imental values of K2/K are compared with Eilenberger’s cal-
culation for the pure limit (line —s+—).
Nb-1: e Kl/K

- KZ/K with sample cooled down in the absence of

the field
] K?/K with sample cooled down in the presence of
2 the field
Nb-2: &a KI/K
v K2/K
Nb-3: o K/K
o KZ/K

The extrapolation to t = 0 of the lines fitting the experimental
points was done according to the values of ch(t) given by
eq. (4—15) with the numerical coefficients from Table A"/
(for K]/K) and from the observed temperature dependence
of the specific heat jump at HC'Z(‘/\C = €T3, for T K Tc)
and dHc?./dT according eq. (4—15).
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4.2.7.3 The temperature dependence of the penetration depth

Relation (2—18): H_,(T) = 47A%(T)HA(T)/¢,, established on
basis of the GL. equations, provides a means for testing the GL. theory
in the limit of its validity. Substituting in (2—18) the experimentally
found values of ch and HC, this relation yields A(T) that is then
compared with the results of measurements that yield directly this
quantity. A plot of A(T) versus y = (1 — t4)"% is presented in Figqg.
IV.22 for the three Nb samples. Near T'c (y > 2.4), the calculated
penetration depth follows closely the prediction72) based on the
Gorter-Casimir two-fluid modell4): Alt) = A(0)/(1 — t4)l/’, while at
lower temperatures dA/dy increases when the temperatures decreases,
as observed in type | superconductors, for instance tin’ %), For (dA/dy),
near TC, were obtained the values: 460 R for Nb-3, 476 R for Nb-2 and
775 R for Nb-1. The calculated values of A(0) were 409, 427 and 656.&,
respectively for Nb-3, Nb-2 and Nb-1. The increase of d\/dy near TC

3200 T = T — T
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Fig. IV.22 The temperature dependence of the penetration depth A, cal-
culated by means of eq. (2—18) for Nb-1 (o), Nb-2 (A) and
Nb-3 (o) plotted as A(t) versus y =(1— t4)—l/’. The straight
part of the curves (highest y) were derived from the observed
linearity of ch with respect to t near t = 1, The values of A

for t = 0 correspond to the values of Hc2(0) given in Table V.
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and A(0) from the values for Nb-3 to the values for Nb-1 is in qualit-
ative agreement with Pippard’s non local theory“) which accounts
for the dependence of A on the mean free path of the electrons. The
value (d\/dy) = 460 R for Nb-3, near T.., is in good agreement with
the value (d\/dy) = 440 % 20 R, also near TC, reported by Maxfield
and McLean’®) from direct measurements of the penetration depth on
a Nb sample with [ = 115 for which they estimated A(0) = 470 £ 50 .

Thus, as pointed out by Finnemore et al.'?) and Ohtsuka and
Takanoss), the temperature dependence of ch is reasonably well
described by relation (2—18) derived from GL theory, when experimental
values for H_ and A are used.

4.2.7.4 The mixed state differential magnetic susceptibility
near ch

From the specific heat jump at T_, AC(TS), the mixed state
differential magnetic susceptibility near H_,: x = (8M/9H).. may
be derived by means of the Ehrenfest relation (2—47). ('6M/'8H)T thus
obtained, for Nb-1, Nb-2 and Nb-3, is compared in Fig.IV.23 with the
limiting slopes of the magnetization curves measured on the same
samples at a few different temperatures. Magnetization results of
Finnemore et al.‘g), obtained with highly reversible Nb (I" = 1600,
k = 0,78), are also shown for comparison. The sensitivity of (BM/BH)T
to the value of x is apparent mainly near T.. In magnetization measure-
ments the three samples, due to hysteresis, had two values of(aM/aH)T,
one for increasing and the other for decreasing fields, and the value
of (3M/3H)T derived from specific heat results is in general found
between them, nearer the lower one, obtained in decreasing field. It
is presumed that the value derived calorimetrically corresponds to
thermodynamic equilibrium. The equilibrium state is likely to be better
achieved or, at least, approached, in specific heat measurement by
thermal excitation of the pinned flux then in isothermal magnetization
measurements.

From the calculated (3M/3H)T the parameter «, was derived
by means of the relation (2—23). Kz(t)/K is plotted in Fig.IV.21 versus
t for the three samples. For comparison, the theoretical prediction for
the pure 1imit®59:78) s also given. It is seen that in the whole temper-
ature range, for each sample xz(t) > Kl(t). This is in qualitative agree-
ment with Maki and Tsuzuki’s559) and Eilenberger’s“” prediction for
the pure clean limit. However, the experimental values are systemical-
ly higher than the theoretical line except for T = 0°K. A similar result
was observed with V82), In the ideal case of infinite mean free path
of the electrons a logarithmic singularity was predicted®%9:76) for




95

;<2(0). Eilenberger’®) has calculated that slight impurity concentration
should bring KZ(O) to a finite value. The condition: lim Ky = lim Ko =
= k for T = T_ is clearly obeyed by the three samples. Kz(t)/»(, like
Kl(t)/Kincreases monotonically from Nb-1 to Nb-3. For dirty type II
superconductors, reasonable agreement was found between exper-
iment”177) gnd theoretical results’®), in particular, k, was found to
be not much different from K, in the measured temperature range t = 1.

Fig. IV.23 Comparison between the mixed state differential magnetic
susceptibility calculated from the specific heat jump at HCZ and
the slopes of the magnetization curves for increasing and
decreasing fields.

Values derived from the specific heat jump by means of
eq. (2—47):

V Nb-1 (For Nb-1 the difference between the values ob-
tained with cooling in the presence and absence of
the field is hardly seen — double points ¢ ).

A Nb-2

o Nb-3

X Calculated values using for lim AC(T) the values

according to Fig.IV.18. T"Tc

Slopes of the magnetization curves:

Nb-1 ¢ increasing H ® decreasing H
Nb-2 A increasing H a decreasing H
Nb-3 @ increasing H ® decreasing H

—+— From Finnemore et al.lg).
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4.2.8 The calculation of k, A;(0), & and vy for pure Nb

By means of Gor’'kov - Goodman relation (2—25): « = Ko TP
where K, is the GL parameter of the pure material ond f(y, Py ) is a
term dependent upon the residual resistivity of the impure materlcl
Py and the coefficient 7y of the normal state electronic specific heat,
K, can be calculated from known values of «, Py and 7. In the present
case P is not accurately known for the three Nb samples. Defining
P = P/(Pyy3 — £) = V/(I" = 1) where p,, . is the room temper-
ature resistivity of the specimen, P, its residual resistivity and I" the
resistance ratio, a linear plot of x versus o, vields, by extrapolation,
Ko for P, = 0, assuming 7y to be practlcclly independent of impur-
1ty concentmtlon. In Fiq.IV.24 the values of « for Nb-1, Nb-2 and
Nb-3 are plotted versus P.. together with a few other values (K,,or)
for Nb found in the hterature. For pure Nb is thus obtained K, = 0.83 &
+ 0.01 > 1/V2, which definitely shows that this metal is an 1ntrms1c
type Il superconductor.

0.6 1 | 1
(o) 5 10 15 20

Fig. IV.24 Plot of K versus 2= po/(p273 - ,00) for a few Nb samples:
© present work

0 McConville and Serin
19)

71)

X Finnemore
A Ohtsuka and Tukunoss)
%~ Hecht and Hallorcnao)

The straight line corresponds to the Gor’kov-Goodman ex-
pression (2—25) assuming ¥ to be independent of impurity
concentration.
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The London penetration depth at the absolute zero A (0), in
terms of microscopic characteristics of the metal, is given by (see
reference 34) p. 224)

3 2
A2(0) = - , (4-16)
877 N(0) vZ e?

where Vg is the Fermi velocity, e the electron charge and N(0) the
density of states at the Fermi surface for one spin direction. N(O)
is related to the coefficient 7 of the normal state electronic specific
heat by

y =27% NOK? , (4-17)

where k is the Boltzmann constant. Combining egs. (4—16), (4—17) and
(2-17) with the BCS law of corresponding states!3): 'yTz =0.17 HZ(O),
we have the relation

e AL(Z) H(0) o;/zwlg . Al

o

Thls relation, together with Gor'kov's eq. (2—12) yields for pure Nb
A, (0) = 331 X and § 384 K. From eq. (2— 17) v for pure Nb was

calculated as vp = 2. 6 x 107 cm/sec, using for T. the value obtained
for Nb-3.
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Chapter V

THE MAGNETOCALORIC EFFECT IN TYPE II
SUPERCONDUCTORS

5.1 Introduction

Since in a Meissner region the magnetization M at constant
magnetic field, is temperature independent, the isothermal magnetiz-
ation of a superconductor in such a region is anisentropic process:
(3S/9H)p, = (M/9T),, =0. Thus, for a type I superconductor with
zero demagnetizing coefficient, the entropy difference AS(T) = Sn(T)—
SS(T), between the normal and the superconducting (Meissner) state
remains unchanged under isothermal magnetization in the whole range
of fields up to HC(T), the thermodynamic critical field, at which AS(T)
(and AM = M, - Ms) abruptly vanishes in a first order transition. In
specific heat measurements at constant field, such a transition is an
isothermal process with latent heat L such that L = T _ [Sn(Ts) - SS(TS)]
where Ts is the transition temperature. Under adiabatic magnetization,
cooling is to be expected only when the field reaches HC.

On the contrary, in the intermediate state of a type I supercon-
ductor or in the mixed state of a type II superconductor, the continuous
variation of the magnetization from the perfect diamagnetism (in the
Meissner state) to the normal state value (zero), implies the existence
of a magnetocaloric effect: (BS/BH)T # 0, since then (BM/BT)H £ 0.
The cooling possibilities by adiabatic magnetization of type I super-
conductors have been studied in detail’*2:3), For a type II supercon-
ductor between H_, and H_, the entropy increases monotonically with
the applied field,H, since (aM/BT)H, is found positive in the whole
range of the mixed state. Thus, if the process is reversible, cooling
is to be expected in the whole range of the mixed state when the spec-
imen is adiabatically magnetized, while isothermal magnetization will
require a flow of heat from the cryogenic bath to the sample, given by
T(QS/BH)T per unit change of the external field. Both processes are
illustrated in Fig.V.l. The entropy change SB—SA is produced when
the superconductor is isothermally magnetized from state A' to state
B’ in the phase diagram. Upon increasing, in adiabatic conditions, the
external field from state A’, the superconductor undergoes an isen-
tropic process, cooling down to the final temperature corresponding
to point C in the entropy diagram and point C’ in the phase diagram.
The rate of cooling produced by the increase of the external field in
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adiabatic conditions is related to the entropy variation upon isothermal
magnetization by

3
TR (5-1)

where C refers, as always in this thesis, to constant field. The rate
of entropy variation with the applied field in the mixed state at con-
stant temperature, is connected with the rate at which the magnetic
flux penetrates the specimen.

Sn,

(o] T Te

Fig. V.1 Illustration of an adiabatic and an isothermal magnet-
ization process for a reversible type II superconductor.
(H,T) and (S,T) are respectively the phase and the
entropy diagrams. The path A’A’'B’ corresponds to an

entropy increase of S,—S,. The path A’A''C' corres-
ponds to an isentropic process.

The magnetocaloric effect is easily masked by irreversible
effects caused by flux pinning. Sample Nb-1 did not show the effect
at all. Increase of the field always led to an increase of temperature.
The effect was, however, clearly observed in samples Nb-2 and Nb-3.
For Nb-3 an experiment was performed in which the study of the mag-
netocaloric effect was combined with the measurement of the specific
heat as a function of the magnetic field, while the temperature was
kept constant within narrow limits: T = (4.22 £0.02) °K.
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5.2 Analysis of the magnetocaloric effect near H 9

For calculating the rate of entropy variation upon the change
of the magnetic field a knowledge of the magnetization M in the mixed
state is required. The theoretical prediction for the magnetization
given by eq. (2—23) or its equivalent eq. (2—42) applies only near
H_,, so that the calculation of (Z)S/BH),r will be restricted to the
range of applied fields HC — H << ch. It will be shown, however,
that such a predicted linearity of M versus H near ch vields a value
for (ES/BH)T which is in conflict with the experimental results.

In Chcptser II, Section 2.4.2 an expression (eq. 2—45) was derived
for the entropy in the mixed state near ch, under the sole assumption
of the validity of eq. (2—23). Upon isothermal magnetization the rate
of variation of entropy with the applied field, H, for ch — H << ch
is, assuming x = ('6M/?3H)T to be field independent near ch, given
by

9S dH dy
—m) =~y —=£+(H-H )—=", 5-2
30T T Xm gy * e2) gr (6=2)

To keep the process isothermal, heat has to be exchanged between
sample and bath at a rate

3s dH ds
dQ .7 (=m)_ =—T 2 4+ T (H — H_,) —=. (5-3)
dH 3H T Xm TgT c2’ g7

At the transition to the normal state (T = T o H = ch(Ts)) the quantity
dQ/dH drops suddenly to zero, the magnitude of the jump being dQ/dH =
—TXm(dch/dT). The sharp disappearence of the magnetocaloric
effect at ch may be used for determining this phase transition line4’.

It follows from (5-3) that d?Q/dH? = T(dx_/dT). Since ¥, =
(OM/3H).p., dy,/dT > 0, as is seen in Fig.IV.23. Thus, it follows
from the assumption (eq. (2—23) or its equivalent eq. (2—42)) that the
rate at which the sample absorbs heat from the bath is expected to
increase near ch when the type II superconductor is isothermally
magnetized.

5.3 Experimental procedure

The procedure is illustrated in Fig.V.2.
The experiment proceeded as follows: with the temperature of
the *He bath stabilized in the neighbourhood of the boiling point, the
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specific heat of the sample was measured in the presence of the mag-
netic field, using temperature increments not exceeding 0.04°K. In
low fields, after each specific heat point was taken, the field was
raised in steps and the sample brought back to the initial temperature
by means of the thermomechanical switch. Thereupon a new heat pulse
was supplied and the whole cycle repeated until the first indication
of the magnetocaloric effect appeared. Thereafter the sample temper-
ature was returned to the initial value by the very cooling produced
by the increase of the field. The time rate of increase of the magnetic
field was b6 — 7 Qe/sec.

Hea

o
4.22°% Te

Fig. V.2 Illustration of the procedure used for measuring the
specific heat of Nb-3 directly as a function of the ex-

ternal field at T = 4.22 £0.02°K. In the mixed state,
the increments produced in the sample temperature by
the externally supplied heat were compensated by the
cooling produced in the subsequent rise of the external
field. In the Meissner state the temperature of the
sample was reduced to the initial value by closing the
thermomechanical switch.

5.4 Results and discussion

The rate at which the thermally insulated sample cooled upon
increase of the external field is depicted in Fig.V.3 as ('<3T/'<3H)s
versus the applied field, corrected from the influence of the calori-
meter plus addenda. The specific heat results are shown in Fig.V.4
as C/T versus the applied field, H, together with the magnetization
curve obtained on the same sample for the same temperature, T = 4.22°K,
increasing the field. The specific results thus obtained are in agree-
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ment with those derived from Fig.IV.2 at the same temperature, as
also shown in Fig.V.4.

S-D5 1 ) I l T T 1 | |
m°K.Oe-'

- 4.0

7 H

7 —_——
(o] o Ja¥ ] | | | |

> 3000 Oe

U

1200 1400 1600 1800 2000 2200 2400 2600

e}

Fig. V.3 The field dependence of the rate (3T/OH). at which
the thermally insulated sample (Nb-3) cooledsdown upon
increase of the external field. The effect was studied
with the sample temperature kept at T = 4.22°K within
0.02°K.

From Fig.V.4 it is confirmed that, 1) the specific heat is field-
independent in the region of complete diamagnetism, 2) the specific
heat displays a strong anomaly at the field region where the magnetiz-
ation has its greatest variation and, 3) the transition to the normal
state has the same character (second order) in both magnetic and
calorimetric measurements. The specific heat jump at ch (in agree-
ment with the values of AC(TS) derived from Fig.IV.2 and plotted in
Fig.IV.18) vields, through the Ehrenfest relation (2—47), a somewhat
lower value of (EM/BH)T than that corresponding to the actual mag-
netization curve at the same temperature (t = 0.455) for increasing
fields, on account of magnetic hysteresis, as can be seen in Fig.IV.23.

The rate dQ/dH at which heat had to_be supplied to the sample
in order to compensate the adiabatic cooling produced by the increase
dH of the external field, is given by (5—1) as dQ/dH=—C(dT/dH).
dQ/dH is plotted against the applied field H in Fig.V.5. The straight
line a represents the slope at ch to be expected on basis of linear
magnetization. An interesting result is that, with the exclusion of the
field region near H., (where demagnetizing effects anticipate the end
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of the Meissner effect), dQ/dH is a monotonically decreasing function
of H. This is in contradiction with what is expected from the calcul-
ations based on linear magnetization M(H) near ch (eq. 2—42) as
stated in Section 5.2.

The mixed state specific heat near ch, calculated on basis of
the assumption M = Xm(H - ch) is given by eq. (2—46), so that

2
(B(C/T)) =23 dxm dHc2 1% d HCZ (5—4)
o] % dT 4T 2 o B

For Nb-3, the calculated value of this slope at H = ch for T =4.22°%K
corresponds to the line ¢ shown in Fig.V.4, in quite apparent disagree-
ment with experiment.

To account for the experimental results it is assumed that the
magnetization near the transition to the normal state is not quite

linear. If, as a first approximation, one assumes, near HC?

M=y (H=H_) +o (H-H_,)?*, : (5-5)

with o< 0 and, like X field independent, the expression for the
limiting slope of C/T versus H, at Hc2' includes an extra term
2 <7m(dHc2/d'I')2 < 0 which brings the calculated results into qualit-
ative agreement with experiment. With the differential magnetic sus-

ceptibility (EM/?’H)T dependent upon the field according eg. (5-5),
expression (5—3) is accordingly modified, reading now

dH 3
90 w7 g oSSR L ) A
dH maT =
do 2 dH 5
¥ P E=—0(H <~ H )¢ -9Te (H—H ?)——c—— - (5—6)
dT c2 m c2 dT

The expression giving the limiting slope of the curve dQ/dH
versus H at ch includes then a second term, dependent upon o
with the right sign to bring the calculated results in qualitative agree-
ment with experiment

dzc & dxm o dHcZ :
d
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The possibility of reversing the sign of dZQ/dH2 at H depends
upon the magnitude of o As the experimental curves MfH are not
reversible, it is not possible to calculate o from them. However, o
can be calculated by fitting the expenmental d(C/T)/dH near H cgr at
different temperatures, with the expression

2 2
AC/T)) amp D Bag g THeg (), (WHeg)® (5-8)
T aT. aT . - goa m TdT

One thus obtcnns for the magnetization at T =4.22°%K the result:
M=115x10"*(H - H_,) — 4.53 x 1078 (H — H o2)% The numerical
value of X, Was calculated from the specific heat jump at T = 4.22°K
by means of the Ehrenfest relation (2—47). For other temperatures,
the. results lack accuracy because of the restricted number of fields
for which the specific heat was measured by the usual procedure.
Although, at the lowest temperatures, it was not possible to deter-
mine in this way the temperature dependence of O due to the scatter-
ing of the data, for 2. S < T <5°%, the empirical relation: o = (=1.512T +
+ 1.84) x 10‘6 G/Oe? was found. For T = 4. 22°K, with the calcul-
ated values of y _, dx_/dT, o_, do /dT dH_,/dT, eq. (5-6) yields
for dQ/dH near H c2 the results represented by the dashed line b in
Fig.V.5, which is in good agreement with experiment in the 1mmedmte
neighbourhood of ch A negative value of o with (dzo /dT2)

also brings the calculated field dependence of the Imeor term (Chcrp-
ter IV, Section 4.2.6.3) into better agreement with the experimental
data.

The field dependence of (3M/3H) near the transition to the
normal state is likely to result from hlgher order terms which have
been neglected in the Abrikosov®’ and Maki®’ approximations. In fact,
Lasher”) has shown that in a series solution of the Ginzburg-L andau
equations for the mixed state in powers of the parameter a =(B — H )/B
(where B is the average field inside the superconductor), the mcq-
netic moment to third order in a, begins to depart from linearity at an
external field equal to 0.4 ch for k = 2. The inclusion of still higher
order terms might further reduce to a negligible value the range of
fields where linear magnetization is observed, especially when « has
too small a value.

The field dependence of the magnetic differential susceptibility
near ch is of difficult direct observation in measurements of the mag-
netic moment, since the departure from linearity is very small as can
be seen in Fig.V.6. However, the effect should be quite apparent in
measurements that yield directly the magnetic differential susceptibility.
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Fig. V.6 The magnetization M of Nb-3 near HC at T = 4.22°K,

plotted as —47TM versus the applied field. \
line —w— , obtained for increasing field y
line —a— , obtained for decreasing field (from Fig.IV.12b) ‘
line —+— , derived from the specific heat jump at the
same temperature by means of the Ehrenfest :
relation (eq. (2—47) and assuming linear ‘
dependence of M on H near ch according

eq. ((2—42).
line , calculated from the specificresults assum-
ing M =x_(H—H_j) +0_(H—H_p)* with

X.. and O field independent.
m m
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Chapter VI
CONCLUDING REMARKS

It was shown on basis of results derived from measurements of
the specific heat in the presence of a constant magnetic field (ranging
from zero to 9.4 kOe, in the temperature interval 1 < T g 10°K) that
niobium is an intrinsic type II superconductor with electron-phonon
coupling of intermediate strength. The energy gap at the absolute
zero 2A(0), the temperature dependence of the thermodynamic critical
field, Hc, and the relative magnitude of the specific heat jump in zero
field compared with the electronic normal state specific heat at T _,
'ch, were found to deviate from the values predicted by the BCS
theory, in agreement with a correlation scheme that is known to exist
between these quantities and the strength of the electron-phonon inter-
action (see Fig.IV.8 for HC).

The values of the Debije characteristic temperature @ derived
from the normal state data at the lower temperatures are in agreement
with the results derived from the elastic constants for samples of
similar quality when the normal state data is properly analysed (Sec-
tion 4.2.1, Table I and Figs.IV.4,5,6).

The transition at ch was found to have always the character
of a second order transition in the Ehrenfest sense and it was extreme-
ly sharp for the purest (lowest k) specimen (Nb-3) in zero field.

In the less pure (highest x) specimen (Nb-1) the transition at Hc
was obscured by the effects of hysteresis while for the annealed ones
(Nb-2 and Nb-3) a pronounced anomaly in the specific heat appeared
associated with this transition. On account of demagnetizing effects
and irreversibility (most apparent in this region) it is difficult to assert
unambiguously the order of the transition. Irreversible effects were
observed in the three samples. For the less pure sample (Nb-1) these
effects were present in the whole mixed state region. For the high-
purity, annealed samples (Nb-2 and Nb-3) the effects of irreversibility
appeared concentrated in the mixed state region close to the lower
phase transition line Hcl(T) for T « T_.

For H > HCI(O) it was found that the mixed state specific heat
contains, already at the lowest temperatures, a linear term (¥'T) of
which the coefficient ' increases with the applied field (Fig.IV.17).
But the observed field dependence of ' is not in agreement with what
should be expected from a field independent mixed state differential
magnetic susceptibility near H., (BM/?)H)T (Abrikosov, Maki), The
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combined study of the magnetocaloric effect and the specific heat as
a function of the magnetic field, at a given temperature, further con-
firms the disagreement between the experimental results and those
to be expected on basis of field independent (BM/BH)T near H
(Figs. V.4,5).

The magnitude of the mixed state specific heat jump AC to the
normal state was found to vary with temperature and to vanish at the
absolute zero as T2 for T « Tc; near Tc, AC depends markedly upon
the x value of the sample (Fig.IV.18) with a discontinuity at Tc, for
the three samples, as expected (Section 4.2.7.1).

Although niobium exhibits the qualitative features of type II
superconductivity as given by Abrikosov’s vortex model, it deviates,
in several respects from this and its later extensions. In particular,
the temperature dependence of the lower (Hcl) and the higher (ch)
critical fields for T « T _ is not accounted for by any present theory
or model, the expenmentul values being higher than those predicted
by theory (Figs.IV.16 for H 1(t) and IV.20 for H 2(t)) Anisotropy of
the Fermi-surface may account for the dlscrepcmcy in the case of

c2(t).

The parameters Ky and Ko introduced by Maki in connection with,
respectively, the ratio H_ /H and the mixed state magnetic suscept-
ibility at H_,, were found to follow the theoretical prediction Kz(t)>f<l(t)
fort #1, the requirement «, (1) = « (1) = x being fulfilled (Fig.IV.21).
But their temperature dependence was found to be larger than is pre-
dicted by the theory (Fig.IV.21). The theoretical prediction that x,
increases with the purity of the sample was experimentally confirmed.
The temperature dependence of the penetration depth Adeduced from eq.
(2-18) (Fig.IV.22) by using the empirical values of H_, and H_ was
found to be in agreement with the values obtained from a measurement
that yields directly this quantity. This confirms the validity of the GL
equations (from which eq. (2—18) was deduced) near the second order
upper phase transition line.

When the magnetization curve shows hysteresis, the mixed state
magnetic susceptibility at ch derived from the specific heat jump
AC by means of the Ehrenfest relation (2—47) is in better agreement
with the slope of the magnetization curve corresponding to decreasing
field (Fig.IV.23). It is presumed that the value of (BM/?BH),r at H_,
derived calorimetrically corresponds to reversibility since, for Nb-3,
the values thus derived are in excellent agreement (for T « T ) with
the slopes of the magnetization curves (at the same temperature) of
a highly reversible niobium sample with a « value of the same order
of magnitude (Fig.IV.23). This is equivalent to stating that in cases
of hysteresis, the magnetization curve for decreasing field, near ch,

c?2
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is nearer the reversible one than that for increasing field.

In an attempt to account for the observed field dependence of
the mixed state specific heat and the magnetocaloric effect it is
suggested that the magnetization near ch should include powers of
(H — Hc2) higher than the first. The expected order of magnitude of
the coefficient of the term in (H — HC2)2 was calculated from the

results. The resultant magnetization curve lies between the exper-
imental ones for increasing and decreasing field, but still nearer to that
obtained in decreasing field (Fig.V.6). It is, therefore, concluded
that the Abrikosov result yielding linear magnetization near ch is
only a first order approximation, the validity of which is probably
restricted to type II superconductors with not-too-low values of the
GL parameter K.
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SAMENVATTING

Van drie niobium preparaten, die in zuiverheid verschillen, wer-
den in het temperatuurgebied van 1 tot 10°K de soortelijke warmten
gemeten in magneetvelden tot en met 9,4 kOe. Uit de resultaten bleek,
dat niobium een intrinsieke supergeleider van de tweede soort is met
een middelmatige electron-phonon koppeling., De energiespleet bij het
absolute nulpunt (2A(0)), de temperatuurafhankelijkheid van het ther-
modynamische kritische veld (Hc) en de verhouding van de sprong in
de soortelijke warmte (AC) tot de waarde van de soortelijke warmte
van de electronen in de normale toestand bij het sprongpunt TC, ble-
ken van de waarden afgeleid uit de BCS theorie te verschillen volgens
een bekende correlatie tussen deze grootheden en de sterkte van de
electron-phonon wisselwerking (zie Fig.IV.8 voor HC).

Voor H > H_ (0) werd gevonden, dat de soortelijke warmte in
de mengtoestand reeds bij de laagste temperaturen een lineaire term
v'T bevat, waarvan de coéfficiént ¥’ toeneemt met het veld (Fig.IV.17).
Op grond van een thermodynamische beschouwing was deze lineaire
term door Gorter voorspeld. Deze term duidt er op, dat (voor H > Hcl)
de supergeleider gebieden bevat, die zich overeenkomstig de normale
toestand gedragen (dit zouden kernen zijn van de wervels, voort-
vloeiend uit het Abrikosov model, waar de electronen lage energie toe-
standen innemen). De waargenomen veldafhankelijkheid van 7' is
echter niet in overeenstemming met de differentiéle magnetische sus-
ceptibiliteit (BM/BH)T bij chvolgend uit de theorie (Abrikosov,Maki),
die voorspelt, dat (BM/BH).r bij ch voor de mengtoestand onafhan-
kelijk van het veld is. De gecombineerde bestudering van het magne-
tocalorische effect en de soortelijke warmte als functie van het magne-
tische veld (bij een bepaalde temperatuur), bevestigt het ontbrekenvan
overeenstemming tussen de experimentele resultaten en die, welke men
op grond van een van het veld onafhankelijke (Bl\&/BH)T bij ch zZou
verwachten.

De grootte van de sprong in de soortelijke warmte AC bij over-
gang van de mengtoestand naar de normale toestand bleek voor T « T _
volgens T3 te verlopen, bovendien zou deze sprong bij T =0 verdwij-
nen. Bij T hangt AC duidelijk af van de x-waarde van het preparaat,
zoals voor de drie preparaten wordt verwacht (paragraaf 4.2.7. 1); de
krommen van AC tegen T3 vertonen bij T een discontinuiteit (Fig.IV.18)

De door Maki geintroduceerde parameters k, en K,, die in ver-
band staan met respectievelijk de verhouding ch/HC en de magne-
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tische susceptibiliteit bij ch in de mengtoestand, bleken te voldoen
zowel aan de theoretische voorspelling, dat Kz(t) > Kl(t) voor t #1 is,
als aan de voorwaarde, dat f<2(l) = Kl(l) = k (Fig.IV.21). Uit de me-
tingen volgde echter dat deze parameters sterker van de temperatuur
afhankelijk zijn, dan theoretisch was voorspeld (Fig.IV.21). De ver-
wachte toename van K, met de graad van zuiverheid van het preparaat
werd experimenteel bevestigd.

Als er hysterese optreedt, is de magnetische susceptibiliteit
van de mengtoestand bij ch, zoals deze is afgeleid van de sprong
in soortelijke warmte AC met behulp van de Ehrenfest relatie (2—47),
in betere overeenstemming met de helling van de magnetisatiekromme
bij afnemend veld. Aangenomen is, dat de waarde van (BM/BH) bij
H c2 aldus afgeleid, beantwoordt aan die voor het reversibele qeval
en wel omdat voor T « TC de voor het zuiverste niobium preparaat
afgeleide waarden in volledige overeenstemming zijn met de hellingen
van de magnetisatie krommen van een zich in hoge mate reversibel
gedragend niobium preparaat met een x-waarde van dezelfde orde van
grootte (Fig.IV.23).

Bij een poging rekening te houden met de waargenomen veldaf-
hankelijkheid van de soortelijke warmte in de mengtoestand en het
magnetocalorische effect, wordt er voorgesteld de magnetisatie bij

Hc? niet alleen door een lineaire term in (H — H 2), maar bovendien
door hogere machten in (H — ch) weer te geven; de coéfficiént van de
tweede macht is in orde van grootte bepaald uit de resultaten. Hieruit zou
volgen dat de resultaten van Abrikosov, die een lineaire magnetisatie bij
ch geven, slechts een benadering van de eerste-orde zijn, waarvan de
geldigheid waarschijnlijk is beperkt tot supergeleiders van de tweede
soort met een niet te kleine GL parameter .
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SUMARIO

Com base em resultados derivados de medidas do calor especifico
em campo magnético constante (desde zero até 9,4 kOe, no inter-
valo de temperatura 1 — 10°K) de trés amostras de niébio de diferente
grau de pureza, mostrou-se que eéste metal & um supercondutor intrin-
seco de sequnda espécie, no qual a interacg@o fondio — electrdo tem
uma intensidade de valor intermédio. Desvios em relag@o s predigoes
da teoria de Bardeen - Cooper - Schrieffer (BCS) foram encontrados
para as grandezas que dependem sensivelmente da intensidade da
interacgdo (largura da banda interdita no espectro energético dos
electrdes a 0°K, 2A(0), varigdo do campo critico termodinamico, H,_
em fung@o da temperatura (Fig.IV.8) e o valor AC(TC)/’)"I"c da des-
continuidade que o calor especifico em campo nulo apresenta na tran-
sigdo para o estado normal, referido ao calor especifico electrénico
no estado normal d mesma temperatura).

Para valores do campo magnético, H, acima do primeiro campo
critico a 0°K, H_,(0),0 calor especifico no estado misto contém, ja
nas imediagSes do zero absoluto, um termo linear ,¥’'T, cujo coefi-
ciente, 7!, aumenta com a intensidade do campo aplicado (Fig.IV.17).
A existénecia de semelhante termo havia sido predita por Gorter em
bases termodin@micas. O aparecimento deste térmo linear implica a
existéncia no supercondutor, para H > H (0) de regides com um
comportamento analogo ao estado normal (os niicleos dos vértices de
Abrikosov, onde o espectro energético dos electrdes comporta exci-
tagOes de baixa energia).

Todavia, a variagdo de ' com o campo magnético aplicado n&o
pode ser cabalmente explicada com base nos resultados preditos pelo
modélo de Abrikosov (generalizado por Maki), segundo o qual a sus-
ceptibilidade magnética diferencial (BM/aH)T no estado misto nas
imediagdes do segundo campo critico, ch, é independente do campo
magnético. O estudo paralelo do calor especifico e do efeito mag-
neto — calérico em fung@o do campo magnético a uma determinada
temperatura, confirma o desacdrdo entre experiéncia e teoria.

A grandeza da descontinuidade AC que o calor especifico apres-
enta na transigcdo para o estado normal varia proporcionalmente com
T3, para T« T, (T sendo a temperatura da transigdo em campo
nulo). Para T= T a AC depende, efectivamente, de um modo notério,
do valor do pcrametro de Ginzburg - Landau (k), o comportamento das
trés amostras concordando, neste aspecto, com a previsdo (Secgdo
4.2.7.1) (Fig.IV.18).
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Os parametros Ky € K, introduzidos por Maki para caracterizar a
variagdo com a temperatura de, respectivamente, ch/Hc e (3M/3H)T
nas imediagSes de ch, verificam o resultado tedrico «,(t) > «,(t)
para t = T/Tc # 1 e satisfazem & condigdio Kl(l) = Kz(l) = k. (Fig.IV.
21). Todavia, a variagdo destes parametros com a temperatura &
bastante mais acentuada do que prevé a teoria (Fig.IV.21). A predigao
tedrica segundo a qual K, aumenta com o grau de pureza foi confir-
mada experimentalmente.

Quando se manifesta histerese no comportamento magnético da
amostra, o valor da susceptibilidade magnética diferencial no estado
misto junto do segundo campo critico, deduzida dos resultados calori-
métricos (AC) por intermédio da relagdo de Ehrenfest (2—47), con-
corda melhor com a curva de magnetizag@io obtida em campo magné-
tico decrescente. Presume-se que os valores de (3M/3H)T, para
H = ch, assim derivados, correspondem a estados de equilibrio pois,
no caso da amostra Nb-3 (a mais pura), excelente concordancia foi
verificada, para T « Tc, com resultados magnéticos obtidos com um
espécimen de niébio altamente reversivel e com um valor de « da
mesma ordem de grandeza (Fig.IV.23).

Para explicar a observada variag@o do calor especifico no estado
misto e do efeito magneto-calérico com o campo magnético, admitiu-se
que a susceptibilidade magnética diferencial no estado misto junto
de ch depende do campo magnético (linearmente, em primeira apro-
ximag8o). Em conformidade, a express&o da magnetizagdo em fungdo
do campo aplicado H deve incluir, além do habitual térmo linear,
H - ch, outros de expoente mais elevado. A ordem de grandeza do
coeficiente do térmo quadratico foi calculada a partir dos resultados.
Conclue-se, consequentemente, que o resultado do modélo de Abrikosov
(magnetizagdo linear junto de ch) representa uma aproximagdo de
primeira ordem, provavelmente valida apenas para supercondutores de
sequnda espécie com valores do pardmetro x ndo muito pequeno.
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Teneinde te voldoen aan de wens van de Faculteit der Wiskunde
en Natuurwetenschappen volagt hier een kort overzicht van mijn studie.

In 1949, na het afleggen van het eindexamen aan het Liceu Na-
cional de D. Manuel II te Porto, Portugal, ben ik mijn studie in de
electrotechniek aan de Faculdade de Ciéncias da Universidade do
Porto begonnen, die ik daarna heb voortgezet aan de Faculdade de
Engenharia van dezelfde universiteit. Van 1955 tot 1958 heb ik mijn
studie onderbroken om de militaire dienstplicht te vervullen. Hierna
heb ik het ingenieursdiploma in 1959 verkregen. Van 1959 tot 1962
assisteerde ik in het Laboratério de Fisica da Faculdade de Ciéncias
da Universidade do Porto. In 1961-'62 gaf ik een cursus algemene
natuurkunde aan studenten in de wiskunde. Een vrijstelling van deze
onderwijstaak werd mogelijk gemaakt door het Instituto de Alta Cul-
tura, Lisboa, en door de welwillendheid van Prof. Dr. C.A. Coutinho
Braga, Prof. Dr. J.M.R. Moreira de Araiijo en Prof. Dr. A.A. Pires de
Carvalho van het Laboratério de Fisica do Porto. Prof. Dr. C.J. Gorter,
bood mij op verzoek van Prof. Dr. J.M.R. Moreira de Aratijo een plaats
op het Kamerlingh Onnes Laboratorium aan. Eind 1962 begon ik op het
Kamerlingh Onnes Laboratorium met het onderzoek voor mijn promotie,
waarvan de laatste meting eind 1966 geschiedde. Gedurende deze
periode genoot ik financiéle steun van de Fundagdo Calouste Gulben-
kian, Lisboa. Op grond van mijn studie in Portugal, het verrichte on-
derzoek op het Kamerlingh Onnes Laboratorium en een tentamen quan-
tummechanica bij Prof. Dr. J.A.M. Cox, legde ik in 1966 het doctoraal
examen experimentele natuurkunde af aan de Rijksuniversiteit te Leiden.
Gedurende de eerste helft van 1967 heb ik een cursus experimentele
natuurkunde gegeven aan studenten in de natuurkunde op het Labora-
tério de Fisica, Porto. Teruggekomen in Leiden voor de samenstelling
van het proefschrift kreeg ik financiéle hulp van Nederlandse zijde.

Een gedeelte van de resultaten van het onderzoek is reeds gepu-
bliceerd:

Ferreira da Silva, J., Scheffer, J., van Duykeren, N.W.J. and Dokoupil,
Z., Phys. Letters 12 (1964) 166.

Ferreira da Silva, J., van Duykeren, N.W.J. and Dokoupil, Z., Phys.
Letters 20 (1966) 448.

Ferreira da Silva, J., van Duykeren, N.W.J. and Dokoupil, Z., Comm.
No 348b Kamerlingh Onnes Lab., Leiden; Physica 32 (1966) 1253.

Ferreira da Silva, J. and Dokoupil, Z., Proceedings of the XIIth Int.
Congress of Refrigeration, Madrid, 1967.

Ferreira da Silva, J., Burgemeister, E.A. and Dokoupil, Z., Phys.
Letters 25A (1967) 354.
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Veel medewerking bij de metingen en berekeningen heb ik onder-
vonden van de Heren Drs. J. Scheffer, Drs. N.W.J. van Duykeren en
E.A. Burgemeister. Veel waardering heb ik voor de hulp, die ik kreeg
van de Heren H. Kuipers en B. Kret, van de glasinstrumentmakerij,
de Heren J. de Vink, E.S. Prins en H.R.A. Nater, van de ontwikke-
lingswerkplaatsen, de Heren L. Neuteboom en J. Turenhout, van de
cryogene afdeling, de Heer W.F. Tegelaar, van de tekenkamer en Mejuf-
frouw S.M.J. Ginjaar, van de administratie en andere leden van de
technische en administratieve staf van het laboratorium.

Door bemiddeling van Dr. G.J. van den Berg werden de zuivere
niobium preparaten verkregen van Dr. W. De Sorbo van General Electric
Laboratory te Schenectady, N.Y. De weerstandsmetingen werden ver-
richt door de werkgroep Mt IV van F.O.M.-T.N.O. Prof. Dr. J. Volger
van het Natuurkundig Laboratorium van Philips te Eindhoven voldeed
aan het verzoek een spectrochemische analyse van de preparaten te
laten maken. Andere analyses werden gedaan door Dr. Ir. J.T. Tiedema
van de N.V. Hollandse Metallurgische Industrie Billiton te Arnhem.
De Heer L.J.A. van Bentveld van het Centraal Reken Instituut te
LLeiden heeft de programmering verzorgd voor de digitale rekenmachi-
nes, de X-1 en de IBM 360. De Engelse tekst werd gecorrigeerd gedeel-
telijk door Dr. F.R. McCourt en gedeeltelijk door de Heer en Mevrouw
P.J. Worsley.







STELLINGEN

I

Als in de soortelijke warmte grote anomalieén voorkomen, zoals
dit bij supergeleiders van de tweede soort bij de fasenovergangen
Hcl(t) en ch(t) gebeurt, mag de registratie van de opwarmingscurven
in geen geval buiten beschouwing worden gelaten.

II

Het argument, dat door Radebaugh en Keesom wordt gegeven
voor de produktie van '’irreversible internal heating'’ bij Hcl(t), is
ongegrond.

R. Radebaugh and P.H. Keesom,
Phys.Rev. 149 (1966) 217.

II1

De dissipatieve processen veroorzaakt door de beweging van
Abrikosov’s wervels in de gemengde toestand van een supergeleider
van de tweede soort behoeven niet noodzakelijkerwijs de resultaten
van metingen der soortelijke warmte te beinvloeden.

H. van Beelen, Proefschrift, Leiden, 1967,
Stelling II.

v

De door Finnemore e.a. uit de magnetisatie van zeer zuiver
niobium berekende sprong in de soortelijke warmte bij Tc verschilt
6% van de experimenteel gevonden waarde. Dit wordt veroorzaakt door
het gebruik van een te grote waarde van (dHc/dT),r , waardoor ook

Cc
wordt verklaard, dat zij een te kleine x waarde berekenen.

D.K. Finnemore, T.F. Stromberg and C.A. Swenson,
Phys.Rev. 149 (1966) 231.

\Y

Door van het magnetocalorische effect gebruik te maken in een
zuiver preparaat, dat een supergeleider van de tweede soort is, zou
het mogelijk zijn de soortelijke warmte te meten in de omgeving van
H_, bij temperaturen lager dan gewoonlijk bereikt met een 4He-bad.

L.C. Skinner, 1I, R.M. Rose and J. Wulff,
J.Appl.Physics 37 (1966) 2191.

2
"j; Dit proefschrift, paragraaf 5.1, Fig. V.l.
E_; VI
s De bewering van Skinner e.a. dat overeenstemming bestaat tus-
Al sen Kl(t) en de fenomenologische uitdrukking van Ginzburg en tussen
}.zf- Kz(!) en de voorspelling van Maki-Tsuzuki voor drie één-kristallen van
k2 niobium is ongegrond.
!




VII

Het meten van de differentidle magnetische susceptibiliteit bij
in de gemengde toestand van supergeleiders van de tweede soort,

H
die een kleine x waarde hebben en zich zeer reversibel gedragen, is
gewenst.

c2

VIII

"consistency test’’

De door Null voorgestelde thermodynamische
voor fasenevenwicht tussen een z.g. van Laer vloeistof (L) en een
regulier vaste-stof mengsel (S) van een binair systeem behoeft niet in
alle gevallen een éénduidig uitsluitsel te geven bij de beoordeling
van experimenteel gevonden (L +S) fasendiagrammen.

H.R. Null, A.I.Ch.E. Journal 11 (1965) 780.

X

De argumenten, op grond waarvan de Adviserende Commissie
voor Thermometrie de waarde 20,280 °K heeft aanbevolen voor het kook-
punt van waterstof, zijn niet overtuigend.

Verslag van de Vergaderingen van het Comité Consultatif de Ther-
mométrie van het Bureau International des Poids et Mesures in
Washington en Ottawa (september, 1967).

X

Voor temperaturen beneden een honderdste graad Kelvin heeft
de anisotropie van de gamma-straling van radioactieve kernen, die op-
genomen zijn in een metallische ferromagneet, als thermometer voor-
delen boven andere mogelijkheden, bijvoorbeeld de susceptibiliteit
van een paramagnetisch zout.

XI

De bewering van Mumford: Only a minute span of experience is
really open to private verification and adequate experimental proof:
the rest must be taken on faith in the integrity of authority, in science
no less than in theology’’, is aanvechtbaar.

Lewis Mumford, The Condition of Man,
Mercury Books, L.ondon, 1963, p. 195.

XII

De beknopte manier, waarop H.G. Wells de ontdekkingen, die
door Portugezen in de vijftiende en zestiende eeuw werden gedaan,
behandelt, doet geen recht aan hun uitzonderlijke ondernemingszin en
aan de gevolgen dezer ontdekkingen.

H.G. Wells, The Outline of History, Cassell
and Company, L.td, London, 1951.

Stellingen behorende bij het proefschrift van J. Ferreira da Silva.










