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Teneinde te voldoen aan de wens van de Faculteit der Wiskunde en Natuur
wetenschappen geef ik hier een kort overzicht van mijn universitaire studie.

Nadat ik in 1950 mijn eindexamen had behaald aan het Stedelijk Gymnasium
te Leiden begon ik de studie in de wis- en natuurkunde aan de Rijksuniversiteit
te Leiden. Het eerste gedeelte van de studie moest gedurende twee jaar worden
onderbroken in verband met militaire dienst.

Na het behalen van het candidaatsexamen letter A in 1955 begon ik als leer
ling van Prof. Dr. A. F. van Itterbeek mijn opleiding aan het Kamerlingh Onnes-
laboratorium, waarbij ik Dr. A. M. R. van Iersel hielp bij het voorbereiden en
in 1958, samen met Prof. Dr. E. W. Guptill uit Halifax, bij het uitvoeren van
zijn metingen over absorptie van ultrageluid in mengsels van 3He en 4He. Voorts
assisteerde ik van 1956 tot 1959 op het natuurkundig practicum. Tevens bracht
ik in 1957 enige maanden door op het Instituut voor Lage Temperaturen en
Technische Physica van de Leuvense universiteit.

In 1958 legde ik het doctoraal examen experimentele natuurkunde af. De
tentamens in de theoretische natuurkunde en de mechanica werden mij afge
nomen door Prof. Dr. S. R. de Groot, Prof. Dr. J. van Kranendonk en Prof.
Dr. P. Mazur.

Na het behalen van het doctoraal examen werkte ik gedurende enige tijd aan
het uitwerken van een methode om zeer nauwkeurig de absolute waarden van
voortplantingssnelheden in vloeistoffen te bepalen met behulp van cylindrische
bariumtitanaat transducenten. In mei en juni 1959 hield ik mij aan het Centre
d’Etudes de Chimie Métallurgique van het CNRS te Vitry-sur-Seine bezig met
zonesmelten en met het maken van eenkristallen van aluminium, onder leiding
van Prof. Dr. F. Montariol.

In het najaar van 1959 begon ik aan het onderzoek waaruit dit proefschrift
is voortgekomen. Ik trad toen in dienst van het Natuurkundig Laboratorium
der N.V. Philips’ Gloeilampenfabrieken, waarbij mij de gelegenheid werd ge
boden mijn onderzoek aan het Kamerlingh Onneslaboratorium uit te voeren.
Ik ben de Directie van het Natuurkundig Laboratorium van Philips erkentelijk
voor het treffen van deze voor mij zeer plezierige regeling.

Het onderzoek heeft deel uitgemaakt van het programma van de groep
VS-L van de Stichting voor Fundamenteel Onderzoek der Materie, waartoe
financiële steun is verleend door de Nederlandse Organisatie voor Zuiver
Wetenschappelijk Onderzoek. Genoemde werkgroep staat onder leiding van



Prof. Dr. C. J. Gorter, die veel heeft bijgedragen tot de interpretatie van
de meetresultaten. Bij het voorbereiden en uitvoeren van de metingen en
bij het uitwerken van de resultaten ben ik geassisteerd door de heren
Drs. T. Blangé, J. Dussel, H. R. van der Laan en J. Siegenbeek van
Heukelom. Bij het bewerken van dit proefschrift zijn discussies met Dr.
P. G. Klemens uit Pittsburgh voor mij zeer nuttig geweest.

Tijdens mijn werkzaamheden op het Kamerlingh Onneslaboratorium heb ik
veel steun ondervonden van de zijde van de technische staf. Zonder anderen
tekort te willen doen vermeld ik in het bijzonder de hulp van de heren P.
Nachtegaal, H. R. Nater, Th. Nieboer en H. van Zanten. Zelfs waar het schijn
baar onoplosbare problemen betrof hebben zij mij steeds op prettige wijze met
raad en daad bijgestaan.
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Abstract
This thesis deals with the absorption of ultrasound in superconducting
aluminium. The results of the measurements using longitudinal sound
waves in specimens of different purity are in agreement with the theory
of Bardeen, Cooper and Schrieffer. Extrapolation leads to a zero-tem
perature energy gap of 3-5 kT c. The absorption of transverse sound waves
can be split up into two parts, namely one part according to the BCS
theory, and one part which decreases rapidly below the superconducting
transition temperature and is zero from 0-02 °K below the transition
temperature. This second part of the absorption is also negligibly small
when the product of the wave number of the sound and the mean free
path of the electrons is much smaller than unity. This has been shown by
experiments on specimens of different purity using sound of different
frequencies. Measurements were performed on two single crystals of
zone-refined aluminium with different sound-polarization directions.
The value of the absorption depended on the polarization direction, but
the calculated energy gap did not. Phase transitions in a very pure zone-
refined aluminium single crystal were also investigated using ultrasound,
in order to find out something about the propagation velocity of the
phase boundaries, and the structure of the intermediate state. For the
latter, measurements at different temperatures and different frequencies
were required. The experimental results for magnetic fields both parallel
and perpendicular to the sound-propagation direction support the
theories of Pippard and Faber. During the transition from the super
conducting to the normal phase the absorption behaves as predicted by
Pippard on the basis of the eddy-current theory. A formal description
is also given of the transition from the normal phase to the supercon
ducting phase. In the very pure specimen used, thin normally conducting
regions were found to exist for more than twenty minutes after an
external magnetic field of the order of the critical field had been switched
off. All transition times are much shorter for less pure aluminium.
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INTRODUCTION

Bommel 54-1) in 1954 was the first to measure ultrasonic attenuation as a
function of temperature in a superconducting metal. Since then many investi
gations have been carried out in this field. Only few measurements have been
reported on ultrasonic attenuation in aluminium 58>1) 59>1) 59>2) 62,1). One
single paper 62 ■1) refers to measurements on aluminium well below the transi
tion temperature, which is about 116 °K. Complicated cryogenic problems
connected with cooling of the specimens have undoubtedly limited the number
of papers on this subject.

Experiments on ultrasonic attenuation in superconducting metals became of
great interest when a theoretical description was developed bn the basis of the
theory of Bardeen, Cooper and Schrieffer 57•1) which we shall call the “ BCS
theory” for short. This theory led to values of the absorption due to electron-
phonon interaction in an isotropic metal in the superconducting state with
respect to that when the metal is in the normal state.

In this thesis experiments are described that have been performed on pure
and less pure specimens of aluminium by using both longitudinal and shear
waves. The aim of the experiments was to compare the results with the BCS
theory, to determine the energy gap for zero temperature and to look for
orientation dependences. The normal-state attenuation was also measured as
a function of the frequency. Furthermore, investigations at magnetic fields
smaller than the zero-temperature critical field are reported.

In the last chapter ultrasonic attenuation measurements during phase transi
tions are described. Large differences were revealed between the results for
magnetic fields parallel to the sound-propagation direction and for magnetic
fields transverse to that direction. Some of the measurements were performed
at different temperatures and at different frequencies. An expression for the
transition velocity from the superconducting state to the normal state as a
function of the external magnetic field is verified, and a tentative model for the
structure of a specimen in the intermediate state is discussed on the basis of
the measurements.
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1. ON THE GENERAL THEORY OF ULTRASONIC ABSORPTION IN
METALS

1.1. Phonons and electrons in metals

1.1.1. Ultrasonic waves

Sound in the ordinary sense is the name given to all those mechanical vibra
tions to which the human ear is sensitive. These mechanical vibrations are
propagated through matter in the form of mechanical waves.

The frequency spectrum of mechanical waves in solids runs from the very
lowest frequencies — corresponding to vibrations in which macroscopic regions
move relatively to each other — to frequencies of the order of 1013 Hz, cor
responding to the vibrations of individual atoms relative to their neighbours.
The human ear is sensitive only to a small part of this frequency spectrum,
from about 20 Hz to about 16 kHz. Sound of higher frequency is called ultra
sound. In this thesis we shall sometimes refer to “ultrasonic waves” simply
as “sound waves” .

In a solid material there are two kinds of mechanical waves: those that can
pass through the entire material, and those that are confined to surfaces or
interfaces. The second kind, the surface waves, need not be considered in the
present thesis, as in the experiments to be discussed the sound beam is generated
in such a way that the beam does not strike any surface except at almost normal
incidence.

With waves of the first kind, or body waves, we distinguish between waves
of different polarizations. There are three independent modes of polarization,
having three mutually perpendicular polarization directions. For propagation
in an isotropic material, one of the modes is longitudinal, and the other two
are transverse. The longitudinal wave is a compressional wave. The transverse
waves give rise to deformations without change in volume; they are called shear
waves. Even when this distinction is not sharp in practice, there will be, however,
one wave predominantly compressional, which we call the longitudinal wave.
All sound waves in a solid can be regarded as a superposition of waves of these
three polarizations.

In order to study sound waves in a solid it is necessary to have a well-defined
sound beam of a given frequency. This can be introduced into the solid by
means of a transducer, which is placed at the surface of the specimen and con
verts electromagnetic waves into mechanical vibrations, a substantial fraction
of which will be propagated through the solid. A transducer can also be used
for the inverse process of converting part of the energy of a sound wave into
electromagnetic waves, thus serving as a detector. Ideally the transducer should
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generate only sound of one frequency for a given frequency of electromagnetic
waves, and the sound waves emerging into the solid should have a narrowly
defined propagation direction and only one polarization. These requirements
can be approximated to by the arrangement which we shall be discussing in
chapter 2. In common with widespread practice, quartz transducers are used
here, as they have a wide frequency response, and their electromechanical prop
erties show little temperature dependence. Besides, quartz is easily machined
and has the additional advantage of being insoluble in most solvents.

The different interactions of stress waves with a given solid have been sum
marized by Truell and Elbaum 62>2). Their introduction to the concepts of the
theory of elasticity, in particular stress, strain and elastic constants, will not be
repeated here. We only mention that stress energy can be dissipated in a body
in many different ways, e.g. by interaction with conduction electrons in metals,
by direct scattering by defects and by the thermoelastic effect.

Energy dissipation, to whatever mechanism it may be due, is commonly
expressed in terms of an attenuation coefficient a, defined in the following
way 63>1). Assuming the decrease of the stress amplitude jcr over a small
distance dx to be proportional to the stress amplitude itself and to the distance
dxr, one may write d|<r| =  —a\a\ cbr. This expression may be integrated to
give the stress amplitude at a distance x:

|(r| =  ooe~ax, (1)

where ao is the amplitude of the time-dependent stress at zero distance. The
attenuation is therefore

1 |o(*)|a =  -  loge------ neper/cm, (2)
X  (To

if x  is measured in cm.
In accordance with engineering practice it is convenient to give the attenua

tion coefficient as 201ogio \o(x)\/oo in decibels/cm; a in decibels/cm is equal
to 8-686 a in nepers/cm.

The experiments on ultrasonic attenuation which led to this thesis were
performed by using the pulse technique described in chapter 2. High-frequency
electric waves of about 1 [as duration from a pulsed oscillator were fed to a
flat quartz plate which converted the electric energy into mechanical waves of
the same frequency. The quartz plate reconverted reflected sound energy into
electric waves. The high-frequency electric waves were transmitted to and from
the transducer through coaxial cables. This pulse technique is useful for the
frequency range from 1 to 300 MHz. Below 1 MHz the shape of the transducer
makes it difficult to get a “monochromatic” sound beam, while at frequencies
above 300 MHz electromagnetic losses in the equipment are predominant, so
that wave guides are essential for transmitting the electromagnetic waves. At
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radar frequencies electric energy is transmitted via a wave-guide system to a
resonant cavity with a clamped transducer. Matching of the specimen to the
transducer for performing measurements at these high frequencies still gives
rise to difficulties.

1.1.2. Thermal vibrations in solids

The atoms in a solid vibrate about their equilibrium positions. Since the
instantaneous equilibrium position of each atom depends upon the instantane
ous position of its neighbours, the vibrations of all the atoms are interdependent.
It is possible, however, to express the vibrations of a solid as a superposition
of travelling elastic waves.

These waves, also called lattice waves, are described in the same way as the
sound waves discussed in the previous section, except that they always cover
a wide range of frequencies, from zero to around 1013 Hz, and a corresponding
range of wavelengths from macroscopic dimensions down to the interatomic
distance. At the shorter wavelengths, the consideration of an elastic solid as
continuous must be replaced by considerations taking into explicit account the
atomic structure of the material, and the relation between frequency and wave
length departs from the simple hyperbolic one which holds at lower frequencies.
This effect is called dispersion.

At liquid-helium temperatures, as we shall see below, the predominant lattice
waves have a wavelength of the order of 100 times the interatomic distance, and
the dispersion of the lattice waves is unimportant.

The energy content of each wave is given by considerations of statistical
mechanics, in complete analogy to the energy content of black-body electro
magnetic radiation in an enclosure. In this connection it is important to note
that the energy of each wave is quantized, and consists of an integral number
of phonons, each of energy hv, where h is the Planck constant, and v the fre
quency of the wave. The thermal energy is most concentrated at frequencies
around 3kT/h, where k  is the Boltzmann constant and T  the temperature. At
1 °K, this frequency is of the order of 30 GHz.

A typical plot of the number of phonons between v and v +  dv against v
(a thermal spectrum or “Debye spectrum”) is shown in figure 1, for 1 °K 58-2).
It is evident that the range of ultrasonic frequencies used in our experiments is
restricted to the utmost left-hand part of the graph.

Although the frequencies obtained from conventional electronic equipment
are always much lower than the central frequency of the Debye spectrum,
measurements by means of ultrasonic waves in a solid can provide much in
formation about properties of a solid. In principle the very-low-frequency waves
available for ultrasonic experiments are also quantized, but the number of
phonons there is always very large, and the results of quantum-mechanical
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Ultrasonic
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i.109 80-109
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Fig. 1. The thermal spectrum of the lattice for T =  1 °K.

20 - 10'

considerations coincide with the results of classical mechanics. Either approach
can be used.

1.1.3. Electrons in metals
While in an insulating solid every electron is associated with a particular atom

or atomic group, in metals some of the electrons, the conduction electrons, are
free to move through the entire solid, and behave in many respects like a gas of
free electrons. These conduction electrons are responsible for the characteristic
properties of a metal! high electrical and thermal conductivity and high re
flectivity.

The atoms of a solid metal are arranged in characteristic crystal lattice.
A unit cell of the aluminium lattice is shown in figure 2. Aluminium has a face-
centered cubic lattice structure.

In reality the crystal lattice is never perfect throughout the entire volume of
a specimen. There are occasional lattice defects such as vacant sites, impurity

Fig. 2. Unit cell of aluminium showing face-centered-cubic lattice structure.
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atoms and dislocations. In addition, metal specimens may be polycrystalline,
that is they may consist of a large number of domains of different crystal
orientation.

Although in a metal crystal each conduction electron is always in the close
proximity of an atom, it follows from wave-mechanical principles that these
electrons are not scattered when the atoms form a perfectly regular lattice.
Scattering only occurs as a result of the departures of the lattice from perfect
regularity, that is as a result of the various lattice defects, and the irregularity
introduced into the lattice by the thermal motion of the atoms. This motion
is best described by lattice waves.

The energy of the electron system is governed by the solution of a wave
equation which takes into consideration the kinetic energy of the electrons and
their potential energy under the influence of the electric fields produced by the
atoms and by the other conduction electrons. To a good degree of approxima
tion the total energy of the system is composed additively of the energies of the
individual electrons, and the energy of each electron is some function of its
momentum. The exact form of this function is very difficult to evaluate, and it
is often convenient to replace this total energy by the energy of a free electron,
using the mass of the electron as an adjustable parameter. The kinetic energy
of such a quasi-free electron can be written in the following form

where k is the wave vector of that electron and m* its effective mass.
The ground state of a whole system of free electrons is that where all energy

levels are occupied up to a level which is called the Fermi energy, and no levels
are occupied above this level. In k-space the surface defined by the free electrons
with Fermi energy, the Fermi surface, is a sphere. Putting the total number of
electrons within the Fermi sphere equal to NV, where N  is the number of
electrons per unit volume and V the volume in ordinary space, one obtains the
expression for the Fermi energy at T  =  0 6011) which will be used in chapter 3,
viz.

At finite temperature the division between occupied and unoccupied states
is not sharp, but spread out over an energy range of order kT. Formally this
is described by attributing to every state an equilibrium-occupation probability
given by the Fermi-Dirac distribution function (e(£ EF)tkT _|_ l)-!, where Ef is
the Fermi energy.

Although it is known that the Fermi surface of real metals is not quite
spherical, the spherical Fermi surface is a good first approximation for de
scribing part of the properties of many metals, including aluminium 83,2).

h2 /3 N \2/:
(4)
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1.2. Absorption in normal metals at low temperatures

1.2.1. Introduction

The attenuation of a longitudinal ultrasonic wave due to the conduction
electrons in a metal can be thought of as follows. Consider an element whose
volume is small compared to the wavelength. This volume suffers a strain which
is assumed to be uniform, and at the same time acquires a velocity. As a result
there must be a current flow, partly to compensate the change in the material
density, and partly due to the tendency of the electron gas to be at rest relatively
to the motion of the lattice. The electron distribution takes a finite time to adjust
itself to the changes in the density and velocity of each volume, so that the
electronic motion is out of phase with the motion of the lattice. This leads to
energy absorption, and since the time it takes for the electrons to adjust them
selves to the lattice is also the relaxation time which governs the electrical
conductivity, the absorption is related to the electrical conductivity, so that the
value of the absorption is largest at lowest temperatures. It follows that the
absorption increases to a limiting value as the temperature is decreased to very
low values. This has been verified experimentally for several pure metals. When
plotting the attenuation in pure metals at low temperatures as a function of
temperature one obtains a picture similar to that in figure 3. In that figure the
attenuation of longitudinal ultrasonic waves below 16 °K, as measured by
Mason and Bommel 56’1), has been plotted against temperature for a normal-
state tin single crystal.

The approach given above is justified as long as the wavelength of the sound
is much longer than the mean free path of the electrons. In the extreme opposite
case, one can think of the sound-wave interacting not with the electron gas as a

Fig. 3. Attenuation of longitudinal sound waves as a function of the temperature in a normal-
state tin single crystal along the (001) axis, v =  60 MHz, after Mason and Bommel.



whole, but with the individual electrons. This way of looking at the interaction
is a consequence of Bloch’s reasoning to obtain the various conduction prop
erties; in particular Makinson obtained an expression for the attenuation
coefficient for lattice waves and used it to deduce the lattice thermal con
ductivity. When the wavelength of the sound is much smaller than the mean
free path of the electrons in a specimen, the absorption of sound waves is
independent of the relaxation time of the electrons in the same specimen.

In the case of alloys, and in the case of metals at room temperature, the mean
free path of the conduction electrons is short, typically of the order of 10-5 cm,
and the absorption of ultrasonic waves is governed by the interaction with the
electron gas as a whole; it is thus proportional to the conductivity. For pure
metals the absorption increases when the temperature is reduced. If the frequency
of the ultrasonic waves is high enough, and the metal sufficiently pure, one
reaches a region below liquid-hydrogen temperatures where the absorption is
given by the latter considerations, namely interaction with individual electrons;
here the absorption is independent of the relaxation time, and also the frequency
dependence for the ultrasonic absorption is changed.

The absorption of ultrasonic waves in normal metals at low temperatures was
treated by Pippard 55’1) 60-2), using the considerations of interaction with the
electron gas as a whole. In the high-frequency limit his expression goes over
into Makinson’s results for the attenuation of lattice waves. The reason why
Pippard’s theory spans both regions will be discussed in the next section.

1.2.2. Absorption o f  longitudinal sound waves

The normal metal is assumed to contain N  free electrons per unit volume,
occupying all velocity states up to the Fermi velocity vf. During the passage
of the sound wave the local density of the electrons fluctuates periodically, and
the lattice acquires some local velocity. Thus the instantaneous equilibrium
Fermi surface is of a different radius than the initial one, and has shifted slightly
in momentum space. Because the electron distribution requires a finite time t,
the relaxation time, to adjust to changes in the instantaneous equilibrium, the
actual Fermi surface, which also changes periodically, always lags a little behind
the instantaneous equilibrium. The resulting irreversible processes lead to a net
energy absorption.

In this way Pippard obtained the following expression for the absorption of
longitudinal sound waves

_ Nm* /1 {ql)2 arctan (ql) \
ai pc it \3 (ql) — arctan (ql) / ’

where p is the density of the metal, ci the velocity of longitudinal sound waves,
q the wave number of the sound waves, and 7 — v f t  the mean free path of the
conduction electrons. Pippard’s derivation holds for all values of ql. In (5) it
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is assumed that cot <c 1, which is always the case for the ultrasonic waves used
in our experiments.

The results for the low-frequency limit of (5) could also be obtained by a
viscosity approximation, where the local velocity of the lattice is taken as
uniform. Expression (5), however, claims validity for ql >  1 as well. In that
case it takes the form

The absorption is then independent of the relaxation time r  and varies linearly
with the frequency.

For ql 3 > 1, a quantum-mechanical treatment of electron-phonon interaction
can be used to derive an expression for the absorption of longitudinal sound
waves. This expression was derived by Makinson for the absorption coefficient
of lattice waves due to the interaction with conduction electrons 56-2) *), namely

where c is the velocity of the sound, k  the wave number and E the energy of
the conduction electrons. The expression in square brackets is taken at the
Fermi energy Ef . The parameter C, having the dimensions of energy, is the
electron-phonon interaction constant, defined by H' =  where 4s is the
wave function of the electron and e the dilatation **). It will readily be seen
that for a free-electron gas this expression agrees with equation (6) if one takes
C =  f  E f . If one estimates C by a deformation-potential argument one does
indeed obtain that C  =  % E f  60,3) in the simplest case. Since Pippard’s argu
ment of charge neutrality involves the deformation potential when he considers
the above-mentioned change in the radius of the Fermi surface, it is not sur
prising that this result agrees with equation (7).

In figure 4 the absorption multiplied by a frequency-independent factor is
plotted against wave number times mean free path of the conduction electrons.
Equation (6) shows that the value of vf can be deduced from the slope of the
asymptote to this graph.

The band-structure model of the electrons would lead to a more complicated
theory for the absorption of longitudinal sound waves than the above-men
tioned theories, which are all based on the concept of the free electron. If for
instance the Fermi surface of the electrons runs through the first and second
Brillouin zones, the energy levels in the two zones may be differently affected
by uniform compression in the sound-propagation direction 55-2). Furthermore

TrNm*VFU > +  a term independent of frequency . (6)
6 pci2

d k \2j
d£y E f

(7)

*) The same expression was derived independently by Morse 59-3).
**) Note, however, that some authors, e.g. Klemens 56’2), define this C by H ' = \  Caji*ip,

and hence obtain an expression for a which is 4/g times the expression given in equation (7).
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Fig. 4. Reduced absorption for longitudinal sound waves as a function of wave number times
mean free path of the conduction electrons.

a periodic transfer of electrons between the zones may occur owing to the pas
sage of a sound wave. Whether the relaxation time appropriate for this situation
can be equated to the relaxation time for free electrons is still an open question.

1.2.3. Absorption o f shear sound waves

The absorption of transverse sound waves, generally called shear waves, will
now be discussed briefly. Shear waves do not cause density changes in the sound-
propagation direction. But on the other hand the electronic-current density and
the lattice-current density do not cancel out; there is thus a magnetic field per
pendicular to the propagation direction and to the polarization direction of the
sound. This induces an electric field in the polarization direction.

Pippard has taken into account this induced electromagnetic field as well as
the effect of collisions on the deviation from the equilibrium Fermi velocity.
He has evaluated the shear-wave absorption in a similar way as the longitudinal-
wave absorption to be

Nm* 1 — g
at = --------------, W

pCtr g

where

g =  —  j(?7)2_+  1 arctan (ql) -  1 j . (9)
8 2 (ql)z l ql * )

A plot of at against ql looks much like figure 4. For ql >  1 one gets
g —>■ 3 w/4 ql, and
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_  4 Nm^ypto a term ^dependent of frequency. (10)
3 TTpCt2

Dividing equation (10) by equation (6), we get the ratio of shear-wave absorp
tion to longitudinal-wave absorption, in the same specimen, for the same
frequency and for q/^> 1:

"f .*.(5)*, an
ai ir2 \C t/

where cj and ct are the longitudinal and the transverse velocity of the sound,
respectively. Equation (l l) is stated to be only correct for isotropic specimens,
It will certainly not hold for single crystals with a complex Fermi surface.

1.3. Absorption in superconducting metals

1.3.1. The physical meaning o f the energy gap

In a normal metal all electrons can be excited independently of each other,
the only restriction being the Pauli principle. Excitation of a single electron from
the ground state means, when wave-vector representation is used, that an
electron leaves its place at k =  ki, where \kt\ <  \kF\ and settles at k =  kj,
where \k}\ >  \kF\, leaving a hole at k<. In these inequalities kP is the Fermi
wave vector. The energy difference between the ground state and the excited
state is given by

AE  =  Sj — =  Ifyl +  |e<l > 0^)

where et and e, denote the energies with the Fermi energy EF as zero point;
for simplicity the assumption is made that in k-space the Fermi surface lies far
from a zone boundary. All single-electron excitations, even of infinitely small
AE, are possible in normal metals.

In contrast to normal metals, there is always a lower limit to the excitation
energy AE in superconductors; in other words, there is an energy gap between
the ground state and the single-particle excited states for superconductors. The
energy difference between the ground state and an excited state is represented
by an equation similar to (12):

AE  =  ( e f  +  ^ 2)1/2 +  (£(2 +  ^ 2)1/2 • 0  3>

The quantity 2A, which we shall call the energy gap, is thus the lowest possible
energy for breaking up a pair o f electrons. Strong experimental evidence for the
existence of such an energy gap has been provided by measurements of the
transmission and the reflection of infrared radiation 57>2) and of the surface
impedance for microwaves 59’4) of superconducting metals.

Bardeen, Cooper and Schrieffer in their well-known paper s7-1) gave an ex-
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Fig. 5. The theoretical energy gap normalized with respect to the zero-temperature gap as
a function of the normalized temperature.

pression for the temperature dependence of the energy gap. This energy gap
increases from zero at the transition temperature Tc to about 3-5 kTc at zero
temperature, as is shown in figure 5. Although this energy gap is extremely small
compared to other energies which appear in a superconducting metal, it
accounts for all differences between normal and superconducting metals.

The energy gap is a consequence of the electron-electron interaction through
virtual phonons, suggested by Bardeen, Cooper and Schrieffer 51 >x). This inter
action has been described by Cooper 60>4) as follows. An electron travelling
through the lattice distorts the lattice, even at T  =  0, provided that the lattice
points are not infinitely heavy or rigidly fixed. Even when the electron does not
have enough energy to emit a phonon with a long life time, this interaction with
the lattice may let it momentarily emit a phonon existing during a very short time
interval which is determined by Heisenberg’s uncertainty principle. One usually
says that a virtual phonon is excited by the travelling electron. The virtual
phonon has a certain extension in the phonon field, and another electron may
undergo its influence, which means coupling to the first electron, with conserva
tion of the sum of their wave vectors. We shall limit ourselves to simple two-
body correlations here. The interaction hamiltonian shows that this electron-
electron interaction is attractive provided that the energy difference between
the electron states is smaller than the virtual-phonon energy /uoph. Opposed to
this electron-electron interaction is the repulsive Coulomb interaction which is
a typically short-range effect, as long-range Coulomb forces are screened by the
other electrons. The criterion of Bardeen, Cooper and Schrieffer for supercon
ductivity is that the attractive electron-electron interaction should dominate the
short-range Coulomb interaction. They have shown that there is then a very
strong preference for pairs of electrons having zero total wave vector and
opposite spin. All other interactions typical of a normal metal are supposed
not to change when the metal undergoes the transition to the superconducting
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state. Therefore all processes involving absorption of energy quanta less than
2A are exclusively determined by single-particle excitations.

1.3.2. Ultrasonic absorption according to the BCS theory

Ultrasonic attenuation is one of those phenomena which are extremely sen
sitive to the transition from the normal to the superconducting state. This was
discovered by Bommel for lead 54’1).

Pippard’s semi-classical treatment mentioned in section 1.2 accounts fully for
the behaviour of ultrasonic waves in normal metals. A quantum-mechanical
treatment of the absorption of longitudinal sound waves in normal metals has
been given by Makinson, see 56,2) and by Morse 59’3). Such a treatment is essen
tially limited to ?7> 1. Pippard’s treatment, which is applicable to all ultrasonic
frequencies and which, moreover, makes use of simple concepts, was preferred
for describing ultrasonic absorption in normal metals. Ultrasonic absorption
in superconductors has so far been described only by means of the concepts
of quantum mechanics. The first, and still the best, description of this kind is
based on the BCS theory «•*) The same perturbation hamiltoman
H ' =  Ce>p*ip as for normal metals is used, but the electron wave function and
the density of states are essentially different from those for the normal state.

We shall now calculate the ratio of the ultrasonic absorption in a supercon
ductor to that in the same metal in the normal state according to the BCS theory.
In order to do this we must introduce the density of states per unit of energy for
one spin in the superconducting metal, NS(E). The assumption is furthermore
made that the corresponding quantity for the normal state, Nn, is constant on
and near the Fermi surface. It is simply shown that NS(E) — Nn de/dE. For
a superconductor equation (13) leads to e =  (£ 2 — J 2)1/2, so that de/dE =
=  E/(E2— A2)112. Therefore 61"1)

Ns(E) =  NnE/(E* -  d 2)i/2. (14)

Absorption of sound with angular frequency a> involves the transition from
a state of energy E  to one of energy E +  hw. The probability of such a transition
is proportional to the square of the scattering matrix element and to the density
of states of the final state Nt (E +  hw) 55-3). The induced absorption is pro
portional to this transition probability and to the density of the initial state NS(E).
The measured absorption is equal to the difference between induced absorption
where the energy increases from £  to E +  hw and induced emission where
the energy decreases from E  +  hw to E.

The mean square matrix elements for transitions from E to E  +  hw and
from E +  hw to E  have been evaluated by Bardeen, Cooper and Schrieffer in
their well-known paper 57*1). They are, respectively,
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w here/(is) is the Fermi distribution function. We can therefore write for the
absorption in the superconducting state, replacing summation over the quasi-
continuous states by integration:

00

A

—f (E  +  M  {1 —ƒ(£)}] NS(E) Ns (E +  hen) dE =

00

r , A Z \
=  2 ƒ (1 ___________ ){ƒ(£) -  ƒ  (£■ +  hen)} Ng(E ) Ne(E +  hen) dE. (15)

J \ E (E +  hco)/
A

The energy-dependent Ns(E) is eliminated when we use (14). By putting
hco < 2 J ,  which is permissible under the experimental conditions, we get

00

a8 ~ 2 f  Nn2 { ƒ  (£) ~ f ( E  +  Hen)} dE =
A

oo

=  —l (  Nn*hen —  dE =  2 h<*Nn2f  (A) . (16)
J dE
A

For the absorption in the normal metal we get the same expression, except that
A =  0, and therefore the integral has to be taken from 0 to +oo. This gives

» 00r f  df
a „ ~ 2  Nn* { ƒ ( £ ) - ƒ ( £  +  M }  dE =  —2 / Nn2hut — dE —

0 0

=  2 hu>Nn2f  (0) =  hoNn2 , (17)

whence

— =  2 f { A ) . (18)
an

Here ƒ  (A) is the Fermi distribution function at the gap boundary, which is
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given by (eAlkT +  I)-1, where k  is the Boltzmann constant.
This ratio a,/an was evaluated by using the perturbation hamiltonian H',

defined above. Therefore one should expect equation (18) to be valid only for
^ 7 »  1. Tsuneto 61>3) has shown, however, that equation (18) should also hold
for ql <  1. This does not sound unreasonable, because both the electron wave
function and the density of states are defined independently of the value of ql.

The energy gap was assumed by Bardeen, Cooper and Schrieffer to be
isotropic. This assumption is not always valid: measurements by Morse et
al. 59-5), and by Bezuglyi et al. 61-2) on superconducting tin have given evidence
for gap anisotropy in this metal, see figure 6. But in this theoretical section the
gap will be assumed to be isotropic.

Fig. 6. The absorption normalized with respect to the normal-state absorption as a function
of TJT, after Morse et al., for three different propagation directions in a tin single crystal.
From the slope of (a), (*) and (c) the zero-temperature energy gap may be calculated for the
three propagation directions.

Finally figure 7 shows some experimental results for longitudinal sound waves
in tin and indium, obtained by Morse and Bohm 57-3), compared to the theoret
ical curve predicted by BCS. It will be seen that the agreement is reasonable,
although the relatively small deviations for T >  0-7 Tc still have to be explained.

1.3.3. Absorption o f shear waves in superconducting metals

At frequencies where >  1 the shear-wave attenuation decreases much faster
just below the superconducting transition temperature Tc than the BCS theory
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Fig. 7. Normalized absorption as a function of normalized temperature for longitudinal sound
waves in tin and indium, after Morse and Bohm. The full curve is the theoretical curve ac
cording to BCS.

predicts 59’2) 62>1) 63'4). This sudden change in the shear-wave attenuation can
be understood qualitatively in the following way.

In a normal metal the elastic deformation of the lattice by the sound waves
implies an oscillating lattice current of the same frequency as that of the sound
waves. The propagation of this electric current has the same direction as the
polarization of the sound waves, i.e. perpendicular to the propagation direction
of the sound waves. The electric current causes an alternating magnetic field Ht
perpendicular to the polarization direction, and this in turn an electric field Et,

Fig. 8. Diagram for shear-wave absorption at low temperatures;
ct =  propagation direction of sound wave,
Pt — electric polarization of lattice,
Ht =  magnetic field due to sound wave,
yF =  velocity component of an electron contributing to the absorption.
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which again has the same direction as the current. This mechanism, which has
already been used for deriving Pippard’s equation (8) for shear-wave absorption
in normal metals, is illustrated in figure 8. The net result is a self-consistent
electric field which has the same orientation as the lattice current.

In superconducting metals, however, the magnetic field Ht is screened by the
supercurrents, which leads to a sharp drop in the electromagnetic induction
which causes the ultrasonic absorption.

The ultrasonic absorption in the frequency range where ql <C 1 can be like
wise attributed to a purely mechanical interaction between the lattice vibrations
and the conduction electrons. For those low frequencies one may expect that
below the superconducting transition temperature the experimental results will
show agreement with equation (18), as the interaction hamiltonian does not
change at the transition from the normal to the superconducting state.

In the frequency range where ql >  1 the ultrasonic absorption in the normal
metal can no longer be understood in terms of mechanical interaction. The
absorption process is described in terms of electromagnetic interaction between
the conduction electrons and the lattice phonons. The screening by the super
currents should lead to a sharp drop in the ultrasonic absorption at Tc. In
practice, however, the ultrasonic absorption does not decrease discontinuously,
but in a range of about 0-02 Tc below the transition temperature. This may be
ascribed to the fact that just below Tc there are not enough “superconducting
electrons” for screening the whole induced magnetic field. Below 0-98 Tc the
screening should be complete. The remaining ultrasonic absorption can be
ascribed again to mechanical coupling between the lattice vibrations and the
conduction electrons.

A small drop in the attenuation of longitudinal sound waves has been ob
served for tin and indium, leading to a poor agreement between the experi
ments and the BCS theory. This is shown in figure 7. The discrepancy can be
understood as follows. The “longitudinal” sound waves could have small shear
components. Owing to the screening process described above those components
will decrease much more below the transition temperature than the compres-
sional component.
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2. EXPERIMENTAL METHOD

2.1. The specimens

2.1.1. The zone-refining method

The very pure metal from which two single crystals with orientation (100)
and (110) were grown had been purified by zone refining 58-3). Zone refining,
and more generally zone melting, is a process where redistribution of impurities
takes place at the growth interface of a molten zone. Figure 9 shows schematic-

Fig. 9. Principle of zone melting.

Heater

'Motten zone

ally how a molten zone moves through a metal ingot containing one or more
solute impurities. In order to describe the zone-melting procedure we must
introduce the distribution coefficient k, which is the ratio of the concentration
of solute impurities at the growth interface to that in the main body of the liquid.
If the concentration at the growth interface is lower than in the liquid the
distribution coefficient is less than unity. The melting point of the solvent during
the zone-melting procedure is then lower than if the ingot were completely
homogeneous.

The procedure of zone refining can be most simply explained with reference
to the phase diagram of figure 10 which refers to a single solute which has a

Concentration

Fig. 10. Phase diagram for a binary system in which the freezing point is lowered by the
solute; Cs =  AroCt.
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concentration C l  in the liquid solvent. If the solution is very slowly cooled, the
first solid will appear at a temperature T, say. At all points betvyeen P and Q,
an equilibrium exists between liquid and solid phase. The composition of the
first solid to appear at the temperature T  is represented by point Q. It will
contain a concentration Cs of solute in solid solution. The initial distribution
coefficient ko is thus Cs/Cl■ In general ko will depend on the concentration,
except for very dilute solutions.

Since the solid phase is poor in the solute, the concentration in the liquid
continually rises. The increment of impurity concentration in the body of the
liquid is represented by going from P to S  in figure 10. The concentration
at the growth interface also rises, from point Q to point R. The last droplet
of liquid solidifies at S' with concentration Cl/^o, where C l  is the initial con
centration.

The speed at which the molten zone travels through the ingot would be un
important, were diffusion within the liquid infinitely rapid, so that the concen
tration throughout the liquid zone were constant. Tiller et a l.53>1) have shown
that this assumption is not true in general, as the diffusion is normally so slow
as to cause inhomogeneities in the liquid. In other words, if the molten zone
moves too quickly through the liquid, the impurities will not be removed as
well as is possible, while if the molten zone moves too slowly the impurities
may diffuse back into the hot growth interface. The optimum melting velocity
must thus be determined experimentally for each metal 55’4). It can further be
shown, that the ratio of the length of the molten zone to the total length of
the ingot must be kept as small as possible.

The concentration of the solute is further diminished by repeating the zone
refining procedure after having removed the last part of the ingot, which con
tains most of the impurities. Montariol 55-4) has shown that for aluminium the
purification is hardly improved after the third passage, provided that the zone
travels at optimum speed.

Zone refining was originally done by heating the metal in a resistance furnace.
In such a furnace the energy is applied to the mould and not directly to the metal
ingot. The outside of the ingot is thus excessively heated, and the molten zone
is far from disk-shaped. The resistance furnace has therefore generally been
replaced by a high-frequency furnace. This apparatus generates the energy
directly in the metal, and it can provide regular disk-shaped molten zones,
making zone melting more effective than in a resistance furnace.

The two single crystals mentioned above were grown at the Centre d’Etudes
de Chimie Métallurgique at Vitry-sur-Seine, France, from aluminium that had
been zone-refined there. Pieces of aluminium purified by double electrolysis
were first thoroughly cleaned in order to remove the thin oxide film. This was
done with a mixture of 75% H3PO4,20 % H2SO4 and 5% HNO3, and then with
boiling distilled water. After that the pieces of aluminium were placed in a
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carefully degassed graphite mould which was put into a quartz tube. The
graphite mould is preferable to one of aluminium oxide, being less susceptible
to thermal fracture. The system was evacuated, and sometimes argon was
added. The various pieces of aluminium were then fused together in a high-
frequency furnace with a maximum power of 6 kW at a frequency of 600 kHz.
As the molten zone should be as short as possible, the nine windings of the
heating coil lay partly over one another, thin sheets of teflon being used as
insulation.

Zone melting was repeated several times, the metal being moved mechanically
through the coil at a speed of about 3-5 cm per hour. The anode current of
about 1 A had to be regulated, as the inductance of the heating coil changed
during the melting process.

The purity of zone-refined metal can be estimated from the residual resistance.
In the aluminium used for growing single crystals the ratio of the resistance at
liquid-hydrogen temperature to that at room temperature was (5 to 6). 10~4,
corresponding to about 8 p.p.m. impurities 55-5).

2.1.2. Growing single crystals

Figure 11 shows the dimensions of the mould used for growing single crystals.
It is made from Norton cement with a trace of aluminium oxide added to pre
vent silicon from contaminating the aluminium. It is baked 24 hours at 1200 °C.

Fig. 11. Norton-cement mould for growing aluminium single crystals.

An ingot of zone-refined aluminium is put into part “A” of the mould. An
oriented seed of the same purity as the ingot is put into “B”, partly covering the
ingot. They are then fused together, care being taken that only part of the seed
is melted. The whole ingot is then melted and the metal solidified at a rate of
about 1-8 cm per hour.

In general one gets a single crystal of the desired orientation in this way;
twins, however, are not impossible.

The specimens can best be shaped to the desired diameter with an electrolytic
saw, as this does not disturb the crystal structure even superficially. This saw
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is formed by a 0-05 mm silver wire through which an electric current flows and
which is surrounded by a 20% NaNC>3 solution, containing a small quantity
of HC1 to prevent hydrolysis. Only when the specimens have a diameter
exceeding about 2 cm careful hand sawing is necessary. The method of cutting
by electrical sparking was not yet sufficiently well known to be used when the
specimens mentioned above were prepared.

2.1.3. The crystal structure
The orientation of the specimen axis is most easily determined by the back-

reflection Laue method. This method does not require specimens of low absorp
tion and of small thickness, like the transmission method. The orientation of
the specimen axis with respect to the main crystallographic axes was read off
from a Greninger chart. For both single crystals the misorientation proved to
be 3°.

For the purpose of measurements with shear waves, the position of the
crystallographic axes in the end faces had to be determined too. This was done
by means of large-angle reflection of “white” X-rays *). The spots on the film
were analyzed by means of a Wulf net. Both methods have been described at
length by Cullity 56-3).

2.1.4. Making polycrystalline specimens
Cast aluminium always contains casting holes, even when cooled slowly and

in an inert atmosphere. When polycrystalline aluminium specimens are made
by gradual cooling, as in zone melting, one gets crystal grains which are some
times of the order of 1 mm, i.e. larger than the wavelength of sound used in the
experiments.

The only way to make suitable polycrystalline specimens has proved to be
the following. One starts with a piece of industrial aluminium of the desired
degree of purity. It usually contains casting holes. After removal of the thin
oxide film the metal is hot-forged, i.e. deformed by at least 30% in several
directions in turn, and subsequently annealed at 600 °C.

The polycrystalline specimen mentioned in chapter 3 was made in this way.

2.1.5. The coupling seal
A thin coupling film is necessary for transferring the mechanical vibrations

from the quartz transducer to the specimen. This film must be rather viscous
for transferring shear waves at room temperature. The ideal coupling liquid
would have an acoustic impedance which is the geometric mean of the acoustic

*) I wish to thank Ir J. A. Kloosterman, Instituut voor Metaalkunde van de Technische
Hogeschool, Delft, for his help in analyzing crystal orientations and for preparing a poly-
crystalline specimen.
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impedances of the quartz crystal and of the specimen. This is, however, by no
means necessary.

Several investigators have made use of the Dow Corning silicone oil with a
viscosity of 2,500,000 centistokes at 25 °C. A more handy fluid is “Nonaq”
stopcock grease, made by Fisher Scientific Comp., Fair Lawn (N.J.). It dissolves
in water and in alcohol, but not in other organic liquids. Because of its solubility
in water, a new coupling film must be made for each low-temperature experi
mental run, unless the specimen is kept in vacuum or in a dry atmosphere, for
instance in helium gas.

Nonaq is fairly fluid at room temperature, but it becomes stiff at about 150 °K.
Sometimes this transition causes cracking of the seal which makes measurements
below that temperature impossible. Very rapid cooling of the specimen from
room temperature to liquid-nitrogen temperature proves to be the best way to
avoid this effect 63>3). The seal is then kept intact and no damage occurs to it
when the specimen is cooled down further to liquid-helium temperatures. A
possible explanation for this is that Nonaq has a very large specific heat com
pared to that of the metal specimen and of the transducer.

Because of the phase transition of the coupling seal, measurements at room
temperature cannot be combined directly with measurements at low temper
atures.

2.2. The cryogenic equipment

2.2.1. Cooling down to 1 °K

The Dewar system consists of two double-walled glass vessels. The outer one
contains liquid air and the inner one liquid 4He. The inner Dewar vessel, which
has an internal diameter of 54 mm is connected to a three-stage Edwards booster
pump 9B3 by a short wide tube. The booster pump is backed by an Edwards
rotation pump 1SC450B which can also be connected to the cryostat directly.

Temperatures down to 1-3 °K are obtained by means of the rotation pump
only. Temperatures between T3 and 0-9 °K can be obtained by adjusting the
pumping speed of the booster pump. As the superconducting transition tem
perature of the aluminium specimens is T16 to 1T7 °K, part of the super
conducting region can be covered with the aid of the booster pump. The tem
perature can then be determined by reading the pressure over the 4He bath by
means of a MacLeod manometer. This method is not suitable for keeping the
temperature constant. It is therefore preferable to cool the 4He bath down to
1-3 °K and to adjust the temperature by controlling the 3He pressure. For tem
peratures below 0-9 °K the 4He bath is set at 0-9 °K with the booster pump.

2.2.2. The 3He cryostat

The two normal methods for cooling specimens to well below 1 °K are the
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adiabatic-demagnetization method and the 3He-evaporation method.
When one uses adiabatic demagnetization one converts the superconducting

aluminium into normal metal by applying a large magnetic field. Very pure
aluminium may take a very long time to become fully superconducting without
normally conducting regions after the magnetic field is switched off. This cooling
method is therefore highly unsuitable for use in investigations of the properties
of superconducting aluminium of a very high degree of purity.

A 3He cryostat is a convenient means of cooling the specimen to temperatures
between 0-4 and 0-5 °K, and keeping the temperature constant for one measure
ment. A number of 3He cryostats have been developed in various countries 61>4).
In some of them the 3He is recirculated because of a relatively large heat input.
Our 3He cryostat is fairly simple, as no recirculation is needed. About 0-5 cm3
of liquid 3He is sufficient for several runs taking at least two hours in all.

The pumping set-up is sketched in figure 12. The pumping speed of the Balzers
pump “Duo 1” , carefully made free of leaks to prevent loss of 3He, is adjusted
by means of the two valves 8 and 9, connected in parallel. One end of the oil
manometer 4 is connected to the 3He bath, and the other end to the high-vacuum
mercury diffusion pump, which also provides a pressure of the order of 10-6 mm
Hg in the space surrounding the liquid 3He.

5

Fig. 12. 3He line.
1 =  Balzers pump. 6 =  container valve.
2 =  3He container. 7 =  short-circuit valve.
3 =  to cryostat. 8 =  control valve.
4 =  oil manometer. 9 =  shunt valve.
5 =  to mercury diffusion pump. 10 =  cryostat valve.

The cold part of the equipment is shown in figure 13. The 3He vessel/, which
is surrounded by 4He gas, has an internal diameter approximately 2 mm larger
than that of the specimen a; this gives good thermal contact between the specimen
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Fig. 13. Cold part of the 3He cryostat.
a =  specimen.
b = transducer.
c =  spring-mounted electrode.
d =  lorrival spacer.
e =  lorrival ring.
ƒ  =  specimen container.
g =  cover.
h — thermistor.

j  = thermistor filament.
k = bead.
/ =  8He condenser tube.
m =  vacuum vessel.
n =  cover.
o =  pumping tube.
p =  coaxial lead.
q =  bead.

and the liquid 3He. The condenser tube I with a simple radiation shield may be
seen on the left, and on the right the tube o leading to the high-vacuum mercury
diffusion pump, with a radiation screen below it. The coaxial lead p  is carefully
soldered to the cover g with silver solder. When the specimen has been mounted,
the specimen container ƒ  and the high-vacuum vessel m are attached to their
cover by Wood’s metal. All other soldering is done with tin solder. The tubes
leading to the 3He vessel are made of stainless steel.

For practical reasons it is not possible to bring the thermistor into close
contact with the specimen. Mounting the thermistor on the bottom of the 3He
box does not cause a measurable error in determining the temperature, provided
the heat dissipation in the thermistor amounts to less than 2.10~10 W.

The thermal flux to the 3He bath and the specimen comes from three sources.
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First there is conduction through the stainless-steel condenser tube / and the
electrical connections, and to a slight extent through the constantan wires
leading to the thermistor. Supposing the temperature of the 4He bath to be
1-0 °K and that of the 3He liquid to be 0 °K, and making use of the heat-
conductivity data published by Squire 53>2), this thermal flux can be estimated
to be 3 fxW. The second kind of thermal flux is the radiative, both through the
vacuum space and through the stainless-steel tubes. This last contribution has
been reduced by radiation screens, and by spacers in the coaxial connections.
The thermal flux due to radiation cannot be estimated, but there is no evidence
that it is important. In the third place there is dissipation of electric energy both
in the thermistor and in the specimen. The thermal flux to the thermistor is
always considerably less than 1 fxW. The thermal flux to the specimen is strongly
dependent on the amplitude of the electronic signal. A large signal of say 100 V
p.t.p. and a duty cycle of 4 5 . 10-6 causes a thermal flux of the order of 3 mW.
It follows that all other sources of heat are negligible compared to the pulsed
oscillator. This has been confirmed experimentally. When it is necessary to use
a large electronic signal to excite the quartz transducer, the signal from the
pulsed oscillator is fed into the cryostat only for short periods in order to
prevent the specimen from warming up appreciably, or the repetition rate is
reduced.

2.2.3. Measuring the temperature
Temperatures between 1-2 and 0-55 °K are most easily measured by reading

the vapour pressure of the 3He on an oil manometer filled with “Octoil S” . In
order to be sure that the pressure read on the manometer really corresponds to
the temperature of the liquid 3He, one must shut the valves connecting the cryo
stat to the Balzers pump before measuring the temperature. When the electronic
signal to the quartz transducer is not too large, the pressure can be kept con
stant for at least one minute.

Data published by Roberts and Sydoriak 56-4) indicate that no correction
need be made for the thermomolecular-pressure effect down to 0-5 °K. But
below 0-55 °K the oil manometer is not sensitive enough to determine temper
atures with sufficient precision. Therefore the lowest temperatures are measured
by means of a Speer carbon resistor of 470 Q at room temperature. It is part of
a simple Wheatstone bridge, which is shown in figure 14. Zero voltage is
indicated on a highly sensitive Philips millivoltmeter GM 6020 having an
internal resistance of 1 MÖ.

According to Nicol and Soller 57-4) the resistance of the thermistor obeys
the relationship

T = A \ o g  R/( log R  -  B)2 (19)

down to 0-3 °K, A and B being constants that can be obtained by calibration.
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Fig. 14. Wheatstone bridge for measuring thermistor resistance.

The thermistor used was calibrated at temperatures above 0-55 °K during each
series of measurements.

The 1957 3He temperature scale 57’5) has been used throughout this thesis.
The Te2 3He scale which was recently proposed yields values of the temperature
which are slightly lower than those according to the 1957 3He scale. According
to the T«2 3He scale, the superconducting transition temperature of aluminium
is 6 millidegrees lower than that on the 1957 3He scale. At 1 °K the difference
is 7 millidegrees and at the lowest temperatures occurring during the measure
ments 8 millidegrees.

2.3. The electronic equipment

2.3.1. The block diagram

Figure 15 shows the block diagram of the electronic equipment used at

Transducer

Variable
delay

Variable
attenuatorgenerator

Trigger
generator

Wide-band
amplifier

Pulsed
oscillator Preamplifier

Standard-pulse
generator

Oscilloscope

Fig. IS. Block diagram of the electronic equipment.
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frequencies above 5 MHz. The Arenberg pulsed oscillator provides h.f. pulses
of about ]j.s duration and a maximum voltage of 300 V p.t.p. over 93 Q.
These are fed to the quartz transducer, which is 3f-cut for producing longitudinal
sound waves, and T-cut for producing transverse sound waves. This transducer
causes a small part of the available electrical energy to be converted into
mechanical vibrations of the same frequency, which are sent into the specimen
through the coupling seal. After reflection at the bottom these vibrations return
to the transducer, which reconverts a small part of the mechanical energy into
electrical energy. This signal is fed to an Arenberg selective preamplifier and
from there to a wide-band 90 db amplifier, in which the signal is also detected,
and ultimately to a Tektronix oscilloscope 541, where the successive reflections
are displayed as peaks of decreasing amplitude.

The oscilloscope is triggered by the same pulse as the pulsed oscillator,
provided by a Hewlett & Packard square-pulse generator 212A. The repetition
rate is 30 per second.

As the amplifying system cannot be supposed to be linear, except for the first
tube of the first amplifier, one has to make use of a standard signal of the same
frequency as that emitted by the pulsed oscillator. This standard signal is
modulated by a 40 V negative square pulse which comes from the square-pulse
generator with some delay with respect to the trigger pulse. It is fed to the second
stage of the preamplifier and also displayed upon the screen of the oscilloscope.
Its height is adjusted to that of one of the reflection peaks by means of a Rohde
& Schwarz unbalanced standard attenuator.

A single-transducer acoustical system would cause the main pulse to be fed
to the preamplifier together with the much smaller signal from the specimen.
The former would swamp the first stage of the amplifier, thus drowning the
useful signal; it must therefore be highly attenuated. This is done with the aid
of the circuit described in section 2.3.2.

As the Arenberg preamplifier cannot be used for 5 MHz, a special amplifying
system had to be used for that frequency. This amplifier was calibrated at that
frequency together with the oscilloscope, so that the peak heights could be
converted directly to attenuations.

At frequencies above 50 MHz, the emitting and receiving parts of the equip
ment are replaced by a Sperry ultrasonic attenuation comparator. This ap
paratus has the great advantage that it can be very simply operated, but the
disadvantage that the repetition rate is 100 Hz, and it is not possible to trigger
it externally at a lower rate *). This sometimes causes too much warming up
of the specimen. The Arenberg pulsed oscillator was therefore sometimes used
at frequencies above 50 MHz, but with the amplifying part of the Sperry pulse
comparator, which is “free-running” .

*) The newer type of the Sperry ultrasonic attenuation comparator can be triggered at any
rate between 10 Hz and 2 kHz.
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Alternating-current losses in the cables and in the walls of the cryostat are
strongly reduced at frequencies above 50 MHz by the use of line stretchers
combined with a stub tuner, manufactured by General Radio Corporation. At
each frequency one has to tune the electrical connections from the specimen
to the amplifier for minimum losses. A tuning set next to the specimen, like
that proposed by Kamm and Bohm 62-3) cannot be used because of the small
dimensions of the vessel containing the specimen.

2.3.2. Some details o f the electronic equipment

The main-pulse attenuator

This device passes the signal from the specimen with little loss, but attenuates
the main signal by about 60 db. It consists of a small ring of ferroxcube IVb,
through which are threaded three wires; two of them pass straight through, while
the third is wound three times round the ring, one end of this wire being earthed
via the brass housing of the ferroxcube ring.

i--------------------------------1

am plifier

Pulsed
oscillator

Fig. 16. Main-pulse attenuator.

The principle of the design is shown in figure 16. The main pulse from the
pulsed oscillator causes no current in the secondary winding because the con
tributions from the two primary “turns” — “wound” in opposite senses —
cancel out, but the signal from the transducer does reach the amplifier after
transformation. The ideal situation is that where the dummy is exactly identical
with the specimen. This is difficult to realize in practice, and is in fact not
necessary. It is sufficient to replace the dummy by a small variable capacitor
in parallel with a variable resistor.

The kind of ferroxcube has to be chosen so as to minimize the magnetic losses
for the frequency range desired. There is no magnetic saturation, owing to the
relatively small signals from the specimen.
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The standard-pulse generator

The simplest way to synchronize a standard-pulse generator with a given
pulse train is to have a gate connection, where a tube is normally cut off but
conducts or even amplifies a signal when a square pulse fed to one of its grids
opens the tube. A variation of this principle is shown in figure 17 *).

205V

2k 270
E8I0F \47k _L \360-2

Neg. pulse
40V

t:  1-10(isec
Fig. 17. Standard-pulse generator.

The cathode of the first E810F pentode is normally biased to +18 V, provided
by the EL81 pentode, and its gi to +12-5 V, so that this tube does not conduct.
When a 40-V negative pulse arrives at gi of the EL81, the h.f. signal fed to gi
of the first E810F can be amplified, while a negative pulse of nearly —80 V is
also produced at the anode. A differentiating network causes the second E810F
to be shut for a time which is very short compared to the pulse length. After that
very short time the h.f. pulse is amplified in the normal way.

The high-frequency anode resistance of the second E810F is chosen as 60 £i,
thus providing good matching with the Rohde & Schwarz attenuator which has
an input resistance of 60 £1.

The amplifier used for 5 MHz
The greater part of the amplifier is identical with that described by Van

Iersel 59>6) in his thesis. The preamplifier had originally been designed for a
central frequency of 7 MHz and a bandwidth of 8 MHz. This part of the ampli-

*) I wish to thank Mr. R. Hulstman for his help in constructing this apparatus.
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€ T°T ECH81

'EF184

Fig. 18. First stage of amplifier for 5 MHz.

fier was replaced by a single stage that could be used for a wide range of fre
quencies. This stage is shown in figure 18. The signal from the specimen is fed
to gi of the EF184 pentode, and the standard pulse can be fed to g3- The anode
voltage is applied to gi of the mixing tube ECH81.

The EF184 was preferred to the more conventional E180F, as the latter has
its gs connected to the static screen, whereas the EF184 has a separate static
screen, which we earthed.

The i.f. amplifier consists of two EF80 pentodes. The stages are inductance-
coupled to give an amplifier with a short recovery time. The signal is detected
by one half of an EB91; the power stage consists of an EL83. Full details of
the i.f. amplifier have been given by Van Iersel. The central frequency is 27 MHz.
The input signal is mixed in the ECH81 with a continuous signal from a Rohde
& Schwarz SMLM, generating a frequency 27 MHz higher than that of the
input signal.

Although this new version has a somewhat lower over-all gain than the
original amplifier, the signal-to-noise ratio is still very favourable.

2.4. Ultrasonic attenuation measurements in solids

2.4.1. General remarks

The attenuation is determined from the signal displayed upon the screen of
an oscilloscope, which is a series of peaks of decreasing amplitude, the distance
between two successive peaks corresponding to twice the length of the specimen.
The simplest case is that where the decay of the peaks is exactly exponential.
One can then read the attenuation directly by adjusting a calibrated exponential
curve to the peaks. When one wants to avoid using this calibrated curve, or
when the peaks do not decay exponentially, one can either read the difference
between the heights of the first or second peak and of a later peak, or only
read the height of one of the later peaks.

It will be shown in section 2.4.2 that a number of contributions to the atten-
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uation which are temperature-independent must be subtracted from the total
measured attenuation before one gets that part which is of interest to our work.
Since one thus in fact measures only differences in attenuation, it does not
matter whether one reads the difference in height between two peaks, say the
2nd and the 10th peak, or only the height of e.g. the 10th peak. Morse 59-3)
has shown experimentally that the latter method is even more precise than the
former. In general one chooses the last peak which is easily visible throughout
one experimental run.

The principle of the measurement will be clear from the description of the
measuring circuit given in section 2.3.1.

In some series the attenuation is so large that only one peak is visible upon
the screen. Measurements are then made on this peak. The visibility of this peak
at optimum signal-to-noise ratio of the amplifying system determines the highest
relative attenuation which is measurable.

2.4.2. Corrections

Several corrections have to be made in order to find the attenuations in which
we are interested.

The first correction is the apparent extra attenuation due to diffraction o f the
sound beam. Seki et al. 56-5) have calculated this effect, which only gives a small
contribution. They assume that the transducer vibrates uniformly and harmon
ically as a circular piston, and that the lateral boundaries of the specimen are
far enough from the sound beam to have a negligible effect. We are only
interested in those cases where the wavelength of the sound A is considerably
shorter than the radius of the source a. For these cases Seki et al. have cal
culated the average intensity of the sound waves as a function of the distance.
For a2/A >  2, which holds for all measurements described in this thesis, this
attenuation due to diffraction is to a good approximation proportional to the
distance, and amounts to about A /a2 db/cm. In many cases it is much smaller
than the attenuation we are interested in. For 25-MHz longitudinal sound waves
in aluminium, a2/A has been calculated to be 10 cm, so that the diffraction
attenuation is 0T db/cm.

Each reflection of the sound beam at the end faces causes another correction
to the measured attenuation 63<1). The ratio of the amplitude of the reflected
sound beam to that of the perpendicularly incident sound beam is given by

R '  =  P 1  (20)
pici +  P2C2

where pi and ci are the density and the sound velocity for the specimen and
p2  and C2 the same quantities for the adjacent medium. For an aluminium
specimen, one end face of which is covered by a layer of “Nonaq”, and the
other by liquid 3He, equation (20) gives R '>  99%  at the 3He end and
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R' & 85% at the transducer end. It is possible to determine by experiment the
exact contribution of this effect, but we did not need to do this.

Insufficiently parallel end faces of the specimen cause an apparent increase
in the attenuation, and moreover deviations from the exponential decay of the
successive peaks on the screen of the oscilloscope. When the angle between
the sound beam radiated perpendicularly from the transducer and the sound
beam which hits the transducer after reflection is given by 0 =  A/4a, the loss
in amplitude is 30 % 62-4). This effect is therefore largest for the highest fre
quencies. For 100-MHz longitudinal sound waves in aluminium this angle 8
corresponds to a deviation from the parallel of about 3 |x. As the ends of the
specimens were hand-lapped carefully flat and parallel to within 1 jx this effect
is certainly much less than the above-mentioned 30%, and can probably be
neglected.

The effect of a seal layer of non-uniform thickness, due to flexing o f the
transducer, is more complicated 56>6).

All the additional attenuations mentioned above are known to be tempera
ture-independent below 4-2 °K. Since one may assume that the attenuation
due to the electrons in the superconducting metal tends to zero when the
temperature is lowered far enough below the superconducting transition tem
perature, the correction for the temperature-independent attenuation can be
determined from the attenuation-temperature curve, as described in section
3.1.1. This dispenses with the need of calculating this correction theoretically,
which is particularly useful for shear waves, on which little theoretical work
has yet been done.
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3. ATTENUATION AS A FUNCTION OF TEMPERATURE IN THE
SUPERCONDUCTING STATE

3.1. Attenuation of longitudinal sound waves

3.1.1. Interpretation o f the measurements

The interpretation of the experimental results described in this section is based
on equation (18), derived in section 1.3.2:

a, 2
“  “  e M k T  +  i  *

(18)

where as is the absorption in the superconducting state, an the absorption in
the normal state, and 2A the energy gap as defined in section 1.3.1. With this
equation the value of the energy gap at T  =  0 can be estimated following the
method proposed by Morse et al. 59>5). First one has to eliminate that part of
the attenuation which is non-electronic in nature, to obtain the absorption due
to the electrons. As we have seen in section 2.4.2, the non-electronic contribu
tion ac does not depend on the temperature in the range we are interested in.
We cannot calculate this contribution accurately enough for our purposes, but
we can estimate it from the experimental data on the assumption implicit in
equation (18) that the electronic absorption tends to zero at T  — 0. This can
be done either by finding the value of the additive constant which gives the
best fit between the theoretical BCS curve of absorption against temperature
and the experimental points, particularly at low temperatures, or by plotting
log as against Tc/T  for different values of ac until the curve becomes most nearly
asymptotic. The former method has been preferred as being less elaborate and
apparently resulting in the same accuracy as the latter.

Using the values of the electronic absorption as, estimated in this way, we
now calculated the ratio a*/an; log (ag/an) was plotted against Tc/T1, and the
energy gap at zero temperature was determined from the slope of the asymp
tote to the curves at the lowest temperatures. This is shown in figure 19, for the
absorption of 36-MHz sound in the (100) single crystal.

The inaccuracy in determining the zero-temperature energy gap is 0-2 kTc,
for each separate experimental run.

3.1.2. The single crystals o f zone-refined aluminium
In two zone-refined aluminium single crystals of axis orientation (100) and

(110), respectively, attenuation of longitudinal sound waves along the main axis
was measured at different frequencies. An 3f-cut quartz crystal with main
resonance frequency of 5 MHz was used for producing and for detecting the
sound waves at all frequencies. The results for the (100) single crystal, corrected
for zero attenuation and normalized with respect to an, are plotted against the
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Fig. 19. (a8/an ) plotted on a logarithmic scale as a function of Te/T  for (100) single crystal
at 36 MHz. The slope of the asymptote to this curve leads to an energy gap of 3-5 kTe at
r  =  o.

normalized temperature in figures 20 to 23, for the frequencies 5 MHz, 15 MHz,
26 MHz and 36 MHz. The full curves show the theoretical absorption according
to Bardeen, Cooper and Schrieffer, with a zero-temperature energy gap of
3-5 kTc.

When the results of the measurements at 5 MHz, 15 MHz and 26 MHz for
the (110) single crystal are plotted in the same way, the graphs are identical with
those for the (100) single crystal. The results show a very good agreement with
the BCS theory, up to 0-8 Tc. There are, however, small deviations at higher
temperatures.

Fig. 20. Normalized absorption a,lan in (100) single crystal of zone-refined aluminium as a
function of T/Tc for v — 5 MHz. The full curve is the theoretical curve according to BCS.
Fig. 21. Normalized absorption in (100) single crystal for v — 15 MHz.
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Fig. 22. Normalized absorption in (100) single crystal for v =  26 MHz.
Fig. 23. Normalized absorption in (100) single crystal for v =  36 MHz.

The similarity of the graphs showing as/a n as a function of T/Tc for all
frequencies, is in agreement with a theoretical work by Tsuneto 61’3). He gave
a general treatment of ultrasonic absorption in superconductors on the basis
of the BCS theory, and showed that for longitudinal sound waves in super
conductors equation (18) may be expected to hold for all experimentally available
values of the product of sound wave number and mean free path of the conduc
tion electrons.

For the (100) single crystal the values of an are T20 db/cm at 5 MHz,
4-9 db/cm at 15 MHz, 9-2 db/cm at 26 MHz and 13-1 db/cm at 36 MHz.
For the (110) single crystal the values of an are 0-92 db/cm at 5 MHz, 5 05 db/cm
at 15 MHz and 1T0 db/cm at 26 MHz *). For both specimens the measured
value of the transition temperature was (IT 66 ±  0-002) °K, according to the
Te2 3He temperature scale.

The energy gap at zero temperature was determined by the method described
in section 3.1.1. In both single crystals its value was (3-5 ±  0-1) kTc, independ
ent of frequency. This value differs from that reported by Masuda and Red-
field 62'6), who measured nuclear spin-lattice relaxation times in superconduct
ing aluminium, and estimated 2A(0) to be 3-2 kTc.

The energy gap proved to be equal for both orientations of the crystal axes.
It may be mentioned that both Morse et al. 59>5) and Bezuglyi et al. 61>2) found
an orientation-dependent energy gap in their measurements on tin single crystals.
Tin, however, has a tetragonal crystal structure.

The very small deviations from the BCS theory at temperatures above 0-8 Te

*) Some of the measurements described in 62>5) were repeated after modification of the
Arenberg amplifier to make it more sensitive.
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must now be discussed. Similar, but somewhat larger deviations were observed
with tin and indium; see figure 7. A possible explanation for the deviations is
that the dependence of A on the temperature as proposed in the BCS theory
needs a correction. We therefore tried another expression, suggested by
Buckingham 56'7) 57>1), for A as a function of temperature, valid for tempera
tures near Tc only, namely

2A =  3-2 kTc [1 -  (T/Tc)]i . (21)

Combining this expression with equation (18) gives reasonably good agreement
with the measurements on aluminium at T  >  0-9 Tc, but too low values at
lower temperatures.

We also tried another expression for the dependence of the absorption on
the energy gap, using the energy gap proposed in the BCS theory. Pokrovskii61 >5)
has given a theoretical treatment of ultrasonic absorption in superconductors
for different directions of the sound waves with respect to the crystal axes. At
higher temperatures as/an is stated to depend on A in the same way as in the
BCS theory. Pokrovskii found the following expression for temperatures well
below Tc:

“ s- -  f r f T c  e ~ ^ k T . (22)
an

This formula yields much too low values for as; it gives no agreement at all
with the experimental results.

Finally, because of the resemblance between equations (18) and (22) we tried
combining them to give

a, 2 l/T/Tc
an e^IkT i (23)

Again with the same energy gap as in the BCS theory, equation (23) shows
better agreement with the measurements for the higher temperatures than
equation (18). But below 0-7 Tc the experimental values are 20 to 25% higher
than the values of at/an according to equation (23).

The deviations above 0-9 Tc can possibly be explained by assuming that the
longitudinal sound waves have small shear components, as mentioned at the
end of section 1.3.3.

3.1.3. The impure single crystal

Measurements were also performed on a single crystal containing about
100 p.p.m. of impurities *) and with the following resistance ratio: .R4.24 °jg/
R q °c  =  4-37 . 10-3. The main axis had the orientation (115). The results for an

*) I wish to thank Dr. C. J. Berghout, of Philips’ Research Laboratories, for preparing the
single crystal.
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over a large frequency range are given in table I, while in figure 24 the values
of a„ are plotted against the square of the frequency. We see that an is pro
portional to the square of the frequency from 5-1 to 116 MHz, which is due
to the relatively high concentration of impurities.

At all frequencies the same variation of aa/an with T/Tc was found as for
the very pure single crystals. The energy gap at zero temperature was determined
as described in section 3.1.1. Its value was 3'4 to 3*5 kTc, independent of fre
quency.

TABLE I

Normal-state absorption as a function of frequency for longitudinal sound
waves in an impure single crystal of aluminium

specimen 29-57 mm 15-84 mm
length

v (MHz) 51 151 25-1 35-3 45-4 56 66 76 86 96 96 106 116

an (db/cm) 003 0-24 0-66 1-25 2-07 300 4-41 5-56 705 8-89 8-99 10-75 12-98

14 (MHi■)
y2' w

Fig. 24. an in impure single crystal as a function of i»2 for longitudinal sound waves.

3.1.4. The impure polycrystalline specimen

Similar measurements were performed on a polycrystalline specimen con
taining about 100 p.p.m. of impurities. The results for a„ are presented in
table II. In figure 25 the values of a„ are plotted against the square of the
frequency, again showing a linear relationship throughout the whole frequency
range. The graphs showing as/an as a function of T/Tc for longitudinal sound
waves are identical with those of the other specimens at all frequencies. The
energy gap at zero temperature was again found to be 3-4 to 3-5 kTc for all
frequencies.
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TABLE II

Normal-state absorption as a function of frequency for longitudinal sound
waves in a polycrystalline specimen of aluminium, specimen length 18-25 mm

v (MHz) 5-0 15-0 25-0 35-2 45-2 55-3 66 76
an (db/cm) 0-03 0-20 0-74 1-49 2-34 3-66 4-96 6-87

Fig. 25. aB in polycrystalline specimen as a function of v2 for longitudinal sound waves.

3.2. Attenuation of shear sound waves

3.2.1. The single crystals o f zone-refined aluminium 63>4)

General remarks

Shear-wave measurements were performed on the same single crystals as
those mentioned in section 3.1.2. We used y-cut quartz crystals with a main
resonance frequency of 2-5 and 5 MHz for transmitting and for detecting the
sound waves. The positions of their T-axes had been determined by means of
X-ray reflection. The quartz crystals were oriented by hand with their Z-axes
parallel to each of the main crystallographic axes of the specimens in turn, with
an accuracy of about 2°.

The high purity of the specimens causes a rather large shear-wave attenuation.
As the attenuation was even larger than for longitudinal waves, measurements
at higher frequencies than 15 MHz were not performed above the transition
temperature, except in the (110) single crystal for a sound polarization parallel
to the cubic (100) axis. This led to an attenuation which was somewhat smaller
than for the other shear-wave measurements, frequency for frequency. The
attenuation for a sound polarization of (100) was measured in the (110) single
crystal at a large number of frequencies varying from 2-5 to 25-2 MHz. All
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other measurements were performed only at 5 MHz and at 15 MHz, namely
in the (110) single crystal with sound-wave polarization parallel to the cubic
(101) axis and to the (111) axis, and in the (100) single crystal with polarization
parallel to the (110) axis, to the (010) axis and with the polarization direction
chosen at random.

TABLE III

The total normal-state absorption at =  ai +  a2, the absorption ai according
to the BCS theory and the “additional” absorption a2

single
crystal

polariza
tion of

soundwaves

frequency
(MHz)

normal-state absorption
(db/cm)

at ai a 2

5 3-33 1-96 1-37
(010) 15 14-4 4-5 9-9

(100)
5 3-37 2-02 1-35

(110) 15 14-4 4-3 101

5 4-02 2-73 1-29

(111) 15 11-6 6-4 5-2

5 4-58 3-80 0-78

(101) 15 18-3 11-7 6 ‘6

2-5 0-59 0-56 003

(110) 5-1 2-58 1-96 0-62
7-5 5-0 2-8 2-1

(100) 12-5 91 4-1 50
151 10-4 4-5 5-9
17-5 12-3 4-9 7-4
22-4 15-5 5-7 9-8
25-2 18-3 6-4 11-9

The values of the normal-state absorption at as obtained from the measure
ments and corrected for non-electronic attenuation are given in table III. All
the measured values had an accuracy of about 5 %, except for those at 2-5 MHz,
where the accuracy was somewhat less.

Measurements on the superconducting state showed that the attenuation
dropped very sharply just below the transition temperature Tc and then decreas
ed much more gradually as the temperature was lowered still further. Some of
the absorption-temperature curves for the (100) single crystal are shown in
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0-7 OS

Fig. 26. Absorption in the (110) single crystal as a function of temperature for v =  MHz,
sound polarization parallel to (100) axis.

0 4  OS

Fig. 27. Absorption in the (110) single crystal as a function of temperature for v = 5 MHz,
sound polarization parallel to (100) axis.

figures 26 to 29. It will be seen that the form of these curves is highly frequency-
dependent.

Measurements on the (100) single crystal show that the curves representing
the absorption as a function of the temperature are identical for both sound
wave polarizations, within the limits of the experimental accuracy. Measure
ments at 5 MHz and at 15 MHz were performed at different sound-wave
polarizations. Only the results of those measurements where the direction of
the polarization was accurately determined are given in table III.

For the (110) single crystal there is an obvious anisotropy for different
polarization directions. As this anisotropy was also observed at room temper-
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* -  t Ck)
Fig. 28. Absorption in the (110) single crystal as a function of temperature for v =  15 MHz,
sound polarization parallel to (100) axis.

Fig. 29. Absorption in the (110) single crystal as a function of temperature for v — 25 MHz,
sound polarization parallel to (100) axis.

ature, where the mean free path of the conduction electrons is relatively small,
it is apparently connected with the lattice structure. In the (100) single crystal
this kind of anisotropy was not observed at room temperature.

The normal state

The attenuation in the (110) single crystal with sound polarization parallel
to the (100) axis was measured at eight different frequencies, namely at 2-5, 5-1,
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Fig. 30. Total normal-state absorption in the (110) single crystal as a function of frequency,
sound polarization parallel to (100) axis. The full curve gives the absorption as a function
of frequency according to the theory of Pippard.

7-5, 12-5, 15*1, 17-5, 22-4 and 25-2 MHz. The total normal-state absorption
values at are given in table III and plotted in figure 30.

As we have already mentioned in section 1.2.3, Pippard’s theory of ultrasonic
absorption in metals at low temperatures 55-1) gives the following expression
for the shear-wave absorption:

(24)
pC(T g g

where K  is a frequency-independent factor depending on the electrical and
mechanical properties of the metal, N  is the number of free electrons per unit
volume, m* the effective electronic mass, p the density of the metal, ct the trans
verse sound velocity, and r  the relaxation time of the electrons. The frequency-
dependent part of the absorption is contained in the factor (1 — g)/g, where

g =  —L  p )2 + ia rc ta n  (?7) _  i j , (9)
S 2(ql)2 { ql w )

Here q represents the ultrasonic wave number, which is equal to 2tt divided by
the wavelength of the sound, and 7 is the mean free path of the conduction
electrons.

Pippard distinguishes between two frequency ranges, above and below
the frequency for which ql =  1. Equations (24) and (9) show that at is propor
tional to the square of the frequency for ql <  1, and to the frequency itself
for ql >  1. It is clear from figure 30 that the measurements from 2-5 to
25-2 MHz were performed in the range where ql >  1.

The frequency at which ql =  1 can be calculated as follows with the aid of
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equations (24) and (9). First we determine from figure 30 the ratio of the
absorptions at two different frequencies where we may assume ql >  1, i.e. on
the linear portion of the graph. We then determine by trial and error the values
of ql for which the ratio of the values of (1 — g)/g calculated from equation (9)
is equal to the ratio of the absorptions 63>5). Since ql is proportional to the
frequency, when we have chosen a value of ql at the one frequency, the value
at the other frequency is fixed. We can now determine the frequency at which
ql =  1 by extrapolation. In this way one finds that qï =  1 at 2-2 MHz. The
measured value of ct was 3-3 . 105 cm sec-1; whence q =  42 cm-1 at 2-2 MHz.
This yields 7 =  0 024 cm. One can then calculate g and (1 — g)/g as functions
of the frequency. Using the values of at given in figure 27 one then finds from
equation (24) that K =  0-48 cm-1.

Assuming three conduction electrons per ion and an effective electronic mass
of 1-6 times the real mass of the electron 55>6), one can estimate from (24) that
the relaxation time r  is 6-1 . 10-10 sec. This leads to the Fermi velocity
vF =  ?/t =  0-39 . 108 cm sec-1. The Fermi velocity can be evaluated in a more
straightforward way from the slope of the straight part of the absorption-
frequency curve, which is equal to (&Nm*VF)/3pct2. This leads to the same
value for vf, within the limits of the experimental accuracy.

One can also calculate the Fermi velocity theoretically. For an isotropic metal
with a spherical Fermi surface the ground-state Fermi energy is

This equation leads to a Fermi energy of 11-7 . 10-12 erg, and hence a Fermi
velocity of 1-27 . 108 cm sec-1.

A part of the discrepancy between the experimental and theoretical values
may be attributed to the fact that the attenuation in the (110) single crystal with
sound polarization parallel to the (100) axis is considerably lower than the other
measured attenuations.

According to Pippard’s theory the limiting value of the ratio of transverse-
wave absorption to longitudinal-wave absorption at low temperatures, for
q~l> 1, is

As we measured c\ =  6-3 . 105 cm sec-1 and ct =  3-3 . 10® cm sec-1, we may
expect the limiting value of at/ai to be 2-9s.

In the (100) single crystal the value of this ratio is 2-8 at 5 MHz and 2-9 at
15 MHz. The agreement with the theory is thus very good. For the (110) single
crystal the discrepancy between theory and experiment is much larger: the values
of the ratio obtained from attenuation measurements are partly higher and

h2 /3 N \2'3
(4)

8 [ci\2
(ID
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partly lower than the theoretical value. This is apparently connected with
anisotropy for the attenuation of transverse sound waves.

The superconducting state

The explanation of the sudden decrease in the absorption just below the
transition temperature has been indicated in section 1.3.3, where it was shown
that the curves for shear waves can be split up into a part obeying the BCS
theory for electron-phonon interaction and which will be called ai, and an
additional part <12 which is cancelled out rapidly in a temperature range between
Tc and about 0-98 Tc owing to screening of magnetic fields by the supercurrents.

1------

Fig. 31. Absorption ai in the (110) single crystal as a function of reduced temperature for
v =  15 MHz, sound polarization parallel to (100) axis. The broken curve is the theoretical
curve according to BCS normalized with respect to aj for the normal state.

0-975 0980 0985 0-990 0995 1-000 1-005

Fig. 32. Absorption 0 2  in the (110) single crystal as a function of reduced temperature for
v — 15 MHz, sound polarization parallel to (100) axis. This curve is obtained by subtracting
the absorption of figure 31 from the total absorption, given in figure 28.



—  48 —

The variation of «12 with the temperature, determined as described below, is
shown in figure 32 for 15 MHz sound in the (110) single crystal, with the sound
wave polarization parallel to the (100) axis, while figure 31 shows ai for the
same case. The theoretical BCS curve for a zero-temperature energy gap of
3-5 kTc is given by the broken curve. The curves of figures 31 and 32 are derived
from figure 28.

There are two possible methods for splitting up the absorption curves into ai
and 0 2 . The first one is the method of “trial and error” , in which one determines
the additive constant which gives the best fit between the BCS curve (ai) and
the experimental points over the whole temperature range below Tc, as described
in section 3.1.1. The remaining, part of the electronic absorption curve is then 0 2 .

This method of “trial and error” is not accurate. We therefore tried a second
method, proposed by Morse and Claiborne 62-1). This method is based on the
following assumption. Let the experimental value of the absorption just below
the steep drop, normalized with respect to the total measured normal-state
absorption, be p  times the absorption as given by the BCS theory, also nor
malized with respect to the total measured normal-state absorption. Then
p is equal to ai/(ai +  “2) at the transition temperature. Morse and Claiborne
assumed p thus defined to be identical with Pippard’s g of equation (9).

Figure 34 shows the measured shear-wave absorption between 0-95 and
0-99 Tc normalized with respect to the total normal-state absorption for the
(110) single crystal with a sound-polarization direction of (100), for all fre
quencies at which measurements were performed. The broken curve gives the
theoretical normalized absorption according to the BCS theory, with a zero-
temperature energy gap of 3-5 kTc. For each frequency the ratio of the measured

Fig. 33. Pippard’s g as a function of wave number of sound times mean free path of electrons.
The circles represent values of Morse and Claiborne’s p  for the (110) single crystal, sound
polarization parallel to (100) axis, on the assumption that ql =  1 for v =  2-2 MHz. The
triangles correspond to the same absorption values, but with ql =  1 for v =  4-4 MHz.
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Fig. 34. Normalized absorption in the (110) single crystal as a function of temperature near
Tc at eight frequencies, sound polarization parallel to (100) axis. The broken curve gives the
theoretical absorption according to BCS.

normalized absorption to the normalized absorption according to the BCS
theory was calculated at three different temperatures just below Tc, namely at
0-955, 0-965 and 0-975 Tc. At these temperatures az is already zero, as may be
seen from figure 32. The mean value of the three values of p for each frequency
at which measurements were performed is plotted as circles in figure 33, as a
function of ql. The value of 7 is 0-024 cm, as determined above, so that ql =  1
at v =  2-2 MHz.

The full line in figure 33 gives g as a function of ql, according to equation (9).
It is clear that the agreement with Pippard’s theoretical curve for g is rather
poor, nor can agreement be much improved by a different choice of 7. This is
illustrated by the triangles, which represent the same values of p plotted against
ql for 7 =  0-012 cm, corresponding to ql =  1 at v =  4-4 MHz. It is clear that
Morse and Claiborne’s assumption that p = g is not really justified. Neverthe
less, for all experimental runs the absorption ai as determined by the method
of Morse and Claiborne agrees quite accurately with the theoretical absorption
according to the BCS theory over the whole temperature range. This is illustrated
in figure 31.

The zero-temperature energy gap was determined from the experimental
values of a\ as described in section 3.1.1, and was found to be 3-4 to 3-5 times
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kTc. There was no evidence for any anisotropy of the zero-temperature energy
gap.

3.2.2. The impure single crystal
Measurements on shear-wave attenuation as a function of the temperature

were performed at different frequencies on the single crystal mentioned in
section 3.1.3. The polarization direction of the sound waves was parallel to the
(100) cubic axis to within 2 to 3 degrees. The values of an for different frequencies
and for two different specimen lengths are given in table IV. They are also
plotted in figure 35 against the square of the frequency.

TABLE IV

Normal-state absorption as a function of frequency for shear waves in an
impure single crystal of aluminium

specimen
length

10-88 mm15-84 mm

v (MHz)
an (db/cm)

Fig. 35. a„ in impure single crystal as a function of v2 for shear waves.

At frequencies up to 45 MHz the graphs of normalized shear-wave absorption
against normalized temperature satisfy the classical BCS theory. At frequencies
of 55, 64 and 74 MHz the absorption decreased more at the transition tempera
ture than according to the BCS theory. Keeping to the notation of ai and <X2

used in section 3.2.1, we found that at 55 MHz a2 is approximately 5 % of the
total normal-state absorption and at 64 and 74 MHz approximately 10%. In
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Fig. 36. Normalized absorption ae/an in impure single crystal as a function of normalized
temperature for shear waves, v =  25 MHz. The full curve is the theoretical BCS curve, on
the assumption that ag =  0.

Fig. 37. Normalized absorption a ,/a„  in impure single crystal as a function of normalized
temperature for shear waves, v =  64 MHz. The full curve is the theoretical BCS curve, on
the assumption that ag — 0-10 a».

figure 36 the normalized absorption for 25-MHz shear waves is plotted against
the normalized temperature. The full line is the theoretical BCS curve (<*2 =  0).
Figure 37 shows the normalized absorption plotted against normalized tem
perature for 64 MHz. The full line here is the theoretical BCS curve for
ai =  0-90 aB.

From the measurements described in this section it is obvious that for suffi
ciently small values of ql the steep drop in the absorption curve disappears, and
the absorption as a function of the temperature obeys the classical BCS theory
in the whole temperature range below Tc 63>6). This agrees with the results by
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Levy et al. 62’7) on impure niobium and vanadium, where the conduction
electrons have a small mean free path.

3.3. Dependence on the magnetic field

The influence of small magnetic fields on the absorption of ultrasound was
also studied. In order to avoid hysteresis effects, each experimental run at a
small magnetic field had to be started at the low-temperature side. The curves
indicate that initially the absorption is the same as in the absence of a field, but
above a certain temperature the absorption increases rapidly, until a tempera
ture is reached where the metal is apparently in the normal state. The fact that
the absorption does not change abruptly at the transition point must be attributed
to a gradual penetration of the magnetic flux into the specimen with increasing
temperature. At temperatures above the transition point the absorption remains
constant. The absorption for the normal-state metal is not exactly equal to the
absorption in the absence of a magnetic field; there is a small field dependence.

Figures 38 and 39 show the results of some experimental runs for the pure
single crystals at magnetic fields of 24, 41, 68 and 83 Oe, parallel to the sound
beam. Measurements were performed with 25-MHz longitudinal sound waves.
The relationship between the magnetic field and the temperature at the transition
point was found to be H oc 1 — (T/Tc)2 within the limits of our accuracy.
This proportionality would follow from the classical two-fluid model. The
BCS theory predicts the critical fields to be proportional to 1 — l-Q7(T/Tc)2
well below Tc. The experimental results do not agree well with this prediction.

Supposing the graphs of critical field against (T/Tc)2 to remain straight lines

---------Zero field
— o—  24 Oe
—a — 41 Oe
—«s—  68 Oe
- v -  83 Oe

Fig. 38. Absorption of 25-MHz longitudinal sound waves in (100) single crystal at constant
magnetic fields.
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-------Zero fie ld
— o— 24 Oe
—o —  41 Oe
-A — 6 8  Oe
—v —  83 Oe

Fig. 39. Absorption of 25-MHz longitudinal sound waves in (110) single crystal at constant
magnetic fields.

Critical field s for longitudinal
sound in (100) single crystal

Critical fields for longitudinal
sound in (110) single crystal

Critical fields a fte r
Goodman and Mendoza

J__I__I__L

Fig. 40. Critical field as a function of temperature.

below 0-4 °K, one can extrapolate the critical field to zero temperature. This is
shown in figure 40, for longitudinal-sound absorption in the pure single crystals.
This extrapolation yields a zero-temperature critical field of (123 ±  5) Oe for
the (100) single crystal and (114 ±  5) Oe for the (110) single crystal. These
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Zero field
24- Oe
41 Oe

Fig. 41. Absorption of 15-MHz shear sound waves in (100) single crystal, sound polarization
parallel to (110) axis, at constant magnetic fields.

------ Zero field
—o— 24 0e
- 0 - 4 1  Oe
—et— 67 Oe
—v— 83 Oe

Fig. 42. Absorption of 76-MHz longitudinal sound waves in impure single crystal at constant
magnetic fields.
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values are decidedly higher than 106 Oe as found by Goodman and Mendoza S1>1).
This difference must evidently be ascribed to the solder used for attaching the
specimen container to its cover, see figure 13. As this solder was superconducting
at liquid-helium temperatures, it should lead to a too high value for the meas
ured critical field. If the critical fields are measured, however, with external
fields transverse to the sound beam, as described in section 4.2.3, the results
are in excellent agreement with Goodman and Mendoza.

Similar results were obtained with shear waves. Figure 41 shows the results
at external-field values of 24 Oe and 41 Oe for 15-MHz shear waves in the
(100) single crystal, with sound polarization parallel to the cubic (110) axis.
The external field was again parallel to the propagation direction of the sound
waves.

Figure 42 shows the results for 76-MHz longitudinal sound waves in the
impure single crystal, for different external fields parallel to the sound-propa
gation direction. These measurements lead to a zero-temperature critical field
of (114 ±  5) Oe.
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4. ULTRASONIC MEASUREMENTS DURING PHASE TRANSITIONS
IN ALUMINIUM

4.1. Some considerations on phase transitions

4.1.1. The intermediate state

The magnetic-flux pattern in and around a body placed in an external magnetic
field is determined by the shape of the body as well as by the magnetic per
meability ia.

In the case of ellipsoids the influence of the shape is readily described by
means of the demagnetization factor D. The value of this demagnetization factor
is between zero and unity. For an infinitely long cylinder parallel to the external
field this value is zero, for an infinitely long cylinder perpendicular to the external
field \  and for a sphere

A superconducting specimen in an external magnetic field everywhere around
the specimen smaller than the critical field He, results in a flux pattern which is
exclusively governed by the shape of the specimen, /x being zero. The magnetic
induction B =  /x0 (Hi +  M) is thus also zero everywhere inside the specimen,
whence the magnetization M  is equal to minus the “internal field Hi. Since
Hi = He — DM, where He is the undistorted external field, Hi =  He/( 1 — D).
As the external field increases, magnetic flux will therefore start to penetrate
into the specimen at He =  Hc ( l -  D). Penetration starts where the lines of
force are densest. When He increases further to some value below the critical
field, it will not be possible for the specimen to remain entirely in the super
conducting state, nor will the whole specimen become normally conducting.
A superconducting core surrounded by a normally conducting shell is easily
shown 60-5) to be unstable as follows. At the interface between the supercon
ducting phase and the normal phase the magnetic field must be equal to Hc,
and the interface lines of force are tangential to the surface. If the interface were
convex with respect to the normal phase, the magnetic equipotential surfaces
would diverge from the boundary into the normal region, and the field would
decrease in the normal region to values below Hc, leading to a contradiction.
If, on the other hand, the interface were concave with respect to the normal
phase, then the lines of force would be bent at the interface, leading locally to
an infinite magnetic field. But such an infinite magnetic field would lead to the
rapid conversion of superconducting into normally conducting material.

It has been shown both experimentally and theoretically that a stable
structure is that where the entire specimen is subdivided into normal regions
with Hi =  Hc and B =  juHc, alternating with superconducting regions having
B =  0. A specimen having such a structure is said to be in the intermediate
state.
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Some investigators have provided information about the structure of the
intermediate state, and about shifting of the phase boundaries when the external
magnetic field is suddenly altered. Schawlow 56-8) measured domain spacing
in several intermediate-state tin and vanadium specimens. He used a photo
graphic method, the superconducting domains at the surface being indicated
by means of niobium powder. Similar investigations were performed at the same
time by Balashova and Sharvin 57>6) on tin spheres, using nickel powder for
indicating the normal regions. For external fields well below Hc they observed
a detailed structure with corrugated superconducting laminae. This phenom
enon of corrugation was observed more extensively by Faber 58>4) on thin
aluminium plates perpendicular to the external magnetic field. Faber also
derived an expression for the interphase surface energy in terms of the thickness
of the plate and the distance between domains. Applying this expression to his
measurements he estimated that the surface energy for aluminium is seven times
that of tin 55>7).

Faber showed by his experiments on thin aluminium plates in the temperature
range between 0-85 Tc and Tc that the corrugations mentioned above exist only
at He/Hc <  0-6. As in our experiments the external magnetic field did not
penetrate into the aluminium specimen at HeIHc <  0-6, those corrugations
were not expected to occur in our specimen.

Faber also studied the flux displacement due to the shifting of the phase
boundaries during the transition from the normal to the superconducting state
and vice versa in tin rods, using a ballistic method 5 2 d )  5 3 ,3)  54 ,2 ) This method
is also useful for studying the quantity of displaced flux for the transition to
and from the intermediate state and phase-propagation velocities. Hardly any
information can be obtained, however, about the geometry of the structure.

It is rather uncertain whether phase transitions can be investigated correctly
in aluminium by powder photography when the external fields are of the order
of the critical field, as this critical field is rather low: the niobium powder which
indicates the superconducting regions may well lag behind when the external
field is altered 58>4).

One may conclude that none of the methods mentioned above is adequate
for providing a complete three-dimensional picture of the structure of the inter
mediate state and of the shifting of phase boundaries. The photographic methods
give a picture of the structure at the surface of the specimen, whereas the ballistic
method gives information about phase-transition times. Time-dependent ultra
sonic attenuation measurements provide the same information about phase-
transition times as the ballistic method, combined with some information about
the structure of the specimen. Up till now the only paper on phase-transition
measurements by using ultrasonic attenuation was that by Chopra and Hut
chison 59'1). They performed measurements on aluminium containing 60 p.p.m.
of impurities at magnetic fields larger than the critical field, leading to values
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of the phase-transition time for different values of He/Hc. It has been proved
that the times of transition from the superconducting to the normal phase are
proportional to the electrical conductivity of the normal phase. These transition
times measured by Chopra and Hutchison were therefore much shorter than
for our very pure specimen of about the same dimensions. These were of the
order of one second. The transitions from the normal to the superconducting
phase took somewhat longer, namely about 10 sec.

The measurements mentioned above together with theoretical considerations
led to the following simplified model of the intermediate state for a specimen
with a positive interphase surface energy, for He >  0-6 Hc. The supercon
ducting regions run as laminae or cylinders through a normally conducting
bulk, and they are oriented parallel to the external magnetic field. In the super
conducting regions B — 0 and in the normally conducting part of the metal
B  =  nHc and the internal field is equal to Hc. In a plane perpendicular to the
external field the equilibrium ratio of the sum of the superconducting areas to
the total area is equal to (Hc — Hè)jDHc, as is readily verified; D is the de
magnetization factor defined above. The spacing of the superconducting regions
is essentially determined by the interphase surface energy. Pure aluminium for
instance, with a large surface energy, has a relatively large spacing between the
superconducting regions. For pure tin the surface energy, and also the spacing,
are much less. The surface energy has been proved to diminish on addition of
impurities. The fact that the spacing is also diminished by impurities has not
yet been established by experiment.

4.1.2. Supercooling
The superconducting transition temperatures mentioned throughout this

thesis are defined for the transition from the superconducting to the normal state,
i.e. for increasing temperature. Similarly the critical fields are defined for in
creasing external magnetic fields. When a specimen is cooled at a small magnetic
field through the transition point, the normal phase sometimes persists down to
a temperature below the transition temperature for that external field. The same
thing sometimes occurs when an external magnetic field larger than the critical
field decreases continuously, at a constant temperature below the zero-field
transition temperature. This phenomenon is called supercooling, both for de
creasing temperature and for decreasing magnetic field. The lowest external
field at which superconductivity appears when the external field is lowered at
a fixed temperature is called the “nucleating field” Hi. The degree of super
cooling is commonly defined as

<p =  1 -  {HijHe)2 . (25)

This phenomenon may be compared with the supercooling of a pure liquid
below the freezing point. Both situations are analogous in so far as both in the
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supercooled liquid and in the normal-state metal a metastable state apparently
exists, below the superconducting transition temperature and below the critical
field. This metastable state is replaced by a more highly ordered stable state by
“phase-transition nuclei” .

Nucleation of the superconducting phase has been assumed by Faber to
originate at local flaws. The dimensions of the nuclei must initially be smaller
than the largest possible range of interaction of a pair of superconducting
electrons, the “coherence range” . In order to induce propagation of the super
conducting phase, a nucleus must however extend over a domain whose radius
exceeds the coherence range 55-7) 55-8). When the external magnetic field is
lowered from a value greater than the critical field to a value less than the critical
field, or when the temperature is lowered from above the transition temperature
to below the transition temperature in the presence of a small magnetic field,
growth from the nuclei is opposed by the fact that the energy gain due to order
ing at the nuclei is initially less than the loss of magnetization energy by the
expulsion of magnetic flux. At a small enough field or at a low enough tempera
ture the nucleus starts to extend in space. The growth rate has not yet been given
in a formula, but one can predict that the phase propagation will depend on the
interphase surface energy A in the same way as for propagation of the super
conducting phase along the surface of a pure normally-conducting
body 54-2) 62-8), namely vcc (A — A)~2, where A is the penetration depth. The
interphase surface energy for pure aluminium is very large compared to that
for other pure metals, e.g. tin, thus accounting for the low phase-propagation
velocities in pure aluminium compared to the results for tin 54-2). Our experi
mental results for the phase-propagation velocities in pure aluminium will be
discussed in section 4.2.

Faber 52-1) proposed the following tentative formula for the degree of super
cooling

<p =  A/z +  n, (26)

where A is the interphase surface energy divided by ^H c2/2, z  is related to the
dimensions of the nucleus perpendicular to the magnetic field, and n depends
on the demagnetization factor of the nucleus. Supercooling experiments by
Faber on tin, indium and aluminium s2-1) 57>7) and by Cochran, Mapother and
Mould on aluminium 56-9) 58.8) have shown that the degree of supercooling
for aluminium exceeds by far the degree of supercooling for the two other
metals. According to equation (26) these results are consistent with the fact
that the interphase surface energy for aluminium is much larger than for both
other metals.

Some supercooling occurred during the measurements described in sections
3.1 and 3.2. It proved to be necessary to start each experimental run on the low-
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temperature side, because when the temperature of the aluminium specimens
was lowered through the transition point a non-reproducible discontinuity in
the attenuation was observed. The apparent transition temperature for de
creasing temperatures proved to be about 0-01 °K lower than that found when
the specimen was heated through the transition point. At temperatures more
than 0 02 °K below the transition temperature the attenuation-temperature
curve was reversible.

This effect is assumed to be caused by supercooling due to the magnetic field
of the earth and to small stray fields from outside the equipment. It occurred
both with the pure and with the less pure specimens. At the small external fields
used in the experiments described in section 3.3, the supercooling effect was
much more significant.

4.1.3. Kinetics o f phase transitions
A simplified description will now be given of the transition from the super

conducting phase to the normal phase for a cylindrical specimen under the
influence of an external magnetic field. This description, based upon the eddy-
current theory, was first given by Pippard 50’1). He assumed that when an
external field He =  Hc (1 +  p) parallel to the axis of the specimen is switched
on, a normally conducting sheet will very rapidly be formed at the surface,
after which the superconducting core will shrink symmetrically and eventually
vanish at the central axis. Pippard assumed in his calculations that p is small
compared to unity. The internal field can therefore be put equal to Hc through
out the normal region without appreciable error. This assumption simplifies
the calculations.

Let the radius of the specimen be s and the radius of the superconducting
core r0, then the magnetic flux contained in the normal material between the
superconducting core and a cylinder of radius r is given by O =  n (r2 — r02) pHc.
As the core contracts, the induced electric field at radius r is given by
E{f) =  — (d$/di)l2irr. This electric field causes an eddy current whose density
at radius r is given by J(r) =  oE{r). Now Maxwell’s equations state that
curl H  =  J. Transforming to cylindrical coordinates and integrating we find

\Jd r  =  -pH c, whence r0 In (s/r0) (dr0/dt) =  —plpo. By integrating this ex

pression with respect to time, and using the boundary condition ro =  s at
/ =  0, one obtains

1 — (ro/s) 2 {1 — 2 In (ro/s)} =  tfr, (27)

where r  =  pos2/4p is the total time required for the destruction of the super
conductivity.

When p  is not very small compared to unity, i.e. when He is not very close
to Hc, the field in the normal region may no longer be put equal to Hc. A
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slightly more complicated expression for the total transition time then arises.
Faber 53>3) has found this expression to be

pos2 (1 -  p)
4 p

(28)

The ratio of the volume fraction of normal material to the total volume of
the specimen as a function of time is easily found on the basis of the eddy-
current theory. This ratio is plotted against f/r in figure 43. The curve in figure 43
is valid for all temperatures between zero and Tc.

Fig. 43. Fraction of normally conducting material in a cylinder as a function of time after
an external magnetic field parallel to the axis has been switched on divided by the total
transition time, according to Pippard’s eddy-current theory.

Measurements by Chopra and Hutchison 59>1) of phase transition times in
an aluminium specimen of diameter 20 mm, containing 60 p.p.m. of impurities,
show qualitatively the field dependence suggested by equation (28). For thicker
polycrystalline specimens the transition is rather irregular, which is ascribed by
the authors to a movement of different domains at different rates.

The situation becomes more complicated when the intermediate state is
established due to an external field smaller than Hc. Observations by means of
powder photography on aluminium by Faber 58-4) have indicated that for all
values of He up to Hc, all normal regions are interconnected. Faber has sug
gested that the magnetic flux penetrates into the specimen through narrow slots
at a rate which is approximately inversely proportional to the electrical conduc
tivity. The interconnection of the normally conducting regions is asserted
to be responsible for flux leakage at the transition from the normal to the
superconducting phase 55-7).
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A formal description will now be given of ultrasonic absorption in an inter
mediate-state specimen at an external magnetic field He parallel to the propa
gation direction of the sound waves. This description will be used in section 4.2
for the interpretation of the experimental results on the kinetics of phase
transitions. We assume the specimen to have plane-parallel end faces, and the
sound waves to be propagated parallel to the axis of the specimen. The external
magnetic field is thus also parallel to the axis of the specimen. We shall also
assume the phase boundaries to be exactly parallel to the external magnetic
field He and therefore parallel to the axis of the specimen. The transducer is
supposed to have the same diameter as the specimen, and we neglect spreading
of the sound beam as well as effects at the boundaries of the specimen. Further
more, all the corrections described in section 2.4.2 are neglected, since they are
the same for the normal and the superconducting phase.

Let a cross-section of this specimen contain a cm2 of normal metal and b cm2
of superconducting metal. An expression will now be derived for the total
absorption at of sound waves parallel to the external magnetic field. We saw
in chapter 1 that the attenuation a is a measure of the decrease in stress ampli
tude with distance, the stress amplitude at a distance x  being given by

We note that a is given in nepers/cm in this section, and not in decibels/cm as
for the experimental results.

We now introduce the sound intensity ƒ per cm2. This quantity is proportional
to | o*|2, and thus to e~2ax. The total amount of transmitted energy is propor
tional to cte~2anX +  be~2a,x. We now define the total absorption at by equating
this sum with (a +  b) e~2akX. Substituting x  =  1 in this equation gives

| o*| =  ooe ax. ( 1)

g —2“ » - f -
a +  ba +  b

(29)

whence
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Putting “«) == S, we have

( b , . ,
a t  =  “«— i  In 58 -1-----—  (1 — 8)
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l b  a \
=  a , - i ln — - + S — -  . (30)

\u  b ci b j

The attenuation for the intermediate state, normalized with respect to
o-n — as, is plotted in figure 44 as a function of the fraction of normally con
ducting material, for three values of 8, namely 0-05, 0-10 and 0-20.

He parallel, <J = M 5
Hg ** , 5 ~ 0*1
He » , 5 —0'2
He transverse, A very small

Fig. 44. Attenuation as a function of fraction of normally conducting material.

We shall suppose the specimen to be first in the normal state at T  <  Tc at
an external magnetic field He >  Hc parallel to the sound beam and we shall
give a working model of what happens when this magnetic field is switched
off suddenly. We assume that superconducting nuclei originate at different sites,
and grow to filaments through the specimen parallel to the external magnetic
field in a negligibly short time 50>1). Those filaments grow transversely into the
normal metal at a much lower rate. We assume further that the diameters of
these superconducting regions increase proportionally to the time. Their volumes
are proportional to the square of the diameters, and therefore proportional to
the square of the time t, t =  0 being taken as the time when the filaments start
to grow perpendicular to the magnetic field. We shall suppose as <c a„. This
holds for high enough frequencies, when the temperature is not very close
to Tc. In our experiments with magnetic fields parallel to the sound beam it
was found that <xn — as is of the order of 1 neper/cm. Therefore 8 is substantially
smaller than unity, and a* can be written as a function of time:
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a* — a* =  Ci — loge t — Cz8/t2 +  . . . , (31)

where ci and c% are time-independent factors.
A linear relation has therefore to be expected between the attenuation and

the logarithm of time, except for very low values of t.
When the specimen is in the intermediate state under the influence of an

external magnetic field He smaller than Hc, superconducting regions already
exist. When the external magnetic field is switched off, these regions are
assumed to grow in agreement with equation (31), but with a shift of the time
scale.

This process is modified just before the superconducting regions touch one
another; one must expect a* to diminish more slowly from this time on. So
far, no theoretical study has been made of this last stage of the transition to the
completely superconducting state. The above conclusions also cease to apply
when the second term between brackets in equation (31) is not much smaller
than the first term. For our pure specimen this is expected to occur at much
lower frequencies than those used in our experiments.

Equation (29) enables us to evaluate a* as a function of b, when an and a*
are known, and inversely, b as a function of a* when the latter quantity is known
from the experiments. This will be used for interpreting phase-transition measur
ements with magnetic fields parallel to the sound beam.

Equation (29) does not hold for transverse magnetic fields (magnetic fields
perpendicular to the sound-propagation direction). When the wavelength of the
sound is much smaller than the diameters of the superconducting regions, it
follows that the intermediate-state absorption for transverse magnetic fields is

This equation is represented by the straight line in figure 44. Equation (32) will
become somewhat more complicated when the wavelength of the sound is of
the same order of magnitude as the diameters of the superconducting regions,
as happened in part of the measurements described in section 4.2.3. Although
for this transition from the normal to the superconducting state the relation
b oc t2 still holds, the relationship between the attenuation and the time is
more complicated than for parallel magnetic fields, because of the frequency
dependence.

a b
a + b (32)

whence

=  — -—r (“» — as).a + b (33)

All phase transitions are assumed to be isothermal. If phase transitions are
adiabatic instead of isothermal, the transition from the superconducting to the



—  65 —

normal state may be expected to result in a local drop in temperature. The
condition for the phase transitions to be isothermal was derived by Pippard 50>1)
on the basis of the following considerations. As mentioned above, Pippard
assumes the superconducting region to be a single core of gradually decreasing
radius. The depth of the phase boundary t seconds from the beginning of the
transition from the superconducting state to the normal state, can be shown to
be proportional to the skin depth for electromagnetic waves of circular fre
quency to =  t~l . The proportionality factor is p (=  He/Hc — 1) times a numerical
factor of order unity whose magnitude depends on the shape of the specimen
only. It is now useful to define the depth of penetration of the heat wave pro
duced by the phase transition in terms of a skin depth in complete analogy to
the skin depth of electromagnetic waves.

For electromagnetic waves the skin depth is easily found from Maxwell’s
equations 62'9) to be 8g — flfpaa), where p. is the magnetic permeability, a the
electrical conductivity and co the angular frequency. Propagation of heat waves
through a solid of specific heat C and thermal conductivity k is described by
the differential equation V2T — (C/k) (bT/dt). From this differential equation
the expression for the skin depth of heat waves can be found in a way similar
to that for electromagnetic waves to be 8* =  y2k/<oC. The condition given by
Pippard for isothermal phase transitions is that the skin depth of the heat wave
at a given frequency should be much greater than the skin depth for an electro
magnetic wave of the same frequency in the normal material. This condition
leads to the expression

Taking typical values of a, k and C for pure normally conducting aluminium,
wefind(/L«7K/C)* to be between 102 and 103, so that condition (34) is satisfied.
The temperature of a pure aluminium specimen will therefore be uniform during
the phase transformation.

The question remains, whether the thermal contact between the liquid 3He
and the aluminium specimen is so good that no temperature difference arises.
Fairbank and Lee 57>8) have demonstrated the existence of a Kapitza resistance
for 3He. The value of this Kapitza resistance is of the order of 0-013/T2 degrees
m2 watt -1.

The energy difference between the normal phase and the superconducting
phase for our aluminium specimen was estimated to be 2-5 . 10~5 J at 1-05 °K,
10-3 . 10~5 J at 0-90 °K and 28 . 10~5 J at 0-63 °K, assuming the volume of
the specimen to be 10 cm3. Supposing 4 cm2 of the aluminium to be in direct
contact with 3He liquid, and furthermore supposing that the superconducting
phase grows in proportion with time for one minute, the temperature rise of

(34)
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the specimen at the transition from the normal to the superconducting phase
was estimated for the three temperatures at which measurements have been
performed. At 1-05 °K the increment is 0-012 millidegrees, at 0-90 °K 0-069
millidegrees and at 0-63 °K 0-39 millidegrees. Those increments may safely be
neglected.

In these calculations the existence of the brass specimen holder was not taken
into account. When the thermal contact between the aluminium and the specimen
holder and the Kapitza resistance between the 3He and the specimen holder are
considered, the influence of the Kapitza resistance becomes even less than
estimated above.

4.2. The experiments
4.2.1. The experimental method

The measurements described below were carried out on the zone-refined
single crystal with orientation (100). The ultrasonic attenuation in the crystal
was measured at regular intervals of 6 seconds after the switching on of the
external magnetic field. Sometimes larger intervals were used, when the attenua
tion did not change rapidly. The experimental run was continued till the attenua
tion did not change appreciably. The field was then switched off and a second
series of measurements made. The magnetic fields used for the experiments had
values of between 0-6 and T4 Hc.

The experiments were performed in order to obtain information about the
velocities at which phase boundaries are propagated during the transition from
the superconducting state to the intermediate state and to the normal state and
vice versa. It was also intended to study the structure of the intermediate state,
especially the dimensions of the superconducting regions with respect to the
wavelength of the sound. Sound waves of different wavelengths were therefore
used, and measurements were performed with external magnetic fields both
parallel and perpendicular to the sound-propagation direction. Information
about the influence of the interphase surface energy on the structure of the
intermediate state could be obtained by performing some of the measurements
at three different temperatures, namely at 0-63, 0-90 and T05 °K.

The electronic equipment was the same as described in chapter 2. An A"-cut
quartz crystal with a main resonance frequency of 5 MHz was used for generat
ing longitudinal sound waves, and a T-cut crystal with the same main resonance
frequency for generating shear waves.

A brass solenoid was used for producing the magnetic fields parallel to the
sound-propagation direction, and a Helmholtz coil for producing the fields per
pendicular to this direction. Both magnets were carefully calibrated with a
Rawson rotating-coil gauss meter, type 7298. The solenoid had previously been
calibrated by measuring critical fields in an indium specimen at different tern-
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peratures between 1 °K and Tc 54>3). For that solenoid the results of the two
calibrations and of the theoretical calculations were in excellent agreement with
one another. The calibration constants were 42 Oe/A for the solenoid and 43 Oe/A
for the Helmholtz coil. A d.c. voltage of 24 V was applied to the magnets,
variable resistors being used to adjust the magnetic fields to the desired values.

A clockwork-operated bell produced a signal every six or twelve seconds.
Each time the bell rang the ultrasonic attenuation was measured by adjusting
the height of the standard signal to that of one of the peaks on the screen of the
oscilloscope by means of a Rohde & Schwarz unbalanced standard attenuator.
That part of the attenuation which was independent of the temperature and of
the magnetic field was eliminated by performing a series of measurements of
attenuation as a function of the temperature at zero external field. The procedure
for eliminating that part of the attenuation has been explained in section 3.1.3.

4.2.2. Phase transitions with parallel external fields

TABLE V
Phase-transition measurements with parallel external fields

serial
number

temperature
(°K)

sound
waves

frequency
(MHz)

Hc
parallel

(Oe)

7 0-90 transv. 15-1 50±

8 0-63 transv. 15-1 87±

9 105 transv. 15-1 24±

16 0-63 long. 260 87i

Table V shows a number of sets of measurements that were performed with
external magnetic fields He parallel to the sound-propagation direction. The
ultrasonic attenuation was measured as a function of time in order to study
phase transitions from the superconducting state to the intermediate state and
to the normal state and vice versa. The values of the critical fields were obtained
from the measurements described in section 3.3. Corrections have to be made
for the values of these critical fields as well as for the other parallel external
fields He of this section, because of the influence of the superconducting solder,
mentioned at the end of chapter 3. The measured field strengths have to be
multiplied by about 0-86 in order to obtain the effective field strengths. This cor
rection, however, does not influence the value of p =  (He—Hc)/Hc very strongly.

Figure 45 shows the results of the measurements with longitudinal sound
waves of 26 0 MHz, for studying phase transitions from the superconducting
state to the intermediate state and to the normal state, at 0-63 °K (series 16).
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Fig. 45. Absorption of 26-0-MHz longitudinal sound waves at 0'63 °K as a function of time
after parallel magnetic fields have been switched on.

Similar sets of measurements were performed with 15-1 -MHz shear waves, at
three different temperatures, 0-63, 0-90 and 1 *05 °K. The results of these meas
urements are similar to those when longitudinal sound waves of 26-0 MHz
are used; there is no evidence that the shape of the attenuation-time curve at
a fixed value of HeIHc depends on the kind of sound waves or on the temperature.
The results will now be discussed.

(a). He =  0 —► He > He

The measurements on transitions from the superconducting state to the
normal state show that the time needed for obtaining normal-state attenuation
decreases with increasing magnetic field. This is in qualitative agreement with
the eddy-current theory by Pippard. A quantitative analysis of the results
requires a definition of the phase-transition time r. This time r  is defined as the
interval between zero time and the moment when the attenuation attains a
constant value; see figure 45. It is assumed that the whole transition from the
superconducting to the normal state takes place during this interval. According
to equation (28) given by Faber the time r  should be proportional to (1 +  p)/p,
where p  is defined by He =  Hc (1 +  p)- In order to check this relation the
transition time r  was determined for all experimental runs belonging to series 7,
8,9 and 16, where the external fields exceeded the critical field. These values of r
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Fig. 46. Total time of transition from the superconducting state to the normal state as a
function of (1 +  p)lp with parallel magnetic fields.

are plotted against (1 +  p)/p in figure 46, which gives some evidence for a
linear relation between r  and (1 +  p)jp. The slope of this graph is apparently
not dependent on the temperature.

There is some scattering in the measured values plotted in figure 46. The first
reason for this scattering is the inaccuracy of determining the transition times
from the measurements. The second reason is the inaccuracy in determining the
values of the critical fields. This causes deviations from the linear relation for
fields very near the critical field, where (1 +  p)/p  is very large. It should also be
mentioned that the description given by Pippard and Faber based upon the
eddy-current theory is asserted to hold for cylindrical specimens, whereas the
specimen used in the actual experiments was not completely cylindrical. Still,
equation (28) may be expected to hold to a good approximation for our specimen.

Using equation (28), the resistivity of the specimen was estimated from
figure 46. The slope of the graph is 4-6 sec. Assuming the area of an end face
of the specimen to be 3 cm2, we found the electrical conductivity <7 to be
1-5 . 1011 £2-1m-1, so that the specific resistivity is equal to 7 . 10~12 Qm. As
the specific resistivity of the specimen was not determined at liquid-helium
temperatures, it is impossible to check this result, but it is certainly of the right
order of magnitude.

The volume fraction of normal material a/(a +  b) in the sound beam was
now calculated from the attenuation values by using equation (29). This led to
one value of a/(a +  b) for each measured value of the attenuation a*. The
values of alia +  b) thus determined are plotted iq figure 47 as a function of
time for the 26-0-MHz longitudinal sound waves at 0-63 °K.

Each curve in figure 47 starts rising much more slowly than predicted by the
eddy-current theory. This is not surprising, as the diameter of the transducer
is smaller than the dimensions of the end faces of the specimen. These results
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lead to the conclusion that after switching on a magnetic field He >  Hc, the
normal material is initially mainly concentrated at the periphery of the specimen,
where the sound beam does not penetrate. A curve like that of figure 43, re
presenting the volume fraction of normally conducting material as a function
of time according to Pippard, is to be expected only in cylindrical specimens
where the transducer has the same dimensions as the end faces of the specimen.

o 0  Oe 49  Oe
64 „
66 »
70-5  ..

•  0  Oe 73 Oe $ 0  Oe
♦  0 tf
* 0  „
+ 0 tt
H 0  f f

■as Oe
■ 92-5 „
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106 »
117-5 «

78  . .
82 n

Fig. 47. Fraction of normally conducting material in the sound beam as a function of time
for the measurements of figure 44.

Fig. 48. Final fraction of normally-conducting material in the sound beam for the intermediate
state as a function of external field divided by critical field for the measurements of figure 44,
at H„ <  Hc.
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Ob). He =  O s»  He < H C

Figure 45 shows that the transition from the superconducting state to the
intermediate state proceeds rather slowly. The final values of a/(a +  b) in the
sound beam for these transitions to the intermediate state can be read off from
figure 47.

It was shown in section 4.1.1 that these final values may be expected to be
equal to 1 — (Hc — He)IDHc. The experimental final values of a/(a +  b) are
plotted in figure 48 against HeIHc. The broken line through the experimental
points leads to D =  0-5 for the specimen, for the external magnetic field
parallel to the sound-propagation direction. It should be remarked here, how
ever, that the accuracy of this result is uncertain, because the transducer only
covers the middle of the end face of the specimen. Another reason why the
value of D is not accurate is that the solder used for the 3He cryostat was super
conducting during the experiments. This should lead to an additional deform
ation of the lines of force around the specimen.

(c). He > Hc —> He =  0 and He < Hc s -  He =  0

Figure 49 shows the results of the measurements with longitudinal sound
waves of 26 0 MHz, for studying phase transitions from the normal state and
from the intermediate state to the superconducting state at 0-63 °K (series 16).
Similar results were obtained for series 7, 8 and 9. There is again no evidence
that the shape of an attenuation-time curve at a fixed value of HeIHc depends

Fig. 49. Absorption of 26-0-MHz longitudinal sound waves at 0-63 °K as a function of time
after parallel magnetic fields have been switched off.
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Fig. 50. The results of figure 48 for the first minute, on a logarithmic time scale.

on the kind of sound waves or on the temperature. All curves tend asymp
totically to the attenuation of the superconducting state; it is remarkable, how
ever, that this value was never reached, even not twenty minutes after the field
had been switched off.

In figure 50 the results for series 16 for the first minute are plotted on a
logarithmic time scale, leading to straight lines. Now we showed in section 4.1.3
that the fraction of superconducting material b/(a  +  b) should be proportional
to the square of the time, and that therefore a linear relation should exist between
the attenuation and the logarithm of the time, when the value of the latter is
not too low. The experimental results lead indeed to this relation for the first
minute, but the attenuation decreases more slowly after this first minute. These
results provide confirmatory evidence for the working model given in section
4.1.3. In order to obtain a more accurate analysis of those phase transitions it
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would seem to be necessary to perform experiments where the sound beam
covers the whole specimen.

4.2.3. Phase transitions with transverse external fields

TABLE VI
Phase-transition measurements with transverse external fields

serial
number

temper
ature
(°K)

sound waves
orienta

tion
H e

fre
quen

cy
(MHz)

H c

par
allel
(Oe)

H c
trans
verse
(Oe)

10 0-90 transv. {010} {001} 15-1 50* 43*

11 0-63 transv. {010} {001} 151 87* 75

12 105 transv. {010} {001} 151 24* 20*

13 0-63 transv. {010} {010} 151 87* 75

14 0-63 transv. {010} {010} 5 87* 75

15 0-63 long. {100} {010} 260 87* 75

17*) 0-63 long. {100} {010} 15-2 87* 75

Table VI shows the phase-transition measurements performed at magnetic
fields perpendicular to the sound-propagation direction, which we shall refer
to as transverse magnetic fields. In series 10 to 12 the external fields were per
pendicular to the polarization direction of the sound waves, and in series 13
and 14 they were parallel to the polarization direction.

Figure 51 shows the results for transitions from the superconducting state to
the intermediate state and to the normal state for series 15 of table VI. The
measurements were performed at 0-63 °K with 260-MHz longitudinal sound
waves. Figure 52 shows those results for series 12 of table VI, for the measure
ments at 1-05 °K with 15-1-MHz shear sound waves. There are some obvious
differences between those two figures and figure 45, which we shall now discuss.

(a). He =  0 —> He > He

Each curve representing a transition from the superconducting to the normal
state starts much more steeply with a transverse than with a parallel external
magnetic field, for a given value of He/Hc. This is in agreement with the model
based upon the eddy-current theory, as discussed above. According to that

*) For series 17 no measurements of transitions from the superconducting to the normal
state and vice versa were performed.
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Fig. 51. Absorption of 26-0-MHz longitudinal sound waves at 0-63 °K as a function of time
after transverse magnetic fields have been switched on.

model it is to be expected that initially, after switching on an external magnetic
field He >  Hc, a great deal of the normal material is concentrated near the
boundaries running parallel to the external magnetic field. Therefore with
transverse external fields a substantial part of the normal material is initially
found near the end faces of the specimen, and contributes to the attenuation,
whereas for parallel external fields the greater part of the normal material is
initially found in that part of the specimen that is not covered by the sound
beam. The difference in measured critical fields for parallel and for transverse
external fields has already been explained as being caused by the superconduct
ing solder used for the 3He cryostat. The values of the critical fields measured
with transverse external fields proved to be in excellent agreement with the
critical-field measurements by Goodman and Mendoza.

For the measurements with transverse external magnetic fields the times of
transition from the superconducting phase to the normal phase were again
defined as the interval between zero time and the moment when the attenuation
attains a constant value. These transition times were determined for series 10
to 15, and were compared with each other for the same values of HelHc. It was
shown in section 4.2.2 that with parallel external fields there was no evidence
that the transition times depend on the temperature. This is not true with
transverse external fields. The transition times proved to be shortest at the lowest
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Fig. 52. Absorption of 151-MHz shear sound waves at 1-05 °K as a function of time after
transverse magnetic fields have been switched on.

temperatures, at comparable values of HeIHc, The transition times at 0-90 °K
and at 1-05 °K were about 25% longer than those for 0-63 °K, for the same
ratios of He/Hc. Comparison of the results of series 13 and 14 did not show
any evidence that the transition times depend on the sound wavelength.

The temperature dependence of the transition times can be ascribed qualita
tively to the temperature dependence of the interphase surface energy. At
0-63 °K this energy is lower than at the higher temperatures. This causes a
closer spacing of the superconducting regions in the intermediate state for
0-63 °K, and therefore smaller superconducting regions, i.e. a larger ratio of
the wavelength to the dimensions of the superconducting regions. One may
expect that the transition times would be found to depend on the wavelength
of the sound, if a larger frequency range were covered.

In the model for the intermediate state as described above, scattering of the
sound waves at the interphase boundaries has not been taken into account.
This scattering was estimated to be negligibly small compared to the total
attenuation, which is not surprising as it is a second-order effect.

The time of transition from the superconducting phase to the normal
phase has been determined as a function of p', where p‘ is defined by
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He — Hc (I +  p') for transverse magnetic fields. This field dependence of the
transition time is given in figure 53, for series 10 to 15. The straight line
drawn through the experimental points of figure 53 has the same slope as
the straight line in figure 46 for parallel magnetic fields. The results for
shear waves, however, must be treated with some caution, since the ex
perimental points of figure 53 refer to various temperatures and sound
wavelengths, and show a considerable spread. It must be pointed out, more
over, that the model of a cylindrical specimen with its axis parallel to the
external magnetic field He, as used by Pippard in his eddy-current theory,
does not really apply to our results with transverse external fields.

The transition times were found to vary slightly with the orientation of the
external magnetic field with respect to the sound-propagation direction. This
variation was only of the order of 2 %, which equals the error in reading the
values of the magnetic fields.

o Series 10

10 12 14- 16 18 20 22 24 26

Fig. 53. Total time of transition from the superconducting state to the normal state as a
function of (1 +  p')!p'\ p' is defined with reference to the transverse external fields.

(1b). He =  0 - + H e < H c
The curves representing the attenuation as a function of time after switch

ing on an external magnetic field are different in shape for parallel external
fields and for transverse external fields, especially for the transitions
He —  0 —> He <  0-9 Hc- This is evident when figures 45 and 51 are compared
with each other. With transverse external fields there is an almost flat “plateau”
between 10 and 50 sec for the lowest fields.
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The plateau was found at transverse external fields smaller than 0-9 Hc for all
series 10 to 15. There are, however, small differences in the shape of the plateau
at comparable values of HeIHc for the different series. Comparison of series 10,
11 and 12 shows clearly that the plateau was shortest at the lowest temperatures.
The length of the plateau also appears to depend somewhat on the wavelength.
For series 14, that is for 5-MHz shear waves, it is somewhat shorter than for
the 15-MHz shear waves of series 13. For series 15 this plateau has about the
same size as for series 13, always for the same values of HeIHc. For series 13
and 15 the frequency was different, but the difference in wavelength was only
10%, owing to the different sound velocities for longitudinal waves and for
shear waves. It appears therefore that the wavelength has more effect on the
size of the plateau than the frequency of the sound waves. For series 17 the
plateau is shorter than for series 15, and slightly longer than for series 14, again
for the same values of HeIHc.

The existence of these plateaux and their dependence on the temperature and
on the sound wavelength may be explained as follows. At the beginning of the
plateau the specimen will have almost its final proportion of normal-state
material. The superconducting part of the specimen at that moment can be
thought of as consisting of cylinders — large compared to the wavelength —
in a normally conducting bulk. This is still an unstable situation. The super
conducting regions are then further subdivided until at the end of the plateau
the diameter of the superconducting regions is of the order of the sound wave
length. When the superconducting regions are further split up into smaller
cylinders, so that their diameters become smaller than the sound wavelength,
they will cause a higher value of the sound attenuation. For external magnetic
fields parallel to the sound-propagation direction, on the other hand, the
attenuation is only dependent on the fraction of superconducting metal, and
not on the dimensions of the superconducting regions.

The foregoing also explains why at the largest sound wavelength, i.e. at the
lowest frequency, for a given kind of sound waves, the attenuation starts to
rise from the plateau more rapidly than at smaller wavelengths. Differences at
different temperatures must again be attributed to differences in interphase
surface energy. This energy decreases with decreasing temperature, and there
fore at 0-63 °K the superconducting cylinders have smaller diameters than at
higher temperatures. This means that the situation where the sound wavelength
exceeds these diameters, and a* increases accordingly, occurs more rapidly at
0-63 °K than at the higher temperatures, giving rise to a shorter plateau.

(c). He >  He —>■ He — 0 and He < Hc ->  He =  0

Figure 54 shows the results for transitions from the normal state and from
the intermediate state to the superconducting state, again for series 15. The
striking difference between these results and those of the measurements with
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Fig. 54. Absorption of 26-0-MHz longitudinal sound waves at 0-63 °K as a function of time
after transverse magnetic fields have been switched off1.

parallel external fields is that here the attenuation value for the superconducting
state is already attained about four minutes after switching the magnetic field
off. No evidence could be found for a dependence of this time on the tempera
ture or on the frequency, as no essential difference appeared between the results
of each of the series 10 to 15.

The measurements at transverse external magnetic fields lead to the con
clusion that within four minutes after switching off the magnetic field only
normal regions remain whose dimensions perpendicular to the sound-propa
gation direction are much smaller than the wavelength of the sound. These
normal regions are assumed to be undetected by the sound waves, so that the
attenuation will correspond to the superconducting state, even though a part
of the specimen is still normally conducting. With parallel external magnetic
fields, on the other hand, the attenuation remains dependent on the fraction
of normal material, and independent of the dimensions of the normal regions.
The attenuation will only be equal to as when no normal fraction is left. Our
measurements with parallel external fields indicate that the normal fraction
continues to exist for much longer than four minutes, since the attenuation did
not attain the value for the superconducting state even after twenty minutes.

4.2.4. Measurements on less pure aluminium

The considerations of section 4.1 suggest that it would be interesting to per
form ultrasonic measurements during phase transitions in aluminium specimens
with different amounts of impurities. One could determine the transition times
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from the superconducting state to the normal state as a function of the impurity
of the specimen, and measurements in a larger frequency range similar to the
measurements described in sections 4.2.2 and 4.2.3 would lead to knowledge
of the dimensions of the superconducting regions and their spacing when the
specimen is in the intermediate state.

We have found all transition times for specimens containing about 50 p.p.m.
and 100 p.p.m. of impurities to be much shorter than the transition times for
the zone-refined aluminium specimen. They were even so short that it was
impossible to perform accurate ultrasonic measurements during the phase tran
sitions with the experimental method described in section 4.2.1. Another ex
perimental arrangement is therefore under construction for performing ultra
sonic measurements during phase transitions lasting between 10 sec and 100
100 msec.
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SAMENVATTING

In dit proefschrift wordt de absorptie van ultrageluid in supergeleidend
aluminium behandeld. De resultaten van de metingen met longitudinale geluids
golven zijn voor preparaten van verschillende zuiverheid in overeenstemming
met de theorie van Bardeen, Cooper en Schrieffer. Uit extrapolatie volgt dat
de energiespleet bij temperatuur nul 3-5 kTc is.

De absorptie van transversale geluidsgolven kan worden gesplitst in twee
gedeelten, nl. één gedeelte dat aan de BCS-theorie voldoet, en één gedeelte,
dat onder het sprongpunt voor de supergeleiding zeer snel afneemt, en bij
0-02 °K onder het sprongpunt verdwenen is. Dit tweede gedeelte van de ab
sorptie is tevens verwaarloosbaar klein wanneer het produkt van golfgetal van
het geluid en gemiddelde vrije weglengte van de elektronen veel kleiner is dan
één. Dit wordt aangetoond met metingen bij een aantal frekwenties aan pre
paraten van verschillende zuiverheid. In twee eenkristallen van zonegesmolten
aluminium zijn metingen uitgevoerd bij verschillende polarisatierichtingen van
het geluid. De grootte van de absorptie hangt wel enigszins van de polarisatie-
richting af, de energiespleet echter niet.

Met behulp van ultrageluid zijn in een eenkristal van zeer zuiver zonege
smolten aluminium faseovergangen bestudeerd. Het doel van de experimenten
was konklusies te trekken uit de snelheid waarmee de fasegrenzen zich voort
planten, en gegevens te krijgen over de struktuur van de tussentoestand. In
verband met dit laatste zijn er metingen uitgevoerd bij verschillende tempera
turen en bij verschillende frekwenties. De resultaten van de metingen zowel bij
magneetvelden evenwijdig aan de voortplantingsrichting van het geluid als
loodrecht er op zijn in overeenstemming met de theorieën van Pippard en Faber.
Het verloop van de absorptie bij de overgang van de supergeleidende naar de
normale fase bevestigt de beschrijving van Pippard die gebaseerd is op de
kringstroomtheorie. Voor de overgang van de normale naar de supergeleidende
fase kan een formele beschrijving worden gegeven, die eveneens voldoet. Er is
gebleken, dat er in het zeer zuivere preparaat na het afzetten van een magneet
veld van de orde van grootte van het kritische veld, langer dan twintig minuten
dunne normaal-geleidende gebiedjes blijven bestaan. Alle overgangstijden zijn
in minder zuiver aluminium aanmerkelijk korter dan in het zonegesmolten
aluminium eenkristal.
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