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I INTRODUCTION

On deformation of what are commonly called simple liquids, such as water,
the shear stresses become zero nearly instantaneously after ending the de-
formation. On the other hand the stresses on deformation of a solid, such as
a crosslinked rubber, will, to a first approximation,be a function of the de-
formation with respect to a certain reference state. The stresses will only
become zero again, when this "undeformed' reference state has been
reached.

The mechanical behaviour of many polymer solutions and melts lies in
between these two extremes. An intuitive definition for these materials can be
given by assuming,that the shear stresses in the liquid become zero after
waiting for a sufficiently long period after ending the deformation. The influ-
ence of a preceding deformation is the smaller,the longer ago the deformation
took place. These kinds of liquids can be described as liquids with limited

memory.

Polymeric solutions and melts show some unusual properties during flow. An
example is the so-called Weissenberg-effectl). When a cylinder is being ro -
tated in a polymer solution or melt,the liquid will climb the walls of this cyl-
inder. Another example is that,on flowing through a capillary, the extrudate
shows die swell, the diameter of the extrudate may be up to five times that

of the capillary diameterz) This sometimes very large effect can only be
explained by the relaxation of the stresses induced by the flow. Another char-
acteristic property of polymer melts and some concentrated solutions is melt
l‘racture3), The extrudate from a capillary becomes distorted as soon as the

shear stress at the wall exceeds a critical value.

Polymeric solutions and melts show in general a viscosity very large com-
pared to that of the pure solvent or the monomer. For example a 5 % solution
of a very high molecular weight polyisobutene in a low viscosity solvent has a
viscosity about 105 times greater than that of the solvent (Chapter 6). Polymer

melts used in industrial processing have viscosities up to 107 poise.

All these effects are probably connected and very interesting in themselves.
Because in industry the use and processing of these materials is increasingly
common and often gives rise to difficulties, a study of these properties is of

great practical interest.

In the following, laminar shear flow will be considered exclusively. If the flow
of the liquid takes place between two parallel plates, the coordinate system is
taken so that the flow lines are in the 1-direction, parallel to the plates, the




direction perpendicular to the plates is the 2-direction.

The third direction is chosen so that a right handed coordinate system results.

With shear flow the cartesian components of the flow velocity v are:

vy T ax, Vo = Ve =0 (I.1)

(1.2)

is the rate of shear.

The nomenclature of the stress tensor is explained in Fig. 14):’):

Fig. 1

If a plane in the liquid perpendicular to the i-direction is chosen, a traction
say Fi will act on it. On dividing the force by the area of the surface ABCD,
a stress I’i is obtained, of which the components in the i, j and k direction
are P.., P..and P,
ii ij ik
and to the k-direction (say ADFH) the same can be done. In this way nine

. For planes perpendicular to the j-direction (say DCEF)

components of the stress tensor are defined. The stress tensor will be indi-

cated by Pik' which means
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T'he components with mixed indices }’12, I 21’ i 13* I 23 and [ g9 are called

shear stresses, because they try to change the shape of the body ABCDEFGH.
The components with equal indices I’] 1’ 1)?2' and P,g,3 are called normal
stresses.
The study of shear stresses in liquids is rather old, and is known as visco-

A . 2 g 1
metry. Only a short time ago, about twenty years, it was first realized )

that the three normal stresses at the same point in a liquid can be different
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from each other. The study of all components of the stress tensor is some-

times called rheogoniometry.

The way in which normal stress differences occur in polymer solutions or
melts can be easily connected with the definition of the stress tensor given
above. The end-to-end distances of polymer molecules in the plane ABCD
can be represented by the vectors & These will either point through or lie in
the plane ABCD. In the undeformed liquid the orientation and the lengths of
these vectors will have a random distribution in space.

In that case, the sum of all forces due to the polymer molecules in the plane
ABCD or any other plane will be zero. However, if a velocity field is gen-
erated in the liquid, the polymer molecules will be on the average both oriented
and stretched. Both the orientation and the stretching result in forces in
the liquid, because both increase the free energy. The relation between the
stretching of the molecules and the resulting forces is given by the theory of

4) 6)),

forece in a molecule is proportional to its length and has the same direction

rubber elasticity (see for example and which shows that the tensile

as the end-to-end vector. The vectorial sum of all the forces due to the mol-
ecules in the plane will result in a force Fi’ which can be resolved into its
components as has been shown before. This will be treated in greater detail
in Chapter II. At the same time the liquid will in general show optical anisot-
ropy . If the polarizability of a molecule is proportional to the end-to-end
vector and has the same (iirection7), as is usually assumed for polymers, the
flow birefringence in the liquid can be calculated in a manner similar to that
for components of the stress tensor. The molecular theories predict as a re-
sult a close connection between the index of refraction ellipsoid and the stress
tensor. Experiments to investigate this connection are reported in Chapter
VII. Flow birefringence during laminar shear flow can be defined by 4 n, the
difference between the main axes of the index-of-refraction ellipse in the 1-2
plane, and by the sharp angle X between the 1-direction (the flow lines), and
one of the main axes of the index of refraction ellipse”.

It is also clear from the foregoing,that the stress tensor is a macroscopic
quantity. Although, on the one hand,the surface ABCD must be small enough to
have a uniform stress, on the other hand it must be large enough to permit
calculating contributions of the molecules by a statistical treatment. The same

is valid for flow birefringence.

A type of deformation which is often used to investigate mechanical behaviour
of viscoelastic materials is sinusoidal shear flow. In this case the displace-

ment in the l1-direction is Y = *{ox2 sin W t, where Yc)x2 is the amplitude of




the displacement, and @ the angular frequency. It is now possible to write the
shear stress Pyg a8

P1y = Y (G'sinWt+ G'"coswt) (1.3)

where G' and G" are the storage and loss part of the shear modulus, and the
deformation is linear. This will be described in greater detail in Chapter 1V.
The results are compared with normal stress differences and flow birefrin-

gence measurements, on the same materials, in Chapter VIII.

It can be shown (see7)) that for an incompressible fluid during laminar

shear flow, only three functions of the components of the stress tensor, Pig
(p” - p22) and (p22 - p33) are of interest. In the literature very few meas-
urements ©of (p” - p22) and even less of (p22 - p33) as a function of shear
rate q have been published. Up till now no Newtonian liquids, defined so that
the viscosity M = plz/q is constant with changing q, have been found for
which (pll 3 p22) or (p22 = p33) are different from zero in steady shear flow,
Up till now, all investigated liquids showing measurable normal stress dif-
ferences were found to show also a non-Newtonian behaviour and elastic prop-
erties, G'(w) ¥ 0.

As has been pointed out before (Ref. 5) page 184) it is, in general, impossible
to measure any normal stress component except Pop during shear flow with-
out disturbing the flow. For this reason it is necessary to perform all exper-
iments with curvilinear shear flow, and measure Pyy as @ function of the
radius. From the equations for the equilibrium of forces (Chapter II) the nor-
mal stress differences (pz2 - p33) and (pll = p22) can then be calculateds).
This is the reason why all evidence of the existence of normal stress differ-
ences are indirect, so that as late as 19599) in a publication the existence of
normal stress differences in steady shear flow could be ascribed to experi-
mental errors. The first phenomenon for which the existence of normal stress

1).

differences was postulated was the Weissenberg-effect described before

A peculiar thing about the measurements of normal stress differences is that
so few experiments have been performed. The number of publications with
theories to explain normal stress differences is a multiple of the number of
publications describing experiments. It is clear that this is not a healthy state
of affairs, because different experimenters do not agree with each other on
some important points. Especially there is no agreement about the magnitude
of (p22 - p33) during steady shear flow (see Chapter VIII). The number of in-
vestigations on this point is very small and the opinions are divided. As a
result of experimental and theoretical considerations all normal stress meas-

10




urements have been done in three types of apparatus: parallel plate, cone-

and-plate and concentric cylinder viscometers (Chapter V).

Some investigatorslo) have tried to measure normal stress differences from
capillary measurements, either by post-extrusion swell or by the recoil
caused by the liquid leaving the capillary. The experimental and theoretical
difficulties are considerable, however, so that the interpretation of the

“)is to determine P11 =~ Poy (assuming

results is uncertain. Another method
Pgy = p33) from the entrance correction in capillary measurements. It is
often found that a considerable pressure is needed to let a polymer solution
or melt flow through an orifice, the entrance correction. Part of this
pressure is used to build up normal stress differences. This method does
not yet rest on a firm mathematical basis, the interpretation of the results

is very difficult and has not yet been done successfully.

Very few attempts have, as yet,been published to compare normal stress
measurements and other viscoelastic properties as determined by dynamic
measurements, although a connection would be expected intuitively. A theoret-
ical foundation for this connection was first given in a recent phenomenolo-
gical theory by Coleman and Markovitz!z), moreover, the existing molecular

theories give on inspection the same result (see Chapter II).

For all theories,and for the interpretation of the measurements,the liquid has
been supposed incompressible. This is a necessary simplification, the mathe-
matical difficulties are very considerable otherwise. With moderately concen-
trated polymer solutions this assumption is probably justified, because the
forces are rather small. With polymer melts, however, the volume may
change easily 5 % under experimental conditions, on account of the very high
pressures used. Under the influence of these very large forces the spectrum
of relaxation times will change. One of the reasons for the different results,
obtained by different experimenters,for the influence of hydrostatic pressure
on the viscosity of polymer melts may be, that by compression the M - q
curve shifts not only along the m-axis, but also along the gq-axis. This can
lead to wrong conclusions in the interpretation of the results, unless the com-

plete 7 - g curve is measured.

In general, inertial forces are omitted in the rheological equations of state.
This is not permissable with many experiments, so that for instance the con-
tribution of centrifugal forces in normal stress experiments must be deducted
from the measured stresses (compare the Hagenbach correction in capillary
viscometry). Where necessary,this and similar corrections have been applied

for the determination of normal stress differences (see Chapter V).

11




All investigations described in this thesis were performed on synthetic pol-
ymers, both in solution and in the molten state. The word polymer,as used
here, means that one molecule consists of a large number of repeating units,
the monomer. Synthetic polymers consist of molecules of varying molecular

weight.

Two different molecular weight averages will be used, the number average
molecular weight, Mn' and the weight average molecular weight, Mw' If the

polymer contains, per unit weight,ni molecules of molecular weight Mi’ the
two averages can be defined as:
" 3 niMi
s Z—ni (1. 4)
2
3 niMi
Mw = zmi ; (1. 5)

An often used measure of the width of the molecular weight distribution of a
polymer is given by the ratio M /M

Most of the polymers investigated as regards their viscoelastic properties,
were also characterized as regards the width of the molecular weight dis-

tribution. The results are given in Chapter IIL

The mechanical behaviour of polymer solutions is the result partly of move-
ments within one molecule, and partly of interactions between neighbouring
molecules. An experimental method to separate the two effects is to dilute
the solution, so that the molecules become separated from one another by the
solvent. This effect can be expressed in the intrinsic viscosity, [n]. 1t the
viscosity of the solution is given by 7, and the viscosity of the solvent is 'ﬂs,
the intrinsic viscosity is defined by the limit:
Nz,

[n] = 1im (1. 6)

c—0 ey

where ¢ is the concentration in g/cms.

At sufficiently low concentrations the contributions of individual molecules
to the viscoelastic behaviour can be added, so that (T - T]S) is directly pro-

portional to the concentration.

On the other hand, for polymer melts, interactions between molecules dom-

inate the mechanical behaviour completely.

The molecular theories, which will be given in Chapter II, describe either

12
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the two sets of theories gi identical results for the vis-
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ation of all
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nents in the following
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directly by me

iring the velocity profile. This has been done for polymer

irough ca

illaries and rectangular slits. Good agreement was

ind those calculated from the flow

sources of systematic errors consists of re-

peating measurements with apparatuses of [ferent geometry, For this rea-

son, several different methods of measuring normal s

erences

(Chapters V and VII),or viscosity (Chapters IV and VI),were used. Different

types of apparatus also had to be used in many cases, because different
Y I

ter

1s require different measuring techniques. For instance, an appa

atus

sui le for dilute polymer solutions would,in general,be of little use for

measurements on polymer melts.

In Chapter VIII normal stress differences,determined with different exper

mental techniques,are compar with each other and with predictions of the

theories discussed in Chapter II.
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II THEORY

A. Phenomenological theories

The number of theories in the literature giving rheological equations of state
that predict the existence of normal stress differences is very large. The
possible number of formulations is even infinite For this reason, a com-
pletely general equation of state is of little value to experimenters, because
the more general a theory is, the less information is provided by “‘)2)3)_
Lately, a new development in continuum mechanics has been the classifica-
tion of possible formulations of equations of state. This would give the possi-
bility of classifying the rheological behaviour of a particular material on the

basis of a few expemmemsl)z).

For the formulation of the equations in part B.5., the nomenclature of

)

These authors use a convecting coordinate system,for which the Greek al-

l,odge1 will be used, it is essentially the same as that used by Oldro_vd“.
phabet will be used, in which each material particle has three coordinates
£ remaining constant during an arbitrary deformation. What does change
are the metric tensors Yi‘( E, t) and Y”(F; » t), which will depend,in general,
both on the coordinates gl,and on time t. The metric tensors can be defined

in the usual tensor notation by:

(ds)? = ’21 Y (8. 1) d glgel= Eiig:jdxidxj (I1. 1)

in which ds is the distance between two neighbouring material points, gii is
the metric tensor in a fixed (space) coordinate system. The formulation in
the convecting coordinate system has certain advantages, as the equation of
state can sometimes be formulated in a more compact way than by using a
fixed coordinate system. A formula similar to (II. 1), but using the contra-
variant metric tensor YU(E', , 1), describes the distance between neighbouring

1)'

tion,defined as the change in distance between neighbouring points in the ma-

planes From (II 1) it can be seen that an often used measure of deforma-

terial, during the time interval from t! tot, is given by:

(d9)%(& , 1) - (ds)X(E 1) = B, [ (&, 1) - Yi{(€.t0] aglagl (12

In a rather complicated mannerlH), a convecting time derivative can be de-
fined. With the convecting time derivative, indicated by Dljt , the same mate-
rial particle is observed, so that during differentiation the space coordinates
of the particle change. It is clear that this derivative is particularly useful to

15




describe memory effects. With many materials the flow history of particles
of the liquid influences the present state of stress. Then it is necessary to
add contributions to the stress tensor due to preceding deformations. The add-
ing of tensor components in different coordinate systems (the space coordi-
nates change during deformation) gives some peculiar difficulties, which were
discussed by Oldx'oyd“ A formulation of an equation of state in convecting
coordinates is often simpler than the corresponding equation in space coordi-
nates.

If the stress tensor for an incompressible liquid is described, it is customary

1)2),

i
to split the stress tensor P into two parts
p p

ij - ij

J S pij (I1. 3)

1"

- . ij .
The pressure p is the "hydrostatic pressure’, p J will be called the stress
I P \ I I

terisor from now on, only incompressible liquids will be considered.

In a cylindrical coordinate system, with coordinates r, 9, z, the dynamic

=y s Ky D)
cqua!xon in r-direction is H

Sl 5 g Py g | 9P, g " 9Py, F, Prr"Pge ) (IL. 4a)
or 9r r 00 9 z r r =
and in z~-direction:
) oP.., oPg. P,
R ¢ EB oyl 0B, BB lp +F_ =0 (IL. 4b)
0z or r 90 9 z r 'rz Z
In spherical polar coordinates, with coordinates r, ? and 4, the dynamic
2
equation in r-direction bccomes])“):
e apP 0P, 9P,
9p I i 1 ro 1 r~
- k 4 + ToEt. g +
or or rsind 09 r oA~
2 a 8
P B P P cot
y_xrr 99 :’b 2 +tF_ =0 (IL5)
The continuity equations become:
Div. ¥y=0 (11. 6)

1)2),

The coordinates in the above equations have their usual meaning
F_and Fz are r or z components of the volume forces

r ,
v is velocity

S are physical components of the stress tensor.

16




It will also be assumed that the liquid cannot transfer torques, the stress

tensor will then be symmetric:

(11. 7)

When using convecting coordinates El, it is often necessary to convert them at
a certain stage in the calculations into space coordinates. With liquids there is
no unique reference state, as for example the "undeformed state" in a cross-
linked rubber. For this reason, the rheological equation of state for a liquid
is in general given the simplest form, if the deformation at present time t is

taken as the reference system.

For a very wide range of equations of state,it is possible to express the com-

2\ &\
ponents of the stress tensor during steady shear flow .13“)5)(’):
= F g2 - F a2
Pyy = Pao™ %14 Poo ~ P33 = ¥4 (I1. 8)
Py2 = Pgy = ¥4 Pyg.= Pgy = Pag = Pga =0
F]. F,, F,{ are in general functions of shear rate q, and Pyy+ Pyg:v... are

physical components of the stress tensor.

Ericksen has shown ) that, unless certain relations between F 1+ Fy and F 3

are complied with, it is impossible to maintain steady shear flow through
pipes of non-circular cross-section, or in cone-and-plate or cone-and-cone
viscometers. Otherwise secondary flow, superimposed on the assumed shear
flow, will occur under these conditions. Qualitative experimental agreement
with calculated secondary flow patterns has been obtained by Giesekus and
(‘0-\'.'01‘ke1‘55).

A recent phenomenological theor_\'ﬁ) gives a connection between components of
the stress tensor and the dynamic shear moduli. The authors investigate the
behaviour of a "second order fluid"', defined by a constitutive equation giving a
correction for viscoelastic effects complete up to terms of the order larger
than two in the time scale. From this treatment values of (p” - p2'.2) and (pzz‘
}\33). in general both different from zero, were obtained. Moreover, at low

shear rates or frequencies:

: 3! P12
lim — = lim —= (1I. 9)
w0 q- 0 a
" (P 1 = .D-).))

(I1. 10)




Equations (II. 8) and (II. 10) give the required connection between the dynamic

moduli and components of the stress tensor during steady shear flow,

Another recent tl'xeory of Ericksen” with a possible use for polymer solutions
or melts investigates liquids, in which an orientation is induced by flow. As a
result, the flowing liquid is anisotropic. Unfortunately, the resulting equations
for the stress tensor are,even in stationary shear flow,very complicated, so

that an interpretation is difficult.

A completely different approach was made by Yamamoto, who defines an inner
deformation tensor, because the deformation of individual polymer molecules
is presumably different from the macroscopic deformations). While this is
probably true, the theory is rather complicated and difficult to interpret.

Finally, a difficulty for any molecular or phenomenological theory is caused
by the relatively large size of polymer molecules. During steady shear flow
molecules are rotating around the 3-axis, according to the convention described
in Chapter I, so that two neighbouring segments, belonging to different mol-
ecules, may be moving in opposite directions. The same effect is present with
low molecular weight liquids, but it will become more serious for larger mol-
ecules. This may be quite important in concentrated solutions or polymer
melts at high shear rates, because this effect will introduce discontinuities

in the deformation.

B. Molecular theories
B. 1. Introduction

Polymeric solutions and melts have viscoelastic and optical properties which
have been described with considerable success by a number of molecular
theories. In the following sections some of these will be compared; i. e. the
dumbbell modelg), the theories of Rouse and Zimm for dilute solutionslo)”)lz).
the extension of the theory of Rousem) and the network theory of Lodge lq)t'or
concentrated solutions and melts. The last two theories describe mostly or ex-

clusively (Lodge) interactions between molecules.

The molecular theories describe viscoelastic properties and flow birefrin-
gence. It has been shown that they all predict a simple relationship between
the stress tensor and the index of refraction ellipsoid,if the average polariz-
14)15) :

. This

means that the orientation angle X of the main axes of the index of re-

ability of a polymeric segment is equal to that of the solvent

fraction ellipse in the 1-2 plane,is equal to the orientation of the main axes

of the stress tensor X', during laminar shear flow:




25
Pis

tan 2 X =tan 2 X'= (II. 11)

P22

B. 2. The dumbbell model

The oldest and simplest molecular model is the dumbbell model of Kuhn.
This model has,in principle,all the features of the more sophisticated theories
of Rouse and Zimm, which will be discussed in the next section.

The polymer molecule is represented by two spheres connected by a spring.
All hydrodynamic interaction is concentrated in the spheres, interactions
between different molecules are neglected, so that it is a dilute solution

9)

theory. A very clear calculation has been given by Hermans®/, the main

points of the calculation will be repeated here.

The number of molecules per cm3 isn, and ¥ (§dV is the fraction of mole-
cules having an end-to-end distance ¢, withone endpoint in the volume element
dV, if the other is in the origin. The ma gnitude of £ is ¢, and the Cartesian
coordinates are &1, éz and 63. A plane of unit area, perpendicular to the i-
direction (i = 1, 2, 38), is crossedbyn V¥ &i of these molecules. If the force on
each molecule is K, with magnitude K and the same direction as £, the com-

ponents of K in the 1, 2 and 3 direction are:

¢ ¢
K—~, K (,2 and K

4
&=t £
From the definition of the stress tensor given in Chapter 1, we get, averaging
over all configurations:

V

P e, ¥ & &

Py = n¥(£)¢.K 71- dV=n | ¥(&)K—-L av (I1. 12)

ij i | 7
0 0

A more exact derivation of this equation has been given by Kramersw). Here
only Py, Was explicitly given, but without any change the derivation is valid
for other components of the stress tensor. Very recently, a very similar re-
lation has been derived by Fixman”). The relation between K and £ is here

not specified, it is only assumed that they are parallel. According to the the-
ory of rubber elasticity, the force in a chain with length ¢ isg)

K = -kT grad (In ¥) -

3 kT
7

3 (I1. 13)

o]




taking the diffusion of the endpoints into account, and assuming that the dis-
tribution of undisturbed lengths of the dumbbell WO((,) is:

2
v (e) = (—2, 1372 oy (3 £, (11, 14)
21(.; 2 3

From these fundamental equations, and from the continuity equation,all com-
ponents of the stress tensor during laminar flow with shear rate q, can be
expressed inone another. From the definition of the intrinsic viscosity [n]

Eq. (I. 6), the shear stress is:
Py = clnln g (11. 15)
The other relations become:

2.2 2
2 c['r]] T]S Mq

Byy = Pyy® - (I1. 16)
tan 2 X! = 2 (1L 17)
M[%] nga

Pop = P33 (1. 18)

ns solvent viscosity; M molecular weight; ¢ concentration; T absolute

temperature; R gas constant,

If it is, moreover, assumed that the contribution to components of the polar-

izability tensor L of a chain with length £ and anisotropy 011 - &, is given
9 . -

by ):

.
ik = % ik . i B i)
5¢
(o)
2 Ce[nln g g 2 2 2 2.2y 4
Then 4n = ny - ng, = —m; IMZ[T]]" q~ ng + R*“T*] 2 (I1. 20)

RT ' .
tan 2 X = = tan 2 X (11. 21)
M[n]nga
s

Here ny and nyp are the main axes of the index of refraction ellipse in a plane
perpendicular to the 3-axis. Obviously, a close connection exists between
components of the stress tensor and deviatoric components of the index of
refraction ellipse, with a proportionality factor C:

2 2
2 4 92




n_ is the index of refraction of the solvent, k is the Boltzmann constant. As

has been shown before by Janeschitz-Kriegl , Eq. (II. 22) is the consequence

of the use of the theory of rubber elasticilyls). In the literature on flow bi-

refringence, not C but 2 C is usually called the stress-optical coefficient.

A suspension of rigid ellipsoids will also show normal stress differences, the

optical properties, however, have in general no simple relationship with the
5)

stress tensor in this case

B. 3. The theories of Rouse and Zimm

The linear viscoelastic behaviour of dilute polymer solutions was first de-

scribed by Rouselo) and Bueche1 1), using the submolecule model. With the

normal-coordinate method.they were able to give a good description of the be-

haviour found experimentally in dynamic measurements. A few years later,
12)

Zimm extended the theory to include hydrodynamic interaction with the

Kirkwood-Riseman 18) approximation. The Zimm treatment gives the Rouse

theory as the special case of zero hydrodynamic interaction, the free-drain-
ing case. What is usually called the Zimm theory, is the special case of

strong hydrodynamic interaction, the non-free-draining case. As it is

rather simple to get normal stress differences from the paper of Zimm,

this calculation will be used in the following.
The model consists of a chain.of N identical segments, submolecules, joining
N

* 1 identical beads, with complete flexibility at each bead. The chain is
suspended in a viscous liquid, with which it is supposed to interact through the
beads only. The forces working on any bead consist of the force due to the
liquid, the statistical force in the submolecules, and the Brownian motion.
The effect of a force on the motion of the liquid is supposed to be the*Kirk-
wood-Riseman approximation of the Oseen-interaction lensorls).

The conformation of the polymer molecule is represented by a column vector
L, defined as:

g(i) is the end-to-end vector of the i-th submolecule, with an undisturbed
distribution of lengths Wf;)given by Eq. (II. 14). The undisturbed distribu-
tion of end-points of the polymer molecule with its N submolecules, each
with end-to-end vector g(i). i=0... N, can be given by ¥:




Wgsm 2

Y=

: ng) (I1. 24)

i

o
According to Kirkwood and Riseman,the local velocity of the liquid L. is given
by:

3 ’
L =Lo%+TK (1. 25)

*0 . g ey A
where L~ is the velocity of the liquid in the absence of polymer molecules,
dots indicate time derivatives, T is the Kirkwood-Riseman approximation of
the Oseen-tensor and K the force on the molecule. The sum of all forces work-

ing on the molecule must be zero,on the average:

-f(L-L)+K=0 (1L 26)

f is a friction factor.

K is a column vector given by:

3 kT
3

K=-kTgrad(ln ¥) - 25— AL (IL. 27)

(o]

A is a matrix of order N + 1, with elements defined by:

A..= 2 iFloriF N+ 1

ii
"\11:"\1\"‘..\"1: 1 (II. 28)
A s = A, = =1

iit+l i-11

A restriction on the movement of the molecule is given by the continuity equa-

tion:

¥ - - aiv(¥ L) (I1. 29)

Inserting (II. 26) and (II. 27) into (II. 29), we get:

¥ - -aiv¥[LS- 5{_‘ (fT + 1) grad (In ¥) - 2XTer+ 1) A L] (10 30)
te =

where I is the unit matrix. The problem can be solved by using the normal co-
ordinate transformation of Rouse and Bueche, by means of which the matrices
(T +I) and(f T +1) A are diagonalized. The diagonal elements of the matrix
obtained after_diagonalization of (f T + I) were called v by Zimm, and those
obtained from (f T + I1)A were called )\i' If the hydrodynamic interaction is

zero, the case considered by Rouse and Bueche, only diagonalisation of A is




needed, the resulting diagonal elements are called Mi. Zimm showed that:

- e e N (1L 31)
i

The components of the stress tensor can be calculated, using Eqs (II. 12),
(II. 27) and (II. 30):

Py = - KT <x' a—?ig (n¥)> - Sck; <x' A x> (1. 32)
X

o
where < > indicates taking the average over all configurations.
On averaging, the first term on the right of (II. 32) is found to be zero or inde-

pendent of deformation, so that:

=3 EE ot A K (11. 33)

o
Eq. (II. 33) shows that the stress tensor is symmetric:
Pik = P (11. 34)
2)

for the average chain configurations in Eq. (II. 33), his Eqs 46 to 49. From

After transformation to normal coordinates, Zimml obtained expressions
these relations it is easy to obtain the components of the stress tensor. It is

2
found that the components P13 = P3q and Pyg = Py are zero. Eq. 47 in 12) is
not correct, as was first pointed out by Williams 19) (in this paper Eq. 5 con-
tains trivial printing error, so that T, must be replaced by ’t‘é in the numera-

tor of the first right hand term).
If the shear rate is given by:

- =W By 22 ’ .
q = q, cos Wt === WY  cos wt (II. 35)

and the deformation ¥ = Y sin wt, Eq. (II. 33) gives results that can be ex-

pressed in relaxation times TPA

For the Rouse theory:

6 M 7 [n] T
T =y = S N (I1. 36)
P x°RT p* p

and for the Zimm theory:

M q[n] " 1
T‘)‘Tgm p-l ..... I\ (11.3)

P

| Here M is the molecular weight, 7 _ the viscosity of the solvent, [n] is given

23




by Eq. (I.6), R is the gas constant, T the absolute temperature, and 7\ in
(I1. 37) is given in the paper by Zimm, Roe and Fpslem )(see also “l)) Both
theories give identical results,if expressed in the relaxation times given by
(I1. 36) or (II. 37):

_ cRT N
S e % clnlnq (11. 38)
Pyy ~ P33 = 0 (11 39)
N
1 5 AR 2 :
P11 ~ Pas 2q M p=1 'rp— qu (1I1. 40)
= N
2 23 2,213
An=2C 2‘. T - T - :
al( % g g ) p)] (1L, 41)
b 7
tan 2 X .P_I_’? = tan 2 X' (11. 42)
q3
PP

during steady shear flow. During sinusoidal shear Y = i 7% sin @ t:

2.2
weT
cRT D
G' = b I :
M p 1+w2,1:2 (I1. 43)
p
cRT 3 9%
G :_NT_ pm%?*wns (I1. 44)
& e 3.3
c Y. R1 22 3w" T
- = o - 5.9 2 ST B ToNT P
P11 ™ Paa ™ p s SR T3 S
1+ w 't;; (1+ w 'rp)(l‘-aw 'T.‘p)
wz ’1.'2-2(.04 'r;
+ cos 2 wt 5 (II. 45)
(1+ \Uz*c;;)(l +4w° '1:‘3)

n, X and C were defined in Sec. B. 2.

It is easily seen that in the limit @ - 0 (IL. 40) and (II. 45) become identical.
Moreover, the two molecular theories give also in the limit W= 0 Eqs(IL. 9)
and (II. 10). The viscosity 7, as defined by (II. 38),is found to be independent
of shear rate, the normal stress difference P11 ™ Pas is proportional to qz.
Obviously, the last two properties are connected, they can also be described
by saying that the relaxation limes ‘tp are independent of shear rate or de-

formation.




An extension of the model of Zimm, including a dynamic rigidity of the poly-
mer chain, has been given by Cerfzz), This theory also predicts normal

stress differences, but the equations cannot be solved in closed form.

Extensions of the Zimm model have been given recently by several authors

23)2
“3)“4)21) These calculations give no difference in the case of zero hydro-

dynamic interaction, so that the theory of Rouse is not affected. The differ-

ence appears in the case of strong hydrodynamic interaction, where the nu-

merical factors )\p in Eq. (IL 37) are somewhat different. Eqgs (IL. 38) to (II.

45) remain unchanged, at least in the first two papers. Tschoeg124) showed,
that dilute solutions in theta solvents are well described by the Zimm theory.
With increasing solvent power, the viscoelastic behaviour approaches the

Rouse theory more and more,

B. 4. Extension of the theory of Rouse to concentrated solutions or melts

In order to adapt the dilute solution theories for solutions of higher concen-
trations,invariably the theory of Rouse is chosenla). The reasons for this are
the experimentally found similarity,for concentrated solutions, between the
shape of the dynamic moduli, as a function of w, with those predicted by the
Rouse theory, and mathematical difficulties in adapting the Zimm theory. It

is assumed that the relation

from Eq. (IL 36),and Eq. (II. 38) remain valid. The relaxation times can then
be obtained from the zero-shear viscosity Mo

T 6(M_- n )M
T = e O LBl

I1. 46)
. 3 (
P p nchTp“

ol

It is, moreover, assumed that Eq. (IL 39) to Eq. (II. 45) remain valid; all vis-

coelastic functions can then be calculated. Eq. (II. 46) is only valid for a

monodisperse polymer, for polydisperse polymers I"eticola534) has derived:
b(ng - ny) Miz % T

= N 2 (I1.47)
TCRTMWp p

Tp, ; is the p-th relaxation time for a polymer molecule with molecular

weight Mi A ¢ Mw is the weight average molecular weight,as defined by (I. 5).

Eqgs (II. 46) and (I1. 47) are also valid for dilute solutions.

i p,i

For the calculation of viscoelastic functions it is necessary to know the mo-




lecular weight distribution.

With polymers of high molecular weight,an entanglement structure is formed
in concentrated solutions or melts. In order to explain the viscoelastic behav-
iour in this case, it must be assumed that the friction factor f is very much
higher for moverhents of parts of the polymer chain longer than ‘“e' the mo-
lecular weight between two successive entanglements along the chain,than for
movements of parts of the chain having a molecular weight lower than Me.
Moreover, to explain the experimentally found molecular weight dependence
of the zero shear viscosity, it must be assumed that f in that case is propor-

tional to M 2.4
w

. The friction factor for movements of parts of the chain
shorter than the length between two successive entanglements, is supposed to

be unchanged. This gives:

11 i Me 2.4 M
Toi =2 (W) P P ) (11 48)
p 3 M-e
30)

In Eq. (II. 48) Me is used (see discussion in Ref.' ), and not 2 Me, as orig-
inally proposed 13),

. . : ¢ Sein
If the polymer consists of i fractions, each of n. molecules per cm™ with mo-

. 4 3 31)32)
lecular weight M., the dynamic moduli will be :
2 .2
3 3 n, e T
G'= kT ¢ p cod 1 (11. 49)
p. i
B W T g
G'=kT 2 3 2 DS (11. 50)

2

R 1~'u)"'r:pi

where T _ . is given by Eqs (II. 47) and (II. 48). This model, with minor

Psd 25)34 28)2
variations, has been used by a number of authox*s13)“5)34)26)27)“6)"9).

In Chapter IV. 6,experimental and calculated values of the dynamic moduli
are compared for a dilute solution and for a polymer melt. For the calcula-
tion the polymer was divided into a number of fractions, the moduli were
then calculated by means of Egs (II. 49) and (II. 50). This procedure differs
from that used by Barlow, Harrison and Lambzg), who used an average
value of Pe’ and a continuous function for the molecular weight distribution.
Their method tends to underestimate the contribution of high molecular

weight material, however.




B. 5. The network theory

An entirely different approach to the calculation of the viscoelastic behaviour
of moderately to highly concentrated polymer solutions and melts, is that of

])H). A similar model was independently used by Yamamoloa). In these

Lodge
theories it is assumed that the molecules form a network consisting of tempo-
rary crosslinks, which are continually being broken and newly formed. If the
liquid is deformed, the structure can be assumed to consist of a number of
substructures, each consisting of a number of temporary crosslinks with the
same age. It is evident, that the deformation of every substructure depends
on the age of its crosslinks. If contributions of these substructures to the
viscoelastic properties can be obtained by adding them, and if, moreover, the
theory of rubber elasticity can be used, it is possible to describe the behav-
iour of the liquid during deformation. It will also be assumed, that the defor-
mation does not effect the rate of formation or breaking of the crosslinks.
These assumptions are obviously not realistic. During a continuous deforma-
tion crosslinks, which have been deformed, will tend to break earlier than in
the undeformed liquid. Several attempts have been madeg)zg) to account for
this effect, the results do not seem to be in agreement with experiment, how-
ever. Yamamoto x‘cpoz‘tsa), that the influence of shear rate on the viscoelastic

functions depends on the model used, so that the procedure becomes arbitrary.

Another assumption is, that the deformation of a substructure is equal to that
of the liquid. This assumption is probably not realistic either, but an esti-

mate of the error, introduced this way, is very difficult (see Chapter VIII).

According to the theory of rubber elasticity, the relation between components

of the stress tensor %7 and components of the contravariant metric tensor

Y, both in a convecting coordinate system, so that Greek letters dre used,
is given byl):
3 P Ers® 5 1 gt e SR i & =
x Py (t) klsnl\oy (to) (II.51)

where NO is the number of crosslinks and S, is a numerical factor depending
on the network structure, p is the hydrostatic pressure. If it can be assumed
that this is the contribution of every substructure, and with the assumptions

listed above, we get for an incompressible liquid:

o e t
R + P yt) = kTsn/ N(t-t")y*I(t")at! (11. 52)

t'= -




Here N(t - t')dt' is the number of crosslinks in the substructure formed at the
time t', and still existing at the time t. For a laminar shear flow, Y”(\) and

Yij(t’) are given byl):

1 0 0 14Y% v 0
o . \
e (5 I SR | S Ul Y = Y 1 0 (11.53)
0 0 1 oy

y is the shear in the material as defined in Chapter 1.
If the deformation in the liquid can be given as the sum of a laminar flow with
shear rate q.,and a periodic shear Yo sin ® t,the deformation of a substructure

with an age of T = (t - t') seconds is:
Y=q%v+ Yoi sin wt (1 - cos WT) + cos Wt sin T} (II. 54)

(Eq. (6.40) in 1) is not correct)

If (II. 53) and (II. 54) are inserted into (II. 52) we get for laminar flow:

Py = 98, kTN, (IL. 55)
e :
Py - Ppp = G S,KTN, (I1. 56)
3 LJE L Rl r
with N_= [ N(®) v7d7 (11. 57)
JO
Pyy = Pgg = 0 (11. 58)
2.2
qQ°Ny %
An=2s kTN.qC {1+ } (11. 59)
n 1 4N2
Ay
C is given in (II. 22)
2N,
tan 2 X = -q—N-z =tan 2 X (I1. 60)

and for a periodic shear Y = Y sin wt:

G's= snkT fW N(T)(1 -cos WT)dT (II. 61)
‘o
m .
G" = snkT N(T) sin w Td~T (II. 62)
J
()

o0

= = y2 J - s 2 W we - 4
P11 ~ Pa2 YO snk'I' J N(T)f(1 - cos wt) + cos 2@ t cos (1 - cos w7T)

+ 8in 2 Wt sin WT(1 - cos wt) dv (II.63)




The cos and the sin terms in (IL. 61) and (II. 62) can be developed into a series

in the limit @ = 0 this gives results equivalent with (II. 9) and (II. 10), as was

also found for the Zimm and Rouse models.

Following l.odgel), the very general assumption is now made, that N(T) can be

represented by a sum of exponentials, so that:

T '
-/Ti a. -T/7T,

N(T)= Zate 122 _1g : a,20 T.> 0 (11. 64)
 GRERS it B s

If this is inserted in Eqs (II. 55) to (II. 63), the following results are obtained:

Pip = 8,kTq zi a; T, (I1. 65)

Piy = Pgy = snk'l‘q 22 a, T;‘ (II. 66)
(2a732 1
An=2s(‘(2a.T)[l‘ﬁ—" }° (11. 67)
n q 1y
@ a )
) I |
za T ;
tan2X = — L L =an 2% (11. 68)
q9z3; Ty
a L‘Jz ’C‘z
G'=s kT 2 lﬁ_‘z (1. 69)
n 1 + wen
1
dl (.A)’Cl
G" = g kT2 5 + W7 (I1. 70)
n 1+ m.? TIZ s
w2 72 w2 2 2 wigd

i i
(14 ur'?"ci?)(ﬁ‘; wg'r?)

2 i § 3
Py = Pgg = 8, YokTE d’il‘*uz_'? tcos 2 wt
i
3 3

+ sin 2 Wt ) 55
(1+@%%) (1+4 wes)

(I1. 71)

If the factors snaikT are interpreted as the contributions of relaxation times
Tx to the viscoelastic functions, Egs (II. 64) to (I1.71) bec ome formally iden-
tical with the results of the Zimm and Rouse models. This is a surprising

result, because the two sets of equations have been derived in a very differ-
ent manner. In both theories results from the theory of rubber elasticity are
used, which has been put forward to explain this similarilyls).




B. 6. Comparison of molecular theories

Comparing the preceding sections, it becomes possible to combine the molec-
ular theories in a generalized three-dimensional Maxwell model, that also de-
scribes normal stress differences and flow birefringence. The relaxation
spectrum is described by a function H(T), defined so that the contribution to
the moduli by relaxation times lying between InT and In T + d(In 7) is given
by H(T) d (In 7)°132) This gives:

B3

" H(t) w??d(n 1) (11. 72)

2
v 1+0°T
-

G' =

wo

g"=  HE)w<Td(nT) (I1. 73)

J 1+ w2l
- o0

In the same way equations for the other viscoelastic functions are obtained.

(6]
p - 11
n=-12- [ gr)rd(n7)=1m S (1. 74)
a / w=0 @
-0
e
Prr = Pag =242 ; H(T)Td(In 7) = 2 q° lim —%—' (1L 75)
11 22 J w0 W
-0
Py ~ Pg3 = 0 (11. 76)
7 2 ¥ l
2 o 2 1
an=2Cq{[ ; Hr)Td@n ©]°+q°[ H(T)T d(In T) 13 2 (11. 77)
J ]
W - o0
tan 2X = H(F)Td(In%) _ -tan2X' (11, 78)
0 2
q , H(T)T%d(ln T)
o
and during sinusoidal shear:
oo
f 2,2 2 4 .4
2 w2Té- 2w T
Piy “Pos =Y H(t) [———5 * cos 2 wt +
11 Raa Yy g T+ wi (1+ w2ed)(1 + 1027l
3.3
T
+ sin 2 Wt o 5] d (In 7) (11, 79)

(1+w“’t )(]+4u} %)

The difference between the theories is in the relaxation spectra, which are
given in the Rouse and Zimm theories, but not by the network theory. As the
theories of Rouse and Zimm are valid for dilute solutions, and the theory of

Lodge for concentrated solutions and melts, Eqs (II. 72) to (IL. 79) would ap-
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pear to be valid over the complete concentration range. The agreement be-

tween theory and experiment will be discussed in Chapter VIII.

All three molecular theories predict that the normal stress difference Pyy~P3g3

is zero, and that a simple relationship exists between G' and P11 ~ Py and
between G'" and Pygat low shear rates or frequencies.
Moreover, they predict that G' and G'" are proportional to Y, that P117Poy

2 ) ) y
is proportional to q” or Y(“) and that 7 is independent of q. All these proper-

ties are related,and will be called second order behaviour of the material.

It is interesting to apply Egs (II. 74) and (II. 75) to a simple monomeric liquid

of molecular weight M. If each molecule has one relaxation time T giving a

contribution kT to the viscoelastic functions, Eq. (Il. 74) gives:

nM .

T = (11. 80)
/ 3 X N

where c is the concentration in g/cm” Inserting this value for T into Eq.

(II. 75), we get:
Py; ~Pyo - (1II. 81)

-2
The last equation gives for the reasonable values M = 100, M = 10 “ poise,

gt o8 ~ 5 ~12 ‘2 S
c=0.8 g/cma and T = 298 °K: Pij = Pgy ~ 10 3 q~, so that Pi " Py is

10 d_vne.‘cm'2 (the experimental scatter of p,, in Chapter V) at shear rates
above 10(J sec L,

According to this view, there is no fundamental difference in rheological be-
haviour between simple monomeric liquids and polymer solutions or melts.
Eq. (II. 81) shows that for constant viscosity, P11~ Pog increases*with mo-
lecular weight. This explains,why noticeable normal stress differences are
so much associated with polymeric solutions and melts, which have high mo-

lecular weights, and also high viscosities in most cases.

As it would appear that there is no fundamental difference in viscoelastic be-
haviour between liquids of low molecular weight and polymer solutions or
melts, it seems useful to separate the viscoelastic behaviour of any liquid

into three regions:

(a) first order behaviour; shear independent viscosity no. no perceptible
normal stress differences; G'= 0; G" = @ N

(b) second order behaviour: constant viscosity, normal stress differences
proportional to the square of the shear rate, so that the normal stress

9
functions Fl and F, of Eq. (II. 8)are constants; G'# 0 = } I’lq“( w= q).




(c) third order behaviour: viscosity and normal stress functions diminishing

with increasing shear rate; 7(q) < T G—'Q =+ 4 F, (@ =q).
W

B. 7. Third order effects

With the network theory it is easy to visualize a reason for third order behav-
iour, and its consequences for the relaxation spectrum. During laminar flow
with shear rate q,the deformation of a polymer chain will be proportional to

q T, T being the lifetime of the crosslink. During a periodic oscillation the
deformation will be proportional to Yo From this reasoning it follows that
the shear rate where the viscosity becomes shear rate dependent, and the am-
plitude of deformation where the dynamic moduli become dependent upon Y ,
should be connected. It seems reasonable to assume,as a first approxima-
tion,that in the non-linear case the Eqgs (IL. 72) to (II. 79) remain valid, but

that the relaxation spectrum changes.

As a first approximation it can be ussumed33). that all relaxation times
change by the same factor aq, which is supposed to be a function of q only.
From Eq. (II. 74) this gives:

n(q) - ng T (q)

= = _P 1. 8
%q ", - g T (G 0) .89

where Tlo is zero shear viscosity, L8 solvent viscosity and 7 (q) the viscos-
ity at shear rate q. Then from (II. 75), (II.77) and (II. 78).the other visco-
elastic functions during laminar shear can be expressed in the ratio of 7(q)
and M, so that the shape of the curves giving 4n, Py1 = Py and x as

a function of q can be predicted from the 7 (q) - q curve.

Eq. (IL. 82) can only be a first approximation, because one would expect the
longer relaxation times to be more effected than the shorter ones. This would
give values of aq dependent upon T, a(q, T).

Measurements of third order effects will be given in Chapter VIIIL 3.
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III MATERIALS

1. Materials used

All measurements described in the following chapters were performed on
solutions of polyisobutene (B 100 and B 200) and a polystyrene (PS III), and
melts of a polyisobutene (Oppanol B 1), a polydimethyl siloxane (PDMS-RS),
two polystyrenes (S 111 and B 8), two high density polyethylenes (HDPE-
NMWD and HDPE-BMWD) and two low density polyethylenes (LDPE-NMWD
and LDPE-BMWD). With the last three pairs of polymers the first had a
fairly narrow, the second a much broader molecular weight distribution.

The solutions ranged in concentration from dilute (0. 2 volume %) to concen-
trated (about 25 volume %). Cetane (hexadecane) and a low molecular weight
polyisobutene, Oppanol B 1 (a Newtonian oil with a viscosity of 0. 236 poise
at 25 °C),were used as solvents for polyisobutene. Polystyrene (PS III) was

dissolved in bromobenzene.

Polystyrenes B 8 and S 111 and the two high density polyethylenes were kindly
supplied by Dow Chemical Corporation, Midland, Michigan, U. S.A. The two
low density polyethylenes were supplied by Monsanto Chemicals Ltd., New-

port, Mon., Great Britain.

Polyisobutenes Oppanol B 1, B 100 and B 200, and polystyrene PSIII are com~
mercial polymers of BASF, Ludwigshafen a/R., Germany.

Polydimethyl siloxane, PDMS RS, is a commercial polymer supplied by

Bayer, Leverkusen, Germany.

Analar bromobenzene was supplied by Merck(density 1. 488 g/cms, viscosity
0,0106 poise at 25 0C). Cetane was supplied by Fluka, it was stated to be
better than 99 % pure, and free of olefins (density 0. 7664 g/cms, viscosity
0.0272 poise at 30 °C).

A list of all liquids investigated, together with some physical data, is given
in Table III. 1. In this table a list of the experiments performed is also indi-

cated.




Dilute solutions

Table III. 1

conc polymer solvent temp. density g? measure-
o 3 3 ments
C g/cm cm /g
0.2 wt% PIB B 200 B 1 25 0.8167 0.02 1,2,3,4
0.4 & " - > (0.817) & 1
1./09 & i & o (0.817) i 1,2, 3,4
2 i - S & (0.817) " 1,2,3,4

Intermediate range concentrations

"

5 wt % PIB B 200 B 1 25 (0.817) 1
5 - e cetane 30 (0.7728) 0.0805 1
3.0 " PIBB 100 = e 0.7711 - 1,2
5.39 " i v & 0.773¢ " 1,2
6.86 " e o v 0.7760 " 1,2
8.54 " i " ! (0. 779) ° 1,2
7 g/100 ml PS III bromo- 25 1.465 0.0455 1,3,4
benzene
15 : ;) % P 1.435 ¥ 1,2,3,4
25 " 9 v e 1.402 " 1,3,4
Melts
100 wt % PDMS RS - 25 0.98 - X, 34, 5
; 2 ' PS S111 - 190 0.979 - 1,3,4
; > X PS B8 - 5 § - 1,3,4
< i HDPE-NMWD - " 0. 756 - 1,3,4
iy " HDPE-BMWD - " v - 1,3,4
- % LDPE-NMWD - " N - 1,3,4
" g LDPE-BMWD - Uy ! - 1,3,4
't it PIB B1 - 25 0.8167 - 1,2,3,4
|
concentration: wt % means weight percentage of polymer. 5
polymer : PIB = polyisobutene; PS = polystyrene; PDMS = polydimethyl

siloxane; HDPE = high density polyethylene; LDPE = low
density polyethylene; NMWD = narrow molecular weight dis-
tribution; BMWD = broad molecular weight distribution.

Density values in brackets are extrapolated values. For the solutions in B 1
or cetane it was assumed that densities at other temperatures were propor-
tional to that of the solvent. 1)

Densities of polymer melts were taken from the literature

dn
de

is the index of refraction increment (see Chapter VII).

Measurements performed:

O 0O B

dynamic shear modulus, Chapter IV

normal stress gradient, Chapter V
viscosity, Chapter VI

flow birefringence, Chapter VII

recovery after steady shear flow, Chapter V

Normal stress gradient measurements on solutions of B 100 in cetane were

taken from the literature<),




2. Molecular weights

For the interpretation of viscoelastic measurements on polymeric liquids it
is desirable to have information about the molecular weight distribution. For
a few polymers (PIB B 100 and B 200, and PDMS-RS) this was obtained by
precipitation into 5 to 8 fractions. The molecular weight of each fraction was
estimated from the intrinsic viscosity in a suitable solvem3)4). Two molec-
ular weight averages, MW and Mn , were then calculated by means of Eqs

(1. 5) and (I. 4).

Molecular weights of most of the other polymers were obtained from the
supplierss)(’), those for PS III were kindly supplied by Dr. Th.G. Scholte
Dutch State Mines, Limburg, I\'etherlandsv). All results are summarized in

Tables III. 2 and III. 3, for explanation of polymer names, see Table III 1.

Table IIIL. 2
PIB B 1 M_ = 430 M =- oM /M, = - 6)
B 100 6.0 x10° 1.18 x 10° 2
B 200 2.22 x 10° 4.52 x 10° 2
PDMS RS - 5.36 x 10° -
PS  S111 2.14 x 10° 2.24 x 10° 1.05 5)
B 8 1.13 x 10° 2.79 x 10° 2.5 5)
HDPE-NMWD ) - 4.2 x 10% - 5
HDPE-BMWD ) - 9.2 x10* &)
LDPE-NMWD 2 x10t 10° about 5 5)
LDPE-BMWD 2 x 10t 4.2 x10°  about 20 5)
PS I 0.82 x 10° 4.1 x10° 5.0 T)

*) HDPE-BMWD was stated by the supplier to have a much broader molec-
ular weight distribution than HDPE-NMWD.




Table III. 3

Oppanol B 200

fraction weight molecular weight of fraction
1 0.0711 77x105
2 0. 4065 70 x 10°
3 0.1842 32 x 10:-J
4 0.1396 23 x 105
0.1791 7x10

Polystyrene S 111

fraction weight molecular weight of fraction

I 0. 055 1.25 x10°
2 0.095 1,625 x 10°
3 0,170 1.875 x 10°
4 0.233 2.125 x 10°
5 0. 225 2. 375 x 10°
6 0.145 2.625 x 10°
7 0. 060 2.875 x 10°

0.025 3,125 x 10°

0.015 3.5 x10°

3. Preparation of solutions

Solutions of polystyrene in bromobenzene and a solution of 5 % by.weight of
Oppanol B 200 in cetane were prepared by standing at room temperature,
during periods of several months in the dark.

Solutions of Oppanol B 200 in Oppanol B 1, all solutions of Oppanol B 100 ,and
a 5 % solution (the same as above) of Oppanol B 200 in cetane were dissolved
first in hexane (May and Baker, the non-volatile residue was given as less
than 0.01 %) at room temperature in the dark. Afterwards,the required
amount of solvent (B 1 or cetane) was added,and the solution was left until

the mixture was found homogeneous by visual inspection. Finally, the hexane
was removed by a vacuum destillation at about 40 - 50 °c, with oxygen free
nitrogen bubbling through. It was possible,by weighing, to check how much of
the hexane had been removed. The process was stopped when the weight re-
mained constant; the resulting solution contained less than 0.2 % by weight

of hexane. The solutions were completely clear and homogeneous on visual
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inspection. The control solutions of 5 % by weight of Oppanol B 200 in cetane,
prepared by the two methods, gave dynamic results in excellent agreement
(see Chapter IV). This rather involved procedure was necessary,because it
was noticed that the molecules in solutions prepared by stirring at elevated
temperatures during a rather long period (several days to a week) were bro-
ken down, as shown by a slight discoloration and a viscosity diminishing with

increasing time of stirring.

4, Reasons for the choice of materials

The molecular theories discussed in Chapter II, should be valid over the com-
plete concentration range, going from dilute solutions to concentrated sys-
tems. For this reason, the range of concentrations was taken as wide as pos-

sible. In our case concentrations ranged from 0.2 to 100 volume per cent.

With the available experimental equipment it was not feasible to investigate
dilute solutions and melts of the same polymer. In order to measure very di-
lute solutions it was necessary to choose polymers of very high molecular
weight, otherwise the effects to be measured would have been too small. In
the molten state, polymers of such high molecular weight are very difficult

to handle, in fact measurements at similar shear rates as those at which meas-
urements were done on solutions were not possible, on account of mechanical
degradation or viscous heating during flow. For this reason a rather wide
range of polymers had to be chosen. This was no disadvantage, however, as

it was desirable to compare the viscoelastic behaviour of different polymers.

Because the molecular theories given in Chapter II will probably not be valid
for polyelectrolytes, these were not investigated. It is quite possible that
the viscoelastic behaviour of polyelectrolyte solutions will differ in certain
respects from that of the materials described here.

As fairly large amounts of polymer were needed for the complete program,
only commercially available polymers could be used for the solutions.

For the different types of measurements, the requirements for the liquids are
also different. For measurement of the dynamic shear moduli, as described
in Chapter 1V, the requirements are:

(a) the liquid must be non-volatile;

(b) shear moduli must be in the range of about 10 dyne/cm2 to 107 clyne/cm2
in the angular frequency range from about 10'3 to 300 rad/sec;

(c) the liquid must be chemically stable, otherwise its properties.will change

during the experiment.
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For normal stress measurements, described in Chapter V,a requirement, in
addition to (a), (b) and (c) above, is:

(d) a viscosity lower than about 103 poise.

The viscosity measurements, given in Chapter VL caused no additional require-

ments, but for flow birefringence measurements, described in Chapter VII,

two additional requirements are:

(e) no form-birefringence. This means that the average index of refraction

of the polymer must be equal to the index of refraction of the solvent.

(f) the polarizability of a segment of the polymer chain must be different in

the directions parallel and perpendicular to the chain.

Because an object of the investigation was to compare the behaviour of poly-

mer solutions with those of melts, an additional requirement was:
(g) the solvent must be chemically similar to the polymer.

As a result of requirements (b), (c) and (f) for the low concentrations (0. 2 to

2 volume %) a very high molecular weight polyisobutene, Oppanol B 200, was

chosen. As solvent for these solutions, with requirements (a), (b), (c), (e)

and (g), a low molecular weight polyisobutene, Oppanol B 1, was used.

For the intermediate concentration range, from 5 to about 25 volume %, so-
lutions were chosen of the lower molecular weight polyisobutene, Oppanol
B 100, and of polystyrene III. As solvent for polyisobutene solutions cetane
was taken, bromobenzene was chosen as solvent for polystyrene (require-
ments (a), (c), (d), (e) and (g)).

The lower molecular weight of the polymers, and the lower viscosity of the
solvents,were necessary because otherwise the viscosities of the solutions

would have been too high (requirement (d)).

On B 100 solutions in cetane a large number of normal stress measurements
had been performed by Dr. H. Markovitzz), who kindly supplied the polymer.
On solutions of polystyrene III, Dr. H. Janeschitz-Kriegl at our institute had

8).

performed a large number of flow birefringence experiments

The highest concentrations investigated were polymer melts, 100 volume per
cent. A number of polymers, all with weight average molecular weights in

2 to 5. 105. were investigated. Normal stress gra-

the range from about 10
dients could not be measured on melts of these polymers, because the vis-
cosities were too high (requirement (d)). Most of the experiments on melts
were performed as part of an investigation on behalf of the International
Union of Pure and Applied Chemistry (IUPAC)S). These results were used

because they gave an obvious extension of the experimental program.
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IV DYNAMIC MEASUREMENTS

Apparatus

The linear viscoelastic behaviour of a number of polymer solutions and
melts was investigated with a concentric cylinder viscometer, in the angu-
lar frequency range from about 10-3 to about 300 rad/sec. The apparatus

was developed from a very similar apparatus, which hasbeen described in
1)2)

detail by Duiser Only the principles will be repeated here.

The polymer solution or melt is held between two concentric cylinders. The
inner cylinder is suspended by a torsion wire from a driving axis, executing
a sinusoidal oscillation around the common axis of the system. In the sta-
tionary state, the inner cylinder will also execute a sinusoidal motion, so
that the material between the stationary outer cylinder and the oscillating
inner cylinder will undergo sinusoidal shear. In general, the viscoelastic
properties of the material, the inertia of the system and the torsional stiff-
ness of the wire will give rise to a difference in phase and amplitude between
the motion of the driving axis, and that of the inner cylinder. By an optical
system the amplitude of the dri ving axis eao » of the inner cylinder & o’ and
the phase angle ¢ between the two are measured. Together with the torsional
stiffness of the torsion wire, and with the geometry of the cylinders, the
shear moduli of the material can be calculated. By changing the angular fre-
quency w of the oscillation, it is possible to investigate the part of the shear
modulus in phase with the oscillation, G', and the part out of phase, G", as a

function of w.

If the deformation is sufficiently small, so that the behaviour of the material

is in the linear region, the shear moduli are given by:

Dl €ao | 2
3' = o f——cOos8 @ - 1) + (" (IV.1)
3 DT D
2 “Co 2
D, e
~n _ 1 "ao
G = 5 sin @ (IV. 2)
2 “co

where D] torsional stiffness of the wire

[)2 geometric constant for the two cylinders

—4% (IV. 3)
R
u

1)2 =

Ri diameter of the inner cylinder

Ru diameter of the outer cylinder; h length of the cylinders




For the interpretation of the measurements only Dl/DZ and I/D2 are re-
quired, these were obtained by measurements with a non-elastic liquid of
known viscosity. Another method was a direct measurement of D1 and calcu-
lation of D2 from Eq. (IV.3). The two methods agreed within a few per cent,.
The diameter of the outer cylinder was 0. 900 cm, it was made of glass in
order to enable inspe ction of the sample. The diametersof the inner cylinders
were 0.500 and 0. 700 cm, the lengths were 5.0 cm. The wires used had
diameters of 0,10, 0.07, 0.05, 0.03, 0.02 and 0.01 cm. The constants Dl and
D, are given in Table IV. 1. The values of I were calculated from the reso-

2 1

nance frequency of the system™’/, the values are also given in Table IV. 1.

Table IV. 1
nominal D, diameter D, 1/ D,
diameter cylinder
wire 3
cm dynecm/rad cm cm g/em
0.01 142 0.500 5.68 0.0746
0.02 2172 0. 700 19. 45 0.0516
0.03 1.34 x 104
0.05 1.04 x 10°
0.07 4.21 x 105
0.10 1.59 x 10°

i -4
The measurements of € , € and €__sin ¢ were accurate to 1.4 x 10
ao co ao

radian, the lowest values actually measured were at least about 0. 008 rad.,
and in most cases considerably larger (0.05 to 0. 2 rad.). This gives as the
minimal accuracy about 2 %. The accuracy of G' and G" can then be estimated
in each case from Eqs (IV.1) and (IV. 2). The estimated overall accuracy was

about 5 %.

The inner cylinder was centered either by a magnet at the bottom (for solu-
tions) or by a second torsion wire at the bottom (for melts). The second tor-
sion wire gives a contribution to G' only, as this contribution was considerably

less than 1 % for all measurements, this effect was neglected.

2. Reduction of measurements

In order to compare measurements performed at different temperatures, a
temperature reduction scheme was proposed empirically by Ferry and\co-
workers“ This was later theoretically justified by the molecular theo’ries
discussed in Chapter II. Eqgs (II. 72) and (II. 73) give a connection between the




relaxation times and the shear moduli.

A change of temperature has three different effects on the moduli:

(a) each rela xation mechanism has a contribution to the moduli proportional

to kT, according to the molecular theories;

(b) the density P of the material changes with temperature, so that the num-

ber of relaxation mechanisms per unit volume changes;

(c) the relaxation times are temperature dependent.

In order to account for the changes in the moduli due to effects (a) and (b),
the moduli are divided by a factor PT:

G' " G" - wng
Gl = o Gl = —r— (IV. 4)

Mg is the solvent viscosity, for a melt TIS = 0,

If all relaxation times change by the same factor a(T, ’I'o) when the tempera-

ture is changed from an arbitrary reference temperature 'I‘o to T, we get:

T (T)
a(T,T, ) = ag = ;1;-(.1.;)_ (IV. 5)

The simple index T can be used, because T0 will be indicated in each case.
Since ap is assumed to be the same for all relaxation times, all functions of
the relaxation times will change by simple functions of ap. Modulus measure-

\ ments at different temperatures will be expressed in the following by the re-
duced moduli given in Eq. (IV. 4) as a function of wang, with ap defined by Egq.
(IV.5).

Experimentally, log ap was determined by measuring the distance along the
log w-axis, between curves giving log G|, or log G'I' as a function of log W, at
the two temperatures T and To. A check on the consistency of the results is,
that ap as determined from G;_ and G'l: should be equal, and that ap should be
constant along the curve at different values of W . A typical example of such a
reduction scheme is given in Figs 1 and 2 for the molten high density poly-
ethylene HDPE-NMWD, The measurements can be reduced very well, within
experimental accuracy the temperature shift is equal for G; and G;, and in-
dependent of W. Over a sufficiently small temperature range it can sometimes
be assumeda), that the relaxation times have a temperature dependence of the
type:

H

a

_ RT
TT) = T (T e (IV. 6)




“'1 is called the apparent flow activation energy, R is the gas constant,
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Fig. 1.

As the temperature dependence of all relaxation times was found to be the
same, a plot of ap asa function of 1/T will yield H;l. In Fig. 2, log apnasa
function of 1/T is given for the polymer of Fig. 1. Values of ap obtained
from G'I", the circles, are in good agreement with those obtained from G '1
the triangles. From the slope of the plot through the experimental pmms,ﬂa
can be determined from the equationHH):

d(log uT) e
H_ = 2.303 RW (IV.7)

The reduction given above is only feasible,if the deformation is in the linear

region

HDPE -NMWD
o from G*
from G'

02{ o9 ay
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The maximum shear during the dynamic measurements is about 0. 05 to 0. 2.
The moduli were measured as a function of deformation at several frequen-
cies, in order to investigate, whether the material was still in the linear re-
gion during this deformation. Fig. 3 gives G' and G', as a function of the
maximum deformation Yo,for a polydimethylsiloxane with a zero shear vis-
cosity T]o of 105 poise at 25 °C. This material was chosen for its chemical
stability. It is clear that within the accuracy of the experiment, G' and G" are

independent of Yo’ so that the material is indeed in the linear region.
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3. Measurements

Measurements were performed both on polymer solutions and on melts.
Measurements on solutions were all performed with magnetic centering of the
inner cylinder. Measurements on melts were all performed with the inner
cylinder kept centered by means of the lower torsion wire. All measurements
have been reduced as indicated in Section 2, except those for solutions of poly-
styrene III in bromobenzene, where all dynamic measurements were performed
at 25 °C only.

Fig. 4 gives G;‘ and G;,reduced to 25 OC,as a function of wan for a series of
solutions of polyisobutene B 200 in the low molecular weight polyisobutene B 1,

at concentrations from 0. 2 to 5.0 % by weight.
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Ha determined from Eq.(IV.7) varied from 8 to 10 kcal/mol, the values at the
two lowest concentrations are the least accurate. This can be compared with
a value of about 16 kcal/mol for bulk high molecular weight polyisobutene,

also at 25 OC3)4).




o
A00%. BBO%. S30%; 535% B 100 i celane
nd 5% 8200 in setane

Reducad to 30°C

Fig. 5

Fig. 5 gives (}‘r and (,;;",as a function of wa,r,fox' a series of solutions of poly-
isobutene B100 in cetane, reduced to 30°C. Included in these graphs are the
corresponding measurements on two solutions of 5 % polyisobutene B200 in
cetane, prepared by two different methods, as indicated in Chapter III. 3.
The two solutions gave results which were in good agreement. Table IV. 2
gives G' and G" at a number of frequencies for the solution prepared by
evaporation of a dilute solution (evaporated),and for the solution prepared by

standing at room temperature (room temperature).

Table IV. 2

rad/sec evaporated room temperature

dyne dyne
G' 2 aG" G' 2 G"

cm cm

0. 099 116 116 103 115
0. 396 235 186 236 189
158 433 247 437 251
6.28 684 307 677 300
25.1 980 365 971 357
95 1370 456 1358 414

Comparing these measurements with those performed on B100, it is clear
that a reduction scheme,based on a single shift factor a(I\Il, 1\‘12),cannot shift
the 5 % B200 solution along either of the axes to get an overlap with a solu-
tion of B100 of the same concentration. For this reason,no reduction with

respect to molecular weight was attempted. In terms of the spectrum of re-
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laxation times this means,that the necessary shift factor a(Ml, Mz) would de-
pend both on molecular weight,and on the magnitude of the relaxation time for

these materials

Fig. 6 gives G' and G" as a function of w, all at 25 °c,for solutions of 0. 070,
0,15 and 0. 25 g/cm3 polystyrene III in bromobenzene. The value of Ha‘ esti-
mated from the dependence of viscosity on temperature, was 5 kcal/mol for
these solutions.

04
|

Fig. 6

Fig. 7 gives G/ and (J"I'_ as a function of wa,, for polydimethylsiloxane RS, re-

I
duced to 25 °C; Figs 8 and 9 the same for the polystyrenes S 111 and B 8, and
Fig 10 for polyethylene melts, HDPE-NMWD, HDPE-BMWD, LDPE-NMWD
and LDPE-BMWD, all reduced to 190 °C. The molecular parameters of the

polymers are given in Chapter III. The polymer melt experiments will be pub-

; 17)18
lished elsewhere )18)
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MW/Mn being only 1.05, shows the typical features which are generally attrib-
uted to the entanglement structure4): G'r as a function of wa., has an inflection

point, G'l' shows a maximum and a minimum, Polydimethylsiloxane RS, which

Polystyrene S 111, which has a very narrow molecular weight distribution,

has an Mw/Mn ratio of about 2, shows the same features to a lesser extent.

The other polymers, with much broader molecular weight distributions, do not

show the maximum in G'!' any more.

Flow activation energies

liquid

Table IV. 3

PIB B 200 in B, 0.2 %
BIB B 200 in Bl 0.4 %
PIB B 200in B 1.03 %
PIB B 200in B 2 %
PIB B 200 in B 5 %o
PIB B 100 in cétane 3. 90 %
PIB B 100 in cetane 5.39 %
PIB B 100 in cetane 6. 86 %
PIB B 100 in cetane 8.54 %
PS III in bromobenzene 7 to 25 %
PDMS RS

PSS 111

PSBS8

HDPE-NMWD
HDPE-BMWD
LDPE-NMWD
LDPE-BMWD

“

10°4

|

Polystyrene 5111
reduced to 190°C

Gy en GF
(dyne/cm? )

» 140°C
* 159+C
* 190°C
v 224°C

temp.

25
25
25
25
25
30
30
30
30
25
25
190
190
190
190
190
190

G, open symbols
G% tilea symbols

— YAy lraa/sec)
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Fig. 8

Values of Ha determined according to Eq. (IV.7) are given in Table IV. 3.
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In Fig. 11, G;_ and G: as a function of wa,n, reduced to 25 °C, are given for
5 % solutions of polyisobutene B200 in cetane and in polyisobutene B1l.
According to Eq. (II. 36) and (II. 37) the ratio of the relaxation times for the
two solutions should be the ratio of the two solvent viscosities Ng- As the
viscosity of cetane at 25°C is 0. 0309 poise, and that of B1 0. 236 poise, the
ratio is 7. 6. The shift factor along the wap axis, necessary in Fig. 11 to bring
the curves for the two solutions to coverage, is about 7.4. This value agrees
within about 5% with the ratio of the solvent viscosities. Because the original
measurements, before reduction, were performed over temperatures ranging
from 1°C to 60°C, the actual change in viscosity was by a factor of about 70.
The two solvents are very similar chemically. For these reasons this result
would seem to exclude any appreciable influence of internal viscosity for poly-
isobutene (see Chapter VIII. 4).

4. Relaxation spectra

As was shown in Chapter II, the Rouse and Zimm theories predict a line
spectrum given by Egs (II. 36) and (II. 37). These equations are only valid for
monodisperse polymers, however. For polydisperse polymers, the Rouse
theory gives (II. 47). Phenomenologically, only a continuous spectrum is
accessible, which leads logically to the generalized Maxwell model given in
Eqs (II. 72) and (II. 73). Inversion of Egs (II. 72) and (II. 73) gives, in principle,
H(T). Analogous to the reduced moduli Glr and Glx: we define:

H(7) = ﬂ(p,'r‘l (IV. 8)

where Hr/k is proportional to the number of relaxation mechanisms, each

with a contribution kT, per gram of material.



In the literature3)4), many approximation methods of obtaining H(7T) from
measured dynamic shear moduli are given. All methods involve taking differ-
entials with respect to @ from G' and G, and most are rather laborious.
For ease of determination the method of Ninomiya and Ferry was chosen4)5).
With this method, G' and G" (or reduced values) are taken at equal intervals,
log a, on the logarithmic frequency scale above and below the angular fre-
quency @ = 1/% for the value of the relaxation time % at which H is re-

quired. This gives4)5):

o) = G'(aw) - G (0/a) _ a®[G'(a%0)-GY(w/a?) - 2 G'(awhG'(w/a)]
() 3Tha T3
(@a” -1)"2Ina (IV. 9) (f
w=1fk
agr) = 29 (2) KYZ—"‘F [G"(aw + G"(w/a) - 2 G"()] (IV. 10)
a-1
w=1/%

As pointed out ins). Eq. (IV.9) in the limit a=* 1 corresponds to the fourth
approximation method of Fujitas). Eq. (IV.10) corresponds in the limit

a = 1 to the third approximation method of Schwarzl and Staverman7).

As proposed by Ninomiya and Ferry, a value for log a of 0. 2 was chosen.

Fig. 12 gives Hr as a function of log T, reduced to 25 9c, for solutions of
polyisobutene B 200 in B 1. Although at large values of T the curves for dif-
ferent concentrations are very different, at smaller T-values Hr is very
nearly proportional to the concentration. Values of Hr for the different con-
centrations, calculated from the experimental value at 1 % at the small T~
end of the spectrum, assuming them to be proportional to the concentration,
are indicated in Fig. 12 by dashed lines. The agreement is reasonable.

The longest relaxation times increase very rapidly with increasing concen-
tration. The 5 % solution has relaxation times well in excess of 103 sec.

These are very long relaxationtimes, not normally associated with a liquid.

Fig. 13 gives the relaxation spectrum for solutions of polyisobutene in ce-
tane, reduced to 30 °C. Fig. 14 gives the relaxation spectrum for polydimeth-
ylsiloxane RS, reduced to 25 °c, and Fig. 15 gives relaxation spectra for the
other polymer melts, all reduced to 190 °C18)‘ The narrow fraction S 111
shows a maximum in Hr at T = 0.1 sec, and a minimum at T = 0.0015 sec.
These two features, which can be attributed to the entanglement network‘;)1 l),
have nearly disappeared in B 8, which has a broader molecular weight dis-

tribution.
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ethylenes in Fig.

lower relaxation times, the value of Hr is very much larger for the broad
molecular weight fraction HDPE-BMWD than for the narrow fraction HDPE-
NMWD. Part of the difference, however, is due to the big difference in molec-
ular weight between the two polymers. The low density polyethylenes in Fig.
15 show very little difference between each other, although the molecular
weight distribution is supposed to be very different for the two. This is prob-

ably due to long-chain branching.
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The shape of the curves giving the relaxation spectra of the high density poly-

15 is very different from that for the polystyrenes. At the
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5. The entanglement network

In order to explain the very large increase in viscosity and elasticity with
increasing concentration and molecular weight of polymer solutions and
melts, an entanglement network has been postulated4)8). This probably means
for non-polar polymers,that molecules lie in long range contour loops around

each other, which impedes their movement4)8).

The zero shear viscosity T)o of polymer melts, when plotted on a log-~log
scale as a function of the weight average molecular weight Mw. as defined by
Eq. (I.5), shows a discontinuity at a certain molecular weight Mc' At molec-

ular weights below M My is about proportional to M_, at molecular weights
5 3.4 3)4)8)20)
o . This has

above Mc‘ the viscosity Mo is about proportional to M
been attributed to an entanglement network®). If the molecular weight between

entanglements is called Me' one can put

M =k M (IV.11)
c c e

There is considerable disagreement in the literature about the relation be-

tween Me and MC; values for kC have been proposed of 2 8), 1.5 9), or 1 10).

In the interpretation of the dynamic measurements an uncertainty of a factor
two is also presenll), as a result of disagreement about the proportionality
factor between the number of crosslinks and the shear modulus in a cross-

linked network.

By a number of authors the following relation between the number of entangle-
ments and the associated maximum in the loss modulus, G;;,1 was proposed

ax
k_ RT
M, = —¢ (IV. 12)
max

where ke is 0. 32 according to Marvinla).

Another method of obtaining Me was given by Chémpff and Duiser A 1), who

pointed out that the total area under the curve giving H(7T) as a function of

In T, from the minimum in H(T) to the highest relaxation time,is equal to
PNakT/Z Me' The values of Me obtained by the different methods are given

in Table IV. 3. Literature values were obtained from viscosity measurements,

and therefore give Mc’

Table IV. 3
lymer M_ from G" (Marvinls)) M _(Chémpff and Duiserll)) 1it, 16)
poly e max e P ¥
PSS 111 29600 12700 32000
PSB 8 38800 -
PDMS RS 30000 - 29000




6. Discussion of results

As discussed in Chapter II, the dynamic viscosity 7'(w) and storage modulus

G'(w) are related to the viscosity and normal stress difference P11 dur-

-~ P
ing steady shear flow (EqgII. 9) and (IL. 10)). The two viscosities will be
compared in Chapter VI; G'(®) and P11 ~ Pgs will be compared in Chapter

VI

Another comparison between (molecular) theory and experiment is possible,
if the molecular weight distribution of the polymer is known. Experimental
values of G(W) and G;(w) are compared with calculated ones in Figs 16 and
17. Fig. 16 gives a dilute solution, 0.2 % B 200 in B 1. The symbols have
the same meaning as in Fig. 4, the dashed lines were calculated from Eqgs
(I1. 47), (II.43) and (II. 44), using the molecular weight distribution given in
Chapter III. 2.

Q2% B 200in B
25%C

164 <
G o Gf == = — cglcuated /,:,//
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7 Fly !
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The same comparison is given in Fig. 17 for the melt PSS 111, with exper-
imental points as in Fig. 8, the dashed lines were calculated from Eq. (IL. 47),
(I1. 49) and (I1. 50), with the molecular weight distribution from ChapterIII. 2.

The agreement between calculated and experimental results is satisfactory.
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Fig. 17. G| and (i'[: calculated from Eqs (II.47) - (1. 50),with M, =30. 000.

According to the extension of the Rouse theory movements of a polymer
chain, in concentrated solutions or melts, can be described by an enhanced
friction factor. This would mean, that for a number of solutions of the same
polymer, to a first approximation the maximum relaxation time & will be
proportional to the total viscosity (zero shear viscosity) of the solution.

In Fig. 18 log 5 70 is plotted as a function of log TJO (zero shear viscosity).

The experimental points are in fair agreement with a line of slope 1.
F I g
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V NORMAL STRESS DIFFERENCES

1. Apparatus

Two types of apparatus were used for measurements on solutions: a parallel
plate and a cone~and-plate viscometer, which have been described beforel),

only the main points will be repeated here.

A schematic drawing of the cone-and-plate apparatus is given in Fig. 1. The
rotating member, the cone in Fig. 1, can be rotated at different speeds,

both clockwise and anti-clockwise. In the non-rotating plate three small holes,

A, B and C, connect the liquid in the gap with a pressure gauge, with an es-

timated accuracy of about 10 dynes/cmz. Measurements at different posi-

tions in the gap are possible by moving the bottom plate in Fig. 1,as indicated

by arrows.

Fig. 1

Pressures are measured by balancing them against a gas pressure of known

. 1)
magnitude across a membrane ‘.

Before and after the experiment, at zero
shear rate , the zero pressure is checked. This means,in effect,that the zero
shear hydrostatic pressure is subtracted, so that Pyo is measured (see Eq.
(II. 3). As before,flow lines are in the 1-direction, the 2-direction is perpen-
dicular to the planes of shear, the 3-direction is chosen so that a right-hand-
ed coordinate system results.

From the equations for the equilibrium of forces (see Chapter II), functions

1)2)3)_

of two normal stress differences can be obtained Normal stress meas-

urements easily develop systematic errors, for instance as a result of in-

1)3)

accuracies in alignment of the apparatus A few other sources of system-

atic errors were also investigated in Sections 2 and 3.

Most measurements described in this chapter were performed with an appa-

ratus kindly made available by Dr. A.S. Lodge, at the University of Man-




chester, College of Science and Technology. With this apparatus measure-
ments are performed at temperatures near room temperature, on liquids
having viscosities not exceeding 103 poise and with low volatility. The result-
ing choice of experimental liquids has been explained in Chapter IIl. Five lig-
uids were investigated: three solutions of polyisobutene B 200in B 1 with

concentrations of 0.2, 1.03 and 2 volume per cent. ; a solution of 15 g/100 ml

of polystyrene III in bromobenzene; and a Newtonian oil, polyisobutene B 1.

The hydrostatic pressure p depends partly on the surface tension of the lig-
uid. According to calculations of Slatter_ys), the contribution of surface ten-
sion to p will be about 2 o/ ch for a cone-and-plate apparatus,and O/Rpp for
a parallel plate apparatus. ch or R__ is here the radius of the apparatus, ©
is the surface tension of the liquid. For a 0.2 % solution of B200 in B1, a
value of about 0 = 30 dynes/cm was estimated by a capillary rise method.
This would give a contribution to p of 14 dyne/cm” for the cone-and-plate,and
7 dyne/cm2 for the parallel plate apparatus, a small effect. Moreover, it is
only assumed that this contribution is independent of shear rate, a very rea-
sonable assumption, For all measurements the rotating member was rotated
both in the clockwise and in the anti-clockwise directions. The average of the
two pressures was used, the two measurements agreed within 3 % or within
10 dyne/cm2 at low pressures. No systematic difference was found (this dif-
ference is very sensitive to errors in the geomelrys)). A few typical results

will be given in Sections 4 and 5.

Before each set of measurements the apparatus was lined up, so that the gap
angle in the cone-and-plate system was constant within + 0. 001 radians, or
about 1 %. The distance between plates in the parallel plate system was con-

stant during rotation to within better than 1 %.

The temperature was kept at 25 ve +0.1 e by means of a thermostat, the
room temperature was 25 oc ¥ 1 °C
The radii Rc and R___ were both 4.40 cm, the gap angles of the cones used

were 0.0565 and 0, 0912 radians.

In later sections, the index pp refers to parallel plate measurements, cp re-

fers to cone-and-plate measurements.

In addition to measurements on solutions, a few recovery experiments on the

polymer melt pdms RS are given in Section 5.




2. Inertial forces

The effect of inertial forces on pressures in the parallel plate system has

been calculated by Greensmith and Rivlins). who get the approximate formula:

pir) =5 ©2 p(x® -R2 ) +py (V.1)

p'(r) is the pressure change due to inertial forces
o} is the density of the liquid

w is the speed of rotation in rad/sec

r is the distance from the axis of rotation.

)

L 4 -
By a more exact calculation, Kaye '/ obtained the result:

" = 3 2, 2 2 5
p(r) = 55 p@ (r” - RY) + pp (V.2)
Eq. (V. 2) is valid for both the cone-and-plate and the parallel plate system.

In both equations the rim pressure Pr is not specified.

Figs 2 and 3 give measurements of Pyy @8 2 function of 1‘2 for a parallel plate
and a cone-and-plate system at a number of different values of w. The mate-

rial chosen was polyisobutene B 1, a Newtonian oil with a viscosity of 0. 236

poise at 25 °C. This liquid was expected to have no noticeable normal stress
1 differences in the shear rate range investigated. Dashed lines in Figs 2 and 3
give pressures calculated from Eq. (V. 2). The agreement between experi-
l mental and calculated values in reasonable. At higher speeds, w > 10 rad/
sec, pp is no longer equal to zero, probably as a result of radial flow in the
gap. At lower speeds, w < 10 rad/sec, PR is zero.
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In the following sections, corrections for inertial forces were applied in
those cases, where the correction would be larger than 1 %. This meant,
that in the experimental shear rate range, no corrections were necessary
for the 1.03 % and 2 % solutions. For the 0.2 % and 15 % solutions the cor-
rections were fairly large. As the procedure for inertial corrections is only
justified if the correction is small, the measurements on the last two solu-

tions will be less accurate than those on the 1.03 % and 2 % solutions.

For all measurements pp was assumed to be zero (w < 10 rad/sec).

3. Influence of surrounding liquid.

All measurements in Sections 4 and 5 were done with the sea of liquid method,
as shown in Fig. 1. Here the liquid not only fills the gap, but also extends
beyond the gap. To get an estimate of the influence of the surrounding liquid,
some measurements were done with -a 1 % solution of B 200 in B 1 in which
the liquid filled the gap only (as in Fig. 4),or with the sea of liquid method

(as in Fig. 1). The liquid boundary in Fig. 4 does not have a spherical shape,
so that the flow at the boundary is somewhat dislurbedl).
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A. Cone-and-plate

Fig. 5 gives Pyy @85 & function of log r both with (open symbols)and without
(filled symbols) surrounding liquid for the indicated rates of shear. It is usual

to plot p,, as a function of log r, this is advantageous because as a result of

the constant shear rate in the cone-and-plate apparatus a straight line can be

expected (see Sec. 5). This is not the case with parallel plate measurements,

because here the shear rate in the gap is not constant (see Sec. 4). The

agreement between the two sets of measurements is quite good, which indi-

cates that surrounding liquid has very little influence on p,, in this case.

Moreover, adding small amounts of liquid,which changes the shape of the lig-

uid-air boundary slightly, had no influence on pressures measured near the

rim.
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B. Parallel plate

Fig. 6 gives measurements of Pyy as a function of r with (open symbols) or
without (closed symbols)surrounding liquid. Here also,the difference is zero

or very small.

Summarizing, the influence of surrounding liquid on the slopes of the lines
in Figs 5 and 6, and on the rim pressures (r = 4.4 cm), is very small or

zero,both for the parallel plate and for the cone-and-plate systems.
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4. Parallel plate measurements

If the rotating part in Fig. 1 is a plate at a distance h cm from the lower
plate, the shear rate in the liquid between the plates will increase linearly
with r, the distance from the axis of rotation:

q=== (V.3)
h

w is the speed of rotation of the upper plate.

The alignment of the apparatus was checked by rotating the upper plate
clockwise and anti-clockwise. Two typical sets of measurements, given in

Fig. 7 (0 clockwise: 8 anti-clockwise), are in very good agreement.

In Figs 7 and 8 (for the 2 % solution of B 200 in B 1, values of p22(r) are
plotted as a function of r. The relationship is non-linear in all cases. The
lines giving p,,(r) as a function of r at different values of w, all concur at
one point, at ;“value of Pyo of about zero, and at r is about 3.9 cm. Values
of Pyq at the rim, r = 4,4 cm, are all positive. According to the results in
the preceding sections,this cannot be attributed to the surrounding liquid or

to inertial effects.
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A simple description of the system is obtained with a eylindrical coordi-

nate system, the z-axis being the axis of rotation. If it is assumed that nor-
mal stress differences at a point in the liquid depend on the local shear rate
only, we get from Eq. (11.43)7)9):
3P 3 (Pyy = Pag)

e 22 _ 3 22 33 =
Apph I >0 =Py " P33 + qa————q (V.4)
From the slopes of the lines in Figs 7 and 8 the combination of normal
stresses ,given in Eq. (V.4),can be determined at the local shear rate
given by Eq. (V.3). As measuring slopes is not very accurate in principle,

an alternative determination of App due to Markovitz and Brownz) was also
used. These authors use the relation:
3 [log pyy(r) = Pyy(0)]
= = P 22 22
A o0 [pyo(r) = Pyy(0)] 5 e e) (V.5)

where p22(0) is de value of Poo at the axis of rotation. Using Eq. (V.5),
values of & _ as a function of q were obtained, which were in excellent

agreement(within 2 %) with those obtained from Eq. (V. 4).




The parallel plate results of 4 _ for the solutions investigated, 0.2, 1.03
and 2 % B 200 in B 1, and a 15 % solution of polystyrene III in bromobenzene,
are given in Figs 11 - 14, The measurements with different distances between

the plates agree quite well, the scatter of the points is about 5 %.

5. Cone-and-plate measurements

If the rotating part in Fig. 1 is a truncated cone, so that the top of the cone

coincides with the plane of the plate, q will be:

o
CRE (V. 6)

9 is the gap angle. If 6( is small, as in this case, the shear rate in the gap

will be constant to within 1 - 2 %6)7)4

The forces in the liquid can be described
in a simple way by a spherical coordinate system. Eq. (IL 5) gives then,
assuming again that normal stress differences at a point depend on the local
shear rate only7)9):
_ 2 P32

Acp'ainr =Pyt Py3 " 2 P33 (Va3

According to Eq. (V.7), pzz(r) plotted as a function of log r, will give a
straight line for cone-and-plate measurements, because g is constant in the
gap. In Figs 9 and 10 this is done for the 2 % solution of B 200 in B 1.

J - 4000
-3 000 2% 8 200
cone - and - plate 2% 8 200 In B
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000 4 193 -
¥ 3 145 -
22 e
St -2000 a7 -
cm? 28
~1000 4
-1000
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+500 + v it = I
-05 o 0S5 —e 0
oy 1 10
Fig. 9 Fig. 10

It is clear that the lines are straight down to the lowest values of r (0.25 cm).
Also it appears that the lines for different shear rates cross at a value of r =
3.9 ¢cm and Pog about zero. Using Eqs (V.6) and (V. 7), Acp can be deter-
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4. Measurements with two different cone angles, in Fig. 12, are in excellent

agreement.

The alignment of the apparatus was checked (Fig. 9) by rotating the cone

clockwise (0) and anti-clockwise (4). The agreement between the two sets of

measurements is good.

Another method of measuring a normal stress difference, in this case P11 Pagyr
from cone-and-plate measurements, is obtained by measuring constrained
recovery after steady shear flow. According to the network model, if Yr is

7).

the shear recovered after infinite time

P11 “Pga ™ 2P1p Yy

In Table V.1 the results for polydimethylsiloxane RS at 20 °C are given.

mined, the results are given in Figs 11 to 14 for the same solutions as in Sec.

Table V. 1.

Constrained recovery of PDMS-RS after steady shear flow, 20 (e

q gec | 2 Py Yy d_yne/cm2
3.1 x1072 6.9 x 102
3.6 x1072 6.0 x 102
5.5 x10°2 7.5 x 102
6.7 “x1072 2.0 x 10°
8.2 x10°2 1.8 x'10°
0.118 2.7 x 10°
0.17 6.0 x 10°
0.24 6.6 x10°
0.55 2.0 x 10

The measurements were performed in a cone-and-plate viscometer, the angle
over which the cone turned back after steady shear flow, was measured. The

results will be compared with flow birefringence and dynamic measurements

on the same material in Chapter VIIIL. 2.

The total force trying to separate the cone and plate during steady shear flow
can also be used to estimate normal stress differences. As shown by L,odge-7

this measurement gives P11 ~ Pgs: This method was not used in this investi-

gation.



6. Rim pressures

The experimental values of Py, are positive at the rim for both parallel plate
and cone-and-plate measurements. It was demonstrated in Secs 2 and 3 that
this is not caused by inertial forces or by the surrounding liquid at the low
speeds of rotation used. If it is assumed that Pgg at the rim is zero (the pres-
sure is equal to atmospheric pressure), then it follows that:

Poo (rim) = Pyg = P33 (V.9)

This implies that the hydrostatic pressure p is independent of shear rate.
Very few rim pressure measurements are given in the literaturel)s). In one
case it was stated that rim pressures in the parallel plate system were zeros).
Inspection of the results given shows, however, that the small rim pressures
reported in this chapter would not have been detected with those experiments,

because no pressures near to the rim were actually measured.

All results are given in Figs 11 to 14. Rim pressures determined by cone-
and-plate or by parallel plate measurements are in reasonable agreement.

The large scatter is due to the low pressures involved, compared to an esti-
mated overall accuracy of individual pressure measurements, about 10 dyne/
cmz. The extrapolation procedure is also a source of errors, the magnitude

of which is difficult to estimate. Extrapolation of a straight line, for cone-and-
plate measurements, is more accurate than extrapolation of a curve,for paral-
lel plate measurements. For this reason, rim pressures determined by the
cone-and-plate method are more reliable than those determined by the paral-
lel plate method, which show larger scatter

Especially parallel plate measurements for the 1.03 % B 200 solution, show a
systematic shift to lower rim pressures as the distance between plates in -
creases (Fig. 12). It seems likely that the flow at the rim will become more
disturbed as the distance between plates increases. Measurements performed
with the smallest distance between plates are in good agreement with cone-
and-plate results, as expected. This is a strong indication that the assump-
tions used in Eq. (V. 9) are justified.

7. Comparison of parallel plate and cone-and-plate results

In Figs 11- 14 all experimental values of Acp' App and rim pressures, Arim'
are combined. Ap was obtained from Egs (V. 3) and (V. 4) or (for the 0.2 %
solution and for some results of the 1.03 % solution) Eq. (V.5). Measure-
ments of 4 _ at different distances between plates are in good agreement; use

of Eq. (V.4) or (V.5) gave no noticeable difference. Values of Acp from
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change in slope from 1.6 to 2. 0 at shear rates above 150 sec”
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cone-and-plate measurements, with gaps of different angles, are also in good
agreement . All results in Figs 11 to 14 are well represented by straight lines
on the log-log plot with slopes of 1.6-2.0 (0.2 % solution), 1.2 (1.03 % solu~-
tion), 0.9 (2 % solution) and 1.6 (15 % solution). (The 0. 2 % solution shows a
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As already shown in Sec. 6, the lines giving Py, s a function of log r for
cone-and-plate measurements cross in one point, at r = 3.9 cm, with Pop
zero. As the rim pressure is equal to Py ~ P33 and the slope Acp is equal to
Py " Pyt 2(p22 - p33), from Eq. (V.7), this concurrency gives a constant
ratio between P11 ~ Pgy and Pyy - Pgg:

In the cone-and-plate viscometer the shear rate is approximately constant
throughout the gap. Eq. (V.7) gives on integration for Pyo at two different
radii Rl and ch (the rim):

R
5 - 1
pZZ(Rl) = pzz(rlm) A (pll + pzz -2 p33) In ﬁcp (V.10)

If Pyy is zero at R = Ro, and equal to Pyo = P33 at the rim, according to Eq.
(V.9), it is possible to calculate the ratio between P11 ~ Pgy and Pgg = Pag
from Eq.(V.10); Ro was found to be 3.8 - 3.9 cm for all solutions, independ-
ent of concentration or shear rate, This gives for the ratio between P{1 = Pya
and Pyp = P33 @ value of about 6 for all solutions, independent of concentra-

tion or shear rate,

Inertial corrections for the 0.2 % and 15 % solutions were very large, so that
at the highest shear rates corrections to Py near the axis of rotation were up
to 50 % of the total value. As a result these measurements are less accurate
than those for the 1 % and 2 % solutions, where inertial corrections were al-

ways smaller than 1 %.

It is possible to obtain other estimates of Py1 ~ Pas and Pyy = Pag from the
data in Figs 11 to 14. An independent value of Pyy = Pgy can be obtained from
flow birefringence measurements, described in Chapter VII, combined with
viscosity measurements given in Chapter VI. The different determinations of

the normal stress differences will be discussed in Chapter VIIIL.
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V1 VISCOSITY MEASUREMENTS

1.

Methods

As was pointed out in Chapter II, the interesting components of the stress
tensor for an incompressible liquid in laminar shear flow are the shear stress
Pyo and the two normal stress differences P11 ~ Paa and Pyy ~ Pag: It will be

assumed that the stress tensor is symmetric, so that Pig = Pyy-

Because all liquids which were investigated had a non-Newtonian behaviour,

with the exception of Oppanol B 1, is not a simple function of shear rate.

P12
For this reason the shear stress was measured over about the same range of
shear rates as that,over which normal stress differences were measured (see

Chapter V).

Several different methods of viscosity measurement were used. This was nec-
essary both as a result of differences in the nature of the liquids investigated,
and because of the wish to compare measurements made by using different
techniques. For example, the apparatus used to measure viscosities of poly-
mer melts at 190 °C, a rectangular slit, was very different in construction
from the apparatus used to measure the viscosity of dilute polymer solutions
at 25 °C, a glass capillary. In the second case the forces can be a factor 106
smaller than in the first case. Often it is even necessary to use different
types of viscometer for different shear rate ranges. For this reason viscosi-
ties of polymer melts were measured at low (< 1 sec_l) shear rates with a

cone-and-plate viscometer, at higher shear rates rectangular slits were used.
2. Apparatus

A. Capillary measurements

The most commonly used viscosity measurement is the capillary method. Here
a certain volume of liquid Q flows per second through a capillary with radius

Rc and length LC under a difference in hydrostatic pressure A p.

With cylindrical coordinates, the liquid flowing in the z-direction, Eq. (1I.4b)

1 : =
+ — +Fpr2*F =0 (VL. 1)

where Py, is the shear stress,

r the distance from the z axis and

F
z

is the volume force.




The assumption is made, that the flow is stationary along the length of the

capillary. In that case apzz/az is zero, so thatz)g):

P,(r) = 5 2& (V1. 2)

For a capillary with zero length a pressure difference, the entrance effect,
will still be necessary to maintain the flow. In order to obtain g—g from meas-

urements of the change in p with increasing capillary length, the entrance

effect can be neglected, so that (VI. 2) becomes:

5
\
[
effect must be subtracted. If the capillary is sufficiently long, the entrance l

p.(r) = 44— (VL. 2"

c

Shear rates at the capillary wall were calculated by means of the well-known

equationl)z):
a(R) = e lige 20nQ). ) (V1. 3)
xR 3 (InAp)

All measurements on solutions were performed with an Ubbelohde viscometer,
where a constant volume of liquid (3. 030 ml) flowed under an adjustable gas
pressure through a capillary with a length of 6.3 cm and radius 0.052 em, in a
measured time of t seconds. Inertial and entrance effects were neglected. The
viscometer has been described in detail by Seliers). All measurements were

performed at a temperature of 25 + 0. 02 o

For the polymer melt pdms RS, measurements were performed with capillaries
of different lengths and diameters of 0. 2560 cm. Inertial corrections were neg-
lected, but the entrance effect was subtracted. The output of the capillary was
measured by weighing the extrudate, Ap was measured with precision manom-

eters, accurate to better than 5 % of the measured pressure.

B. Cone-and-plate viscometer

The liquid is held between a cone and a plate,which rotate relative to each

other around a common axis. The apex of the cone coincides with the plane of
the plate. Assuming laminar flow in the liquid, the torsion on the cone or plate

is given b_vz)g):

D= s
= =K JT. 4
M., =3 ®Rep, Prg (V1. 4)

If the gap angle is small (less than about 100), the shear rate in the gap is

constant (see the discussion in Chapters II and V) and given by:
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w is the angular velocity of the cone relative to the plate.

8, is the gap angle.

The cone-and-plate viscometer used for viscosity measurements was a mod-

ified commercial apparatus supplied by Farol Research Engineers, Bognor

Regis, England. All measurements were performed at 25 + 0.5 °C. The

cone angle GC was 296!, ch was 3.00 cm.

C. Slit measurements

Viscosities of all polymer melts were measured by means of rectangular
slits. The procedure has been described in the li!eraxux*es), where it was
shown that viscosities obtained this way are in good agreement with those ob-
tained by using capillaries. The velocity profiles of polymer melts flowing
through a slit, were also found to be in good agreement with tHose calculated
from the flow (rux‘vem):

If b is the width of the slit, d the depth and I,S the length, the following equa-
tions were obtained, with the same assumptions as for capillary measure-

mentss)g), if b >>d:

Pya(W) = _T‘Ez A,Qd' (V1. 6)

qw) =29 [2+ 2nQ)) (VL. 7)
bd” 3(In 4 p)

Q and 8 p have the same meaning as for the capillary measurements;
plz(w) and ¢(w) indicate shear stress and shear rate at the wall along the long
side of the slit. The slit consists of a rectangular channel, with a length of

10 em, width of 1 cm and depth of 0.1 em, with a width-depth ratio of 10. In
the long side of the slit electronic pressure gauges were mounted at two dif-

ferent distances from the entrance.

Measurements were performed at temperatures up to 220 °c, the tempera-

ture was kept constant to + 1 °c.



3. Measurements

A typical example of a measurement of the output of a capillary as a function
of the shear stress at the wall is given in Fig, 1 for a 15 % solution of poly-
styrene III in bromobenzene. The shear stress at the wall was calculated from
Eq. (VI.2'). The slope of the curve through the experimental points was then

determined. From this the shear rate at the wall could be determined, using

Eq. (VL. 3).
15%PS 1
25 In bromobenzene
25+*C

Fig. 1

20

L= qui‘-g'!

10 15

Fig. 2 gives a typical example of the pressures measured along the length of
a rectangular slit, b= 1.0 cm, d = 0. 10 cm, for the molten high density poly-
ethylene HDPE-NMWD at 146 °C and 190 °C, at the output indicated in the fig-
ure. The shear stress was calculated from Eq. (VI. 6). By plotting the output
against shear stress as in Fig. 1, and measuring the slope, the shear rate at

the wall was calculated according to Eq. (VL 7).

bioc HDPE - NMWD HDPE - NMWD
() sebr J 108
e 192°C tvec” 146°C
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120 240
100 200
se
20
80 180
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(1) L s 0o °s 55 .




In Figs 3 to 11 viscosity measurements are given for the materials investi-

gated. In Fig. 3, N(q) = p],)/q, as a function of shear rate, is given for the

solutions of polyisobutene B 200 in B 1 at 25 20 Comparison of capillary

and cone-and-plate measurements for the 2 % solution shows, that they are

in excellent agreement.

10*
B 200 in 8%
Poise
25°C
0? \‘\~ R capifiary
2. v cone and plate
Q':\ W) ———
i 7 @) —-— Fig. 3
- N 1\
0! 1% <*\\_\~ . ‘\\ 2,
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10°
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10" v
0? 107! 10° 10 10? 10° 104

In Fig. 4 the viscosity at 25 °c is

given for the solutions of polystyrene III in

bromobenzene, all measurements were performed with a capillary of length/

radius ratio 121. Measurements on polymer melts are given in Figs 5 to 11.

10
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rial.

2 1 T2
()l =I['ﬂ'(m)] + [7]“\«_.))]2}5 = G

In Figs 3 to 11, also the dynamic viscosity M(W) = &

of the complex dynamic viscosity, defined as:

N

+ G"2
w

are given. These results were taken from Chapter IV.
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and the absolute value

Fig. 6

Fig. 7

All measurements were performed with rectangular slits, except for polydi-
methylsiloxane RS, in Fig. 5, where capillary measurements are indicated
by circles, and cone-and-plate measurements by squares. The measurements

are in fair agreement with slit measurements, triangles on the same mate-

(VL. 9)




HDPE - NMWD

0 e 7'(w)
a mn
°* 7N (q)
y 192°C open Fig. 8
146°C filled
0*
]
Viscosity
(poise )
o p.url\-t :qlx : ~
m‘nc' 0" 1o’ ‘é. ™
o S
~)\\\\\{\ HDPE - BMWD

~ o N(W)

- N & Inn
> * n (g
192°C open Fig‘ 9

' 156°C filled
Viscosity
0 | tpoise) = e m-na"l‘:(‘(v"
NN
N
‘E\\
~
~N
~
L rea/sec or g sec”
w’ o
0 10 ' w! "
LOPE-NMWD
10! s (W)
& In(Wwn
\\ = 7N (q) Fig, 10
. 192°*C open
142°*C filled
]
0 | viscomty
| tpoey
W rag sec orqsec’ \\
w* T
10 0 © 208 e

71




LDPE -BMWD

= N'(W)
s Imn
e N (q)
192 *C open
148°C filled

Viscosity
(poise)

W rad/sec or q sec”

&
g
8

. T
w w0*

4. Comparison of dynamic and steady shear flow viscosities

In a polymer solution or melt during steady shear flow, the molecules rotate
with an angular velocity % , if q is the rate of shear. As during each rotation
a molecule undergoes two extensions and two compressions, the molecule
undergoes a periodic deformation with an angular frequency @ equal to q.
For this reason it was suggested by Bueche7).that the dynamic viscosity
1n'(w) should be equal to 7 (q) at @ = q. It is clear in Figs 3 to 11,that M'(W)
is a fair approximation of 7M(q). It is also clear, however, that n'(w) is al-
ways too low. This means that the energy dissipated in steady shear flow, is
larger than estimated by Bueche. In the hypothesis of Bueche it is assumed
that the elastic energy stored during the rotation, which is proportional to
G'(w), is not dissipated. During steady shear flow, however, the deforma-
tion is not sinusoidal and the original state is not restored. On the contrary,
the deformation increases with time. It seems, therefore, quite plausible to
assume that at least part of the stored energy is also dissipated. If this is
the case, the viscosity during steady shear flow will be larger than 7 '(w):
n(q) = “_%‘L)z + a(%’)zﬁ 0<a<l (VL. 10)
where @ is the proportion of the stored energy being dissipated during the
flow.
It is clear from the experiments that |n(w)| according to Eq. (V1. 9), where
@ = 1, is a much better approximation of 7 (q) than 7'(w), where a = 0. For
both melts and solutions,experimental values of 7(q) lie between 7'(w) and
|n(w)| , but are nearer the latter, as was also found by several authors (Cox




. 12)13
Merz“). Onogi et al L ))- An alternative explanation of the agreement be-
tween dynamic and steady shear viscosities will be discussed in Chapter

VIII. 3.
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VII FLOW BIREFRINGENCE

1. General remarks

A polymer molecule in a velocity field will in general be both oriented and

deformed. If the average polarizability of a segment parallel to the chain o
is different from that perpendicular to the chain %y, the polymers will cause
optical anisotropy during flow, flow birefringence. This provides a very im-
portant means to study the shape and the orientation of polymer molecules in
steady shear flow. In Chapter II it was shown that according to the theory of
rubber-elasticity, a simple relationship exists between the difference of the
two main axes of the index of refraction ellipse An, the sharp orientation

angle X of one of the main axes with the flow lines, and components of the

stress tensor. The proportionality factor, C, was defined by Eq. (II.22 ). In

this chapter only the case where the average polarizability of the chain is
equal to that of the solvent, will be considered. It is customary to call bire-
fringence positive, when ay > Ay and negative in the other case. The stress
optical coefficient C can in principle be obtained from Eq. (I1.22 ), if a, - a,

is known for the polymer. In this investigation C was obtained from:

c-AnsinzX (VIL 1)
P12

where Pio is the contribution of the polymer to the shear stress. Eq. (VIL 1)
follows directly from (I1.74 ), (II.77 ) and (IL 78 ).

Using Eq. (II.75 ), (II.77 ) and (II. 78 ) it can be shown that:

p”-p12=—“€2 cos 2 X (VIL 2)
The last equation is the reason of our interest in flow birefringence, because
it gives an independent method for the determination of P11 ~ Paa- A very im-
portant point when using Eq. (VIL 2) is, that C must be independent of shear
rate q. This was investigated in each case, by plotting C as obtained from

(VIL. 1) as a function of q (see Sec. 3).

2. Apparatus

The apparatus used for solutions was a concentric cylinder viscometer,
which has been developed by Dr. H. Janeschitz-Kriegll). Only the main
points will be repeated here.

The liquid is sheared in a narrow gap of 0.025 cm between two concentric

cylinders. The inner cylinder has a radius Ri of 2.50 em, and is rotated with
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an angular velocity of g rad/sec. The shear rate in the liquid q is given by:

(VIL. 3)

where R’u is the radius of the outer cylinder, and Ru - Ri is small compared
to Ri . The lower limit in shear rate at which flow birefringence can be inves-
tigated is given by the accuracy of the optical measurement, for this appara-
tus An=1.5x 10-8. The upper limit of q is given by the onset of turbulence
for dilute solutions.

At low values of A n a de Sénarmont compensator was used, at higher values,
(An > 2x 10-7) an Ehringhaus compensatorl). The orientation angle X was
measured by determining the position of maximum extinction between crossed
nicols. All measurements were performed with the inner cylinder rotating
both clockwise and anti-clockwise. The average of the two values,obtained in

this way, was used. All measurements were performed at 25 0.1 el

Measurements on melts were performed in a cone-and-plate apparatus espe-
cially designed for this purpose by Dr. H. Janeschitz-Kriegl. The apparatus
will be described elsewherelo). In this apparatus the material is held between
a cone with a diameter of 5.0 cm and a flat plate, which are in relative rota-
tion with an angular velocity of w rad/sec. Subject to the same conditions as

given in Chapter V (Eq. (V.6)) the shear rate in the material is given by:

q = (VIL 4)
eC

where Oc is the gap angle, here 0. 0200 rad.

The light path is along the radial direction through the gap, and then after re-
flection by a mirror, along the axis of rotation. Measurements of A n and X
are performed in the same way as above. The range of shear rates is from

10-3 to 102 sec-l.

The wavelength of the light used in all measurements was 548 m ..

In the concentric cylinder apparatus the light path is through the gap between
the cylinders, parallel to the common axis of the cylinders. We set up a local
cartesian coordinate system in the gap, according to the convention given in
Chapter I. Then the flow lines are in the 1-direction, the radial direction is
the 2-axis, and the light beam proceeds along the 3-axis. As a result, the
index of refraction ellipse lies in the 1-2 plane.

In the cone-and-plate apparatus the light path is in radial direction. For a




local cartesian coordinate system the flow lines are in the 1-direction, the
shear gradient is in the 2-direction, the light path is along the 3-direction.

As before, the index of refraction ellipse lies in the 1-2 plane.

3. Measurements

o £

In Fig. 1 the flow birefringence An as a function of shear rate q is given for
1 or O s . .
solutions of polyisobutene B 200 and B 1 at 25 "C. Fig. 2 gives the same for

the solutions of polystyrene III in bromobenzene at 25 “C, while data for the

tyrene S 111, and B 8, polydimethylsiloxane RS, two high

polymer melts poly
density polyethylenes and two low density polyethylenes are given in Fig. 3 at

the temperatures indicated.
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The extinction angle X as a function of shear rate for the materials in Figs

to 3 with the same meaning for the symbols, is given in Figs 4 to 6.
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From the data in Figs 1 to 6, together with values of the shear stress Pig at
the same shear rate, as given in Chapter VI, the stress optical coefficient

can be obtained from Eq. (VIL. 1). As in most cases An, X, and p were not

12
measured at the same shear rate, this was done by drawing the best curve

through the experimental points in the graphs. At the same value of q the cor-

responding results of An, X and p,, were then read off from the graphs.
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Some typical results are given in Fig. 7. According to the molecular theories
discussed in Chapter II, the stress optical coefficient C should be independent

of concentration and shear stress. Moreover, C must be inversely propor-

tional to the absolute temperature according to Eq. (II. 22).

cx10'°
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<
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o
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—a q sec”!
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As shown in Fig. 7, C is independent of q for the polymers investigated, ex-
cept for the low density polyethylenes. Where necessary, shear stress and
flow birefringence were corrected for the contribution of the solvent, by sub-
tracting n.q from Pig and A ns/?. from An/2 sin 2X (the index s indicates
the solvent). The results are summarized in Table VII. 1. The agreement
between the polystyrene III solutions' is excellent; the results agree well with

| literature data, which are also given in Table VII. 1. The agreement between

" the three solutions of B 200 in B 1 is not so good, however. It is very difficult
to give an estimate of the accuracy of the results, because C is calculated
from three independent measurements. If each measurement has an accuracy

of + 5 %, the resulting maximal uncertainty in C would be + 15 %. This can

easily explain the observed differences, and it can also explain the very bad

|
’ agreement between the literature data in Table VII. 1.

| From the data in Figs 1 to 6, Piq can be obtained by using Eq. (VII. 2).

" P32
The solvent gives no contribution to An cos 2 X, so that Eq. (VII. 2) can be

| used without correction.

As the stress-optical coefficient for low density polyethylenes was found to
increase with increasing shear rate (Fig. 7), Eq. (VII. 2) could not be used
for these materials. However, if the assumption is made, that the orientation




of the stress tensor and the index of refraction ellipse remain the same, Eqs
(VIIL. 1) and (VII. 2) give:

Piy - Pgg = 2 Py, CtniaX (VIL 5)

For the low density polyethylenes, Eq. (VIL. 5) was used to obtain P11 = Pgo
These values, together with those calculated for the other materials from Eq.
(VIIL. 2), will be compared in Sections 1 and 2 of Chapter VIII with dynamic

moduli from Chapter IV and normal stress measurements from Chapter V.
Table VII. 1

2
C in cm™/dyne

polymer temp. exper. from literature
Eq. (VIIL. 1)

polyisobutene 0.2 % B 200inB1  25°C  1.93x10 10 2.05x10710 g
polyisobutene 1.03 % B 200 inB1  25°C  1.59x107 10 1.60x10710 4
polyisobutene 2% B 200inB 1 25°C I,E)Txlo_lo 1. 61x10" 10 6)
1.55x10710 8)

polystyrene III 7 % in bromobenzene 25°C -5. fin]O_JO -6.1 xlO-10 2
polystyrene III 15% in bromobenzene 25°C -5 'lxl()-lo -6. 80:(10_10 4)
polystyrene 1II 25% in bromobenzene 25°C -5.83x10° 39 =5, 853(10—10 5)
-5.5 x10710 §g)

polystyrene S111 196°C -4, 89.\'1()-10 ~3. .‘35);10_10 2)
polystyrene B 8 190°C  -3.63x107 10  -3.90x10710 »
polydimethylsiloxane RS 18°C 1.6 x10° 2 1.96x10° 3. 2
polyethylene HDPE-NMWD 190°c  1.81x10710 1.31x10710 2
2 x10710 o
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VIII CONCLUSIONS

1. Comparison between different determinations of the normal stress

differences

Normal stress gradients and rim pressures were measured on four liquids:

0.2 %

%, 1 % and 2 % solutions of Oppanol B 200 in Oppanol B 1, and a 15 % so-

lution of polystyrene IIl in bromobenzene (Chapter V), Viscosity (Chapter VI)

and flow birefringence (Chapter VII) measurements were also performed on

these liquids. The discussion in Sec. VIIL 1 will be limited to these four so-

lutions, which will be indicated in the following by their concentrations only.

As discussed in Chapters II, V, and VII, the interpretation of the measure-

1)2),

ments is as follows
cone-and-plate measurements (Eq. (V. 7))

aP
4 = r - 22
cp T

* Pyy " Pap * 2Pyp - P33)

parallel plate (Eq. (V. 4))

Paa _
N ~

b op = T = (Pyy = Pag) * (Pyp = Pag) + a—5 (Py - P3g)

both cone-and-plate and parallel plate rim pressures (Eq. (V. 9))

Arim = [722(x*im) = (p,“:2 - [;33)
flow birefringence (Eq. (VII. 2))

A = A NPPIRR _
Ropt. G SR (p]l p22)

recovery (Eq. (V. 8))

2 Y Pyp = (P = Pyp)

(VI 1)

(VIIL 2)

(VIIL. 3)

(VIIL 4)

(VIIL, 5)

As recovery is very difficult to measure on dilute solutions, and, moreover,

its interpretation is uncertain, these measurements were not performed on

the four solutions discussed in this section, so that we have four equations

to determine p;; -~ Pgqy and Py ~ Pag A few measurements on the melt

PDMS RS will be discussed in Sec. VIII. 2.

Eqs (VIIL 1) to (VIIL. 5) have been obtained, subject to the following conditions

1)2)

A. the flow is steady shear flow, secondary flow is neglected (see Chapters




II and V);

B. the normal stress differences at a point in the liquid depend on the local
shear rate only (so that the rheological equation of state does not contain
. 1
spatial derivatives of the metric tensor ));
C. the stress tensor is symmetric (see Chapter II).
For (VIIL 4) only, an additional condition is that the stress optical coefficient
C is a constant. For a discussion on (VIIL 3) and (VIIL 5) see Chapter V.

In Fig. 1 experimental results from Chapters V, VI and VII are combined for

all four solutions.
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Fig. 1

Circles indicate 4 , squares 4 and triangles 8 . Rim pressures
cp opt PP
from cone-and-plate measurements are indicated by x, from parallel

plate measurements by +.
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As discussed in Chapter V, it is clear that Acp obtained with different cones
and App obtained with different distances between plates are each in excellent
agreement. Measurements of Py ~ Pgg obtained from rim pressures show a

rather large scatter, due to the very small pressures that had to be measured,

but they are in fair agreement.

In principle, any normal stress difference can be obtained from the experi-

ments, using different combinations of Eqs (VIIL 1) to (VIIL. 4), for example:

Pyy =~ Pog? Acp = Amm (VL )
B _~8 ={(-1+%q=290p.~ pas) (VIIL. 7)
PP cp 9q’'*" 22 33 :
The last equation gives 1)2): ‘
q \
2 [ \ dq’ .
Paz~P33=a | (B~ 8 J(;E (VIIL 8)
q'=0

For the application of Eq. (VIIL 8), it is necessary to have measurements in
the region, where normal stress differences are proportional to (12 l). In
most cases this region was not reached, so that application of Eq. (VIII. 8)
was impossible. In all cases it was found, however, that Pos = Pag obtained
from Eq. (VIIL 3) could be represented by an equation of the type (see Chap-
ter V):

Ppy.~ Pgz® & q (VIIL. 9)

® and B are positive constants, B varies from 0.8 to 2 (see Chapter V).

Eq. (VIII. 7) can then be sm)pleiedl):

App - Arp = (B - !)(p22 - p33) (VIIL. 10)
In the same way Eq. (VIIIL. 9) gives with Eq. (VIII. 2):

Pyy ~ Py = 8,5 (B +1)py, - Pg3) (VIIL 11)

Fig. 2 gives P11~ Pgo and Pys = Pag obtained by means of Eqs (VIIIL. 3),
(VIII. 4), (VIII.6), (VIII. 10) and (VIIL. 11).
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Fig. 2. Circles indicate values of P11 = Py obtained from (VIII. 6),triangles
those from (VIIL 11) and squares those from (VIIL. 4). Values for p

| including those used in Egs (VIIL 6) and (VIII. 11), were obtained from Eq.

22 ~ P33

(VIIL 3), cone-and-plate results being indicated by x, and parallel plate re-
Diamonds give values calculated from Eq. (VIII. 10), with B -

values taken from rim pressure measurements.

Pggs different methods of obtaining the results in Fig. 2
give different results. For those liquids, the 0.2 % and the 15 % solutions,

where measurements were taken in or not far above the second order region,

Py = Pga values obtained from (VIIL 3) are in good agreement with those ob-

tained from Eq, (VIIL. 10). The two liquids with a pronounced third order be-

haviour, the 1 % and2 % solutions, show very bad agreement between different

methods of obtaining Ppy = Pag: With Eq. (VIII. 10), the 1 % solution gives

values for Pyo ~

Pgg larger than p,, - Py5 (diamonds in Fig. 2 b), for the 2 %
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solution Pog = P33 would even become negative.

It seems unlikely that these discrepancies between parallel plate and cone-
and-plate measurements can be explained by unsystematic errors, they are
probably caused by systematic errors. For all solutions, App and Acp at equal
shear rate differ by about 20 % of Acp' Fairly small systematic errors, of
say 5 to 10 %, could easily explain all discrepancies. The conclusion must
therefore be, that parallel plate and cone-and-plate measurements are not
compatible in the third order region, possibly due to differences between the
assumed steady shear flow and the actual flow pattern (secondary flow). More-
over, the disagreement increases when the flow behaviour differs more from

second order behaviour, being larger for the 2 % than for the 1 % solution.

Flow birefringence measurements of the 0.2 % and of the 15 % solutions give
P11 ~ Poo values about 20 % higher than those obtained from normal stress

gradient measurements. This could be due to a systematic error of about 5%
in shear rate. This difference can also be explained by the very large inertial

correction for the stress gradient measurements, as discussed in Chapter V.

In comparing different methods of obtaining normal stress differences, cone-
and-plate and parallel plate measurements of Chapter V have a high internal
consistency as compared with flow birefringence data, because with the first
two methods the apparatus is very nearly the same. For the interpretation of
flow birefringence measurements, it is necessary to measure the viscosity on
yet another apparatus. On the other hand, all methods except the rim pressure
method for Poy ~ P33 and flow birefringence for Py1 - Pog involve taking dif-
ferences between two separately determined values of similar magnitude. As
explained above, small systematic errors in Acp or App will give much
larger errors in P11~ Pao and Pys ~ Pgg- Similar errors in rim pressure or
flow birefringence measurements will only give proportional errors in Py =
Pgg OF Pyy = Pgy: SO that these two methods seem to be more reliable.

From the experimental results the ratio of P11 - Pag and Py = Pgg can be
calculated. In order to simplify comparison with literature data, these re-

sults will be expressed as the ratio

Pyp " p33/p22 - Pgg = 1+(py, - p22)/(p22- Pgg). For this ratio we get:

this work Hupplers) Markovitz et 312)4)

S = 11 5 - 16 2.~=%

The agreement, especially with the results of Huppler, is fair. All investi-
gations agree in that they give positive values for Py = Pag with P11~ P33
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considerably larger than Pyo ~ Pag-

Conclusions of Section VIII. 1:

1. Flow birefringence measurements give a good estimate of P11 = Paor and

rim pressure measurements of Pyy = Pgg-

2. P11 ~ Pgy is much larger than Pyy = Pgas the ratio between the two lies in
between 4 and 10, and seems to be independent of concentration or shear

rate.

3. For liquids in the second order region (constant v1sgosuv and normal
stress function F ) parallel plate and cone-and-plate measuxements are
in agreement. L xquxds in the third order region (viscosity and F‘1 decreas-
ing with increasing shear rate) show parallel plate and cone-and-plate
measurements which do not seem to be compatible with the assumption s
leading to Eqs (V. 3) - (V. 7).

2. Comparison of dynamic and steady shear flow measurements.

As shown in Chapter II, both the phenomenological theory of Coleman and
Markovitz %) (Egs (II. 9) and (II.10)),and the molecular theories (Egs (11.74)
and (IL75)) predict a simple relationship between dynamic and steady shear
flow measurements at low frequencies and shear rates:

: Py - P
21im & = pim 1122 (VIIL 12)
w—0 w* q-() q“
" P
im (n'=$)=1um (n = -12) (VIIL 13)
w =0 q-0 q

In Chapter VI,dynamic and steady shear flow viscosities were compared. In
agreement with theory it was found that in all cases Eq. (VIIIL. 13) was sat-
isfied. Moreover, 7(q) at high shear rates was found to be in good agreement
with the absolute value of the complex dynamic viscosity as defined in Sec.
VI. 3.

In Figs 3 - 9, P11 ~ Pgo is plotted against q and 2 G' is plotted against w,
for all liquids where those measurements were available. In Fig. 3 this is
done for dilute solutions of B 200 in B 1, in Fig. 4 and 5 for moderately to
highly concentrated solutions. The normal stress gradients of Fig. 4 were
taken from the literature“, for the polystyrene solutions of Fig. 5 flow bi-
refringence data of Chapter VII were used. Figs 6 to 9 give results for the
polymer melts, polydimethylsiloxane PDMS RS in Fig. 6, two high density

polyethylenes in Fig. 8, two low density polyethylenes in Fig. 7, and two
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polystyrenes in Fig. 9. Squares indicate P11 - Pag values obtained from flow
birefringence. In Fig. 6, p,; - py, values calculated from recovery measure-
ments are given by diamonds, using Eq.(VIIL 5) and data from Table V. 1., in
good agreement with other determinations of P11 ~ Pooe This is an important
result, because of an uncertainty of a factor 2 in the numerical constant in

Eq. (VIIL. 5). The agreement is fair if the factor is 2, which agrees with

. 1
earlier results (see the discussion in ref )).
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The experimental difficulties in checking Eq. (VIII. 12) are considerable, be-
cause two small quantities must be measured. For this reason the agreement

is satisfactory for the solutions, and good for the melts.

In agreement with predictions of the molecular theories,Eqs (VIII. 12) and
(VIIL. 13) are valid over the whole concentration range, going from dilute so-
lutions to melts. Recently, the same result was also found for some moder-

ately concentrated solutionse)zo)

An alternative way of expressing the results given above is by comparing the
loss angle 0, defined by tan 6 = G'"/G', with twice the extinction angle X ob-
tained from flow birefringence. It follows from Eqs (II. 72, (I1.73) and(II. 78)

that at low values of shear rate or frequency 9 should be equal to 2 X if @ =

6)

q. This is in agreement with experiment .

All experiments in Figs 3 to 9 show, that 2 G' gives a fair estimate of Py, Pas
in steady shear flow., This is of interest, because dynamic measurements are
much easier to perform than normal stress measurements. Surprisingly, ex-
perimental results show that 2 G' and Py = Pgy are approximately equal at
shear rates or frequencies far above the limiting region, where Eq. (VIII. 12)
should hold. It seems, that this agreement is better for polymers with a
broader molecular weight distribution. For both solutions and melts, Py17Pos
is either equal to or greater than 2 G' (@ = g). Only a qualitative explanation
can be given for this surprising result. It follows from Egq. (II. 72), that G'/w2
decreases with increasing @W. This decrease starts at a value for @ of

is the longest relaxation time). In the following section

about 1/7% (T

max ' max
it will be shown,that for polymer melts third order behaviour starts at a
value of q also equal to 1/¢ e At higher frequencies or shear rates,both

G'/ w? and F‘l =Py - p22/q decrease with increasing @ or q. No existing
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molecular or phenomenological theory accounts for the experimental finding,

Conclusions Sec. VIII. 2:

1, At sufficiently low shear rates or frequencies Pyy -~

however, that these two functions remain nearly equal.

is equal to twice

P22

G'(w = q), in agreement with theory.

2. At higher shear rates or frequencies 2 G' is equal to, but more often

smaller than Py; =~ Pypat @ =q. This experimental result could not be

explained quantitatively.

3. Dynamic measurements give a good estimate of the viscosity in steady

3.

shear flow.

Third order behaviour

All polymer solutions and melts, with the exception of B 1, had viscosities

diminishing with increasing shear rate at sufficiently high shear rate., At the

same time the normal stress function Fl =Py - p22/q2 also decreases. As

shown in Sec. II. B. 7, this could be explained by assuming that the relaxation

times are shear rate dependent. If it is assumed,that all relaxation times

change by the same factor aq in the liquid flowing with shear rate q,as com-

pared with the undisturbed liquid, the shape of the curve giving Pij ~ Pgy @8

a function of q can be calculated from viscosity measurements,using Eqs (II.

74 ), (I1.75) and (11.82 ). In Fig. 10 experimental and calculated values of

are given for those materials which showed a pronounced third or-

der behaviour, and where the second order region was experimentally ac-

P11 " Pap
cessible.
10"
sMm
109

190°C PDMS RS 7/

20°C /

7 experimental calculated /

experimental

Fig. 10

Py17Pyy cal-
culated from
Eqs(I1. 74),

(II. 75) and (II. 82)

7 experimentat




At high shear rates, experimental values of Py; = Py, are lower than calculat-
ed ones. This would mean that aq,as defined above,is smaller for longer re-
laxation times than for shorter ones. A more sensitive method, in principle, of
investigating this phenomenon consists of measuring dynamic moduli during

steady shear flow. A few experiments of this kind were published recently7)
8)20). These results are in qualitative agreement with the conclusions given

above.

The network model gives a simple explanation of third order behaviour if it is
assumed that an extension of the polymer chain between two neighbouring
crosslinks influences crosslink lifetimeg)lo)”)lz). If the crosslink lifetime
is T sec, the maximum relative chain extension will be proportional to q.
An analogous result can be obtained for sinusoidal shear with amplitude Yo
and angular frequency @. Maximum relative chain extension in this case is
equal to Yo[sin wt - sin W (t -T) (See Sec.Il. B.5). This expression has a
maximum of 2 ) if w > x/v. Both for steady shear and for sinusoidal
shear,affine deformation is assumed (see discussion in Sec. VIIIL 4). For the
Jiquids in Fig., 10, the maximum relative chain deformation is about one at
the onset of third order behaviour, if T is taken from the relaxation spectra
in Chapter IV. These values can be compared with dynamic measurements
given in Sec. IV. 2, where PDMS RS was found to be still in the linear region
at an amplitude Yy of 0. 28, the largest deformation possible with the appa-
ratus. This result is not in contradiction with steady shear flow results, as a
non-linear effect would be expected to start at an amplitude of 0.5 to 1 only.
Further experiments to investigate non-linear effects in dynamic shear are

still in preparation (compare”)).

4. Comparison of experimental results and molecular theories

During the last few years it has become possible to investigate the validity of
the molecular theories by using polymer fractions with extremely narrow
molecular weight distributions. It was found,that experimentally determined
dynamic moduli of dilute solutions in theta solvents were in good agreement

12)13). At frequencies

with predictions of the Zimm theory at low frequencies
above 1/"1,

agreement is no longer good. Solutions of very high molecular weight mate-

where T] is the first relaxation time given by Eq. (II.37), the

rial, solutions of higher concentrations or solutions in good solvents gave
dynamic moduli in fair agreement with predictions of the Rouse theory, as

was also found in Chapter IV.

Recently it was found that flow birefringence measurements on polymers with




a narrow molecular weight distribution also gave results in good agreement

14)

with the Zimm theory at low shear rates (q < 1/‘1:]). As for these solutions

the stress optical coefficient was found to be independent of shear rate, the

results of Sec. VIII. 1 show that Py, ~ Pay is in agreement with predictions of

the Zimm theory. No measurements of Pyo ~ Pag have been performed as yet

on these solutions, but the results in Sec. VIIIL 1 indicate that p will

22 P33

be different from zero, in disagreement with theory.

As shown in Chapter IV, dynamic moduli calculated from the extension of the

Rouse theory, with an adapted zero shear viscosity, are in good agreement

with experimental values for a polystyrene melt.

Summarizing, it appears that the molecular theories,discussed in Chapter 1I,

give a fair description of the flow behaviour of dilute polymer solutions and

polymer melts. The three main discrepancies between experiment and the

molecular theories are:;

I Pog == Pag both in the second and in the third order region during steady
shear flow.
II Non-linear behaviour in the third order region during steady shear flow,
is not predicted by the molecular theories.
IIT The dynamic moduli differ from predictions of the molecular theories at
high frequencies, in particular M'(w) has a non-zero limiting value at high

frequencies, 7'.
oc

The most important simplifying assumptions used in deriving the dilute solu-

tion theories of Chapter II (Rouse and Zimm theories) are:

(a) The dynamic rigidity of the molecules (internal viscosity) can be neglected.

(b) The distribution of end-to-end distances of submolecules and chains is
Gaussian.

(¢) Chain movements due to the imposed deformation are slow compared to

those due to Brownian motion.

For the Zimm theory only:

(d) Hydrodynamic interaction can be represented by the Kirkwood-Riseman in-
teraction tensor.

For concentrated solutions, where intermolecular interactions are dominant,

the assumptions in the network model are (a), (b) and (¢) above, with two ad-
ditional assumptions:

(e) Crosslink lifetimes are independent of deformation, as discussed in Chap-

ter II and in Sec. VIII, 3.




(f) Network deformation is equal to macroscopic deformation. This last as~

sumption is doubtful, as shown by Duiser and Stavermanlg)

It is not easy to see how these assumptions affect discrepancy I. However,
Giesekusw) has shown that a more detailed calculation of the hydrodynamic
interaction in the dumbbell model gives Poa 7 Pag. whereas Lodgeg)nas shown
that a non-Gaussian distribution of end-to-end distances, the Langevin func-
tion (compare ref. 16)) gives the same result for the network model. An inter-
esting comparison can be made with the behaviour of permanently crosslinked
rubber networks. Here Treloarw) has shown that, if the elastic energy of
deformation is a function of not only the first invariant of the deformation ten-
sor, but also of the second invariant, Py Will also be different from Pgg in
shear.

15)22)

Internal viscosity has been given as an explanation for discrepancy II

and for discrepancy 11122)

. Predictions of theories incorporating internal
viscosity are not in agreement with flow birefringence experiments on dilute
solutions, however14). The constancy of the stress optical coefficient, as
found for solutions and melts of linear polymers, also would seem to exclude
an appreciable influence of internal viscosity. Moreover, discrepancy III
could also be explained qualitatively by assumption (d). A conclusive check on
the influence of internal viscosity would be obtained by measuring limiting
values of the dynamic viscosity for one polymer fraction dissolved in solvents
of widely varying viscosities.

For concentrated solutions and melts, the network model gives a satisfactory
qualitative explanation of discrepancy Il if crosslink lifetimes are assumed to
be shear rate dependeml)g)lo)l 1). No such single plausible explanation of
third order behaviour exists for dilute solutions, so that this very important

question is still not solved, as pointed out by Zimm21).
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SUMMARY

In the present thesis, the relation between molecular parameters and visco-
elastic behaviour of polymer solutions and melts is investigated. It could be
shown, that a number of molecular theories, describing mechanical and op-
tical behaviour of polymeric systems, the Rouse and Zimm theories for dilute
solutions, and the network theory of Lodge for concentrated systems, gave
identical results if expressed in the relaxation spectrum. It proved possible

= Pys (flow
lines in 1-direction, shear gradient in 2-direction) and flow birefringence, as

to obtain equations, expressing the normal stress difference P11

a function of the relaxation spectrum, The molecular theories predict a zero
value for the second normal stress difference, Pos = Pag:
The theories given above, describe only the shear rate range where normal
. 2 2 3
stress differences are proportional to q~ or T (q shear rate, Yo amplitude
of sinusoidal deformation). In dynamic measurements of the shear stress,

only the linear region is described. This was called second order behaviour.

The molecular theories should be valid over the complete concentration range,
for that reason measurements were performed on polymeric systems, ranging

from dilute (0. 2 volume %) to the highest concentration possible, the melt.
The measurements performed were:

(a) dynamic shear moduli in the frequency range going from 10.3 to 300 rad/
sec,

(b) flow birefringence in steady shear flow;

(e) viscosity as a function of shear rate;

(d) for some solutions only: normal stress gradients and rim pressures in

parallel plate and cone-and-plate viscometers.

From these measurements, the normal stress differences Py1 = Pay and Pog ~
Pyq Were obtained. It was found that flow birefringence measurements give a
good estimate of P11 - Py and rim pressures of p,, - Pag: In disagreement
with theory, p,, - Pgg Was found to be different from zero. In agreement with

other investigations, f was found to be considerably smaller than Piq

P99~ Pag
Poy: For the same material at equal shear rate, Py = Pgg Was estimated to be
10 - 25 % of Py - Py

For liquids in or near the second order region (constant viscosity, normal
stresses proportional to qz), parallel plate and cone-and-plate measurements
gave good agreement in the determination of the two normal stress differences.
If the flow behaviour differed appreciably from second order behaviour, paral-

lel plate and cone-and-plate measurements did no longer seem to be compatible
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with the assumptions necessary for their interpretation.

It could be shown, that for two polyisobutene solutions of equal concentration
in two chemically similar solvents, all relaxation times were proportional to
the viscosities of the solvents, in agreement with predictions of the Rouse and
Zimm theories. This was also shown by the experimental finding, that the
maximum relaxation time of a number of polyisobutene solutions was directly

proportional to the zero shear viscosities of those solutions.

The linearity of the dynamic behaviour was investigated for a polydimethyl-
siloxane melt of 105 poise at 25 °C. The dynamic shear moduli were found to
be independent of the amplitude of the deformation, even at deformations (in

shear) of 0. 28.

From the maximum in the dynamic loss modulus as a function of frequency, an
estimate could be made of the molecular weight between entanglements for
polymer melts. This maximum gave, according to a theory of Marvin, for a
polystyrene melt 29. 600, and for a polydimethylsiloxane melt 30, 000. These
values are in good agreement with literature data, obtained from viscosity

measurements, of 32. 000 for polystyrene, and 29. 000 for polydimethylsiloxane.

Experimental values of the dynamic moduli as a function of frequency were
compared with values calculated from the molecular weight distribution. The
Rouse theory was found to give a good description for a dilute solution (0.2 %
of a high molecular weight polyisobutene). The extension given by Ferry,

Landel and Williams of the Rouse theory, gave a good description for a poly-

styrene melt (S 111) with a narrow molecular weight distribution,

In agreement with the results of Cox and Merz, polymer solutions were found
to have a viscosity in steady shear flow, 7 (q), larger than the dynamic vis-
cosity, if W = q, but in very good agreement with the absolute value of the com-

plex dynamic viscosity. This was also found to be true for polymer melts.

According to the molecular theories, and according to a phenomenological
theory of Coleman and Markovitz, P11 ~ Pao in the second order region must
be equal to twice the dynamic storage modulus, G'(w), if w = q. This could be
experimentally verified for all polymeric systems, going from dilute solutions
to melts. This is in agreement with earlier results, obtained for concentrated
solutions. In particular for polymer melts, this description is very good, even
in the shear rate range, where normal stress differences are no longer pro-

portional to qz, the third order region. In this region, Piq was found to

~ P
be equal too, but more often larger than 2 GY(@), atw = q. No satisfactory

theoretical explanation could be given for this experimental result.




Evidently, the dynamic moduli give a good estimate of the components of the

stress tensor in steady shear flow. Because it was also found, that for melts

the dynamic moduli can be calculated with fair accuracy from the molecular

weight distribution, flow behaviour in steady shear flow can also be predicted

from the molecular weight distribution.




SAMENVATTING

In dit proefschrift wordt een onderzoek beschreven van het verband tussen de
moleculaire parameters, en het viscoelastisch gedrag van polymere oplossin-
gen en smelten. Aangetoond kon worden, dat een aantal moleculaire theorieén
die het mechanisch en optisch gedrag van polymere systemen beschrijven,

de Rouse- en Zimm-theorieén voor verdunde oplossingen, en de netwerktheo-
rie van Lodge voor geconcentreerde systemen, identieke resultaten geven als
ze worden uitgedrukt in het relaxatiespectrum. Het bleek mogelijk te zijn om
vergelijkingen te geven, die het verband beschrijven tussen het normaalspan-
ningsverschil P11 = Poa (stroomlijnen in 1-richting, snelheidsgradiént in 2~
richting), de stromingsdubbelebreking, en het relaxatiespectrum. De molecu-
laire theorieén voorspellen, dat Pyy - Pgg het tweede normaalspanningsver-
schil, nul zal zijn.

De bovengenoemde moleculaire theorie&n beschrijven alleen het gebied van af-
schuifsnelheden, waar de normaalspanningen kwadratisch in q en Y, ziin (q is
de afschuifsnelheid, Yode amplitude van de deformatie). Bij dynamische me-
ting van de afschuifspanning wordt alleen het lineaire gebied beschreven. Dit
werd het tweedeordegebied genoemd.

De moleculaire theorieén zijn geldig voor het gehele concentratiegebied, daar-
om werden metingen verricht aan polymeersystemen, variérend in concentra-
tie van verdund (0, 2 volume % polyisobuteen) tot de hoogst mogelijke concen-
tratie, de smelt.

Gemeten werden:

a) de dynamische glijdingsmodulus in het frequentiegebied van 10:3 tot 300
rad/sec;

b) stromingsdubbelebreking bij stationaire stroming;

c) viscositeit als functie van de afschuifsnelheid;

d) alleen voor enkele oplossingen: de normaalspanningsgradiént en rand-druk

in parallelle plaat en kegelplaatviscosimeters.

Uit deze metingen werden de normaalspanningsverschillen P11 = Pgg €N Py, -
P33 bepaald. Het bleek dat de stromingsdubbelebrekingsmetingen een goede
waarde voor P11 = Py opleverden, terwijl de rand-druk Py ~ Pgg3 gaf. In te-
genstelling tot de voorspellingen van de moleculaire theorieén bleek Py5"P33
ongelijk nul te zijn. In overeenstemming met eerder verrichte metingen,
bleek Pyy =~ Pgg veel kleiner te zijn dan P11~ Py Voor hetzelfde materiaal
bij gelijke afschuifsnelheid, bleek Py ~ Pag 10 tot 25 % te bedragen van

P11~ Pay:




Voor vloeistoffen in of nabij het tweedeordegebied (constante viscositeit, nor-
maalspanningen evenredig met qz), gaven de parallelle plaat en de kegelplaat-
metingen goede overeenstemming bij de bepaling van de twee normaalspan-
ningsverschillen. Wanneer het stromingsgedrag aanmerkelijk afweek van het
tweedeordegedrag, leken de parallelle plaat- en kegelplaatmetingen niet meer
in overeenstemming te zijn met de noodzakelijke veronderstellingen voor de

interpretatie van deze metingen.

Aangetoond kon worden, dat voor twee oplossingen van dezelfde concentratie
van een polyisobuteen in twee chemisch verwante oplosmiddelen, alle relaxa-
tietijden evenredig waren met de viscositeit van het oplosmiddel, in overeen-
stemming met de voorspellingen van de theorieén van Rouse en Zimm. Dit
bleek ook uit het feit, dat de langste relaxatietijden van een aantal polyisobu-
teenoplossingen recht evenredig waren met de viscositeit bij afschuifsnelheid

nul van deze oplossingen.

De lineariteit bij dynamische metingen werd onderzocht aan een polydimethyl-
siloxaansmelt, met een viscositeit van 105 poise bij 25 °C. Aangetoond werd,
dat de dynamische glijdingsmoduli onafhankelijk waren van de amplitude van de
deformatie, zelfs bij een deformatie (afschuiving) van 0, 28.

Uit het maximum in de verliesmodulus als functie van de frequentie, kon een
schatting worden gemaakt van het molecuulgewicht tussen de verstrengelingen
voor polymere smelten. Dit maximum gaf volgens een theorie van Marvin voor
een polystyreensmelt 29. 600, en voor een polydimethylsiloxaansmelt 30. 000.
Deze waarden zijn in goede overeenstemming met waarden uit de literatuur,
verkregen uit viscositeitsmetingen, 32. 000 voor polystyreen, en 29. 000 voor
polydimethylsiloxaan.

Gemeten waarden van de dynamische moduli als functie van de frequentie wer-
den vergeleken met waarden berekend uit de molecuulgewichtverdeling. Het
bleek dat de theorie van Rouse een goede beschrijving gaf van het gedrag van
een verdunde oplossing (0, 2 % van een hoogmoleculair polyisobuteen). De uit-
breiding van de theorie van Rouse (gegeven door Ferry, Landel en Williams)
gaf een goede beschrijving van het gedrag van een polystyreensmelt (S 111),

met een nauwe molecuulgewichtverdeling.

In overeenstemming met onderzoekingen van Cox en Merz werd voor polymeer-
oplossingen gevonden, dat bij gelijke hoeksnelheid en snelheidsgradiént, de
viscositeit bij stationaire stroming (7 (q)) groter was dan de dynamische vis-
cositeit, maar zeer goed werd benaderd door de absolute waarde van de com-

plexe dynamische viscositeit. Dit bleek ook het geval te zijn bij polymere




smelten.

Volgens de moleculaire theorieén, en volgens een phenomenologische theorie
van Coleman en Markovitz, moet Py ~ Pyy in het tweedeordegebied gelijk zijn
aan tweemaal de opslagmodulus, G'(w), als W = q. Dit kon experimenteel
worden bevestigd voor alle polymere systemen, gaande van verdunde oplossin-
gen tot smelten. Dit is in overeenstemming met vroegere resultaten, verkre-
gen aan geconcentreerde oplossingen. In het bijzonder voor polymere smelten

bleek dit zelfs het geval te zijn in het gebied van afschuifsnelheden, waar de

: z ; g o3 2
normaalspanningsverschillen niet meer evenredig zijn met q°, het derdeorde-

gebied. In dit gebied bleek P11 ~ Poy gelijk aan of (vaker) groter te zijn dan

2 G'(w = g). Voor dit experimentele resultaat kon geen bevredigende theoreti-
sche verklaring worden gegeven. Blijkbaar geven de dynamische moduli een
goede indruk van de componenten van de spanningstensor bij stationaire stro-
ming. Omdat ook bleek, dat voor smelten de dynamische moduli bij goede be-
nadering met behulp van de molecuulgewichtverdeling kunnen worden berekend,
volgt hieruit dat het stromingsgedrag bij stationaire stroming ook uit de mole-

cuulgewichtverdeling kan worden voorspeld.
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STELLINGEN

Het vermelden van de coefficiénten der "beste vlakken" door
een aantal atomen levert slechts dan nuttige en toegankelijke
informatie, indien tevens de cartesische coordinaten der
atomen, betrokken op dezelfde oorsprong, vermeld zijn.

D.

A.

Norton, G. Kartha, C.T. Lu, Acta Cryst. 17, 77 (1964)

Bij de door Laufer uitgevoerde alkyleringen van thiophenol is
de katalysator niet eenduidig te defieéren.

G.A Olah, ed., Friedel Crafts and related reactions, Vol.
IIa, Interscience, New York 1964, p. 97

Segalova en medewerkers menen ten onrechte uit hun meetresul-
taten te mogen concluderen,dat zij de metastabiele oplosbaar-
heid van tri-Calcium silicaat en (3~ di-Calcium silicaat be-
paald hebben.

E.E. Segalova, 0.I. Luk’yanova, Chou P’ing-i, Kolloidn. 2Zh.
26, 341 (Eng. 288), (1964). H.N. Stein, J.M. Stevels, J.Phys.
Chem. 69, 2489 (1965)

Het mechanisme dat Chatterjee en Bhadra voorstellen om de
hoge waarde van de diélectrische constante in electreten te
verklaren, is onwaarschijnlijk.

S.D. Chatterjee, T.C. Bhadra. Phys. Rev. 98, 1728 (1955).

Matsuda en medewerkers hebben alternatieve snelheid sbepalende
processen in hun membraanbrandstofcel onvoldoende overwogen.

Y. Matsuda, J. Shiokawa, H. Tamura, T. Ishino, Electrochim.
Acta 12, 1435 (1967)




6. De methode, waarmede Barlow, Harrison en Lamb de dynamische
moduli berekenen, gebruikmakend van de molecuulgewichtsverde-
ling, leidt tot onderschatting van het aandeel van de hoogmo-
leculaire fracties.

A.J. Barlow, G. Harrison, J. Lamb, Proc. Roy.Soc. (London)
Ser. A 282, 228 (1964)

7. De conclusie van Maxwell en Galt, dat bij laminaire stroming
van polymere smelten de snelheid aan de wand ongelijk nul is,
wordt door hun experimenten niet bewezen.

B. Maxwell, J.C. Galt, J. Polymer Sci. 62, S50 (1962) J.L.
den Otter, J.L.S. Wales, J. Schijf, Rheologica Acta 6, 205,
(1967)

8. De experimenten van Schreiber, Bagley en West geven onvol-
doende steun aan hun bewering, dat het verband tussen visco-
siteit en molecuulgewicht voor polyethenen afwijkt van dat
voor andere polymere smelten.

H.P. Schreiber, E.B. Bagley, D.C. West, Polymer, 4,355 (1963)
9. Het gebruik door Peterlin van het Zimm- model met inwendige
stijfheid, om het niet naar nul gaan van de dynamische visco-

siteit bij hoge frequenties te verklaren, is aanvechtbaar.

A. Peterlin, Kolloid Z. 208, 181 (1966) J. Polymer Sci. A2 §,
179 (1967)

De verkeersveiligheid bij nacht zou aanzienlijk verhoogd wor-
den, wanneer bromfietsen enerzijds, en motoren en scooters
anderzijds, duidelijk onderscheidbaar zouden zijn, bijvoor-
beeld door een verschillende kleur van het licht van de Kop-
lampen.










