HET ZWAARTEKRACHTSVELD VAN EEN OF MEER LICHAMEN VOLGENS DE THEORIE VAN EINSTEIN.
HET ZWAARTEKRACHTSVELD VAN EEN OF MEER LICHAMEN VOLGENS DE THEORIE VAN EINSTEIN.
HET ZWAARTEKRACHTSVELD VAN EEN OF MEER LICHAMEN VOLGENS DE THEORIE VAN EINSTEIN.

PROEFSCHRIFT TER VERKRIJGING VAN DEN GRAAD VAN DOCTOR IN DE WIS- EN NATUURKUNDE AAN DE RIJKSUNIVERSITEIT TE LEIDEN, OP GEZAG VAN DEN RECTOR-MAGNIFICUS MR. C. VAN VOLLENHOVEN, HOOGLEERAAR IN DE FACULTEIT DER RECHTSGELEERDHED, VOOR DE FACULTEIT DER WIS- EN NATUURKUNDE TE VERDEДIGEN OP VRIJDAG 8 DECEMBER 1916 TE 4 UREN DOOR JOHANNES DROSTE, GEBOREN TE GRAVE.

N.V. BOEKHANDEL EN DRUKKERIJ VOORHEEN E. J. BRILL, LEIDEN 1916.
AAN DE NAGEDACHTENIS MIJNER OUDERS
EN AAN MIJN OOM EN TANTE.
Bij het voltooien van dit proefschrift is het mij een behoefte mijn dank te betuigen aan alle Hoogleraren en Oudhoogleraren van de faculteit der Wis- en Natuurkunde, wier onderricht ik heb genoten, en aan U, hooggeleerde Bolland, voor het aandeel, dat ook Gij in mijn ontwikkeling hebt gehad.

In het bizonder dank ik U, hooggeleerde Kluyver en U, hooggeleerde Ehrenfest, voor de belangstelling, die gij mij zoo dikwijls hebt getoond.

Bovenal echter ben ik U dankbaar, hooggeleerde Lorentz, hooggeachte Promotor, niet alleen voor het vele, dat ik, ook buiten Uw colleges, van U heb geleerd, maar vooral ook voor de hartelijke belangstelling, waarmede gij mijn werk hebt gevolgd en voor den onschatbaren steun, dien Gij mij bij het tot stand komen van dit proefschrift hebt verleend. En de tijd, dat ik Uw assistent heb mogen zijn, zal mij steeds in aangename herinnering blijven.
INHOUD

<table>
<thead>
<tr>
<th>Hoofdstuk</th>
<th>Titel</th>
<th>Blz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>INLEIDING</td>
<td></td>
<td>XI</td>
</tr>
<tr>
<td>HOOFDSTUK I.</td>
<td>Overzicht van EINSTEIN's algemene relativiteitstheorie</td>
<td>1</td>
</tr>
<tr>
<td>§ 1.</td>
<td>Inleiding</td>
<td>1</td>
</tr>
<tr>
<td>§ 2.</td>
<td>Meetkundige grootheden</td>
<td>5</td>
</tr>
<tr>
<td>§ 3.</td>
<td>De vergelijkingen der algemene relativiteitstheorie</td>
<td>8</td>
</tr>
<tr>
<td>HOOFDSTUK II.</td>
<td>Het veld van een enkel bolvormig centrum</td>
<td>13</td>
</tr>
<tr>
<td>§ 1.</td>
<td>Berekening van het veld</td>
<td>14</td>
</tr>
<tr>
<td>§ 2.</td>
<td>Beweging van een stoffelijk punt in het veld van één centrum</td>
<td>22</td>
</tr>
<tr>
<td>§ 3.</td>
<td>Bizondere gevallen van de beweging van een stoffelijk punt in het veld van één centrum</td>
<td>32</td>
</tr>
<tr>
<td>HOOFDSTUK III.</td>
<td>Het veld van langzaam bewegende massa's</td>
<td>45</td>
</tr>
<tr>
<td>§ 1.</td>
<td>Inleiding</td>
<td>45</td>
</tr>
<tr>
<td>§ 2.</td>
<td>Berekening van het veld</td>
<td>50</td>
</tr>
<tr>
<td>§ 3.</td>
<td>Toepassing op bolvormige lichamen</td>
<td>63</td>
</tr>
<tr>
<td>STELLINGEN</td>
<td></td>
<td>69</td>
</tr>
</tbody>
</table>
VERBETERING.

Blz. 10, laatste regel, lees g_{ji} inplaats van g_{ij}.
INLEIDING.

Het relativiteitsbeginsel, door EINSTEIN in 1905 opgesteld voor stelsels, die zich eenparig bewegen, heeft zich in weinige jaren, vooral door het werk van EINSTEIN zelf, ontwikkeld tot een veelomvattende theorie. De onderstelling van de gelijkwaardigheid van stelselversnelling en gravitatie baande den weg tot het moeilijke vraagstuk, de zwaartekracht in de theorie op te nemen. In 1913 gelukte dit EINSTEIN, maar eerst omstreeks een jaar geleden heeft Einstein ook voor de berekening van het gravitatieveld vergelijkingen medegedeeld, die bij alle coördinaten-transformaties covariant zijn. Het moet zeker als een sterken steun voor zijn nieuwe theorie worden beschouwd, dat zij rekenschap geeft van de periheliumbeweging van Mercurius.

In dit proefschrift deel ik de berekening mede van het veld van een enkel rustend centrum (hoofdstuk II) en van dat van een aantal centra, die zich t.o.v. van elkaar bewegen (hoofdstuk III). De eerste berekening is exact en ik heb er aan toegevoegd een bespreking van de wijze, waarop zich een stoffelijk pant in het veld beweegt; men zal zien hoeveel ingewikkelder reeds de berekening van dit veld in EINSTEIN's theorie is, dan in die van NEWTON. De berekening van het veld van een aantal zich bewegende centra is een benadering; deze gaat zoo ver, dat zij voor alle toepassingen op de astronomie meer dan voldoende is.

Aan mijn berekeningen laat ik een hoofdstuk voorafgaan, waarin in het kort de voornaamste punten van EINSTEIN's theorie (met uitzondering van het gedeelte, dat op het electromagnetisme betrekking heeft) worden uiteengezet. Het doel daarvan is zoowel den lezer, die EINSTEIN's verhandelingen niet bij de hand mocht hebben, opnieuw te orienteeren, alsook om een voorraad formules bijeen te hebben, waarnaar in de beide volgende hoofdstukken kan worden verwezen.
Ten slotte wil ik nog vermelden, dat ik nergens gebruik gemaakt heb van het door EINSTEIN vaak gebezigde coördinatenstelsel, waarbij \(\sqrt{-g} = 1 \) is. Het vereenvoudigt de berekeningen niet zoo veel en heeft aan den anderen kant het nadeel, door den bizonderen vorm, dien het aan de vergelijkingen geeft, sommige eigenschappen van deze laatste niet te doen opmerken, of de aandacht af te leiden naar bizondereheden, die op geen eigenschappen wijzen van de vergelijkingen, maar van het coördinatenstelsel.
HOOFDSTUK I.

OVERZICHT VAN EINSTEIN'S ALGEMENE RELATIVITEITSTHEORIE.

§ 1. Inleiding.

1. Men denke zich een vierdimensionaal continuum; hiermede bedoelen wij het geheel van stellen waarden, die wij verkrijgen kunnen, door aan elk van vier continu veranderlijke grootheden \(x_1, x_2, x_3, x_4 \) een of andere waarde te geven. Zoo'n stel waarden heete een 'punt' van het continuum. Het is duidelijk, dat het punt \((x_1, x_2, x_3, x_4) \) niet alleen bekend is, indien wij de waarden van \(x_1, x_2, x_3, x_4 \) kennen, maar evenzeer, indien bekend zijn de waarden van vier bekende functies \(y_1, y_2, y_3 \) en \(y_4 \) van \(x_1, x_2, x_3, x_4 \), mits de vergelijkingen

\[
\begin{align*}
y_1 &= f_1(x_1, x_2, x_3, x_4), \\
y_2 &= f_2(x_1, x_2, x_3, x_4), \\
y_3 &= f_3(x_1, x_2, x_3, x_4), \\
y_4 &= f_4(x_1, x_2, x_3, x_4) \\
\end{align*}
\]

zich eenduidig laten omkeeren; en de grootheden \(y_1, y_2, y_3 \) en \(y_4 \) zullen voor de beschrijving der eigenschappen van het continuum even goed kunnen dienen als \(x_1, x_2, x_3, x_4 \), indien de functies

\[
\begin{align*}
\varphi_1(y_1, y_2, y_3, y_4), & \quad \varphi_2(y_1, y_2, y_3, y_4), & \quad \varphi_3(y_1, y_2, y_3, y_4), \\
x_4 &= \varphi_4(y_1, y_2, y_3, y_4)
\end{align*}
\]

welke bij die omkeering verkregen worden, zoowel als de functies \(f_1, f_2, f_3, f_4 \) continu zijn.

2. In een dergelijk vierdimensionaal continuum is het, dat de wereld van waarneembaarheden zich voordoet. Daarbij is dan een der vier veranderlijken \(x_1, x_2, x_3, x_4 \), stel \(x_4 \), als de tijd op te vatten. Alle 'punten' \((x_1, x_2, x_3, x_4) \), waarvoor \(x_4 \) dezelfde waarde heeft, zijn de punten van onze gewone driedimensionale ruimte op het oogenblik, dat door die waarde van \(x_4 \) bepaald wordt. Die punten kan men in de vierdimensionale uitgebreidheid gelijktijdig noemen. Daarentegen zal men van twee punten \((x_1, x_2, x_3, x_4) \) en \((x_1, x_2, x_3, x'_4) \) zeggen, dat zij hetzelfde punt van de gewone ruimte voorstellen op verschillend oogenblik.
Wanneer men nu van het stelsel van veranderlijken x_1, x_2, x_3, x_4 tot het stelsel y_1, y_2, y_3, y_4 overgaat en, y_4 als den tijd opvatende, een overeenkomstige groepeering der punten van de vierdimensionale uitgebreidheid in ‘gelijktijdige’ tot stand brengt, dan zal deze groepeering een andere zijn, omdat de ‘punten’ $x_4 = \text{const}$ zeer verschillende y_4 en de ‘punten’ $y_4 = \text{const}$ zeer verschillende x_4 bezitten. Ook zullen twee ‘punten’ (x_1, x_2, x_3, x_4) en (x_1, x_2, x_3, x_4'), die bij de eerste groepeering als hetzelfde punt der driedimensionale ruimte werden opgevat, niet meer als zoodanig beschouwd moeten worden bij de tweede groepeering, omdat bij onveranderde waarden van x_1, x_2, x_3, maar veranderde waarde van x_4 al de grootheden y_1, y_2, y_3 en y_4 andere waarden krijgen. Alleen wanneer de transformatieformules den vorm

$$y_1 = f_1(x_1, x_2, x_3), y_2 = f_2(x_1, x_2, x_3), y_3 = f_3(x_1, x_2, x_3), y_4 = f_4(x_4)$$

hebben, kan men zeggen, dat de identiteit der punten van de (gewone) ruimte zoowel als de gelijktijdigheid door de transformatie niet wordt aangetast. In dit geval heeft men een gewone coördinatentransformatie en een afzonderlijke tijdstransformatie.

Het beginsel van Einstein’s algemene relativiteitstheorie is nu, dat de verschillende keuzen der veranderlijken gelijkwaardig zijn, zoodat ‘gelijktijdigheid’ en ‘identiteit van de punten der ruimte’ alleen zin hebben met betrekking tot een vooraf aangenomen ‘coördinatenstelsel’ (x_1, x_2, x_3, x_4). Onafhankelijk van het coördinatenstelsel heeft men daarentegen de punten der vierdimensionale uitgebreidheid te denken, in zooverre nl. als men het stelsel waarden x_1, x_2, x_3, x_4 en het daaruit volgens (1) berekenbare stelsel y_1, y_2, y_3, y_4 als hetzelfde ‘punt’ opvat. Nader wordt het relativiteitsbeginsel in 5 geformuleerd.

3. Kwantitatieve betrekking tusschen verschillende punten der vierdimensionale uitgebreidheid is hiermede nog niet gesteld. Want een bij twee punten (x_1, x_2, x_3, x_4) en (x'_1, x'_2, x'_3, x'_4) behorende getallenwaarde, b.v. $(x_i - x'_i)^2 + (x_i - x'_i)^2 + (x_i - x'_i)^2 + (x_i - x'_i)^2$ zal niet gelijk zijn aan de overeenkomstige waarde $(y_i - y'_i)^2 + (y_i - y'_i)^2 + (y_i - y'_i)^2 + (y_i - y'_i)^2$, die bij ‘dezelfde’ punten (y_1, y_2, y_3, y_4) en (y'_1, y'_2, y'_3, y'_4) behoort. Om tot een ‘afstand’ van twee ‘punten’ te komen stelt men een uitdrukking op, die van de coördinaten der beide punten op dezelfde wijze afhangt en die, tengevolge van een geschikte afspraak over de wijze waarop zij getransformeerd wordt, haar vorm behoudt. De gewone afstand

$$d^2 = dx_1^2 + dx_2^2 + dx_3^2 + dx_4^2$$

van twee oneindig dicht bij elkaar gelegen punten (x_1, x_2, x_3, x_4) en
(x_1 + d x_1, x_2 + d x_2, x_3 + d x_3, x_4 + d x_4) krijgt bij de transformatie (1) den vorm

\[\sum_{ij} a_{ij} dy_i dy_j, \]

waarvan de oorspronkelijke vorm een bizonder geval is; a_{ij} zijn functies van y_1, y_2, y_3 en y_4. Dit leidt er toe voor den 'afstand' van twee oneindig weinig verschillende punten te stellen

\[ds^2 = \sum_{ij} g_{ij} dx_i dx_j \]

(2)

Wordt nu de transformatie (1) uitgevoerd, dan wordt

\[dx_i = \sum_l p_{il} dy_l, \]

(3)

indien

\[p_{il} = \frac{\partial x_i}{\partial y_l} \]

is. Daardoor wordt

\[ds^2 = \sum_{ijk} g_{ij} p_{il} p_{jk} dy_i dy_k = \sum_{lk} \left(\sum_{ij} g_{ij} p_{il} p_{jk} \right) dy_i dy_k \]

en, indien men nu stelt

\[g_{lk}' = \sum_{ij} g_{ij} p_{il} p_{jk}, \]

dan wordt

\[ds^2 = \sum_{lk} g_{lk}' dy_l dy_k, \]

(4)

hetgeen denzelfden vorm heeft als (2). Door dus (2) als definitie van den afstand te kiezen en voor te schrijven, dat in een ander coördinatenstelsel y_1, y_2, y_3, y_4 de grootheden g_{ij} vervangen moeten worden door grootheden g_{ij}', uit de eerste volgens (4) te berekenen, verkrijgt men, dat ds^2 in alle stelsels door een uitdrukking van denzelfden vorm wordt voorgesteld.

In (2) komt, indien i en j verschillende indices zijn, de term g_{ij} dx_i dx_j zoowel als de term g_{ji} dx_j dx_i voor. Deze termen geven samen (g_{ij} + g_{ji}) dx_i dx_j, zodat het niet op g_{ij} of g_{ji}, maar op de som g_{ij} + g_{ji} aankomt. Het eenvoudigst is, onder g_{ij} zoowel als onder g_{ji} de helft dier som te verstaan, zoodat g_{ij}' = g_{ji}' wordt. Dit doet men en nu wordt ook g_{ij}' = g_{ji}', zoolangs uit (4) blijkt.

4. Men denke zich de transformatie (1) zoo bepaald, dat de functies g_{ij}' in een of ander bepaald punt, bv. (x_1^0, x_2^0, x_3^0, x_4^0) nul worden, indien l ≠ k is en ± 1 voor gelijke waarden van k en l. Dan wordt in dat punt

\[ds^2 = \pm dy_1^2 \pm dy_2^2 \pm dy_3^2 \pm dy_4^2 \]

(5)
en daar de functies $g_{k'k}$ continue functies der coördinaten zijn (wij zullen in §3 en 4 zelfs verlangen, dat zij tweemaal kunnen worden gedifferentieerd) zal in een min of meer groot gebied in de nabijheid van $(x_1^0, x_2^0, x_3^0, x_4^0)$ deze uitdrukking voor ds^2 bij benadering geldig zijn. Bij alle lineaire orthogonale transformaties, die dan op het stelsel der y's kunnen worden toegepast, behoudt ds^2 daar ter plaatse dien vorm. Hier sluit EINSTEIN de theorie nu aan bij de gewone relativiteitstheorie, door te onderstellen dat de uitdrukking voor ds^2, gegeven door (5), voortvloeit in de gewone relativiteitstheorie invarianten differentiaalvorm

$$dI^2 = d x^2 - dy^2 - dz^2.$$

Denkt men zich dus in elk punt (x_1, x_2, x_3, x_4) de kwadratische uitbreiding

$$\sum_{ij} g_{ij} \xi_i \xi_j = \varepsilon^2$$

geconstrueerd, waarin ξ_i loopende coördinaten voorstellen $(g_{ij}$ blijft daarbij constant) en ε een constante is, dan verlangt EINSTEIN, dat die uitgebreidheid een reëele en drie imaginaire assen heeft. Zij heette de indicatrix in het punt (x_1, x_2, x_3, x_4). Schrijft men aan den voorstraal, die het middelpunt (x_1, x_2, x_3, x_4) van de indicatrix verbindt met een harer punten $(x_1 + \xi_1, x_2 + \xi_2, x_3 + \xi_3, x_4 + \xi_4)$ de lengte ε toe en stelt men vast, dat een punt $(x_1 + dx_1, x_2 + dx_2, x_3 + dx_3, x_4 + dx_4)$, op dien voorstraal gelegen, een afstand tot (x_1, x_2, x_3, x_4) heeft, die zich tot ε verhoudt als $dx_1 : \xi_1 = dx_2 : \xi_2 = dx_3 : \xi_3 = dx_4 : \xi_4$, dan wordt die afstand juist ds. Men noemt ds den natuurlijke afstand en men kan dus zeggen, dat het ε-de deel van den voorstraal van de indicatrix de natuurlijke maat is. Het is duidelijk, dat voor die punten, wier voorstraal de indicatrix niet snijdt, de afstand imaginair wordt. Men zie voor nadere bijzonderheden H. A. LORENTZ, “Over EINSTEIN's theorie der zwaartekracht” I, Zittingsversl. Kon. Akad. v. Wetensch. te Amsterdam, deel XXIV, blz. 1389.

5. De algemene relativiteitstheorie verlangt nu, dat de beschrijving der verschijnselen kan geschieden met behulp van zoodanige grootheden, dat de vergelijkingen, die hare waarden verbinden, bij eene willekeurige coördinatentransformatie haren vorm behouden. Dit wordt dan als voldoende beschouwd om te verkrijgen, dat aan elk verschijnsel, dat in het eene coördinatenstelsel op bepaalde wijze verloopt, een ander verschijnsel beantwoordt, dat in een ander coördinatenstelsel juist zoo verloopt, als het eerste verschijnsel in het eerste stelsel.

Om dit te verkrijgen worden alle grootheden als meetkundige groot-
heden opgevat; zoodanige grootheden worden bij een coördinatentransformatie op bepaalde wijze getransformeer. Voordat wij tot mededeeling kunnen komen der vergelijkingen, die EINSTEIN voor de algemene relativiteitstheorie heeft aangenomen, moeten wij eerst de belangrijkste meetkundige grootheden bespreken.

§ 2. Meetkundige grootheden.

6. Denken wij ons de coördinatentransformatie (1) uitgevoerd en stellen wij
\[p_{ti} = \frac{\partial x_i}{\partial y_t}, \quad \pi_{ti} = \frac{\partial y_i}{\partial x_t}, \]
dan geldt vergelijking (3) en de omkeering daarvan
\[dx_i = \sum_l p_{ti} dy_l, \quad dy_i = \sum_t \pi_{ti} dx_t \quad (i = 1, 2, 3, 4). \]
De grootheden \(g_{ij} \) worden getransformeerd volgens (4). Duiden wij door \(g^{ij} \) de algebraïsche complementen der grootheden \(g_{ij} \) aan, dat zijn grootheden waarvoor
\[\sum_f g_{ij} g^{ij} = 0 \quad (i \neq j), \quad \sum_f g_{ij} g^{ji} = 1 \]
is, dan vindt men gemakkelijk, dat bij de transformatie (1) deze grootheden in zoodanige grootheden \(g^{ij'} \) overgaan, dat
\[g^{tij'} = \sum_{ij} \pi_{it} \pi_{j} g^{ij} \]
wordt.
Alle systemen van grootheden, die bij een coördinatentransformatie op een dergelijke wijze als \(dx_0 g_{ij}, g^{ij} \) overgaan in lineaire functies van de oorspronkelijke waarden met coëfficiënten, die uit producten van \(p' \)s, \(\pi' \)s of van beide bestaan, heeten tensoren. De theorie dezer tensoren is van RICCI en LEVI-CIVITÀ.

Definities. 1. Een covariante tensor van den rang \(\lambda \) is een stelsel van functies \(T_{h_1 \ldots h_\lambda} \) van \(x_1, x_2, x_3, x_4 \), die getransformeerd worden volgens de formules
\[T_{h_1 \ldots h_\lambda}' = \sum_{h_1 \ldots h_\lambda} p_{h_1 h} p_{h_2 h} \ldots p_{h_\lambda h} T_{h_1 \ldots h_\lambda}. \]

2. Een contravariante tensor van den rang \(\lambda \) is een stelsel van functies \(T^{h_1 \ldots h_\lambda} \) van \(x_1, x_2, x_3, x_4 \), die getransformeerd worden volgens de formules
\[T^{h_1 \ldots h_\lambda}' = \sum_{h_1 \ldots h_\lambda} \pi_{h_1 h} \pi_{h_2 h} \ldots \pi_{h_\lambda h} T^{h_1 \ldots h_\lambda}. \]

3. Een gemengde tensor, covariant van den rang \(\lambda \) en contravariant
van den rang \(\mu \), is een stelsel van functies \(T^{j_{1}j_{2}...j_{\mu}}_{i_{1}i_{2}...i_{\nu}} \) van \(x_{1}, x_{2}, x_{3}, x_{4} \), die getransformeerd worden volgens de formules

\[
T^{k_{1}k_{2}...k_{\mu}}_{i_{1}i_{2}...i_{\nu}} = \sum_{j_{1}j_{2}...j_{\mu}} p_{j_{1}i_{1}} p_{j_{2}i_{2}} ... p_{j_{\mu}i_{\nu}} \tau_{j_{1}k_{1}} \tau_{j_{2}k_{2}} ... \tau_{j_{\mu}k_{\mu}} T^{j_{1}j_{2}...j_{\mu}}_{i_{1}i_{2}...i_{\nu}}.
\]

Uit deze definities ziet men, dat \(dx_{i} \) een contravariante tensor van den eersten rang is. Tensoren van den eersten rang heeten ook vectoren. \(g_{ij} \) en \(g^{ij} \) zijn tensoren van den tweeden rang; \(g_{ij} \) is covariant, \(g^{ij} \) contravariant. \(g_{ij} \) heet wel *fundamentele covariante tensor*, \(g^{ij} \) *fundamentele contravariante tensor*.

Een enkele grootheid \(T \), waaraan, welk coördinatenstelsel men ook bezigt, steeds dezelfde waarde wordt toegekend, is een tensor (co- of contravariant naar believen) van den rang nul. Hij heet scalaire grootheid of scalaar.

Men bewijst gemakkelijk, dat als bv. \(A_{ij} \) en \(B^{ij} \) een covariante en een contravariante tensor zijn

\[
\sum_{i} A_{ij} B^{kj}, \sum_{ij} A_{ij} B^{ij}, A_{ij} B^{kn}
\]
tensoren voorstellen; de eerste is covariant van den tweeden, contravariant van den eersten rang; de tweede is een covariante vector; de derde is covariant van den derden, contravariant van den tweeden rang. Zoo is bv.

\[
y^{i}_{j} = \sum_{i} g_{ij} g_{ij} = \begin{cases} 1, & \text{voor } j = i \\ 0, & \text{voor } j \neq i \end{cases}
\]

7. De determinant der grooteden \(g_{ij} \) heete \(g \). Hij is steeds negatief. De van passend teeken voorziene onderdeterminanten, gedeeld door \(g \) zelf, zijn de in 1. ingevoerde grooteden \(g^{ij} \). Men ziet gemakkelijk in, met behulp van den vermenigvuldigingsregel voor determinanten, dat bij een transformatie

\[
g' = p^2 g
\]
wordt, indien \(p \) den functionaaldeterminant \(\left(\begin{array}{c} x, x_{2}, x_{3}, x_{4} \\ y_{1}, y_{2}, y_{3}, y_{4} \end{array} \right) \) voorstelt.

Uit den bekenden regel voor de transformatie van een viervoudige integraal volgt nu gemakkelijk, dat

\[
\int \int \int \int V g^{ij} d x_{1} d x_{2} d x_{3} d x_{4} = \int \int \int \int V g^{ij} d y_{1} d y_{2} d y_{3} d y_{4}
\]
is; de integratie is daarbij over een willekeurig gebied uitgestrektd.
8. CHRISTOFFEL, aan wien wij de theorie der kwadratische differentiaalvormen in hoofdzaak te danken hebben, voert de volgende notaties in:

\[
\left[\frac{\partial}{\partial x^j} \right] = \frac{1}{2} \left(\frac{\partial g_{ij}}{\partial x^j} + \frac{\partial g_{ij}}{\partial x^i} - \frac{\partial g_{ij}}{\partial x^j} - \frac{\partial g_{ij}}{\partial x^i} \right), \quad \{i j\} = \sum_k \left[\frac{i j}{k} \right] g^{k i}.
\]

Zij heeten symbolen van CHRISTOFFEL van de eerste en tweede soort.

Is nu \(T_{i_1 i_2 \ldots i_{\lambda}} \) een covariante tensor, dan kan men bewijzen dat

\[
T_{i_1 i_2 \ldots i_{\lambda}} = \frac{\partial T_{i_1 i_2 \ldots i_{\lambda}}}{\partial x^j} - \sum_k \left(\{i_k j\} T_{k i_1 i_2 \ldots i_{\lambda}} + \{i_k j\} T_{i_1 k i_2 \ldots i_{\lambda}} + \ldots + \{i_k j\} T_{i_1 i_2 \ldots k} \right)
\]

een tensor van rang \(\lambda + 1 \) is. Men zegt, dat hij uit \(T_{i_1 i_2 \ldots i_{\lambda}} \) door covariante differentiatie verkregen is.

Is \(T^{i_1 i_2 \ldots i_{\lambda}} \) een contravariante tensor, dan is

\[
T^{i_1 i_2 \ldots i_{\lambda}} = \sum g^{ij} \frac{\partial T_{i_1 i_2 \ldots i_{\lambda}}}{\partial x^j} + \sum_{kl} g^{ij} \left(\{kl j\} T^{k i_1 i_2 \ldots i_{\lambda}} + \{kl j\} T^{i_1 k i_2 \ldots i_{\lambda}} + \ldots + \{kl j\} T^{i_1 i_2 \ldots k} \right)
\]
een contravariante tensor van rang \(\lambda + 1 \), door contravariante differentiatie uit \(T_{i_1 i_2 \ldots i_{\lambda}} \) verkregen.

9. Wanneer men \(g_{ij} \) en \(g^{ij} \) covariant resp. contravariant differentieert, dan verkrijgt men identiek nul. Er is echter een tensor van den vierden rang, die uit den fundamenteelen tensor is gevormd. Hij is van groot belang voor de vraag, of twee kwadratische differentiaalvormen door een transformatie in elkaar kunnen overgaan. Men stelt

\[
(i, j, k, l) = \frac{1}{2} \left(\frac{\partial^2 g_{ij}}{\partial x^j \partial x^k} + \frac{\partial^2 g_{ij}}{\partial x^i \partial x^k} - \frac{\partial^2 g_{ij}}{\partial x^j \partial x^k} - \frac{\partial^2 g_{ij}}{\partial x^i \partial x^k} \right) + \sum_{mn} g^{mn} \left[\begin{array}{c} i \cr j \end{array} \right] \left[\begin{array}{c} k \\

n \end{array} \right] - \sum_{mn} g^{mn} \left[\begin{array}{c} i \cr k \end{array} \right] \left[\begin{array}{c} j \\

n \end{array} \right]
\]
en noemt \((i, j, k, l) \) een symbool van RIEMANN. Het stelsel grootheden

\[
R_{ijkl} = (i, j, k, l)
\]
is een tensor van den vierden rang. Het identiek nul zijn van dien tensor is, zooals men heeft aangetoond, noodig en voldoende om \(ds^2 \) in den vorm \(\sum_i \pm dy_i^2 \) te kunnen transformeeren. Uit den tensor \((i, j, k, l) \) kan men een tensor \(|i, j, k, l| \) afleiden door de formules

\[
|i, j, k, l| = \sum_n g^{jn} (i, n, k, l),
\]
die covariant van den derden, contravariant van den eersten rang is.
Voor \(ij, kl \) heeft men
\[
\{ ij, kl \} = \frac{\partial \{ ik \}}{\partial x_i} \frac{\partial \{ lk \}}{\partial x_k} + \sum_n \left(\{ ik \} \{ n j \} - \{ il \} \{ n k \} \right).
\]
De tensor \(G_{ij} \) is covariant van den tweeden rang; de scalar
\[
G = \sum_{ij} G_{ij} g^{ij} = \sum_{ik} g^{ik} \{ ik, kl \}
\]
heet de kromming van de door het lijnelement \(ds^2 = \sum_{ij} g_{ij} dx_i dx_j \) gemeten uitgebreidheid.

§ 3. De vergelijkingen der algemene relativiteitstheorie.

10. Wanneer in de vierdimensionale uitgebreidheid een of andere lijn gegeven is, dan zal men de punten dier lijn, al naar de keuze der coördinaten \(x_1, x_2, x_3, x_4 \), als hetzelfde punt op verschillende tijdstippen kunnen opvatten, of niet. In het eerste geval stelt de lijn een rustend, in het tweede geval een bewegend punt voor; in beide gevallen heet zij de wereldlijn van het punt.

Aan de punten van zich bewegende lichamen, aan lichtstralen, aan alle verschijnselen, waarbij men identiteit kan onderstellen van wat zich nu hier, straks ginds voordoet, beantwoorden wereldlijnen. De wereldlijnen der lichtstralen en die der stoffelijke punten zijn door de meetwijze in de uitgebreidheid onmiddellijk gegeven. EINSTEIN eischt:

1. De lichtlijnen zijn minimaallijnen, d. w. z. lijnen, die vol­doen aan
\[
d s^2 = 0
\]
2. De wereldlijnen der stoffelijke punten zijn de geodetische lijnen, d. w. z. de lijnen, voor welke de lengte
\[
\int ds
\]
tusschen twee vaste punten oneindig weinig van hooger orde (dan de eerste) verandert, indien men, de uiteinden onveranderd latend, de tusschengelegen punten variëert over afstanden, die van de eerste orde zijn.

11. Lichtstralen. Kiest men een stelsel coördinaten \(x_1, x_2, x_3, x_4 \), en in het punt \((x_1, x_2, x_3) \) ten tijde \(x_4 \) een bepaalde richting, gegeven door de verhoudingen \(dx_1 : dx_2 : dx_3 \), dan geeft de vergelijking
\[\sum_{ij} g_{ij} \, dx_i \, dx_j = 0 \]

in het algemeen twee waarden voor \(dx_4: dx_1 \), die van \(x_1, x_2, x_3 \) en \(x_4 \) afhangen; indien zij van teeken verschillen, kan het licht zich in beide richtingen langs het element \((dx_1, dx_2, dx_3) \) voortplanten. Elk dier waarden beantwoordt aan de voortplanting van een lichtstraal in een der beide door de verhoudingen \(dx_1 : dx_2 : dx_3 \) gegeven richtingen. Wij zien dus, dat licht zich niet in alle richtingen, zelfs niet in twee tegengestelde richtingen, met gelijke snelheid voortplant, afgezien er van, dat die snelheid van plaats en tijd afhangt. Echter zijn die snelheden van het coördinatenstelsel afhankelijk; voert men het in 4 beschouwde stelsel in, waardoor \(ds^2 \) nabij \((x_1^0, x_2^0, x_3^0, x_4^0) \) den vorm

\[ds^2 = dy_1^2 - dy_2^2 - dy_3^2 - dy_4^2 \]
aanneemt, dan zijn al die bizonderheden plaatselijk en tijdelijk opgeheven. Ze overal en ten allen tijde opheffen kan men niet, tenzij de vorm \(\sum_{ij} g_{ij} \, dx_i \, dx_j \) in \(dy_4^2 - dy_2^2 - dy_3^2 - dy_4^2 \) kan worden getransformeerd. En dit is alleen het geval, indien \((i, j, k, l) = 0\) is voor alle combinaties der indices. Zijn de symbolen van RIEMANN niet nul, dan is de anisotropie bij de lichtvoortplanting dus een wezenlijke eigenschap der uitgebreidheid.

De vergelijkingen, die EINSTEIN voor het electromagnetische veld opstelt en die niet alleen de snelheid bepalen, waarmede een lijnlement wordt doorloopen, maar de geheele lichtvoortplanting, zijn met de voorwaarde \(ds^2 = 0 \) in overeenstemming.

12. Stoffelijk punt. Langs de wereldlijn van een stoffelijk punt zijn drie der coördinaten functies van de vierde; ook kan men elk der vier coördinaten opvatten als functie van een parameter \(\lambda \). De voorwaarde

\[\int_{\lambda_2}^{\lambda_1} \sqrt{\sum_{ij} g_{ij} \, dx_i \, dx_j} \, d\lambda = 0 \]

levert de vergelijkingen

\[\frac{d}{d\lambda} \left(\frac{1}{L} \sum_{ij} g_{ij} \frac{dx_i}{d\lambda} \frac{dx_j}{d\lambda} \right) - \frac{1}{2L} \sum_{ij} \frac{\partial}{\partial x_i} \frac{d}{d\lambda} \frac{d}{d\lambda} = 0, \ldots, (7) \]

waarin

\[L = \sqrt{\sum_{ij} g_{ij} \frac{dx_i}{d\lambda} \frac{dx_j}{d\lambda}} \]

is. Het eenvoudigst worden deze vergelijkingen, als men in (7) voor \(\lambda \) als nieuwe onafhankelijk veranderlijke invoert de waarde \(s \) van \(\int ds \), genomen van een vooraf vastgesteld punt der wereldlijn tot het punt, waarop de waarde \(s \) betrekking zal hebben. Dan valt \(L \) uit de formules
weg en men vindt gemakkelijk, door de differentiatie in den eersten term uit te voeren,

\[\frac{d^2 x_i}{ds^2} + \sum_{j \neq i} g_{ij} \frac{dx_i}{ds} \frac{dx_j}{ds} = 0 \quad \ldots \ldots \ldots \ldots (8) \]

Is \(g_{ij} = 0 \), indien \(i \neq j \) is, en is \(g_{11} = g_{22} = g_{33} = -1 \), \(g_{44} = 1 \), dan is de wereldlijn van elk stoffelijk punt recht en dit beteekent, dat het zich eenparig en rechtlijnig beweegt. In andere gevallen is de beweging anders en dit hangt blijkens (7) samen met de differentiaalquotiënten der \(g \)'s naar de coördinaten; om die reden heeten de \(g \)'s ook gravitatiepotentialen.

13. In de gewone relativiteitsstheorie hebben voor een continu verdeelde stof de drie vergelijkingen voor de hoeveelheid van beweging en de energievergelijking den vorm

\[
\begin{align*}
\frac{\partial p_{xx}}{\partial x} + \frac{\partial p_{xy}}{\partial y} + \frac{\partial p_{xz}}{\partial z} + \frac{\partial f_x}{\partial t} &= f_x, \\
\frac{\partial p_{yx}}{\partial x} + \frac{\partial p_{yy}}{\partial y} + \frac{\partial p_{yz}}{\partial z} + \frac{\partial f_y}{\partial t} &= f_y, \\
\frac{\partial p_{zx}}{\partial x} + \frac{\partial p_{zy}}{\partial y} + \frac{\partial p_{zz}}{\partial z} + \frac{\partial f_z}{\partial t} &= f_z, \\
\frac{\partial s_x}{\partial x} + \frac{\partial s_y}{\partial y} + \frac{\partial s_z}{\partial z} + \frac{\partial \varepsilon}{\partial t} &= w.
\end{align*}
\]

Hierin stellen \(p_{xx}, p_{xy}, \) enz. de inwendige spanningen voor \((p_{xy} = p_{yx}, \) enz.), \(i_x, i_y, i_z \) zijn de componenten van de hoeveelheid van beweging per volumeëenheid, \(s_x, s_y, s_z \) die van den energiestroom, \(\varepsilon \) is de energie per volumeëenheid, \(f_x, f_y, f_z \) zijn de componenten der uitwendige kracht per volumeëenheid en \(w \) de per volume- en tijdseenheid toegevoerde energie. De vergelijkingen spreken voor zich zelve. In de gewone relativiteitsstheorie is de vector \((i_x, i_y, i_z) \) gelijk aan den vector \((s_x, s_y, s_z) \) op een constanten factor na, die van de lichtsnelheid afhankt en door veranderde keus der eenheden gelijk aan 1 gemaakt kan worden.

Met deze vergelijkingen komen in de algemeene relativiteitsstheorie overeen de vergelijkingen

\[\sum_{j} \frac{\partial}{\partial x_j} (V - g \ T_i^j) = \frac{1}{2} \sum_{jkl} g^{kl} \frac{\partial g_{ij}}{\partial x_k} T_k^l + K_i, \quad (i = 1, 2, 3, 4) \ldots (10) \]

waarin \(T_i^j \) een gemengden tensor van den tweeden rang voorstelt. Stelt men

\[T_{ij} = \sum_l g_{il} T_i^l \text{ en } T^{ij} = \sum_l g^{il} T_i^l, \]
dan kan men ook schrijven
\[\sum_{j\ell} \frac{\partial}{\partial x_j} \left(\sqrt{-g} g^{\ell j} T_{\ell i} \right) = \frac{1}{2} \sum_{jklm} \sqrt{-g} g^{kl} g^{mj} \frac{\partial g^{\ell j}}{\partial x_i} T_{km} + K_i, \quad (i = 1, 2, 3, 4) \tag{11} \]

en
\[\sum_{ij} \frac{\partial}{\partial x_j} \left(\sqrt{-g} g_{ij} T_{ij} \right) = \frac{1}{2} \sum_{ij} \sqrt{-g} \frac{\partial g_{ij}}{\partial x_i} T_{ij} + K_i, \quad (i = 1, 2, 3, 4) \tag{12} \]

Elk dezer viertallen behoudt bij coördinatentransformatie zijn vorm. Brengt men nl. den eersten term van het tweede lid naar het eerste lid over en deelt men de vergelijking door \(\sqrt{-g} \), dan wordt het eerste lid een covariante vector, en wel de covariante vector, dien men krijgt door den tensor \(T_{ij} \) covariant te differentieeren, en daarna met \(g^{ij} \) te vermenigvuldigen en over de indices \(i \) en \(j \) te sommeeren. \(K_i : \sqrt{-g} \) stelt dus ook een covarianten vector voor.

Is
\[ds^2 = - dx_1^2 - dx_2^2 - dx_3^2 + dx_4^2, \]
dan gaat (10) over in
\[\sum_{j} \frac{\partial}{\partial x_j} \left(\sqrt{-g} T_{j} \right) = K_i, \quad (i = 1, 2, 3, 4) \tag{13} \]
en dit zal met (9) moeten overeenstemmen. EINSTEIN onderstelt, dat in dit geval
\[\sqrt{-g} T_{i} = - p_{xx}, \quad \sqrt{-g} T_{i} = - p_{xy}, \quad \text{enz.}, \quad \sqrt{-g} T_{i} = - i_x, \quad \text{enz.}, \]
\[\sqrt{-g} T_{i} = s_x, \quad \text{enz.}, \quad \sqrt{-g} T_{i} = \varepsilon \tag{14} \]
wordt, waardoor de eerste drie vergelijkingen (13) door vermenigvuldiging met \(-1\) in het eerste drietal van (9) overgaan, en de vierde vergelijking (13) onmiddellijk in de vierde van (9).

Wij willen nog opmerken, dat in het geval van een zwerm stoffelijke punten, die geen invloed op elkaar uitoefenen, en die zich zoó bewegen, dat de snelheidscomponenten continue functies van \(x_i, x_\alpha, x_\beta, x_\gamma \) en \(x_4 \) zijn,
\[T^{ij} = \varepsilon \frac{dx_i dx_j}{ds} dS \]
14. Er blijft nog over de beantwoording der vraag, hoe bij gegeven stofverdeeling het gravitatieveld er uit zal zien. EINSTEIN geeft formules, waaruit de \(g \)'s zijn te berekenen, wanneer de \(T \)'s zijn gegeven. Die formules zullen wij de gravitatievergelijkingen noemen. Zij treden in de plaats van de formule

\[\Delta \varphi = \gamma \]

in NEWTON's theorie. Hier speelt de in 9 gedefinieerde tensor \(G_{ij} \) een rol. EINSTEIN onderstelt

\[G_{ij} = -x \left(T_{ij} - \frac{1}{2} g_{ij} T \right), \quad (i, j = 1, 2, 3, 4) \ldots \] \hspace{1cm} (15)

waarin

\[T = \sum_{ij} g^{ij} T_{ij} \]

een scalaar en \(x \) een constante, de gravitatieconstante, is. Men kan deze vergelijkingen ook den vorm

\[G_{ij} - \frac{1}{2} g_{ij} G = -x T_{ij} \quad (i, j = 1, 2, 3, 4) \ldots \] \hspace{1cm} (16)
geven. Beide zijden stellen een covarianten tensor voor; de vergelijkingen zijn dus covariant bij alle coördinatentransformaties.

\[\frac{\partial}{\partial t} \int \int \int G \sqrt{-g} \, d x_1 \, d x_2 \, d x_3 \, d x_4 = \]

\[\int \int \int \left(\sum_{ij} T_{ij} \delta g^{ij} \right) \, d x_1 \, d x_2 \, d x_3 \, d x_4 \ldots \] \hspace{1cm} (17).

Hierin moet elk der integralen over een vierdimensionaal gebied worden uitgestrekt, en de variaties der \(g \)'s moeten zoo genomen worden, dat ze nul zijn aan de (driedimensionale) begrenzing van dat gebied; hetzelfde geldt voor de variaties der eerste afgeleiden van de \(g \)'s naar de coördinaten.
§ 1. Berekening van het veld.

16. Wij gaan een uitdrukking zoeken voor dS^2, die geschikt is om het gravitatieveld van een enkel bolvormig centrum voor te stellen. Dit centrum denken wij ons in rust; de g's zullen daarom onafhankelijk van den tijd zijn. Wat de drie andere coördinaten betreft, het zal mogelijk moeten zijn, deze zoo te kiezen, dat de g's alleen afhängen van een van hen, die wij r zullen noemen, terwijl de beide andere, de poolcoördinaten θ en ϕ, in dS^2 slechts in de combinatie $dS^2 + \sin^2 \theta d\phi^2$ zullen optreden, waarmede bereikt wordt dat dS^2 denzelfden vorm behoudt bij een andere keuze der richting $\theta = 0$. Wij stellen daarom

$$dS^2 = w^2 dt^2 - u^2 dr^2 - v^2 (dS^2 + \sin^2 \theta d\phi^2) \ldots \ldots (18)$$

Door ook de coëfficiënten van $dr dt, d\theta dt$ en $d\phi dt$ nul te nemen verkrijgen wij, dat dS^2 bij de substitutie $t' = -t$ onveranderd blijft en de bewegingen in het veld dus omkeerbaar zijn.

17. Om nu het veld te berekenen, maken wij gebruik van de variatiestelling, waarmede Hoofdstuk I besluit en die buiten het centrum zelf den vorm

$$\oint \oint \oint G V^{-g} dx_1 dx_2 dx_3 dx_4 = 0 \ldots \ldots (19)$$

aanneemt. Het is dus zaak eerst G te berekenen.

Wij zullen laten zien dat, zoodra g_{ij} (en dus ook g^{ij}) in een of ander gebied nul is voor alle verschillende waarden der beide indices i en j, K uiteenvalt in zes stukken, die elk betrekking hebben op een der zes combinaties van twee indices.

Laat a, b en c drie verschillende indices voorstellen. Dan heeft men

$$\begin{bmatrix} a b \cr c \end{bmatrix} = 0, \begin{bmatrix} a a \cr c \end{bmatrix} = -\frac{1}{2} \frac{\partial g_{aa}}{\partial x_c}, \begin{bmatrix} a b \cr a \end{bmatrix} = \frac{1}{2} \frac{\partial g_{aa}}{\partial x_b}, \begin{bmatrix} a a \cr a \end{bmatrix} = \frac{1}{2} \frac{\partial g_{aa}}{\partial x_a}$$
en daaruit volgt
\[
\begin{align*}
\{a b \mid c\} &= 0, \\
\{a a \mid c\} &= -\frac{1}{2} g^{cc} \frac{\partial g_{aa}}{\partial x_c}, \\
\{a b \mid a\} &= -\frac{1}{2} g^{aa} \frac{\partial g_{bb}}{\partial x_a}, \\
\{a a \mid a\} &= -\frac{1}{2} g^{aa} \frac{\partial g_{aa}}{\partial x_a} .
\end{align*}
\]

(20)

Beschouwen wij nu van de uitdrukking
\[
2 G = 2 \sum_{i j} g^{i j} \left(\frac{\partial}{\partial x_i} \{i j\} - \frac{\partial}{\partial x_j} \{i j\} \right) + 2 \sum_{i j k} g^{i j} \left(\{i j \mid k \} \{i j \mid k\} - \{i j \mid k\} \{i j \mid k\} \right)
\]
den eersten term
\[
2 G_1 = 2 \sum_{i j} g^{i j} \left(\frac{\partial}{\partial x_i} \{i j\} - \frac{\partial}{\partial x_j} \{i j\} \right).
\]

Alleen in G_1 treden tweede afgeleiden der g's naar de coördinaten op. Bedenken wij nu, dat $i = j$ in G_1 nul geeft, dan zien wij, dat 2 G, in 6 stukken is te splitsen, elk betrekking hebbend op een der 6 combinaties twee aan twee der vier indices 1, 2, 3, 4. Het stuk, dat op de combinatie $z \beta$ betrekking heeft, verkrijgen wij door $i = z$, $j = \beta$ en $j = z$, $i = \beta$ te nemen. Het luidt
\[
2 g^{za} \left(\frac{\partial}{\partial x_z} \{z \beta\} - \frac{\partial}{\partial x_\beta} \{z \beta\} \right) + 2 g^{zb} \left(\frac{\partial}{\partial x_\beta} \{z \alpha\} - \frac{\partial}{\partial x_z} \{z \alpha\} \right) =
\]
\[
g^{za} \frac{\partial}{\partial x_z} \left(g^{zb} \frac{\partial g_{za}}{\partial x_z} + g^{za} \frac{\partial g_{za}}{\partial x_z} \right) + g^{zb} \frac{\partial}{\partial x_\beta} \left(g^{za} \frac{\partial g_{za}}{\partial x_z} + g^{za} \frac{\partial g_{za}}{\partial x_z} \right) +
\]
\[
g^{za} \frac{\partial}{\partial x_z} \left(g^{zb} \frac{\partial g_{za}}{\partial x_z} + g^{za} \frac{\partial g_{za}}{\partial x_z} \right).
\]

Van het tweede deel van $2 G$,
\[
2 G_2 = 2 \sum_{i j k} g^{i j} \left(\{i j \mid k \} \{k \mid j\} - \{k \mid j\} \{i j \mid k\} \right)
\]

zijn de termen, waarvoor $i = j = k$ is, nul. Wij zoeken nu onder de termen, waarin twee der indices i, j en k gelijk zijn en verschillen van de derde, die op, waarvoor de gelijke indices z zijn en de andere β is, of omgekeerd. Is $i = j = z$ en $k = \beta$, of $i = j = \beta$ en $k = z$, dan komt er blijkbaar 0. Is $i = k = z$, $j = \beta$ en $j = k = z$, dan komt er achtereenvolgens
\[
2 g^{za} \left(\{z \beta \mid z \alpha\} - \{z \alpha \mid z \beta\} \right) \text{ en } 2 g^{zb} \left(\{z \alpha \mid z \beta\} - \{z \alpha \mid z \beta\} \right).
\]

Dit is tezamen 0, wegens (20). Van G_2 blijven dus alleen de termen over, die ontstaan, wanneer wij i, j en k alle drie verschillend nemen.
Daar echter uit (20) volgt, dat een symbool van Christoffel voor drie verschillende indices nul is, blijft van $2G_z$ alleen het stuk

$$-2 \sum_{ijk} g^{i \ell} | i \ell | (k \{ j \}$$

over. Aan de combinatie $x \beta$ schrijven wij nu toe het deel dezer uitdrukking, dat ontstaat door $i = \alpha$, $j = \beta$ en $i = \beta$, $j = \alpha$ te nemen. Dit geeft

$$g^{\alpha \alpha} g^{\beta \beta} \left(g^{\gamma \gamma} \frac{\partial g_{\alpha \beta}}{\partial x_\gamma} \frac{\partial g_{\alpha \beta}}{\partial x_\gamma} + g^{\alpha \alpha} \frac{\partial g_{\alpha \beta}}{\partial x_\gamma} \frac{\partial g_{\alpha \beta}}{\partial x_\gamma} \right),$$

waarin γ en β de beide indices beteekenen, die van α, β en van elkaar verschillen.

Hiermede is aangetoond, dat $2G$ uiteenvalt in zes stukken, elk op een combinatie van twee indices betrekking hebbend. Het stuk, dat bij $x \beta$ behoort, is

$$2G_x_x \beta = g^{\alpha \alpha} \frac{\partial}{\partial x_\alpha} \left(g^{\alpha \beta} \frac{\partial g_{\alpha \beta}}{\partial x_\alpha} \right) + g^{\alpha \alpha} \frac{\partial}{\partial x_\beta} \left(g^{\alpha \beta} \frac{\partial g_{\alpha \beta}}{\partial x_\beta} \right) +$$

$$+ g^{\beta \beta} \frac{\partial}{\partial x_\beta} \left(g^{\alpha \alpha} \frac{\partial g_{\alpha \beta}}{\partial x_\beta} \right) + g^{\beta \beta} \frac{\partial}{\partial x_\beta} \left(g^{\alpha \alpha} \frac{\partial g_{\alpha \beta}}{\partial x_\alpha} \right) + g^{\alpha \beta} g^{\alpha \beta} \left(g^{\gamma \gamma} \frac{\partial g_{\alpha \beta}}{\partial x_\gamma} \frac{\partial g_{\alpha \beta}}{\partial x_\gamma} \right) +$$

$$+ g^{\alpha \beta} g^{\alpha \beta} \left(g^{\gamma \gamma} \frac{\partial g_{\alpha \beta}}{\partial x_\gamma} \frac{\partial g_{\alpha \beta}}{\partial x_\gamma} \right) \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad (21).$$

18. Nemen wij nu voor de combinatie $x_\alpha x_\beta$ achtereenvolgens $t r$, $t s$, $t \varphi$, $r \varphi$, $r \varphi$ en $s \varphi$, dan vinden wij uit (21) zonder moeite, daarin $g^{\ell \ell} = 1 : g_{i \ell}$ is,

$$2G_{t r} = \frac{1}{w^2} \frac{d}{d r} \left(- \frac{1}{w^2} \frac{d (w^2)}{d r} \right) - \frac{1}{u^2} \frac{d}{d r} \left(\frac{1}{w^2} \frac{d (w^2)}{d r} \right) = - \frac{4}{u^2} w' + \frac{4}{u^2} w',$$

$$2G_{t s} = 2G_{t \varphi} = - \frac{1}{w^2 u^2 v^2} \frac{d (w^2)}{d r} \frac{d (v^2)}{d r} = - \frac{4}{u^2} w' \frac{v'}{v},$$

$$2G_{r t} = 2G_{r \varphi} = - \frac{1}{u^2} \frac{d}{d r} \left(- \frac{1}{v^2} \frac{d (-v^2)}{d r} \right) - \frac{1}{u^2} \frac{d}{d r} \left(- \frac{1}{v^2} \frac{d (-v^2)}{d r} \right) =$$

$$= - \frac{4}{u^2} w' + \frac{4}{u^2} w' \frac{v'}{v},$$

$$2G_{t \varphi} = - \frac{1}{v^2} \frac{d}{d \varphi} \left(- \frac{1}{v^2} \frac{d (-v^2 \sin^2 \varphi)}{d \varphi} \right) - \frac{1}{v^2} \frac{d}{d \varphi} \left(- \frac{1}{v^2} \frac{d (-v^2 \sin^2 \varphi)}{d \varphi} \right) =$$

$$= - \frac{1}{v^2 \sin^2 \varphi} \frac{d}{d \varphi} \left(- \frac{1}{v^2} \frac{d (v^2 \sin^2 \varphi)}{d \varphi} \right) - \frac{1}{v^2 \sin^2 \varphi} \frac{d}{d \varphi} \left(- \frac{1}{v^2} \frac{d (v^2 \sin^2 \varphi)}{d \varphi} \right) = 4 \frac{4}{v^2} \frac{v^2}{v^2},$$

waarin accenten differentiaties naar r beteekenen.
Dus wordt

\[2 G = \frac{4}{v^3} - \frac{4 v'^2}{u^3 v^3} - \frac{8 v' w'}{u^3 v w} - \frac{8 v''}{u^3 v} + \frac{8 u' v'}{u^3 v} - \frac{4 w''}{u^3 w} + \frac{4 u' w'}{u^3 w} \ldots \quad (22) \]

Daar nu

\[\sqrt{-g} = u v^3 w \sin \varphi \]

is, gaat (19), na deeling door 2, over in

\[\frac{\gamma}{t_2} \int_{t_1}^{t_2} \int_{0}^{\pi} \sin \varphi \, d \varphi \int_{r_1}^{r_2} \left(\frac{u w}{u} - \frac{w v'^2}{u} - \frac{2 v v' w'}{u} + \frac{2 u' v' v w}{u^2} - \frac{v^2 w''}{u} + \frac{v^3 u' w'}{u^2} \right) \, dr = 0, \]

indien wij voor integratiegebied kiezen het gebied, waarvoor \(t_1 \leq t \leq t_2 \) en \(r_1 \leq r \leq r_2 \). De integralettes naar \(\varphi, \varphi \) en \(t \) kunnen worden uitgevoerd en na deeling door \(4 \pi (t_2 - t_1) \) verkrijgen wij

\[\frac{\gamma}{r_2} \int_{r_1}^{r_2} \left(\frac{w v'^2 + 2 v v' w'}{u} + u w \right) \, dr = 0 \ldots \ldots \ldots \quad (23) \]

Uit deze variatiestelling volgt nu onmiddellijk

\[\begin{align*}
V_1 &= \frac{w v'^2 + 2 v v' w'}{u^2} - w = 0, \\
V_2 &= \frac{w v'' + v' w'' + v w'}{u} - (v w' + w v') \frac{u'}{u^2} = 0, \\
V_3 &= \frac{2 v v'' + v'^2}{u} - u - 2 v v' \frac{u'}{u^2} = 0.
\end{align*} \quad \ldots \quad (24) \]

19. Denken wij ons in (18) een nieuwe veranderlijke \(r_0 \) inplaats van \(r \) gesubstitueerd, zoodat

\[r_0 = f(r) \]

is, dan gaat (18) over in

\[ds^2 = w_o^2 \, dt^2 - u_o^2 \, dr_o^2 - c_o^2 (d \varphi^2 + \sin^2 \varphi \, d \varphi^2), \]

waarin

\[w_o = w, \quad v_o = v, \quad u_o = u \lambda \quad (\lambda = \frac{dr}{dr_o}) \]
is. Nu wordt, indien accenten bij letters met den index 0 differentiaties naar r_0 aanduiden,

$$v' = v_0', \ w' = w_0': \ u = u_0: \ d r = \lambda \ d r_0$$

en dus gaat (23) over in

$$\delta \int \frac{v_0'^2 + 2 v_0 v_0' w_0'}{u_0} \ d r_0 = 0 ,$$

hetgeen van volkomen denzelfden vorm is als (23) en waaruit dus vergelijkingen moeten volgen, die er in r_0, u_0, v_0, w_0 juist zoo uitzien, als (24) in r, u, v en w. Het is natuurlijk ook zonder tusschenkomst van (23) te verifieeren, dat een substitutie $r_0 = f(r), v = v$ de vergelijkingen (24) onveranderd laat.

Uit een en ander volgt, dat de drie vergelijkingen (24) de functies u, v en w onmogelijk geheel kunnen bepalen en dat zij dus van elkaar afhankelijk moeten zijn. Inderdaad is

$$2 v' V_2 + w' V_3 = u \frac{d V_1}{d r} . \ldots \ldots \ldots \ldots (25)$$

Immers, noemt men in (23) den integrand L, dan is

$$V_1 = - \frac{\delta L}{\delta u} ,$$

$$2 V_2 = \frac{d}{d r} \left(\frac{\delta L}{\delta v} \right) - \frac{\delta L}{\delta v} ,$$

$$V_3 = \frac{d}{d r} \left(\frac{\delta L}{\delta w} \right) - \frac{\delta L}{\delta w} ,$$

waaruit volgt

$$u' V_1 + 2 v' V_2 + w' V_3 = \frac{d}{d r} \left(v' \frac{\delta L}{\delta v} + w' \frac{\delta L}{\delta w} \right) - \frac{d L}{d r} .$$

Noemt men nu de beide stukken, waaruit L bestaat, P en Q, dan is

$$v' \frac{\delta L}{\delta v} + w' \frac{\delta L}{\delta w} = 2 P$$

en dus

$$u' V_1 + 2 v' V_2 + w' V_3 = 2 \frac{d P}{d r} - \frac{d (P + Q)}{d r} = \frac{d}{d r} (P - Q) .$$

Daar echter

$$u V_1 = P - Q$$

is, volgt hieruit (25).
20. Wil men nu uit (24) de functies \(u, v \) en \(w \) oplossen, dan biedt zich de volgende weg aan. Men kiest de onafhankelijk veranderlijke \(r \) en \(\phi \), dat een der functies \(u, v \) en \(w \) bekend wordt. Daarna loopt men de beide andere uit twee der vergelijkingen (24) op. Slechts moet men daarbij niet de vergelijking \(V_1 = 0 \) weglaten, omdat dan, blijkens (25), nadat aan \(V_2 = 0 \) en \(V_3 = 0 \) voldaan is, niet noodzakelijk \(V_1 = 0 \) bevredigd is, maar veeleer
\[
\frac{u}{r} \frac{d V_1}{d r} = 0.
\]

Neemt men dus van den beginne in (18) een der functies \(u, v, w \) willekeurig aan en vormt men uit de variatiestelling de differentiaalvergelijkingen, die dan twee in getal zijn, dan moeten dit niet de vergelijkingen \(V_2 = 0 \) en \(V_3 = 0 \) zijn, m. a. w. men moet niet \(u \) van den beginne aannemen, maar \(v \) of \(w \).

Bij mijn oorspronkelijke berekening van het veld had ik onmiddellijk \(u = 1 \) genomen. De vergelijkingen \(V_2 = 0 \) en \(V_3 = 0 \) loste ik zoo op, dat \(w \) in het oneindige eindig bleef en daarmede voldeed ik niet alleen aan \(\frac{d V_1}{d r} = 0 \), maar ook aan \(V_1 = 0 \). De opmerking van Prof. Lorentz, dat men, door niet \(u \) voor de variatie reeds 1 te nemen, nog een niet geheel overbodige vergelijking kan krijgen, heeft mij toen op den hier ontwikkelden samenhang gebracht.

21. Ter oplossing van het stelsel (24) stellen wij nu
\[
v = r,
\]
waardoor (18) overgaat in
\[
ds^2 = w^2 dt^2 - u^2 dr^2 - r^2 (d \varphi^2 + \sin^2 \varphi d \varphi^2) \ldots \ldots \ldots (26)
\]
Wij behouden de vergelijkingen \(V_1 = 0 \) en \(V_3 = 0 \), waardoor, volgens (25), ook aan \(V_2 = 0 \) is voldaan. Wij verkrijgen
\[
\begin{align*}
V_1 &= w + 2r \frac{w'}{u^2} - w = 0, \\
V_3 &= \frac{1}{u} - u - 2r \frac{u'}{u^2} = 0.
\end{align*} \ldots \ldots \ldots (27)
\]
Uit de laatste vergelijking volgt
\[
\frac{d}{dr} \left(\frac{r}{u^2} \right) = 1
\]
en dus
\[
\frac{1}{u^2} = 1 - \frac{\alpha}{r}
\]
waarin α een constante is. Substitueert men dit in de eerste vergelijking (27), dan verkrijgt men

$$2(r - \alpha)w' = \frac{\alpha}{r}w$$

of

$$(r - \alpha) \frac{d (w^2)}{dr} = \frac{\alpha}{r} w^2,$$

waaruit volgt

$$w^2 = C \left(1 - \frac{\alpha}{r}\right).$$

Wij kiezen de tijdseenheid zoo, dat $C = 1$ wordt, waardoor w^2 overgaat in

$$w^2 = 1 - \frac{\alpha}{r}.$$

Dus wordt

$$ds^2 = \left(1 - \frac{\alpha}{r}\right)dt^2 - \frac{dr^2}{1 - \frac{\alpha}{r}} - r^2(dS^2 + \sin^2 \vartheta d\varphi^2) \ldots (28)$$

$$R^3 = r^3 + \alpha^3$$

en geeft dan voor ds^2 dezelfde uitdrukking in R, als ik in r. Daardoor blijft u^3 eindig voor $r = \alpha$. Dit is natuurlijk op oneindig vele manieren te bereiken; Schwarzschild's keuze werd bepaald door den wensch, dat $\sqrt{-g} = r^3 \sin \vartheta$ zou zijn. Inderdaad, stelt men $R = f(r)$, dan wordt na de invoering der veranderlijke r

$$\sqrt{-g} = R^2 \frac{dR}{dr} \sin \vartheta$$

en zal dit $r^3 \sin \vartheta$ zijn, dan moet

$$R^3 = r^3 + C.$$

Zal met $R = \alpha$ overeenkomen $r = 0$, dan moet $C = \alpha^3$ zijn.

Het is duidelijk, dat invoering van een veranderlijke, die op ingewikkelder wijze in (28) zit, niet noodig is. Zooals men in Schwarzschild's formule (evenals in de formule van Newton) geen negatieve r zal toelaten, zullen wij in (28) geen waarden van r beschouwen, die kleiner dan α zijn. Dan behoeven wij ons om de discontinuïteit bij $r = \alpha$ niet te bekommeren. Waarden van r, kleiner dan α, zijn dáárom uitgesloten, omdat daarvoor ds^2 negatief wordt, indien $dr = dS = d\varphi = 0$ is, d.i. voor een rustend stoffelijk punt.
Wij kunnen intusschen de discontinuïteit ook naar 0 brengen zonder (28) ingewikkelder te maken, nl. door r in die formule te vervangen door $r + x$. Dan wordt

$$ds^2 = \frac{dt^2}{1 + \frac{x}{r}} + \left(1 + \frac{\omega}{r}\right) dr^2 - (r + x)^2 \left(dS^2 + \sin^2 S \, d\varphi^2\right). \quad (29)$$

Aan welke formule men de voorkeur wil geven, aan die van Schwarzschild, aan (28) of aan (29), blijft een kwestie van smaak. Men moet nl. bedenken, dat de coördinaat r toch den gemeten afstand niet voorstelt. In de keuze van een coördinaat is men echter vrij (mits hare waarden het geheele gebied, waarin de waarneming doordringt, eenmaal omvatten), al zal ook de eene keuze doelmatiger kunnen zijn dan de andere.

Op één coördinatenstelsel willen wij evenwel de aandacht vestigen. In de oude theorie beschouwt men de snelheid van het licht als overal en in elke richting even groot. Men kan ook in de algemene relativiteitstheorie in het geval van een enkel centrum de coördinaten zoö kiezen, dat de lichtsnelheid voor alle richtingen gelijk wordt, hoewel ze een functie blijft van den afstand tot het centrum. Substitueeren wij nl. $r = f(\rho)$ in (28), dan wordt

$$ds^2 = \left(1 - \frac{\omega}{r}\right) dt^2 - \left(\frac{d\rho}{d\rho}\right)^2 d\rho^2 : \left(1 - \frac{\omega}{r}\right) - r^2 \left(dS^2 + \sin^2 S \, d\varphi^2\right),$$

en wij bereiken ons doel door te stellen

$$r^2 : \rho^2 = \left(\frac{dr}{d\rho}\right)^2 : \left(1 - \frac{\omega}{r}\right).$$

Hierdoor is ρ als functie van r bepaald op een constanten factor na. Wij verlangen

$$\lim_{r=\infty} (r : \rho) = 1$$

en verkrijgen dan

$$r = \rho \left(1 + \frac{\omega}{4 \rho}\right)^2 \quad \ldots \quad \quad (30)$$

waardoor de uitdrukking voor ds^2 overgaat in

$$ds^2 = \left|1 - \frac{\alpha}{\rho \left(1 + \frac{\omega}{4 \rho}\right)}\right| dt^2 - \left(1 + \frac{\omega}{4 \rho}\right)^4 d\rho^2 + \rho^2 (dS^2 + \sin^2 S \, d\varphi^2) \quad (31)$$

Daar de veranderlijke ρ, zooals men ziet, tot een ingewikkelder uit-
drukking voor $d s^2$ leidt, zullen wij ons van haar in hetgeen volgt niet bedienen, maar alleen een enkel maal de uitkomsten met haar hulp interpreteren.

Wij willen nog berekenen den natuurlijke afstand van een punt, waarvoor de r van formule (28) gegeven is, tot het dichtstbij gelegen punt van bol $r = \alpha$. Deze afstand is, blijkens (28), indien wij van den factor i afzien (zie 4),

$$\delta = \int_{\alpha}^{r} \frac{d r}{\left(1 - \frac{\alpha}{r}\right)^{1/2}} = r \sqrt{1 - \frac{\alpha}{r}} + \alpha \log \left(\sqrt{\frac{r}{\alpha}} - 1 + \sqrt{\frac{r}{\alpha}}\right) \quad (32)$$

Drukt men δ in ρ uit, dan vindt men de eenvoudige formule

$$\delta = \rho - \frac{\alpha^2}{16 \rho} + \frac{1}{2} \alpha \log \frac{4 \rho}{\alpha} \quad \ldots \ldots \ldots \ldots (33)$$

De natuurlijke afstand van twee punten met dezelfde r, gemeten langs den cirkel door beide punten, is, evenals in de Euclidische meetkunde, $r \psi$, indien ψ den hoek voorstelt tusschen de voerstralen van beide punten.

Is δ zeer groot t.o.v. van α, dan naderen de verhoudingen $r : \rho : \delta$ tot 1. De verschillen $r - \delta$ en $\rho - \delta$ worden groter dan iedere waarde, hoewel logarithmisch oneindig klein in verhouding tot r, ρ of δ zelf.

23. Uitgaande van formule (28) zullen wij in 26 zien, dat een stoffelijk punt, dat zich buiten bol $r = \alpha$ bevindt, nooit binnen dien bol kan komen. De vraag rijst nu, of het geoorloofd is een atoom (afgezien van zijn lading) op te vatten als een gravitatiecentrum, welks α den straal voorstelt. Deze vraag moet, dunkt mij, ontkennend worden beantwoord. De versnelling nl., die een rustend stoffelijk punt op grooten afstand (met betrekking tot α) ondervindt, is volgens 42

$$p = - \frac{\alpha c^2}{2 r^2},$$

indien c de lichtsnelheid voorstelt. Stelt men dit gelijk aan de door NEWTON's formule

$$p = - k \frac{m}{r^2},$$

gegeven versnelling, dan volgt

$$\alpha = \frac{2 km}{c^2}.$$
In ronde cijfers wordt dit voor een molecuul van een eenatomige stof met molecuulargewicht M

$$\alpha = 2M \times 10^{-52} \text{ cm},$$

terwijl de bestaande schattingen van de orde van 10^{-8} cm zijn. Onderstelt men, dat slechts een deel der massa door α wordt gemeten, een ander deel aan de ladingen toeschrijvend, dan wordt α nog kleiner. Wel is het natuurlijk denkbaar, dat bol $r = \alpha$ de kern van een atoom vormt en dat zich de electronen er buiten bevinden.

§ 2. Beweging van een stoffelijk punt in het veld van één centrum.

24. Om de beweging van een stoffelijk punt in het veld van een enkel centrum te bestuderen, maken wij gebruik van formule (28). Zijn de coördinaten van het punt r, ϕ en φ, en geven wij differentiaties naar den tijd aan door punten boven de letters, dan is de grootheid L van 12, als wij $\lambda = t$ stellen,

$$L = \left(1 - \frac{\alpha}{r} - \frac{r^2}{1 - \frac{\alpha}{r}} - r^2 \sin^2 \phi \frac{\partial \phi}{\partial \phi} \right)^{\frac{1}{2}}$$

Het variatieprincipe

$$\delta \int_{\alpha}^{\beta} L \, dt = 0$$

levert ons dan o.a. de vergelijking

$$\frac{d}{dt} \left(\frac{\delta L}{\delta \phi} \right) = 0,$$

die ons leert, dat

$$\frac{\partial L}{\partial \phi} = -\frac{r^2 \sin^2 \phi \frac{\partial \phi}{\partial \phi}}{L}$$

niet verandert en dus, eenmaal nul zijnde, die waarde behoudt. Daar wij nu het coördinatenstelsel ϕ en φ altijd zoo kunnen kiezen, dat ϕ voor zekere waarde van t nul is, en daar ϕ dan steeds die waarde behoudt, zoodat φ niet verandert, geschiedt de beweging in een plat vlak. Wij kiezen de pool van het poolcoördinatenstelsel ϕ, φ zoo, dat dit het vlak $\phi = \frac{\pi}{2}$ wordt. Dan wordt

$$L = \left(1 - \frac{\alpha}{r} - \frac{r^2}{1 - \frac{\alpha}{r}} - r^2 \frac{\partial \phi}{\partial \phi} \right)^{\frac{1}{2}}$$
De bewegingsvergelijkingen luiden nu
\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{r}} \right) - \frac{\partial L}{\partial r} = 0, \quad \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\phi}} \right) = 0. \quad \ldots \ldots \ldots (34)
\]
Door de eerste dezer vergelijkingen met \(\dot{r} \), de tweede met \(\dot{\phi} \) te vermenigvuldigen en de producten op te tellen, verkrijgt men
\[
\frac{d}{dt} \left(L - \dot{r} \frac{\partial L}{\partial \dot{r}} - \dot{\phi} \frac{\partial L}{\partial \dot{\phi}} \right) = 0
\]
of
\[
\frac{d}{dt} \left(\frac{1 - \frac{\alpha}{r}}{L} \right) = 0. \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots (35)
\]
In plaats van beide vergelijkingen (34) kunnen wij het stelsel beschouwen, dat uit (35) en de tweede vergelijking (34) bestaat. Beide stelsels zijn gelijkwaardig, zoolang \(\dot{r} \) van 0 verschilt; bij de cirkelvormige beweging zullen wij dus tot (34) moeten terugkeeren.

Wij verkrijgen nu
\[
\frac{1 - \frac{\alpha}{r}}{L} = \text{const.}, \quad \frac{r^2 \dot{\phi}}{L} = \text{const.}
\]
en dus ook
\[
\frac{r^2 \dot{\phi}}{1 - \frac{\alpha}{r}} = \text{const.}
\]
Dit levert de vergelijkingen
\[
\frac{1}{1 - \frac{\alpha}{r}} \left(1 - \frac{\alpha}{r} \right)^2 - \frac{r^2 \dot{\phi}^2}{\left(1 - \frac{\alpha}{r} \right)^2} = A \quad \ldots \ldots \ldots (36)
\]
en
\[
\frac{r^2 \dot{\phi}}{1 - \frac{\alpha}{r}} = B \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots (37)
\]
waarin \(A \) en \(B \) constanten zijn.

De vergelijkingen (36) en (37) zijn het, die ons de niet-cirkelvormige beweging zullen leeren kennen.

25. Cirkelvormige beweging. Stel nu eerst, dat \(\dot{r} \) voortdurend 0 is. De eerste der beide vergelijkingen (34) leert ons, dat
\[
\frac{\partial L}{\partial \dot{r}} = 0
\]
is, waaruit volgt

\[\dot{\phi}^2 = \frac{a}{2r^3} \] (38)

Substitueeren wij dit en \(t = 0 \) in de uitdrukking

\[\left(\frac{d s}{d t} \right)^2 = 1 - \frac{a}{r} - \frac{a^2}{r^2} - r^2 \dot{\phi}^2, \]

dan wordt

\[\left(\frac{d s}{d t} \right)^2 = 1 - \frac{3a}{2r}, \]

zoodat alleen wanneer

\[r > \frac{3}{2} a \]

is, de beweging geschiedt met een snelheid, die kleiner is dan de snelheid van het licht.

Hier, zooals ook in de gevallen, die wij nog bespreken moeten, leggen de bewegingsvergelijkingen zelve geen beperking aan de beweging op, wat betreft de grenzen der snelheid. Wil men uitdrukken, dat de beweging geschiedt met kleiner snelheid dan die van het licht (een snelheid, die zelve van \(r \) afhankelijk is), dan moet men \(L^2 > 0 \) stellen. Beweegt zich een punt eenmaal met een snelheid, groter of kleiner dan die van het licht, dan blijft die snelheid gedurende de geheele beweging groter of kleiner dan de lichtsnelheid. Want, zooals wij zagen, bij de cirkelvormige beweging is de snelheid \(r \dot{\phi} \) constant en de lichtsnelheid, die alleen van \(r \) afhangt, ook, omdat \(r \) constant blijft. En bij de bewegingen, welker bespreking nog volgt, is wegens (36)

\[L^2 = \left(1 - \frac{a}{r} \right)^2 A \]

en \(L^2 \) heeft dus het teeken van \(A \). Voor bewegingen, die met een snelheid geschieden, die kleiner is dan die van het licht, is \(A \) positief; overtreft de snelheid de lichtsnelheid, dan is \(A \) negatief.

26. Wij keeren nu tot het algemeene geval terug en stellen dus \(t \neq 0 \). Dan bepalen (36) en (37) de beweging volkomen. De constante \(B \) kunnen wij steeds positief (of nul) onderstellen; door het omkeeren der positieve richting van \(\dot{\phi} \) is dit steeds te bereiken. Lossen wij uit (37) de differentiaal \(dt \) op en substitueeren wij haar in (36), dan gaat deze vergelijking over in

\[\frac{1}{1 - \frac{a}{r}} - \frac{B^2}{r^4 \left(1 - \frac{a}{r} \right)} \left(\frac{d}{d\phi} r \right)^2 - \frac{B^2}{r^2} = A \] (39)
Hieruit $d\varphi$ oplossend vinden wij

$$d\varphi = \frac{B\,dr}{r^3\sqrt{1 - \left(\frac{A + B^2}{r^2}\right)\left(1 - \frac{\alpha}{r}\right)}}$$

Wij voeren nu een nieuwe integratieveranderlijke

$$x = \frac{\alpha}{r}$$

in, waardoor wij verkrijgen

$$d\varphi = \frac{-dx}{\sqrt{x^3 - x^2 + \frac{A\,x^2}{B^2}x + \frac{(1 - A)x^2}{B^2}}}$$

Hieruit ziet men, dat x, en dus ook r, een elliptische functie van φ is.

Zijn x_1, x_2 en x_3 de wortels van de vergelijking

$$x^3 - x^2 + \frac{A\,x^2}{B^2}x + \frac{(1 - A)x^2}{B^2} = 0,$$

dan is

$$x_1 + x_2 + x_3 = 1, \quad x_2 x_3 + x_1 + x_1 x_3 = \frac{A\,x^2}{B^2}, \quad x_1 x_2 x_3 = \frac{(A - 1)x^2}{B^2} \quad (40)$$

en de constanten x_1, x_2, x_3 (verbonden door de betrekking $x_1 + x_2 + x_3 = 1$) nemen de rol van A en B over. Zij zijn alle drie reëel of wel een is reëel en de beide andere zijn toegevoegd complex.

Voeren wij nu een nieuwe veranderlijke z en drie nieuwe constanten e_1, e_2 en e_3 in door de vergelijkingen

$$x = z + \frac{1}{3},$$
$$x_1 = e_1 + \frac{1}{3},$$
$$x_2 = e_2 + \frac{1}{3},$$
$$x_3 = e_3 + \frac{1}{3},$$

dan wordt

$$e_1 + e_2 + e_3 = 0, \quad e_2 e_3 + e_3 e_1 + e_1 e_2 = \frac{A\,x^2}{B^2} - \frac{1}{3},$$

$$e_1 e_2 e_3 = \frac{(2A - 3)x^2}{3B^2} + \frac{2x^2}{3} \quad \ldots \quad (41)$$

en

$$d\varphi = \frac{dz}{\sqrt{(z - e_1)(z - e_2)(z - e_3)}} \quad \ldots \quad (42)$$

Hieruit ziet men, dat men z in φ kan uitdrukken door middel van de ψ-functie, die bij de wortels e_1, e_2 en e_3 behoort. Wij voldoen aan (42) door te stellen

$$z = \psi \left(\frac{1}{3} \varphi + C\right), \quad \ldots \quad \ldots \quad (43)$$
waarin C een integratieconstante beteekent, die complex kan zijn. Uit (43) volgt
\[
\frac{x}{r} = \frac{1}{2} + \varphi \left(\frac{1}{2} \varphi + C \right) \ldots \ldots \ldots \ldots \ldots \ldots (44)
\]

Dit is de baanvergelijking. De geheele beweging is bekend, zoodra wij bovendien een der beide grootigheden r en φ in den tijd t kunnen uitdrukken. Nu volgt uit (37)
\[
B \frac{d^2 \varphi}{dt^2} = \frac{\omega^2 d \varphi}{1 - \frac{\alpha}{r}} \frac{x^3 (1 - x)}{(z + \frac{1}{2})^2 \left(\frac{1}{2} - z \right)} \ldots \ldots (45)
\]

Wegens (42) wordt dus
\[
B \frac{d^2 \varphi}{dt^2} = \frac{\omega^2 d z}{(z + \frac{1}{2})^2 \left(\frac{1}{2} - z \right)} \frac{\sqrt{V (z - e_1) (z - e_2) (z - e_3)}}{r} , \ldots (46)
\]

terwijl uit (45) en (43) volgt
\[
B \frac{d^2 \varphi}{dt^2} = \frac{\omega^2 d \varphi}{\frac{1}{2} + \varphi \left(\frac{1}{2} \varphi + C \right)^2 \frac{1}{2} - \varphi \left(\frac{1}{2} \varphi + C \right) \ldots (47)
\]

waaruit men ziet, dat t in φ kan worden uitgedrukt door ξ's en logarithmen van τ's. Wij zullen in hetgeen volgt echter als regel niet het verloop der beweging met den tijd nagaan, maar alleen de baan, zoodat alleen (43) een rol van belang speelt. (46) zal alleen dienen, om de grenzen der banen na te gaan. Is nl. de tijd, die voor het bereiken van zeker punt der baan noodig is, oneindig groot, dan wordt zoo'n punt nooit bereikt en evenmin overschreden. Uit (46) volgt, dat nooit $z = - \frac{1}{2}$ of $z = \frac{3}{2}$ wordt. Dit beteekent $r = \infty$ of $r = x$. Het eerste zijn wij gewend; het tweede beteekent, dat bol $r = x$ nooit bereikt wordt. Hadden wij, inplaats van de r uit (28), de r gebezigd, die in (29) optreedt, dan zouden wij kunnen zeggen, dat het stoffelijk punt het centrum niet bereikt. Dit resultaat is ten eenenmale verschillend van hetgeen in NEWTON's theorie optreedt; wij zien er uit, hoe geheel anders de beweging in de nabijheid van het centrum wordt (en ook veraf, indien de snelheden groot zijn), dan in de klassieke theorie. Daarentegen zijn de afwijkingen bij matige snelheden op groote afstanden (vergeleken met x) gering, zooals nog nader zal blijken bij de bespreking der beweging van planeten en kometen in het veld der zon. Men moet in het oog houden, dat in werkelijke gevallen allicht, zoodra r kleiner wordt dan de een of andere grootheid R, het stoffelijk punt terecht komt in de stof, waaruit het bolvormige veldverwekkende lichaam bestaat, en dat daar ds^2 door een andere uitdrukking wordt voorgesteld dan die wij tot hiertoe gebruikten.
27. Wij komen nu tot de bespreking der verschillende bewegingsgevallen, die zich kunnen voordoen. Mechanisch onderscheiden zich dadelijk de gevallen, waarin r of $\dot{\phi}$ voortdurend nul zijn; het eerste geval is dat der in 25 besproken cirkelvormige beweging, het tweede dat van een stoffelijk punt, dat zich op den voorstraal beweegt. Uit een wiskundig oogpunt onderscheiden zich de gevallen waarin twee of drie e's aan elkaar gelijk zijn, omdat dan voor de integratie geen elliptische functies noodig zijn. In deze gevallen treedt nog de eigenaardigheid op, dat z tot den meervoudigen wortel slechts nadert, daar met het kleiner worden van den afstand de verstrekken tijd volgens (46) onbegrensd aangroeit.

Wanneer wij nu met behulp van (42), (43) of (44) eenerzijds en (46) andererzijds de beweging willen nagaan, hebben wij te bedenken, dat r steeds tusschen ∞ en s, dus z steeds tusschen $-\frac{1}{3}$ en $\frac{2}{3}$ ligt, en dat $(z-e_1)(z-e_2)(z-e_3)$ steeds positief moet zijn. Dit kan men ook zoo uitdrukken, dat in (43) de constante C en het gebied van waarden, die Φ kan aannemen, zoo moeten gekozen worden, dat z reëel wordt en tusschen $-\frac{1}{3}$ en $\frac{2}{3}$ ligt.

Wat de wortels e_1, e_2 en e_3 betreft, deze kunnen alle drie reëel zijn (wij onderstellen dan steeds $e_1 \geq e_2 \geq e_3$, e_1 is nooit negatief, e_3 nooit positief) of twee kunnen toegevoegd complex zijn, terwijl de derde reëel is. In het eerste geval moet $z > e_1$ zijn of tusschen e_2 en e_3 liggen; in het tweede geval moet z den reëelen wortel overtreffen.

28. Stel nu eerst, dat z tusschen e_2 en e_3 ligt, terwijl e_3 en e_2 binnen het interval $(-\frac{1}{3}, \frac{2}{3})$ liggen. Daar $e_1 \geq e_2$ is, volgt uit $e_1 + e_2 + e_3 = 0$, dat dan $e_2 \leq -\frac{1}{3}e_3$ moet zijn, hetgeen in elk geval minder dan $\frac{1}{3}$ is. r ligt tusschen $x: (\frac{1}{3} + e_3)$ en $x': (\frac{1}{3} + e_2)$, dit is tusschen een waarde r_1, die onbeperkt groot kan zijn, maar in elk geval 3 x overtreft, en een waarde r_2, die grooter is dan 2 x en kleiner dan r_1. Stellen wij, zooals gebruikelijk is,

$$e_1 = \frac{\omega_1}{\omega_2}, \ e_2 = \frac{\omega_2}{\omega_3}, \ e_3 = \frac{\omega_3}{\omega_1}, \ \omega_2 = \omega_1 + \omega_3$$

(zoodat 2 ω_1 de reëele, 2 ω_3 de zuiver imaginaire periode wordt, in het geval dat de e's reëel zijn, dan zien wij, dat $\frac{1}{2} \Phi + C$ in (43) en (44) een imaginair stuk moet hebben, dat met ω_1 congruent is. Stellen wij dus $C = \omega_3$, dan doorloopt $\frac{1}{2} \Phi$ reëele waarden en wel alle. Is $\Phi = 0$, dan is $z = e_3$, $r = r_1$; groeit Φ aan tot 2 ω_1, dan groeit z aan tot e_2 en r neemt af tot r_2; neemt Φ nu nog verder toe, dan worden wanneer Φ de waarde 4 ω_1 heeft gekregen z en r weer e_3 en r_1. De beweging is, wat r betreft, periodiek, maar daar (in het algemeen) 4 $\omega_1 \neq 2\pi$ is,
is de baan niet gesloten. Deze algemene beweging heete \((e_3, e_2)\), daar \(z\) tusschen \(e_3\) en \(e_2\) schommelt.

Een bizonder geval, waarbij de \(\varphi\)-functie ontaard is, ontstaat, indien \(e_3 = e_1\) wordt. Dan kan \(z\) de waarde \(e_2\) en dus \(r\) de waarde \(r_2\) niet bereiken. Daar \(e_3\) positief is, is \(r_2\) kleiner dan \(3\pi\) (en \(> 2\pi\)). Er is geen periodiciteit meer, maar terwijl \(r\) van \(r_1\) tot \(r_2\) wil afnemen moet \(\varphi\) met een oneindig groot bedrag toenemen, zodat de baan zich spiraalvormig om cirkel \(r_2\) windt; vóór het punt den afstand \(r_1\) verkregen is het in een symmetrisch liggende spiraal van nabij cirkel \(r_2\) gekomen. Dit geval duiden wij aan door \((e_3, e_2 = e_1)\).

29. Denkt men zich bij de beweging \((e_3, e_2)\) den wortel \(e_3\) naar \(-\frac{1}{3}\) geschoven, dan wordt \(r_1 = \infty\). De baan strekt zich dan tot in het oneindige uit en de tijd die voor het bereiken van \(r_1\) noodig is, wordt wegens (46) oneindig groot. De waarde van \(r_2\) is nog steeds groter dan \(2\pi\). Wij duiden deze beweging door \((e_3 = -\frac{1}{3}, e_2)\) aan.

Wordt in deze beweging \(e_2 = e_1 = \frac{1}{3}\), dan wordt \(r_2\) juist \(2\pi\) en de \(\varphi\)-functie ontaardt weer. De beweging geschiedt aldus: het stoffelijk punt komt uit het oneindige en gaat verder in een spiraal met oneindig veel windingen, die tot cirkel \(2\pi\) naderen; of wel de beweging is omgekeerd. Dit is de beweging \((e_3 = -\frac{1}{3}, e_2 = e_1)\).

30. Wordt \(e_1\) nog kleiner, dan bereikt \(z\) de waarde \(e_2\) niet meer; wij verkrijgen dan de beweging \((-\frac{1}{3}, e_2)\), waarbij \(-\frac{1}{3} < e_2 < \frac{3}{3}\) moet zijn en \(r\) tusschen \(\infty\) en \(r_2\) verandert; \(r_2\) kan nu kleiner dan \(2\pi\) zijn. Het punt komt uit het oneindige, zwaait om het centrum heen en vertrekt weer voor goed naar het oneindige.

Ook hier kan \(e_1 = e_2\) zijn, waardoor de beweging \((-\frac{1}{3}, e_2 = e_1)\) onstaat. De \(\varphi\)-functie ontaardt en de baan, uit het oneindige komend, windt zich om cirkel \(r_2\).

31. Wordt bij de beweging \((-\frac{1}{3}, e_2)\) de wortel \(e_3\) gelijk aan of kleiner dan \(-\frac{1}{3}\), dan kan \(e_2\) gelijk aan \(\frac{3}{3}\) worden. De beweging \((-\frac{1}{3}, e_2 = \frac{3}{3})\), die dan ontstaat, geschiedt aldus (of omgekeerd): het stoffelijk punt komt uit het oneindige en nadert meer en meer tot cirkel \(\pi\), waarbij \(\varphi\) van zekere eindige waarde tot \(2\pi\) aangroeit. De beweging zet zich echter niet voort, omdat het punt \(\varphi = 2\pi_1, r = \pi\) niet bereikt wordt; immers, volgens (46) is daartoe een oneindig lange tijd noodig.

Is juist \(e_3 = -\frac{1}{3}\) en \(e_2 = e_1 = \frac{3}{3}\), dan hebben wij te doen met het ontaarde geval \((-\frac{1}{3}, e_2 = e_1 = \frac{3}{3})\). \(2\pi_1\) wordt \(\infty\) en dus windt zich nu de baan spiraalvormig om cirkel \(r = \pi\) heen.

Is \(e_3 < -\frac{1}{3}\), dan kan \(e_2\) ook grooter dan \(\frac{3}{3}\) worden en wij verkrijgen de beweging \((-\frac{1}{3}, \frac{3}{3})\). Het punt komt uit het oneindige en nadert
cirkel x voor een eindige waarde van φ, kleiner dan $2 \omega_i$. Deze waarde wordt ∞ (met $2 \omega_i$), wanneer $e_2 = e_1$ wordt en de beweging $(-\frac{1}{2}, \frac{1}{2})e_2 = e_1$ ontstaat; dan windt zich de baan spiraalvormig om cirkel x heen.

32. Wij onderstellen nu dat $z \geq e_1$ is. Dan moet noodzakelijk $e_1 \leq \frac{1}{2}$ zijn. Is $e_1 = \frac{1}{2}$, dan is z voortdurend $\frac{1}{2}$, dus $r = \pi$. Zien wij van dit geval af, dan moet dus $e_1 < \frac{1}{2}$ zijn. Wij verkrijgen de beweging $(e_1, \frac{1}{2})$, waarbij z van e_1 tot $\frac{1}{2}$, dus r van x: $(\frac{1}{2} + e_1)$ (tusschen x en $3x$) tot x verandert. In (43) en (44) is $C = 0$ (of een veelvoud van $2 \omega_i$) en φ verandert van een waarde tusschen 0 en $2 \omega_i$ tot een waarde, die $2 \omega_i$ evenveel overtreft, als de eerste door $2 \omega_i$ overtroffen wordt. Daarbij klimt r van x tot x: $(\frac{1}{2} + e_1)$ en daalt weer. De uiteinden der baan worden oneindig langzaam doorloopen.

Drie bizondere gevallen zijn mogelijk. Vooreerst kan $e_2 = e_3$ zijn; de beweging behoudt hetzelfde karakter. Ze heete $(e_1, \frac{1}{2})e_3 = e_3$.

Ten tweede kan $e_1 = e_2$ zijn. Dan komt het punt van cirkel x en gaat in een spiraal aan den binnenkant van cirkel $r = x$: $(\frac{1}{2} + e_1)$ verder, dien cirkel steeds meer naderend. Dit is het geval $(e_1 = e_2, \frac{1}{2})$.

Ten derde kan $e_3 = e_2 = e_1 = 0$ zijn. Wij hebben dan de beweging $(0, \frac{1}{2})$, waarbij het punt een spiraal beschrijft, die uit cirkel x komt en aan de binnenzijde tot cirkel $3x$ nadert.

33. Wij komen nu tot het geval, dat twee e's toegevoegd complex zijn; noem deze wortels e_1 en e_2, z moet nu $\geq e_2$ zijn en dus moet $e_1 < \frac{1}{2}$ zijn. Is $e_2 > -\frac{1}{2}$, dan hebben wij te doen met het geval $(e_2, \frac{1}{2})$, waarbij z van $\frac{1}{2}$ tot e_2, dus r van x tot $r_2 = x$: $(\frac{1}{2} + e_2)$ verandert; r_2 kan elke waarde tusschen x en ∞ hebben. In (43) en (44) is $C = 0$; φ verandert van een waarde φ_0 (tusschen 0 en $2 \omega_2$ gelegen), waarvoor

$$\varphi(\frac{1}{2}, \varphi_0) = \frac{1}{2}$$

is, tot $4 \omega_2 - \varphi_0$. De baan verlaat cirkel x en keert er terug.

Is $e_2 = -\frac{1}{2}$, dan krijgen wij de beweging $(e_2 = -\frac{1}{2}, \frac{1}{2})$, waarbij de baan zich tot in het oneindige uitstrekt; is $e_2 < -\frac{1}{2}$, dan strekt zich de baan eveneens tot in het oneindige uit en de beweging $(-\frac{1}{2}, \frac{1}{2})$ is ontstaan. In elk dezer gevallen is onttaarding mogelijk, doordat $e_1 = e_2$ wordt. Is $e_1 = e_2 < e_3$, dan ontstaan de bewegingen, die in 32 besproken zijn, en waarbij nu e_2 de rol van e_1 heeft overgenomen. Is $e_1 = e_3 > e_2$, dan ontstaan, indien men de gelijke wortels e_2 en e_1, de andere e_3 noemt, de gevallen $(e_2, e_3 = e_1)$, $(e_3 = -\frac{1}{2}, e_2 = e_1)$, $(e_3 = e_1 = e_2)$, $(e_3 = e_2 = e_1) = \frac{1}{2}$, $e_2 = e_3$, die reeds boven besproken zijn.

Wordt $e_1 = e_2 = e_3 = 0$, dan ontstaat de beweging $(0, \frac{1}{2})$ weer, die in 32 is besproken.
34. Wij hebben nu alle gevallen behandeld, die zich kunnen voor-
doen, behalve het geval dat \(\Phi \) steeds nul is. Dit geval bespreken wij in 42 en 43. Alvorens echter verder te gaan met de bespreking der gevolgtrekkingen, waartoe de bewegingsvergelijkingen leiden, hebben wij antwoord te geven op de vraag: welke der besproken bewegingen geschieden met een snelheid, die kleiner is dan die van het licht?

Om deze vraag gemakkelijk te kunnen beantwoorden en het antwoord gemakkelijk te kunnen overzien, maken wij gebruik van een graphische voorstelling. Laten \(e_3 \) en \(e_2 \) de rechthoekige coördinaten van een punt in een plat vak zijn; \(e_3 \) zij de abscis, \(e_2 \) de ordinaat. Wij beginnen met de bewegingen, die in 28, 29, 30 en 31 besproken zijn en waarbij \(z \) tusschen \(e_2 \) en \(e_3 \) ligt. Daar nu \(e_2 \) negatief moet zijn, \(e_2 > e_3 \) is, komt alleen het deel van het vlak in aanmerking, dat gelegen is tusschen de rechte lijnen \(e_2 = e_3 \), \(e_2 = -\frac{1}{4} e_3 \), en dat links van de as \(e_3 = 0 \) ligt. Trekt men nu nog de lijnen \(e_2 = -\frac{3}{4} e_3 \), \(e_2 = 0 \), dan wordt genoemd deel van het vlak verdeeld in eenige deelen, de verschillende gevallen ontstaan, doordat het punt, welks coördinaten \(e_2 \) en \(e_3 \) zijn, zich in verschillende van die deelen of op hunne grenzen bevindt. Daar \(e_2 \) bij de bewegingen van 28, 29, 30 en 31 grooter dan \(-\frac{1}{4} \) moet zijn, is het alleen het gebied E.A.C.G begrens door de lijnen \(e_2 = -\frac{1}{4} e_3 \), \(e_2 = e_2 \), \(e_2 = -\frac{1}{4} \), dat ons de bewegingen van 28, 29, 30 en 31 levert. Ik heb in de deelen der figuur en bij eenige daarin voorkomende lijnen en punten de symbolen der correspondeerende bewegingen geschreven.

De vraag nu, of bij een beweging de snelheid die van het licht al of niet overtreft, komt volgens 25 neer op de vraag, of \(A \) negatief, dan wel positief is. (41) leert ons, dat de beweging geschiedt met een snelheid, die kleiner is dan die van het licht, indien

\[
e_2 e_3 + e_3 e_1 + e_1 e_2 > -\frac{1}{3}.
\]

Vervangen wij \(e_1 \) door \(-e_5 - e_3 \), dan wordt deze voorwaarde

\[
e_2 e_3 + e_3 e_5 + e_5 e_3 < \frac{1}{3}.
\]

Wij teekenen nu in ons diagram de ellips

\[
e_5^2 + e_3 e_5 + e_3^2 = \frac{1}{3},
\]

hij gaat door het punt \(e_2 = e_3 = -\frac{1}{4} \) heen, dat een der uiteinden van de kleine as is. Alleen punten binnen de ellips beantwoorden aan bewegingen, waarbij de snelheden kleiner zijn dan die van het licht. Daaruit ziet men onmiddellijk, dat de bewegingen \((e_5, e_3), (e_3, e_2 = e_1), (e_3 = -\frac{3}{4}, e_5), (e_3 = -\frac{3}{4}, e_2 = e_1)\) geschieden met snelheden, kleiner
dan die van het licht. De bewegingen \((-\frac{1}{3}, e_2), \(-\frac{1}{3}, e_2 = e_1)\) kunnen met groter en kleinere snelheid, dan die van het licht geschieden; de bewegingen \((-\frac{1}{3}, \frac{2}{3}), \(-\frac{1}{3}, \frac{2}{3})_e = e_1, \(-\frac{1}{3}, e_2 = \frac{2}{3}\) en \(-\frac{1}{3}, e_2 = e_1 = \frac{1}{2}\) geschieden slechts met snelheden, groter dan die van het licht.

35. Het is duidelijk, dat een diagram, zooals wij dat van de twee grootheden \(e_1\) en \(e_2\) geconstrueerd hebben, ook van \(et\) en \(e_2\) of \(e_1\) en \(e_3\) kan worden gemaakt. Dan wordt

\[e_1^2 + e_1 e_2 + e_2^2 < \frac{1}{3}\] of \[e_1^2 + e_1 e_3 + e_3^2 < \frac{1}{3}\]

de voorwaarde, waaraan voldaan moet zijn, opdat de snelheid kleiner zij dan de lichtsnelheid. Wij zullen ons echter, ook in de gevallen van 32, van het diagram \(e_3, e_2\) blijven bedienen. De voorwaarde \(e_1 < \frac{1}{3}\) wordt

\[e_3 + e_3 > -\frac{3}{4},\]

hetgeen wil zeggen, dat het punt \(e_3, e_2\) boven de lijn \(e_2 + e_2 = -\frac{1}{3}\) moet liggen. Het gebied, waar het punt \(e_3, e_2\) kan liggen, is dus driehoek ACD, door de lijnen \(e_2 = e_3, e_3 + e_3 = -\frac{3}{4}\), \(e_3 = -\frac{1}{2} e_3\) begrens. Een deel van dien driehoek ligt binnen, een ander deel buiten de ellips. De beweging \((e_1, \frac{1}{3})\) kan dus met groter snelheid geschieden dan die van het licht en ook met kleiner. Van de bizondere gevallen \((e_1, \frac{2}{3})_e = e_3, (e_2 = e_1, \frac{1}{3})\) en \((0, \frac{1}{2})\) geschieden de eerste en derde met kleiner snelheid, dan die van het licht, terwijl de tweede
zoowel met groter als met kleiner snelheid kan geschieden. Van deze gevallen staan de symbolen niet in de figuur.

36. Om nog het geval te onderzoeken, waarbij e_i en e_3 complex zijn, stellen wij

$$e_i = p (\cos \omega + i \sin \omega),$$
$$e_3 = p (\cos \omega - i \sin \omega)$$

en sluiten de gevallen, dat $e_i = e_3$ is ($\omega = 0$ of π) uit, daar zij, zooals wij in 33 zagen, behooren tot vroeger besproken typen. Daar nu

$$e_1 e_2 + e_3 e_1 + e_1 e_1 = e_1 e_1 - e_2^2 = p^2 - e_2^2,$$

wordt de voorwaarde, dat $e_2 e_3 + e_3 e_1 + e_1 e_2 > -\frac{1}{4}$ moet zijn,

$$p^2 > e_2^2 - \frac{1}{4}.$$

Nu is

$$e_1 + e_2 + e_3 = 0$$

of

$$2p \cos \omega + e_2 = 0.$$

Men kan nu p steeds zoo groot kiezen dat $p^2 > e_2^2 - \frac{1}{4}$ is, en toch, door geschikte keuze van ω, aan $2p \cos \omega + e_2 = 0$ blijven voldoen. Alle in 33 besproken bewegingen kunnen dus geschieden met een snelheid, kleiner dan die van het licht; o. a. is dit het geval, indien $e_2^2 < \frac{1}{4}$ is.

§ 3. Bizondere gevallen van de beweging van een stoffelijk punt in het veld van één centrum.

37. In deze § willen wij van meer nabij beschouwen:

1°. De bewegingen, waarbij de ψ-functie ontaardt. Hierbij komt ook de cirkelvormige beweging ter sprake.

2°. De bewegingen op den voorstraal.

3°. De bewegingen van planeten en kometen.

Het uitgangspunt zijn de vergelijkingen (36), (37), (39) en (44).

38. Differentiaalvergelijking (39) of, wat hetzelfde is,

$$\left(\frac{d z}{d \varphi} \right)^2 = (z - e_i) (z - e_1) (z - e_3) \ldots \ldots \ldots (47)$$

kan door elementaire functies geïntegreerd worden, indien twee der e's gelijk zijn, stel λ, waardoor de derde -2λ wordt. Zij gaat dan over in

$$\left(\frac{d z}{d \varphi} \right)^2 = (z - \lambda)^2 (z + 2\lambda) \ldots \ldots \ldots \ldots (48)$$

Wij onderscheiden drie gevallen, nl. $\lambda = 0, \lambda > 0, \lambda < 0$.

Zij vooreerst $\lambda = 0$. Dan wordt

$$\pm d\varphi = z^{-\frac{3}{2}}dz,$$

waaruit volgt

$$\frac{\varphi}{r} = \frac{1}{2} + \frac{4}{\varphi^2}; \quad \cdots \cdots \cdots \cdots \cdots \cdots (49)$$

hierin is aan de integratieconstante, die alleen de richting $\varphi = 0$ vaststelt, een bepaalde waarde gegeven.

Uit (49) ziet men, dat de beweging geschiedt in een spiraal, die uit cirkel $r = \alpha$ komt en meer en meer tot cirkel $3x$ nadert. Het geval, waarmede wij te doen hebben, is niets anders dan (0, $\frac{\pi}{2}$), reeds in 32 besproken.

39. Wij onderstellen nu, dat $\lambda > 0$ is en stellen

$$\lambda = \alpha^2.$$

Dan wordt (48)

$$\left(\frac{dz}{d\varphi}\right)^2 = (z - \alpha^2)^2 (z + 2\alpha^2).$$

z moet dus groter zijn dan $-2\alpha^2$ en wij stellen daaronder $z = y^2 - 2\alpha^2$, waardoor deze differentiaalvergelijking overgaat in

$$4\left(\frac{dy}{d\varphi}\right)^2 = (y^2 - 3\alpha^2)^2;$$

hieruit volgt

$$\pm d\varphi = \frac{2dy}{y^2 - 3\alpha^2}.$$

Er zijn nu twee hoofdgevallen, nl. 1e $z > \alpha^2$, 2e $z < \alpha^2$. Is $z > \alpha^2$, dan blijft dit voortdurend het geval, daar volgens formule (46) de dubbele wortel niet bereikt kan worden; evenzoo blijft $z < \alpha^2$, indien z eenmaal $< \alpha^2$ is. Is $z > \alpha^2$, dus $y^2 > 3\alpha^2$, dan wordt

$$y = \pm (\alpha \sqrt{3}) \cosh \left(\frac{1}{2} \alpha \varphi \sqrt{3}\right)$$

of

$$\frac{\varphi}{r} - \frac{3}{2} = z = -2\alpha^2 + 3\alpha^2 \cosh^2 \left(\frac{1}{2} \alpha \varphi \sqrt{3}\right), \cdots \cdots \cdots \cdots \cdots \cdots (50)$$

waarin weer over de integratieconstante is beschikt. Is daarentegen $z < \alpha^2$, dus $y^2 < 3\alpha^2$, dan wordt

$$y = \pm (\alpha \sqrt{3}) \sinh \left(\frac{1}{2} \alpha \varphi \sqrt{3}\right)$$

of

$$\frac{\varphi}{r} - \frac{1}{2} = z = -2\alpha^2 + 3\alpha^2 \sinh^2 \left(\frac{1}{2} \alpha \varphi \sqrt{3}\right). \cdots \cdots \cdots \cdots \cdots \cdots (51)$$

Wij zien, dat formule (50) betrekking heeft op het tweede bizondere geval van 32, nl. op de beweging $(e_1 = e_1$, $\frac{\pi}{2})$.

Formule (51) heeft betrekking op de bewegingen $(e_2, e_1 = e_1)$.\"
beschreven in 28, op \((e_3 = -\frac{1}{3}, e_2 = e_1)\), beschreven in 29, op \((-\frac{1}{3}, e_2 = e_1)\), beschreven in 30, en op \((-\frac{1}{3}, e_2 = e_1 = \frac{2}{3})\), beschreven in 31.

40. Ten derde onderstellen wij, dat \(\lambda < 0\) is; stel
\[
\lambda = -a^2.
\]

Dan gaat (48) over in
\[
\left(\frac{d z}{d \varphi}\right)^2 = (z + a^2)^2 (z - 2 a^2),
\]
waaruit wij zien, dat \(z > 2a^2\) moet zijn. Wij hebben dus te doen met de bewegingen van 32, en wel met het eerste bizondere geval, het geval \((e_1, \frac{2}{3})e_0 = e_0\). Wij stellen
\[
z = y^2 + 2a^2
\]

en vinden
\[
4 \left(\frac{d y}{d \varphi}\right)^2 = (y^2 + 3a^2)^2,
\]
waaruit volgt
\[
\pm \frac{d \varphi}{d y} = \frac{2 d y}{y^2 + 3a^2}.
\]

Wij verkrijgen
\[
y = \pm (a \sqrt{3}) \tan \left(\frac{1}{2} a \varphi \sqrt{3}\right)
\]

en dus
\[
\frac{\alpha}{r} - \frac{1}{3} = x = 2a^2 + 3a^2 \tan^2 \left(\frac{1}{2} a \varphi \sqrt{3}\right).
\]

41. Wij komen nu tot de beantwoording van de vraag: welke plaats nemen de cirkelvormige bewegingen onder de andere in?

Om deze vraag te beantwoorden denken wij ons in (47) de een of andere keus der constanten \(e_1, e_2\) en \(e_3\) gedaan. Vergelijking (47) heeft dan een algemeene oplossing, waarover tot nu toe alleen sprake is geweest, en een singuliere, die voldoen moet aan
\[
\frac{d z}{d \varphi} = 0.
\]

Wij verkrijgen hieruit en uit (47), door eliminatie van \(\frac{d z}{d \varphi}\),
\[
(z - e_1)(z - e_2)(z - e_3) = 0,
\]
waaruit blijkt, dat alleen
\[
z = e_1, \ z = e_2, \ z = e_3
\]
singuliere oplossingen kunnen zijn; zij zijn het ook inderdaad, want zij voldoen aan (47). Wij zien hieruit, dat de cirkelvormige bewegingen singuliere oplossingen van de differentiaalvergelijking (47) zijn.
Nu is het, zooals wij in 24 zagen, nog niet zeker, dat door deze oplossingen tevens aan de bewegingsvergelijkingen (34) voldaan is; daartoe moet naast (36) en (37) ook aan (38) voldaan worden. Uit deze drie vergelijkingen volgt echter

\[A = \frac{1 - \frac{3}{2} \frac{\alpha}{r}}{\left(1 - \frac{\alpha}{r}\right)^2}, \quad B^2 = \left(1 - \frac{\alpha}{r}\right)^3 \]

en hieruit volgt gemakkelijk, dat

\[x^3 - x^2 + \frac{A \alpha^2}{B^2} x + \frac{(1 - A) \alpha^2}{B^2} \]

overgaat in

\[\left(x - \frac{\alpha}{r}\right)^2 \left(x - 1 + \frac{2 \alpha}{r}\right), \]

en dus

\[(z - e_1)(z - e_2)(z - e_3) = \left(z + \frac{1}{3} - \frac{\alpha}{r}\right)^2 \left(z - \frac{1}{3} + \frac{2 \alpha}{r}\right) \]

wordt. De cirkelbewegingen zijn dus de singuliere oplossingen van de differentiaalvergelijking der ontaarde bewegingen, d.i. van vergelijking (48). Is \(\lambda \) positief, dan is \(\alpha: r > \frac{1}{3} \), dus \(r < 3 \alpha \); is \(\lambda \) negatief, dan is \(\alpha: r < \frac{1}{3} \), dus \(r > 3 \alpha \) en voor \(\lambda = 0 \) is \(r \) juist gelijk aan \(3 \alpha \). De cirkels met een straal, die kleiner is dan \(3 \alpha \), zijn dus de omhullenden der banen van de bewegingen, die in 39 zijn beschreven, die welke een straal \(> 3 \alpha \) hebben, van de banen der in 40 beschreven bewegingen; en cirkel \(3 \alpha \) omhult de spiralen van 38.

42. Wij komen thans tot de bewegingen, die op den voerstraal geschieden en waarbij dus voortdurend \(\varphi = 0 \) is. Wij kunnen van de vergelijkingen (36) en (37) uitgaan, waarvan de eerste in

\[\frac{1}{1 - \frac{\alpha}{r}} \left(1 - \frac{\alpha}{r}\right)^2 = A \ldots \ldots \ldots \ldots (52) \]

overgaat, terwijl de tweede vereischt dat \(B = 0 \) is, in welk geval zij door \(\varphi = 0 \) bevredigd wordt. Zoodoens men uit vergelijking (41) gemakkelijk ziet, zijn twee \(e \)'s oneindig groot en is de derde \(\frac{3}{2} - \frac{1}{A} \).

Hoewel nu de integratie van (52) zonder bezwaar is te verrichten en er slechts elementaire functies bij optreden, willen wij liever de eigenschappen der bewegingen zonder tusschenkomst der integralen
aflezen uit de differentiaalvergelijking. Lossen wij (52) naar t op, dan verkrijgen wij

$$r^2 = \left(1 - \frac{\alpha}{r}\right)^2 \left(1 - A + A\frac{\alpha}{r}\right) \ldots (53)$$

en hieruit, door differentiëren naar den tijd,

$$\dot{r} = \frac{\alpha}{r^2} \left(1 - \frac{\alpha}{r}\right) \left(1 - \frac{2}{3} A + \frac{1}{3} A\frac{\alpha}{r}\right) \ldots (54)$$

Elimineert men A uit (53) en (54) of wel differentieert men (52) naar den tijd, dan verkrijgt men

$$\dot{r} = \frac{3}{2} \alpha \frac{r^2}{r^2 - 1}$$

een vergelijking, die laat zien, dat de versnelling bij omkeering der bewegingsrichting niet verandert; tevens volgt er uit, dat bij rust

$$r = \frac{\alpha}{2}$$

is, hetgeen steeds naar het centrum toe gericht is, voor $r = \infty$ zoowel als voor $r = x$ nul is, en voor $r = \frac{3}{2} x$ zijn grootste waarde heeft.

Uit (53) volgt, dat

$$1 - A + A\frac{\alpha}{r}$$

nooit negatief kan zijn. Is $A < 1$ (wij beschouwen alleen positieve waarden van A, waarmede bewegingen overeenkomen met een snelheid, kleiner dan die van het licht), dan is deze uitdrukking voor elke waarde van r positief. Het stoffelijk punt komt dan uit het oneindige en gaat tot $r = 0$ toe, waar de beweging wegens de uit (53) volgende vergelijking

$$\frac{dt}{dr} = \frac{d}{r^3 - 1}$$

oneindig langzaam wordt; de beweging kan natuurlijk ook in omgekeerde zin verloopen. Bij de beweging wordt de versnelling \dot{r} (behalve voor $r = x$ en $r = \infty$) eenmaal nul, indien $A > \frac{3}{3}$ is, nl. voor

$$r = \frac{3 A x}{3 A - 2}$$

zooals uit (54) blijkt. Tusschen deze waarde en $r = x$ is de versnelling positief en bereikt een maximum, tusschen $r = 3 A x / (3 A - 2)$ en $r = \infty$ is de versnelling negatief (aantrekking); die aantrekking heeft eveneens een maximum.
Is echter $A > 1$, dan moet wegens (53)

$$r < \frac{A \alpha}{A - 1}$$

zijn. Het stoffelijk punt beweegt zich nu van het centrum af en keert voor $r = A \alpha / (A - 1)$ terug. De waarde $r = 3 A \alpha / (3 A - 2)$, waarvoor de versnelling nul wordt, is kleiner dan de waarde $r = A \alpha / (A - 1)$, waarvoor de beweging omkeert. Bij het opstijgen (waarbij eerst afstooting) is dus de beweging aanvankelijk versneld en dit houdt op voor

$$r = 3 A \alpha / (3 A - 2),$$

waarna de beweging nog wel opstijgende, maar vertraagd is; de vertraging neemt eerst toe en can voor het omkeren der beweging haar maximum bereiken, maar kan ook toenemende blijven tot de omkeering toe; deze geschiedt bij $r = A \alpha / (A - 1)$ en de beweging terug is aanvankelijk versneld; alle bewegingstoestanden herhalen zich in omgekeerde orde, zodat bij $r = 3 A \alpha / (3 A - 2)$ de beweging vertraagt wordt en bij het naderen van bol $r = \alpha$ onbegrensd langzaam wordt.

Zoals wij zagen, kan r alle waarden hebben, indien $A < 1$ is; is $A = 1$, dan keert het zich verwijderende punt nog juist niet meer terug.

Is $A < \frac{2}{3}$, dan wordt de versnelling nooit nul; er is dan volgens (54) steeds afstooting en de snelheid is op oneindigen afstand het grootst; gedurende de geheele beweging is er afstooting.

43. Men kan zich afvragen, welken invloed de keuze der veranderlijke r op deze uitkomsten heeft gehad. Zullen zij, indien wij een substitutie

$$r = f(\rho)$$

uitvoeren, nog dezelfde zijn ten aanzien der veranderlijke ρ, als ze eerst waren met betrekking tot de veranderlijke r?

Beschouwen wij eens nader, aan welke voorwaarden een dergelijke functie $f(\rho)$ heeft te voldoen. Zij zal zoo moeten zijn, dat $f'(\rho)$ overal bestaat en nooit negatief is; het eerste is noodig, om de substitutie der nieuwe veranderlijke in de uitdrukking voor L te kunnen verrichten, het tweede wordt door de eenduidigheid der correspondentie van de veranderlijken r en ρ verlangd (strik t genomen kan men ook verlangen, dat $f(\rho)$ steeds negatief is; maar dit vervalt, als wij afspreken, uit het paar veranderlijken ρ en $-\rho$ altijd die keuze te doen, waarbij $f'(\rho)$ niet negatief is). Wij zullen nog onderstellen, dat $f''(\rho)$ nooit nul wordt, eindig blijft en een continu differentiaalquotient $f'''(\rho)$ bezit.

Men kan nu naast de veranderlijke ρ nog steeds r als hulpveranderlijke blijven gebruiken; daar
\[t = f'(\rho) \dot{\rho} \]

is, is het duidelijk, dat \(\dot{\rho} = 0 \) wordt op dezelfde plaatsen, waar ook \(t = 0 \) wordt. Evenzoo volgt onmiddellijk, dat voor \(A < 1 \) alle waarden van \(r \) en dus ook van \(\rho \) worden aangenomen (wel te verstaan: alle waarden van \(\rho \), die behoren tot het gebied der veranderlijke \(\rho \), d.i. het stelsel waarden van \(\rho \), dat overeenkomt met alle positieve waarden van \(r \), die groter dan \(\alpha \) zijn), en dat voor \(A > 1 \) dit niet meer het geval is.

Wat de versnelling betreft, wij hebben

\[\ddot{r} = f'(\rho) \dot{\rho} + f''(\rho) \dot{\rho}^2. \]

Voor \(r = \alpha \) wordt \(\ddot{r} = 0 \) en, daar \(f'(\rho) \) niet nul wordt, wordt ook \(\dot{\rho} = 0 \); dus wordt voor \(r = \alpha \) ook \(\ddot{\rho} = 0 \). Men kan, volgens (54), \(r \) zoo dicht bij \(\alpha \) kiezen, dat \(r > 0 \) is; hetzelfde geldt van \(\dot{\rho} \), omdat men tevens \(r \) zoo dicht bij \(\alpha \) kan nemen, dat \(f''(\rho) \dot{\rho}^2 \), bij \(r \) vergeleken, in het niet zinkt. Daaruit volgt echter, dat in het geval \(A > 1 \), waarbij de beweging eens omkeert, de versnelling \(\ddot{\rho} \) eerst positief is, daarna nul en dan negatief wordt.

Is \(A < 1 \), zoodat het opstijgende punt niet weer omkeert, dan wordt, zooals wij zagen, \(r \) eenmaal nul, indien \(A > \frac{\alpha}{r} \) is. Men kan nu vragen, of ook \(\dot{\rho} \), evenals \(r \), voor een beperkt gebied van waarden van \(A \), eens nul wordt. Daar \(\dot{\rho} \) aanvankelijk positief is, zal dit gebeuren, indien \(\dot{\rho} \) voor zeer groote waarden van \(r \) negatief wordt. Nu is

\[f'(\rho) \ddot{\rho} = r - f''(\rho) \dot{\rho}^2 = r - \frac{f''(\rho)}{f'(\rho)^2} \dot{\rho}^2; \]

substitueeren wij hierin \(r \) en \(\dot{r}^2 \) uit (54) en (53), dan wordt

\[
\begin{align*}
\frac{f'(\rho)}{r} \ddot{\rho} &= \frac{\alpha}{r^2} \left(1 - \frac{\alpha}{r} \right) \left(1 - \frac{1}{2} A + \frac{1}{2} A \frac{\alpha}{r} \right) - \frac{f''(\rho)}{f'(\rho)^2} \left(1 - \frac{\alpha}{r} \right) \left(1 - A + A \frac{\alpha}{r} \right) \\
\text{of} \\
\frac{f'(\rho)}{r} \ddot{\rho} &= \left(1 - \frac{1}{r} \right) \frac{1}{r^3} \left[\alpha \left(1 - \frac{1}{2} A + \frac{1}{2} A \frac{\alpha}{r} \right) - r^2 \frac{f''(\rho)}{f'(\rho)^2} \left(1 - \frac{\alpha}{r} \right) \left(1 - A + A \frac{\alpha}{r} \right) \right].
\end{align*}
\]

Voor zeer groote waarden van \(r \) is het teken van \(\ddot{\rho} \) dat van den vorm tusschen vierkante haken. Indien wij nu vooronderstellen, dat

\[\lim_{r \to \infty} r^2 \frac{f''(\rho)}{f'(\rho)^2} = B \]

bestaat, dan zal die vorm voor \(r = \infty \) gelijk aan

\[\alpha (1 - \frac{1}{2} A) - B (1 - A) \]

worden en dus negatief zijn, indien

\[B > \frac{1}{2} A - \frac{\alpha}{1 - A} \cdots \cdots \cdots \cdots (55) \]
is. Is dus B positief, dan hebben zeker alle bewegingen, waarvoor $1 > A \geq \frac{3}{3}$ is, de eigenschap, dat p eens nul wordt, en zelfs mag A nog een weinig kleiner dan $\frac{3}{3}$ zijn. Is $B = 0$, dan staat het met p juist als met r, nl. indien $A > \frac{3}{3}$ is, wordt p eens nul. Is B negatief, dan zal in elk geval $A > \frac{3}{3}$ moeten zijn; schrijft men (55) in den vorm

$$\frac{1}{1-A} > 3 - \frac{2B}{a},$$

dan ziet men, dat ook nu A zoo dicht bij 1 kan gekozen worden, dat p nog eenmaal nul wordt.

Bij de in 22 en 23 beschouwde veranderlijken ρ en β is B achtereenvolgens gelijk aan 0 en $\frac{1}{3}a$; bij het gebruik dezer veranderlijken treden dus verschijnselen op, die gelijken op die, welke bij het gebruik der veranderlijke r plaats vinden.

44. Wij hebben nu nog te beschouwen die bewegingen van een stoffelijk punt in het veld, die kunnen worden opgevat als voor te stellen de bewegingen der planeten en kometen om de zon. Het zijn, zoôals wij zullen zien, de bewegingen (e_3, e_2), $(e_3 = -\frac{1}{3}, e_2)$ en $(-\frac{1}{3}, e_2)$.

Om tot de planetenbewegingen te komen, bedenken wij, dat wegens de kleine snelheden A in vergelijking (36) weinig van 1 verschilt, en wel een bedrag, dat van de orde van grootte van het vierkant eener snelheidscomponente is; dit is echter, zoôals de theorie van Newton leert, van de orde van $\frac{1}{V \pi r}$. De grootheid B uit (37) is van de orde van $\frac{1}{V \pi r}$. Wij stellen daarom

$$A = 1 + \frac{\mu \alpha}{\lambda^2}, \quad B = \frac{V \pi \lambda}{\pi r},$$

waarin λ en μ twee constanten zijn, die in de plaats treden van A en B; de eerste is van de dezelfde orde van grootte als $1 : V \pi r$, de tweede van dezelfde orde als $1 : r^2$. Wij kunnen, door de positieve draaingsrichting van φ zoo te kiezen, dat φ positief wordt, er zorg voor dragen, dat $\lambda > 0$ wordt. Vergelijking (39) wordt nu

$$\frac{\lambda^2}{r - \alpha} - \frac{(d r)^2}{(d \varphi)} \frac{1}{r^2} = \mu,$$

hetgeen voor $\alpha = 0$ overgaat in de vergelijking

$$\frac{\lambda^2}{r} - \frac{1}{r^2} \left(\frac{d r}{d \varphi}\right)^2 - \frac{1}{r^2} = \mu,$$

die in de theorie van Newton optreedt en daar een ellips, parabool of hyperbool bepaalt, naargelang μ positief, nul of negatief is. Hieruit volgt dat in Newton's theorie $\mu < \frac{1}{4} \lambda^4$ is.
Voeren wij de constanten λ en μ in de vergelijkingen (40) in, dan worden deze

$$x_1 + x_2 + x_3 = 1, \quad x_2 + x_3 + x_1 + x_1 x_2 = \alpha (\lambda^2 + \mu \alpha), \quad x_1 x_2 x_3 = \mu \alpha^2.$$

Wij zien, dat de wortels x_1, x_2, x_3 liggen nabij $1, 0, 0$, de wortels e_1, e_2 en e_3 dus nabij $\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}$. De grootheid $\alpha (\lambda^2 + \mu \alpha)$ is positief.

Wij vergelijken nu de beweging, waarbij een bepaald stel waarden van λ en μ behoort, met die beweging uit NEWTON's theorie, waarbij λ en μ dezelfde waarde hebben; wij verkrijgen, zoals wij zagen, de laatste uit de eerste, door $\alpha = 0$ te stellen. Wij zullen dus ook als α niet nul is $\mu \leq \frac{1}{4} \lambda^4$ stellen. Het blijkt nu gemakkelijk, dat x_1 een kleinig, nl. ongeveer $\alpha \lambda^2$, kleiner is dan 1; x_1 en x_3 zijn van de orde α, positief, wanneer μ positief is, verschillend van teken voor negatieve μ. Wij stellen daarom

$$\begin{align*}
x_1 &= 1 - 2 \alpha m, \\
x_2 &= \alpha (m + n), \\
x_3 &= \alpha (m - n).
\end{align*}$$

Nu is naar behooren $x_1 + x_2 + x_3 = 1$; is $n < m$, dan verkrijgt men een geval der beweging (e_3, e_3), is $n = m$, dan $(e_3 = -\frac{1}{2}, e_3)$ en is $n > m$, dan $(-\frac{1}{2}, e_3)$, die respectievelijk met de elliptische, parabolische en hyperbolische beweging in NEWTON's theorie overeenkomen. De constanten m en n treden in de plaats der constanten λ en μ.

Tengevolge van (57) wordt

$$\begin{align*}
e_1 &= \frac{1}{2} - 2 \alpha m, \\
e_2 &= -\frac{1}{2} + \alpha (m + n), \\
e_3 &= -\frac{1}{2} + \alpha (m - n).
\end{align*}$$

De constante C in de formules (43) en (44) is nu ω_3 en (44) wordt

$$\frac{\alpha}{r} = \frac{1}{2} + \varphi (\frac{1}{2} \varphi + \omega_3).$$

Deze vergelijking kunnen wij met behulp van de bekende formule

$$\varphi (\frac{1}{2} \varphi + \omega_3) = e_3 + \frac{(e_1 - e_3) (e_3 - e_2)}{\varphi \frac{1}{2} \varphi - e_3}$$

in den vorm

$$\frac{\alpha}{r} = \frac{1}{2} + e_3 + \frac{(e_1 - e_3) (e_3 - e_2)}{\varphi \frac{1}{2} \varphi - e_3}$$

schrijven, en dit wordt tengevolge van (58)

$$\frac{1}{r} = m - n + \frac{2 n (e_1 - e_3)}{\varphi \frac{1}{2} \varphi - e_3}.$$

(59)
Men kan ook \(\frac{1}{r} \) met behulp van JACOBI's functie \(sn \) in \(\varphi \) uitdrukken; men behoefte zich slechts van de bekende formule
\[
\text{sn}^2 u \sqrt{e_1 - e_3} = \frac{e_1 - e_3}{\varphi u - e_3} \left(k^2 = \frac{e_2 - e_3}{e_1 - e_3} \right)
\]
te bedienen om onmiddellijk te vinden
\[
\frac{1}{r} = m - n + 2 n \text{sn}^2 \frac{1}{2} \varphi \sqrt{e_1 - e_3} \ldots \ldots \ldots \ldots (60)
\]
Voor \(\alpha = 0 \) wordt \(e_1 - e_3 = 1 \) en \(k^2 = 0 \); dan gaat dus (60) over in
\[
\frac{1}{r} = m - n + 2 n \sin^2 \frac{1}{2} \varphi = m - n \cos \varphi
\]
en dit is de baanvergelijking in NEWTON's theorie.

45. Beschouwen wij nu het geval der planetenbeweging wat nader; \(n \) is thans positief. Vergelijking (59) leert, dat \(r \) zijn vroegere waarde teruggrijpt, zoodra \(\varphi \) met \(4 \omega_1 \) is toegenomen. Daar nu de \(\varphi \)-functie bijna ontaard is, kunnen wij
\[
\varphi = \frac{\pi}{\sqrt[e_1 - e_3 + \sqrt[1 - e_3]}} \ldots \ldots \ldots \ldots (61)
\]
stellen en de wortels naar opklimmende machten van \(x \) ontwikkelen. Wij vinden zoo
\[
4 \omega_1 = 2 \pi \left(1 + \frac{x}{m} \right) = 2 \pi + 3 x m \pi \ldots \ldots \ldots \ldots (62)
\]
Indien wij de benadering van \(\omega_1 \) verder hadden voortgezet, dan in (61) is geschied, zouden wij in (62) alleen in de hoogere machten van \(x \) andere coëfficiënten verkregen hebben. Uit (62) zien wij, dat bij elken omloop (d.i., wanneer \(r \) zijn vorige waarde weer heeft aangenomen) \(\varphi \) met \(2 \pi + 3 x m \pi \) toegenomen is. De periheliumbeweging bedraagt dus \(3 x m \pi \).

Uit (59) volgt, dat \(m - n \) de kleinste, \(m + n \) de grootste waarde van \(\frac{1}{r} \) is. Hieruit volgt, dat \(m \) de omgekeerde waarde is van den parameter \(p \) der baan en dat \(n/m \) de excentriciteit \(e \) voorstelt. Dus
\[
e = \frac{n}{m}, p = \frac{1}{m}.
\]
Daardoor wordt de periheliumbeweging \(3 \pi/p \), hetgeen ook EINSTEIN vindt.

46. Wij willen nog den omloopstijd berekenen. Uit formule (37) volgt
\[B \, \text{d}t = \frac{r^2 \, d \varphi}{1 - \frac{\varphi}{r}} \]

Hetgeen voor \(\varphi = 0 \) in de overeenkomstige formule van NEWTON's theorie overgaat. Wij ontwikkelen den noemer en breken de ontwikkeling na den term \(\varphi/r \) af. Wij verkrijgen zoo

\[B \, \text{d}t = r^2 \left(1 + \frac{\varphi}{r} \right) \, d \varphi = r^2 \, d \varphi + \varphi r \, d \varphi \ldots \ldots \quad (63) \]

Stellen wij

\[\sin \psi = \sin \frac{1}{2} \varphi \sqrt{e_1 - e_3} , \]

dan vinden wij door differentiatie

\[\frac{1}{2} \sqrt{e_1 - e_3} \, d \varphi = \frac{d \psi}{\sqrt{1 - k^2 \sin^2 \psi}} \]

Daar nu (60) overgaat in

\[\frac{1}{r} = m - n + 2n \sin^2 \psi , \]

verkrijgen wij uit (63)

\[\frac{1}{2} B \sqrt{e_1 - e_3} \, d \, t = \frac{d \psi}{(m - n + 2n \sin^2 \psi)^2 \sqrt{1 - k^2 \sin^2 \psi}} + \]

\[+ \frac{\varphi \, d \psi}{(m - n + 2n \sin^2 \psi) \sqrt{1 - k^2 \sin^2 \psi}} \ldots \ldots \quad (64) \]

Nu is

\[B^2 = \alpha \lambda^2 = \varphi^2 \left(x_2 x_3 + x_3 x_1 + x_1 x_2 - x_1 x_2 x_3 \right) \]

en dus volgens (57)

\[B^2 = \alpha \left(2m \left(1 - 2\alpha m + \alpha^2 m^2 - \alpha^2 n^2 \right) \right) , \]

d.i. met voldoende nauwkeurigheid

\[B^2 = \frac{\alpha}{2m} \left(1 + 2\alpha m \right) . \]

Verder is

\[e_1 - e_3 = 1 - 3 \alpha m + \alpha n , \]

dus

\[B^2 (e_1 - e_3) = \frac{\alpha}{2m} \left(1 - \alpha m + \alpha n \right) , \]

zoodeat

\[B \sqrt{e_1 - e_3} = \sqrt{\frac{\alpha}{2m} \left[1 - \frac{1}{2} \alpha (m - n) \right]} \]

wordt. Daardoor gaat (64) over in
\[\frac{1}{2} \sqrt{\frac{\alpha}{2m}} \left[1 - \frac{1}{2} \alpha (m - n) \right] d t = \frac{d \psi}{(m - n + 2n \sin^2 \psi)^2 \sqrt{1 - k^2 \sin^2 \psi}} + \]

\[\frac{\alpha d \psi}{(m - n + 2n \sin^2 \psi)} \sqrt{1 - k^2 \sin^2 \psi}. \]

Daar nu \(k^2 \) van de orde \(\alpha \) is, ontwikkelen wij den wortel in den noemer en verwaarlozen \(k^4 \) en hoogere machten van \(k^2 \); in de tweede breuk mogen wij \(k^2 = 0 \) stellen. Stellen wij in de uitkomst \(k^2 = 2 \alpha n \), dan verkrijgen wij

\[\frac{1}{2} \sqrt{\frac{\alpha}{2m}} \left[1 - \frac{1}{2} \alpha (m - n) \right] d t = \frac{1 + \alpha n \sin^2 \psi}{(m - n + 2n \sin^2 \psi)^2} \frac{d \psi}{m - n + 2n \sin^2 \psi} \]

\[= \frac{1}{2} \sqrt{\frac{\alpha}{2m}} \frac{d \psi}{(m - n + 2n \sin^2 \psi)^2} + \frac{\alpha d \psi}{m - n + 2n \sin^2 \psi}. \]

Deelen wij deze vergelijking door \(1 - \frac{1}{2} \alpha (m - n) \), dan verkrijgen wij

\[\frac{1}{2} \sqrt{\frac{\alpha}{2m}} \frac{d t}{(m - n + 2n \sin^2 \psi)^2} + \frac{\alpha d \psi}{m - n + 2n \sin^2 \psi} \]

Noemen wij nu \(T \) den tijd, waarin \(r \) periodiek is, waarin dus \(\varphi \) met \(4 \alpha_1 \) en \(\psi \) met \(\pi \) toeneemt. Dan wordt

\[\frac{1}{2} \sqrt{\frac{\alpha}{2m}} \cdot T = \int_0^\pi \frac{d \psi}{(m - n + 2n \sin^2 \psi)^2} + \frac{\alpha}{2} \int_0^\pi \frac{d \psi}{m - n + 2n \sin^2 \psi} \]

\[= \frac{\pi m}{(m^2 - n^2)^{\frac{3}{2}}} + \frac{\alpha \pi}{2} \]

of

\[\frac{\sqrt{\alpha}}{2 \pi \sqrt{2}} \cdot \frac{m}{m^2 - n^2} \cdot \frac{m}{m^2 - n^2} = a^\frac{3}{2} + \frac{1}{2} \alpha a^\frac{1}{2}, \]

indien \(a \) de halve groote as der baan voorstelt. Wij kunnen dit ook in den vorm

\[\frac{\sqrt{\alpha}}{2 \pi \sqrt{2}} \cdot T = (a + \alpha)^\frac{3}{2} \]

schrijven, waardoor de derde wet van KEPLER den eenvoudigen vorm

\[\frac{(a + \alpha)^3}{T^2} = \frac{\alpha}{8 \pi^2} \]

verkrijgt.

Men kan ook vragen naar den tijd, dien \(\varphi \) behoeft om met \(2 \pi \) toe te nemen. Hij hangt af van de plaats, waar men de planeet laat beginnen en is het grootst voor het perihelium, het kleinst voor het aphelium. Indien na een tijd \(NT \) het perihelium (of eenig ander bepaald
punt der baan) over een hoek \((N + 1)2\pi\) gedraaid is, dan moet, volgens wat wij in 45 vonden,

\[
2\pi = N \frac{3\pi}{p}
\]

zijn en dus

\[
N = \frac{2p}{3\pi},
\]

waaruit voor den hoek \((N + 1)2\pi\) volgt

\[
2\pi \left(1 + \frac{2p}{3\pi}\right);
\]

deze hoek wordt doorlopen in den tijd

\[
N T = \frac{2p}{3\pi} T,
\]

zoodat men als een gemiddelden omloopstijd kan beschouwen de grootheid

\[
T_1 = \frac{2p}{3\pi} T : \left(1 + \frac{2p}{3\pi}\right) = T : \left(1 + \frac{3\pi}{2p}\right),
\]

waarvoor men uit (65) gemakkelijk de betrekking

\[
\left(a - \frac{\pi e^2}{1 - e^2}\right)^3 : T_1^2 = \frac{\pi}{8\pi^2}
\]

vindt, hetgeen van de wet van KEPLER minder afwijkt dan (65), omdat bij de planetenbanen \(e\) klein is; voor een cirkelvormige baan wijkt deze wet van die van KEPLER in het geheel niet meer af.
HOOFDSTUK III.

HET VELD VAN LANGZAAM BEWEGENDE MASSA'S.

§ 1. Inleiding.

47. In het vorige hoofdstuk berekenden wij het veld van een enkel rustend centrum, dat bolvormige symmetrie bezit, en wij onderzochten de beweging van een stoffelijk punt in dat veld. Van dit eenvoudige geval tot meer ingewikkelde komende, zou men kunnen vragen naar het veld van een bewegend centrum of van een aantal bewegende centra, wier bewegingstoestand gegeven is; en aan den anderen kant zou men, bij gegeven veld, kunnen vragen naar de wijze waarop zich een lichaam beweegt, waarvan de afmetingen niet te verwaarlozen zijn. De exacte oplossing deze vraagstukken schijnt niet gemakkelijk en daarom is het geraden, althans voorlopig, een benaderde oplossing te zoeken; daarmede kan men ook, wat betreft de toepassingen, tevreden zijn, indien de nauwkeurigheid der benadering zoo groot is, dat de invloed der weggelaten termen niet meer waarneembaar is. Het zoeken van deze benaderde oplossingen der gravitatievergelijkingen is het, waarmede wij ons in dit hoofdstuk willen bezighouden.

48. Laten wij de waarden, die \(g_{ij} \) en \(g^{ij} \) bij afwezigheid van graviteerende massa zouden hebben, \(s_{ij} \) resp. \(s^{ij} \) noemen, zodat

\[
s_{ij} = 0 \text{ voor } i \neq j, \quad s_{11} = s_{22} = s_{33} = -1, \quad s_{44} = 1, \quad s^{ij} = s_{ij}
\]

is. Verwaarlozen wij in de gravitatievergelijkingen de kwadraten en produkten (en de hoogere machten) der verschillen van de werkelijke waarden der \(s \)'s met de \(s \)'s, dan worden de eerste leden dier vergelijkingen lineair in die verschillen, en daar het tweede lid, indien het niet nul is, met den factor \(x \) is aangedaan, zal in dat geval ook in die verschillen de factor \(x \) optreden. Wij komen er dan toe de \(g \)'s naar opklimmende machten van \(x \) te ontwikkelen en van de ontwikkelingen de termen achtereenvolgens te bepalen. Is echter overal het tweede lid van elk der gravitatievergelijkingen nul, dan zullen de lineaire vergelijkingen, waaraan de verschillen tusschen de \(g \)'s en de \(s \)'s voldoen, ons leeren hoe de zwaartekracht zich voortplant. Hierover is onlangs

49. Wij willen ons beperken tot de benadering van het veld van massa’s, wier snelheden klein zijn t.o.v. van de lichtsnelheid, d.i. van de snelheid, waarmede de gravitatiowerkingen zich voortplanten. Dit is o.a. het geval bij de planeten.

Hebben wij in een of ander gravitatieveld een bewegend stoffelijk punt, dan kunnen wij verwachten, dat de kwadraten der snelheidscomponenten van het punt van dezelfde orde van grootte zijn als de termen van de eerste orde in de g’s, dat zijn de termen die den factor α bevatten; dit zagen wij ook in het tweede hoofdstuk, waar het kwadraat der snelheid van de orde van $\alpha : r$ was.

Wij willen nu het gravitatieveld zoo nauwkeurig berekenen, dat wij van de bewegingsvergelijkingen van een stoffelijk punt ook de termen van de tweede orde nog verkrijgen. Die bewegingsvergelijkingen kunnen, volgens 12, verkrijgen door de eerste variatie van

$$ \int_{l}^{b} L \, dt = \int_{l}^{b} \left(\sum_{ij} g_{ij} \dot{x}_i \dot{x}_j \right)^{\frac{1}{2}} \, dt $$

gelijk aan nul te stellen. Men ziet nu gemakkelijk in, dat van de grootheid L de termen van de tweede orde bekend moeten zijn. Duiden wij een index, die alleen de waarden 1, 2 en 3 aanneemt, aan door hem onder het somteeken tussen haakjes te plaatsen, dan wordt

$$ L^2 = \sum_{(j)} g_{ij} \dot{x}_i \dot{x}_j + 2 \sum_{(j)} g_{ij} \dot{x}_i \dot{x}_j + g_{44} , $$

waaruit wij, bedenkende dat \dot{x}_i en \dot{x}_j van de orde $\frac{1}{2}$ zijn, zien dat g_{44} tot in termen van de tweede orde, g_{4j} tot in termen van de orde $1\frac{1}{2}$, en g_{ij} te 4, $j \neq 4)$ tot in termen van de eerste orde moet berekend worden.

50. Wij denken ons nu de veldverwekkende massa’s in beweging onder elkaars invloed zoo, dat hunne snelheden ook van de orde $\frac{1}{2}$ zijn. Het veld van de eerste orde is, zooals wij in 55 zullen zien, onafhankelijk van den bewegingstoestand der veldverwekkende lichamen en gelijk aan de som der velden van de eerste orde, die door elk der lichamen afzonderlijk worden opgewekt. Men kan zich nu reeds vooruit een denkbeeld vormen van den invloed, dien de gelijktijdige aanwezigheid der lichamen en hun bewegingen op het veld zullen uitoefenen. Wij
zagen in het tweede hoofdstuk, dat bij een enkel bolvormig, rustend centrum $g_{14} = g_{24} = g_{34} = 0$ is. Denken wij ons nu eerst de lichamen in rust; in g_{ij} ($i \neq 4, j \neq 4$) en g_{14} zullen termen van de tweede orde optreden tengevolge van verschillende oorzaken. Vooreerst ontstaan zij, evenals bij een enkel centrum, doordat de vergelijkingen, waaruit zij na berekening van de termen van de eerste orde moeten worden gevonden, kwadraten en produkten der termen van de eerste orde bevatten, hetgeen een gevolg is van het niet lineair zijn der eerste leden der gravitatievergelijkingen. Daar nu bij meerdere centra de termen van de eerste orde de som zijn van die, welke bij elk der centra afzonderlijk optreden, ontstaan die termen van de tweede orde ook uit die produkten der termen van de eerste orde, die twee factoren bevatten, welke van twee verschillende centra afkomstig zijn. Dit is de oorzaak van het optreden van den derden term in (99). Een tweede oorzaak voor het optreden van termen van de tweede orde is gelegen in de potentieele energie, die elk centrum in het veld der overige centra heeft. Deze verandert de waarde van T_4 met een bedrag van de eerste orde en veroorzaakt in de g's zodoende een term van de tweede orde; hieraan is de zesde term in (99) toe te schrijven. Denken wij ons nu ook de massa's nog in beweging, dan hebben zij een kinetische energie van de eerste orde, die T_4 verandert met een bedrag van de eerste orde en dus in de g's termen van de tweede orde doet optreden. Hieraan is de vijfde term in (99) te danken.

De beweging der veldverwekkende massa's heeft echter nog een anderen invloed. Tengevolge van de eindige voortplantingssnelheid der gravitatie zal men het veld in zeker punt op zeker oogenblik moeten berekenen, door te letten op de standen, die de veldverwekkende lichamen hadden op het oogenblik, dat zij het veld uitzonden. Dit zijn standen, die van de oogenblikkelijke verschillen met grootheden van de orde $\frac{1}{2}$, omdat de snelheden van de orde $\frac{1}{2}$ zijn. Deze zoogenaamde effectieve standen kunnen ook berekend worden nauwkeurig tot in grootheden van de eerste orde, hetgeen noodig zal zijn, om de g's (speciaal g_{44}) te leeren kennen tot in grootheden van de tweede orde. Daartoe zal men ook rekening hebben te houden met de versnelling van de lichamen. Een nadere berekening leert, dat grootheden van de orde $\frac{1}{2}$ in g_{44} (en g_{ij} voor $i \neq 4, j \neq 4$, maar daarop komt het niet aan) niet optreden, maar alleen termen van de tweede orde, die van de versnelling en van de kwadraten der snelheidscomponenten afkomstig zijn. Dit is een van de oorzaken van het optreden van den vierden term in (99); wij verkrijgen in onze berekening dien term echter niet
door de berekening der effectieve standen. Wat g_{14}, g_{24} en g_{34} betreft, deze grootheden verkrijgen een term van de orde 1, hetgeen men wel het gemakkelijkst inziet, door te denken aan de graviteerende werking der grootheden T_{is}, die, voor $i \neq 4$, van de orde $1/\xi$ zijn. Daardoor wordt in ds^2 ook g_{14} van nul verschillend (vergelijk formule (100)); tevens hebben deze grootheden, door hun optreden in het eerste lid der gravitatievergelijkingen, aandeel in het tot stand komen van den vierden term in (99).

51. Voor dat wij tot een directe berekening van het veld van een aantal zich bewegende massa's overgaan, willen wij ter verduidelijking van hetgeen in 50 gezegd is, het veld in een eenvoudig geval berekenen. Wij denken ons een centrum, dat zich eenparig en rechtlijnig beweegt in de richting van de x-as met een snelheid v. In een coördinatenstelsel, waarin het rust, zij het bolvormig; het zal zich dan in het coördinatenstelsel, waarin het zich beweegt, afgeplat voordoen.

Wij vonden in het tweede hoofdstuk, bij het gebruik der veranderlijke s, formule (31), waarvoor wij ook kunnen schrijven

$$ds^2 = \left(\frac{1 - \frac{\alpha}{4\rho}}{1 + \frac{\alpha}{4\rho}} \right) d\tau^2 - \left(1 + \frac{\alpha}{4\rho}\right)^4 (d\xi^2 + d\eta^2 + d\zeta^2),$$

indien wij den tijd τ noemen en drie rechthoekige coördinaten ξ, η, ζ invoeren; daarbij is $\rho^2 = \xi^2 + \eta^2 + \zeta^2$.

Ontwikkelen wij nu naar opklimmende machten van α en breken wij de ontwikkeling van den coëfficiënt van $d\tau^2$ af na den term met α^2, die van den coëfficiënt van $d\xi^2 + d\eta^2 + d\zeta^2$ na den term met α, dan vinden wij

$$ds^2 = \left(1 + \frac{\alpha}{2\rho^2}\right) d\tau^2 - \left(1 + \frac{\alpha}{\rho}\right)^4 (d\xi^2 + d\eta^2 + d\zeta^2) \ldots (66)$$

Deze formule heeft betrekking op een centrum, dat in rust verkeert in het punt $\xi = \eta = \zeta = 0$. Wij beschouwen nu een transformatie, zooals die in de gewone relativiteitstheorie gebruikt wordt.

Stel

$$\xi = ax - bt, \eta = y, \zeta = z, \tau = at - bx \ldots \ldots \ldots (67)$$

waarin

$$a = (1 - v^2)^{-1/2}, b = v (1 - v^2)^{-1/2}$$

is en v een constante voorstelt; men heeft dan, zooals het geval moet zijn, $a^2 - b^2 = 1$.

Uit de eerste formule (67) volgt

$$x = vt + \xi \sqrt{1 - v^2},$$
zoodat een punt, dat in het coördinatenstelsel ξ, η, τ rust, zich in het stelsel x, y, z, t met eenparige snelheid v in de richting der positieve x-as beweegt. De transformatie (67) is zoo, dat

$$t^2 - (x^2 + y^2 + z^2) = \tau^2 - (\xi^2 + \eta^2 + \zeta^2)$$

is; de waarden der g's in het oneindige blijven dus dezelfde als voorheen.

Substitueeren wij nu de uit (67) volgende waarden

$$d\xi = adx - b dt, \quad d\eta = dy, \quad d\tau = adt - b dx$$

in (66), dan gaat die formule over in

$$ds^2 = \left(1 - \frac{\alpha^2}{\rho^2} + \frac{\alpha^2}{2\rho^2}\right)(adt - b dx)^2 - \left(1 + \frac{a^2}{\rho^2}\right)(adx - b dt)^2 + dy^2 + dz^2.$$

of

$$ds^2 = \left(1 - \frac{\alpha}{\rho} + \frac{\alpha^2}{2\rho^2}\right)dt^2 + \frac{2a}{\rho} b d x \cdot d t - \left(1 + \frac{a}{\rho}\right)(d x^2 + d y^2 + d z^2).$$

In den eersten en den derden term vervangen wij a^2 door $1 + b^2$ en laten dan in den eersten term de grootheid $a^2 b^2 \cdot 2 \rho^2$, die van de derde orde is, weg; in den derden term behouden wij binnen de accolades alleen de termen van de orde 0 en 1. In den tweeden term vervangen wij a door 1 en in alle termen tenslotte b door v. Zoodoende verkrijgen wij

$$ds^2 = \left(1 - \frac{\alpha}{\rho} + \frac{\alpha^2}{2\rho^2}\right)dt^2 + \frac{4}{\rho} v d x \cdot d t - \left(1 + \frac{\alpha}{\rho}\right)(dx^2 + dy^2 + dz^2).$$

Stellen wij nu

$$(x^2 + y^2 + z^2)^{1/2} = \rho,$$

dan wordt

$$\rho^2 = t^2 + \tau^2 = f^2.$$

Wij beschouwen nu alles op het oogenblik $t = 0$. In het coördinatenstelsel x, y, z, t hebben wij op dat oogenblik in den oorsprong $x = y = z = 0$ een veldverwekkend centrum, dat zich in de richting der positieve x-as met de snelheid v beweegt en dat den vorm heeft van een omwentelingsellipsoïde, waarvan de omwentelingsas de kortste middellijn is (de assenverhouding is als $1 : a$). Wij vragen naar het veld in een willekeurig punt (x, y, z) op het oogenblik $t = 0$. Daartoe zullen wij in (68) voor ρ de waarde moeten zetten, die voor $t = 0$ uit (69) volgt, nl.

$$\rho^2 = t^2 + \tau^2 = r^2 + b^2 x^2,$$
omdat voor $t = 0$ uit (67) volgt, dat $\tau = - bx$ is. Nauwkeurig tot in termen van de eerste orde is dus

$$\frac{1}{\rho} = \frac{1}{r} \left(1 - \frac{v^2 x^2}{2 r^2}\right)$$

en daardoor wordt (68)

$$ds^2 = \left(1 - \frac{x^2}{2 r^3} + \frac{1}{2} \frac{x^2 v^2}{r^3} - \frac{2 x}{r} v^2\right) dt^2 + \frac{4 x}{r} v dx dt$$

$$- \left(1 + \frac{x^2}{r}\right) (dx^2 + dy^2 + dz^2) \ldots \ldots (70)$$

In deze formule stelt nu $x : r$ in g_{11}, g_{22}, g_{33} en g_{44} het veld van de eerste orde voor, de coëfficiënt van $dx dx$ is uitsluitend aan de beweging te danken en is van de orde $1 \frac{1}{2}$. In g_{11}, g_{22} en g_{33} zijn de termen van de tweede orde weggelaten, maar in g_{44} zijn zij behouden. De term $\frac{x^2}{2 r^3}$ treedt ook bij een rustend centrum op en kan worden opgevat als te ontstaan door wisselwerking van de velden der verschillende deelen van het centrum (bij twee centra zou ook het produkt der termen van de eerste orde, door elk der centra veroorzaakt, optreden). De term $- 2 \frac{x v^2}{r}$ is gedeeltelijk toe te schrijven aan de veranderingen, die de waarden der xs tengevolge van de translatie ondergaan, en gedeeltelijk is hij, met den term $\frac{x v^2 x^2}{2 r^3}$, toe te schrijven aan de eindige voortplantingssnelheid der zwaartekracht.

§ 2. Berekening van het veld.

52. Wij denken ons een aantal lichamen, die zich zoo bewegen, dat de kwadraten der snelheidscomponenten van elk hunner punten van de eerste orde zijn. Die componenten mogen x_1, x_2, x_3 heeten; wij stellen

$$\sum_{(0)} x_i^2 = v^2.$$

Wij gaan in de gravitatievergelijkingen (15) substitueeren

$$g_{ij} = x_{ij} + x \beta_{ij} + x^2 \gamma_{ij} (i \neq 4, j \neq 4),$$
$$g_{14} = x_{14} + x h_{14} \sigma_{14} (i \neq 4),$$
$$g_{44} = x_{44} + x \beta_{44} + x^2 \gamma_{44},$$
$$g^{ij} = x^{ij} + x \beta^{ij} + x^2 \gamma^{ij},$$
$$g^{14} = x^{14} + x h_{14} \sigma^{14},$$
$$g^{44} = x^{14} + x \beta^{44} + x^2 \gamma^{44}.$$

De grootheden β, σ en γ zijn evenals de grootheden x (zie 48) van de orde 0.

Hoewel het zal blijken, dat de term $x h_{14} \sigma_{14}$ slechts den factor x bevat en alleen omdat hij bovendien een snelheidscomponente als factor bezit, van de orde $1 \frac{1}{2}$ is, hebben wij den term toch door $x h_{14} \sigma_{14}$ voor- gesteld, omdat deze schrijfwijze ons er aan herinnert, dat de orde $1 \frac{1}{2}$ is.
Bovenstaande uitdrukkingen zijn vervat in de algemene uitdrukkingen
\[g_{ij} = x_{ij} + x \beta_{ij} + x^2 \sigma_{ij} + x^3 \gamma_{ij}, \]
\[g^{ij} = a_{ij} + x \beta^{ij} + x^2 \sigma^{ij} + x^3 \gamma^{ij}, \]
die wij in hun plaats kunnen gebruiken, indien wij slechts \(\gamma_{ij} \) en \(\gamma^{ij} \)
de waarde 0 toekennen, wanneer geen of beide der indices \(i \) en \(j \) gelijk aan 4 zijn, en aan \(\beta_{ij}, \beta^{ij}, \gamma_{ij}, \gamma^{ij} \) de waarde 0 toekennen, indien slechts een der indices 4 is.

Wanneer wij nu de bovenstaande uitdrukkingen in de gravitatievergelijkingen substitueeren, dan komt het voor, dat sommige termen een of tweemaal naar den tijd \(t = x_t \) moeten worden gedifferentieerd. De differentiaalquotienten zouden bij rustende massa's 0 zijn, en daarom onderstellen wij, dat de orde dier termen door elke differentiatie naar \(x_t \) met \(\frac{1}{2} \) verhoogd wordt, overeenkomstig onze onderstelling, dat de snelheden van de orde \(\frac{1}{2} \) zijn.

53. Op dezelfde wijze als de symbolen van CHRISTOFFEL van de eerste soort (zie 8) uit de grootheden \(g_{ij} \) zijn opgebouwd, kunnen wij uit de grootheden \(\beta_{ij}, \gamma_{ij} \) de symbolen
\[\left[\frac{i}{j} \right], \left[\frac{j}{i} \right], \left[\frac{i}{j} \right] \]
vormen, zoodat bijvoorbeeld
\[\left[\frac{i}{j} \right] _\beta = \frac{1}{2} \left(\frac{\partial^2 \beta_{j i}}{\partial x_j \partial x_i} + \frac{\partial^2 \beta_{j i}}{\partial x_i \partial x_j} - \frac{\partial^2 \beta_{j i}}{\partial x_i^2} \right) \]
is. Met deze notatie wordt
\[\left[\frac{i}{j} \right] _n = \sum_n g^{ln} \left[\frac{i}{j} \right] _n = \sum_n \left(\alpha^{ln} + x \beta^{ln} + x^2 \sigma^{ln} + x^3 \gamma^{ln} \right) \left(\kappa \left[\frac{i}{j} \right] _n + x^2 \left[\frac{i}{j} \right] _n + x^3 \left[\frac{i}{j} \right] _n \right) \]
en dus, indien wij termen van hooger dan de tweede orde verwaarlozen,
\[\left[\frac{i}{j} \right] _n = \kappa \alpha^{ln} \left[\frac{i}{j} \right] _n + x^2 \alpha^{ln} \left[\frac{i}{j} \right] _n + x^3 \alpha^{ln} \left[\frac{i}{j} \right] _n \]
(71)
Deze ontwikkeling van het symbool van CHRISTOFFEL van de tweede soort moet nu in (15) worden gesubstitueerd.

54. Wij beginnen met de berekening van de termen van de eerste orde in (15), welke vergelijking wij met 2 vermenigvuldigen, zoodat zij luidt
\[2 G_{ij} = -(2 T_{ij} - g_{ij} T) \]
Wij herinneren eraan, dat blijkens 9
\[2 G_{ij} = 2 \sum_i \left(\frac{\partial}{\partial x_j} - \frac{\partial}{\partial x_i} \right) \left[\frac{i}{j} \right] _l + 2 \sum_\{m\} \left[\frac{i}{j} \right] _m \left[\frac{i}{j} \right] _l - \left[\frac{i}{j} \right] _m \left[\frac{i}{j} \right] _l \]
is. Deze laatste uitdrukking bestaat, zooals men ziet, uit twee deelen, waarvan het eerste tweede differentiaalquotienten der g's en het tweede producten van eerste differentiaalquotienten bevat. Wij bepalen ons voorlopig tot termen van de eerste orde en kunnen dus het tweede deel van 2 G_{ij} buiten beschouwing laten; in het eerste deel behoeven wij slechts den eersten term van (71) te substitueeren, waardoor wij vinden

$$2x \sum \frac{z^{il}}{x} \left(\frac{\partial}{\partial x_j} \left[I_l \right] \right) =$$

$$= x \sum \frac{z^{il}}{x} \left(\frac{\partial^2 \beta_{il}}{\partial x_j \partial x_i} + \frac{\partial^2 \beta_{ij}}{\partial x_i^2} - \frac{\partial^2 \beta_{il}}{\partial x_i \partial x_j} - \frac{\partial^2 \beta_{ji}}{\partial x_i \partial x_j} \right),$$

of, indien wij de waarde 4 van de indices afzonderlijk nemen,

$$- x \sum \left(\frac{\partial^2 \beta_{ij}}{\partial x_i^2} - \frac{\partial^2 \beta_{il}}{\partial x_i \partial x_j} - \frac{\partial^2 \beta_{ji}}{\partial x_i \partial x_j} \right) + x \sum \frac{z^{il}}{x} \frac{\partial^2 \beta_{il}}{\partial x_j \partial x_i} +$$

$$+ x \frac{\partial^2 \beta_{ij}}{\partial x_i^2} - \frac{\partial^2 \beta_{il}}{\partial x_i \partial x_j} - \frac{\partial^2 \beta_{ji}}{\partial x_i \partial x_j}, \ldots \ldots \ldots (73)$$

waarin de laatste term minstens van de tweede orde is.

De termen van de eerste orde worden

voor $i \neq 4, j \neq 4$: $- x \sum \frac{\partial^2 \beta_{ij}}{\partial x_i^2} - \frac{\partial^2 \beta_{il}}{\partial x_i \partial x_j} - \frac{\partial^2 \beta_{ji}}{\partial x_i \partial x_j} + x \sum \frac{z^{il}}{x} \frac{\partial^2 \beta_{il}}{\partial x_j \partial x_i}$

voor $i \neq 4, j = 4$: nul,

voor $i = j = 4$: $- x \sum \frac{\partial^2 \beta_{44}}{\partial x_4^2} = - x \Delta \beta_{44}$.

De grootheden T_{ij}, die in het tweede lid van (72) voorkomen, hangen samen met de spannings-energiecomponenten $V - g T_{ij}$ der stof, waarover reeds in 13 gesproken is en die wij, zooals ook Einstein doet, door Ξ_i^j voorstellen. Men heeft nl.

$$T_{ij} = \frac{1}{\sqrt{-g}} \sum g_{ij} \Xi_i^j,$$

$$\Xi_i^j = \sqrt{-g} \sum g^{ij} T_{ij}.$$

De grootheden Ξ_i^j ($i \neq 4, j \neq 4$) zijn de spanningscomponenten,

$- \Xi_i^i, - \Xi_i^4, - \Xi_4^4$ de componenten van de hoeveelheid van beweging per volumeenheid, $\Xi_i^1, \Xi_i^2, \Xi_i^3$ die van den energiestroom, en Ξ_i^4 is de energie per volumeenheid. Tusschen deze grootheden bestaan de door de vergelijkingen

$$T_{ij} = T_{ji}$$

uitgedrukte betrekkingen.
Bij de beoordeling van de orde van grootte nemen wij in aanmerking hetgeen in dit opzicht over de g's gezegd is. Daaruit volgt, dat $-g$ weinig van 1 verschilt. De energiedichtheid \mathcal{E}_4 zal nu van de orde 0 zijn. Hetzelfde geldt blijkens bovenstaande formules van T_{44} en blijkens

$$T = \sum_{ij} g^{ij} T_{ij} = \frac{1}{\sqrt{-g}} \sum_i \mathcal{E}_i$$

van de scalaire grootte T.

Nemen wij aan, dat er geen andere hoeveelheden van beweging in aanmerking komen dan die, welke aan de snelheid der stof te danken zijn, dan bevatten $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3$ elk een component die snelheid als factor en zijn daarom van de orde $\frac{1}{2}$. Wij zullen verder aannemen, dat de spanningen door de gravitatie zelf worden teweeggebracht of althans, dat er geen spanningen zijn, die aanmerkelijk grooter zijn dan de door de gravitatie veroorzaakte. Dan zijn de grootheden \mathcal{E}_i voor $i \neq 4, j \neq 4$ van de eerste orde.

Uit de boven aangevoerde betrekkingen tusschen T_{ij} en \mathcal{E}_i volgt nu, dat ook T_{ij} voor $i \neq 4, j \neq 4$ van de eerste orde is, dat $T_{4i} = T_{44}$ van de orde $\frac{1}{2}$ is en dat \mathcal{E}_i (de componenten van den energiestroom) eveneens van de orde $\frac{1}{2}$ is. Als men zich tot de termen van de orde 0 beperkt, is

$$T = T_{44} = \mathcal{E}_4,$$

omdat de verschillen dezer drie grootheden onderling van de orde 1 zijn.

Wij zullen nu onder ρ een grootheid van de orde 0 verstaan, die van T, T_{44} en \mathcal{E}_4 slechts met een bedrag van de orde 1 verschilt. Daarbij merken wij op, dat deze definitie de waarde van ρ niet precies vastlegt. Deze onbepaaldheid doet in het eerste deel der volgende berekeningen niet ter zake, maar zal later in het oog moeten worden gehouden.

Voor de termen van de eerste orde in (72) vinden wij nu

$$\sum_{ij} \left(\frac{\partial^2 \beta_{ij}}{\partial x_i \partial x_j} - \frac{\partial^2 \beta_{ii}}{\partial x_i \partial x_i} - \frac{\partial^2 \beta_{ij}}{\partial x_i \partial x_j} \right) - \sum_{i} \frac{\partial^4 \beta_{ii}}{\partial x_i \partial x_i \partial x_i} = \delta_{ij}, (i \neq 4, j \neq 4)$$

$$(74)$$

Hierin stelt δ_{ij} indien $i = j$ is, 1 voor, indien $i \neq j$ is, 0.

55. Aan deze vergelijkingen kan men op oneindig veel wijzen voldoen. Zeer eenvoudig is de oplossing

$$\beta_{ij} = 0 (i \neq j), \quad \beta_{11} = \beta_{22} = \beta_{23} = \beta_{44} = \beta, \ldots \ldots$$

$$(75)$$

waarin de functie β voldoet aan

$$\Delta \beta = \rho \ldots \ldots \ldots \ldots \ldots \ldots (76)$$
Maar deze oplossing is volstrekt niet de eenige. Want indien \(q \) een willekeurige functie van \(x, x^2, x^3 \) voorstelt, is steeds
\[
\beta_{ij} = \frac{\partial^2 q}{\partial x_i \partial x_j} \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (77)
\]
een oplossing van het stelsel, dat men uit (74) verkrijgt, door \(\rho = 0 \) te stellen; bij (75) kan men dus steeds de oplossing (77) optellen. Men verkrijgt zo onbeperkt veel nieuwe oplossingen.

De oplossing (75) bezit, behalve dat zij eenvoudig is, het voordeel, dat \(x_4 \) voor een enkel bolvormig centrum gelijk wordt aan \(-\alpha : r \) (\(\alpha \) constant), hetgeen van denzelfden vorm is als de gravitatiepotential in Newton’s theorie. Zij ontstaat echter niet door de termen van hooger orde dan de tweede in vergelijking (28), die het veld van een rustend bolvormig centrum voorstelt, weg te laten. Want schrijft men voor (28)
\[
d s^2 = \left(1 - \frac{\alpha}{r}\right) d t^2 - \left(1 - \frac{\alpha}{r}\right)^2 d r^2 - (d r^2 + r^2 d \theta^2 + r^2 \sin^2 \theta d \phi^2),
\]
dan kan men gemakkelijk rechthoekige coördinaten invoeren en vindt, daar
\[
d r^2 + r^2 d \theta^2 + r^2 \sin^2 \theta d \phi^2 = dx_i^2 + dx^2 + dx^2 + dx^2, d r = \frac{x_i}{r} d x_i + \frac{x^2}{r} d x^2 + \frac{x^3}{r} d x^3
\]
is,
\[
d s^2 = \left(1 - \frac{\alpha}{r}\right) d t^2 - \frac{\alpha}{r} \left(\frac{x_i}{r} d x_i + \frac{x^2}{r} d x^2 + \frac{x^3}{r} d x^3\right)^2 - (d x_i^2 + d x^2 + d x^3).
\]
Ontwikkelt men nu naar opklimmende machten van \(\alpha \), dan vindt men
\[
\beta_{44} = -\frac{\alpha}{4 \rho} x_i x_j, \quad \beta_{ij} = -\frac{\alpha}{r} \frac{x_i x_j}{r^2} (i \neq j, j \neq 4).
\]
Deze functies van \(x_i, x^2, x^3 \) lossen (74) op, maar verschillen van (75); zij ontstaan er uit, door \(\partial^2 q / \partial x_i \partial x_j \) toe te voegen, indien \(x q = \alpha r \) is.

Wel verkrijgen wij zonder toevoeging van (77) de oplossing (75), indien wij van (31) uitgaan. Dan wordt (verg. 51)
\[
d s^2 = \left(1 - \frac{\alpha}{4 \rho}\right)^2 d t^2 - \left(1 + \frac{\alpha}{4 \rho}\right)^4 (d x_i^2 + d x^2 + d x^3)
\]
en men vindt
\[
x \beta_{11} = x \beta_{22} = x \beta_{33} = x \beta_{44} = -\frac{\alpha}{\rho}, \quad \beta_{ij} = 0 \text{ indien } i \neq j,
\]
hetgeen de oplossing (75) is voor een bolvormig centrum.
56. Wij gaan nu over tot de opstelling der differentiaalvergelijkingen voor de grootheden σ en γ. Substitueeren wij de oplossing (75) in (73), dan gaat die uitdrukking, met weglating van de termen van de eerste orde, over in

$$\begin{align*}
\text{voor } i \neq 4, j \neq 4: & \quad \delta_{ij} \times \frac{\partial^2 \beta}{\partial x_4^2}, \\
\text{voor } i \neq 4, j = 4: & \quad -2 \times \frac{\partial^2 \beta}{\partial x_j \partial x_i}, \\
\text{voor } i = j = 4: & \quad -3 \times \frac{\partial^2 \beta}{\partial x_i^3}.
\end{align*}$$

Dit is dus, met weglating van de termen van de eerste orde, het resultaat der substitutie van den eersten term van (71) in het eerste deel van $2G_{ij}$. Wij moeten nu nog de overige termen van (71) in het eerste deel van $2G_{ij}$ substitueeren en ten slotte ook nog den eersten term van (71) in het tweede deel van $2G_{ij}$.

Substitueeren wij nu in het eerste deel van $2G_{ij}$ den tweeden term van (71), dan vinden wij een uitdrukking, die van (73) alleen verschilt, doordat er overal σ in plaats van β in staat en doordat x erin voor- komt tot de macht $\frac{1}{2}$. Daar σ_{ij} slechts dan van 0 verschilt, wanneer een der beide indices 4 is en de andere 1, 2 of 3, vallen er vele termen weg en er blijft slechts over

$$\begin{align*}
\text{voor } i \neq 4, j \neq 4: & \quad -x^2 \left(\frac{\partial^2 \sigma_{ij}}{\partial x_i \partial x_j} + \frac{\partial^2 \sigma_{kl}}{\partial x_4 \partial x_l} \right), \quad \text{(van de orde 2)} \\
\text{voor } i \neq 4, j = 4: & \quad x^2 \sum_{l} \left(\frac{\partial^2 \sigma_{il}}{\partial x_i \partial x_l} - \frac{\partial^2 \sigma_{kl}}{\partial x_i \partial x_l} \right), \quad \text{(van de orde 1$\frac{1}{2}$)} \\
\text{voor } i = j = 4: & \quad 2x^2 \sum_{l} \frac{\partial^2 \sigma_{ii}}{\partial x_i \partial x_l}. \quad \text{(van de orde 2)}
\end{align*}$$

In het eerste deel van $2G_{ij}$ moeten nu nog de derde en de vierde term der ontwikkeling (71) worden gesubstitueerd. Wij beginnen met den vierden term, omdat wij daarbij eveneens van uitdrukking (73) kunnen gebruik maken, met vervanging van β door γ en x door x^2. Wij vinden

$$\begin{align*}
\text{voor } i \neq 4, j \neq 4: & \quad -x^2 \sum_{l} \left(\frac{\partial^2 \gamma_{ij}}{\partial x_i \partial x_l} - \frac{\partial^2 \gamma_{il}}{\partial x_i \partial x_l} - \frac{\partial^2 \gamma_{jl}}{\partial x_i \partial x_l} + \frac{\partial^2 \gamma_{jl}}{\partial x_i \partial x_l} \right) + x^2 \sum_{l} \frac{\partial^2 \gamma_{ii}}{\partial x_i \partial x_l}, \\
\text{voor } i \neq 4, j = 4: & \quad \text{nul}, \\
\text{voor } i = j = 4: & \quad -x^2 \sum_{l} \frac{\partial^2 \gamma_{44}}{\partial x_i \partial x_l} = -x^2 \Delta \gamma_{44},
\end{align*}$$

waarbij termen van hooger orde dan de tweede zijn weggelaten.
Voordat wij nu den derden term van (71) in het eerste deel van \(2G_{ij}\) substitueeren, bedenken wij, dat wegens \(\beta^{ij} = 0\) (\(i \neq j\)) en \(\beta^{11} = \beta^{22} = \beta^{33} = \beta^{44} = -\beta\) die derde term in

\[-\kappa^2 \beta \left[i j \right] l\]

overgaat. Daardoor verkrijgen wij

\[-2 \kappa^2 \sum_l \left(\frac{\partial}{\partial x_j} \left(\beta \left[i j \right] l \right) \right) - \frac{\partial}{\partial x_l} \left(\beta \left[i j \right] l \right)\]

\[-4 \kappa^2 \frac{\partial}{\partial x_j} \left(\beta \frac{\partial^2 \beta}{\partial x_l \partial x_l} \right) + \kappa^2 \sum_l \left(\frac{\partial}{\partial x_l} \left(\beta \left[i j \right] l \right) \right)\]

\[-2 \kappa^2 \frac{\partial}{\partial x_l} \left(\beta \frac{\partial^2 \beta}{\partial x_l \partial x_l} \right) - \delta_{ij} \kappa^2 \sum_l \frac{\partial}{\partial x_l} \left(\beta \frac{\partial^2 \beta}{\partial x_l \partial x_l} \right),

waarin termen van hooger dan de tweede orde zijn weggelaten.

Wij verkrijgen hieruit

voor \(i \neq j, j \neq 4\):

\[-2 \kappa^2 \frac{\partial}{\partial x_j} \left(\beta \frac{\partial^2 \beta}{\partial x_l \partial x_l} \right) - \delta_{ij} \kappa^2 \sum_l \frac{\partial}{\partial x_l} \left(\beta \frac{\partial^2 \beta}{\partial x_l \partial x_l} \right),

voor \(i \neq j, j = 4\):

\[\text{nul},\]

voor \(i = j = 4\):

\[-\kappa^2 \sum_l \frac{\partial}{\partial x_l} \left(\beta \frac{\partial^2 \beta}{\partial x_l \partial x_l} \right),

waarbij wij gebruik hebben gemaakt van de gelijkheid

\[\frac{\partial}{\partial x_l} \left(\beta \frac{\partial^2 \beta}{\partial x_l \partial x_l} \right) = \frac{\partial}{\partial x_j} \left(\beta \frac{\partial^2 \beta}{\partial x_l \partial x_l} \right)

en termen van hooger orde dan de tweede hebben weggelaten.

Ten slotte hebben wij nog het tweede deel van \(2G_{ij}\) te berekenen. Daar wij termen weglaten, die van hooger dan de tweede orde zijn, moeten wij daarbij van de ontwikkeling (71) alleen den eersten deel gebruiken. Daardoor wordt het tweede deel van \(2G_{ij}\)

\[2 \kappa^2 \sum_{lm} a^{lt} \kappa^{lm} \left[\left[i j \right] \left[m l \right] - \left[i j \right] \left[l m \right] \right] - \frac{\partial}{\partial x_l} \left(\beta \frac{\partial^2 \beta}{\partial x_l \partial x_l} \right) - \frac{\partial}{\partial x_j} \left(\beta \frac{\partial^2 \beta}{\partial x_l \partial x_l} \right) + \frac{\partial}{\partial x_j} \left(\beta \frac{\partial^2 \beta}{\partial x_l \partial x_l} \right) \]

waarbij in sommige termen de indices \(l\) en \(m\) zijn verwisseld. Daar \(\beta_{ij} = 0\) is voor twee verschillende indices en \(=\beta\) voor gelijke, wordt dit

\[\kappa^2 a^{li} \beta_{il} \frac{\partial^2 \beta}{\partial x_l \partial x_l} - \kappa^2 a^{ij} \frac{\partial \beta}{\partial x_i} \frac{\partial \beta}{\partial x_j} + 2 \kappa^2 \frac{\partial \beta}{\partial x_i} \frac{\partial \beta}{\partial x_j} \]
Verwaarlozen wij termen van hooger orde dan de tweede, dit zijn hier termen, waarin naar x_i wordt gedifferentieerd, dan gaat dit wegens $\sum_i x_i = -2$ over in

$$x^2 \frac{\partial \beta}{\partial x_i} \frac{\partial \beta}{\partial x_j} + x^2 (\delta_{ij} + \delta_{ij}) \sum_m \left(\frac{\partial \beta}{\partial x_m} \right)^2.$$

Het resultaat der substitutie van (71) in het tweede deel van $2G_{ij}$ is dus

- voor $i \neq 4, j \neq 4$: $x^2 \frac{\partial \beta}{\partial x_i} \frac{\partial \beta}{\partial x_j}$,
- voor $i \neq 4, j = 4$: nul,
- voor $i = j = 4$: $2x^2 \sum_m \left(\frac{\partial \beta}{\partial x_m} \right)^2$.

Voor $2G_{ij}$ vinden wij zodoende

- voor $i \neq 4, j \neq 4$: $-x^2 \sum_m \left(\frac{\partial^2 \gamma_{ij}}{\partial x_i^2} - \frac{\partial^2 \gamma_{ij}}{\partial x_i \partial x_j} - \frac{\partial^2 \gamma_{ij}}{\partial x_j \partial x_i} \right) + x^2 \sum_i x_i \frac{\partial^2 \gamma_{ii}}{\partial x_i \partial x_j} + x^2 \sum_\delta \beta \frac{\partial \beta}{\partial x_i} \frac{\partial \beta}{\partial x_j} - \delta_{ij} x^2 \sum_m \left(\frac{\partial \beta}{\partial x_m} \right)^2 + x^2 \frac{\partial \beta}{\partial x_i} \frac{\partial \beta}{\partial x_j}$.
- voor $i \neq 4, j = 4$: $x^2 \sum_m \left(\frac{\partial^2 \sigma_{ij}}{\partial x_i \partial x_j} - \frac{\partial^2 \sigma_{ij}}{\partial x_i \partial x_i} \right) - 2x^2 \frac{\partial \beta}{\partial x_i} \frac{\partial \beta}{\partial x_i}$.
- voor $i = j = 4$: $-x^2 \Delta \gamma_{44} - 3x^2 \frac{\partial^2 \beta}{\partial x_i^2} + 2x^2 \sum_m \left(\frac{\partial \beta}{\partial x_m} \right)^2 - x^2 \sum_m \left(\frac{\partial \beta}{\partial x_i} \right)^2$.

57. De berekende uitdrukkingen vormen telkens het eerste lid der tien gravitatievergelijkingen. Is het tweede lid van elk dier vergelijkingen bekend, dan kan men beginnen met de berekening van γ_{41}, γ_{42} en γ_{43} uit het drietal, dat wij voor $j = 4$ en $i = 1, 2, 3$ verkrijgen, en dat hetzelfde is, als het drietal, dat voor $i = 4$ en $j = 1, 2, 3$ ontstaat. Daarna kan uit de vergelijking, die voor $i = j = 4$ ontstaat, de groot- heid γ_{44} worden berekend en substitueert men ten slotte de gevonden waarden van γ_{44}, γ_{41}, γ_{42} en γ_{43} in de negen overige vergelijkingen (waarvan er slechts zes verschillend zijn), dan zou men daaruit de overige γ's, nl. γ_{11}, γ_{22}, γ_{33}, γ_{23}, γ_{31} en γ_{12} (γ_{14}, γ_{24}, γ_{34} zijn nul) kunnen
berekenen. Dit laatste is echter, zoals wij in 49 zagen, onnodig,
daar de \(\gamma \)'s in \(g_{ij} \) (\(i \neq 4, j \neq 4 \)) wel termen van de tweede orde
opleveren, maar in L termen van de derde. De vergelijkingen, die uit
(72) ontstaan voor \(i \neq 4, j \neq 4 \) vervallen dus en er blijven alleen die
vergelijkingen over, die wij verkrijgen voor \(i \neq 4, j = 4 \) of \(i = 4, j \neq 4 \)
\(i = j = 4 \).
Het eerste lid der vergelijking, die wij voor \(i = j = 4 \) verkrijgen,
herleiden wij nog een weinig. Vooreerst is
\[
\sum_{(0)} \frac{\partial}{\partial x_l} \left(\beta \frac{\partial \beta}{\partial x_l} \right) = \Delta (\frac{1}{2} \beta^2)
\]
en verder
\[
2 \sum_{(0)} \left(\frac{\partial \beta}{\partial x_l} \right)^2 = \Delta (\beta^2) - 2 \beta \Delta \beta = \Delta (\beta^2) - 2 \beta^2
\]
wegens (76). Daardoor wordt dat eerste lid
\[
-x^2 \Delta (\gamma_{44} - \frac{1}{3} \beta^2) - 2 x^3 \gamma_{44} \beta - 3 x \gamma_{44} \beta + 2 x^2 \sum_{(0)} \frac{\partial^2 \sigma_{i4}}{\partial t \partial x_l},
\]
waarin wij \(t \) voor \(x_t \) hebben geschreven.
Beschouwen wij nu ook het tweede lid der gravitatievergelijkingen (72).
De daarin optredende grootheden \(T_{ij} \) behoeven slechts berekend te
worden tot en met de termen van de eerste orde. Dan wordt dus (zie 54)
\[
T = \sum_{ij} g_{ij} T_{ij} = \sum_{i} g_{ii} T_{ii} = (1 - \gamma \beta) T_{44} - \sum_{(0)} T_{1t}.
\]
Voor \(i \neq 4, j = 4 \) wordt dus het tweede lid van (72)
\[
-2 x T_{44}
\]
en voor \(i = j = 4 \) wordt het
\[
-2 x T_{44} + x (1 + \gamma \beta) (1 - \gamma \beta) T_{44} - \sum_{(0)} T_{1t} =
\]
\[
= - x T_{44} - \gamma \sum_{(0)} T_{1t} = - x \rho - \gamma (T_{44} - \rho) - \gamma \sum_{(0)} T_{1t}.
\]
Wij hebben in het eerste lid de termen weggelaten, waarmede reeds in
54 rekening is gehouden; dit moet daarom ook in het tweede lid
geschieden, waardoor het overgaat in
\[
- x (T_{44} - \rho) - \gamma \sum_{(0)} T_{1t}.
\]
Voor deberekening van \(\sigma_{14}, \sigma_{24}, \sigma_{34} \) en \(\gamma_{44} \) hebben wij dus de volgende
vier vergelijkingen:
\[
x^3 \sum_{(0)} \left(\frac{\partial^2 \sigma_{44}}{\partial x_t \partial x_t} - \frac{\partial^2 \sigma_{44}}{\partial x_t^2} \right) = 2 \frac{\partial^2 \beta}{\partial t \partial x_t} - 2 T_{44}, (t = 1, 2, 3) \ldots \ldots (78)
\]
\[x^2 \Delta (\gamma_{44} - \frac{1}{2} \beta^2) = -3 x \frac{\partial^2 \beta}{\partial t^2} + 2 x^2 \sum_{(0)} \frac{\partial^2 \sigma_{44}}{\partial t \partial x_l} \]
\[- 2 x^2 \rho \beta + x (T_{44} - \rho) + x \sum_{(0)} T_{11} \ldots \ldots (79) \]

Wij willen tenslotte terugkeren tot de grootheden \(g_{44} \) en \(g_{44} \) zelve in plaats van \(\sigma_{44} \) en \(\gamma_{44} \). Stellen wij in (78) en (79)
\[x^2 \sigma_{44} = g_{44} \text{ en } x^2 \gamma_{44} = g_{44} - 1 - x \beta \]
en houden wij rekening met (76), dan verkrijgen wij
\[\sum_{(0)} \left(\frac{\partial^2 g_{44}}{\partial x_l \partial x_i} - \frac{\partial^2 g_{44}}{\partial x_i \partial x_l} \right) = 2 x \frac{\partial^2 \beta}{\partial t \partial x_l} - 2 x T_{44}, \ldots \ldots \ldots (80) \]
\[\Delta (g_{44} - \frac{1}{2} x^2 \beta^2) = -3 x \frac{\partial^2 \beta}{\partial t^2} + 2 \sum_{(0)} \frac{\partial^2 g_{44}}{\partial t \partial x_l} - 2 x^2 \rho \beta + x \sum_{(0)} T_{11}, \ldots \ldots (81) \]

58. De vergelijkingen (80) en (81) moeten nu worden opgelost. Daartoe is het noodig eerst de \(T \)'s nader te leeren kennen.

Vooreerst is \(- T^j_l (j = 1, 2, 3)\) een component der hoeveelheid van beweging en dus, nauwkeurig tot in termen van de orde \(\frac{1}{3} \), gelijk aan \(\rho \xi_j \). Uit
\[T_{44} = \frac{1}{V - g} \sum_i g_{44} \xi^l_i \]
volgt dan, als men het vroeger over \(\xi^l_i \) voor \(i \neq 4, l \neq 4 \) gezegde in aanmerking neemt, dat men, als \(i \neq 4 \) is, kan schrijven
\[T_{44} = - \rho \xi_l, \ldots \ldots \ldots \ldots \ldots \ldots \ldots (82) \]
nauwkeurig tot in termen van de orde \(\frac{1}{3} \), hetgeen voor (80) voldoende is.

Om \(\sum_l T_{11} \) in (81) te berekenen, nauwkeurig tot in termen van de eerste orde, voeren wij eerst een lineaire coördinatentransformatie uit, waarbij \(t \) niet betrokken is en die in het punt, waar wij \(\sum_l T_{11} \) berekenen willen, de bewegingsrichting doet samenvallen met de richting \(dy_2 = dy_3 = 0 \), terwijl de snelheid \(v = y_1 \) wordt. Dan wordt
\[\sum_{(0)} T_{11}' = \sum_{(0)} \frac{\partial x_l}{\partial y_1} \frac{\partial x_j}{\partial y_1} T_{1j}, T_{44}' = T_{44} \]
en daar, als wij in beide stelsels de assen onderling loodrecht onderstellen,
\[\sum_{(0)} \frac{\partial x_l}{\partial y_1} \frac{\partial x_j}{\partial y_1} = \delta_{lj} \]
is, wordt
\[\sum_{(0)} T_{1j}' = \sum_{(0)} T_{11} \]
en dus ook
\[\sum_l T_{ll'} = \sum_l T_{ll}. \]

Wij mogen in (81) dus \(\sum_l T_{ll} \) beschouwen als bij het coördinatenstelsel \(y_1, y_2, y_3, t \) te behooren.

Nu voeren wij een transformatie uit, zooals die in de gewone relativiteitstheorie wordt gebruikt, waardoor wij in het beschouwde punt de stof tot rust brengen. Stel
\[y_1' = a y_1 - b t, \quad y_2' = y_2, \quad y_3' = y_3, \quad t' = a t - b y_1, \]
waarin
\[a^2 - b^2 = 1, \quad a = (1 - v^2)^{-\frac{1}{2}}, \quad b = v (1 - v^2)^{-\frac{1}{2}} \]
is. Heeft nu \(T_{ll} \) op het stelsel \(y_1', y_2', y_3', t' \) betrekking, dan volgt uit
\[\sum_l T_{ll} = \sum_{ijl} \frac{\partial y_i'}{\partial y_l} \frac{\partial y_j'}{\partial y_l} T_{ij} \]
gemakkelijk
\[\sum_l T_{ll} = (a^2 T_{ll'} - 2 a b T_{14} + b^2 T_{44}) + T_{22} + T_{33} + (b^2 T_{11} - 2 a b T_{14} + a^2 T_{44}). \]

Nu is in het coördinatenstelsel \(y_1', y_2', y_3', t' \)
\[T_{14}' = \frac{1}{\sqrt{-g'}} \sum_l g_{14}' \xi_l' \]
en daar \(\xi_l' = 0 \) is, behoeft men alleen \(l = 1, 2, 3 \) te stellen; men ziet, daar \(T_{14} \) dan van de orde \(\frac{1}{2} \) en \(b T_{14} \) van de orde 3 wordt, zoodat men dien term kan weglaten. Vervangen wij \(a^2 \) door \(1 + b^2 \), dan wordt
\[\sum_l T_{ll} = \sum_l T_{ll'} + 2 b^2 T_{44}, \ldots \ldots \ldots \ldots \ldots \ldots (83) \]
waarin wij \(2 b^2 T_{11} \), als zijnde van de tweede orde, hebben weggelaten. Wij mogen nu \(2 b^2 T_{14} \) vervangen door \(2 v^2 \). Substitueeren wij dan (82) in (80) en (83) in (81), dan verkrijgen wij
\[\sum_0 \left(\frac{\partial^2 g_{14}}{\partial x_1 \partial x_1} - \frac{\partial^2 g_{14}}{\partial x_1^2} \right) = 2 x \frac{\partial^2 \beta}{\partial x_1^2} + 2 x \rho \xi_1, \quad \ldots \ldots \ldots \ldots \ldots \ldots (84) \]
\[\Delta (g_{44} - \frac{1}{2} x^2 \beta^2) = -3 x \frac{\partial^2 \beta}{\partial x_1^2} + 2 \sum_0 \frac{\partial^2 g_{14}}{\partial x_1^2} - 2 x^2 \rho \beta + \]
\[+ 2 x \rho v^2 + x \sum_l T_{ll} \ldots \ldots \ldots \ldots \ldots \ldots (85) \]
59. Wij gaan nu (84) en (85) oplossen. Aan (84) voldoet

\[g_{i4} = 2x \int \frac{\dot{x}_i \, dS}{4\pi r} \quad \ldots \ldots \ldots \ldots \ldots \quad (86) \]

Hierin is \(r \) de afstand (wortel uit de som der kwadraten van de verschillen der coördinaten) van het punt, waar \(g_{i4} \) moet worden berekend, tot het punt, waarop \(\dot{z} \) en \(\dot{x}_i \) betrekking hebben en dat in het element \(dS \) is gelegen. Dat (86) aan (84) voldoet, ziet men gemakkelijk. Vooreerst volgt uit (86)

\[-\sum_{(o)} \frac{\partial^2 g_{i4}}{\partial x_l^2} = 2x \dot{\beta} \dot{x}_l,\]

zoodat slechts overblijft te bewijzen, dat

\[\sum_{(o)} \frac{\partial g_{i4}}{\partial x_l} = 2x \frac{\partial \beta}{\partial t} \quad \ldots \ldots \ldots \ldots \ldots \quad (87) \]
is. Nu is vooreerst

\[\sum_{(o)} \frac{\partial^3 g_{i4}}{\partial x_l^3} = -2x \int \frac{\dot{\beta} \, dS}{4\pi} \sum_{(o)} \frac{x_l \frac{\partial}{\partial x_l} \left(\frac{1}{r} \right)}{r}, \quad \ldots \ldots \ldots \ldots \ldots \quad (88) \]

waarin de differentiatie \(\frac{\partial}{\partial x_l} \left(\frac{1}{r} \right) \) moet geschieden naar den coördinaat \(x_l \) van het element \(dS \).

Wij stellen ons nu voor, dat de punten van het element \(dS \) in de beweging der stof deelen, zoodat, wanneer \(\dot{\rho} \) de dichtheid een stof met constante massa was, \(\dot{\rho} \, dS \) onafhankelijk van den tijd zou zijn. Dit behoeft nu niet het geval te zijn, maar wij zullen aannemen, dat de verandering van \(\dot{\rho} \, dS \) van hoogere orde is dan \(\frac{1}{2} \) (zie 62). Dan kunnen wij schrijven

\[2x \frac{\partial \beta}{\partial t} = -2x \frac{\partial}{\partial t} \int \frac{\dot{\beta} \, dS}{4\pi r} = -2x \int \frac{\dot{\beta} \, dS}{4\pi} \sum_{(o)} \frac{x_l \frac{\partial}{\partial x_l} \left(\frac{1}{r} \right)}{r}, \]
daar termen van hoogere orde dan \(1\frac{1}{2} \) kunnen worden weggelaten. Dus is, in verband met (88), aan (87) inderdaad voldaan en (86) lost bijgevolg (84) op.

Uit (87) volgt nu

\[\sum_{(o)} \frac{\partial^3 g_{i4}}{\partial t \partial x_l^2} = 2x \frac{\partial^2 \beta}{\partial t^2} \]
en hierdoor gaat (85) over in

\[\Delta (g_{44} - \frac{1}{2} x^2 \beta^2) = 2x^2 \dot{\beta} + 2x \dot{\rho} \dot{v}^2 + x \sum_l T_{li} \ldots \ldots \ldots \ldots \ldots \quad (89) \]
62

60. Voordat wij nu (89) oplossen, merken wij eerst op, dat
\[\Delta B = -2 \times \beta, \]
indien
\[B = \kappa \int \frac{e r d S}{4 \pi} \quad \ldots \quad (90) \]
is. In een punt, waaromheen men een bol kan beschrijven, waarbinnen \(\rho \) overal 0 is, is dit duidelijk, daar men na uitvoering der operatie \(\Delta \) onder het integraalteeken vindt
\[\Delta \hat{B} = 2 \kappa \int \frac{\hat{e} d S}{4 \pi r}, \]
hetgeen wegens (76) gelijk is aan \(-2 \times \beta\). In een punt, dat in de massa's gelegen is, zondert men eerst een bolletje uit en toont dan aan, dat
\[\frac{\partial B}{\partial x_l} = \kappa \int \frac{\hat{e} d S \partial r}{4 \pi \partial x_l} \]
is, op overeenkomstige wijze als in de potentiaaltheorie bewezen wordt, dat
\[\frac{\partial \beta}{\partial x_l} = -\int \frac{\hat{e} d S \frac{\partial}{\partial x_l}}{4 \pi} \]
is. Dezelfde analyse kan men op het resultaat nog eens toepassen en dan is het bewijs weldra voltooid.

Wij vinden dus
\[\kappa \frac{\partial^2 \beta}{\partial t^2} = \frac{\partial^2}{\partial t^2} (-\frac{1}{2} \Delta B) = \Delta \left(-\frac{1}{2} \frac{\partial^2 B}{\partial t^2} \right) \]
en dientengevolge wordt (89)
\[\Delta \left(g_{44} - \frac{1}{2} \kappa^2 \beta^2 + \frac{1}{2} \frac{\partial^2 B}{\partial t^2} \right) = \kappa \sum_i T_{ii}^\prime + 2 \times \rho v^2 - 2 \times \rho \beta \ldots \quad (91) \]
De oplossing dezer vergelijking is
\[g_{44} = 1 + \frac{1}{2} \kappa^2 \beta^2 - \frac{1}{2} \frac{\partial^2 B}{\partial t^2} - \kappa \int \frac{\sum T_{ii}^\prime}{4 \pi r} d S - 2 \kappa \int \frac{\rho v^2 d S}{4 \pi r} + \]
\[+ 2 \kappa^2 \int \frac{\hat{e} \beta d S}{4 \pi r} \quad \ldots \quad (92) \]
Hiermede is de berekening van het veld verricht, voor zoover dit mogelijk is zonder kennis van den aard en de verdeeling der stof. Wij zullen in de volgende § het verkregen resultaat toepassen op de berekening van het veld van een aantal bollen, een vraagstuk, dat voor de sterrenkunde van beteekenis is.
§ 3. Toepassing op bolvormige lichamen.

61. Wij denken ons een aantal lichamen, waarvan de afmetingen klein zijn t. o. z. van hun onderlinge afstanden en die, wanneer zij rusten, bolvormig zijn. Intusschen onderstellen wij hen in beweging te verkeeren en wel zoo, dat men aan elk der punten van ieder lichaam dezelfde snelheid mag toeschrijven; deze zij voor het eerste lichaam \(v_1 \) met de componenten \(\dot{x}_1, \dot{y}_1, \dot{z}_1 \), en in het algemeen voor het \(i \)-de lichaam \(v_i \) met de componenten \(\dot{x}_i, \dot{y}_i, \dot{z}_i \). De grootheden \(\dot{x}_i, \dot{y}_i, \dot{z}_i \) onder­stellen wij, in overeenstemming met 52, van de orde \(\frac{1}{2} \). Wij stellen

\[
\int_{\Omega} \frac{\rho \, dS}{4 \pi r} = -\beta_i, \quad \ldots \ldots \ldots \ldots \ldots \ldots (93)
\]

waarin de \(\Omega \) onder het integraalteken aanduidt, dat over het \(i \)-de lichaam moet worden geïntegreerd.

Dan wordt

\[
\beta = \sum_i \beta_i.
\]

Uit (86) volgt, daar \(\dot{x}_i, \dot{y}_i, \dot{z}_i \) voor alle punten van het \(i \)-de lichaam even groot zijn,

\[
g_{i4} = 2 \times \sum_i \int_{\Omega} \frac{\rho \, x \, dS}{4 \pi r} = 2 \times \sum_i \dot{x}_i \int_{\Omega} \frac{\rho \, dS}{4 \pi r} = -2 \times \sum_i \beta_i \dot{x}_i.
\]

Dergelijke vergelijkingen gelden voor \(g_{24} \) en \(g_{34} \). Wij hebben dus

\[
g_{i4} = -2 \times \sum_i \beta_i \dot{x}_i, \quad g_{24} = -2 \times \sum_i \beta_i \dot{y}_i, \quad g_{34} = -2 \times \sum_i \beta_i \dot{z}_i \quad (94)
\]

62. Wij komen nu tot de berekening van \(g_{14} \). In (92) behoeven wij bij de berekening van de termen van de tweede orde, niet rekening te houden met een afwijking van den bolvorm, noch door de onder­linge werking der centra, noch door de beweging. Daar de afmetingen der lichamen klein ondersteld zijn t. o. z. van hun onderlinge afstanden, mogen wij in (90) \(r \) als constant beschouwen en vinden zoo, indien wij

\[
x \int_{\Omega} \frac{\rho \, dS}{4 \pi r} = 8 \pi \, k_i \quad \ldots (95)
\]

stellen,

\[
B = 2 \sum_i k_i \, r_i,
\]

indien \(r_i \) den afstand voorstelt van het middelpunt van het \(i \)-de lichaam tot het punt, waar \(B \) moet berekend worden.

Uit (93) volgt

\[
x \beta_i = -\frac{2 \, k_i}{r_i} \quad \ldots \ldots \ldots \ldots \ldots (96)
\]
en verder is

\[2 \pi \int \frac{\varphi v^2}{4 \pi r} dS = \sum_i \frac{4 k_i v_i^2}{r_i} \ldots \ldots \ldots (97) \]

In den laatsten term van (92) splitsen wij \(\beta \) binnen het \(i \)-de lichaam in twee stukken, zoodat

\[\beta = \beta_i + (\beta) \]

wordt, waarin \((\beta)\) op alle lichamen, behalve het \(i \)-de betrekking heeft. Wij kunnen nu \((\beta)\) als constant beschouwen binnen het \(i \)-de lichaam en verkrijgen zoo

\[2 \pi \int \frac{\varphi (\beta) dS}{4 \pi r} = 2 \pi \int \frac{\varphi dS}{4 \pi r} = 4 \pi (\beta) \frac{k_i}{r_i} = -8 \frac{k_i}{r_i} \sum_j \frac{k_j}{r_{ij}}, \]

waarin \(r_{ij} \) afstand voorstelt van het middelpunt van het \(i \)-de tot dat van het \(j \)-de lichaam en \(j \) de waarde \(i \) niet aaneemt.

Uit deze vergelijking en uit (92), (96) en (97) volgt

\[g_{ii} = 1 - \pi \sum_i \left(\frac{\sum_l T_{li}}{4 \pi r} - 2 \pi \beta_i \right) dS + \]

\[+ 2 \left(\frac{\sum k_i}{r_i} \right)^2 - \sum_i \frac{k_i \partial^2 r_i}{\partial t^2} - 4 \sum_i \frac{k_i v_i^2}{r_i} - 8 \sum_i \frac{k_i}{r_{ij}} \sum_j \frac{k_j}{r_{ij}} \ldots (98) \]

Wij merken hierbij op, dat, indien, zooals wij boven onderstelden, \(d(\varphi dS)/dt \) van hogere orde is dan \(\frac{1}{2} \), blijktens (95) \(d k_i/dt \) van hogere orde dan \(1 \frac{1}{2} \) en dus \(d^2 k_i/dt^2 \) van hogere orde dan 2 zal zijn. In

\[\frac{d^2 (k_i r_i)}{dt^2} = k_i \frac{\partial^2 r_i}{\partial t^2} + d k_i \frac{\partial r_i}{\partial t} + \frac{d^2 k_i}{dt^2} \frac{r_i}{\partial t} \]

mogen wij dan de laatste twee termen, die van hogere dan de tweede orde zijn, weglaten.

Dat \(d(\varphi dS)/dt \) werkelijk van hogere orde is dan \(\frac{1}{2} \) kan men aldus inzien. Voor eerst is \(d(dS)/dt \), hoewel niet exact 0 tengevolge van de contractie (die van \(v \) afhangt), van de orde \(1 \frac{1}{2} \) en dus is het voldoende aan te toonen, dat \(d(\varphi)/dt \) van hogere dan de orde \(\frac{1}{2} \) is. Daar \(\Sigma_r \) van \(\varphi \) verschilt met een grootheid van de eerste orde, behoeven wij slechts te laten zien, dat \(d(\Sigma_r)/dt \) van hogere dan de orde \(\frac{1}{2} \) is. Wij passen nu de transformatie tot het stelsel \(y'_1, y'_2, y'_3, t \), die wij ook op blz. 59 en 60 gebruikt hebben, toe; daarbij kiezen wij \(a \) en \(b \) zoo, dat op één oogenblik het beschouwde punt van het lichaam in rust komt, maar wij passen de transformatie ook op nabijgelegen oogenblikken toe. Men heeft dan.
\[\mathcal{I}_1 = a^3 \mathcal{I}_4' + a b (\mathcal{I}_4' - \mathcal{I}_4') - b^3 \mathcal{I}_4' \]

en wij zien hieruit, dat wij alleen van \(d \mathcal{I}_4'/d t \) behoeven te bewijzen dat de orde \(> \frac{1}{3} \) is. In plaats daarvan mogen wij het ook van \(d \mathcal{I}_4'/d t' \) doen en ten slotte kunnen wij ook

\[\frac{d}{dt} \int \mathcal{I}_4' dS' \]

beschouwen, waarin de integraal over het geheele, op het beschouwde tijdstip stilstaande lichaam is uitgestrekt. Daar de integraal de aanwezige energie voorstelt en men van de plaatsverandering der stof in den tijd \(d t \) mag afzien, moet de grootheid \(\frac{d}{dt} \int \mathcal{I}_4' dS' \) gelijk zijn aan den totalen energiestroom door het oppervlak, verminderd met de verandering per tijdseenheid van de binnen het oppervlak zich bevindende energie van het zwaartekrachtsveld. Deze laatste energie bevat den factor \(\chi \) en zien wij van een anderen energiestroom dan die van gravitatieënergie af, dan bevat ook de energiestroom den factor \(\chi \), waarmede is aangetoond, dat \(d(\mathcal{I} dS)/dt \) van hoogere dan de orde \(\frac{1}{3} \) is.

In (98) moeten wij nu den tweeden term nog berekenen. Het is duidelijk, dat de invloed van het veld der overige lichamen op de waarden van \(T_{11}', T_{22}', T_{33}' \) en \(T_{44}' \) in het \(i \)-de lichaam van de eerste orde is; maar hij is, wegens den grooten afstand in verhouding tot de afmetingen van het \(i \)-de lichaam, zeer gering. Verwaarlozen wij dien invloed (wat voor de toepassingen op de astronomie ongetwijfeld mag), en verwaarlozen wij tevens de vormverandering, die het \(i \)-de lichaam onder den invloed der overige lichamen ondergaat, dan wordt de integrand zoowel als het integratiegebied in den \(i \)-den term van de eerste som van (98) alleen door het \(i \)-de lichaam bepaald.

Voor eerst zullen wij de integraal, die, tengevolge van de afplatting, over een ellipsoïde moet worden uitgestrekt, over een bol nemen, hetgeen geoorlooft is, indien wij den factor \(1 - \frac{1}{3} \nu_i^2 \) toevoegen. In (95) kunnen wij zonder meer over den bol integreeren. Voor den term van de tweede orde, die ontstaat in den tweeden term van (98) door de vermenigvuldiging met \(-\frac{1}{3} \nu_i^2 \) mag dan genomen worden \(\sum k_i \nu_i^2 \). Wij vinden zodoende

\[g_{44} = 1 - \nu \sum \frac{\left(\sum T_{ij} - 2 \nu \beta_i \right) dS}{4 \pi r} + \]

\[+ 2 \left(\sum k_i \right)^2 - \sum \frac{\partial^2 r_i}{\partial^2 \nu_i} - 3 \sum k_i \nu_i^2 - 8 \sum \frac{k_i \sum k_j}{r_i r_j} \ldots \quad (99) \]
Met het oog op den grooten afstand der bollen t.o.v. van hun stralen zouden wij nu voor den tweeden term in (99) kunnen schrijven

\[-\sum_{i} \frac{2k_i}{r_i},\]

indien wij stellen

\[8\pi k_i = \int_{C} \left(\sum_{i} T_{i'i} - 2\pi \beta_i \right) dS,
\]

en wij mogen deze \(k_i\) dan ook in de overige termen van (99) gebruiken in plaats van de grootheid \(k_i\), die door (95) is bepaald. Wij weten echter niet, of deze \(k_i\) gedurende langen tijd constant zal blijven. Konden wij grootheden aangeven, die deze eigenschap wel bezitten, dan zou het voordeelig zijn deze in (99) te laten optreden in plaats van \(k_i\). Wij moeten deze kwestie in het midden laten en blijven daarom staan bij den vorm, dien formule (99) voor \(g_{\alpha\beta}\) geeft.

Uit (94), (96), en uit

\[g_{11} = g_{22} = g_{33} = -1 + \pi \beta
\]

volgt eindelijk

\[ds^2 = g_{44} dt^2 + 8 \sum_{i} \frac{k_i}{r_i} (x_i dx + y_i dy + z_i dz) dt - \left(1 + 2 \sum_{i} \frac{k_i}{r_i} (dx^2 + dy^2 + dz^2)\right), \ldots \ldots \ldots \ldots (100)
\]

waarin \(g_{44}\) door (99) gegeven is.

63. Wij willen deze formule even toepassen op het geval van een enkel centrum, dat zich eenparig in de richting der \(x\)-as beweegt. Vooreerst is

\[\frac{\partial^2 r}{\partial t^2} = \frac{v^2}{r} - \frac{x^2}{r^3} v^2.
\]

Schrijft men voorts in (99) in den tweeden term \(\sum_{i} T_{i'i}\) in de plaats van \(\varphi\) en doet men dit ook in (93), waarbij ook over een bol mag worden geïntegreerd, dan ontstaat in den tweeden term van (99) de grootheid

\[\left\{1 + 2\pi \int_{C} \frac{\left(\sum_{i} T_{i'i}\right)}{4\pi r} dS\right\} \sum_{i} T_{i'i}
\]

onder het integraalteeken. Wij kunnen deze grootheid voor de \(\varphi\) in formule (95) nemen (waarbij het integratiegebied bolvormig is); \(k\) is
dan, daar de ε nu niet van den bewegingstoestand afhangt, een constante. De tweede term van (99) wordt

$$\frac{-2k}{r}$$

en dus wordt, daar wij in de overige termen de oude k door de nieuwe m mogen vervangen,

$$ds^2 = \left(1 - \frac{2k}{r} + \frac{2k^2}{r^2} - 4v^2 \frac{k}{r} + \frac{x^2}{r^2} \frac{k}{r} \right) dt^2 + 8v \frac{k}{r} dx dt -$$

$$- \left(1 + \frac{2k}{r} \right) (dx^2 + dy^2 + dz^2),$$

of, als wij k vervangen door $\frac{1}{2} m$,

$$ds^2 = \left(1 - \frac{m}{r} + \frac{m^2}{2r^2} - 2v^2 \frac{m}{r} + \frac{1}{2} \frac{m x^2}{r^3} v^2 \right) dt^2 + 4v \frac{m}{r} dx dt$$

$$- \left(1 + \frac{m}{r} \right) (dx^2 + dy^2 + dz^2),$$

hetgeen met (70) volkomen overeenstemt. Daarmede is (100), om welker afleiding het te doen was, aan een bizonder geval geverifieerd.
STELLINGEN.
STELLINGEN.

I.
- De zoogenaamde grondstelling der Algebra is voor de Algebra van geen belang.

II.
- Er zijn analytische functies, wier singulariteiten geen van alle geïsoleerd zijn, terwijl zij toch geen enkele lijn nog eenig vlak opvullen, iets wat bv. A. R. Forsyth in zijn bekend leerboek der functietheorie (hoofdstuk VII) over het hoofd ziet.

III.
- Het is niet alleen mogelijk, zooals Volterra heeft laten zien, een functie te construeren, welker afgeleide in een gegeven interval niet integrabel is (in de beteekenis van Riemann), maar er zijn ook functies, welker afgeleide in geen enkel sub-interval kan worden geïntegreerd.

IV.
- Indien in het complexe vlak een puntverzameling gegeven is zoo, dat elk tweetal van hare inwendige punten verbonden kan worden door een keten van cirkels, waarvan elk paar opvolgende elkaar snijdt en waarvan de eerste het eene punt, de laatste het andere punt omsluit, dan bestaat er ook steeds een eenwaardige analytische functie, die in elk inwendig punt der verzameling regulier is en niet buiten de verzameling kan worden voortgezet.

V.
- Er zijn geen eenwaardige analytische functies $f(z)$, die aan de functionaalvergelijking $f(z^n) = f(z)$ voldoen, indien n een geheel getal > 1 is.
Het axioma van M. Pasch (Vorlesungen über neuere Geometrie, blz. 21, Grundsatz IV) moet in Hilbert’s stelsel van axioma’s (Grundlagen der Geometrie, 3e druk, axioma II 4) zoo worden geformuleerd, dat het alleen uitdrukt, dat er in het vlak van den driehoek geen lijn is, die (zonder door een hoekpunt te gaan) slechts een der zijden snijdt.

De vraag naar de „kromming” onzer ruimte heeft hare beteekenis verloren.

De integraalvergelijking, waarmede Hilbert de gastheorie in het geval van volkomen veerkrachtige bolvormige moleculen en bij vooronderstelling van de gebruikelijke formule voor het aantal botsingen behandelt, heeft geen andere „Eigenwerte” dan 1.

De theorie der integraalvergelijkingen is voor de Natuurkunde van slechts weinig nut.

Wanneer het gewenscht mocht blijken zich in de algemene relativiteitstheorie te beperken tot de coördinatenstelsels, die aan een enkele voorwaarde (bv. $\sqrt{-g} = 1$) voldoen, dan behoeft dit geen reden te zijn, de poging, die bij het opstellen dier theorie gedaan is, als mislukt te beschouwen.

Het is door niets te rechtvaardigen, dat bij een isotherm de druk, waarbij er evenwicht tusschen twee phasen kan zijn, wordt bepaald door de overweging, dat $\int p \, d\nu$ langs beide isotherme wegen even groot moet zijn.

Het onderwijs in de Wiskunde aan Hoogere Burgerscholen en Gymnasia behoort grondig te worden herzien.