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INTRODUCTION

Recently de Groot and Suttorpl) have derived the macroscopic energy-
momentum tensor in polarized media. The derivation proceeds in two steps.
First the energy-momentum laws on the atomic level are derived from the
microscopic force law for charged particles (electrons and nuclei). Then by
covariant statistical averaging they obtain the macroscopic energy-momen-
tum conservation laws which contain the material and field parts of the
macroscopic energy-momentum tensor. Explicit expressions are given for
both parts in terms of statistical averages of atomic quantities.

The advantage of their approach is that the electromagnetic energy-
momentum tensor is obtained in an unambiguous way. The correct form
of this tensor has been a controversial issue in the past. In connection
herewith they give an extensive account of the historical developments on
this subject, in particular in their last paper. The treatment of de Groot
and Suttorp may also be considered as the relativistic generalization of
Mazur and de Groot’s?) non-relativistic derivation of the ponderomotive
force and pressure in a dielectric.

As a model for atoms and molecules de Groot and Suttorpl) consider
stable groups of point particles, which are described classically. In this model
the atoms and molecules are supposed to carry electric and magnetic dipole
moments. The atomic electric quadrupole moment is not considered in their
treatment and radiative effects are also neglected.

In order to describe the motion of the atom (molecule) as a whole de
Groot and Suttorp define an approximate centre of gravity, which is in
certain respects a generalization of the notion of the centre of gravity in
classical non-relativistic mechanics. Since only the rest masses of the con-
stituent particles of the atom are used in the definition of this reference
point, the contributions of the kinetic energies and intra-atomic fields to
the atomic mass have to be taken into account afterwards. Moreover, the



intra-atomic electromagnetic fields are supposed to be of non-relativistic
nature in the rest frame of the atom, so that the Darwin approximation
can be used. Explicit expressions for the contributions of these fields to
the energy-momentum and angular momentum laws are given in this
approximation.

A complication of the centre of gravity definition of de Groot and
Suttorp is the fact that the total atomic energy-momentum tensor is sym-
metric only if certain terms of intra-atomic origin are neglected. They
demonstrate that a symmetric tensor can be obtained if the atomic energy
is properly localized. This is realized by a change in the definition of the
reference point.

From a formal point of view a definition of the centre of gravity in which
only the rest masses are used is rather inconvenient in a relativistic theory
of interacting particles, as is already clear from Einstein’s fundamental
energy-mass relation. An appropriate definition of the centre of gravity
for a classical relativistic system having an internal angular momentum is
not readily formulated. One can try to generalize the classical non-relativistic
notion of the centre of gravity. A careful analysis by Mgller?) indicates
that for these systems it is not possible to define a unique centre of gravity
(in the sense that it is the centre of energy in the Lorentz frame in which
the system is momentarily at rest). Equations of motion are, however,
given for so-called pseudo-centres of gravity. A different definition of the
centre of gravity is used by e.g. Dixon4) and more recently also by Suttorp
and de Groot?5). Although from the point of view of uniqueness the latter
definition is perhaps to be preferred, it also leads in the general case to
a complicated type of equations of motion. However, for systems of the
dimension of atoms and molecules it can be shown that both definitions
lead to the same equations of motion.

Closely connected to the problem of defining an appropriate (pseudo)
centre of gravity of a composite system, interacting through the electro-
magnetic fields of its constituents, is the question whether the renormali-
zation effects of these fields can be taken into account in a general way
without resorting to approximations or. making assumptions of a non-
relativistic nature. In the first chapters of this thesis this is realized in a
formal way, whereas in the last chapter we give a general derivation of
this possibility.

The atomic energy-momentum tensor, derived by de Groot and Suttorp,
was also obtained by Vlieger$) in the first of a series of papers on the
relativistic dynamics of polarized systems using the theory of Moller?3)
mentioned above. This tensor is found by first deriving the relativistic
atomic equations of motion with the help of Mgller’s equations for the
pseudo-centres of gravity. Vlieger also uses a classical model of atoms and
molecules and supposes that these particles carry only electric and magnetic
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dipole moments. Radiative effects are neglected. In Vlieger’s paper this is
a consequence of the fact that Moller’s theory is only valid for finite systems,
i.e. systems with an energy-momentum tensor which vanishes outside a
finite region is space at any time. Within this limitation the intra-atomic
fields are taken into account covariantly, but explicit expressions are not
given. In contrast to the results of de Groot and Suttorp the total atomic
energy-momentum tensor obtained by Vlieger is directly symmetric as a
result of a more adequate definition of the reference point of the atoms.

The atomic equations of motion obtained by Vlieger, however, still
contain a kind of “Zitterbewegung” (trembling motion), since he uses
Moller’s equations of motion for the pseudo-centres of gravity, which contain
this rather unphysical effect. In fact, such a motion is also present in the
results of de Groot and Suttorp. The elimination of the trembling motion
from the equations of motion will be the first subject of this thesis.

A second point will be the extension of the equations to the case where
the atoms (or molecules) also possess, in addition to their dipole moments,
an electric quadrupole moment which is of the same order of magnitude as
the magnetic dipole moment. Finally, we treat the theory for radiating
atoms and molecules.

We take the same classical model for atoms and molecules as in Vlieger’s
work6). For the cases mentioned above we derive relativistic atomic equa-
tions of motion from the sub-atomic energy-momentum and angular
momentum laws. The equations are then used to derive the atomic energy-
momentum tensor for a system consisting of a large number of dipole and
quadrupole atoms (or molecules). Statistical averaging will not be treated
in this thesis.

After summarizing in chapter I the results obtained by Vlieger®) we
show in chapter II, by means of an iteration procedure, that in the case
of atoms and molecules the terms which describe the trembling motion in
the equations of motion are negligibly small. This enables us to write down
equations of motion of the usual second order type and an internal angular
momentum balance equation of the first order.

In chapter III we apply the theory to the case where the atoms and
molecules also possess, in addition to their electric and magnetic dipole
moments, electric quadrupole moments. It is found that the field part of
the atomic energy-momentum tensor is not of the same form as in the case
of pure dipoles, and is also no longer expressible only in terms of quantities
appearing in the atomic field equations.

Radiative effects are neglected in chapters I-111, and therefore the atomic
energy-momentum tensors found in these chapters are always symmetric.

In chapter IV we extend the theory, developed in chapters I and 11, to
the case of radiating dipole atoms and molecules. We use Dirac’s7?) co-
variant decomposition of retarded electromagnetic fields into a plus (or
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“self”’) part (half the sum of retarded and advanced fields) and a minus
(or “radiative”) part (half the difference of retarded and advanced fields).
It then appears to be possible to define a sub-atomic energy-momentum
tensor of the radiating atom (or molecule) in which the intra-atomic field
contribution is derived explicitly with the help of the plus parts of the
fields. This tensor has the important property of being finite, as required
in the theory of Mgller3). Furthermore it appears that the minus field may
be treated as an external field in the derivation of the equations of motion
and the internal angular momentum balance equation.

The atomic mass and internal angular momentum defined with the above
sub-atomic energy-momentum tensor are found to be renormalized with
respect to the effects of the intra-atomic field in a manifestly covariant way.
From the general expressions of these quantities we calculate explicitly,
in appendix II of chapter IV, the contributions of the intra-atomic fields
to the order ¢—2 and find agreement with ¢.g. reference 1.

Next, the equations of motion and the internal angular momentum
balance equation are derived by the method of the foregoing chapters. In
appendix III a procedure is given for the calculation of the minus fields
occurring in these equations. In order to simplify the rather complicated
equations we assume that all terms originating from these fields which
contain time derivatives of the four-velocity can be neglected. (Physically
this means that we neglect radiative effects on the equations of motion due
to the barycentric accelerations of the atoms (“‘Brefimsstrahlung”), and
consider only the damping due to the vibrations of their dipole moments.)
It is found that the minus field contribution to the equations of motion
can be devided into a part which may be interpreted as the radiation
reaction force and another part which is a total time derivative. An analo-
gous division into a radiation reaction torque and a total time derivative
is performed in the internal angular momentum balance equation. In appen-
dix IV a justification for the interpretation of the reaction force and reaction
torque is given by relating these quantities to the radiation of energy-
momentum and angular momentum respectively.

In the presence of radiation the atomic energy-momentum tensor is no
longer symmetric, as need not be the case for non-closed systems. The
treatment of radiating atoms which also have electric quadrupole moments
is indicated at the end of chapter IV.

Parts of the contents of this thesis have been published in Physica
(Physica 41 (1969) 368, 42 (1969) 12). The remainder will appear shortly.




REFERENCES

de Groot, S. R. and Suttorp, L. G., Physica 37 (1967) 284, 297, Physica 39 (1968)
28, 41, 77, 84.
Mazur, P. and de Groot, S. R., Physica 22 (1956) 657.

Moller, C., Ann. Inst. H. Poincaré 11 (1949-50) 251.
Dixon, W. G., Nuovo Cimento 38 (1965) 1616.

Suttorp, L. G. and de Groot, S. R., Nuovo Cimento 65A (1970) 245.
Vlieger, J., Physica 37 (1967) 165.
Dirac, P. A. M., Proc. Roy. Soc. (London) A 167 (1938) 148.







CHAPTER |

MOLLER'S EQUATIONS OF MOTION FOR
ELECTRIC AND MAGNETIC DIPOLE ATOMS AND THE
ENERGY-MOMENTUM TENSOR

Synopsis

In this chapter we briefly summarize the results obtained by Vlieger in the first of a
series of papers on the relativistic dynamics of polarized systems. Moller's relativistic
equations of motion for finite systems with an internal angular momentum in an
arbitrary external (non-gravitational) field of force are applied to the special model of
(non-radiating) electric and magnetic dipole atoms (or molecules) in an electromagnetic
field. The resulting equations of motion are used in order to derive the relativistic
atomic energy-momentum tensor for a system consisting of these dipoles. This tensor
has the same form as the atomic energy-momentum tensor obtained earlier by de
Groot and Suttorp. But, since these authors use a definition for the reference point
within the atoms which is an approximation of the one used by Vlieger, several quanti-
ties appearing in their final expression for the atomic energy-momentum tensor are
approximations of the corresponding quantities in Vlieger's tensor.

§ 1. Introduction. In a paper on the relativistic dynamics of systems
with an internal angular momentum Mgller!) has derived the equations of
motion for such systems in an arbitrary (non-gravitational) field of force.
The systems are assumed to be finite, 7.e. their energy-momentum tensors
are zero outside a finite sphere at any time. For the description of the
motion of these systems it was necessary to give a proper definition of
the centre of gravity in the theory of special relativity. In the careful
analysis of Mgller’s paper ) it appeared not possible to define a unique centre
of gravity for such systems (in the sense that it is the centre of energy in the
Lorentz frame in which the system is momentarily at rest). Equations of
motion are, however, written down for so-called pseudo-centres of gravity and
will be called Mgller's equations of motion in this thesis. (For a brief
survey, see § 2 of this chapter.)




Vlieger2) * has applied Moller’s theory to the special model of electric
and magnetic dipole point atoms (or molecules) in an external electro-
magnetic field and so derived the relativistic equations of motion for these
dipoles (§ 3).

From these equations he derived the energy-momentum tensor for a
system consisting of N interacting dipoles (§ 4). This tensor appears to be
of exactly the same form as the atomic energy-momentum tensor which
has been derived earlier by de Groot and Suttorp3). This is not self-evident,
since these authors have not used pseudo-centres of gravity as reference
points within the atoms, but some approximation, and have also made
certain approximations in their calculations (e.g. of the intra-atomic fields).
Yet the only difference between the tensor of de Groot and Suttorp and
that of Vlieger appears to be that certain quantities in the expression of
de Groot and Suttorp are approximations of the corresponding quantities
in Vlieger’s tensor.

§ 2. Moller's equations of motion. Consider, in the special theory of rela-
tivity, an arbitrary system subjected to a given external (non-gravitational)
field of force, with a density described by the four-vector f*(x), with
«a=0,1,2,3 and x = (cf, &) the time-space coordinates. The energy-
momentum law of this system is in covariant form:

0pT > = =, (1)
where T%8(x) is the energy-momentum tensor of the system which is supposed
symmetric and dx = (¢/dct, ¢/0x). Furthermore this tensor is assumed to be
zero at any time outside a finite region in ordinary space, which is Mgller’s
definition of a finite system. Taking into account the symmetry of 7% we
obtain from (1) the angular momentum balance:

d,(xa Ty — xBT™Y) = xoff — xBfa, V)

Let 2 be a four-dimensional cylindrical region, in which TaB -~ 0, around
the world-line L of a representative point x,,(r) of the system, where 7 is
the corresponding eigentime, and bounded by two three-dimensional hyper-
planes V(r) and V(r + dr), perpendicular to L, in x,(7) and x(7 + d7).
If one now integrates (1) and (2) over 2, one obtains the following equa-
tions1):

P
ey (3A)
dr
xp
BUE 1 pas (3B)
dr

* Since in the next chapters we frequently refer to Vlieger's work we have summa-
rized, for the benefit of the reader, his results in this chapter.
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where the four-vectors defined by the surface integrals:

e
Pa(7) | TB(x) up(r) AV (4)

and

B 1
Fa(z) '['/‘(”Ll' — {w -r;',.,(ﬂ:-fr;«ﬂ](l!' (5)

.2
"

are respectively the energy-momentum of the system (as a whole) and the
external force, acting upon it, whereas the tensors defined by the relations:

~

1
Mob(r) = — — J (xaT8(x) — xBTo¥(x)} 14y(7) AV (6)

Vir)
and
1

c2

DoB(7) = J {xafB(x) — ,\'11'/1(_\‘)‘,-[1 B {x7 — x%,(7)} 1?;,(7")] dV (7)

V()
represent respectively its angular momentum and the moment of the ex-
ternal force, both with respect to the origin of the Lorentz frame. In the
above expressions dV is the magnitude of a surface element of V(7). Further-
more #(r) = dag,(r)/dr is the four-velocity of the representative point,
whereas 1(7) = du(r)/dr is its acceleration. Introducing the internal angular

momentum:
Jai L [ fyox X (N TBY (v
£258(7) = (X a8 (7)} Th7(x)
Vir)
— {x8 — af,(1)} To7(x)] uy(r) AV (8)

of the system with respect to x,(r), one may alternatively write equation
(3B), with the help of (3A), as

dQas

dr

= o8 — (uxP8 — ubPx), 9
where

dab J — 2,1} ) — (28 — xfy(r)} 1)

Fir)
1 . -

.[1 F =¥ — _\';’l,,(r)’,l'l-/('r)](“ (10)
o2

is the moment of the external force with respect to x,(7).




As reference point Moller!) takes a so-called pseudo-centre of gravity
Xa(7), defined by the condition:
(8,

0680 5 = 0, (11)

which means that Xa(7) is the centre of mass (or energy) in the momentary
rest frame of inertia of the system, i.e. in the Lorentz frame, for which
U#(7) = dX*(r)/dr = (¢, 0,0, 0). Introducing the rest mass M*(r) of the
system by means of:

PalUy = — M*c2, (12)
Moller1) obtains with (3A), (9) and (11) the following equations of motion
for the system as a whole:

d ol T e 5 : L d - :
(M*U%) + (QxBUg) = F* o (d*BU g), (13A)

U«QBrT.,
2 !
c2

where we have introduced the tensor:

A%g 0% (‘12 ("IV”. (14)
with 0%5 the elements of the unit four-tensor.

In §3 and §4 we shall give the results obtained by Vlieger?) for the
equations of motion (13A) and (13B) in the case that the system is a (non-
radiating) charged point atom, with electric and magnetic dipole moments
u and », negligible higher order atomic moments, moving in an external
electromagnetic field of force.

§ 3. Equations of motion for electric and magnetic dipole atoms. In the
classical model of atoms we can characterize the electromagnetic properties
of the atom by a charge-current density four-vector j*(x) and a polarization
tensor m*A(x). The density of the external electromagnetic force, acting
upon this atom can then be written as:

13(x) = [*B(x){jp(x)[c + Oymp(x)}, (15)
with f28(x) the tensor of the external electromagnetic field and ¢ the velocity
of light. For a point atom with charge e, electric and magnetic dipole mo-
ments @ and », one has, if one neglects all higher order moments (cf. refe-
rence 4)):

i 00

j*x)Jc = e | Un(r) 0W{X(r) — x} dr, (16)
mab(x) = | ‘;(\"(7) WX (7) — x} dr, (17)

— 00




where u.#(r) is a tensor, depending on g, » and U#. The explicit form of
this tensor can be calculated with the help of the equations (83) and (84)
of reference 4, but it is of no importance for the time being. As remarked
by Vlieger?), the essential point of the expression (17) for the approximate
polarization tensor is the fact that it does not contain any derivatives of
the o-function, in contrast with the gemeral expression for this tensor, as
given in reference 4.

Substituting (15), with (16) and (17), into the right-hand sides of (5)
and (10) one obtains:

+ 00

el 5 (5 ;
Fa(s) - . ‘/‘A’(x')[l F {0 — XO(r)) ('.,(,—)}
c*

Vi) )

~Upg(r") 6 {X (7) xtdV dr’

. - 4 - ] ' -
} J ' _/"J(.w[l - — {x? — X(7)} {‘,,(,—)J
c2
Vir) :m
ug?(7’) ¢ 0 {X () xydV dv, (18)
d%B(7) = ¢ ‘ . fx% Xa(7)} f67(x) fx8 — XB(7)} f2¥(x)
l‘Trx ‘:c

T ] :
’ 1 +—{x¢ Xo7)) (‘,s(.-)] Uy(r") 6D {X(7) xtdV dr’
c2

«.__‘_
=
&
-
2
—_
4
S~
>
=
=
=
=
—_
-
B
2
=

1 A i
. l 1 + — {x* — X97)} (.,s(T)J‘I(-‘:'(T’D 00N {X (7)) — x}dV dr’.  (19)
c2

Since the hyperplane V(r) is characterized by the orthogonality condition:
fxx — Xa(7)} Uxlr) =0, (20)
(18) and (19) can be rewritten as volume integrals over the total time-space,

by introducing the function 6] —(1/c){a* Xa(7)} Ux(r)]. We then have:
> L \ )

3 1
Fa(r) =e ‘ /"""(,\][1 b — {a® — X(7)} (',5(7)](',f(T')rﬁ"”',.\'(T') v
7



00

K 1 )
-+ [ J /"‘"(.\‘)[1 - — {x0 — .\"’(T)} (..,)(T)]‘u‘;?’(r')('./t)(‘“{,\'(j') - x}
c2

1
-O[* fxe — X¢(7)} l'é(r‘)] d@®x d+’, (21)
c
({"fi(-r) =0 ’ ‘ .:.\" - ‘\'\(T): j""’(,\‘) ‘:.\"j b ‘\v‘;(T}: /‘."(.\)

il -
: |:1 F— 1% X0(7)} (',,('r)] Uy(7) 6D{X(7") — «}+
ce

=) 00

1 & (i
-4)[ — — {xt — X*(7)} I'E(T)]d(‘”.\' dr’ + J J (x> — Xa(7)} f67(x)
-

[==)

1 3
— {xf — XB(7)} fo7(x) [ =i = X)) ('A(T):l
ce

. 1 - . .
() [0 {X (1) - ,\"l'r)|: fxe — Xe(7)} L [(-r_)](l“‘).\‘ dr’. (22)
°
The right- h‘m(l sides of (21) and (22) can be integrated subsequently
over 2% and 7'. (For details of these calculations see reference 2.) The

results are:

v 1
Fa(r) = — faB{X (r)} Uglr) — — [25f*{X (r)}] pus¥(7)

¢ (
1 d ¢ i
— - [f5P{X (7)} () Uy(7)], (23)

¢ dr
and:

I )
dxB(r) = — [f{X ()} uy(7) AsP(7) — [P{X(7)} ps’(7) 16%(7)], (24)
(¥ '
which are respectively the external electromagnetic force and its moment
acting on the dipole. With (23) and (24) the equations of motion (13A) and
(13B) become for electric and magnetic dipoles in an external electromagne tic
field:

d : l d > ek pa
c (‘1'( ‘) . (")\;}(, ﬁ) e foBl i— (? vl xXfF) Ill,f*'
dr ¢ dr }
. d ) R i, S - .
2 d {(f*7pyP — fP¥uy*) Upgj 4 ) (UsU aff7 10U ), (25A)
¢ dr ¢t dr
Q (% AB:(fer st — [57pyt). (25B)




From these equations Vlieger?2) derived the energy-momentum tensor for
a system consisting of these dipoles. The main steps in this derivation are
given in the next section. A comparison is made with the expression for the
atomic energy-momentum tensor of de Groot and Suttorp3).

In the above treatment it is tacitly assumed that a tensor T8 exists in
of atoms and molecules, which satisfies the requirements in § 2.
ative effects are neglected, but renormalization effects

the case
This means that radi
are taken into account.

§ 4. The energy-momentum tensor for a system of dipoles. We consider a
system, consisting of N point atoms, numbered by the index k. The rest
mass of the £™ atom will be denoted by g, (instead of M™), its charge
by e (instead of ¢), whereas the tensor ua? becomes pk)a?, and 2%8: Q.
For the centre of gravity of the A" atom we write Rf,, (instead of X@),
for its velocity Ug,, for the tensor A4%: A and the eigentime of atom £
becomes 7). Supposing that there are no external fields acting from
outside the system, the (external) field acting on atom k is the sum of the
partial electromagnetic fields f*# due to the other atoms [ (# &):

*(Rwy) = X fay**(Rau)- )

W+#k)

With these new notations, the equations of motion (41) become:

d 1 etid <L
it * = " a1y — ~ af o
¢ (Ut} (80U ey = ey 2 fi(Rawy) Uwys —
dr ¢ dr WA K)
2 :‘((A'):'/'(\/";(VI\’(A'))} Mg —
(k)
L4 o5 g Ra) mons® — IR ®) kwy® Us] +
> 24 A\ (k) Hkyy MU (k)) Hkyy” s Y (k)8
c%2 (lT(A-) (k)
1 d - 5o ‘ >
e ( X U Umsl@(Ra) wary’U ws}, (27A)
¢’ (17’(/;) (#k)
¢ A% 08200 = AlineArel X (0 (Rao) ik’ — 1 (Ra) oY), (27B)

W#k)

Multiplying both members of these equations by the four-dimensional
S-function 0@ {R (ray) — R}, integrating partially over 7, and summing
the result over k. one obtains the following result (for detailed calculations
see reference 2):

+ 00

é‘;;[.‘l_] -{c j m, 0@ (Ray — R) (1,-(;,-,} Uy Uy +

— 00
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= = s(‘ l Q{503 (R 5y R) drgry ¢ AD () %ikyy) Wiy
¢t x| S :
! N geBUDy 2 ) Y ‘ >
i Il & 3 n
d !(/\(I\),ltl),}(l\) o4 :(;A‘/\‘[\(l\}:‘”(l.",f'(IU
C kLkAD kL (k1)
I \° § X7 [ J2) 5 § 0y ) M
ogl = A YRy (R) FE(RYM ey »™ (R) Y1t geyo Wiy
€2 e 1, (k2 1)
1
: ¥ Sy FR R M yst(R) wikyef Wy Warey | (28)
C* k. L(k2l)
where %), Um0}, and the operator D, u,éx, wWhereas ja(R)

is the charge-current density vector of the ™M atom (as a whole):
go

jwa(R) e = ey | Umalra) 0 Ruy(ra) — Ridra, (29)

(cf. eq. (16)), and mx)a? the polarization of this atom:

mayaP(R) = [ paab(rm) ORw(ra) — Ridrm, (30)

(cf. eq. (17)).
In equation (28):

o
€ \ MG (7)) OVLR ey (7 (k) R} dr(xy
oo
M ()N 1 — U5 (8)c2 0B Ry (t) — R} = piiy(R) (31)

is the rest mass density of atom £, i.e. the mass density in the momentary
rest frame of inertia of this atom, v (f) is the velocity of the atom, whereas:
o0

c | Q5 (7)) ODAR ey (7)) RY d7(xy

QX (N1 — v, () [c2 OO { Ry (t) — R} = oY (R) (32)

is a tensor, which in the atomic rest frame, represents the angular momen-
tum density, (the “atomic angular momentum density tensor”). Intro-
ducing (31) and (32) in (28), and also using the Maxwell equations:

2sfa® = Jyalc + pmxya”, (334)
( \/('l.‘),I',' T é,iftl;)j'\ t é;'/(/{} 0] 0 (hl,"
we can derive the following result:
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- Y {ul @G e Wt (34)
A 1, (k2D 3
where
X Jx X
/Ial.’l ./U.'r ”I(I.r' (‘35)
and where g3 has the elements o0 Lol 3 1 (for 7 1,2, 3) and
g8 = 0 (for a # ).
The atomic energy-momentum tensor of the field is defined by:
8 < e y N B
[(\(. — ,’I‘l)/I(I,'V' ‘}:,/(l!‘,"’./(/‘uf“
kL(k#D
1
P v s a4 )
& VMK Ml Wvo5 Wt
2
" i , =
; ()i 0y Wiy | Wiy Wy | (36)
3

This tensor is exactly the same as the one calculated by de Groot and
Suttorp for these atoms. The atomic material energy-momentum tensor

is defined by:

1

* o b w! I XY 1 i
tim) —~ PO T+ —5 Tk LD eyt (k) Wiy
N L

(37)

Equation (34) can then be interpreted as the conservation law for energy-
momentum at the atomic level for a system consisting of dipole atoms:

(t28 4 28y = 0. (38)

Ca ¥ (m) (f)J

The tensor (7)) t% is not symmetric, which has the disadvantage that

(m)
the conservation law (38) does not imply the conservation of total angular
(¢f. reference 5). One can, however, add a diver-

momentum of the system
gence-free tensor to ¢, and so obtain a new material energy-momentum
tensor £, such that the total energy-momentum tensor £, 4 &f is
symmetric. Vlieger has used the same method as de Groot and Suttorp,

but without making any approximations.
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First one derives from (27B) the atomic angular momentum balance:

's ~

Al N Ax {87 anrh 1
Are ](Ar’/n“u.m ) e 1(1 M /m — T M eyy s (39)
kol (k% 1)

.

using (30) and (32). Now the right-hand side of this equation is equal to
twice the antisymmetric part of the tensor £, eq. (36). For the left-hand
side of (39) one finds:

*foy | woy

v A B 2 L. *el) __ *oxf
2 Ay ey 0450 G} = (ln.n — tomys = 2 OOy §> (40)
k T

using (37), the antisymmetry of o7, and the property
g Ok Property
Oy "Ukys = 0, (41)

which follows from (32), together with (11). The left-hand side of (39) is
therefore equal to minus twice the antisymmetric part of the tensor

(a8 — 3 Sk O{uly00’). We still have the liberty of adding an arbitrary
symmetric tensor to this, for which we take: } Xg &y{ufy 00ty + uf0b}

We then define:

o *of 1 ! g _xay ¥ *ofhy
iy = by + 3 X O{uyoly + wiot — WO (ke 5 (42)
k
as the new atomic material energy-momentum tensor of the system, and
this is allowed, since the tensor added to ¢/ in (42) is divergence-free, so
that both £;2 and £ lead to the same physical results. The left-hand side

(m)
of (39) is then equal to minus twice the antisymmetric part of the tensor
t,, and the atomic angular momentum balance therefore expresses the
fact that the total atomic energy-momentum tensor £, + £ is symmetric.
The conservation law (38) for energy-momentum can then be written as:
pltim + 1} = O. (43)

(m

If we now substitute (37) into (42), we get:

ap. _ B 1 5 ) #el) | 17 *ay)
Hm) = ¢ P(l.)“m“(m 546 ) OG0t + dox{ug,oy + ”(1.)0(/.J for

1
. (o By | g *an)( )
T o2 WG+ 1aoay HDwwy) |, (44)

and this has exactly the same form as the final atomic material energy-
momentum tensor derived by de Groot and Suttorp3). However, as a
consequence of the different definition of the centre of gravity of the atoms
and the various approximations made by these authors, they obtain ex-
pressions for the rest mass-density (denoted by pf;,) and the atomic angular
momentum density (o]”) which are approximations of the expressions

*xf

piey and oy’ used in this chapter. (E.g. they obtain the contribution of the
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intra-atomic field to pf;, only within the Coulomb-approximation.) But
taking into account the limits of the approximations made by de Groot
and Suttorp, there appears to be a complete agreement between their
results and those given in the present chapter, and this is, of course, very

satisfactory.
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CHAPTER 11

SIMPLIFICATION OF MOLLER’S EQUATIONS OF MOTION
AND THE ENERGY-MOMENTUM TENSOR

Synopsis

The classical equations of motion for electric and magnetic dipole atoms (or mole-
cules) in an external electromagnetic field of force, treated in the previous chapter, are
simplified by showing that certain terms, which contain an unphysical trembling mo-
tion (“Zitterbewegung’’), are completely negligible with respect to the other terms in
these equations. The resulting equations are used in order to derive the relativistic
atomic energy-momentum tensor for a system, consisting of these dipole atoms. The
field part of this tensor has exactly the same form as obtained before, but the material
part is slightly different as a consequence of the simplification in the equations of
motion. The same symmetrization procedure, as used in the preceding chapter, can be
applied to the total energy-momentum tensor. Radiative effects are neglected through-
out the theory.

§ 1. Introduction. In the preceding chapter, in the following denoted by I, we
have treated the equations of motion of electric and magnetic dipole atoms
in an external electromagnetic field of force!). The treatment was based on
Mgller’s theory2) of the dynamics of relativistic systems with an internal
angular momentum in an arbitrary (non-gravitational) field of force. In this
theory the equations of motion and of the change of the intrinsic angular
momentum are found, using the definition * (I.11) for the centre of gravity
or rather, using Mgller’s words, the pseudo-centres of gravity of the system.
These equations were then applied to the special model of electric and mag-
netic dipole atoms (or molecules) and used in order to obtain the relativistic
energy-momentum tensor for a system, consisting of N of these atoms. It
was found that this four-tensor is exactly of the same form as the one derived
by de Groot and Suttorp3:4), although these authors have used a slightly

* Formulae of chapter I will be denoted here by (I.1), (1.2), etc.
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different definition for the reference point within the atom from the one used
here.

The motion of the pseudo-centres of gravity, following from Mgller’s
equations?®), is still rather unphysical as it contains, superposed on what
may be interpreted as the real translational motion of the system, a very small
(order of the Compton-wavelength) trembling motion (frequency higher than
1021), the so-called “Zitterbewegung”, which has no physical interpretation
and is purely a consequence of the definition (I. 11) of these reference points.
[t will be shown in § 2 that from the above equations of motion, which are
third order differential equations, one can derive, by using an iterative
procedure proposed by Plahte?), equations of the usual second order type,
which possess solutions which also satisfy the original equations, but which
do not give rise to a trembling motion and can therefore be considered as
the correct equations, describing the motion of the system as a whole in an
external field of force. It appears that for atoms or molecules this iteration
method is rapidly convergent, and gives already in lowest order negligible
results. The equations of motion (and of course also the angular momentum
equation) are therefore simplified, and this is also the case with the atomic
energy-momentum tensor derived with the help of these equations. In §3
we find that the field part of this tensor is exactly the same as obtained in I,
but that its material part is slightly different. It is shown that the total
energy-momentum tensor can be obtained in a symmetrical form, using the
same procedure as in I, § 4.

The theory developed in the present chapter is based on a classical model
of the atoms or molecules. Radiative effects are neglected, as this has also
been done in I. We shall treat this latter point in chapter 1V,

§ 2. Simplification of Moller's equations of motion in the case of electric and
magnetic dipole atoms. In1 we have summarize the derivation?!) of the equations
of motion (1.25) of electric and magnetic dipole atoms in a given external
electromagnetic field of force, starting from Mgller's equations (I.13) for the
motion of arbitrary relativistic systems with an internal angular momentum.
The latter equations were derived by Moller?), using the condition (cf. (1.11))

Q38U =0 (1)

for the reference point within the system. It follows from the definition
(I.8) of Q%4 (internal angular momentum four-tensor with respect to the
reference point) and the fact that Uy is the derivative of the time-space
coordinate four-vector Xy of this point with respect to the eigentime 7,
that this condition has the form of a first-order differential equation in X,
and does therefore not define one single reference point, but an infinity of
these points, which are called pseudo-centres of gravity by Mgller. This is
the reason, that the differential equations (I.13) for the motion of these
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pseudo-centres of gravity are not of the second order in X, as usual, but of
the third order. Consequently the energy-momentum four-tensor derived
in I with the help of these equations, contains a material part, which does
possess not only velocity-dependent terms, but also terms depending on the
accelerations of the atoms (¢f. (I.44)). This result has also been obtained by
de Groot and Suttorp3,4), using, however, a definition for the reference
points within the atoms (molecules) different from ours.

The problem of solving the equations (I.13) and in particular the physical
significance of the solutions obtained, have been a matter of long discussions
in the past, (see refs. 6 and 7). One obtains a trembling motion of a very high
frequency (> 1021), the so-called “Zitterbewegung”', superposed on a motion
of a much smoother character, (in the free case a straight line). From
Mgller’s point of view?2), however, this trembling motion is only a con-
sequence of the definition (1) of the reference points, and has therefore no
physical meaning*. Moreover he finds a very small amplitude of the trem-
bling motion, namely of the order of the Compton wave length, which is for
an atom about 10-13 ¢cm, much smaller than its dimensions. It is therefore
evident, that one must try to find new differential equations, which describe
the above mentioned smooth motion, but not the unphysical trembling
motion.

A straightforward way to achieve this is the following iteration procedure,
which is formally analogous to the method of Plahte®) for the elimination
of the “Zitterbewegung” of the classical spinning electron. Consider the
equation of motion (I. 13A) and the internal angular momentum equation
(1.13B):

d Ity a ) Jivwid
11‘1*("’ RN Q.,\,}Lc’ - = 14‘;\ = i“[}(_l‘ g 2:\
(MU + < (@90 o (@8U)) (2A)
; I y - . :
Qo 4 — UaQBrU, — — UBQoYUy = A%eABed®, (2B)
ct c2

where M* is the rest mass of the system, defined by (I.12), F* the four-vector
of the external force acting upon it (eq. (1.5)), d*# the four-tensor of the
moment of this force with respect to the reference point (eq. 1.10)), and

. UsU,, (3)

2

1
As = ()“;3 -4
¢

with 64 the elements of the unit four-tensor. (The dots mean differentiation
with respect to the eigentime 7.) Since it is the second term at the left-hand

* One should also note that a motion of the extreme high frequency of the trembling
motion, has never been observed in physics.
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side of eq. (2A), which causes the microscopically small trembling motion, one
can obviously write eq. (2A) in lowest order by neglecting this term, and
then solve U, as a function of X, and U, from the approximate second order
differential equation, which is left. If this result is now substituted for Us
and U, into eqs. (2A) and (2B), one obtains in first approximation the in-
fluence of the external field on the motion through the “Zitter-term”
¢2(d/dr) (228U ), and the terms ¢—2U 30871, and ¢—2UPQ*U,, causing the
so-called Thomas-precession of the internal angular momentum of the system.
In this way one obtains for (2A) a second- and for (2B) a first-order differential
equation, and one can easily see that this set of equations describes, within
the approximation of their derivation, the motion of the system (with
intrinsic angular momentum) in the external field of force without, however,
the unphysical trembling motion. With the above mentioned iteration
method of Plahte?), one could also obtain higher approximations of this
set of differential equations, but we shall show below that for atoms or
molecules in an electromagnetic field the first approximation is already
negligibly small. The equations of Mgller for the motion of electric and
magnetic dipole atoms, treated in I, can therefore be simplified.

In order to prove the above statements, we recall that for these dipole
atoms (¢f. eqs. (1.23) and (1.24)):

e - 5 ) rid ]
Fo = — fobUp — — (04f*F) ug* — —5 —— (*%us”Uy), (4)
C [ ¢3 dr

and:

1
@8 = — (97,0400 — [s?As?), (5)
¢

where ¢ is the total charge of the atom (or molecule), f*# the tensor of the
external electromagnetic field ((f01, /92, f93) = e and (f23, f31, f12) = b, with
e the electric and b the magnetic field strength) and x*# a tensor given by *:

ab =— y . T B 171 | 5 x of B A
pot =3, en(xg)UP — %) U%) + b 3 e (¥i¥o — ¥k (6)

where e are the charges of the constituent particles (electrons and nuclei)
of the atom (or molecule), x%, the relative time-space coordinates of these
particles with respect to the centre of gravity of the atom and zf, the
derivatives of these quantities with respect to the eigentime 7 of this
reference point. Substituting eqs. (4) and (5) into (2), we obtain, after

* This formula is directly found by comparing eq. (17) of ref. 8 with eq. (17) of
chapter I. We have only changed the notations in (6).
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multiplying by ¢:

d 3l o L )
¢ (MPU) 4 — - (@0Uj) = efs9Tp — (2fo8) ug? —
dr ¢ dr Ly
il S i By ) ‘
— — = 1P — f7py%) U} (UU pfP7uyU ), (7A)
¢ dr ¢t dr
. lipere : by 2 i j
%8 - UxQ8rU, — — UPQ™ U, = A% ABy(feru,t — foru,e), (7B)
¢ ¢

(¢f. (1.25)). Omitting the second term on the left-hand side of eq. (7A), we
find in lowest order approximation:

d
£ ((1 (M*U?) = ef*6U s — (04/*P) pg” —

T

145 jdieds " W il ; .
¢ dr {(*7p? — 1Prp%) U 83 1 ¢? dr (U~U gfA7u,2U ). (8)

Let us now first disregard the terms with x*# at the right-hand side of this
equation. (We shall see below that they give rise in the iterated equations
to terms of third and fourth order in the internal variables x%, and £%,, which
are neglected in the present theory.) One can then easily solve U# from the
remaining equation, obtaining:
e o” e (BT, Mm*
T M*c Sl

Us. 9)
M (

Substituting this result into (7A) and (7B), we get

el b 1. d e . ana
¢ (M*U>) 4 —3 ( $238fg7 U, | =~ ef*8U g —

dr ¢ dr \ M*
AL 4 1 1d ) = ;
il 2 dr W%u? — [Pruy®) Upg}
1 'd o Bl 5 )
> K d (UU pfP7uy®Us), (10A)
¢’ T
A 4 ¢
Qs |- UsQ87f,0U 5 — UBQarf, U 5 ~
¢ “It(,z // 0 “[*(‘: /1 )
~ L,]"\E.f'i‘j:(/["'/ly: — /:7'/1.,,[)’ (101;)

where we have used the relation (1). If we introduce the tensor:

e
ROB = op — 0Qan, 11
At Ay yo?




eqs. (10A) and (10B) can be written as

iy . . I d .
¢ —— (M*U®) = ¢f*8Ug — (0yf*) pug? — —- 1 (F*7uPUpg) +

dr ¢z dr

1

2

c=

-
1

1

3 (UsfP7ii,244%), (124)

=

A 1

o008 = ([o7yf — M)+ (VTP — [P7U%) pUs +
1

+ — Uof?(@PU* — ,2UP), (12B)
2

using also the relation (1).

Now the four-tensor Q+8 is given by (I.8), and taking for the energy-
momentum tensor 74#(x), appearing in this formula, in firs¢ approximation
only its material part:

Foo
. =4 8
T = ¢ EfJ 20 edcloll X (rw) — x} drn, (13)
(17(,') (l’r(;)
-0
where m() are the rest masses of the constituent particles of the atom
(molecule), X, their time-space coordinates and =) their eigentimes, one
derives in a straightforward way, making also use of eq. (1) and the relation
x5 Us = 0 (¢f. (1.20)), the expression

038 =~ ¥ mp (a7,

18, — 0 %1A%), (14A)

@ nary
or

Q%8 =~ iy m) (X% — Tk i) A%e A8,, (14B)

(cf. also the results obtained by de Groot and Suttorp?:4)).

One easily verifies, with the help of the antisymmetry of the field tensor
f* and the property 4,74,f = A,#, that the last terms at the right-hand
sides of egs. (12A) and (12B) respectively can be rewritten in the following
forms:

—
—_

1 »
((,rvﬁf"i"'/ly”.vlﬁ“) == — : {( ,)/”/(‘II.-‘- le ~.' ;— ;1,‘ ..Q-y") .:’]0"},

¢ dr ¢z dr
(15A)
and:

o s i 1
= LO/'”’(II';’/}(‘ o= ﬂ.y‘l Ii) — = (,/',,/d-,f 'f<[ll¢::‘|5-,u Iﬂ: -
c“ c*

L
e e
= CraieVers i asane.— 8 vaiaY al
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Futhermore it can be shown (see appendix) that, for atoms and molecules,
the following inequality holds for each « and §:

(4
. o 08| < |us A% AR, (16)

M

We may therefore neglect the terms containing 2*# at the right-hand sides
of egs. (13A) and (13B) with respect to the terms with x*#, which means that
we may replace the tensor ji*# to the expressions at the left-hand sides of
these equations in very good approximation by u*8. Egs. (12A) and(12B)
then finally become:

1
¢S (MAU%) = efoBU 5 — (/%) pg? —
dr
I | d 4 (i s .
— 3 W~ P Ut o o U, SRR
008 ~ A% NBe(forust — [7uyf). (17B)

These are the simplified Mgller-equations in the case of dipole atoms (or
molecules), describing their relativistic motion with a very high degree of
accuracy, however, without the physically irrelevant trembling motion.

We have two remarks to make about the above derivation. First of all
we note that the contribution of the intra-atomic field to the tensor Q%
has been neglected in our calculations. De Groot and Suttorp?) have
discussed this contribution in the so-called ‘“Darwin-approximation”, but
it appears to be much smaller than that of T, calculated above. The
(strong) inequality (16) will therefore certainly also hold for the exact
angular momentum tensor Q%6

As a second point there is the fact that we have taken into account only
the effect of the Lorentz-force term of eq. (8) in the iteration procedure and
neglected the etfect of the terms containing u*@. In particular when the total
atomic charge e = 0, these are the only terms left at the right-hand side
of (8). If we now consider e.g. the term — (2,/*) ug” in (8), this will give rise
to:

1 dj ] 1
St 3 e .,o 18A
A T A ) s )

in the iterated equation of motion (cf. (10A)), and to:

1 1 2
— 3 UQ87(0¢f°) po® + e UBQxY(0efy0) po® (18B)

in the angular momentum equation (c/. (10B)). The characteristic quantity
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appearing in (18) is

1, . _Qaﬂ'u','o'

M 9

a third and fourth order quantity in the internal atomic variables (just as a
magnetic quadrupole or an electric octupole). For consistency with the dipole
approximation, made in the present chapter, the terms (18) have therefore to
be neglected in the iterated equations of motion. Along the same lines one
proves that also, the other p*’-terms in (8) give rise to negligible effects in
these equations.

Since the left-hand side of eq. (17A) does not contain the intrinsic angular
momentum tensor 247, as was the case in the original Mgller-equations (2A)
and (7A), or the iterated equation (10A), the equations (17A) and (17B)
appear at first sight to be uncoupled. However, as 244 is related to (cf. (14)):

of 3 o 2B B
uisy = ¥ i eay(28%a — ¥k (20)

which is a part of the tensor u%4, see eq. (6), appearing at the right-hand side
of the equation of motion (17A), we come to the conclusion that, in reality,
there is no question of uncoupling egs. (17A) and (17B). On the contrary,
one should also write down a differential equation for the first term at the
right-hand side of eq. (6), ¢.e. for:

Ui = Tiew(xHUP — #f,U?), (21)

in order to solve (17A). The reason that we do not derive such equation
here is that we shall always consider the right-hand side of (17A) (and (17B))
as given, as was also the case in the original Mgller-equations (2A) and
(2B).

Since the trembling motion originated from the special choice (1) of the
reference points, and had to be eliminated afterwards as an unphysical
motion, the question arises whether other conditions than (1) could be used,
which lead directly to “physical” second order equations of motion without
“Zitter-terms”? This has been investigated by e.g. Dixon?) using the
following condition for the reference point:

Qx8Py = 0, (22)

where Pj is the energy-momentum four-vector of the system. In contrast
with (1), eq. (22) defines one single reference point: the centre of energy
of the system in the Lorentz frame, for which the space-part of Py (i.e. the
momentum) is zero. In the special case of a (charged) system with only a
magnetic dipole moment proportional to the internal angular momentum
the condition (22) leads immediately to second order equations of motion.
In the more general case, however, (22) leads to a complicated set of equa-
tions of motion, as follows from the results obtained recently by Suttorp

25



and de Groot19) (cf. eqs. (46)—(48) of that reference). It can be shown that
within the approximations made in the present chapter their equations
reduce to our equations (17). Although in some cases eq. (22) would have
been a slightly better starting point for the derivation of the equations of
motion than (1), we have taken the latter condition, since we could then
prove in chapter I, that one obtains formally the same results as de Grootand
Suttorp 34) for the atomic energy-momentum tensor of a system of dipoles.

§ 3. The atomic energy-momentum tensor. In a completely analogous way
as in I, § 4, one can derive the energy-momentum four-tensor for a system
of N dipole atoms or molecules, starting now from the equations (17). It is
evident, that the field part £, of this tensor will be the same as in
I, since the Mgller-equations (7) and the simplified type (17) do not differ
in their field parts. We therefore obtain again the expression (1.36) for
t%. However, since the “material parts” of egs. (7ZA) and (17A) (i.e. the
left-hand sides) are different, this will also be the case with the material
parts of the energy-momentum tensors, derived with the help of these
equations. It is easily seen that, in the material part, found with the simpli-
fied Mgller-equations (17A), the “acceleration term” will be lacking, so that
instead of (I.37), we simply have:

wff _ &l * X B
bimy = 23k PGey®iey Wy (23)

where p(';;', is the rest mass density of atom % (k =1, 2, ..., N), defined by
(I.31), and 3, the four-velocity of this atom.
In a completely similar way as in chapter I, one can again symmetrize
the total energy-momentum tensor, by adding the divergence-free tensor:
1 S D fu® o*fr L 4P gror 7. g*ob
Dk 0G0l + 000G — UooTh ) (24)
to its material part (see (I.42)), so that this now becomes
oy LI sl Lo 12 (4,8 %Py B *oy » *af
oy = 2k [Pty + 30AUGTG T UGyTay — WOk 51 (25)

*xf

with ¢ the atomic angular momentum density tensor, defined by (1.32).
This symmetry can be proved again by applying the atomic intrinsic
angular momentum balance, which follows from eq. (17B). (Note that this
balance equation will have a different form from (1.39)). We know that the
symmetric total energy-momentum tensor *# = 20 + 1% has the ad-
vantage of implying both the conservation law of total energy-momentum
(cf. (1.43)) and of total angular momentum of the system of dipole atoms
(cf. refs. 3 and 4). The material energy-momentum tensor (25) is slightly
different from the expression in chapter I (eq. (I.44)), which had been
derived earlier by de Groot and Suttorp3:4). As we have seen, this is due
to the elimination of the unphysical trembling motion of the (pseudo)-
centres of gravity of the atoms.

26




§ 4. Concluding remark. The theory has been developed in the previous
and present chapters only for the case of electric and magnetic dipole atoms
or molecules. The electric quadrupole moments of the atoms, which are
of the same (second) order in the internal atomic variables as the magnetic
dipole moments, have always been neglected. As Rosenfeld1!) has pointed
out, this is in general certainly not allowed. We shall therefore investigate
in the next chapter (I11), what are the changes in the theory, if atomic or
molecular electric quadrupole moments are also taken into account.

APPENDIX

Proof of the inequality (16). We first write formula (14B) in the following

form:

QB ~ 3! mer(py ¥y — KpXG) A%eABs +

57 E:' ‘”(l')("'fir\"fi) T '\’:‘ir\‘(:i)) 1%:A8;, (A.1)
where me and M are the rest masses of an electron and the ¢ nucleus
respectively, whereas the symbol )" denotes summation over the electrons
and 3" over the nuclei. Multiplying this expression with ¢/M* and using the
fact that* |(e/M*) me| < (mer/mpr) |ee1] and [eM@/M*| < eq), with e the
(negative) elementary charge, mpr the rest mass of the proton and e the
(positive) charge of the ith nucleus, we obtain the following inequality for
each a and g:

Sy, e leer B (*aey — Feay¥in) 4%4%]| +
0 < i
M* Mypr i ol
| 2l P (7 SR 3 VIS o 4 3. A \
+ 30 lew (X% — XX 4%A4%). (A.2)

We now compare the right-hand side of this inequality with the absolute
value of the corresponding element of the tensor u®#A%.A8;, which can be
written as

/lsb—l ABy = "}!(‘l‘l -\-‘n, (x(l)’l(') ™y ‘L(” (H) 1%, l'} i

+ 3 37 ew (%At — Faykin) A%A4%, (A.3)
where we have used the fact that ufj,4%e4%; = 0, which follows from egs.
(21) and A%3U# = 0. In the momentary atomic rest frame the tensor p4%4%;
possesses only nonzero space-space components (just as the tensor 028),
and one can prove, using formula (56) of ref. 8, that these are the components
of the magnetic dipole moment of the atom, as long as one neglects moments
of higher than the second order in the internal variables. Since this atomic

* The validity of these inequalities i3 easily checked by mear« of elementary calcu-

lations.
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(molecular) magnetic dipole moment is the sum of an electronic and a
nuclear moment, and since the nuclear contribution is according to Van
Vleck12) completely negligible with respect to the electronic contribution,
we can neglect the second sum of (A.3) against the first, so that we get:

| A%eA8| ~ % | e 2 (ko — Kopen) 4%AP|. (A.4)

We then see, that the first sum at the right-hand side of (A.2) is much smaller
than the second member of (A.4), because the factor (me1/mpr) is of the order
10-3. But the second sum of (A.2), which is again a nuclear contribution, is
also negligibly small, so that we may finally conclude, that:

[
M*

Y| & "u";;l x ARy . (:\.5]

This proves the validity of the inequality (16).

Remark. The reason, that we have rewritten the last terms of eqs. (12A)
and (12B) in the forms as given by the right-hand sides of egs. (15A) and
(15B) is, that we cannot apply the above arguments of Van Vleck to the
tensor u*8. Though i) gives no contribution to those terms, the remaining
part i) has nonzero space-time components in the momentary atomic
rest-frame which depends on the atomic (molecular) electric quadrupole
moment. For this moment, however, it is generally no longer true that the
nuclear contributions are negligible with respect to the electronic contri-
butions. This is of course irrelevant in the present chapter, where we have
always neglected electric quadrupole moments in the dipole approximation
but the proof given above of the possibility of replacing i*# by u*# in the
iterated Mpller-equations is also valid if these moments are no longer
neglected, as will be done chapter I1L.
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CHAPTER 111

THE CASE OF ATOMS AND MOLECULES WITH ELECTRIC AND
MAGNETIC DIPOLE MOMENTS AND ELECTRIC
QUADRUPOLE MOMENTS

Synopsis

The classical relativistic equations of motion for electric and magnetic dipole
atoms or molecules in an external electromagnetic field of force, given in two previous
chapters (I and I1), are extended in the present chapter to the case that these atoms
possess also electric quadrupole moments, Again Moller's equations of motion for
relativistic systems with an internal angular momentum are taken as the starting
point. We only consider the form of these equations in which the term describing the
unphysical trembling motion of the atoms is eliminated (see chapter 11). The resulting
equations of motion are used in order to derive the relativistic atomic energy-momentum
tensor for a system, consisting of a (large) number of these atoms. It is found that the
field part of this tensor is not of the same form as in the pure dipole case and also no
longer expressible only in terms of quantities appearing in the atomic field equations.

§ 1. Introduction. In the two previous chapters (denoted hereafter by I and
IT), we have treated the classical relativistic equations of motion for electric
and magnetic dipole atoms (or molecules) in an external electromagnetic field
of force1:2). As a basis we have chosen Mgller’s theory3) on the relativistic
dynamics of systems with an internal angular momentum. Since the
equations of motion, obtained in I, contained an unphysical trembling
motion, this had to be eliminated. This was done in chapter IT, where we have
derived simplified Mgller-equations, describing the “real” motion of the
dipole atoms (molecules).

In the present chapter we shall generalize the latter equations to the case
that the atoms (molecules) possess, in addition to their electric (magnetic)
dipole moments, also an electric quadrupole moment. According to Rosen-
feld4) it is necessary to take into account the electric quadrupole moments
of the atoms, as soon as one considers their magnetic dipole moments,
since both kinds of moments are of the same (second) order in the internal
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atomic variables (relative coordinates and wvelocities of the constituent
particles of the atoms) and may give rise to effects, which are of the same
order of magnitude. The model of dipole atoms, considered in I and II, was
therefore somewhat artificial.

In § 2 we shall calculate, using the same technique as in reference 1, the
additional terms in the equation of motion (and the internal angular
momentum equation) due to the atomic (molecular) electric quadrupole
moment.

In § 3 we then obtain again the relativistic energy-momentum tensor for
a system, consisting of N atoms (molecules) of the kind considered in the
present chapter. In an analogous way to that followed in I (and IT) this four-
tensor can be symmetrized, with the difference that we have to add a di-
vergence-free tensor not only to the material part of the energy-momentum
tensor, but also to its field part. In contrast with what has been found in the
pure dipole case, this field part is no longer expressible only in terms of quanti-
ties appearing in the atomic field equations (i.e. the atomic field and polari-
zation tensors), but also contains terms depending on the electric quadrupole
moment density of the atoms or molecules.

Just as in the two preceding chapters, the present theory is one in which
radiative effects are neglected throughout. We treat these effects in chapter
IV.

§ 2. Equations of motion. From I, § 3 we know that for the calculations of
the external electromagnetic force F* and its moment d*4, acting upon the
atom (or molecule), it is necessary to use the expressions (I1.16) and (I.17)*
for the charge-current density vector j*(x) and polarization tensor m®#(x)
of this atom (molecule). As we have stressed in I, it is essential in these
calculations that this polarization tensor is of the form (I.17) in the dipole
case, and does not contain any derivatives of the d-function, appearing in
this formula. As soon as we also take into account the atomic (molecular)
electric quadrupole moment, however, (I.17) is no longer the correct ex-
pression for the polarization tensor, but this must be replaced by:

+o00 400
m*B(x) = | u*b(r) 6W{X(r) — a} dr 4 0y | z267() 0{X(7) — x}dr, (1)

g £
where u*#(r) is a four-tensor, depending on the atomic (molecular) electric
and magnetic dipole moments g and », electric quadrupole moment g, and
furthermore on the atomic four-velocity U#(r) = dX#(r)/dr and acceleration
dU*(7)/dr, whereas the third order tensor 3*#7(r) depends only on q and U#,
The symbol X(r) is an abbreviation for the time-space coordinates X*(r)
(x =0, 1,2,3) of the reference point, describing the position of the atom

* Formulae and equations of chapters I and II will be denoted in the following by
(L.1), (IL.1), etc.
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as a function of its eigentime = (see I and II), x stands for the time-space
coordinates ¥* = (ct &) of an arbitrary point and & for differentiation with
respect to these coordinates: &y = (2/cct, 0/ox); (c is velocity of light).

Formula (1) is immediately obtained from the general expression for the
atomic polarization tensor, derived by de Groot and Suttorp?) (see formula
(17) of that reference). If one considers only terms up to the second order in
internal atomic parameters and expresses these quantities by means of a
Lorentz-transformation in the corresponding quantities in the atomic frame
(see ref. 5) one easily proves the validity of eq. (1) and all statements made
about it. It is of no use to take into account terms of higher than the second
order in the general expression (17) of de Groot and Suttorp?), since they
give rise only to terms depending on higher order atomic moments than u,
v and g, which will not be considered in the present chapter. From eqs. (17)
and (27) of ref. 5 one still obtains the following relation:

Z‘IB.'"(T) (/r';i('r) = O, (2)
which will be important to simplify the results below.
et
j*(x) = ce | Un(r) dD{X(r) — x} dr (3)

(cf. (I.16)) be the charge-current density vector of the atom (molecule) as a
whole (e is total atomic (molecular) charge), then the density of the external
electromagnetic force acting upon it can be written as (¢f. (1.15)):

f2(x) = fo() sl + a7 ()}, (4
with f#8(x) the tensor of the external electromagnetic field:

(fO1, f02, f03) — e and (23, /31, f12) = b,
with e the electric and b the magnetic field strength. If we now substitute
eqs. (1) and (3) into the right-hand side of (4), and calculate the external
force Fa(r), (1.5), and its moment d*#(r), (I.10), with respect to the centre

of gravity of the atom (molecule), we obtain for the terms, depending on e
and p #3(z), of course, the same results as in chapter I, 7.e. (1.23) and (1.24):

- il P . G S e
Fa(r) = — (X (7)} Unlr) — — [2af**X (s)}] ps”(r) —

e
—= (, [f*P{X (1)} p?(7) Up()] + .. (®)

¢3 d

and:

1
d%8(x) = — [JX ()} w(e) APlr) — (X} () A + s (6)
c
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where:

] \‘i(T)

048 -

1
— Ux(7r) UB(7). (7)

We are therefore only left with the evaluation of terms in ¢(7) and d*8(7),
containing y*#?(7), i.e.

oo

with the calculation of the integrals:

s 3 | .
1y . J f‘ﬁi(,\‘) [I : ~ fxe — _\'f(;-,-): I’E(T)i]'
(‘—

and:

Vi(r) oo

- 2670(7') Q4R o0 (X (')

oo {00

00

1
] 1 = —Ax"
c2
7 : ]
) — %3]0
%

[280edD{X (r

— x}dV ds’

| .
[’ o a\“m:hm]'
(‘-,

- 2670(7")[0yCo0 W {X (') —x}] -

: 1
) [ :’1 n
¢

- .\"A‘(T): U (7) ](1“”\' dr’, (8)

- X#(7)} fr(x) — {xP — XB(7)} f2v(x)]-
= ,\'11(7): (..//(_T):| Z;-’)((T’) ;A;ﬂ’(‘”:‘\'(‘r’) . \‘} dv dr’ =
X&(r)} fov(x) — {xP — X7

(7)) f2¥(2)] -

Xn(7)} l,,(r)] 2%(7') -

(x¢ — X¢(r)} (-‘,—(T;]m-n.\u,—', (9)

where we have used the same notation as in chapter I (¢f. egs. (1.18), (1.19),
(I.20) and (I.21)).

Integrating the right-hand sides of egs. (8)

and (9) twice partially with

respect to x%, then integrating over these variables, and finally applying the
formulae:

(10)




' md
J g() >[ {Xo(r') — X(r)} l'\(ﬂ] d+’
?

Y ‘.7’6L( ) h /1 ' T)J

al /d;’{.\’(‘r)}:Z:'m(T) - Ay oa( TJ’ [ T)]

(X

1 (lf'('r )
, : 11
c2 [ dr’ ] 2 il

dé(y)/dy, (for derivation see reference 1), and:

. T R N
L,;, = — — (') U(r) L \(r)] . (12)

dr'2 co

d2(y)/dy2, (see appendix), we obtain the following results:

i A1 TR ,
— [0y0of**{ X (7)}] x87(7)

LY b4 J ) 5 3
[[Us(r) 2yf2?{X (7)} + Uy(r) of* X (7)} 267%(7)]

dr
d d . : o

f8{X ()} 267%(7)] Uy(7) Usl7) |, (13)
dr | dr

1
— [[2of*"{X ()} {xs%(7) + xr*(7)} AeP(7) — [CofP"{ X (7)

5 3 LA @H () + %) —

d
[/ X (r)} Ub(r) — fov{X ()} U%(7)] x»*¢(7) Us(r) Uelr)] —

c® dr

1 d A :
— | X ) ()] UGr) -
¢d | dr

(187X (7)} 29%(7) ‘l,"‘(f)] Us(r) Uel7).
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The rather lengthy, but straightforward calculations have been omitted here.
The expressions (13) and (14) can now be simplified by using the relation
(2). We then find:

; e LI 5 jaing X £ 4
Iy = — [0,06f*{ X (7)}] x67°(7) + — [[@af*B{X (7)}] x67%(7) Uy] +
c ¢3 dr
B s 2 w
- 28X (7)} £67%(7) Uy(7) Usl7)], (15)
¢® dr
and:
1
Ir = — —[[2of (X (r)}] 27%(r) A (r) — [Rof X (1)}] 1(r) Ae ()] —
g e " .
- — [[@af27{ X (7)}] 2%(7) OofP7{ X (7)}] 1°%(7)] —
»
Ja el ) e S g
— — [[fo{X (7)} 2s28() — [{X ()} 2°%(r)] Us(7)] —
("3 (lT
1

— [fo7{X(7)} UP(r) — X (7))} UX(7)] 72%(7) Us(r) Ue(r), (16)
- X }
where the dots denote differentiation with respect to 7.

From egs. (5), (6), (15) and (16) we obtain, in the approximation, that we
have an atom (or molecule) with only electric and magnetic dipole moments
and electric quadrupole moment, the following results:

< 2 ; : I -
Fa(z) = Z fo8(X ()} Uplr) — — [0f*{X(7);] pp?(7)

c

1 Lamiel i :
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¢3 dr

It =d o ] &

=5 5 Lof*X (n)}] 267(r) Un(r)] 4
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1
— — [[Rof (X (x)}] £:%%(r) — (2o X (@)}) 1**(r)] —

c

I .d 5 . :
— 5 1 LX) 292(s) — X ()} 20()] Ulr)] —
1
— 5 X))} Usls) — X ()} US(r)) 1524(7) Uslr) Uske), (18)

for the external electromagnetic force and its moment, acting upon this
atom (molecule).

Substituting the last two formulae into the right-hand sides of the
Mgller-equations (I.13A) and (I.13B) (or (I1.2A) and (I1.2B)), and taking
into account that we may neglect the second term at the left-hand side of
(I.13A) (or (I1.2A)) and the second and third at the same side of (I.13B)
(or (I1.2B)) for an atom (molecule) which, in addition to its charge and
electric (magnetic) dipole moment, may also possess an electric quadrupole
moment (see chapter II for the proof and in particular the remark at the end
of the appendix in that chapter), we obtain the following (simplified) forms
for the equation of motion and the internal angular momentum equation for
the atom (molecule) in an external electromagnetic field:

d
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using the properties:
]"/il I8 — O, A 17' ];rﬁ — 1'\;}: (20)

and eq. (2).

In the next section we shall derive, from eqs. (19A) and (19B), the atomic
(molecular) energy-momentum four-tensor for a system of atoms (or mole-
cules), taking into account the atomic (molecular) electric and magnetic
dipole moments, as well as the electric quadrupole moments.

§ 3. The atomic energy-momentum tensor. We now consider a system,
consisting of N atoms (molecules), numbered by the index & with
electric dipole moments M), magnetic dipole moments »g), electric
quadrupole moments q@ and negligible higher order moments. Just
as in chapter I, § 4, we change the notation, denoting the rest mass of the
kth atom (molecule) by m* () and its charge by e, while the tensors u2#, y*87,
etc. become ulh, y, ete. For the time-space coordinates of the reference
point describing the position of the A" atom (molecule) we write R,
(instead of X@), for its four-velocity U, efc., while the eigentime of atom
k becomes 7). Supposing that there are no external fields acting from
outside on the system, the (external) field acting uponatom % is the sum of the

partial fields /), due to the other atoms / (= &):

B(Rw) = X [H(Ra)- (21)
i#k)

With these new notations, the equation of motion (19A) becomes:

d
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and the internal angular momentum balance equation (19B):
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We shall now follow the same procedure as indicated in § 4 of chapter I
(cf. ref. 1): we multiply both members of eq. (22A) and of eq. (22B) by
the four-dimensional d-function SM{Ru,(rx)) — R}, integrate over (), and
sum the result over 2. We then obtain, after partial integration with
respect to 7, and with:

1 SRy (ray) — R} = —Ufy(ray) Cad DRy (rary) — R}, (23)
A7 (k)

the following results:
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The left-hand \'i(l(' of eq. (24A) can now be written (see chapter I, § 4) as

the divergence 9tr> of the tensor:

(un
7 < ' 3
Lty = 2 Pl (25)
k
where

00

p(*,‘.)(]\)') ='C j HI:,‘,,(T(M) (3(4)‘,1\’(/.-)(TM~)) — R} (l'r(m (26)

—00

(¢f. (1.31)) is the rest mass density of atom £ (i.e. the mass density in the mo-
mentary rest frame of inertia of this atom), and «{,(f) is equal to Lff‘k,(~(;.))
considered as a function of the time /, instead of the eigentime 7, (¢f. (1.28))
Similarly we obtain for the left-hand side of eq. (24B) the expression:

5, 2y{uy ot (27)
k

where:
0'(,:\”(1 ) =c¢ j !_)(‘,':.I)(T(/‘-)) (S('l)-{l\)(L-)(T(L')) — R} dr () (28)

(cf. (1.32)) is the tensor which in the atomic rest frame represents the angular
momentum density (the “atomic angular momentum density tensor”).
With these results, and using the same method by which we have derived
(1.28) from (I.27A), eqs. (24A) and (24B) become:

1
of e 5 ) . = -~ (f p R
R =— 3 [BR) jws(R) — X {SfHR)} Mus¥(R) +
C I, (k#1) k1, (1)

|
+ X {200/ (R)} Xwya"(R) —'ﬁ[ Y HR) M@y (R) —
ke b, (k2D C2 11, (D)

1 :
/(1) (R) M (ryy*(R) } te(ky 0 ey ? — 2 Y {0efH(R) Xayy? #(Fe)—
“ kL (kAT

— {Bef BRYHX ey 8 (R) + X (1)y**(R)} ey o 4 1)® —

39




1 Yo .
— -C‘l = Il‘(‘k) llv(k)o/("l’)([\)) ‘11(;;)-,,"(1\’) U(k)e ll(;;,” -
k1 (k#0)

| ) . 40y d B
g Y Uy wmollely(R)} X )y (R) Uryn Wy —
C% k1, (k4D
1
—— X {fHR) Xy*(R) — f(R) X ey (R)} iy e 1y
€% Iyl (k7D
1
B 8 e
U Uy T — B U U of ) (R)
C® k,1, (k£
et X Gy 1 (R) ey} tiye Uieyn Uiy’ } (29A)

Y ~ *ofi 7y
Y 0o (R) wy?s =
k

= 3 A%y, Ay THR) My (R) — f35(R) M ey (R)} —

kL (k#D
-t x\..: llm l(/k‘. l,;’,./:/l;l'(l\,) \(A)/ (I\’ Ih /.,,(1\)]
l.-.l.(l:/ll
Xrp(R)] — X AfyA0G(R)} Xy (R) +
k1, (k4D
+ 'u. Oof H(R)} X (kyy®*(R) —
k1, (k#1)
1 5 ]1 ’1,f ATy 1; \- ot 1,
= 24 Npm! (l:):(f.t./m( X) & (k)5 (£K) —
C% k1, (k1)
— [ (R) X ayy?(R)} t(ieyo iz s (29B)

where j%,(R) is the charge-current density four-vector of the kRt atom
(molecule) as a whole:

+ o0

1%(R) =cewy | Ulylra) 0 R (ram) — R} drpy, (30)

(==}

and where we have introduced, in addition, the tensors:

M\(R) | wib () 0D {Rauy(rwy) — R} dr), (31)
and:
XiP'(R) = | 23 (ra) 09{Rauwy(rm) — R} dr). (32)
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For the polarization tensor (cf. eq. (1)) of the 2t atom (molecule) we have,
with egs. (31) and (32):

min(R) = ME\(R) + 2,X7 (R). (33)

Differentiating the third, fifth and seventh term at the right-hand side of
eq. (29A) partially with respect to R#, using eq. (33) and finally applying the
Maxwell-equations (¢f. (I.33A) and (1.33B)):

08l (kyaP = Jyalc + Comqrya®, (34A)

Oaf ey + Ofkyva + Ovfyap = O, (34B)

we can derive the following result:
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C% k1, (k1)
where:
7] af
by = /(1.) Mg (36)

(¢f. (I.35)) and where #3}? is an abbreviation for the expression between
square brackets in the second m(-mbcr of (35); (the metric tensor g## has the

elements g00 = —1, gt =1 (i = 1,2, 3) and g*# = O (« % B)). The tensor
;2% may now be interpreted as the material part of the atomic (molecular)

energy-momentum tensor of the system, and ;" as its field part. Eq. (35)

then represents the conservation law of energy-momentum of the system
at the atomic (molecular) level.




Eq. (29B) can be transformed, with the help of eq. (33), into:

~ *of " ~ A AP {ny, > cy, 1
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== 2 4Gy, POl X )y — T X (hyy®") ey o184 - (37)

2
C= k1, (k#1)

Now the left-hand side of this equation is equal to minus twice the anti-
symmetric part of the tensor (¢f. (I1.25)):

xp *ff o e I8 ¢ * o)
t(l‘ll) ‘l(m’) 2 L {”(l\)o'(h o ”(1\1”(/\) “(f\)G(Is)f’ (38)

which may again be interpreted as the atomic (molecular) energy-momentum
tensor of the system, since its difference with the tensor 3 is divergence-
free, so that both £ and #%, lead to the same physical results (e.g. the
difference between the two tensors is irrelevant in the conservation law (35)).
The right-hand side of eq. (37) turns out to be equal to:
e’ — 8 — S 0olfFX wms? — X an} —
k, 1, (k#1)

| :

) AS(frX iy X LAWY
—~3 Y (IR X ey — [ X kyy®®) iy ottt}
< ke, L (k#1)

or, in other words, equal to twice the antisymmetric part of the tensor:
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26% 41, (k)

Further, a procedure analogous to that of chapter I, § 4, can be applied in or-
der to symmetrize the total energy-momentum tensor. We add the symmetric
tensor:
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to 7%, eq. (39), and define the new tensor:
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Since the difference b(twm .n the tensors £ and £} is divergence-free, we
may also interpret 3] as the atomic energy- mumcntum tensor of the field.
rlll‘th(l]n()l(' it follm\\ from the symmetry of s, that the antisymmetric
parts of #3 and )" are equal. The right-hand side of eq. (37) is, therefore,
also (qual to twice the antisymmetric part of the tensor 2, and since the
left-hand side of this equation is minus twice the antisy mmetric part
of £4, we conclude, that it follows from the balance equation (37)
for the intrinsic angular momentum of the atoms (molecules), that the
total energy-momentum tensor £, -+ 1 is symmetric. This symmetric
tensor has the advantage that the conservation law of total energy-mo-

mentum:
{/3l (m) + {(()l = O (42)

now implies also the conservation law of total angular momentum of the
system plus the field (see e.g. ref. 6).

The explicit expression f()r the atomic field tensor £3 is rather compli-
cated. It follows from eqgs. (41) and (35), that this tensor is the sum of two

tensors:

= \) O
128 = 1 + o (43)
where:
[“ﬁ = 3y ] lf/ Y0 yaf _| 1 § joy
F0 5y i 2T Uy — Wyol oy 8P + — Vimmyye —
k2, (k1) ce
— 2 ayyod ]rr/ LR R 44A)
Ml o WanMhaey — 3 (i f v oM oyet ey s Wi Wir ) (44

is of the same form as the field tensor in chapter I for pure dipole atoms
(molecules) and depends only on quantities appearing in the atomic field
equations, whereas the tensor:
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is not expressible in those quantities. In contrast with £%);, the tensor e
contains only derivatives of field quantities, efc., with respect to time and
space coordinates.

If we had considered higher order electric and magnetic moments of
the atoms (molecules) than electric (magnetic) dipole moments and
electric quadrupole moments, we should have obtained further contri-
butions to the field tensor #%. The explicit evaluation of these rather
complicated contributions will not be given here, since we will not need
them for future purposes.

APPENDIX

Proof of formula (12). We shall first calculate the integral:

f g(7') 8" {h(=")} d=', with d"(y) = d2é(y)/[dy?,

where A(7’) is monotonically increasing. Introducing:

y = h(7"), " =x(y),




we get:

d2(y) d7'(y)
} : —dy =
dy ’

— By i 42 dgi='(y)} d3'(y) L
dy® dy dy T

13+ (v
) “’] (A3)
dy =0
We now have:
1(/.‘ ()Y N (1 (v
( hIT (\)l - g’{T’(\'): T (.\) : (:\4)
dy dy
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d2g{r'(y)} ‘ .j d7'(y) 13 : . dz27'(y) ,
”I/ ’ % r(‘!I‘ ’ ) . . ;\5
dy? g7 rl i j 2" (v)} dy? (AS)

If we now differentiate the identity:
Wr'(y)} =y (A7)
(which follows from eq. (A2)) three times with with respect to y, we obtain
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the following relations:
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If we now suppose that = is the (only) value of =" for which /(')
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Substituting eqs. (A11)-(A13) into the right-hand side of eq. (A6), we get:
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we have:

1

B(r') = — — Us(r') Ualr), (Al7)
5
L .

h(r') = — — Ux7') Ual7), (A18)
5
|

hi(7r) = — Ua(') Ualr). (A19)
(&

The function k(r’), (A16), has indeed its (only) zero just for the value 7 of the
variable 7/, and since furthermore:

Ux(7) Ualr) = — €3, (A20)
and consequently:

Ux(r) Ual(r) = 0O, (A21)

Us(r) Ua(r) = —U%() Ua(r), (A22)
we find for the function (A16) the following properties:

(7)) = € (A23)

(4" (7")]=r = 0, (A24)

) ey = : Ua(7) Ual7). (A25)

Substituting eqs. (A23)-(A25), together with (A16), into (A15), we obtain:

oo :
j g\r') (5”[ g $Xo(r") — X#(7)} L’,,(‘r)](l'r' =
AT Rt i M SR AR |
=|g') —— g V) Uan) | - (A26)
G ¢ v =7

which is just formula (12) of the present chapter.
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CHAPTER IV

THE CLASSICAL EQUATIONS OF MOTION WITH RADIATION
REACTION AND THE ENERGY-MOMENTUM TENSOR FOR
ELECTRIC AND MAGNETIC DIPOLE ATOMS AND MOLECULES

Synopsis

The classical equations of motion for electric and magnetic dipole atoms (or molecules)
in an external electromagnetic field of force, treated in chapters I and II on the basis
of Moller's theory of the relativistic dynamics of systems with an internal angular
momentum, are extended to the case that the reaction of radiation on the atoms is
taken into account. To this end Moller’s theory, which is valid only for finite systems
(total energy-momentum tensor zero outside a finite region in space for arbitrary
fixed time), is modified in order to be applicable to the case of radiating atoms (or
molecules). Dirac’s method of splitting retarded fields covariantly into self-parts (half
sum of retarded and advanced fields) and “radiative’ parts (half difference of retarded
and advanced fields) is applied to the sub-atomic fields. It is proved that the sub-
atomic self-force density can be written as minus the divergence of a symmetrical
four-tensor, which is zero outside the atomic system and which, added to the sub-atomic
material energy-momentum tensor, may be interpreted as the total energy-momentum
tensor of the finite atomic system. With the help of the latter tensor the atomic mass,
intrinsic angular momentum and centre of gravity are defined, using Moller’s theory.
The influence of the “‘radiative’ part of the field on the centre of gravity motion of the
atoms and the change of their intrinsic angular momentum is then analysed. The
equation of motion and the intrinsic angular momentum balance equation, obtained
for radiating charged dipole atoms are used in order to derive the relativistic atomic
energy-momentum tensor for a system consisting of a large number of these atoms.
In contrast with the tensors in the previous chapters, this tensor is no longer sym-
metrical.

The treatment of the present chapter could be extended to include the case in
which the atoms also possess electric quadrupole moments.
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§ 1. Introduction. In the first chapter, denoted hereafter by I, we have
treated the classical equations of motion for electric and magnetic dipole
atoms (or molecules)? in an external electromagnetic field of forcel). The
treatment was based on Moller’s theory?) of the relativistic dynamics of
finite systemstt with an internal angular momentum in an arbitrary (non-
gravitational) field of force. In chapter 1I3) we have simplified Moller’s
equations of motion in the case of electric and magnetic dipole atoms, by
showing that certain terms, which contain an unphysical trembling motion
can be eliminated. In this way differential equations of the usual second
order type were obtained for the description of the motion of the atom as a
whole in a given external electromagnetic field of force. In chapter I11%) we
have extended the theory developed in I and 11 to the case, that the atoms
carry, in addition to their electric and magnetic dipole moments, also
electric quadrupole moments. In all previous chapters (I-III) radiative
effects were neglected throughout, as was also the case in the work of de
Groot and Suttorp3). In our treatment this was a consequence of the fact
that Moller’s theory2) is only valid for finite systems, i.e. for systems whose
energy-momentum tensor is zero outside a finite region in space for arbitrary
fixed times. It is well known that the energy-momentum tensor of the
electromagnetic field of a (classically) radiating atom does not possess the
latter property.

In the present chapter we shall take into account radiative effects in the
theory. To this end we shall have to modify Mgller's theory?). We shall
apply Dirac’s method®) of splitting covariantly (retarded) fields into self
parts (half sum of retarded and advanced fields) and so-called “radiative”
parts* (half difference of retarded and advanced fields) to the sub-atomic
fields. This leads to a corresponding splitting of the electromagnetic force
density, acting upon the atom, into two parts. In section 2 we shall prove
that the sub-atomic self-force density can be written as minus the di-
vergence of a symmetric four-tensor, which is zero outside the atomic
system. This tensor may be added to the sub-atomic material energy-
momentum tensor, and the sum may be interpreted as the total energy-
momentum tensor of the finite atomic system. With the help of the latter
tensor, we shall define in section 3 the atomic mass, intrinsic angular
momentum and centre of gravity, using Mgller’s theory?). Next, the in-
fluence of the remaining (“‘radiative’’) part of the field on the motion of this
centre of gravity and on the change of this intrinsic angular momentum is

t In the present chapter we shall always write shortly atoms instead of atoms (or
molecules), if this does not lead to ambiguity.

tt Systems with an energy-momentum tensor, which is zero outside a finite region
in space for arbitrary fixed times.

t For reasons, which will become clear below, the word “‘radiative’
chosen here, and we shall therefore avoid it as much as possible.

is not properly
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analysed. In this way the equation of motion and the intrinsic angular
momentum balance equation for classical radiating charged dipole atoms
are derived (in simplified form; see chapter 1I). These equations are an ex-
tension of the equations of motion, derived by Diract) for classical spinless
point electrons, and analogous to those obtained by Bhabha and Harish-
Chandra?) for point particles, possessing higher electric and magnetic
multipole moments. In contrast with the results obtained by those authors,
our results are, however, free from (self-energy) divergencies, since we have
used Moller’s theory?) as the starting point, which is a theory for extended
particles. Furthermore we neglect radiative effects due to the accelerations
of the centres of gravity of the atoms (“Bremsstrahlung”’).

The equations of motion and the intrinsic angular momentum balance
equation, derived in section 3 are used in section 4 in order to derive the
relativistic energy-momentum tensor for a system, consisting of a large
number of radiating dipole atoms. In contrast with the atomic energy-
momentum tensors in the previous chapters (I-III), the one obtained
here is no longer symmetrical, as this need not be the case for non-closed
systems$).

For simplicity’s sake we have treated only the case for electric and magnetic
dipole atoms, neglecting electric quadrupole moments. Using the results
obtained in chapter III, we could, however, generalize the theory of
the present chapter to include also atomic electric quadrupole moments.
This will be indicated at the end of this chapter (section 5).

§ 2. Modified theory of Moller. We consider a classical radiating atomic
system, moving in an external electromagnetic field. Since this system may
not be considered as finite in the sense that its total (sub-atomic) energy-
momentum tensor vanishes sufficiently rapidlyt outside the system for
arbitrary times, we cannot apply Mgller’s theory in the form as presented
in ref. 2. We shall therefore have to modify that theory, in order to apply it
to the case of radiating atoms.

We shall use Dirac’s covariant definition®) of the self part and the
“radiation’ part of a retarded field. The self part is defined as half the sum
of the retarded and the advanced electromagnetic field, produced by the
(atomic) system ¥:

B o «f L 3 .
/(x: )('1) ; .l!Jl :‘;t-l)('l) | (\tf(l\‘)("‘)}' (l)

t The field part of this tensor is proportional to R~2 (R is distance from the centre
of the atom) at large distances for the radiating atom, since it is a quadratic function
of the electric and magnetic fields [see e.g. formula (27) of ref. 9], which are themselves
proportional to R-1 at large distances. The surface integral over a large sphere in space
is therefore non-vanishing in this case, which makes impossible the application of
Moller’s theory?).

tt where not explained, we use the same notation and symbols as in I-111.
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whereas the ‘“‘radiation’’ part is taken as half the difference of these two
fieldst:

12,(%) = HlGw®) — fdan®}: (2)

These fields may be written in terms of the four-potentials A7 (x) and
A& (%)

[4,(%) = 9547, \(¥) — 0PAR, (%), (3)

with

oo
~

i%(x') 0f(x — x')2} AWy, (4)

and

oo

.
A (%) = - | i (x') A(x — x') A, (5)
4nc |
where
x0 — x'0
A(x — x') = o{(x — x')%} ]-ri) — ') (6)

and where ¢*(x) is the (sub-atomic) charge-current density four-vector, (for
derivation, see ¢.g. ref. 10). We shall, for the time being, make no assumptions
about the form of #%(x) 1, other than that it is zero outside a thin tube in
space-time (of the order of the atomic dimensions for arbitrary fixed time).

The force density of the electromagnetic field produced by the atom may
also be split into a “plus’ part

] 1 . L e, 5 ;
f) (%) = c 14 \(x) ia(x) c {0%A(x) — GPAT, (%)} 1p(%), (7)
and a “minus’’ part
-y i 3 ,
e s(x) = ; 13 (%) 1a(x) = = {0240 _\(x) — BPAX (%)} 1a(x). (8)

We first consider the expression (7). It follows from the law of conser-
vation of charge:

8%ia(x) = 0, (9)

t Dirac’s definition of the “radiation’’ part is in fact two times the right-hand side
of eq. (2). As it will appear below, however, both definitions do not lead in the equations
of motion merely to terms, describing the damping by radiation, i.e. transport of
electromagnetic momentum and energy at very large distances from the atoms. We
shall therefore avoid the use of the word “‘radiation' in connection with the fields
128 \(x) or 2/ ().

1 We may have a discrete as well as a continuous charge-current distribution in space.
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that:
1

1 : 2
f&(®) i opt A (i (x) 1P(x)§ {04

5 (%)} 28(x). (10)
The first term at the right-hand side of this equation has the form of the
divergence of a tensor, which vanishes outside the tube in space-time
within which #%(x) % 0, and we shall now prove, using the fact that the
d-function in eq. (4) is invariant for the interchange of the variables x and ',
that also the last term of eq. (10) can be written in that form. Substituting
eq. (4) into the last term of eq. (10), we get:

oo

] o \ 4 S
{024, (%)} 15(%) = —; ‘ ip(x) 18(x") (x> — x'2) O'{(x — x")2} d@)x’
c 2mc? |
oo o0
1 _ A
- 2 = 1[3(_\'") “i(‘\,/)('\“n x__ '1_: ‘) ()r: (-\,u . ‘\‘:):: d(‘“('\'"i_‘-} (1(‘“,\ ’ (](’U.\ u’
TeCe

” (11)

with: &'(y) = dé(y)/dy. Interchanging the variables x* and x" in the last
member of (11), we find:

{024 (%) 18lx) = — —— J J 1p(x") 18(x") (x¥"* — x'%)
c 27c?
X 0'{(x" — x')2} 6B (x" — x) dDx’ dWx", (12)

where we have used the above-mentioned property of the d-function ap-
pearing in (4). If we now take half the sum of the expressions (11) and (12),
we obtain:

l = 2 oy ] . "o ’ " ’
—{024{,)(*)} 15(x) = — ”’uu ) #8(x’) (2" — %'%)
C 4mc® | |
¢ 8{(x" — 2)2HOW (2" — x) — W (' — )} AWy dW2”, (13)

and it is easily seen that the right-hand side of this equation is the divergence
of a tensor, if we develop the function 6 (x" — x) into a Taylor series around
the point x":




o0 0O

; JJ( VA — 2’4 .. (273 — x'24) Tp(x") 18(x)

¢ (2" — x'a) 3{(x" — )2} OP(x" — 7) d@yx’ d@x"

1 00 1
RGN bl e R [ s
4 M |:,. 0 (n+1)! Aa """J(

(xh — 2’4 ... (FAees — x"Aens) dp(x) 18(x") O{(x — %)%} d('”.\"], (14)

where we have finally integrated over x”. Making the substitutions:
=P, Ay —>A, iy Apsr > Apand g >y in the last member of (14), we get:

I ‘ L, [ 1 .. .
fox A7, (%)} ip(x) = — = rﬁl 2 e - 03, <5 0,
C 4 n b :

(=]

-[(,\"'-. — x'A) ... (xR — x'A) 1y(x) 27(2)
(x% — x'%)(x8 — x'B) §'{(x — x')%} (l“”.\"], (15)

which is indeed the divergence of a four-tensor, vanishing outside the above-
mentioned tube in space-time.

Substituting this result into the right-hand side of eq. (10) and using eq.
(4), we find that the sub-atomic self-force density f&(x) can be written as
minus the diverence of a tensor 7'/¥(x):

[&)x) = — 8T (), (16)
with
T 5% =—— Jz‘(.\' ) 18(x) Of{(x — «)2} AWy’
4ec=
l < § **1 ;'; o 103 (,\';‘1 o= .\")'1) (.\')'n — .\";'n)
47mc? n=0 (n )% e 2
X iy(x) 1(x) (x% — x'0) (28 — 2'P) 6'{(x — #')?%} d@x’. (17)

Using this result, one could now write the sub-atomic energy-momentum

law:
A= ; A a8
1(\m)( ) ‘/(‘~ )(-l) ’ /(‘ )(-\) 1 /\('”r (18)
where T84 (x) is the sub-atomic material energy-momentum tensor and f*(x)

is the force density of the external electromagnetic field, in the following
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form:

a{TP0() + T(H()} = f)%) + F*(x), (19)
and define
T'a8(x) = Tg,(%) + T(5() (20)

as the total sub-atomic energy-momentum tensor. This tensor would,
however, not be symmetric, which is rather inconvenient, since then the
energy-momentum law does not directly imply the angular momentum
balance in the form of eq. (2) of chapter I. We therefore try to add a diver-
gence-free tensor B*8(x) to T'*(x), such that

Tab(x) = T'*B(x) + B*B(x) (21)

is symmetric. This tensor 7%#(x) can then be interpreted as the sub-atomic
energy-momentum tensor, and used for the derivation of the equations of
motion of the atoms.

Since the tensor T0%,(x) will be supposed symmetric, we have in fact to
symmetrize only the tensor 7' /¥(x). We shall use a method analogous to
that of chapters I and III for the symmetrization of the atomic energy-
momentum tensors. As:

T (%) = T($(*) + Beb(x) = T({5(x) + Boa(x), (22)
we find for the antisymmetric part of B*8(x), using (17):

B(x) = } {B*8(x) — B*(x)}

(a)
1 , . : .
— J{I‘(.t’l) iB(x) — 18(x') 1%(x)} Of(x — x7)2} d@x'. (23)
Tc2
The tensor B#*#(x) is therefore of the form:
'3 1 . v AP G
Bx8(x) = B¥(x) — — | {i*(x) i8(x) — 18(x") 1%(x)]
8mc?
X of(x — x')2} d@x’, (24)
where B¥|(x) is the symmetric part of the tensor B*#(x). Since:
opB*8(x) = 0O, (25)

our problem is to find a symmetric tensor B(x), of which the divergence
is given by:

| ) i el L,
me( Gi=s - Cp [{1‘(.\") 1B(x) — 18(x") 1%(x)}
8mc? A
% 0f{(x — x’)2} d@y’, (26)
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Introducing again the function 6 (x” — «x) in the right-hand side of (26),
we get:

oo oo

1 . , S N
o8B (x) v f,,J[:I‘(.\') 1B(x") — 18(x") 1%(x")}
7oC2
X of(x" — x')2} 6W (x” x) d@® x' d@ x”

oo co
-

‘ (ix(x) 18(x") 6{(x" — x")2}

J (272 — x'4) ... (2" — x'2) 1%(x7) 1A (2")
< (2" — x'7) 6{(x" — «')2} 0W) (x” x) d@ x' d@ \]

] s 1
~ ¥ A o
e 5 Oy ~ o7 Oay e G,
87‘.01 n=1_0 ()1 T l)' i

oo

J (x4 — x'4) ... (x4 — x'4) 1%(x) 18(x)

(27 — x7) 8{(x — x')2} A9 .\":l. (27)

where we have used a procedure analogous to that in eqs. (11)-(15). If we
now interchange the indices # and y in the last member of (27), we find that:

0pB (%) 5 : ¢ 0
0ph ()| X 5 080y| 4 Oay ==+ O3,
8mc2 a=0 (0 + 1)! 4

=

X J‘('l.)‘] x4 L. (%A — x4 % (x) (kB — x'8) i¥(x)

Cof(x — x')3) d“’.\"]

1 L% 1
= :,,;.,[ Y e s ?;.n[(.z"-. — h) .. (A — xR
we= n=\_ T .

X {ix(x")(¥B—x'B) + iB(x')(x*—x'%)} 1¥(x) O{(x—x")2} d“kt’jl, (28)

where in the last member we have added the integral:




(XA — XA (xx — x'%) 18(x") 27(x) Of(x — x7)2} (l(“.\‘], (29)

which is proved to be zero in appendix 1.
Since the right-hand side of (28) is the divergence of a symmmetric tensor,

we may put:

1 as 1 K
B¥ (%)= — —— 0y X 0r o 1 (x2 —x'2) ... (2 — x'43)
(%) 8rc2 " |n=o0 (n 4+ 1)! 93 i) / - g

X {13(x') (x8 — x'B) + 18(x") (x> — x'%)} 17(x) O{(x—x')2} (]"“.\":|. (30)

We then find with (24) for B*#(x):

1 : . ; L
e e j:vm iB(x) — iB(x') i3(x)} 8{(x — ¥)2} AW’

oo

o L szt o 1 srmmetviftage of ply Gioamis ei
T BreE Cy ...“—(” 1)l Oy, »oo Oy | (X4 — 2°4) ... (BAs — %)
1 % n 1 ;

X {i%(x') (28 — x'8) + 1P(x') (x> —2'%)} 17 (x) Of(x—x")2} <l‘“,\":|. (31)

If this divergence-free tensor is added to the tensor 7(¥(x), eq. (17), we
finally obtain the tensor T (), as follows from eq. (22):

T(x) J fix(x') 18(x) -+ 18(x") 1%(x)} O{(x v')2} d) x
8mnc
SRS e
P ( 4 X" X %) X%n — X %n
4.".(‘.“ n=>0 (II 1)' 2A g 3 ( )
X iy(x) 17(x') (2% — x'%)(xB — x'8) §'{(x — «')%} dW¥
e T 1 ¥ AP y - 2
—_ = Cy :‘ Cy, »++ Gy (l')'l —_—X )'I) ave (.Y"n — X %a)
87:(':‘ n=0 (” : I)' . "

(i3 (x") (28 — x'B) + 1B(x")(x* — x'%)}17(x) O{ (¥ — .\’)Zt(l“\\"]. (32)

The symmetric tensor:

Tab(x) = Thy(x) + T () (33)
[cf. eqgs. (29), (21) and (22)] will now be interpreted as the total sub-atomic
energy-momentum tensor, and the energy-momentum law (19) takes the
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form:

0pT*B(x) = [* (%) + f*(x). (34)

This equation can then be used as the starting point for the derivation of the
equation of motion and the intrinsic angular momentum balance equation
of a radiating atom (cf. refs. 1 and 2). It should be stressed once more, that
the results obtained in this section are independent of the special form of the
sub-atomic charge-current density.

§ 3. Equations of motion. The atomic mass is defined by:
oo

1% U ' " ; -

M?*(7) : J TaB(x) Ug(r) Ua(r) ()[ - —{x7 — X7¥(7)} U ;,(1)] d®z, (35)
¢ '

We use the same definition and notation here as in chapter I. The in-
trinsic angular momentum tensor is given by [¢f. (1.8)]:

o0

1
Qab(r) = — [ [{x* — Xo(r)} To7(x) — {28 — XB(z)} T (x)]

c?

X Uylr) o[~ ' o — Xo()) (70(,->] Ay (36)
2

and the (pseudo) centre of gravity X#(r) of the atom is defined by the
relation [¢f. (I.11)]:

Qa8 = 0. (37)

In appendix II we shall prove that the mass, the intrinsic angular mo-
mentum and the centre of gravity of the atom, found with the tensor (33),
if we retain only terms up to order ¢~2 (¢ = velocity of light), are of the
usual forms obtained in this approximation [see also the results of de Groot
and Suttorp?d)]. Furthermore it appears that higher order corrections (due
to the retardation of the self-force) are in general very small, so that the
tensor (33) may indeed be considered as a correct expression for the energy-
momentum tensor on the sub-atomic level.

We now turn to the first term of the right-hand side of eq. (34), i.¢. to the
expression for the force density of the minus part of the field produced by the
atom. This term is given by eq. (8), together with egs. (5) and (6):

Gl 5 =
feoy(x) = = {(“‘.-l{'_)(.r) — 0PAY (%)} 1p(x). (38)

From now on we shall only consider the case of charged electric and
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magnetic dipole point atoms. We then have for i*(x) [see (I.16) and (1.171]:

1%(x) = ce [ U%(r) 6@ {X(7) — x}dr

+ ¢ [ uxb(7) 050 {X (v) — a} dr. (39)

If we substitute eq. (39) with x" instead of x into eq. (5) and perform (partial)
integrations with respect to x, we get the following expression for the
potential A7 ,(x) of a charged dipole point atom:
€ r -, 9 - r
AL () A[{x — X(7)}*] s{x® — XO(7)} U(7) dr
47

o0

o0

j [{x — X(=)}2] sfa® — XO(x)} u28(r) x5 — Xp(r)}dr, (40)

-~ 00

2m

where s{x0 — X0(7)} = (x0 — XO(7))/[x® — XO(7)|. Terms with derivatives
of the sign-function s are zero. This is best proved by calculating the potential
A¥ \(x) first for an extended dipole atom, (instead of the second integral
of (39) one then has cépm*8(x), where m# is non-singular). In this way one
easily finds, that the term with the derivative of the function s is equal to
zero. One can then finally consider the limiting case of point dipole atoms.
By differentiation of (40) we get for the minus field tensor:

oo

122 (%) ".J"'i-:x - X()}2) s{x® — XO(r)}

'

— 00

X [{xx — Xo(7)} Ub(r) — {xP — X6A(7)} Us(7)] d=r

: ;

— T':i IO'_{.\‘ — X(7)}?] s{a0 — XO(7)} u2éb(7) dr

-4 . v)"J_r{‘l' - X(7)}2] s{x0 — XO(7)}[{x* — Xa(7)} HP?(7)

— {xB — XB(7)} u(7)] {2y — X5(7)} dr. (41)

With eq. (41) for the field tensor /¥ (x) and eq. (39) for the sub-atomic
charge-current density #%(x) substituted into eq. (38), we obtain the force
density f& ,(x) of the minus part of the field, produced by the atom.

t Formulae of chapters I, I1 and 1T will be denoted by (I.1), (TL.1), (ITL.1), efe.
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We can now derive the equation of motion and the intrinsic angular
momentum balance equation for radiating charged dipole atoms by the same
method asin I, sections 2 and 3, starting with eq. (34). Since later on the minus
part of the electromagnetic field, produced by an atom, will appear to be
non-singular at the position of this atom (c¢f. also ref. 7), it may be treated
in the same way as the external part of the electromagnetic field. We there-
fore obtain the following result for the equation of motion [¢f. (1.25A)]:

d : d X ey,
e Aeit) T dr (226U) = I}" WUs — (/i) pa?
haad Sl ¢ 1 d :
ey {(/1' Ml?d =5 /:l y™) l By 1 T - ( fel ﬁ/i Jl/ s)
¢z dr ¢t dr

{7 uyP — fBYu,%) Ugl

1
| ["/w’l'ﬁ — (@4f%) pa? — —
2 dr

1 vd
= (UU gfBrp,0Usy) |, (42A)
¢ dr
where [, = [ {X(7)} and f* = f*#{X(7)}, and for the intrinsic angular
momentum balance equation we get [¢f. (1.25B)1:

cA%ABLQE — A% NB(f st — [ uy®)
+ A% AP (fe5uyt — [fFruyf), (42B)

where:

Ual,. (43)

/1“5 . oxﬂ ﬁ' =

o2
Except for the terms, containing the tensor /¥, the eqs. (42) are of exactly
the same form as the eqs. (1.25). The terms containing f, describe the
“radiative’” effects.

Let us first investigate, whether the eqs. (42) can be simplified in an
analogous way as was done in chapter 11 with the eqs. (I1.7). We note that
the field /3, and its derivatives have finite values on the world line of the
representative point of the atom, i.e. its centre of gravity (¢f. also ref. 7).
The main point in the simplification of the equations of motion in chapter I1
was the validity of the strong inequality [cf. (I1.16)]:

»

Oap
M*

AR N8|, (44)

and one easily finds, going through the details of the derivation, that also
in the present case this inequality simplifies the eqs. (42). But there was a
second point in the iteration procedure of II, namely that we neglected
terms of third and higher order in the internal variables. E.g. we neglected
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terms of the type (I1.18). In the present case these terms become:

e I
Py i S, e __)\;} - BNy A o~ ¥ ”0 /
2 dr { a2 (@l ya” + Pofa”) py } (45A)
and:
1
— sy (U=QPY — UPQ®)(Bef -y + 2ely’) prot. (45B)
M c=

As the derivatives of the field tensor /&, remain finite on the world line of
the atom, producing this field, terms of the forms (45A) and (45B) are again
of the third and fourth order and can therefore also be dropped from the
equations of motion and the angular momentum equation. We may,
therefore, conclude that eqs. (42) can be written in the following simplified
forms [¢f. (11.17)]:

d .
¢ (M*U#%)
dr
T ST N ATTIIR Sl ). 5
= | ¢ft2\Up — (04/(Z)) us? — —; Ly — [ 5py®) U g}
¢ dr
- d d s
=== (U2U (" yuy°U o) ef*PU s — (0yf*P) pug”
¢t dr
llsd L T Was! :
s {(F*7uyf — [BYuy™) Ul 4 (UaUpffru,2Uy) |, (46A)
c? dr ¢4 dr
and:
(‘_(:)\ﬁ —— 1 \g,'lﬂ:(/’::‘ ,‘ll-;n: /E" "ll-,:’) ) g I‘(. 1"3:(/{.’71?: e j::"‘ll;v{). (46[;)

For further evaluation of the “radiative” contributions to the equations
of motion we have to calculate formula (41) for the field tensor /(“", at

x = X(r):

AR ) = | () — X () s(X0() — X))
X [{X*(r) — Xa(r')} UB(r') — {X8(7) X8 (")} U= ()] d+'
1

— [6'_:.\'(7) - X(7')}2] s{X9(7) — XO(z')} uaé (') dr’

1
J 8"[{X(7) — X (7)}2] s{X0 (v) — X0 (7")}

X [{X%(r) — X% (o)} ub? (') — {XP (7) — XP(z')} u2¥(7")]
{Xy(r)— Xyp(')} dr’, (47A)




and alsoits derivative at that point:
+ 00

X ()} = J ¥ (X (r) — X (r')}2) (X0 (r)— XO(+")]
¢ [0,2UB(7") — 6,8U%(7")] d=’

oo

J O"H{X(r) — X(')}2] s{X%r) — X))

>

b 4

< [{X¥(r)— Xa(r) U (7" ) —{ XP(r) = XA(r") JU (") { X (r)— X (2 ") }d7’

0o
~

'0”1{.\'(7) — X (7)}2] S{XO(r) — XO(#')} uoB(r'}{X (1) — X (") }d7’

o
- 00

1
"1)"' {X (1) — X(7)}2]s{XO(7) — XO(=')}

{X*(r) — X(z')}uby(r') — {XB(7) — XB(z")} u2y(")] A7’

+ 00

1
, [ OIX (7) — X()}2] s(XO(r) — XO(+')
X [0y%ufo(7') 0Puxo(7") |1 X s(7) Xs(7")} dr’

o
e ‘()W:-:.\-(T) — X (7))}2] s{ X0 (7) .\'()(T’):’L:‘\"(T) - .\"(T')LU‘"’(T')

— {X8(7) — XB(z")} u*o(7") ] {X o(7) — Xo(r"YHXy(r) — Xy(')} d7’,
(47B)

where d,* is the four-dimensional Kronecker symbol. (Note that terms with
derivatives of s always disappear.)

A method for the rather lengthy and tedious calculationst of the ex-
pressions (47A) and (47B) is given in appendix III. We shall note here only
some general features of the calculations. We have to evaluate terms [call
them G (7)] of the form:

00

GM(r) = [ g(r', ) SM{X (r) — X (+)12] s{XO(r) — XO(z')} d7’, (48)

o0

t The calculations of (47B) are shortened by the fact that Br/'(\i[f, only appears con-
tracted twice with the antisymmetric tensor ug” in the equation of motion, so that we
do not have to calculate symmetric terms in f and y in the expressions (47B).




where 0™ (y) = d®i(y)/dy* (n = 1, 2, ...) and g(’, ) may be a function of
U*(r'), p*8(7') and {X*(r) — X*(")}. First we calculate the expression:

s{x0 — X0(z')} d7’ (49)

for a nearby point x [of X(7)], which may conveniently be chosen such that:

{x* — X*(1)} Ua(r) = 0. (50)

Denoting the small separation between x and X(7) in the momentary rest
frame of the atom by & (> 0), formula (49) can be written as:

oo
G(7; ¢) j;{(r', 7) 0[{ X (7) — X (7")}2 + 2] s{X(7) — XO(7")} d7', (S1)
o
where we have neglected terms of higher order in &, which is immaterial,
since we shall finallv take the limit as ¢ tends to zero.
We now expand eq. (51) as a Taylor series with respect to the retardation
and advancement times o, obtained as the solutions of:

(X (r) — X ()12 + 2. .- 0 (e > 0), (52)

T TV o

where the minus and plus signs refer to the retarded and advanced solutions

respectivelyf. If we now invert ¢ as a function of & from eq. (52), and

substitute the result into the above-mentioned expansion of (51), we obtain

a power series in e. To find the required functions (48) we only have to

differentiate the latter power series with respect to ¢ a number of times, e.g.:
f-co

J g(r’, ) 0 [{X (1) — X(7')}2 + 2] s{XO(7) — XO(7')} d7’

-00

1 | n;o-o
<2f (u) J-‘“T’-ﬂo (X (r)— X (r') }2+£2] s{XO(r) — XO(r')} dr', (53)

and let € tend to zero at the end of the calculations, so that all terms of order
¢ and higher vanish and only those independent of ¢ remain in the final
results*. Various calculations are simplified by the special forms to be used
for the functions g(7’, 7). For details we refer to appendix I11.

t Note that ¢ may be different in value for both solutions.
# Note that the method of calculating the field quantities (47A) and (47B) by means
of the limiting process, described above, is only justified, since the fields /",“f ,(¥) and

&y [ (x) appear to be continuous functions of # not only outside, but also inside the
atoms, if they are considered as very small extended systems. We shall not prove these
properties here.
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Now if we make the assumption (cf. appendix I11), that all terms containing
derivatives of the atomic four-velocity with respect to r, are negligibly small
compared to the other terms in the equations, we get for the minus part of
the field tensor [¢f. (A.53)]:

£ X (7)) (54)

(n)
where the argument of the atomic variables is 7 and u*? = d?u*é(z)/d".
We therefore have, using the antisymmetry of p%8:

. 1 2¢ 3) )
€ l“ 1(~ L BT 47c [3(,,] ‘u\;l( f’]' (55)

In the same approximation we obtain [¢f. (A.54)]:

- 1 | @) ) 1 @
— (%ol =) po” 47 | 3cb 1 usyU? 3ch p>Ppugy UY

1 ) 2 (4)
TX 11 BY 11asn Tal] By o To )
3(4;( #rpye + — L U ppuP? payol (56)
With the last two formulae, we can write, again in the above approxi-
mation, the first two terms on the right-hand side of eq. (46A) in the
following form:

: , e o) 2e
efe2\Us — (2412 po” ; < s,
‘ 4 dr | 3t

(3) i @) (3)
g PRt 3c8 P8 pugy UV 3c6 Usp® g

(3) 1
- r‘(]}/l‘”/lun("’ e }'i \;x,',ﬁ‘/('-’,
¢8 ! 38 "

198, U

2
3¢h U P fiyp — c8 UaU pptP7jiyeU?
(

3¢
]

2 - el 2/ RN,
— fi*igy UY + ——- U%iiPVfiyp + UaU gjiP7fiye U |. (57)
4rc | 3cb 3ch c8

For the other terms at the right-hand side of (46A), containing the field
tensor /¥, we obtain with eq. (54):

l d x/? fy \TT 1 (l cry r 4By =

(/(’ wy? — [ ™) Ugl + (“‘7 Ual [if(‘.),u','o( )

dr




2 (3) A 2 &
I»f 3¢6 w*puygUB — 3 WPuygUB
N | ;
= UaU gpP? 1 ":l, (58)

where we have used the antisymmetry of u*8.

Adding eqgs. (57) and (58) we obtain the sum of all terms depending on
("") at the right-hand side of eq. (46A), and denoting this sum by c¢F{* | we
get after partial differentiations of some terms the following result :

cFi_y=cF{ + ¢ G, (59)

where we have introduced F(y, and G ,:

o 1 2 o : gy Sk i .
Flay= ——| g A0pUY == UsiMlilys +—5- UsU gt jiysU° |,

3¢

(60A)
and

) 1 d 2e p 1 § 1 g
G, e p*yUy — T %8,y UV — 37 w*Biig, UV
P ce el ol

I ] 4 (3) 1 L sl Jard Mit) iy
{ —— Uubvyyp — — U iPPjiyp — UaU giB?fiys U0
7 3c7 )

4w cé
(60B)
We shall interpret I'}, as the radiation reaction four-force. As is shown in

appendix IV, this force can be related to the energy-momentum radiation
rate.

We finally turn to eq. (46B). The sum of the terms at the right-hand side
of this equation, containing the field tensor f*, will be denoted here by the
symbol co”, and becomes with eq. (54):

apf

‘ l :
> poxy : By &l T (57 3 By
coZy = (fiwur? — [ uy™) 4 o2 UaUe(f" v — [ 30°)
d

1 . .
+ —5 UPU(fZ b — [ r®) = cdEy + ¢ —— A%, (61)
c2 dr

where we have introduced 4, and A28;

i L[] 2 L ’ o)
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In appendix IV we have proved that the radiation rate of angular mo-
mentum is given by:

.\;’5 X3 | d'_’ { ] 2(, -
J(rad) — T ‘{( ) dr2 l A 363 “ b (63)

where the tensor @2 is defined by eqs. (A.77)-(A.79). If we now define the
tensors:

3 d? ] \ﬂl \
ad) Hei= dr2 | 4n 3¢3 i (¢
and

Aob AaB L d ! nil (64B)
K= " dr | 4x 33 '

we can rewrite eq. (61) as

, , d :

(.‘m"‘ff) = cdl + ¢ — A y (65)

dr

We then see that we may interpret the tensor dff, as the radiation reaction
torque acting on the atom.

From the eqs. (46A) and (46B), together with the results eqs. (59)-(65),
we shall derive in the next section the form of the atomic energy-momentum
tensor for a system of dipole atoms, which may radiate, in an analogous
way as this has been done in chapter I, section 4 for a non-radiating system.

§4. The atomic energy-momentum tensor. Analogously as in chapter I,
section 4 we now consider a system consisting of N point atoms, numbered
by the index . All atomic quantities and variables belonging to the &t® atom
will be labeled again by the index k. The rest mass of the kth atom will be
denoted by my, (instead of M*) and its centre of gravity by R, (instead of
X#) . If there are external fields acting from outside the system, the (external)
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field f#8 acting upon atom k consists of the following parts:

[*(Ruy) = X [H(Rw) + FERm)- (66)

i I\'I‘

The first term on the right-hand side of (66) is the sum of the partial (re-
tarded) electromagnetic fields /3] due to the other atoms / (34k) and the
last term is the external field from outside the system. With these notations
and the abbreviations (60), (62) and (64), the equations of motion (46A)

becomes:
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and the intrinsic angular momentum balance equation (46B) becomes:
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Using the same method and definitions as in chapter I, section 4 (cf. ref. 1)
we obtain, after multiplication of eqs. (67A) and (67B) by the four-di-
mensional -function 8{Ru(rx) — R}, integration over 7 and summation
over k&, the following results:
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(69A)

(69B)

(69C)

(69D)

with F&u @a Goeya and A, given by eqgs. (60), (62) and (64).
Egs. (68) together with the definitions (69) are already the atomic energy-
s ] 5.
momentum law and the atomic angular momentum balance of the system,

but we shall still transform these equations, in order to make them more

transparent. First we notice that, since according to (60B), G{_,, can be

written as:
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we can write £, eq. (69C), in the approximation U» ~ 0, as:
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It follows from (60B) and (70), that the tensor 174, is symmetric. For the
tensor {5, we write:

»ap a3 (s)aft 3 (a)afl
1225 = — O T Gt — O 2 %S =i (72)
k k
B b : 4
where s®%, — s o + s{% ) is the symmetric part of $& vz -and
3 4 : : . : \
s = Mst ) — S(2)w) its antisymmetric part. We now add a divergence-

free tensor to £, such that the sum is a symmetric tensor 1%

xf cxfl 4 f (u)l Ja)ay (8o | o
el L2+ Oy B A—UGS () — WS+ WSt = ti=n- (73)
k
We shall also add the divergence-free tensor:
p f Ay 3 aay ¥ jop )
$0y X A—uiA i — WaA=ym T WA= (74)
k
to (73), and define the final “minus™ tensor #7,
of xf *of)
Wy =Hon + 4=
vy & 2Py #oqo y o8 \ \
+ 30y A —u35A ) — WA T U= (75)
,(

The explicit form of this tensor can be obtained from the expressions
given above. From (71), (73) and (75) we have:

~ gaf A gwof B B ~ \ v sap
0pt®, = 0ptt™, and KL, — U2, = Oy T WA= e (76)
%

Just as in chapters I and II, we also define a new material tensor £3,:

v *xf 19 f B xay __ 7 g*ol)
tom) /(m) +30y 2 (M (I.)’T(I) T Ue)9 (k) Uir)T (k) §» (77)
*

for which it follows that:
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If we now define the total atomic energy-momentum tensor as

{xB [w | xff 4 /(\.‘)’ (79)

(m) () 1

we get with (76), instead of eqgs. (68A) and (68B)

Opl*h () j LE S () VIR (T) — R} drx) (80A)
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Eq. (80A) is the energy-momentum law for a system consisting of N radiating
atoms. The right-hand side of this equation describes the radiation reaction
on this system. The atomic energy-momentum tensor ¢# for such a system
is no longer symmetric as this was the case for non-radiating atoms (see I,
I1 and III). This asymmetry follows immediately from eq. (80B), which
is equivalent with the intrinsic atomic angular momentum balance in the
case one does not neglect the reaction of the radiation. Equations (80A) and
(80B) may be considered as the direct generalizations of equation (I.43)
for the symmetric tensor 1 = 12, + 3, eqs. (1.36) and (11.25).

§5. Concluding remark. The present treatment could be extended to the
case that the atoms possess, in addition to their electric and magnetic dipole
moments, also an electric quadrupole moment. The starting point would
then be the equations of motion as derived in chapter III, eqs. (19A) and
(19B), supplemented with analogous terms in f¢? . Then the same procedure
as in appendix I1I could be applied. One would now have to calculate not
only the tensor /¥, and its first derivative, but also the second, and one
should also take into account the influence of the tensor y*#7 (see chapter I11)
on the results. We do not want to go into the details of these very compli-
cated calculations here.

APPENDIX I

Proof that expression (29) is zero. We write for the expression (29):

oo oo
1 - S i.; ] o~ ~ " M2 A F 2
= Bgt Gp0Oy = (;} Y 0y, -+ 0, (x"4 — x'4) ... (274 — 274)
= n 2 = :

X (x"a—x'%)iB(x") 17(x") O{(x" —x")2} 6 (x" —x) D & d“’.\'”:l (A.1)

and make a Taylor series expansion of the four-dimensional delta function
0@ (x” — x) around the point (x' + x”)/2. This gives for (A.1):

1 vl s 1 —1)m
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("M — x°M) ... (2" — x'4) (2" — x'0) iB(x) TV(x")

x4+ &
8{(x" ,\")'-’;4)(-“( > _\->d(»h.\-'(lvn,r“]. (A.2)

Now we know that

P 1 (—1)m p+l 1 (—1)m (,1)11-1
m=0 (p+1—m)! 2mm! m=0 (p+1—m)! 2mm! - (p+ 1)! 2941

BT e (= hPH
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and this is zero for odd p. In the series in the last member of eq. (A.2) we
are therefore only left with terms with even powers in p, which contain an
odd number of factors (x"# — x'4). If we now interchange the integration
variables ¥’ and x” in the last member of (A.2), and also the dummy indices
p and y, the only effect will be a change of sign (because of the odd number
of above mentioned factors) and this proves that (A.2), and therefore the
expression (29) is zero.

APPENDIX II

The mass, centre of gravity and intrinsic angular momentum. We shall
show that the mass, centre of gravity and intrinsic angular momentum of
an atom, found with the sub-atomic energy-momentum tensor

Tap — Tob

o T Tisn
eq. (33), and calculated in the approximation ¢~2 (¢ = velocity of light),
are of the usual forms obtained in the literature in this approximation. We
shall be concerned here only with the contributions of T to these quanti-
ties, since those of the material tensor T(y, are well known and need no
further discussion.

The mass-contribution, due to this tensor 7%/, eq. (32), is given by

Il et 1 -
“[(.‘)(\T’] o J '/"\" (%) (',1(7) U a(7) ,)[ 2 fx ‘\'7'(7): [ ;,(T)‘J d@ x,

(A.4)



as follows from eq. (35). Substituting (32) into (A.4), we get:
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=

In an analogous way as we have proved in appendix I, that the expression
(29) was zero, one can now prove that the last sum of (A.5) is zero. (This
proof will be omitted here.)

The other integrals in (A.5) will be calculated in the momentary rest
system (m.r.s.) of the reference point. First we rewrite the first sum at the
right-hand side of (A.5) in the following form:

I - ; l jJ‘f,. o O [(3% — x'4) . (R — a'Aa)
8rcb w=0 (1 4 1)! X
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\0[—-i{x“ .Vﬂﬂ:rurﬁ(unxdurv, (A.6)
using:
(28 — x'8) 8'{(x — x')2} 108 o0f(x — x')2}. (A.7)

From (A.S) and (A.6) we obtain in the m.r.s. (U = ¢; U1 /2 = U3 = 0):
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X (ct — ct’) ¥ o{—(ct — ct')2 4 (x — «')2} dD® &’ det’ dP)x, (A.8)
where p® is the sub-atomic charge density in the m.r.s. Quantities in the
m.r.s. are indicated by the symbol (0). It is easily seen that the terms with
i = 1,2, 31in (A.6) disappear in the m.r.s., so that one is left only with time
derivatives in the second integral of (A.8).

If the first triple integral of (A.8) is integrated over ct’, we get:
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which can be written as a power series in [ — &'| by expansion of
pO(x', t F |& — &'|[fc)

around ¢. To order ¢~2 we get from (A.9):
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For the second integral of (A.8) we can write:
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T'he first two sums on the right-hand side of this equation give together:

{ Cnpipve .
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which is equal to:
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where i is the sub-atomic current density in the m.r.s. Up to order ¢—2
we have from (A.13):

L[ [ pO(x, 1) pO(s', ¢
LR ®9p0W.) 4@y g, (A.14)
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The last sum at the right hand side of eq. (A.11) can be integrated for ¢’ and
gives:
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which is negligible, if we consider only contributions to the mass of order
-2, From (A.8), (A.10), (A.14) and (A.15) we get to order ¢—2:
o oo
" P(()) t [ p(())( ['
- &'

M 1) (1) dB®y" d@y, (A.16)
This is the well known result for the mass-correction, due to the electro-
magnetic self-forces on extended charges, calculated to order ¢=2 (see e.g.
refs. 5 and 11). We could, of course, also calculate higher corrections to M.
than of order ¢—2. However, since for atoms the electromagnetic mass-
correction (A.16) is already very small, compared to the mechanical mass,
it is of not much use to evaluate such higher order contributions.
The pseudo centres of gravity of the atom are defined by the relation:

QU5 = 0, (A.17)

where Q28 is given by eq. (36), (see chapters I and II). In the m.r.s. we get
from (A.17):

QK0O) (¢) QRO 4 _(_){”“"(/; 0: (& 1238} (A.18)
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Qi (b)) = xk — XEO )] TN (%, t) d®x, (A.19)
7
and:
()}.n(tl) ] . Tk 1 7 00(0) ‘ / \
QN = [k — XKEO@)] TN (%, 1) dBlx. (A.20)
C

From (A.18)-(A.20) we get for the equation of the (pseudo) centres of
gravity in the m.r.s.
j' ‘1”““”(3 /) | rlﬂln.ll‘:l)(x, [): (l(;;)x

(m)

XO () (A.21)

Fi[w)m) %, t) + 'I":”,",'”(x. t)} d®x

(m)

The contribution of 7Y in the denominator is of order ¢~2 compared
to that of 79" (which is of order ¢2) and is given by ¢? times the right-
hand side of eq. (A.16). We cannot, however, apply the result for M (4
directly t» 70°(" in the numerator, since we have integrated over ¥ in the
calculations for the mass. But we can calculate 77! directly from eq. (32)
We have done this. To the required order the result is:

o0

1 O (x. t) pO) (&', ¢
'1':""(;')(.\', 7 j PO, 1) p ’( ) d® s’ (A.22)
8x ¥ —

[f we compare this result with the formula for the centre of gravity given
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e.g. in ref. 11 in the same approximation with the help of the Darwin
Lagrangian, we find agreement, except for the fact that all quantities in our
formulae have to be considered in the m.r.s., whereas the formulae given in
ref. 11 are supposed to be valid in an ;n‘bitrury frame, which is, however, only
allowed within the approximations made above.

We shall now calculate the contribution of T3¢, to the space-space part
of 2%, eq. (36). In the m.1.s. this contribution is given by:

[ f
QRO {[xk — XkO()] TV (%, 2)
:
xl — X0 (t)] TH O, £)} d® . (A.23)

Because 1%, is of order ¢, as can casily be seen from eq. (11.13), we need

T only to order ¢-1. Starting from cq. (32), we get, after a rather lengthy
calculation, the following results in the m.r.s.:
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which do not contribute to eq. (A.23). Substituting (A.24) into (A.23) we get:
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By interchanging the variables ¥ and &’ and using the property:
[x'k — XFEO({)](x? — xT) — (Lk)

[x%k 4+ (x'k — xk) — XFO()](xt — x'T1) — (IR)

=[xk — XEO(f)] (2 — x'1) — (IF), (A.27)
we can rewrite the second double integral at the rigth-hand side of eq. (A.26)
as:
I " p O (x, £) iO(x", 1)« (¥ — &)
8nc? ) | x— &'|3
X {[xk — XEO(1)](xt — x1) — (lk)} dCI&" dG)x. (A.28)

The last term at the right-hand side of eq. (A.26) is zero, because the ex-
pression changes sign if we interchange ¥ and &” and use also (A.27).
If we introduce the tensor:

; (¥ — &) (x — &) 2
Tx — &') =U+ : (A.29)
x — ¥'|2
where U is the 3-dimensional unit tensor, then eq. (A.26) can be written in

the form:
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1 P 0)(x, ¢
2650 Brc? J J pr ( ,.,) {[wk — XkO)(¢)
(1O (" #)«T(x )| — (lk)} d®x" d®y, (A.30)

which is equivalent to the result obtained by de Groot and Suttorp [see
ref. 5, eq. (I1.13)], the only difference being that we have arbitrary charge and
current distributions, which may be continuous or may consist of points
particles, subject only to the requirement that the distribution has a finite
extension in space for arbitrary fixed time.

APPENDIX II1

A method for calculating the “minus” field terms (47A) and (47B). In general
we have to calculate functions of the form (¢f. pgs. 61-62) *:

G (7; &) :f;'(‘r') oM {h(r')} s{X0r) — XO(7")} d7’,
(== 0, 1,25 (A.31)

t We shall write shortly g(+') instead of g(7/, 7). [see eq. (48)]. We shall also omit the
index (n) for = 0 in order to avoid confusion with the symbol (0) for quantities
in the m.r.s. (¢f. apps. 11 and IV). As in the main text we also use here n-dashes instead
of the number » in the expression 8™ {A(7)}, e.g. 61 = &', ete.
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where we define:

h(7") X(7) — X(7]% + &3, (e > 0), (A.32)
and the sign-function s = -1 when the argument is positive and s = —1

when the argument is negative. We can expand the retarded or advanced
solution of eq. (A.32) in powers of the retardation and advancement time
o respectively; o is taken positive, but may have different values for the
retarded and advanced solutions. We get

03‘(;]14

) s —=0=2, —— on[hm(r")],,
n=1 n
! d?2h(r") :
him (') : : (A.33)
dr'n

Eq. (A.33) constitutes, together with (A.32), a relation between ¢ and &. The
upper sign indicates the retarded solution and the lower sign the advanced.
We shall use the following notations for the scalar product of two four-
vectors U* and V'#:
U(1) Val7) = (UV) and Us(7) Ualr) = (U)2 (A.34)
For the four-velocity we have the relations

(U)2 c2; (UU) = 0; (UU) 4 (U)2 = 0, etc. (A.35)

By differentiating relation (A.35) a number of times we can obtain other
relations between the derivatives of the four-velocity. From (A.32) and
(A.35) we get for A™(7'):

(A(7") r=r = &2; [AD(7"))r'=¢ 0:

@ (1) prmr = —2¢2, [h® (7)) ]r'=z = O,
(A (1) ]pr e 2U)2, [A® (') ]grer = —10(UU),
o . (3)
h® (7)) |y = —16(U)2 — 18(U U), (A36)

(where instead of n-dots we put the number (n) above U for n > 3).
From (A.33) and (A.36) it follows that:

(3
('-)__, (('-(.‘ ("v : {‘.l' 5 z
o2 ( o — ) a9 ( A } \ ) ab : ; (A.37)
12¢2 12¢2 45¢2 40c? c
[t turns out that in all cases to be considered here, ¢ will be required to
order &5, so that eq. (A.37) is sufficient. But the procedure can be applied

to any order. Eq. (37) can now be solved for ¢ as a function of e by successive
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iterations, yielding the following result:

e (U)2 [e\3 _ (UU) (&2
O = — I S
c 24c2 ((‘ 24c% \ ¢

: 2 3)
L[ O2 (U ©O)T[e
7 — . ; A.38)
2 I: ( 24c2 > 45¢2 40c2 (() ; )

We take # = 0 in (A.31) and integrate the expression:

o0
~

G(r;é) jg(r’) 8{h(r')} s{X0(r) — XO(7')} dr’

-

o(7") g(") 5
[_st) , : : (A.39)
k /I”’(\T) Jr'=r-0 /1‘”(:') T'=T+0

Each member of the right-hand side of this equation can now be expanded
in a power series of ¢. In the numerator we shall do this to order ¢? and in
the denominator to order o¢ (p and ¢ are to be determined below):

glr') = 2 (FN
iy 3\ k[olk)(+")],,
[/1(1)(7") J b (/,“., B AT ')

(F1)* :
BT () ree| (A.40)

with g (') = dkg(r’)/d+'¥ and for & = O we omit the index (k).

Since o is a power series of &, the right-hand side of eq. (A.40) can also be
considered as a function of e. Let m be the highest power of this function,
then it follows from (A.40), together with (A.36), that in general we must
take p = m + 1 and ¢ = m + 2, while ¢ must be calculated to order m -+ 2
in . Now the highest value of # in the function G(® () to be calculated is
n — 3. From the relation:

755 d \»
G (1) lim( : ) G(r; ¢), (A.41)
2¢e ‘

de

g ()

where the limit must be taken after the differentiation, it follows that
G(r; ¢e), eq. (A.39), as a series in powers of &£ must be calculated to order
m = 6 (in general m 2n). So we must take p 7 and g = 8.

If eq. (A.40) is calculated for these values of p and ¢, the result is

g() g g (U)2 g®
: = g o
[ | (7) ] o 2c%2¢ 2% [ 12¢4 4¢2 :l

I (U)2 B oo :
NI - o(3) | g(l) 4 (UU) g | o2
il FiolRs 12c8:¢ 4868 i)




g(d) ((",-_’ 5 ey
o L = ~_ g — (UU) gtv
[48(‘3 24c1 48¢4 ‘
o ( 6 (17)2 \2
5 { : (Y )l 3
2¢2 | 2c25! 6cz ] |
(1 e ,""(m ! (K g(3) i i o(2)
20851 = 7247 77 96e% T

_ g g 1(6) : (("): 21.
22 | 2¢25! 6c2 ) |
g [ hD 5(1"‘;!(('(,";1 ;

¥ > | O°
2c* ( 2c26! 72c4 j

| 2¢26! 12¢44 ! 12¢24! °®
g(2) f J1(6) (U)2 ;’l [ e® 5 h(D 5(("}:[("(")1
4¢2 | 225! ( 6c2 ) oy [2(—’ 1 2c26! 72¢¢ |

¢ [ h® (U2 a0 U2\ [ 5 > o 7 [
&= 32 A | i’ (l { )24 5
2¢2 l 2c%7 c46! 602 24,2 \ / s ¢

- [ e L ((.')2 g t 5((.'(.’) o(4)

2027 = 2046 48c14! °
< g® { J(6) A 7((»")-_’ 2 gc_{)»J’ h(D ; 5(U)2 (UU) l
" 20231 | 225! ( 602 >} T4 | 2c%! T 3044

e [ Ji(8) (U7)2 )(6) (U)2\3 BIAR .)1
e = na) 5| (UU)%
2¢2 | 2¢27! ci6! 6¢2 24¢2 |

g [ h® U2k S(UUYR®  5(UD) < (U)2 )’l] p

+ + _ J agP

S 2c2 | 228! ' 6c%6! 4c%6 ! 82\ 6c2
(A.42)
with g g (1) ]peer and AM = [AM(7')]=z; we omit the index for
n= Q.
For the function G (7) we need only the following casest:
G(r) = lim _‘ g(r’) o{h(z")} s{X%(7) XO0(z')} d=!, (A.43)
e\ (==}
G (7) = lim j.f\'(T') o'{h(7")} s{XO(7) X0+ dr’, (A.44)
g0 —oo :
G®@(7r) = lim g(7") 8"{h(7")} s{X0(7) X0(z")} d7', ([g() )=z 0)

£37, =0 (A.45)

t See footnote on pg. 76.




+-c0

[ g(7') 8" {h(=")} s{XO(7) — XO(=')} d7,

J 5

G®(7) = lim

»( ‘

([g(7") =2 gV (') ]rr=r g7 ) e 0). (A.46)

o

To obtain G(r) we need m = 0, so that o is required to second order in &.
From (A.38), (A.39) and (A.42) we then get

: 1 )
G(7) 2 gV (7') Jr'=r. (A.47)

For GV (r) we have m = 2, so that we need eq. (A.42) to order ¢® and eq.
(A.38) to order &4. The result is

1 (Y o,
GO (7) — | g (T ) Jr'=1
6c®
7(1")" By L o ! o® (1) g7 s (A.48)
6c6 “° 6ct

In order to calculate G® (r), subject to [g(7)ly'=r = 0, we need eq. (A.42)
to order o4 and eq. (A.38) to order &4, as can easily be seen.

The result 1s:

(8)
U)4 2(U)2 3(U U)
G®@ (7) LU < \¥), " ( (gD (7) ]z =2
12¢10 15¢8 15¢% |
(UY) & o (U)2 @ (s
t g (7')]prr 4 g (')
48 U (7 ) r=r 1208 T )jr'=t
1 (5) (7 [o(r' 0 \.49
- oo B9 )=, (8= = O). 3-42)

From eq. (A.42) and the conditions for g(7') in (A.46), it follows that o
must be given to the fifth order in & and eq. (A.42) to the sixth order in o.

The result for G® (1) is:

(3)
. 5004 42  (UO)],.
&) =iy o i<l Rl 23 (r") rr=¢
72¢12 45¢10 1010
((.‘(.") @) (4 (1..): (5)(+") 6 (’)’ ’
gNr\r . a5 ) %~ ol ;
12010 (7 ) e 60010 ° (7)) = 71c8 2 (7°) lz*=1,
([g(r))er=r = (gD () ]r=r = [§P(7)]r=r = O). (A.50)

With the help of eqgs. (A.47)-(A.50) we can calculate the expressions
(47A) and (47B). The result for P X (7)) is#:

t TInstead of n dots we put the number (n) above u*# for n = 3.
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Wit 2 ..
28 (X (r)} = { ~_(—Usus + Ut

4z | 3¢t
A1 UU) uss : (1248 : (3)\'7
3\ (6 ( J it ¢ \Hpe—= '(fl H
drrcsaleoad SAb by gl il hoah . U,
. [‘~a (UU) UnrubrU, 8 (U)2 Usup?U,y + p (U)2UusrU,
oo ryon gy et il AR g
Al 2 PY )y — Kby s - AuP?ll .,
Eag L Gyt ey R .
2 i - . 4 4
— —— UsuprU,, — — UspubrUy — —— UabrU,
3ch 3¢t 3¢t :
e s LK o D 3
- —— Uspbrl, — Uz ubrUy — — UsabrU,
3ch 3¢t d c8 :
21, 2 :
— UapprlU, — — ("ji.“?’('y] l (A.51)
¢d c6 @)

where the subscripts —(f«) indicate that we subtract the expression between
square brackets with « and f interchanged. This is the same result as ob-
tained by Harish-Chandra?) in a somewhat different way. If 8,/ {X(r)},
eq. (47B), is calculated, or rather [2,/% {X(7)}] ug?(r), which is a slightly
simpler expression, because of the antisymmetry of us?(), we obtain:

— "r"-,/’(‘ﬁ A X (7)}] ws”(7)

¥ j ] ('7('" vl | 1 (")-> ‘-.l" 1. & ((3)
4rech 13(.-_, ( ) WUy + '3(,2 ( M Yy — 3H ¥

e, ) 1 (3) 2 7
U= (U)2 UpgubrU, — Ugpp? Uy Ugup?U,
et 2 3¢?

gUEbe o ey (TGl
— s UsUgupUy — —— UsUpuh?U,

M !

3c? 32
bo g 2 16 .0 600 D)
= — (U0)4 — — (02 — — (U U) | u*Pug,U?
| 4t l|: 3¢t ) 15¢2 ) 5¢2 ( :|/l 4
= = (l ( )‘[l \n\‘uﬂ./,l_ Y — (( ( )‘l.l \”/lﬂ}' (", v -_;(l )l‘” ‘d‘“ﬁ;'( y
c2 c2
| . U)2 4)
- — (L')‘.!‘/'l \;’f‘“ﬁ.’,(ﬁv B ( ‘),) /.‘.""’,"B}’(T?' | 1-__,5‘“ U{“ﬁ‘,‘ [T
c2 c2
(3) (3) (4)

o
7

+3a%0pupy UY + §i*PupyUY + § p*PugyUY + § p*Pupyl




1

C‘l

(U)2 w8 figy U

(3) 1S (3) .
Fiusbhgy UY + §uPiigyU? + §u™P payUY + §

Dl b8
FREA (('l ) H ‘i"l.lﬂ;,('}' —
c=

1

5 (U)2 u*Pjigy U?

(4)
u xfB /1;’1;'( b

1 0 8 o 3 . )
! M4 — U)2 U U) | Urubry,
[3(“1 il 15¢2 () 5c2 ( ):I i

il
_ 2 (UU) Usub?fung

2
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(U)2 U*ub?jiyg

c2

1

L e -2 A A
— — (UU) U pbrpyg — — (U)2 UpPiyg +

c= C

(3)

o T% = P oy e 7 PR
——— (U)2 UspPPpuyp + JUub¥jiyg + § UpPfiys

Toe. Ga-~ 24 . ®
34 152 52
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— — (UU) wal8(UUyUs + UU3Us
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L UsU,U ) ph? + 16U3U U 6]
st 2 I
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SUXuP? uyp
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FUUBY pyp
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So far we have carried out all calculations quite generally. Now we shall
make, however, the assumption that we may neglect all terms in the above
formulae, containing any derivative of the four-velocity U# with respect to
the eigentime 7. It can be shown, that in the case of atoms or molecules,
with which we deal, this assumption is certainly justified. Physically it
means that one neglects all radiative effects on the motion of the atoms
(molecules) due to their barycentric accelerations, and only considers the
damping due to the vibrations of their dipole moments.

Instead of (A.51) and (A.52), we then obtain the much simpler expressions:
1 5 (3) 4 (3) (3)

o (a0 g (U uhUy — UR Uy, (A.53)

fEAX (7

and

N ) (4)
1§ uPugy U7 + §u*8 ppy U?

!

— [BENX @] () = —— l

4) 2
+ AUub? puyg + — UU gub? /lun( "l (A.54)

c? J

results, which we could also have obtained, of course, by assuming from the
(n)
beginning, that U* =0 (n = 1, 2, ...). We have preferred, however, the more

elaborate way of calculation, made above, since we then also obtained
formulae, which were valid in cases, where radiation damping effects, due
to the barycentric accelerations of particles are of importance. In connection
herewith we may remark that the calculations of Harish-Chandra?) were
not sufficient to give the explicit expression for the derivative of the minus
field tensor 2yf¢?, Therefore we have done the calculations once more,
giving first a series expansion to an order that is in general sufficient, and
then specializing in each case to the necessary order, so that all contributions
of the same order are taken into account.

APPENDIX IV

Radiated energy-momentum and angular momentum. We shall follow an
analogous procedure as Rohrlich12) and Cohn!3) have applied calculating
the radiation rate of classical point charges (see also ref. 14 for the extension
to dipoles). We shall still have to carry these calculations a little further,
since we also want to calculate the “radiation’’ of angular momentum.

For the charged dipole point atom the retarded four-potential at a point

2] 9{x0 — XO(7)} U%(7) dr




1+ o0

1
= J.h"'{.\' — X(7)}2] 0{x® — XO(7)} u*?(7)(xyp — Xyp(7)) d7, (A.S5)

i

—00

where § = 1, when the argument is positive, and 6 = 0, when the argument
is negative. Introducing the following notations and definitions12);

U« U*(7ety) ; n%: nPnx 1, n*U, 0; Rs XX X%(7rety) ;

.. l l
R4 = 0; Re r(n‘ } ("):r NER 4 - RelU, > 0:
¢ c
R 1 . w) (n) ll"/(‘ﬂ('r]
R* = n* 4 U%; u*f = pu*8(7ret)) ( e ) : (A.56)
c dr :

where 7(rety 15 the retarded eigentime, we get, in the approximation that
(n)
we may neglect all U (n = 1, 2, ...), from (A.55) for the field tensor at x:

rB A 4 . ] o Sl B a9

X)) = UanB 4 (x84 nx*abrR.,

(ret)\ 9 9.9 | 9.0 i L
4t | cr= cay= cey=

— Repbv ny + l — 1**RyR8 1 Rajif* R, ,  (A.57)
c2r? cer= cor ~(Bn)
where the subscripts — (f«) indicate that we subtract the expression between
square brackets with « and f interchanged, and only terms of order r~1 and
»~2 have been written down. (We shall not need terms of order »~3 and
higher negative powers of » in the calculations below.)
The energy-momentum tensor of the electromagnetic field generated by
the atom, at x is defined by #:

‘(‘ri"m)('t) = /r\,»:(v.l (%) f(rvl)" }( ) =128 ‘ﬁf(,. O\ /(r« 1t) 3 '0( X). (A\58)

T  consists of terms proportional to 72, denoted by T (r2), and terms
proportional to »—3, denoted by T30 \(r2), but also terms pmlmrlinnul to
higher negative powers of » than the third, wich will not be written ex-
plicitly, since they will appear to be of no importance in the calculations
below. We find from (A.57) and (A.58), using also the relations (A.56) and
the antisymmetry of u*?, that:

T (y—2) - il RaRBR.iiv9; ”_] ! A.59
) = — g RORIR i (A.59)

$ This definition is in accordance with our previous definition of the energy-mo-
mentum tensor of the electromagnetic field, but differs by a minus sign from definition
(4.114) of ret. 12.
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T

() (Rjsh? + Roji>Y) Ry

(47)2 r3 l 1= 5l

b (Repy + ROpw) figoRO + — (R¥ab? + ROjr?) RyUofine
o 6

D o { ; Qb w ol it :
5 (Roppy 4 Ropey) RmgioeUs + - (URE 41 BR™) Ryjiv¥ji seR®

A28 2. A 4 : 1
— R*R# Uyjivong + — Ryji?%ioeR® 4 — nya?%iseRE ). (A.60)
P ¥ Bl B J
One can verify from (A.59) and (A.60), by putting « - B, that the g*f-terms
are zero.
We shall now give the expressions for the energy-momentum and angular
momentum radiated in a proper time dr by an arbitrary moving charged
particle possessing electric and magnetic dipole moments [in the approxi-

(n)
mation that U# are very small (# = 1,2, ...)]. The basic result for the

radiation of energy-momentum has already been described by Rohrlich 12)
for a charged point particle (see also refs. 15 and 16). Cohn13) extends the
method to the radiation of angular momentum for a charged spinning
particle.

The energy-momentum rgadiated in a proper time dr by an arbitrary
moving particle is defined by *:

1
dP{yq) = lim — ['1'(:-’.‘...(111',;, (A.61)

ai¥ (timelike)
where dW is the intersection of a 3-dimensional timelike surface with two
light cones from X(r¢eyy) = X and X(7(ret) dr) = X'(see fig. 1); dW
depends on dr and is very far away from the world line of the particle

Fig. 1. Intersections of two light cones from X and X’ with a timelike surface dW
(cylindrical surface); the surface element of dW is given by the vector dWs.

t The definition (A.61) differs from Rohrlich's definition by a minus sign (see eq.
(5.10) of ref. 12), as a consequence of the difference in sign between his definition of

’!‘CH

(‘.’m) and ours [eq. (A.58)].
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between X and X'; the surface element of dI¥, with spacelike unit normal
pointing outward (z.e. increasing distance in space) is given by the vector
dWpg. One can prove that expression (A.61) is a four-vector.

To calculate the energy-momentum radiation rate (with respect to the
eigentime at retarded value) we may appropriately choose for dW the time-
like surface, which is a straight circular cylinder in the m.r.s. of the particle:

dWg = ngr? de cdr, (A.62)

where dw is the element of solid angle in ordinary space and #ng is the space-
like normal given in (A.56). From (A.59), (A.60) and (A.61) we get with
(A.62) for the energy-momentum radiation rate:

(ll)(\ru-l! . v/ X/ 9 9
a = lim 1,”“,)1 gr> dw I“ w(772) ngr? do
T r—=co
J

1 o 4
= — (dmch)2 j AR bV s R? de, (A.63)
TTCY )=

where the integration is over the solid angle, and use is made of (A.56).
Eq. (A.63) can now be calculated in the frame where the reference point
is momentarily at rest at time 7(ety. For & = 0 we get:

dP? . \© 1
( br )) = — g {— BaO% + §aOFy). (A.64)
dar eV

Fora =% (= 1, 2, 3) we get:

))
((]] l(” ”> S ] > -;,L“”“,u“”' (A.65)
dr 7o

Let us now compare the above components with those of the four-vector
F,, eq. (60A). In the m.r.s. we get for o = 0:

Fig) (7) — 30k (7) i) + FEOF(7) il ()}, (A.66)

and fora = k(= 1,2, 3):

1
1 lllll ) : ':‘IL(“)I'[(T) / “”(T):. (.\67)

76
If this result is taken for = = 7y, it is exactly equal to the negative
of (A.64) and (A.65). Physically this means that we may interpret I}, as the
radiation reaction four-force on the atom, since it is equal to the negative
of the rate at which electromagnetic radiation energy-momentum is emited
by this atom (¢f. ref. 12 pg. 149).
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The angular momentum radiated in a time dr is¥:

! - v X 1 2 - 7

dJ Gaa) lnnj~ T8 (x) — 28T 0 (%)} nyr? dr do, (A.68)
r—»o0

where the integration is over the solid angle. Choosing the reference frame

in such a way that its origin coincides with X#(r(et)), we get from (A.68)

and (A.56) for the angular momentum radiated by the atomic system:

1
4 Gru = lim [’1\ By (%) — RBT (%)} nyr? do. (A.69)

dr A

It is easily seen from this equation, that only the terms T (r2), eq.
(A.59), and T (r3), eq. (A.60), of the energy-momentum tensor of the
electromagnetic field will contribute to dJ,,/dr, and not terms of higher
negative order in 7. It is also directly seen that T, (»~2) and the terms in
T (r-3) proportional to R*R# vanish in eq. (A.69). Substituting (A.60)

into (A.69) and making use of (A.56) we obtain:

s [ 1 e . 2 3
3 A( = % X B ,.‘ e > 37,..” 5o
dr (4m)? R AR el i
20 ; S e .
< R Ry U gji%ne + - RO Roni®U e
¢ C
2 L E .
"3 n2UBR 1Y Ofi ge R dw. (A.70)
[4) (Bx)
In the frame where the particle is momentarily at rest at time 7rey We get:
I 3
Ok >
(lj(“"h - 1 f 2¢ ﬂ(()")k - 2 I;(())Ol#;(')k
dr 13 l3(‘3 Acv -
2
36 y.“”“’u"”"} (2= 1,2,3), (A.71)
d]‘““" — ! 5 2"_ AL 2 (O k0 (010 _ ;;(0)10;;(0)k0)
dr 47 l 3c3 3cd
| 2 - o s (0 . - (0)k
t s (@ kmg 0¥ — GO bmg TS (&l =12, 3): (A.72)
C
Now consider the four-tensor @2, eq. (62.A). In the m.r.s. we get:
(=) l \ <
1 f 2 2 ]
f[(“,)“k T y I-l(())(” 5 -im)l.- T) I L(())(]] T (IHI. )Yy,
( y (7) 47:13(.5. ()Il ( 3(_5l (7) ( )}
(o= 1,:2,3), (A.73)

 This formula can be derived in a completely analogous way as we have obtained
(A.63) above. One can prove that expression (A.68) is a four-tensor.
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(0)kt : ) 2 1 (O kO () 77 (0)1C 2(0)1 7 (0)kO( )]
a3 (7) P [ T (OO (7) ji(OVI0(7) — [ (O)I0(7) jF(O)KO(7)

) 2 =< % v (0 = « ()& l
4 305 .#"“M'"(T,J 5, (7) ;M"”’"(T) ()], (ol ==1,2{3).
ct
(A.74)
When comparing the right-hand sides of (A.71) and (A.72) with those of
(A.73) and (A.74), taken at 7¢ey), We find, in contrast with what has been
found above (eqs. (A.64)—(A.67)), that they are not equal and opposite of
] ) 1 Pl

sign, but we have from (A.71) and (A.73) for 7 = 7(rety:

0k (0) » )
4/ fraa) = — g0 _ l 2" 00k ) k(= 1,2,3), (A.Z78)

dr 47t \ 3c3 '
and from eqs. (A.72) and (A.74):

L \O 1 [ 2
( a ;mdb ) ({:“rl;'l | ] ( : ‘.‘ lﬂ())k()_ (/‘-’ ) )= 2, 3). (‘.\_70)
ar T C*

The last terms of (A.75) and (A.76) are the components of an antisymme-
tric tensor written in the m.r.s. If we introduce the notations:

71(0)0k — ji(00k . Akl = Okl (A.77)
we can write (A.75) and (A.76) in an arbitrary reference frame as:

>l 3 1 2¢ s .
J 1!"1\1l! ‘(<\. ) 1 7 :/.“(m"i ’ (\78)
47t \ 3¢3

whered® | isgiven by eq. (62.A) and the tensor Zi(")*#is obtained from (A.77)
by a Lorentz-transformation of an antisymmetric tensor from the m.r.s. to
an arbitrary frame, which transformation depends on the velocity of the
particle. In the approximation that we neglect all time derivatives of this
velocity we obtain:

o B dz | 2e
Gad)y = 8oy + = j . Vlﬁwl.' (A.79)
dr2 | 4% 3c3 |
where g8 L0,
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SAMENVATTING

In dit proefschrift worden de klassieke relativistische bewegingsvergelij-
kingen van atomen en moleculen in een electromagnetisch veld behandeld.
Als uitgangspunt is de theorie van Moller genomen voor de relativistische
dynamica van systemen met een inwendig impulsmoment in een uitwendig
veld. De bewegingsvergelijkingen van Mgller zijn eerder door Vlieger toe-
gepast op een klassiek model van geladen atomen en moleculen met een
clectrisch en een magnetisch dipoolmoment. De aldus verkregen atomaire
vergelijkingen werden door hem gebruikt voor de afleiding van de energie-
impulstensor van een systeem bestaande uit N van zulke atomen of
moleculen.

De bewegingsvergelijkingen van Mgller bevatten echter een soort “Zitter-
bewegung” (een trillende of beter nog snel roterende beweging met een
kleine amplitude en een zeer hoge frequentie), gesuperponeerd op de gewone
beweging. Het elimineren van de onphysische beweging is het eerste onder-
werp van dit proefschrift.

Vervolgens worden de vergelijkingen uitgebreid voor het geval, waarbij
de atomen (of moleculen) behalve dipoolmomenten ook een electrisch
quadrupoolmoment hebben. Dit is van dezelfde orde van grootte als het
magnetisch dipoolmoment.

In het laatste hoofdstuk hebben we de klassieke theorie voor stralende
atomen en moleculen behandeld.

We hebben hetzelfde klassieke model van atomen en moleculen genomen
als in het werk van Vlieger. Voor alle bovengenoemde gevallen zijn atomaire
bewegingsvergelijkingen afgeleid uit de sub-atomaire wetten voorenergie-
impuls en impulsmoment. De vergelijkingen worden vervolgens gebruikt
om de atomaire energie-impulstensor voor een systeem bestaande uit een
groot aantal dipool- en (]u;ulru])(ml—:ltmm-n (of moleculen) af te leiden.

Na een samenvatting van de door Vlieger verkregen resultaten in hoofd-
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stuk I hebben we in hoofdstuk II met behulp van een iteratie-procedure
laten zien, dat in het geval van atomen en moleculen de termen die de
trillende beweging in de bewegingsvergelijkingen beschrijven, verwaarloos-
baar klein zijn. Dit maakt het mogelijk om bewegingsvergelijkingen op te
schrijven van het gebruikelijke tweede orde type en een balansvergelijking
voor het inwendige impulsmoment van de eerste orde.

In hoofdstuk III is de theorie toegepast op atomen en moleculen die naast
een electrisch en een magnetisch dipoolmoment ook een electrisch quadru-
poolmoment hebben. Het blijkt, dat het veld-gedeelte van de atomaire
energie-impulstensor niet van dezelfde vorm is als in het geval van alleen
dipolen en het is ook niet meer uit te drukken alleen in termen van groot-
heden die in de atomaire veldvergelijkingen voorkomen.

Stralingseffecten zijn verwaarloosd in de hoofdstukken I-III, maar re-
normalisatie-effecten zijn covariant in beschouwing genomen zonder ex-
pliciete uitdrukkingen ervoor te geven. Als gevolg van de verwaarlozing
van de stralingseffecten zijn de atomaire energie-impulstensoren die in deze
hoofdstukken gevonden zijn, symmetrisch.

In hoofdstuk IV is de theorie die in de hoofdstukken I en II is behandeld,
uitgebreid tot het geval van stralende dipool-atomen en -moleculen. We
hebben gebruik gemaakt van Dirac’s covariante splitsing van geretardeerde
electromagnetische velden in een plus- (of “zelf”) gedeelte (de halve som
van geretardeerde en geavanceerde velden) en een min- (of “‘straling”) ge-
deelte (het halve verschil van geretardeerde en geavanceerde velden). Het
blijkt dan voor een willekeurige (eindige) lading-stroomverdeling mogelijk
te zijn om een sub-atomaire energie-impulstensor van het stralende atoom
(of molecule) te definiéren. Hierin is de bijdrage van de intra-atomaire
velden expliciet afgeleid met behulp van het plus-gedeelte van deze velden.
De gevonden tensor heeft de belangrijke eigenschap, dat hij eindig is, zoals
vereist is in de theorie van Mpller. Het blijkt bovendien, dat het min-veld
behandeld kan worden als een uitwendig veld bij de afleiding van de be-
wegingsvergelijkingen en van de balansvergelijking voor het inwendige
impulsmoment.

De atomaire massa en het atomaire impulsmoment die met de boven-
genoemde sub-atomaire energie-impulstensor zijn gedefinieerd, zijn op een
manifest covariante wijze gerenormaliseerd voor de effecten van de intra-
atomaire velden. Uit de algemene uitdrukkingen voor deze grootheden
hebben we in appendix II van hoofdstuk IV de bijdragen van de intra-
atomaire velden expliciet uitgerekend tot de orde ¢2 en we vinden
overeenstemming met de literatuur,

Vervolgens zijn de bewegingsvergelijkingen en de balansvergelijking voor
het inwendige impulsmoment afgeleid met de methode van de voorgaande
hoofdstukken. In appendix III van hoofdstuk IV is een procedure gegeven
voor de berekening van de min-velden die in deze vergelijkingen voorkomen.
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Om de nogal gecompliceerde vergelijkingen te vereenvoudigen, hebben we
aangenomen, dat alle termen afkomstig van deze min-velden die tijds-
afgeleiden van de vier-snelheid bevatten, verwaarloosd kunnen worden.
(Physisch betekent dit, dat we in de bewegingsvergelijkingen de stralings-
effecten tengevolge van de barycentrische versnellingen van de atomen
(“Brefmsstrahlung”) verwaarlozen en alleen de demping tengevolge van
de vibraties van hun dipoolmomenten in beschouwing nemen.) Het blijkt,
dat de bijdrage van de min-velden tot de bewegingsvergelijkingen gesplitst
kan worden in een gedeelte, dat geinterpreteerd kan worden als de stralings-
dempingskracht en een gedeelte, dat een totale tijdsafgeleide is. Een analoge
splitsing in een stralingsdempingskoppel en een totale tijdsafgeleide is uit-
gevoerd in de balansvergelijking voor het inwendige impulsmoment. In
appendix IV is tenslotte een rechtvaardiging gegeven voor de interpretatie
van deze dempingskracht en het dempingskoppel, door deze grootheden in
verband te brengen met respectievelijk de straling van energie-impuls en
ran impulsmoment.

In aanwezigheid van straling is de atomaire energie-impulstensor niet
langer symmetrisch, wat ook niet het geval behoeft te zijn voor niet-gesloten
systemen. De behandeling van stralende atomen die ook een electrisch
quadrupoolmoment hebben, is aangegeven aan het eind van hoofdstuk IV.
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