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SAMENVATTING

Vele fysische systemen komen in twee scherp van elkaar te onder
scheiden fasen voor, bijv. een vaste en een vloeibare, een mag
netische en een niet magnetische. Het verschil tussen twee van
zulke fasen is, vanuit atomair standpunt, gelegen in het al of niet
bestaan van een zekere ordening over grote afstanden binnen het
systeem. Uit berekeningen aan eenvoudige modellen, zoals het Ising
model, is gebleken dat een dergelijke ordening optreedt zodra de
wisselwerking tussen de atomen een zekere kritische waarde over
schrijdt. Anderzijds zijn er ook systemen waarin "kritieke" ver
schijnselen van schijnbaar geheel andere aard optreden. Een poreus
materiaal kan waterdoorlatend worden zodra de porositeit een kri
tieke waarde overschrijdt. In dit geval kan niet van een ordening
over grote afstand worden gesproken, maar wel van samenhang op grote
s chaal.

Het onderwerp van dit proefschrift is een nadere analyse van het be
grip "samenhang op grote schaal", en de relatie hiervan met het be
grip "ordening over grote afstanden". Daartoe wordt een eenvoudig
model ingevoerd van een systeem dat bestaat uit wisselwerkende ob
jecten, waarin de objecten worden voorgesteld door punten en de mo
gelijke wisselwerking tussen twee objecten door een lijn tussen de
corresponderende punten. Op deze manier wordt het gehele systeem
voorgesteld door een netwerk. Essentieel voor het model is dat elk
van de wisselwerkingen een zekere kans heeft om niet te functioneren.
Als we alle lijnen van niet functionerende wisselwerkingen weglaten,
zal het overblijvende netwerk in het algemeen uit een of meer brokken
bestaan, clusters geheten, die eindig of oneindig groot kunnen zijn.
Het ligt voor de hand om een oneindig cluster in verband te brengen
met samenhang op grote schaal.

In het eerste deel wordt dit model, het random-cluster model, in de
tail gedefinieerd en in verband gebracht met andere modellen. In
het bijzonder wordt aangetoond dat het zowel een generalisatie is
van het Ising model als van het percolatiemodel. Tevens wordt het
model tegen een wat meer algemene wiskundige achtergrond geplaatst.
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In het tweede deel worden de eigenschappen van het model onder
zocht voor het eenvoudigst mogelijke geval, waarin het gelijk
is aan het percolatiemodel. In het derde deel wordt deze analyse
uitgebreid tot het meer algemene geval, waaronder ook het Ising
model valt. Een van de voornaamste resultaten is een stelling die
het verband legt tussen de samenhang op grote schaal in het perco
latiemodel en de ordening over lange afstanden in het Ising model.
Verder wordt het verband aangetoond tussen een aantal criteria voor
samenhang op grote schaal, en de invloed nagegaan van een uitwen
dige invloed op die samenhang.
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INTRODUCTION AND SUMMARY

In this thesis we are dealing with a model in the theory of
phases. As is well known a physical system in equilibrium,
which from a microscopic point of view consists of many particles,
can from a macroscopic point of view exist only in a few different
pure phases, the system undergoing a phase transition if it
changes from the one pure phase to the other. One of the main
questions is how a pure phase can be characterized and what types
of phases we can have.

Classically, a phase transition can be characterized by the
properties of the Helmholtz free energy (which is directly re
lated to the Gibbs probability measure on the states of the system),
in particular by singularities of the free energy. The existence
of a pure phase can be characterized by a homogeneity property, or
the vanishing of long-range correlations, and its nature by
certain order parameters such as the magnetization or the long-
range many spin expectations in the case of a ferromagnet.

Recently, a theory has been developed in which a pure phase of a
system can be characterized as soon as the symmetries of the
system are given. In particular, each probability measure of
that system (e.g. the Gibbs measure) is a unique linear combination
of probability measures associated with the pure phases of that
system, i.e. a macroscopic state is a unique mixture of pure
phases. Moreover, these pure phases are characterized by cluster
properties which are associated with the symmetries of the system,
and which are comparable to the vanishing of long-range correlations.

One should notice that in most of the characterizations of pure
phases or phase transitions mentioned above, the symmetries of the
system play an essential role. For example, all proofs of the
existence of the free energy depend strongly on translational
symmetry. Moreover, the concept of order itself suggests a
certain regularity or symmetry. It is felt, however, that the
concept of cooperative behaviour is of a more general nature, and
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should not depend so heavily on the symmetries of the system.

In this connection it is interesting to remark that there are
other physical systems which show a cooperative phenomenon,
e.g. porous media through which a liquid percolates, and certain
cascade processes. The cooperative effect is in these cases the
impregnation of the whole medium when the fraction of wide pores
exceeds a certain critical value, and the avalanche effect
occurring in the cascade if the probability of an individual
event exceeds a certain critical value. In their simplest form
both these systems can be described as special cases of the so-
called percolation model. This model is to be compared with the
Ising model, which is known to be a suitable model for phase
transitions of the usual type. The concept of long-range order
in the Ising model is in the percolation model replaced by the
concept of "connectivity-at-large" or "large-range connectivity",
for which a symmetry of the system is irrelevant.

The purpose of this thesis is to develop a theory of "inter
acting objects" in which the concept of large-range connectivity
is analysed. To this end we introduce a simple model of a system
consisting of infinitely many interacting objects, in which the
objects are represented by points, called vertices, and the
possible interactions between two objects are represented by lines,
called edges, between the corresponding points. In this way, the
system is represented by a graph; obviously, we are mainly
interested in connected infinite graphs. The possible states of
the system are obtained by allowing each of the interactions to
"function" or not. The edge representing such an interaction is
called a constituting edge or a dummy edge, respectively. If for
a given state all dummy edges are deleted, the graph thus obtained
from an infinite connected graph consists in general of one or
more mutually unconnected pieces, called clusters, which may be
finite or infinite. It is natural to relate the occurrence of
an infinite cluster with a collective phenomenon. Finally, the
probability measure on these states is obtained by associating
to each edge a probability of being a constituting edge; in
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general, this probability may depend in a prescribed way on the
state of the other edges.

In the first part of this thesis this model, the random-cluster
model, is defined and related to other models. In particular it
is shown that it is a generalization both of the percolation model
and of the Ising model. It is further shown that the theory of the
random-cluster model is intimately connected with the combinatorial
theory of graphs.

In the second part the properties of this model are investigated
for the case where the edges are statistically independent. In
this case the model reduces to the percolation model .The main
observables investigated are the probability that a given vertex
belongs to an infinite cluster and the long-range limit of the
probability that two vertices are connected. It is shown that
these observables are related to each other as well as to a de
rivative of the "free energy" of the system (if this exists).
Moreover, it is shown that the first observable has a clustering
property which is, however, not related to a symmetry of the
system.

In the third part the analysis of the second part is extended to
the case where the edges are not necessarily independent; this
case covers both the percolation model and the Ising model. One
of the main results is the establishment of a relation between
the large-range connectivity of the percolation model and the long-
range ordering of the Ising model.
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ON THE RANDOM-CLUSTER MODEL

I. Introduction and relation to other models

Synopsis The random-cluster model is defined as a model for phase
transitions and other phenomena in lattice systems, or more
generally in systems with a graph structure. The model is
characterized by a (probability) measure on a graph and a
real parameter k . By specifying the value of k to 1,2,3,...
it is shown that the model covers the percolation model, the
Ising model, the Ashkin-Teller-Potts model with 3,4,... states
per atom, respectively, and thereby, contains information on
graph-colouring problems; in the limit tc+0 it describes linear
resistance networks. It is shown that the function which for
the random-cluster model plays the role of a partition function,
is a generalization of the dichromatic polynomial earlier
introduced by Tutte, and related polynomials.



1. INTRODUCTION

This paper is the first of a sequence of papers devoted to
a model for phase transitions which was recently intro-

1 ) *)duced by the authors . This model, to be called the
random-cluster model, is actually a one-parameter family of
systems, which includes among its members the spin \ Ising
model and the percolation model, but also systems representing
graph colourings and certain electrical networks.

The member of the family which hitherto has been most
thoroughly investigated is the Ising model, introduced by
Ising in 1925 as a model for ferromagnetism upon a suggestion

2) . . .by Lenz ' , and later on also applied to antiferromagnetism,
ordening in binary alloys, condensation of a lattice gas and
many other phenomena. In 1943 Ashkin and Teller introduced
a lattice model in which each atom can be in four states,

3)which was a direct analogue of the two-state Ising model
In 1952 Potts generalized both models to one with an arbitrary

. 4)number of states per atom

A less-known member of the family is the percolation model
(connectivity model) which was introduced in 1957 by Broadbent
and Hammersley as a model for the percolation of a liquid
through a porous medium, the spread of a disease through a
community and similar phenomena. Its resemblance to the Ising
model was first recognized by Hammersley ' , and various
methods developed for the Ising model were translated and
applied to it by Sykes and Essam  ̂ , but a precise relation
between the models was not established until 1968 (see ref. 1).

The problem of finding the number of ways in which the
vertices of a given graph can be coloured with not more than
a given number of colours n so that adjacent vertices have
different colours (n-colourings) has a longer tradition than

*) A preliminary account of this work was given at the Summer
School and Seminar on Critical Phenomena at Banff (August 1968).
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the models mentioned above; in the form of the four-colour
conjecture it has a history which goes back to the middle of
the 19th century. In his research on the colouring problem,
G.D. Birkhoff introduced in 1912 the chromatic polynomial,
which is an extension of the number of n-colourings from

O N

integral values to arbitrary real values of n . I t  is
easy to see that the number of n-colourings of a graph is
equal to the degeneracy of the ground state of the "anti
ferromagnetic" Ashkin-Teller-Potts model. This establishes
the relation of the colouring problem to the models dis
cussed above.

Finally, the oldest member of the family is the linear
electrical network, investigated since the beginning of the
19th century. It was Kirchhoff who showed in 1847 that a
central role in the systematic analysis of these networks
is played by what nowadays is called the generating function

9)for spanning trees . In 1954 an important relation between
this generating function and the chromatic polynomial was dis
covered by Tutte ^  , He showed that for a given graph both
functions are special cases of a two-variable polynomial which
he called the dichromate of the graph and which is now
generally referred to as the Tutte polynomial. Another two-
variable polynomial, which later on was called the dichromatic
polynomial and was shown to be identical, apart from a certain
factor and a shift of variables, with the Tutte polynomial,
had been introduced by Tutte in 1947 ^  . This polynomial was
introduced in a different way by Zykov in a study of recursive

12)functions on graphs. The generating function for spanning
trees also served as a model for the partition function of a. . 13)branched polymer without rings.

As a final step in establishing the relations between these
models and problems the random-cluster model was introduced^ ,
which, as we shall show in detail in this paper, embodies the
entire family. The model is defined for an arbitrary graph.,
and associates with each edge e of the graph a real
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parameter p ; if 0 < p <1 for all edges e, the model has6 c
a probabilistic interpretation. In addition, one real
positive parameter k occurs in the description of the model;
it represents in a way the complexity of the model.
Different values of k describe systems with different
properties, the various systems discussed above appearing
as the cases where k is an integer >. 0, sometimes combined
with special limiting values of the p ; < = 0 corresponds
to the electrical network, < = 1 to the percolation model,
k = 2 to the Ising model, k = n > 2 to the Ashkin-Teller-
Potts model with n states per atom and to the n-colouring
problem.
After having introduced the random-cluster model we ob
served that if all parameters p are given equal values,
the function which plays the central role in the theory of
the model reduces, after a simple change of variables, to
the dichromatic polynomial. Temperley independently made
a similar observation  ̂ , and, together with Lieb,
developed a transfer-matrix approach for the case of a
quadratic lattice 1 . Essam also investigated the relation
between the aforesaid problems, paying particular attention
to cluster expansions

The aim of the present paper is the precise definition of
the random-cluster model for an arbitrary countable graph.
After an introductory section 2 on graph-theoretic notions
we first define in section 3 the percolation model and a
number of characteristic quantities related with it. We
then derive a recursion relation for these quantities and
a differentiation relation connecting some of them. In
section 4 we show that the Ising model, and more generally,
the Ashkin-Teller-Potts model, can be formulated entirely
in terms of the percolation model. The same procedure is
applied to the chromatic polynomial in section 5, and to a
certain class of electrical networks in section 6. In all
these cases the recursion relation derived in section 3
plays an essential role. It is a special case of a more
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. Therefore,general recursion relation studied by Zykov
the characteristic functions of the various models are re
cursive functions on graphs in the sense of Zykov. Their
interrelation is discussed in section 7, in which the
random-cluster model is defined and some of its properties
are discussed. Finally, in section 8, the position of the
random-cluster model with respect to the above-mentioned
systems and problems, and with respect to the branch of
combinatorial mathematics to which it belongs is briefly
sketched.

12)

2. GRAPHS AND CLUSTERS

A graph G is defined by a set V of vertices, a set E of
edges and an incidence relation i between edges and
vertices, associating with each edge eeE an unordered pair
i(e) of vertices v,v'GV, the ends of e; if v = v' the
edge is called a loop. The edge e is said to be incident
with the vertices in i(e) and vice versa. If G is the
graph thus defined, we write G = (V,E,i). If more than one
graph is considered, the vertex set and the edge set of G
are denoted by V(G) and E(G), respectively.

We shall frequently encounter products of commuting quantities
Q over all elements a of a set A; we shall denote them by
a A . 0by Q = II ^ Qa« For convenience we put Q i 1. The
(cardinal) number (of elements) of a set A will be denoted by
|A|. So the number of vertices is |v| , the number of edges
|E] . A graph G is finite if both |v(G)| and |E (G)| are
finite, and infinite otherwise. If both |V(G)| and |E (G)|
are finite or infinite countable the graph G is countable.
If the number of edges incident with a vertex v is finite for
all vSV(G) the graph G is locally finite.

A subgraph of a graph G = (V,E,i) is a graph G' = (V'jE'ji1)
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such that V'CV, E'CE and i'(e) = i(e) for all eGE'. Since
i' is the restriction of i to the domain E' we shall de
note it simply by i. If G' = (V',E',i) and G" = (V",E",i)
are subgraphs of a graph G = (V,E,i) then (V'uV",E'uE",i)
and (V'nv",E'nE",i) are subgraphs of G, to be called the
union graph and the intersection graph of G' and G" in G,
and to be denoted by G'UG" and G'HG". If V'CV" and E'CE",
then G' is a subgraph of G", and we write G'CG". In
particular for subgraphs G' of G we have G'CG. A spanning
subgraph or partial graph of G is a subgraph with V' = V.
The spanning subgraph G' with the set of edges E' will be
denoted by G,.,.

£i

A path between two vertices v and v' in a graph G is a
finite sequence of alternatingly vertices and edges of G:

v=v0, els Vi, ....... vn- r  en ’ vn=v'» such that
i(e, ) = {v, , ,v, } for k=l, 2, ... n; it is often relt k-1 k
presented only by the edges which it contains. Two vertices
v and V'g V(G) are connected in G if there is a path in G
between them; if not, they are disconnected. The relation
of connection between vertices is an equivalence relation.
A graph G is connected if any two of its vertices are
connected. A cluster (or connected component) of a graph
is a maximal non-empty connected subgraph. The smallest
cluster consists of one vertex and no edges (isolated
vertex). The number of clusters of a graph is easily seen
to equal the number of equivalence classes under the re
lation of connection.

A polygon in a graph G is the subgraph consisting of the
vertices and edges of a path in G, containing at least one
edge, between two coinciding vertices and with all vertices
distinct except the first and last vertex. The smallest
polygon is a vertex with a loop. A set of polygons is called
dependent if the sum modulo 2 (symmetric difference) of the
edge sets of a finite subset of polygons is the empty set.
The number of independent polygons of a graph is called the
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cyclomatic number of that graph. A tree is a connected
non-empty graph having no polygon as a subgraph. The
smallest tree consists of one isolated vertex. A tree in a
graph is a subgraph which is a tree. A spanning tree in a
graph is a spanning subgraph which is a tree. A forest is
a non-empty graph having no polygon as a subgraph. A forest
in a graph is a subgraph which is a forest. A maximal
spanning forest in a graph is a maximal spanning subgraph
which is a forest.

We shall find it convenient to have defined the operations
of deleting and contracting edges from a graph. Let
G = (V,E,i) be a graph and E'CE a subset of edges. Then we
shall say that the spanning subgraph Gg_£t = (V,E-E',i) is
obtained from G by deleting the edges of E' from G, and we

P  I _  ■ ■

denote it by 3) G = (V,E-E',i). Let further V be the set of
equivalence classes of the set of vertices V under the re
lation of connection in G , (in other words, let the vertices

£ j

of G which are connected in G_, be identified), and let i be
£<

a relation on the edges of E-E' such that if the edge eSE-E'
is incident in G with i(e) = (v,v'}, then i(e) = {v,v'} ,
where veV is the class of V containing v. We shall say that
the edges of E' are contracted from G in order to obtain the
graph (V,E-E',I).

Obviously, if E',Em are disjoint subsets of E we have
aEV ' G )  =S>E,UE'g - 2 E"(aE,G) andeEV ”G) - ^ V ’c).
Moreover we can prove that £E '(£?"g) * £E,UE"g « ^ " ( ^ ’g)
(see lemma 1 in section 3.2), where G - G' denotes that the
graphs G and G' are isomorphic; we shall write = instead of -
It follows that we may define TTnr1?«■ % = >&E with $) and
TT C = u with C = A 6 , where %) is the operation of11e£E e e e
deleting the edge e from the graph, and C bh® operation of
contracting the edge e from the graph. Observe that by
definition üî G = G and fi?G = G. A graph #E G with E' and
E"CE(G) disjoint is called a descendant of G. The vertex



__ __ T? t T?H
vev = V(^“ G) is called the vertex of the descendant
associated with the vertex v of the graph G.

3. THE PERCOLATION MODEL

3.1. Description,of the model

With an arbitrary graph we can associate various
mathematical systems which serve as models for certain
physical systems. One of these is the (bond) percolation
model, introduced in 1957 by Broadbent and Hammersley
as a model for a medium with randomly distributed pores
through which a liquid percolates. In this section we
shall discuss this model for the case of a graph with non-
directed edges. We shall successively introduce events on
a graph (cf. Rényi ^  ch. I), local events, random events,
probabilities of random events (cf. Rényi ^  ch. II),

18)random variables and expectation values (cf. Zaanen ch.3).
Special care is to be taken in the definition of probabili
ties and expectation values on infinite graphs because of the
occurrence of infinite products and sums and of the values
+ oo of certain expectation values.

Let G = (V,E,i) be an arbitrary graph, each edge of which
can be in two different states, to be denoted by c and d.
For each eEE we consider the two events: "e is in the
state c" = "e is a c-edge" and "e is in the state d" =
"e is a d-edge". These events are considered to be each
other’s negation; we denote them by c & and d , respectively.
In the literature on the percolation model the basic elements
such as vertices, c—edges, d—edges, occur under various names.
For convenience we give a short translation list:

vertex
edge
c(onstituting)
d(ummy)
this paper

atom
bond
undammed
dammed
ref. 5)

site
bond
black
white
ref. 7)

vertex
link
active
passive
ref. 19)

atom
bond
occupied
vacant
ref. 20)
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From these events, to be called edge events, we construct
more detailed events by taking (logical) products; we
call these events product events and denote them as al
gebraic products. Thus c d , is the event "e is a c-edge6 c
and e' is a d-edge". Using the symbolic power introducedE * E,fin i 2 we can denote the general product event by c d
where E',E"CE; c d = 0 = "the false event". For completeness

oT oie ewe write c =d =1= "the true event". Obviously c + d =1.
The most detailed (smallest) product events are those of the

C Dform c d with CUD = E and COD = 0. We call them elementary
events. The set of all elementary events is called the
event space, denoted by ft. The (logical) sum of two events
a and a' is denoted a+a'. From now on we shall assume
complete distributivity for logical sums and products. Two
events a and a', say, are called incompatible, or disjoint,
if aa' = 0.

The events formed by finite sums of finite product events
(that is, the events obtained by closing the collection of
edge events under finite sums and finite products) are
called local events. The events formed by closing the
collection of local events under countable sums and countable
products are called random events. The most general events
are obtained by closing the collection of random events under
arbitrary sums and products. By the assumption of complete
distributivity each event can be written uniquely as a sum
of elementary events, so that there is a one-to-one
correspondence between events and subsets of the event space.
This correspondence will be used extensively in the following.

We next define the probability P(a) of local events a.
Firstly P(0) = 0 and P (1) = 1, secondly for the edge events
P(c ) = p and P(d ) = q = l-po, where 0 < p <. 1. For

6 ® ® ® g t gll® ®
finite product events c d with E ,|~'E" = 0 we define

w t wii E»E** •P(c d ) = p q , i.e. the edge events are considered to
be independent. For finite sums of disjoint finite product

9



events we have PCI* 1?^ a^) = P(a^). Using the above-
mentioned correspondence between events and subsets of the
event space, we see that the probability on local events
corresponds to a normed measure on the algebra of the
cylinder sets corresponding to the local events.

A local variable will be a real function f on the event
space which assumes only a finite number of different
values f. such that for each i the sum of all elementary

1 C D .events with f(c d ;G) = f. is a local event a^. For
brevety we shall often write f(c^d^;G) = f(c d^) = f(C;G) =
= f(C). The expectation value with respect to P of a local
variable f is defined to be <f> = P(a.) = <f;G,P> .
The local variables correspond to the simple functions with
respect to the algebra of cylinder sets, the expectation
value corresponds to the integral with respect to P of a
simple function. The functions obtained by closing the
collection of non-negative local variables under the suprema
and infima of countable collections (admitting the value +<*>)
are called non-negative random variables. The difference
between two non-negative random variables, not both assuming
a value 4 0 at the same time, is called a random variable;
the non-negative random variables are called its positive
and negative part.

Using the extension procedure of measures on semirings to
gether with the Daniell integral scheme, we can, given a
probability P on local events with the corresponding ex
pectation value <f>, extend these uniquely to a probability
on random events and an expectation value of random variables
(Zaanen ^  ch. 2, 3), for which we use again the notation
P(a) and <f>. If the expectation value of a random variable
is finite, the random variable is said to be summable. If
not both the expectation values of the positive and negative
part of a random variable are + 00, the random variable is
said to be integrable. In the special case that the graph

10



is finite, the expectation value of a random variable re-
C Dduces to a sum: <f> = E— 5 f(C) P <1 5 here and in the

following we understand by D the set E-C. In general we
write <f> dP(C) f(C).

CCE

A particular class of (non-negative) random variables is
formed by the indicators of random events; the indicator
of an event a is the function which takes the value 1 if a
occurs and the value 0 if a does not occur. For con
venience we use the same symbol for the event and for the
indicator of that event. So ce will represent both the
edge event c and the indicator (of the event) that e is a
c-edge. We have <a> * P(a) for random events a.

A countable graph G together with a probability P as
described above we call a percolation model, to be denoted
(G,P). Notice that the absence of correlations constitutes
a most essential feature of the model. The probability P
is completely characterized by the mapping p from E into the
real interval £o,lJ such that p(e) = p = P(ce). We shall
say that the measure P is generated by the mapping p.

We shall say that two vertices v and v' of G are c-connected
in G, if there is a path in G between v and v' such that all
edges in that path are c-edges. If G_ is the spanning sub
graph of G with E(G_) = C = the set of all c-edges, we may
equivalently say that v and v* are c-connected in G if they
are connected in G„. Analogously we define a c-cluster,Li
a c-polygon, the c-cyclomatic number etc.

Finally, we shall list some functions which will be con
sidered in this or in subsequent papers. Most of these are
indicators; for brevity we shall omit from their definition
the words "the indicator of the event that".



Y = th e  number o f  c - c l u s t e r s

a) = th e  c-afyc lom atic  number

Y_i = G' i s  a c - c l u s t e r

y_ , e G' i s  a  c - c l u s t e r  c o n ta in in g  th e  v e r te x  vG ;v
f

rG‘ ;vYp t i  = G' i s  a  f i n i t e  c - c l u s t e r  c o n ta in in g  th e  v e r te x  v

Y g i.v  = i s  an i n f i n i t e  c - c l u s t e r  c o n ta in in g  th e  v e r te x  v

Y^ = th e r e  i s  a f i n i t e  c - c l u s t e r  c o n ta in in g  th e  v e r te x  v
00 # ( t

Y th e r e  i s  an i n f i n i t e  c - c l u s t e r  c o n ta in in g  th e  v e r te s  v
■ 0 0  £

o b v io u s ly  Yv = 1 “ Yv

th e  v e r t i c e s  v and v '  a r e  c -c o n n e c te d  = v and v* b e 

long to  th e  same c - c l u s t e r

Y = th e  ends o f  th e  edge e a r e  c -c o n n e c te d

Yw '

Y = th e  v e r te x  v i s  c -c o n n e c te d  w ith  a t  l e a s t  one v e r te xvV
v ’ o f  th e  s e t  o f v e r t i c e s  V'

F o r n e g a t io n s  o f  y i n d i c a to r s  we u se  th e  symbol 6:

6 , = th e  v e r t i c e s  v and v ' a r e  n o t c -c o n n e c te d  ( a re  c - d i s -w
c o n n e c te d ) ; 6 , = 1 -  y »’ w  w

6 = th e  ends o f  th e  edge e a re  n o t c -c o n n e c te d  ( a re  c - d i s -e
c o n n e c te d ) ; 6 = 1 -  y

6 = th e  v e r te x  v i s  n o t  c -c o n n e c te d  w ith  any o f  th evV
v e r t i c e s  o f  V ';  = 1 -  yvVi

O b v io u sly , we have f o r  f i n i t e  g raphs

F or f i n i t e  g rap h s th e  above-m entioned  fu n c tio n s  a re  random

v a r ia b le s .  We s h a l l  prove in  a su b seq u en t p a p e r  t h a t  f o r

c o u n ta b le  g raphs th e y  a re  a ls o  random v a r ia b le s .

12



3.2. Associated random variables on descendants. Recursion Theorem

(3.1)

Lemma 1

Let f be a random variable defined on the event space of a
graph G. Let E' and E" be disjoint subsets of E (G) , then
g f g*t

(5 $ G is a descendant of G. Now we associate with f a
___ P  I g H

function f on the event space of CT % G by the definition
(for disjoint sets E' and E" the union E'UE" is alternatively
denoted E' + E"):

f(C;(TE a E G) = f (C+E';G) for all QCE(CE ^ E G) = E(G)-E'-E".

This function f is nothing but the section of f determinedE» £»» o])
by the product events c d (cf. Halmos 1 § 34), and it
follows that if f is a random variable, f is a random variable.
Moreover, if f is summable, f is summable. This procedure
uniquely defines f on all descendants of G. In particular
I(C;G) = f(C;G) and f(0;£C»DG) = f(C;G).

The state of an edge is a property of the edge alone. There
fore, if the state of all edges of G is given, the relation of
c-connection is determined on all descendants of G, and also
on all subgraphs of G. But this relation of c-connection on
descendants is ultimately connected with the relation of
c-connection in G, as is shown by the next lemma.

Let G be a graph, let E',E" be disjoint subsets of E(G) and
v,v' be vertices of V(G). Let t G be the graph obtained by
contracting the edges of E' from G, and v,v* the vertices of

associated with v,v'. Then v and v* are connectedv (Ce 'g )
in G,'E’UE" if and only if v and "v*" are connected in (éF G)£

Proof. Preliminary remarks: (a) if v and v' are connected
in a graph G, there is, by definition, a path in G connecting
them, and we may even say that there is a vertex-disjoint
path in G connecting them, i.e. a path in which each vertex

£ *occurs only once; (b) all edges of (C G) „ and G„, are£ £

13



edges of GEtuE„.

Corollary

If there is a vertex-disjoint path in G„, „M between v and v'
t h  U a _

we construct from it a path in (C G)En between v and v in
the following way: If any edge of E ' occurs in the path, we
remove it together with the preceding and succeeding vertex- t
and we replace it by the vertex of C G associated with the
preceding vertex.

•p t __
If there is a vertex-disjoint path in (6 G)̂ ,, between v nn^
v', we construct from it a path in between v and v' in
the following way. First, if v is incident in G with the first
edge ei of the path, let v be the first vertex of the path in
G , to be constructed. If v is not incident in G with ei,E UE
there is a vertex vM of V(G) incident with e^ in G such that
v" = v, so there is, by definition of contraction, a path in
G , between v and v" and this path will be taken as the firstE
part of the path in Ggiygn from v to v' to be constructed.
Secondly, ê  is also incident in G with a vertex v"' f v,v",

E * --so the second vertex of the path in (C G)„„ must be v ,
we can repeat the procedure on the second vertex and the second

and

edge of the latter path. By the finiteness of the path in (C
we obtain in this way a path in G.,,̂ !! between v and v'.

,e V

For all descendants of a graph G:
Y = Y, 7^7=Y^t. YvV, = Y^f,, 6yV = ^ V 7*
Functions having this property are called invariant. The
&2S-invariance property does not hold for all random variables;
e.g. u ï a), yTT ̂  YpT » Y^ ^ Y“ in general. However,G O V V f f o o o o
if the number of contractions is finite, then yv = Yy» Yv = Ŷ «
For convenience we shall sometimes drop the association bar over
functions and vertices, so we shall write f instead of f, and
v instead of v, where no confusion can arise.

Using the extension of f to all descendants of G, we shall

14



Theorem 1

( 3 . 2)

( 3 . 3)

(3 . 4)

( 3 . 5)

p ro v e  a r e c u r s io n  theorem  in  w hich th e  e x p e c ta t io n  v a lu e

<f;G> i s  e x p re sse d  in  te rm s o f  th e  e x p e c ta t io n s  v a lu e s

and < f i8  G> d e f in e d  on s m a lle r  g ra p h s . T h is
e e

p ro p e r ty  i s  e s p e c i a l l y  u s e f u l  in  th e  ca se  o f  (Z Z  —in v a r i a n t

random v a r i a b l e s .

R ecu rs io n  theorem ; L e t (G,P) be  a p e r c o la t io n  model and f

an in t e g r a b le  random v a r i a b l e .  Then f o r  a l l  edges e€E(G)

<f;G> = p e <f;<^G> + qg < f ;^ G >  •

P ro o f . By d e f i n i t i o n  <f> = dP(C) f (C ) .  By c o n s t r u c t io n  P
E G E ** 0

can  b e  re g a rd e d  as  a p ro d u c t m easure i . e .  P = P = P * P ,

w here th e  upper in d ex  s p e c i f i e s  th e  domain o f  P . I f  f  i s

summable we can  ap p ly  F u b in i 's  th eo rem , i f  f  i s  n o n -n e g a tiv e

i t  i s  th e  l i m i t  o f a n o n -d e c re a s in g  sequence o f  summable

random v a r ia b le s  and we may a g a in  ap p ly  F u b in i 's  theorem :

dPe (C ')dP  (C) f(C ) -
CCE C'C{e} C"9E-e

„E -e

dPE~e (C") f(C '+C ";G )

(C) f(C +e;G ) + q. dPE 6 (C) f  (C;G)

CCE-É CCE-e

By th e  d e f in i t i o n  o f  th e  e x te n s io n  o f  f  to  th e  d e scen d a n ts

(Z and SS G t h i s  i s  eq u a l toe e

dP (C) f ( C ;^ G )  + qe dP(C) f (C ;# eG)

( O - e CCE-e

p <f;(?G> + q < f;S 'G > .*e e ne e

F i n a l l y ,  i f  f  i s  i n t e g r a b l e ,  b u t n o t n e c e s s a r i ly  summable o r

n o n -n e g a t iv e , th e n  e i t h e r  th e  p o s i t i v e  p a r t  f  o f  f  o r  th e

n e g a t iv e  p a r t  f  o f  f  i s  summable, say  f  , w ith o u t lo s s  o f

g e n e r a l i t y .  We may use  F u b in i 's  theorem  on th e  p o s i t i v e  and

n e g a t iv e  p a r t  o f f  and c o l l e c t  th e  te rm s w ith  p and qg :

SG>1  -
6 J

<f;G>=<f ;G> -  <f ;G> Pe <f ■;<?e G> q <fe

p < f“ ;(?G>e e
+ q <f 12 G>ne e }

<f ; C  G> -e ;£eG>} V <f ;jgrG> -  <f \ 2 g>

15



(3.6)

Because f+ = f and f = f this equals

p ]<f + ; 8 G> - <f ; & G>L+ q •ej e e l  v»1

= p <i\6 G> + q <f;$ G> .

<f ;#G> - <f ;2f G>y =e e (

Since the summability of a function implies the summability
of the sections we have the following corollary.

Corollary The expectation value of a summable random variable f is a
linear function of p with the finite boundary values:

(3.7)

(3.8)

(3.9)

<f;G,p = 0> = <f;2fgG> and <f;G,pe = 1> = <f;d?G> .

The recursion theorem may be generalized using the extension
of functions to general descendants in the case of summable
or non-negative random variables:

<f ;G> ,E' .-=■ „C* D'dP (C’) <f;£ #  G> for all E'CE(G), D^E'-C*
C'CE’

In particular we obtain for E' = E:

<f;G> dPE (C) <f;dP̂ DG>

CSE(G)
= dP(C) f(C;G).
C£E(G)

3-3. A relation between y and 6g .

An application of the recursion theorem is the proof of a
proposition relating the expectation value of the number
of c-clusters, y, with the expectation value of the in
dicator 6 of the event that the ends of the edge e are ine
different c-clusters. To prove this we need a lemma which
contains the essential feature of the relationship (cf.
Berge 22) ch. 4, Th. 1).

We recall that the number of clusters of a graph G is the
number of equivalence classes of the vertices of G under

16



Lemma 2

(3.10)

the relation of connection in G: if G' is a cluster of G,
V(G') is an equivalence class of V(G) under connection in G.

Let G be a countable graph. Then for all edges e£=E(G) and all
subsets CCE (G)-e

y(C;G) = y(C+e;G) + <Se(C;G).

Proof. We recall that y(C;G) is the number of clusters of G ,
y(C+e;G) is the number of clusters of Gr , and 6 (C;G) is the
indicator of the event that the ends of e are disconnected in
G_. Evidently, a path in Gr between two vertices is a path inc ^
G between the same vertices. Let v,v'eV(G) belong to aC+e
cluster of G e , then there is a path in G^+e between them.
If the cluster of G„ containing v,v* does not contain e,C+e
this path is a path in Gc, too. Therefore, a cluster of Gc+e
which does not contain e is a cluster of G„ which does not
contain an end of e. There is just one cluster of Ĝ ,+e con
taining e, with vertex set V', say, and the vertices of V'
may belong to several clusters of Ĝ ,. We shall prove that
"several" can be only 1 or 2. Either 6 (C;G) = 0  or
6 (C;G) = 1. First, let 6e(C;G) = 0; then there is a path
in G„ between the ends of e. Consequently, a path in Ĝ ,
between any two vertices of V' can be obtained as follows:
by definition, there is a path connecting them in Gp ; if
this path contains e, replace e by the path in Gp between the
ends of e. Hence, there is just one cluster of Gp containing
the vertices V', and so y(C;G) = y(C+e;G). Secondly, let
6e(C;G) = 1, then there is no path in Ĝ , between the ends of
e. In this case, each vertex v of V' is connected in Ĝ,
either with one end or with the other end of e. For, there
is a path in G to a given end of e; the part from v tou' 6
the first end of e occurring in it (which may be the given end)
is a path in Gp from v to that end, not containing e. If
there was also a path in Gp to the other end of e, we could
construct a path in Gr between the ends of e, contrary to
the hypothesis. Hence, there are just two clusters of G^,

17



pontaining together the vertices of V ’, and so y(C;G) =
y(C+e;G) + 1. | |

Proposition 1 Differentiation relation.
Let (G,P) be a percolation model such that y is summable.
Then for all edges e€E(G), with p = 1-q :

<3-n) viH” * ‘v-e

Proof. By the preceding lemma y(C;G) = y(C+e;G) + 6 (C;G)
for each C£E(G)-e = E(3^G) = E(£? G). By the -invariance
of y and of this is equivalent to y(G;£H3) = y(C;£?G) +
+ 6e (C;g!^G), and integrating we get

(3.12) <y;#G> = <y;^G> + <6e;^G> .

By the recursion theorem <y;G> = Pe<y;^’eG> + qe<y G>, from
which it follows that

(3.13) <y;G> = <y;^eG> + qe<6e;^eG>.

By the summability of y this can be differentiated, giving:

(3*14) qe d r <Y;G> = qe<<Se; % G>'e

The proposition follows because <6e;G> = pe<6e;4?G> +
+ qe<6 G> , again by the recursion theorem, and
<6 G> = 0 because in Q  G the ends of the edge e coincidee e e
so that 6 =0.e 1 1
Notice: obviously, for a finite graph y is summable for
any P.

4. THE ISING MODEL OF FERROMAGNETISM

4.1. Reformulation of the partition function

We consider a finite spin | Ising system and we represent

18



this system by a finite graph G, so that to each spin there
corresponds a vertex of the graph, and to each interaction
between a pair of spins there corresponds an edge incident
with the corresponding vertices. With each vertex v we
associate a spin variable a , which can take the value +1
or -1. With each edge e we associate a coupling constant
J and an edge variable a = 0 *o , , where v and v' aree e v v
the ends of e; i.e. {v,v'} = i(e). The Hamiltonian of
the system is taken to be

(4.1) H - - I J (a -1),
eSE(G)

where E(G) = E is the set of edges of G, and the energy of
the ferromagnetic ground state has been chosen to be zero.

Let d represent a sequence of values of a for all v=V(G)
and £ denote the summation over all possible sequences 0.
The canonical partition function Z of the model is defined
as

(4.2) Z = \ exp{-6H(o)} .
a

We shall formulate the partition function in terms of the
percolation model  ̂ . To this end we shall first show that
the partition function Z(G) of a system with finite graph G
satisfies a recursion relation. For any edge esE(G)

(4.3) Z (G) = PeZU?eG) + qeZ(0eG),

where

(4.4) qe = exp(-26Je), pg = l-qe.

To prove this relation one notices that the sum over all
states of G can be split up into a sum over all states with

= +1, and a sum over all states with a = -1:e e
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(4 .5 )

(4 .6 )

(4 .7 )

(4 .8 )

le x p ig  I J
o 1 e ’GE(G)

l
'■CJe + 1

exp. I  3J
e ’eE e ’

I e x p f  I 3J , (a , - l )  .
Al J e ’GE-e e 6a =+l v. J

( a e , _ 1 )

The s p in  s t a t e s  o f  th e  g raph  6. G, w ith  th e  edge e c o n t r a c te d ,

a re  in  o n e - to -o n e  co rresp o n d en ce  w ith  th e  s p in  s t a t e s  o f th e

g raph  G w hich have a = +1, and E(£^G) = E (G )-e , so

Z (£ g) = I  exPI  I  BJ ' r(9 t - l ) l  •
6 o l e ’EE-e V J

oe +l '■

B ecause V(2J G) = V (G), th e  s p in  s t a t e s  o f  th e  graph  Si G a re
6  6

j u s t  th e  same as th o s e  o f  th e  g raph  G, and th e  summation over

a l l  s t a t e s  may be s p l i t  up as b e fo re .  U sing E(4) G) = E (G )-e ,

we o b ta in

Z(5J G) = I exp J  I BJ , ( a  | - l ) |  + I exp f  I 6J , ( a  , - 1 ) . .
e a 7e 'GE-e e e J a [ e 'e E -ea =+l <-* a = -l ^e e

The above-m entioned  r e c u r s io n  r e l a t i o n  f o r  Z(G) fo llo w s  by

e l im in a t io n  o f  th e  p a r t i a l  sums from  Z(G ), Z((^G) and

Z(J^G) in  e q s . ( 4 .5 ) ,  ( 4 .6 ) ,  ( 4 .7 ) .

The r e c u r s io n  r e l a t i o n  f o r  Z(G) im p lie s  an i n t e r p r e t a t i o n  fo r

Z (£e G) and Z Ü ^G ):

Z (^ G )  = lim  Z(G) , Z(glG) = l im Z (G ) ;
J ->+oo e J ->0

e e

so ta k in g  th e  l i m i t  o f  s tro n g  fe r ro m a g n e tic  c o u p lin g  i s

e q u iv a le n t  w ith  c o n t ra c t in g  e d g e s , and ta k in g  th e  l i m i t  o f  weak

c o u p lin g  i s  e q u iv a le n t  w ith  d e le t in g  edges as one would e x p e c t.

I f  we i t e r a t e  th e  r e c u r s io n  r e l a t i o n  w ith  r e s p e c t  to  a l l  edges

we f i n a l l y  g e t



(4 .9 ) Z(G) = J p CqD Z (dCjDDG ),
C&

w hich e x p re s se s  th e  p a r t i t i o n  fu n c t io n  o f  G in  te rm s o f  th e

p a r t i t i o n  fu n c tio n  o f  system s w ith o u t i n t e r a c t i o n .  E v id e n tly

Z(tf^J^G) = exp{ | V(£G£I^G| In  2} . B ecause th e  number o f

v e r t i c e s  o f  such  a g raph  e q u a ls  th e  number o f  c l u s t e r s ,  and

th e  l a t t e r ,  u n lik e  th e  fo rm e r, i s  a C Z - i n v a r i a n t  random

v a r i a b l e ,  we can w r i t e  |V (6G2^G) | = y(0»^2^G ) = y (C ;G ), and

th e r e f o r e :

(4 .1 0 ) Z(G) = I  pCqD 2y(C;G) = <2Y;G,P>
CSE

i n  th e  te rm in o lo g y  o f  th e  p e r c o l a t i o n  m odel, w ith  th e  p ro 

b a b i l i t y  m easure P g e n e ra te d  by ( 4 .4 ) .  The te rm  p r o b a b i l i t y

i s  j u s t i f i e d  o n ly  in  th e  fe r ro m a g n e tic  c a s e ,  i . e .  when

J _> 0 f o r  a l l  edges eeE (G ), b eca u se  o n ly  th e n  0 <_ qe 1.

By e q . (4 .1 0 ) we have r e w r i t t e n  th e  p a r t i t i o n  fu n c t io n  o f  an

. I s in g  sy stem , w hich by d e f i n i t i o n  i s  a sum o v e r s p in  s t a t e s ,

as a  p e r c o la t io n  model a v e ra g e , i . e .  as a sum o v er edge s t a t e s .

4 .2 .  G e n e ra liz e d  r e fo rm u la t io n  o f  th e  I s in g  m odel.

I n  th e  th e o ry  o f  th e  I s in g  model one i s  n o t  o n ly  i n t e r e s t e d  in

th e  p a r t i t i o n  fu n c t io n  b u t  a ls o  in  c a n o n ic a l a v e ra g es  o f  sp in

fu n c t io n s  f ( o ) :

(4 .1 1 ) <f> = I  f ( o )  exp{-BH (a)}can o
The d enom inato r in  th e  r ig h t -h a n d  s id e  o f  t h i s  d e f i n i t i o n  i s  th e

p a r t i t i o n  fu n c t io n  Z, w hich in  th e  p re v io u s  s e c t io n  h as  been  r e 

w r i t t e n  as a p e r c o la t io n  model a v e ra g e . The n u m e ra to r  o f  th e

r ig h t -h a n d  s id e  can a ls o  b e  r e w r i t t e n  as a p e rc o la tio n -m o d e l

a v e ra g e , b u t  th e  method used  in  th e  p re v io u s  s e c t io n  can n o t be

a p p l ie d .  I n s te a d  we s h a l l  u se  an a l t e r n a t i v e  m ethod , w h ich ,

o f  c o u rs e ,  a ls o  a p p l ie s  to  Z.

We s t a r t  by w r i t in g  1 = i ( l +0e ) + j> 0- a e )» an<* th e re b y

exp{-BH(o) },
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(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

I f(a)exp{-BH(a)} =
a
= I i(l+0 ) f (a)exp{-gH(a;G)} + £ £ 0 ~ ae) f (a)exp{-£H(a;G)} =

a a
= I i O +cr ) f (a)exp{-BH(a;2> G) } + q £ |(l-a ) f (cr) exp{-6H(o ;^ G ) },

a a

by the same argument that was used in section 4.1. Notice
however that both terms in the last member are sums defined
for the same graph 5  G. Multiplying the first sum by 1 = p +q0 0 0
and collecting the terms with pg and those with q we obtain:

q £ f (cr)exp{-gH(a;j3eG)} + pg £ £ 0 +ae) f (a)exp{-gH(a;S*eG) } .
a a

Iterating this with respect to all edges we get the expansion

£ f (o)exp{-gH(a;G)} = £ pCqE C £ U O +c)}C f (a)exp{-6H(a;#EG)-} =
a c£E a

= I pCqE C I {è (1+cr) }C f(a),
OCE a

because the Hamiltonian of a graph without interactions is zero.
If we define a function on the event space of G, thus for every
CCE(G), by

f(C;G) = I (i(1+a)>C f(a;G),
a

then by the definition of canonical averages we have

<f> = <f>/<T>.can

In this way we have arrived at a description of canonical
averages in terms of percolation model averages. The factor

c • •{|(l+o)} can be interpreted as the restriction that all
spins connected by c-edges must be parallel in order to give
a non-zero contribution to the summation. So each c-connected
component of G acts as one spin. Since the operation ~is
linear and all spin functions f(a) can be linearly expressed
in terms of 1. a , a a ,, etc., it is sufficient to con-* v v v
sider the random variables related with these special functions:
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(4.17)

(4.18)

(4.19)

(4.20)

Ï(C) = l { i O +o)>C-l = 2y(C),
a

fyc) =I(iO+a)}C-av = 0,
a

<5̂ .co ■ I (i<i«))c-«vv  - ■'w<c) 2ï(c)’a

and in general for V'£.V(G):

T t o  - l UO+c7)}C aV ’ = ev ,(C) 2y(C),
a

where e , is the indicator that each c-cluster contains an
even number of the vertices of V ’. The random variables
(4.17) are all (if)-invariant and obviously satisfy the re
cursion relation. From eqs. (4.15)-(4.17) we find:

Z(G)

< a  >v can
<a a , > =v v can

can

<2y ;G>,

0 ,

<ev ,2Y>/<2Y>.

If in eq. (4.18) v and v' are the ends of the edge eSE(G)
we have in particular <o > = <y 2Y>/<2Y>. On the othere can e
hand, one easily sees by differentiating the free energy,
F = -g In Z,with respect to J :

—  = Z-1 I exp{-(3H(a)} = Z_1 J (l-oe) exp{-gH(a)}=l-<ae>can.
e a e o

Using eqs. (4.4), (4.10) and (4.18) we obtain

q 2 In <2Y> - <6 2Y>/<2Y>.He 3q eHe

This equation (4.20) is analogous to eq. (3.11), and shows
that in the percolation model the function <y> plays the
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same role as the free energy in the Ising model.

Up to now we have chosen the ground-state energy for ferro
magnetic interaction zero in order to normalize the measure
P:P(1)=1, and to make it possible to interpret P as a pro
bability: 0 P(d )=q < I. In the antiferromagnetic case
the above given procedure leads by eq. (4.4) to values
q >1 and Pe<0. It is possible to retain a probabilistic
interpretation of the p's and q's by replacing for "anti
ferromagnetic edges" the factor (oe~l) in eq. (4.1) by (oe+l)
and the factors i(l+a ) in eqs. (4.12)ff by i (1—CTe) » an(* vice

"V Vversa, but in that case the function 2' in eq. (4.10) is re
placed by a more complicated one.

4.3 Ising model in magnetic field.

In section 4.1 and section 4.2 we have considered the spin £
Ising system without an external magnetic field. In the case
where there is a magnetic field, which has the value Bv at
the position of the spin v with magnetic moment m , the
Hamiltonian of the system is

(4.21)

(4.22)

- I
eEE (G)

J (a -1)e e -  I
veV(G)

m B (a -1) .V V V
A Q\ O ƒ \

It is well known (cf. Griffiths , Suzuki ') that such an
external magnetic field can be replaced by one supplementary
"ghost spin" which interacts with any spin v with a coupling
constant mvB . We may therefore replace the Hamiltonian of
the system with graph G in an external magnetic field, given
in (4.21), by the Hamiltonian of the system with graph G , ob
tained from G by adding one vertex o and for each vertex v of
G an edge incident with v and o:

H° = - I J (a -1)
eeE(G°) ®

The partition function Z° calculated from this Hamiltonian H°
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is twice the partition function Z calculated from H, which
has, of course, no influence on the expectation values of
spin correlations.

4.4. Ashkin-Teller-Potts model.

There is a straightforward generalization of the Ising model
in which each atom can be in n different states, where n is

3 4)an arbitrary number >_ 2 * -. In this so-called Ashkin-
Teller-Potts model the energy between two interacting spins
is taken to be zero if the atoms are in the same state, and
equal to a constant if they are in different states. If the
system is represented by a graph, just as in the Ising model,
and if the above-mentioned constant is denoted by 2J , the
Hamiltonian can again be written in the form (4.1), where the
edge variables a have the values +1 and -1, accordingly as
the atoms at the ends of e are in the same state or not.

* Although we cannot introduce simple spin variables for the
states of the atoms (i.e. a cannot be written as a simple
product of two spin variables), we shall still denote the
states of the system by o. We can then apply the same pro
cedure as was used in sections 4.1 and 4.2. We thus get a
recursion relation for the partition function Z=Z (G,8,J)n
just as in the case of 2 states per atom (see eq. 4.3).

(4.3)' Z(G) = pe Z(<*G) + qe Z(^G),

where pg and q are again defined by eq. (4.4). But now,
after iterating eq. (4.3), we have to substitute in eq.
(4.9) Z(éjSb^G) = because in the graph each
of the "atoms" can independently be in n states. So eq.
(4.10) is generalized to

(4.23) Z(G) - I pCqDnY(C;G) - <nY;G,P>.
CCE

In case the interaction energy 2J is positive, we have
again 0 < P < 1, i.e. P is a probability measure.
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5. GRAPH COLOURINGS

5.1. Formulation of the problem

An old and well-known problem in graph theory is the
following. Let G = (V,E,i) be a finite graph and Qn a set of
n elements called "colours". Each mapping f of the set of
vertices V into the set of colours Q is called a (vertex)n
colouring of the graph with at most n colours; colourings
with the property that for each edge the ends have different
colours are called n-colourings. The problem is to study the
total number of n-colourings of the graph, which is denoted
by P(n;G), as a function of n.

In the special case that G is planar, i.e. if there exists a
faithful representation of the graph as a map in a plane such
that lines representing edges do not cross, the number of
n-colourings of G is equal to the number of country colourings
of the dual map such that neighbouring countries have different
colours.

5.2. Recursion relation -

As found by R.M. Foster (unpublished, see however ref. 25)
there exists a recursion relation for the total number of
n-colourings P(n;G). It is derived by dividing the n-
colourings of 2 G for a given edge e into those which have
the property f(v) 4 f(v') where v and v' are the ends of the
edge e, and those with f(v) = f(v') (possible because e is
not an edge of # G). The former ones are just the n-colourings
of G, the latter ones just the n-colourings of ^G, because in
the latter graph v=v'. So

(5.1) P(n;2>eG) = P(n;G) + P(n;<fG),

and we arrive at the recursion relation:

(5.2) P(n;G) = P(n; 2gG) - P(n;^G).
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(5.3)

(5.4)

(5.5) '

This may be compared with eq. (3.2) and eq. (4.3). Iterating
eq. (5.2) with respect to all edges we get 6.D. Birkhoff's
formula

P(n;G) = I (-)C P(niCCSDG) - ][ (-)C nY(C;G),CO CO
C D .because the graph C 2) G consists of just y(C;G) isolated

vertices which can be coloured each one independently with n
colours.

We can write, with p=l-q, D=E-C:

r , .C Y(C) , . -E r CD y(C)I (-) n ,v ' = lim q I p q n TV .
C O  q-**> C£E

If we allow also negative values of measures in the percolation
model, as we did in the case of the antiferromagnetic Ising
model, we can write eq. (5.3), with the aid of (5.4), as

P(n;G) lim q E Ĝ) <ny ;G,P>,
q-**>

1-q.

This should be compared^with eq. (4.10) and eq. (4.23). For
the antiferromagnetiq/case of the Ashkin-Teller-Potts model
the probability q/^®° corresponds to temperature zero, so the
number of n-qp^ourings is equal to the degeneracy of the ground
state of tile antiferromagnetic Ashkin-Teller-Potts model with n
stat^s^per atom.

6. LINEAR RESISTANCE NETWORKS

6.1. Formulation of Kirchhoff’s problem

In this section we shall consider finite electrical networks
consisting of linear resistors and generators of electromotive
force; the electrical character of the network is in no way
essential to what follows. We shall represent such an electrical-
resistance network by a finite connected graph G = (V,E,i) where
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(6.1)

(6.2)

(6.3)

V is the set of nodes of the network, E the set of branches
of the network (resistors or generators) and i the incidence

9)relation. Kirchhoff ' solved in 1847 the problem of finding
the currents through the branches of a finite network each of
which has a resistance and an electromotive force. By virtue
of the superposition principle, however, it is sufficient to
solve the case where only one edge e has an electromotive
force U , say, while every other edge e V e  has a resistance
R Moreover we shall concentrate on Kirchhoff's solutione
for the electric current I through the edge e. This solution
can in our notation be written as follows. If U and I aree e
measured in the same sense, then

I - - U  I RE'T-e/  I RE-T-e,
6 e Tet(SfeG) /  TeTCéeO>

where for any graph G, T(G) is the collection of edge sets of
all spanning trees in G.

To get this in a more usual form we multiply the numerator and
E—edenominator of (6.1) with the product S of all conductances

se,  ̂*;!■
I - -U I sT /  I ST .
e e te^ G )  /  Te-rĉ G)

Eq. (6.2) expresses the current I as a quotient of the
generating functions of spanning trees of the graphs 2$ G and
CsG. The effective resistance R = - U /I "seen by" thee e e e
electromotive force is, in the special case when e is parallel
to some resistance, say e',

Reff = I ST/  I ST - In I ST ; i(e) - i(e').e TéT(£eG) /TÉTt%G) V t̂tt̂ g)
Indeed, the spanning trees of can be made to spanning trees
of # gG by undoing the identification of the ends of e (which are
the ends of e' too) and adding the edge e'. These spanning trees
are just the spanning trees of 2) G containing e'; hence
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(6.4) i(e) = i(e’),e' TeTT(2eG) TeTOeG)
Ts ;

which proves (6.3). A comparison of eq. (6.3) with (4.20)
. . .  1shows that the generation function of spanning trees S

plays a role similar to that of the partition function of the
Ising model.

6.2. Reformulation

(6.5)

We may observe that the generating function of spanning trees
TZ^(G,S) = Ẑ ,(G) = obeys a recursion relation:

Ẑ ,(G) ■ Z,j,(^G) + SeZ^,(^G) if e is not a loop in G,

because we can devide the spanning trees of G into two classes
according to the occurrence or non-occurrence of the edge e:
if a spanning tree of G does not contain e, it is also a
spanning tree of 2f G; if it does contain e, C G is just a6 6 J.
spanning tree of <2 G. This recursion relation is to be
compared with those in eq. (3.2), (4.3) or (5.1).

We can derive an expression for the generating function of
spanning trees which closely resembles expression (4.10) for
the partition function of the Ising model. To that end we
observe that we may characterize the spanning trees Ĝ , of a
finite connected graph G by the property fcu(T;G)
y(T;G) * 1, or equivalently by

0 ,

(6.6) oj(T;G) + y (T; G) = 1 inf (uj(C;G) + y (C;G)}.
C£E(G)

The last equality follows from the inequalities <d>0 and y >1*
This characterization can be used to generate all spanning
trees of a given finite connected graph G by a polynomial in x:

(6.7) I s
tgT(g )

T I SC lim ,{w(C*G)+Y(CiG)-l} _ ^  X~1 j gC , { . ( 0 ^ ( 0 }
COE x+0 x+0 CCE
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Now p u t t in g  x = f o r  p o s i t i v e  k and u s in g  E u l e r 's  fo rm u la

( c f . r e f .  22 , ch . 4 , t h .  2)

(6 .8 )  o)(C;G) -  |C|  -  |V(G) | + y (C;G)

in  eq . (6 .7 )  we g e t ,  w ith

(6 .9 )  p = k* S (1 + K^S)” 1 , q = (1 + k S )_ 1 ,

th e  e q u a l i ty

(6 .1 0 ) I / - u .  K-i I  I  KT(C)PC,D.
T6*T(g) k+o cce k+o e g :

N o tic e  t h a t  p + q = 1 and 0 <_ p <_ 1 f o r  S >_ 0 ,  so  t h a t  we may

w r i te  th e  g e n e ra t in g  fu n c t io n  o f  sp an n in g  t r e e s  i n  t e r n s  o f

th e  p e r c o l a t i o n  m odel a s :

(6 .1 1 )  Z (G;S) = lim  k” ^ I V' +1}<kY;G ,P> .
k-H)

Eq. (6 .1 1 )  i s  to  b e  compared w ith  e q . (4 .1 0 )  and ( 5 .5 ) .

7 . RANDOM-CLUSTER MODEL

7 .1 .  D e s c r ip t io n  o f  th e  model

A f te r  h a v in g  shown, i n  th e  p re c e d in g  s e c t i o n s ,  t h a t  f o r  a

number o f  m odels and p rob lem s th e  fu n c t io n s  w hich p la y  a  key

r o l e  in  th e  c a l c u la t io n s  can  be  e x p re s se d  in  a u n ifo rm  way in

te rm s o f th e  p e r c o l a t i o n  m odel, we s h a l l  in  t h i s  s e c t io n  i n t r o 

duce a new model w ith  a "key  fu n c t io n "  w hich in c lu d e s  th e

above-m en tioned  key f u n c t io n s  as  s p e c ia l  c a s e s .

L e t f i r s t  G = (V ,E ,i)  b e  a f i n i t e  g rap h  and P a  normed m easure

(P ( 1 ) = 1 ) on th e  e v e n t sp ace  o f  G, g e n e ra te d  by a f u n c t io n  p on

E . We s h a l l  f in d  i t  c o n v e n ie n t to  a llo w  n e g a t iv e  v a lu e s  f o r

p , i . e .  we c o n s id e r  P to  b e  a  s ig n e d  m e asu re . L e t k b e  a  r e a l

number and l e t  y d e n o te  th e  number o f  c - c l u s t e r s .  We d e f in e
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th e  c l u s t e r  (g e n e ra t in g )  f u n c t io n  o f  G by (q = l~p)

( 7 .1 )  Z(G;p , k) = I p CqE CKY^C,G\
GCE

and a normed s ig n e d  m easure by

(7 .2 )  y (C) = y (C ;G ,P , k) = pCqE~ V (C;G) z ' ^ G . p . k)

f o r  a l l  s u b s e ts  CQ5(G) and f o r  a l l  (G ,p ,< ) such  th a t

Z(G ,p , k) ï  0.

N ex t, l e t  G b e  an i n f i n i t e  c o u n ta b le  g ra p h , and l e t  G be an

in c r e a s in g  sequence o f  f i n i t e  subg raphs o f  G such  th a t

U , G = G and Z(G ,p ,< )  f  0 f o r  a lm o s t a l l  n .  F o r any lo c a ln=l n n ’ r ’
e v e n t a  on G th e r e  i s  an n (a )  such  th a t  f o r  n n ( a ) , a  i s  a

lo c a l  ev e n t on G^. The norm al s ig n e d  m easure y (a )  o f  a  lo c a l

e v e n t on G w i l l  b e  d e f in e d  by

(7 .3 )  y(a) -  lim  yQ( a ) , n > _ n ( a ) ,
n-»»

w here y i s  th e  s ig n e d  m easure d e f in e d  on G . A n e c e s s a ry  andu n £
s u f f i c i e n t  c o n d i t io n  f o r  t h i s  l i m i t  to  e x i s t  i s  t h a t  y (c  )

e x i s t s  f o r  a l l  f i n i t e  s u b s e ts  CCE(G). T h is  s ig n e d  m easure y

may be ex ten d ed  to  random e v e n ts  by th e  p ro c e d u re  m en tioned  in

s e c t io n  3 .1 ,  and th e  c o rre sp o n d in g  e x p e c ta t io n  v a lu e  to

random v a r ia b le s  f ,  to  b e  d en o ted  by < f;G ,y>  = < f;G ,p ,x >  = <f> .

N o tic e  t h a t ,  u n lik e  P , th e  m easure y i s  n o t  a p ro d u c t m easu re .

The in f lu e n c e  o f  th e  c - c l u s t e r s  makes th e  edge e v e n ts  dependen t

on each  o th e r ,  and th u s  in t ro d u c e s  a  g lo b a l  e f f e c t  in  th e

m easu re .

A c o u n ta b le  g rap h  G to g e th e r  w ith  a  normed s ig n e d  m easure y

as d e s c r ib e d  above we c a l l  a  ra n d o m -c lu s te r  m o d e l, to  be

d en o ted  (G ,y) o r  (G ,p ,< ) .

In  o rd e r  to  have in  th e  ra n d o m -c lu s te r  model an ana lo g u e  o f

th e  m ag n e tic  f i e l d  in  th e  I s in g  m odel, we s h a l l  o c c a s io n a l ly
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add to the graph G a supplementary vertex 0 and to each vertex
v of V(G) one supplementary edge incident with v and o. The
graph thus obtained will be called supplemented and denoted
G° - (V°,E°,i), with V° - V(G)U{o}, E° = E(G)UEq, where Eq is
the set of supplementary edges. The probability for the edge
incident with o and v to be a c-edge will be p . Furthermore,ov
1 - p = q . The measures generated by p = pUp are de-ov ov o
noted p and p .

7.2. Some properties of the random-cluster model

In the preceding sections we have shown that in the various
systems considered the "key function" obeys a recursion and
a differentiation relation. We shall now show that in the
random-cluster model the cluster function Z obeys a recursion
relation and a differentiation relation.

(7.5)

The cluster function Z is defined for finite graphs G, so the
number of c-clusters lies between 1 and |V(G)| . Consequently,
Z is finite for any finite graph. Let G be a finite graph and
eeE(G) = E, then with E-e=E', E-C = D, E'-C' = D' for
C'CE' ,

Z(G) r C D  y(C;G)
I P q <

CQS
v C' D ’
I p q

C'CE'
Ky(C’+e;G)+ q Ky (c ';G)

V C' D'2, p qc’a:'
fp +q Ke

Y(c';2(eG)

because y is ^<9-invariant, i.e. y (C'»^G) = Y(C,+e;G) and
y (C';3G) = y (C';G) for all e and all C'CE*. From eq. (7.5)
we obtain the following:

Proposition 2 Recursion relation.

Let (G,p ,k) be a finite random-cluster model. Then for all
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/

(7.6)

Proposition 3

(7.7)

Proposition 4

(7.8)

(7.9)

edges eEE (G):

Z (G) - peZ«?G) + qeZ(^G).

Notice that for 0 p 1, eq. (7.6) is a particular case of
theorem 1.

In order to obtain a differentiation relation for Z, we make
use of lemma 2 and the same type of argument as was used in
the proof of proposition 1. Thus we easily obtain the

y
following:

y
Differentiation relation.

Let (G,p,ic) be a finite random-cluster model with p = 1 - q
and Z ^ 0. Then for all edges eEE(G):

9
qe^q“ ln Z <G ’P ’*> = 0 “* )<5e »G,p,ic> •

Finally, we mention the following, almost trivial, property of
the cluster functions.

Product relation.
Let (G,p ,k) be a finite random-cluster model and G' and G"
disjoint subgraphs of G. Then

Z(G'UGM) = Z(G')*Z(G").

Indeed, if GQE(G')ME(G"), C'=cnE', C"ECnE", D' eDOE’ and
D"EDnE", then C= C'UC", D=D'UD", y (C;G) = y (C,;G') + Y(C";G"),
and therefore

pC^D^Y(C;G'UG") _ pC'qD’j^'jG') . C" D"ky (C";G") ̂

Since summation over all CCE'uE" is equivalent to a repeated
summation over all C'CE' and all C"CE", eq. (7.8) follows by
summing (7.9).
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7.3. Special cases of the random-cluster model

(7.10)

(7.11)

(7.12)

(7.13)

In this section we regard only finite graphs. We show that
the random-cluster model generalizes the systems discussed in
previous sections. The percolation problem is regained by
putting k = 1.

C DZ(G,p,1) = 1 and y(C;G,p,l) = p q ,

i.e. v reduces to the original measure P.

As shown by the equations (4.10) and (4.23), together with
(4.4), expressing the partition function of the Ising and
Ashkin-Teller-Potts model in terms of the percolation model,
we have for k = n 2:

Z (G,B,J) = Z(G,l-exp(-2gJ),n) .

As shown by equation (5.5) for the chromatic polynomial we
have further

P(n;G) - lim q"E(G)Z(G,l-q,n).
q-x»

Finally, the generating function of spanning trees in connected
graphs, occurring in the theory of linear resistance networks,
can, by eq. (6.9) and (6.11), be written as

Z (G,S) = lim K"i{lV(G)l+1}Z(G,KiS/(l+KiS),K).
K + 0

The differentiation relations for the various systems follow
from the single differentiation relation (7.7) for the random-
cluster model. The equations (3.11), restricted to finite
graphs, (4.20) and (6.3) are obtained from (7.7) using the same
procedure as for the cluster function.

To begin with, for k = 2 and probabilities (4.4), eq. (7.7)
reduces to eq. (4.20). Next we observe that for k = 1 both
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(7.14)

(7.15)

(7.16)

(7.17)

sides of (7.7) vanish. In order to obtain eq. (3.11) we first
divide both sides of (7.7) by (k- 1) for ic + 1, and then take
the limit 1. From the left-hand side of (7.7) we get, after
having interchanged limit and derivative,

in Z
q J L  H m  ISLL m q J L  U m -----  , by l'Hopital's rule,
*•»«• PC-1 K"1 e3qe K̂ l 3 (̂<-l)

= q — —  lim Z ^ ^ G j P »  ■
4e3qe K-i e3qe

From the right-hand side of (7.7) we get

lim k <̂6 ;G,p,ic> “  <6 »G,p,l> = <6 }G,P>.fi “ C
ic— 1

So eqs. (7.14) and (7.15), together with (7.7), give eq. (3.11).

Finally, we have seen that at least one quantity of linear
resistance networks is also obtained in an asymptotic way,
namely by putting p = k ^S/(1+k ^S), (see eq. (6.9) ), and taking
the limit k+0. Because for k+0 both sides of (7.7) tend to -«>,
they have first to be multiplied by —< , as we shall show, in
order to obtain eq. (6.3). The procedure used to derive eq.

• • Y(6.11) is now applied in the reversed direction to Z =<k ;G,P>
and <6 ;G,p,ic> - <6e<Y ;G,P>/Z. We then obtain

<,Y;G,P(k,S)> - I SC Kl(»(C)n(C)-n,
CCE

<6 kY;G,P(k ,S)> Ki(|v l+2) (l+KiS)-E I SC5 (C)KJ{“ (C)^(C)-2}.
CCE 6

The reason for splitting off the factor ^  in eq. (7.17)
is that we want the power of k in the summation to be non
negative. Under the constraint 6 (C) = 1, which gives the non
vanishing terms, the ends of e are in different c-clusters, so
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(7 .1 8 )

(7 .1 9 )

(7 .2 0 )

(7 .2 1 )

th ere  are a t l e a s t  two c - c l u s t e r s .  S ince go >_ 0 , i t  fo llo w s

th a t  go(C) + y ( C )  ^  2 in  t h is  c a se . The infimum i s  reached
fo r  th ose s e t s  TCE fo r  which go( T )  ■ 0 and y(T) = 2 . E v id e n tly ,

T+e i s  j u s t  th e  edge s e t  o f  a spanning tr e e  o f  G co n ta in in g  e„
By th e  c o n s id e r a tio n s  lea d in g  to  (6 .5 )  we may e q u iv a le n t ly  say

th a t  TeT(d^G)> i . e . ,  on th e  analogy o f  eq. ( 6 .6 ) ,  we may de

f in e  a spanning tr e e  o f  3  G w ith  edge s e t  T by

go( T ; G )  + y ( T , ( 3 )  =  2 =  in f  (o)(C) +  y (C )) ,  T e J ^ G )  *
C: 6 (C)=le

For th e  le f t -h a n d  s id e  o f  (7 .7 )  we g e t ,  a f t e r  m u lt ip ly in g  by
-K2 and changing th e  d i f f e r e n t ia t io n  v a r ia b le  to  Sg (eq . (6 .9 )  ) ,

1 V+K*SJ  a a
lim  —k* ------- T----- -rjj— In Z * lim  -rs— In Z =
k+0 —k e k4-0 e

. lün - L  ♦ llm » ln i ,c,IW0n(0-i)
K+0 (1+k*S ) <4-0 dSe CCg *e

by ( 7 .1 6 ) ,

= —  ln  I  SC lim  kH ü>(C)+y (C )-1} = * ln  Z (G ,S ), by ( 6 .6 ) .
3Se CSE k+0 3Se T

For th e  r igh t-h an d  s id e  o f  (7 .7 )  we g e t  a f t e r  m u lt ip ly in g  by

-K and s u b s t itu t in g  (7 .1 6 )  and (7 .1 7 )

Urn - « ‘ ( W S k *  I SC« (c)K ! ( » ( C ) n ( C ) - 2 } / z s CKH » ( C ) n ( C ) - H  _
1C-1-0 CCE e cgs

-  I  SC lim  5 (C)Ki ( “ (C)+1f<C)‘ 2} / 1 SC Urn «I < » (C )n < C )-l > .
CCE <4-0 e /  CO k+0

= ZT (^feG , S ) / z T ( G ,S ) ,

by (6 .6 )  and ( 7 .1 8 ) .  From ( 7 .7 ) ,  (7 .1 9 )  and (7 .2 0 ) we ob ta in

—  ln  Zt (G ,S)  -  ZT ( ^ G , S ) / z T ( G ,S ) .
e

In order to  ob ta in  eq . ( 6 .3 ) ,  we have to  apply (7 .2 1 )  to  an

edge e* p a r a l le l  to  th e  g iv e n  edge e ,  and to  th e  graph
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Notice that &  ,%G and C G differ only by a loop,e e e

7.4. The cluster generating function and other polynomials

In this section we shall derive relations between the cluster
generating function and other graphs polynomials which in the
course of time have been introduced by several authors, and
which will be defined explicitly below. First we mention the
two-variable polynomial Q, introduced for arbitrary graphs by
Tutte in 1947 In 1954, Tutte , in a study of graph
colouring problems, introduced another two-variable poly
nomial for finite graphs, the dichromate It was not until

. 27)1967 that it was explicitly stated, again by Tutte , that
the polynomials Q and x are identical apart from a factor and
a shift of variables. A somewhat different line of research

12) •was pursued by Zykov ' , who in 1962, in a study of recursive
functions on graphs, introduced a two-variable polynomial ip,
and showed that the four-variable polynomial ip', also intro
duced by him, the two-variable polynomial P, which is identical,
up to a factor, to Tutte's Q, and the dichromate x are aH
particular cases of the polynomial ip apart from factors and
changes of variables.

Finally, we mention the two-variable polynomial p, introduced9g\
by Crapo ' for finite pregeometries (matroids), which he
showed to be identical in the above sense to the generalization
of the dichromate to matroids. We shall show that the cluster
generating function Z, which is a (|e |+1)-variable polynomial,
is a generalization of the above-mentioned polynomials, in the
sense that different edges can have different "weights".

Before showing the connection between Z and the polynomials Q,
X’ ip, ip' and p, we shall introduce a slightly generalized
polynomial Z' and a corresponding measure y'. Let G = (V,E,i)
be a finite graph, x and y be two mappings of E into the set
of real numbers and let 5, n be two real numbers. Then we
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define (D = E-C)

(7.22)

(7.23)

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

Z'(G,x,y,£,n) =

y'(C;G,x,y,£,n)

Y C D Y (C; C)-y(E ;G) o>(C;G)
l x y 71 *CSE

== xc DgY (c; g) -*y (e » g) (c ; g) / Z' (G,x,y ,5 ,n) .

This polynomial Z' and measure y' are related to Z and y
through Euler's formula

|V(G) | + co(C;G) = |C| + y (C;G) .

Eliminating w from Z' and y' by (7.24), we deduce

Z ' ( G , x , y , 5 , n )  ■ (xn + y ) E 5 Y^E,G^n l v ^  lz (G ,xn  / ( x n  + y ) , 5n)

y ' ( C ; G , x , y , £ , n )  = y ( C ; G , x n / ( x n  + y ) , £ n ) .

One observes that apart from factors there is no loss of
generality in going from the 2(|E|+l)-variable polynomial Z'
to the (|E|+1)-variable polynomial Z.

The polynomial Q, now called the dichromatic polynomial, is
defined for finite graphs by Q(G,t,z) S Eg^t^^*6 zW . We
have immediately:

Q(G,t,z) - (z+ l / E(G)lz ^ G^Z(G,z/(z+l) ,tz).

The original definition of the dichromate x» now called the
Tutte polynomial, is rather complicated and will be omitted

12) • •here. As Zykov has shown , the Tutte polynomial is
uniquely determined by the following properties, which were
deduced by Tutte. If all edges of G are loops or isthmi,
X(G,x,y) = x lE l“w (B »G)y“ (E »G\  if g has an edge, e say, which
is neither a loop nor an isthmus, x satisfies the recursion
relation x(G) = x(tfG) + X(^eG). One readily verifies that
Z'(G,1,1,x-l,y-l) obeys these conditions, so

X<G,x,y) - ,IE(G)I (x-l)"T(liG) (y-I)'|V<G) •
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(7 .2 9 )

(7 .3 0 )

(7 .3 1 )

The p o ly n o m ia ls  ^ and ip' in tro d u c e d  by Zykov a r e  d e f in e d  in

th e  fo llo w in g  way f o r  f i n i t e  g ra p h s . I f  a l l  edges o f  G a re

lo o p s ,  ip (G ,a ,8 ) = 1 , i|)' (G ,a ,B ,u ,v )  =  ̂  ̂ v   ̂ . I f  G has

an ed g e , e s a y , w hich i s  n o t a  lo o p , and i/j’ a r e  d e f in e d  r e 

c u r s iv e ly  by th e  r e c u r s io n  r e l a t i o n s  iJ>(G) = aiJ;(0(G) + 0 'K £gG ),

^ ’ (G) = a ^ ’ (j0eG) + 3 ^ ' ( ^ G ) .  One r e a d i ly  v e r i f i e s  t h a t  th e

f u n c t io n s  ( 8 / ( 1 - a ) } ^ Z ( G , 1 - a , ( l - a ) / 8 )  and uY  ̂ ’  ̂ x

x Z ' ( G ,S ,a ,u ,  (v -a ) /B )  obey th e s e  c o n d i t io n s  f o r  and \l>'

r e s p e c t iv e l y ,  so

i(i(G ,a,e) '

i|)' (G ,a ,6 ,u ,v )

| V(G) |

1-a G , l - a , 1-a

| V (G) | J e (G)| X v i l
y ~ a j

The ra n k  g e n e ra t in g  f u n c t io n  p was d e f in e d  f o r  m a tro id s  by

C rapo. A m a tro id , o r  ( c o m b in a to r ia l)  p re g e o m e try , i s  th e

B oolean  a lg e b ra  o f  a l l  s u b s e ts  o f  a f i n i t e  s e t  X to g e th e r  w ith

an in t e g r a l - v a lu e d  ra n k  fu n c t io n  r  on t h i s  a lg e b r a ,  s a t i s f y i n g

th e  fo llo w in g  r e l a t i o n s .  (1) r(0 )= O , (2) f o r  a l l  x£X and

X'CX-x we have r (X '+ x )- r (X * )  i s  0 o r  1, (3) f o r  a l l  x ,x 'e X
and X 'C X -x-x ' we have r (X , + x + x ') - r (X , + x ) - r (X , + x , )+ r (X ')  i s  0

o r  -.1. I f  X i s  th e  edge s e t  E(G) o f  a f i n i t e  g rap h  G, and i f

th e  ran k  fu n c t io n  i s  th e  f u n c t io n  | C| — oj(C;G) ■ |V(G) | — y (C ;G ),

p has th e  fo llo w in g  form :

p(G .c ,n )  i I l T ( e , « - T ( * . « > „ - < B l * ) ; So>
cep

p(G,S,n)  -  ( n + l ) l E(G)' r Y(EjG) n " lV(G)l z ( G , n / ( n + l ) , 5 n ) .

8. DISCUSSION
From th e  fo re g o in g  a n a ly s i s  one can  draw two m ain c o n c lu s io n s ,

a) A number o f  seem ing ly  u n r e la te d  p h y s ic a l  sy s te m s , such  as

th e  l i n e a r  r e s i s t a n c e  n e tw o rk , th e  p e r c o la t io n  model and th e

I s in g  m odel, can  be c o n s id e re d  as  s p e c ia l  c a se s  o f  one s in g le
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(8.1)

(8.2)

(8.3)

(8.4)

model, the random-cluster model. This model has the advantage
over the Ashkin-Teller-Potts model, which constitutes another
generalization of the Ising model, that the parameter k
characterizing the various special cases can take all real
values, including the remaining non-negative integral values
0 and 1. This fact enables one to study the properties of the
model as a function of a continuously varying additional para
meter. If, e.g., the system exhibits a phase transition in
the thermodynamic limit, one can investigate how its critical
behaviour changes with k .

In this connection it might be of interest to study those
quantities which form the generalization of the thermodynamic
quantities and spin correlations of the Ising model. As such
we mention the generalized free energy

F(G°,p °,k) = In Z(G°,p °,k)

and its derivatives, tleg~” F (G°)» qe*3q"T  qe3q~ F Ĝ°̂  etc*
the first of which can, eby proposition 2, be written as

qe~ F ( G ° )  = (l-K-1)<6e;G0,y°>,

and in addition the quantities <y ,>, <y iv ii>» etc*

Of particular interest are the (generalized) local magnetization
M and local susceptibility x:

M(G°,v) = (I-*'1) - <lovs | - * W ° >  = (1-K‘ I)<Y0V>,
ov

x(G ,v,v') *ov3q 4ov'3q ,nov nov
F(G°),

and the corresponding "global" quantities, obtained by summing
over all vertices and vertex pairs, respectively.

b) The cluster generating function Z(G,p ,k) which takes a
central place in the theory of the random-cluster model, is
a straightforward generalization of a polynomial in two
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variables, the dichromatic polynomial, which is playing a more
and more important role in the theory of graphs and its ex
tension, the theory of matroids. The dichromatic polynomial
of a given graph G is the generating function for the number
of spanning graphs of G with a given number of clusters and
a given cyclomatic number; the cluster generating function
generates all individual spanning subgraphs in such a form
that the number of clusters and the cyclomatic number can be
read off immediately.

The dichromatic polynomial has recently been put in a wider
.29)mathematical perspective by Brylawski in an interesting

study on what he calls the Tutte-Grothendieck ring. The main
idea of Brylawski's work goes back to Tutte's paper ^  in
which he introduced the polynomial Q. One might expect that
a combination of the ideas developed in this branch of mathe
matics, which deals almost exclusively with finite sets, with
those developed in the theoretical treatment of the thermo
dynamic limit in translationally invariant systems will lead
to a deeper understanding of phase transitions.
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ON THE RANDOM-CLUSTER MODEL

II. The percolation model

Synopsis The relationship between several criteria for large-range
connectivity in an infinite percolation model is investigated.
In particular, we establish the equivalence, under a non
trivial condition, between weak and strong large-range
connectivity, related, respectively, with the probability of
a vertex to belong to an infinite cluster and the probability
of a vertex to be connected with vertices "very far away".
Furthermore, it is shown that the role of infinity can, in a
certain sense, be taken over by a supplementary vertex.
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1. INTRODUCTION

T h is  p a p e r  i s  th e  se co n d  one i n  a  seq u en ce  o f  p a p e rs  on th e

r a n d o m - c lu s te r  m o d el. I n  th e  f i r s t  p a p e r   ̂ , to  b e  r e f e r r e d  to

as I ,  th e  r a n d o m - c lu s te r  m odel was d e f in e d  and shown to  in c lu d e

as  s p e c i a l  o r  l i m i t i n g  c a s e s  th e  l i n e a r  r e s i s t a n c e  n e tw o rk , th e

p e r c o l a t i o n  m o d e l, th e  I s i n g  m odel and th e  A s h k in - T e l le r - P o t t s -

m o d e l.

The m ain  r e a s o n  why th e  I s i n g  m odel h a s  b een  e x te n s iv e ly  i n 

v e s t i g a t e d  l i e s  in  th e  f a c t  t h a t  i t  e x h i b i t s  a  p h a se  t r a n s i t i o n ,

e x i s t i n g  in  th e  o c c u r re n c e  o f  a  c e r t a i n  ty p e  o f  lo n g - ra n g e

o r d e r in g  o f  th e  s p in s  u n d e r  c e r t a i n  c o n d i t io n s  o f  te m p e ra tu re

and m a g n e tic  f i e l d  s t r e n g t h ,  and th e  a b se n c e  o f  su ch  an o r d e r in g

u n d e r  d i f f e r e n t  c o n d i t io n s .  A s h a rp  t r a n s i t i o n  b e tw een  th e  two

reg im es  o c c u rs  o n ly  i f  one t a k e s  th e  therm odynam ic l i m i t  o f  a

m onotone i n c r e a s i n g  seq u en c e  o f  f i n i t e  s y s te m s . A l l  q u a n t i t i e s

o f  i n t e r e s t  r e l a t e d  w i th  o r d e r in g ,  su c h  as  th e  f r e e  e n e rg y , th e

sp o n ta n e o u s  m a g n e t iz a t io n ,  th e  m a g n e tic  s u s c e p t i b i l i t y  ( a l l

ta k e n  p e r  v e r t e x ) ,  a r e  th e r e b y  f u n c t io n s  on an i n f i n i t e  sy s te m

w h ich  i s  th e  l i m i t  o f  f i n i t e  s y s te m s .

The q u e s t io n  a r i s e s  w h e th e r  th e  r a n d o m - c lu s te r  m odel a l s o  ex 

h i b i t s  a  p h a s e  t r a n s i t i o n  o f  some s o r t .  B e fo re  s tu d y in g  t h i s

q u e s t io n  i n  i t s  g e n e r a l i t y  i t  i s  i n t e r e s t i n g  to  fo c u s  a t t e n t i o n

on th e  s p e c i a l  c a se  o f  th e  p e r c o l a t i o n  m odel. I n  th e  f i r s t

p l a c e ,  t h i s  m odel can  b e  d e f in e d  d i r e c t l y  f o r  an i n f i n i t e

c o u n ta b le  g ra p h , w i th o u t  th e  i n t e r v e n t i o n  o f  f i n i t e  g ra p h s .

S e c o n d ly , f o r  an  i n f i n i t e  c o u n ta b le  g rap h  th e  m odel shows a

"p h a se  t r a n s i t i o n " ,  th e  p r o b a b i l i t y  t h a t  a  g iv e n  v e r t e x  b e lo n g s

to  an i n f i n i t e  c - c l u s t e r  b e in g  z e ro  f o r  c e r t a i n  c h o ic e s  o f  p and

p o s i t i v e  f o r  d i f f e r e n t  c h o ic e s  ( s e e  B ro a d b e n t and H am m ersly,
o \  ,

and H am m ersley '  ) .  M o reo v e r, th e  p e r c o l a t i o n  m odel i s  n o t

o n ly  a  s p e c i a l  c a s e ,  b u t ,  i n  a  s e n s e ,  a l s o  th e  b a s i s  o f  th e

r a n d o m - c lu s te r  m o d el. One m ay, t h e r e f o r e ,  e x p e c t  t h a t  many

p r o p e r t i e s  o f  th e  p e r c o l a t i o n  m odel w i l l  b e  t y p i c a l  f o r  th e

r a n d o m - c lu s te r  m odel as  a  w h o le .

I
/
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In § 2 we show that the functions listed in I § 3.1 are random
variables. In § 3 a basic theorem on covariances of random
variables of a given type is derived. On the one hand, this
theorem is a generalization of an inequality derived and used by

3)Harris in a paper on the percolation model . On the other hand,
it is closely related to the well-known second inequality of
Griffiths ^  , as will be shown in a subsequent paper. A further
generalization of the theorem to measures on finite distributive
lattices will be given in another paper by Ginibre, Kasteleyn
and the author  ̂ .

Section 4 deals with various criteria for large-range connectivity
in the percolation model. These criteria are shown to be strongly
related, and independent of local disturbances of the graph. The
covariance inequality turns out to be crucial in the analysis.

In § 5, it is shown that for locally finite graphs there is a
connection between functions expressing the large-range connectivity
of the percolation model and certain functions in the supplemented
percolation model, introduced in I § 7.1. The supplementary vertex
turns out to play the role of a "point at infinity".

Finally, in § 6, the results of the paper are discussed.

To conclude this introduction we make a few remarks concerning
notation and other conventions.

In the proof of various propositions we shall need increasing
sequences of finite graphs having a given infinite countable
graph as a limit. We choose such a sequence once and for all,
denoting the sequence by Gj, G2» G3, ... . Then, by definition,
(1) G!CG2CG3..... (2) G = ^ “=1Gn - We shall further write
V(G ) = V , E(G ) = E , B(G ) = B , where B(G ) is the vertex' n n n n n n *•*
boundary of G in G, to be defined in the next section. If
V ’,V" are subsets of V then the distance between them (in G) is
denoted d(V,V"), i.e. d(V',V") is the infimum of the lengths
over all paths (in G) between all pairs of vertices v'eV' and
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v"ev".

We s h a l l  c o n s id e r  many fu n c tio n s  on an i n f i n i t e  c o u n ta b le  s e t ,

v iz .  th e  v e r te x  s e t  V o f th e  i n f i n i t e  c o u n ta b le  graph  G, o r ,

more g e n e r a l ly ,  a s u b se t V' o f V. Of s p e c ia l  i n t e r e s t  a re  th e

l i m i t  p o in ts  o f  th e se  f u n c t io n s ,  among w hich th e  lim es i n f e r i o r

and th e  lim es s u p e r io r .  U su a lly ,  one in tro d u c e s  a n a t u r a l  num ber,

say  n ,  to  o rd e r  th e  e lem en ts  o f  such a  s e t ,  and one w r i t e  lim  in f ^

o r  lim  i n f  . S in ce  th e  lim  i n f  and th e  lim  sup do n o t  depend on
n -H »

th e  o rd e r in g  o f  th e  e lem en ts  o f  a s e t ,  t h i s  in te rm e d ia te  s te p  i s

n o t n e c e s s a ry ,  and , in  f a c t ,  i t  m igh t c o m p lica te  th e  a n a ly s is  in

t h i s  p a p e r  u n n e c e s s a r i ly .  We s h a l l ,  t h e r e f o r e ,  d en o te  th e  two

l im it s  by lim  in f  v€V, and lim  sup . I f  the two are eq u a l, we
s h a l l  w r i t e  l im v e v , .  I f  an i n t e g e r  n a r r iv e s  in  a n a t u r a l  way, as

in  th e  sequence G j, G2» • • •» Gn > • • •  » we s h a l l  n o t  o n ly  w r i te
lim  in f  , b u t  a ls o  lim  , r a th e r  th a n  lim  • F u rth e rm o re , wen  n n
s h a l l  u se  th e  u su a l co n v en tio n  f o r  o rd e r in g  and convergence o f

f u n c t io n s .  I f  f  and g map a s e t  X in to  a s e t  Y, th en  f<g means

th a t  f ( x )  <^g(x) f o r  a l l  x£X, and f+g means t h a t  f ( x )  -*• g (x ) f o r

a l l  x£X.

M oreover, to  make th e  lemmas, p ro p o s i t io n s  and theorem s m e an in g fu l,

we r e s t r i c t  o u rs e lv e s  in  each  s e c t io n  to  g raphs o f  a c e r t a in  ty p e .

S e c t io n  2 a p p l ie s  to  i n f i n i t e  c o u n ta b le  g ra p h s , i . e .  |VUE| i s

i n f i n i t e  c o u n ta b le .  S e c tio n  3 a p p l ie s  to  a r b i t r a r y  c o u n ta b le

g ra p h s , i . e .  |VUE| i s  f i n i t e  o r  i n f i n i t e  c o u n ta b le . S e c tio n  4

a p p l ie s  to  i n f i n i t e  c o u n ta b le  g raphs w ith  an i n f i n i t e  co u n tab le

v e r te x  s e t ,  i . e .  |v | i s  i n f i n i t e  c o u n ta b le . S e c tio n  5 a p p l ie s  to

i n f i n i t e  c o u n ta b le  g raphs w ith  an i n f i n i t e  c o u n ta b le  v e r te x  s e t

and w hich a re  lo c a l ly  f i n i t e ,  i . e .  |v | i s  i n f i n i t e  c o u n ta b le ,  and

th e  number o f  edges in c id e n t  w ith  a g iv e n  v e r te x  i s  f i n i t e  f o r  a l l

v e r t i c e s  o f  th e  g rap h .

F in a l ly ,  we r e c a l l  t h a t  we s h a l l  u se  th e  same symbol f o r  an even t

and i t s  i n d i c a to r ,  as we d id  in  I .  C o n seq u en tly , a s e n te n c e  l i k e

" I f  v and v ' a re  c -co n n e c ted  and v ' and v" a re  c -c o n n e c te d , then
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v and v" are c—connected" will be written either in the form
"If Yvv, and yv.v... then y  " or in the form Yv , " •

2. RANDOM VARIABLES ON INFINITE COUNTABLE GRAPHS

In this section we show that for a percolation model (G,P), where
G = (V,E,i) is an infinite countable graph, the functions on the
event space of G which were listed in I § 3.1 (end of the section)
are all non-negative random variables, and, thereby, integrable.
We recall that a non-negative random variable is obtained by
closing the collection of non-negative local variables under the
suprema and infima of countable subcollections. A local variable
f is a function which assumes only a finite number of (finite) real
values f. such that the event f = f^ is a local event. A local
event, finally, is an event obtained by closing the collection of
edge events under finite sums and finite products. It is essentially
an event on a finite subgraph of G. It will be sufficient to prove
that the listed functions can be obtained as limits of increasing
sequences of non-negative local variables. In the proofs we shall
use the monotone sequence of finite subgraphs of G introduced in
section 1, Gi c G2 C G 3 ... with U n=j Gn = G.

We shall say that two vertices v,v'eV are c-connected in a sub-
J G 1graph G'CG, and denote this event (and its indicator) by y^i »

or, y 1 in G'»if there is a c-path in G' between v and v .
* w

Lemma 1

(2.1)
(2.2)

Let y (V';G') be the number of equivalence classes of the set of
vertices V'cy under the relation of c-connection in the graph
G'CG. Then,
y (V;G) = supninfn,Y(Vn;Gn ,) = limnlimn,Y(vn;Gn.)*
<y ;G> - supninfn,<Y(Vn;Gn,); GnUGn,> .
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Lemma 2

(2.3)

(2.4)

Proof. We first prove that y(Vn;G) - inf: .y(Vn;Gn»), and then that
y (V;G) = sup y(Vn;G). Observe that for v.v'GV^ y^, in Gn»
implies y , in G ,,,, which implies y , in G, becauser w  n+1 w
Gn,CGn'+lC G * Therefore» y(Vn;Gn,) - Y(Vn;Gn' + l) - Y(Vn;G)' Con“
versely, if y , in G, there is an index n' = n'(v,v') such
that y , in G because there is a (finite) c-path in G be-w  n
tween v and v', so there is some G , containing that c-path. Be-n
cause V is finite there is an n' such that for all v,v'eV withn n
y , in G also y , in G ,. Therefore, for that n', y(V ;G) =' vv w  n n
y(V :G ,). This implies that y(V ;G) = inf ,y(V_;G ,). To' N n n n n n n
prove that y(V;G) = sup y(Vn;G), we observe that evidently
y(V ;G) iy(V +j ;G) <.y(V;G). Furthermore, a given equivalence
class of the vertices of V under c-connection in G contains at
least one vertex, v say, and there is an n = n(v) such that vEVn*
Therefore, y(V;G) <. supny(Vn;G) and it follows that y(V;G) =
sup Y(V ;G). This completes the proof of (2.1). From the
integration theorem on monotone sequences eq. (2.2) follows
(cf. Zaanen  ̂ Ch. 3 § 13 Th. 3,4). ||

Let co(G*) be the c-cyclomatic number of a graph G'CG. Then

w(G) = supn<u(Gn) = limnw(Gn),

<oj;G> = sup <w;G > = lim <m;G^>.* rn n n n

Proof. The c-cyclomatic number of a graph G equals the number of
c-edges which are not in a maximal spanning c-forest in G (cf.
König 7 Ch. IX Th. 2 and 4). Let F be a maximal spanning c-forest
in G and G ,DG , then we can extend F to a maximal spanningn n+1 n n
c-forest in G , such that F ., 2.F • This we do in the following way.n+1 n+1 n
Let G^ 7 be the spanning subgraph of G_ , with as edges E(Fn) and

(1) n 1the c—edges of G not in G^. If G does not contain a
c-polygon, it is a maximal spanning c-forest of Gn+j. If G
contains a c-polygon, that polygon contains a c-edge, e say, with

48



Lemma 3

(2 .5 )

(2 . 6)

o<=r -  E . b eca u se  o th e rw ise  th e  c -p o ly g o n  sh o u ld  c o n s i s t  o f
n+1 n ’

edges o f  Fn and i t  was a c -p o ly g o n  in  Fn> c o n tra ry  to  th e

h y p o th e s is .  L e t G(2) be th e n  G(2) i s  a spann ing  sub

graph  o f  G . .  and we may r e p e a t  th e  p ro c e d u re  g iv en  above on G
n + ‘ . ( i )  • •

By th e  f i n i t e n e s s  o f  G , we f i n a l l y  o b ta in  a G c o n ta in in g  noJ >.v n+1
c -p o ly g o n . Then GU ; i s  a maximal span n in g  c - f o r e s t  in  Gn + J , con

( i )

( 2)

t a in in g  F . So choose F^+ j to  b e  G . The m a x im a lity  o f G
( i )

fo llo w s , b eca u se  upon add ing  a c -ed g e  o f  G j  w hich i s  n o t  in  G
to  G ^  , th e  o b ta in e d  g raph  w i l l  c o n ta in  a c -p o ly g o n  c o n ta in in g

th a t  ed ge , e say .
,0 )

Lr ,  .  " "  1n+1 * m .
So betw een th e  ends o f  e th e r e  i s  a  c -p a th  in  G w hich does n o t

In d e e d , th e  ends o f  e a r e  c -c o n n e c te d  in

so  in  G ^  , and by c o n s tr u c t io n  a ls o  c -c o n n e c te d  in  G
( i )

( i )

c o n ta in  e ,  and w h ich , to g e th e r  w ith  e ,  g iv e s  a c -p o ly g o n  in

G^1 . M oreover, th e  g raph  F u “  „F i s  a sp an n in g  c - f o r e s t  in
n=l n

J  . Vi .n=l n
F i s  o b v io u s ly  a sp an n in g  c - f o r e s t  in  G. F i s

m axim al, b eca u se  i f  we add a  c -e d g e , e s a y , n o t  in  F , to  F , t h i s

g raph  w i l l  c o n ta in  a c -p o ly g o n , b eca u se  th e  ends o f  e a re

c—co n n ec ted  in  G, so in  some G^, in  F ^ , and in  F , and we can

c o n s tr u c t  a c—polygon  as b e fo re .  T hus, by a theorem  m entioned

b e f o r e ,  w(C;G) = |c -E (F ) | = |un=j CnEn-E(Fn) |
= SUp d)(cnE :G ) ,  w here o b v io u s ly  <o (G ) i s  in c re a s in g .

*n n  n n
p ro p e r ty  to g e th e r  w ith  th e  i n t e g r a t i o n  theorem  on monotone

sequences g iv e s  (2 .3 )  and ( 2 .4 ) .  | |

sup IGnE - E (F ) | =n 1 n  n
The l a s t

L e t G' b e  a c l u s t e r  o f  G, w ith  G' = ( V ' , E ' , i ) ,  and l e t  E" b e  th e

s e t  o f  a l l  edges o f  G in c id e n t  w ith  V' and n o t  in  E ' .  Then

E'nE E"nEE '(IE E"hE. ,  n  , n  , .Y = m f  c d -  l i m e’G' n  n
E'nE E"nE E'nE E"nE

<YG,;G> = i n f n <c ;G > = lim  <c’ n n
;G >.n

£ * E,fP ro o f . O b v io u s ly , Yq»= c ^ , b ecause  in  o rd e r t h a t  G is  a c —c lu s te r
th e  edges o f  E ' m ust b e  c -ed g es  and th e  edges o f  D" m ust b e  d -

ed g es . The r e s t  o f  th e  p ro o f  i s  im m ediate . | |
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By Eqiqj we shall understand the summation over all finite sub
graphs G' of G.

Lemma 4 If v is a vertex of G, then

(2.7) f vf
Yv = i y G'-v ’V G*CG G »V

(2.8) f
<y * - mv g 'c g g ’V

Proof. Firstly, we notice that the number of finite subgraphs of
a countable graph is countable, so the summation over all subgraphs
restricted to the finite ones makes sense. Furthermore, by de-
finition, yj = supGtcGYg,;v , and all y£,Jv
which the lemma follows.

are incompatible, from

Lemma 5 If v, v' are vertices of G, then

(2.9)
_ G GG n ,. ny , = sup y , = lim y , ,w  n w  n w

(2.10) <y ,;G> = sup <y ,:G > = lim <y ,;G >.w  n w  n n w  n

Proof. Because GDG ,,DG , if v and v' are c-connected in G ,n+1 n ’ n
they are c-connected in Gn+j and in G. Thus in Gn < y^, inGn+j<
< y , in G. On the other hand, if v and v' are c-connected in G,— 1 vv
there is a (finite) c-path between them in G, and there is a n such
that G contains that path, from which it follows that v and v' are
c-connected in G . Therefore, y , in G < sup y . in 6 , Itn w  n vv n
follows that y i = supOy . in G_). Iw  rn 'vv n 1 1

In the special case that the graph G is locally finite, i.e. the
number of edges incident with a given vertex is finite for all
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vertices of the graph, we have in addition a useful lemma con
cerning the event y that v belongs to a finite c-cluster. This
is mainly Th. 5 of Broadbent and Hammersley ^  .

We define the vertex boundary in G of a subgraph G' of G as the set
of vertices of G* which are incident with edges of G not in G*, and
denote it by B(G'). Furthermore, we shall write B(Gn) = Bn>

Lemma 6

(2.11)

(2.12)

Let

f

v be a vertex of a locally finite graph
G Gn

1 lim 8UPn 6vB “ limn 6vB *n n

G> * lim suPn<6vB ;Gn “ limn<,SvB ‘V *n n

G. Then

Proof. For convenience we shall prove the negation of the
assertion i.e. y" - lim infnYvB in Gn * First of all we notice
that in a locally finite connected infinite graph G there is for
any vertex v an infinite vertex-disjoint path with initial vertex
v, i.e. an infinite sequence of alternatingly vertices and edges
of G j vq = v, ej, V}, e2 , ••• such that i(e^) - (v^+jjV^) i°r
k = 1,2, ... (cf. König , Ch. VI, theorem 3). So if v belongs
to an infinite c-cluster, there is an infinite vertex-disjoint
c-path in G with initial vertex v. There is an n such that v
belongs to G , and we may construct a c-path in G^ from v to
some vertex v'SB : let v' be the last vertex in the infiniten
c-path in G such that all preceding edges belong to G ^ . In the
same way one may construct from a c-path in Gn+j between v and
some vertex v"GB ,, a c-path in G_ between v and some v'eBn+1 n a, 11
(as long as v belongs to G ). Therefore, Yy in G <
4 rvB *» i YvBn in Gn ,or,„; in G < lim i n f ^  in
On the other hand, if for all n' > n we have yvB f in Gn ,,
the number of vertices in the c-cluster of G containing v is
at least sup »>ndn *(v »Bn »>» where dn i(v »Bn «) is the distance
in G between v and B ,, i.e. the length of the shortest pathn n
in G , connecting v and B^,. Since = ® and G is locally
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finite, lim supnB^ is empty: for every v'eV there is an n such
that v* and all edges incident with it in G belong to G , so
v'^B . for n' > n. Therefore, lim sup . d ,(v,B ,) = » and itn n \>n n n
follows that v belongs to an infinite c-cluster. Consequentely
00 • • • • IIY in G = lim inf y „ in G , and the lemma follows,v n vB n 11n

For graphs that are not locally finite, the random variables y
can, in general, not be approached via the local variable y^g in G^.
In that case, it is sometimes useful to approach them via other,
not local, variables, provided the graph is bilocally finite. We
shall say that a graph is bilocally finite, if for all pairs of
vertices v, v'eV the number of edges incident with v and v' is
finite and thus, in particular, the number of loops incident with
a given vertex v = v' is finite. The complement of V in V will
be denoted by U , i.e. U = V-V .J f» 9 r* -n

Lemma 7

(2.13)

(2.14)

Let G be a bilocally finite graph and veV. Then

y = lim 6 TT = sup 6 TT ,'v n vU rn vUn n
<y > = lim <6 TI > = sup <6 TI >.' v n vU rn vUn n

Proof. First, because is non-decreasing in n, Un is non
increasing in n, and therefore, y ^ is non-increasing in n.

oo # H  # #Secondly, if y , v belongs to an infinite c-cluster of G.
Moreover, the number of vertices c-connected with v is infinite,
by the assumption that G is bilocally finite, because otherwise
the number of c-edges in the c-cluster containing v, and hence
the c-cluster itself, should also be finite, contrary to the
hypothesis. So, each set U contains an infinite number of
vertices c-connected with v, and it follows that y „ for all n.
On the other hand, assuming y , there is an n such that all
the vertices c-connected with v belong to V , so in U there is
no vertex c-connected with v, hence 6 „ , or equivalently:

vun
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not for all n y Consequently, by the last two implications
* £

y" = inf Y and y = sup 6 TT . The first remark, together with'v n vU_ v *n vUn
the integration theorem on monotone sequences, completes the proof
of the lemma.

3. COVARIANCE INEQUALITY

In I § 3.2 we proved a recursion theorem for integrable random
variables. In this section we shall present a second theorem
on a subclass of these functions, which is a generalization of an
inequality on "combinations of links" derived by Harris in a paper
on the percolation model (ref. 3, lemma 4.1). The proof given
here is an example of the use of the recursion theorem. Before
stating the inequality, we shall define the type of functions to
which the theorem applies. They are characterized by the property
that for each edge eEE(G) and all subsets CQï(G) —e, the function f
defined on the event space of G obeys f(C+e;G) >. f(C;G); these
functions will be called locally increasing functions. A function
satisfying the reversed inequality f(C+e;G) < f(C;G) will be called
a locally decreasing function. In terms of the associated functions
on the descendants C  G and #G, as defined in I § 3.2, we cane e
write f(C;6G) >. f(C;#G) for locally increasing functions. Evident-

® ® + .
ly, if f is locally increasing, the positive part f of f is
locally increasing and the negative part f of f is locally de
creasing.

For two summable random variables f and g in a percolation model
(G,P) we define their covariance as follows:
cov(f,g;G,P) = <f,g;G,P> - <f;G,P><g;G,P> .

Theorem 1 Covariance inequality: Let (G,P) be a percolation model, and let
f and g be summable, or non-negative, locally increasing random
variables. Then

<fg;G,P> > <f;G,P><g;G,P>.(3.1)
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(3 .2 )

(3 .3 )

(3 .4 )

(3 .5 )

(3 .6 )

P ro o f .  F i r s t ,  l e t  f ,  g and fg  be summable. By th e  r e c u r s i o n

theorem on an edge eeE(G),  s a y ,  we g e t ,  o m i t t i n g  t h e  a s s o c i a t i o n

b a r  o ve r  f  and g:

c o v ( f  ,g;G) = pe <fg;tfgG> + qg<fg;  Z&G> -  p ^ < f ; ^G><g; ógG> -

-  q2<f;X>G><g;^G> -  p q ( < f ; £  G><g; 0 G> + <f G><g; £  G>) =
6 6 c c c t- c c c

= Pe ( < f g ; ^ e G> -  < f ; i?G><g; G>) + qe (<fg;£>G> -  <f ;2>e G><g,i)G>) +

+ (pe -p g )< f;(?e G><g;*!G> + (qe- q e ) < f 5'ae G><s ; ^ G> “

p q  ( < f ; ^ G > < g ; 0 G >  + <f ; 2  G><g; <?G>) .
0 6 c  6 c “

Because  p - p 2 = p q = q - q 2 , we g e t  from eq.  (3 .2 )r e r e e e e e

c o v ( f ,g ;G )  = pe cov(f ,g;<?e G) + qg c o v ( f , g ; <ÖG) + pgqe ( < f ; ( ? G><g;^G> +

+ <f G><g;2)G> -  < f ;C G x g ;  JbG> -  <f G><g; <?G>) = p c o v f t g j ^ G )  +e e  e e e e  t» ®

+ qg c o v ( f , g ; j ^ G )  + pgqe (<f; (?G> -  <fU^G>) (< g ;^G >  -  <g;«&G>) .

By th e  d e f i n i t i o n  o f  l o c a l l y  i n c r e a s i n g  f u n c t i o n s ,  f  (C; £  G)>f.(C; ^ G )  ,

so <t\C  G> >. <f;5)G>. Hence we g e t  f o r  t h e  c o v a r i a n c e  t h e  i n e q u a l i t ye e

c o v ( f  ,g;G) > pg c o v ( f  , g ;  €&G) + q£ c o v ( f  , g ; j ^ G ) .

I t e r a t i n g  t h i s  i n e q u a l i t y  f o r  a f i n i t e  number o f  edges e e E 'cp (G ) ,

we g e t

c o v ( f ,g ;G )  > I p C q°  c o v ( f , g ; f i^ ^  G ) , C ' + D ^ E ' .
C'CE’

I n  case  G i s  f i n i t e ,  we can choose E '  = E(G) and o b t a i n  t h e

c o v a r i a n c e s  f o r  t h e  s m a l l e s t  de scenda n ts  o f  G

c o v ( f , g ; ^ » DG) = <fg;CCflDG> -  <f ;£ C£ DG><g ; GC$PG> =

= {fg(C) } -  {f  (C) Hg(C)  } = 0,
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from  w hich th e  theorem  fo llo w s . In  ca se  G i s  an i n f i n i t e  c o u n ta b le

g rap h , we d e f in e  f o r  each f i n i t e  s u b se t E ’CE(G) lo c a l  v a r ia b le s

fu n c tio n s  o n ly  depend on th e  s t a t e s  o f  th e  edges in  E ' .  F u r th e r 

m ore, th e  h ,,, a re  summable and have th e  p ro p e r ty
JE

v C' D’ tc  j)C aD(3 .7 )  <h_«;G> ■ I  p q c o v ( f ,g ;6  3  G).B c'CE'
F or th e  in c re a s in g  sequence 0cE jcE2 C .. .  o f  f i n i t e  s u b s e ts  EnC2£(G)

w ith  U E = E(G) we g e t  by a re p e a te d  u se  o f  e q s . (3 .5 )  and ( 3 .7 ) ,
n  n

w r i t in g  h„ = h ,
^ n  n

(3 .8 )  c o v ( f .g )  = <hjj> > <hx> > <h2> > . . .  > i n f Q<hn >.

In  f a c t ,  th e  fu n c tio n s  h w i l l  converge to  z e ro  a lm o st everyw heren
( a . e . ) ,  b e c a u se  by Levy’ s theorem  on bounded sequences o f  con

d i t i o n a l  e x p e c ta t io n s  ( c f .  Doob ^ Ch. V II Th. 4 .3  c o r o l l a r y  1 ) ,

w hich in  t h i s  c a se  re a d s :
QnE DOE

(3 .9 )  i f  f  i s  summable, lim  < f ; £  n 2  G> = f(C ;G ) a . e . ,

we have f o r  th e  l i m i t  fu n c t io n  o f  th e  sequence o f summable

fu n c tio n s  hn
CHE DHE CHE DHE

lim nhn (C;G) = lim n c o v (f  ,g ;  6  nG) = lim n <fg;<? G> -

cnE DnE onE DnE
-  (lim n < f;ff  n a  nG>) (lim n <g; (? n 3  n G>) =

-  ( f g ( C ) } -  (f(C )} { g (C )}  = 0 a . e .  .

N o tic e  t h a t  f , g  and fg  a re  f i n i t e  a . e .  by t h e i r  su m m ab ility . By

th e  convergence o f  th e  sequence hn to  ze ro  a . e . ,  and th e  f i n i t e —

n e s s  o f  th e  m easure (P ( l )  = 1 ) ,  we conclude  th a t  a ls o  th e  ex

p e c ta t io n  v a lu e s  <h > w il  converge to  z e ro . In  f a c t ,  by eq . ( 3 .8 ) ,

t h i s  convergence i s  m onotone.

S eco n d ly , l e t  f  and g be  lo c a l ly  in c re a s in g  n o n -n e g a tiv e  random

rnn  » »

, by h _ , (C) = c o v ( f ,g ; (T  2  G ). One o b se rv es  t h a t  th e se
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Corollary

variables. Then we may define functions f and g by: fn (C) =
min{f(C),n}, and analogously for g . Observe that if f is locally
increasing, so is fn : if f(C+e) < n, then f(C) <. f(C+e) < n and
hence f (C+e) > f (C): if f(C+e) > n, either f(C) < n and hencen n
n = f (C+e) > f (C) , or f (C) > n and hence f (C+e) = n > n = f (C) .n — n ' —  n —  n
Moreover, f is summable, because it is non-negative and bounded
by n. Therefore, the functions f form a non-decreasing sequence
of locally increasing summable functions converging to f as n tends
to infinity. Applying the covariance inequality just proved to f
and gn ,, we have <f g t> >, < n̂><8n t> » because f^, gn , and fngn t
are all summable locally increasing functions. By the integration
theorem on monotone sequences, we get <fg> = supnsupn,<fngn ,> >
• (sup <f >)(sup ,<g t>) = <f><g>. That proves the theorem for— n n n n
non-negative locally increasing random variables. Analogously one
proves eq.(3.1) for non-positive locally increasing random variables

Finally, we remove the summability condition on fg in the first part
of the proof by observing that if <fg> = + 00 , the inequality (3.1)
holds trivially, whereas <fg> = — 00 can be excluded by the following
argument. If <fg> - - » , then for the negative part (fg) of fg we
should have <(fg) > = +" . But, <(fg) > = <(f+g + f g )> =
= -<f+(-g )> - <(-f )g+> < “ <f+><-g > - <~f ><g+> = <f+><g > +
+ <f—><g+> , because f+ , g+, -f and -g are all locally increasing.
Because f and g are summable by assumption, f+, g , f and g are
summable. Thus we get <(fg) > < 00 •

Harris' lemma 4.1. ^ . Let Aj, A2, •••» Am be a finite number of
finite subsets of E(G), let a^ be the event c^ and let a be the
event ax + a2 + .. + a . Let B ^  B2, ..., Bq be a finite number
of finite subsets of E(G) and define the events b^ and b analogously
Then P(ab) > P(a)P(b).

Proof. Let f be the indicator of the event a, and let g be the
indicator of the event b. Then f and g are locally increasing
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Proposition 1

(3.10)

(3.11)

and non-negative (and summable). To show that f is locally in—
creasing, we first show that a^ is locally increasing. This
follows because for any C£E(G)-e, a^(C) = 1 implies A^cc, hence
A.C£+e, from which a^(C+e) = 1. Because a = E^a^, f(C) =
= a(C) < a(C+e) = f(C+e). Analogously, one proves that g is lo
cally increasing. Hence, the covariance inequality can be
applied and the corollary follows. Notice that Harris' lemma
remains true if we allow a countable number of countable subsets
of E (G) .

In a subsequent paper, to be referred to as III, a generalization
of the covariance inequality to the random-cluster model will be
derived. It will be shown that for spin-systems with only pair

4) .interactions the second Griffiths-Kelly-Sherman inequality is
a corollary of this generalized covariance inequality.

Finally, we give another, typical, property of locally increasing
functions by comparing the expectation values with respect to two
different probabilities P. The relation of this proposition with
the covariance inequality will be discussed in III.

Let (G,P) and (G,P') be the percolation models generated by the
mappings p and p', and let f be a locally increasing random
variable. If p' ^.p, and if f is non-negative or P-summable, then

<f;G,P’> < <f;G,P>.

Proof. First, suppose that f is non-negative. If <f;G,P> =°°, (3.10)
is trivially true. Therefore, suppose that <f;G,P> < °°, i.e. f is
non-negative and P-summable. By the recursion theorem, for any
eeE (G) ,

<f;G,P> = pe<f;£eG,P> + qe<f;2>eG,P> - <f;2>eG,P> + pg (<f;^G,P>-<f;2eG,P>).

Because f is locally increasing, (<f; £ g ,P> “ <^»^G,P>) >. 0, and
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(3.12)

(3.13)

(3.14)

Pe .> p' , by assumption, so from eq. (3.11) we get

<f;G,P> >. <f;£leG,P> + p^(<f; <?G,P> - <f;SleG,P>) =

= p'<f;^G,P> + q'<f;25G,P>.e e ’e e

If we write the measure P as a product measure, P = P , eq. (3.12)
may be written as <f;G,P^> >. <f;G,P^ e x (P')e> , or iterated
for the finite number of edges e£E. ,

E-E E
<f;G,P > >. <f;G,P x (P') n> .

Analogously to the procedure used in the proof of the covariance
inequality, we proceed by defining the functions fn (C;G) h

= <f;d^r^‘niZPrî nG,P>, which have the property <f ;G,P'> =
=<f;G,P^ x (P')^n> . By the repeated use of eq. (3.13) we ob
tain, with Eg = 0.

<f;G,P> = <f0;G,P'> > <f1;G,P’> > <f2;G,P'> >,...>, lim infn<fn ;G,P'>.

By Fatou’s lemma on non-negative sequences, lim inf < fn ;G,P'> >
> <lim inf f ;G,P'> > 0, and by Levy's theorem on bounded se-— n n
quences of conditional expectations, limnfn (C;G) =
= limn<f;(5<̂n^nSDDnEnG,P> = f(C;G) a.e.. Consequently, from eq. (3.14)
we obtain eq. (3.10), <f;G,P> > <f;G,P'> , which completes the
proof for non-negative locally increasing functions.

If f is P-summable, its positive part f is locally increasing and
P-summable, and its negative part f is locally decreasing and P-
summable. For the positive part f it follows at once from the
preceding considerations that <f+;G,P> >. <f+ ;G,P'> , and f is P'-
summable, too. As f is locally decreasing, (-f ) is locally in
creasing, so instead of eq. (3.14) we have <f ;G,P> <^lim supn<fn»G,P'>.
If <f ;G,P'> < °°, by Lebesque's theorem and Levy's theorem it will
follow that <f ;G,P> <. <f ;G,P'>, and consequently <f;G,P> =
= <f+ ;G,P> - <f_ ;G,P> >_ <f+ ;G,P'> - <f";G,P'> = <f;G,P'> , where
as in the case <f ;G,P'> = ", eq. (3.10) is trivially satis
fied. | |
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4. LARGE-RANGE CONNECTIVITY IN INFINITE COUNTABLE GRAPHS.

On the analogy of the concept of long-range order which is an
important element in the theory of the Ising model, we shall intro
duce the concept of large-range connectivity in the percolation
model to describe the extent to which the vertices of a graph are
connected on the average. As long as we do not restrict ourselves to
locally finite graphs, the fact that a vertex is connected to a
large number of other vertices does not imply that it is connected to
vertices at "long distance". Therefore, the term "large range" is
preferred to "long range"; for locally finite graphs, however, the
terms are equivalent. Just as in the Ising model one distinguishes
various criteria for long-range order, we shall distinguish various
criteria for large-range connectivity.

A first criterion for large-range connectivity is based on the
• • 00 *value (zero or positive) of the quantities <y >• In order to

have a criterion that does not depend on the choice of a special
vertex, we consider in particular the limes inferior of these
quantities. We say that a percolation model has weak large-range

00

connectivity, to be denoted by W, if lim inf <y^> > 0. The
property <y° > > 0 is denoted by W^. In addition we shall later on
discuss the quantity lim inf |v I „ <Y„> f°r increasing

v n ^  n v I .-I »sequence of finite subgraphs G^ of G. If lim infn |Vn | <YV>>0
we say that the percolation model has global large-range connectivity.

Next, we consider the quantities lim inf ,<yv v t> and
lim inf lim inf ,<y ,>. If the latter quantity is >0 we say thatv v w
the percolation model has strong large-range connectivity, and we
denote this property by S. The property lim infv»<Yvvi> > 0 is
denoted by S . A justification for the terms "weak" and "strong"
will be given later on in this section.

In order to be able to have somewhat more specified criteria for
large-range connectivity, we shall often consider the limes in
ferior, not over the whole set of vertices V of G, but rather
over an arbitrarily given infinite subset V' of V. The correspond
ing criteria for large-range connectivity will be denoted by primed
symbols: W', S' and S'. Taking in particular V' = V one gets back

59



w ’ W, etc.

Lemma 8

(4.1)

Lemma 9

For convenience we shall list the several types of large-range
connectivity:

00w : <Y > > o,v v

W : lim inf
■wGV

A8 
>

>-V *oA W' : lim inf
vgV'

A8 
>

V

S :V lim inf
v'eV

<Yw V O s'V ! lim inf
v'eV'

<Yw

S : lim inf
veV

lim inf
v'eV

<Y i>w V o S' : lim inf
veV ’

lim inf
v'eV'

<Yw

In this section we shall always suppose that the set of vertices V
of G is infinite countable.

The relation 4* between vertices of V defined by v^v' if and only if
<y •> > 0, is an equivalence relation,w

Proof. Evidently, \j> is reflexive and commutative. Transitivity
follows, because if <v «> * 0 and <Yv ivii> > 0» then by the
transitivity of connection

<Y n> > <Y iY i n> 2. <Y i><Y !.■!>»' w  ' w  V V VV V V

by the covariance inequality (Th.1), so <Y n* > 0* I I

For any two vertices v,v'eV, <y ,> > 0 if and only if there is a
path in G between v and v* such that for all edges e in the path
p >0.e

Proof. Because G is countable, the number of paths is countable.g I jg *
If there is no path between v and v' in G such that p = <c > > 0,
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i s  th e  sum of

P ro p o s i t io n

(4 .2 )

(4 .3 )

w here E ' i s  th e  s e t  o f  edges in  th e  p a th ,  th e n
a c o u n ta b le  number o f  ev en ts  o f  p r o b a b i l i t y  z e ro ,  and hence an

ev en t o f  p r o b a b i l i t y  ze ro  i t s e l f ,  so t h a t  <y »> = 0. I f  th e r e  i s
E '  e '  _ I I

a p a th  in  G w ith  <c > > 0 , th e n  <yyrf/,> ><c > > 0 . | |

By Lemma 8 we can d iv id e  th e  v e r t i c e s  o f  G in to  e q u iv a le n c e  c la s s e s

o f  i|>. I f  two v e r t i c e s  a re  in  th e  same c l a s s ,  th e r e  i s ,  by Lemma 9 ,

a p a th  betw een them such t h a t  f o r  each  edge in  th e  p a th  Pe >0 . So
th e  e q u iv a le n c e  c la s s e s  o f  a r e  e q u a l to  th e  e q u iv a le n c e  c la s s e s  o f

th e  v e r t i c e s  o f  th e  g raph  o b ta in e d  from  G by d e le t in g  a l l  edges

w ith  pe “ 0 . The c o n n e c tio n  d e f in e d  by <Yv v i > > 0 w*-11 b e  c a l le d
P -c o n n e c t io n , i . e .  two v e r t i c e s  v and v ' a re  P -c o n n e c te d  in  G i f

<y ;G,P> > 0 .  A c l u s t e r  d e f in e d  by P -c o n n e c tio n  w i l l  be  c a l le d
' w

a P—c l u s t e r .  A nalogously  one d e f in e s  a P—p a th ,  a P—p o ly g o n , e t c .

L e t v .v 'e V  b e lo n g  to  th e  same P - c l u s t e r .  Then

(a) W i f  and o n ly  i f  W , ,v '  v  v

(b) S ’ i f  and o n ly  i f  S ’ , .v v

00 00 oo 0°

P ro o f .  E v id e n t ly ,  yv ^ Y vYv v « "  Y ^ i  "  YVV.YV.» so
Both f u n c t io n s ' y t Y* a r e  lo c a l ly  in c r e a s in g ,

c o v a ria n c e  in e q u a l i ty  and th e  l a s t  i n e q u a l i ty

<v > > <v |Y , > .*v — w  v
so by th e

<y > > <y , ><y , > .>v — ' w  v

By d e f i n i t i o n ,  i f  W , th e n  <y” .>  > 0 ,  and by assum ption  <Yy v . > > °>

so i t  fo llo w s  from  eq . (4 .2 )  t h a t  <YV> > 0» so  ^ v * t îe
symmetry betw een v and v ’ th e  co n v e rse  s ta te m e n t i s  a ls o  t r u e  w hich

p ro v es  ( a ) .

T aking  th e  lim es i n f e r i o r  o v e r v" in  eq . ( 4 .1 ) ,  we g e t

lim  i n f  <Y.rTT.i> -> <YVV»> ^  i n f  <Y . ..> »v „eV , vv w  v ..€V. v  v

from  w hich we p ro v e  (b) in  th e  same way as we p roved  (a) from  ( 4 .2 ) .
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Part (a) of Proposition 2 is formally identical to Th. 2 of Broad-
2)bent and Hammersley . These authors, however, consider oriented

graphs which are locally finite and have a high degree of regularity,
and in which all p& have the same value. In their proof they make
an implicit use of the covariance inequality.

Proposition 3 Let vGV. Then

(4.4)
00

lim inf <y ,> ■ lim inf <y ,>.. . w  . . wv'GV' v'GV'

(4.5)

Proof. By Lebesque's theorem on a bounded sequence of functions
(cf. Zaanen Ch. 3 § 14 Th. 3) applied to the set of functions
Y t (the indicator that v and v' belong to the same finite c-
cluster), ordered in an arbitrary way, we have:

f f f f0 < <lim inf y ,> < lim inf <y , > < lim sup <y , > <. <lim sup y , > <.1.
" v'ev' w  v 'g v ’ w  v ’g v ’ w  v'ev' w

Now for any CQï, y ,(C) = 1 only for a finite number of vertices
v', so lim sup . ^ y ^ ,  (C) = 0, and consequently <lim supv ,eV,Yvv,>-0.
Therefore, it follows from eq. (4.5) that

(4.6) lim <y^ •> = 0.
v ’GV' w

• 00 fThe proposition follows from the relation y , = y ^ i  + y ^ i , and
eq. (4.6).

Proposition 4 Let vGV. Then
(a) implies W^, (b) implies S', (c) S' implies W'.

(4.7)

Proof. Evidently, for any v'GV': > y0̂ * * so <YV> i <YVV»>‘
Taking the limes inferior over v'GV', and using Proposition 3, we
get
00

<Y > > lim inf <Y ,>.
v v*ev' w 00

If S', lim inf <Y ,> > 0, by definition, and hence <Y > > 0v v GV w  v
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by eq. (4.7), so W . That proves (a). Taking the lim inf over
v in eq. (4.7), we obtain

(4.8)

(4.9)

Proposition 5

00 9 #
lim inf <y > >. lim inf lim inf <y

v g v ' v vev' v'ev'
from which (c) follows. In order to prove (b), interchange v and
v' in eq. (4.1), and take the lim inf over v' and over v", ob
taining

lim inf lim inf <y ,> >.
vev' v'ev' W

lim inf
v'ev'

<Yw

from which (b) follows.

A somewhat sharper result can be obtained by using a simple con
dition on the vertex v with respect to the set of vertices V'.

Let veV belong to a P-cluster containing an infinite number of
vertices of V'. Then
(a) W' implies Wv , (b) is equivalent with S'.

00 n  / \Proof. To prove (a), let not W , i.e. <YV> = 0* Then by Prop. 2(a)
for each vertex v' in the P-cluster containing v, we also have
<Y°*|> =0. In particular <Yv i> = 0 for the infinite number of
vertices of V' belonging to that P-cluster by assumption, from

00
which it follows that lim inf , v ,<y »> = 0, i.e. not W'. This proves
(a).

We prove (b) by first proving, analogously to (a), that from the
assumption not S', i.e. lim inf i y ^ Y ^ ^  = 0, it follows that
lim inf lim inf , ,<Y ,> = 0, i.e. not S' by Prop. 2(b) andvtv v tv w
the assumption. The converse of this is true by Prop. 4(b).
Therefore (b) follows. ||

A strong result on the equivalence of strong large range connectivity
and weak large-range connectivity can by obtained by imposing a much
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s t r o n g e r  c o n d i t io n  on th e  v e r te x  v , th e  s e t  V ' , and th e  system .

Theorem 2

(4 .1 0 )

(4 .1 1 )

(4 .1 2 )

Weak Strong e q u iv a le n c e . Let v€V belong to  a P -c lu s te r  con

ta in in g  an i n f i n i t e  number o f  v e r t ic e s  o f  V’ and l e t
00 00 • •  • » "■ ' • •lim  . <y 6 iY -  0 . Then W i s  eq u iv a len t w ith  S ' ,  i sv GV v w  v

eq u iv a le n t w ith  S ' .

oo 00 00 00 00 00 00

P roof. L et vEV', then e v id e n t ly , y . = y Y tY t = Y Y » “ Y <5 ,y  , .w 9 J 9  w  V W  V  V V V w  V

Taking e x p e c ta tio n  v a lu es  t h is  g iv e s

00 00 00 00 oo

<Y »> = <Y Y “ <Y 5 ,Yw  v v v  w  v

By P r o p o s it io n  3 , lim  in f v »GVl<Y^V, > “ lim  in f v ,e v , <Yv v »>» and by
assum ption l i n  i g - ^ y  6 t Y ^  = 0 , so from eq . (4 .1 0 ) we ob ta in
by tak in g  the lim es in f e r io r  over v * ,

•  •  0 0  0 0

lim  in f  <y ,> = lim  in f  <y Y «>•
v ’GV' w  v ’GV’ v v

By th e covariance in e q u a lity  on the lo c a l ly  in c r e a s in g  fu n ctio n s
00 00 OO 00 00 oo ,

Y and Y *» <Y Y •> > <Y ><Y t>» and th e r e fo r e  we ob ta in  from'v  'v  V V v V
(4 .1 1 ) th a t

CO g 00

lim  in f  <Y .> > <y > lim  in f  <y •>•
v 'eV ' w  V v'GV' v

I f  W', then by P ro p o s it io n  5 (a ) a ls o  W , and consequently
00 00

<Y > lim  in f  ._„,<Y > 0 . So by eq. (4 .1 2 ) a lso'v  v  GV v '  ’
lim  in f  , „,<Y > 0 , i . e .  S ' .  By P ro p o s it io n  4 ( b ) ,  S' im p lies

V G V W  V V
S ' ,  and by P r o p o s it io n  4 ( c ) ,  S' im p lies  W'. T h erefore, W' u lt im a te 

ly  im p lies  S ' ,  which im p lie s  W', which proves th e theorem.

H a r r is  3 p roved  t h a t  f o r  a l l  v ,v 'e V  o f th e  q u a d r a t ic  l a t t i c e ,  w ith

a l l  p =p , <y°°6 i Y *> = 0 .  F or an e x te n s io n  to  o th e r  p la n a r*e r * v  w  v  n \

l a t t i c e s  th e  r e a d e r  i s  r e f e r r e d  to  F is h e r  . On th e  o th e r  hand ,

we s h a l l  g iv e  an exam ple in  w hich W' and S ' a re  n o t e q u iv a le n t ,  and

in d eed  lim  , „,<Y°0<S , Y<*>»> ^ 0 . L e t G be a B ethe l a t t i c e  w ithv eV v  w  v
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coordination number n, i.e. an infinite countable connected tree
in which each vertex is incident with n edges, and let for all
edges pe=p It can be derived from Fisher's 10) analysis of this

w  — | 00 . . “ 1
case that <y > = 0 for p < (n-1) , and <y > > 0 for p > (n-1)

d(v v') °°v * , and lim . <y ,> = P » becauseVV' * V w
«> by the locally finiteness. So if p = 1, then

If follows
It

Furthermore, <Y„„?> = p-'’’" ', and lim^,<y__,> - p
lim ,d(v,v')
lim ,<y ,v w 1 1, and if p < 1, then lim ,<y ,> = 0_ 1 ^ ^
that in the open interval (n-1) <p<l we have W' and not S
can further be shown that in that interval

°° 00 i • ,, . f. 1/n. 2 (n-l) ,, d(v,v').lim ,<y 6 ,y ,> = lim , (1“<Y„> ) 0 “P )v ’v v v !,v t9, n  v' v .
= (l-<y* > ' )  ̂ ' ï 0. Finally, one notices that lim^,<Vv'5vv,Yv ,>=0
for p = 1 and for 0 <_ p <_ (n-1) . In the former case, we have
both W  and S' and in the latter case neither W' nor S'. We see
that in this example the equivalence of W' and S' just depends on

# 00 00
the value of lim ,<y 6 ,y , >.v v w  v

If we restrict ourselves to bilocally finite graphs, we are able
to give Theorem 2 in a sharper form. This will follow directly

00 00from the clustering property of y y ,, or equivalently from the
£ f ( ( ,

clustering property of y^y^,, in bilocally finite graphs, which is
the subject of the next theorem. We recall that a graph is bi
locally finite of for all pairs of vertices v,v'eV the number of
edges incident with both vertices is finite.

Theorem 3

(4.13)

Proof. Let Gj, G2 , G3, ... be the increasing sequence of finite
subgraphs of G introduced in § 1, and let U = V-V be the set of

f r nfvertices of G not in G . Evidently, y = y 5 + Y,tY.tTT f°rn v v vun v vun
veV, so

Clustering property. Let G be a bilocally finite graph and vGV.
Then

00 00 f f
lim cov(y„,Y„i) = cov(y >Y ») = 0.
v'eV' V V v'GV' v v

(4.14) f f
rvYv‘ < < y  & TT ,v vU vn

f fY„t >+<Y„Y,v vU > " <Yv^vUn n
f
rv ‘

f>+<v V 3V'U 'V TvUn n
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(4.15) >.

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

. f f  fr f .and <y ><Y »> > <Y 6 TT ><:Y »S ?TTv v —  v vU v v Un n
By definition, if Y , v' is c-connected with at least one ofJ ’ v U
the vertices of U ; consequently, because is countable,

f
rv' Tv'U' I “ J  <YV ,V..

v"eu v" v"eu V  V

Combining the eqs. (4.14), (4.15) and (4.16), we obtain

cov(y5,y5») £  cov(Y,f6„TT ,y5t.<S„.tt ) + <y5iY,ht > + l <Y„ i„ h>V V v vU v v Un n v'vU 'v'v"n » e D n

Taking successively the lim sup over v' and the lim inf over n in
eq. (4.17), and using the fact that lim sup Ea <. E lim sup a for
a>0, and that lim inf (a+b) <, lim sup a + lim inf b, we get

lim sup cov(y ,̂ y!.) i sup lim sup cov(y^6 „ »Y »$v»n  ̂ +
v'eV* V V v'GV' n n

+ lim sup <Y^Y TT > + lim inf £ lim sup <Y..i„n>*n V v U  n v,,|„ v V
n

We shall show that each of the terms in the right-hand side of
eq. (4.18) is zero. First, we can choose n so large that v S V .
Because V is finite, except for a finite number of vertices ofn
V', V'^vn « Consequently, <$vIu = 0 for these vertices, and thus

lim sup lim sup c o v(y^6 tt , Y 16 ,Tt ) = 0.*n , 'v vU v v Uv'eV' n n
Secondly, by the considerations in the proof of Lemma 7, yvIT
tends monotonically to y • So, by the integration theorem for
monotone sequences,

lim supn <Y^YvU > = <Y* lim supnYvU > = <Yv y“> = 0.
n n

Finally, by eq. (4.6), lim sup viey»<Yv»vM> * 0. Hence, from the
eqs. (4.6), (4.18), (4.19) and (4.20), it follows that

lim sup c o v(y ^,Y^i) < 0.
v'eV' v v
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By the covariance inequality on the locally decreasing functions
f f £ fY and y , , cov(y ,y ,) 2L 0, so we conclude thatv v - 'v v• f f f 00 #lim . ttcov(y , y ,) =0. Substituting y = 1~y we obtain thev g V v v v v

other equality in (4.13).

Corollary of
Th. 3

Let G be a bilocally graph and let veV belong to a P-cluster con
taining an infinite number of vertices of V'. If

00 00
lim i<Y,A rYv i; 0, then

(4.22) lim inf <y •>
v'eV' w

00 , . , GO<Y > lim inf <y .> •V I TTl vv eV

Proof. Eq. (4.22) follows directly from eq. (4.11) and Th. 3.

Notice that the clustering property of Th. 3 does not require any
property of the percolation model except the bilocally finiteness
of the graph, which is essential for the proof of eq. (4.20). In
the special case that the percolation model is such that all
vertices are equivalent, the corollary of Th. 3 states that

• 00 olim inf 0y *<Yvv,> = <YV > » independently of v and the set V *(I)

Up to now, we have seen that the types of large-range connectivity
which we have considered, even if defined with respect to a certain
vertex, do not depend essentially on the vertex to be chosen. We
shall now show that these types of large-range connectivity are not
changed if we contract or delete a finite number of edges, if
chosen appropriately. Consequently, we may change the values of pg
for a finite number of edges, if not chosen to bad, without
changing the large-range connectivity.

Proposition 6 Let vGV, and eSE be an edge which is not a P-isthmus of (G,P).
Then contracting or deleting the edge e does not change the large-
range connectivities of the types W^, W', and S'.

Proof. Let the ends of e be i(e) = {v'^v'" }. If v"=v"' , e is a
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(4 .2 3 )

(4 .2 4 )

lo o p , and th e  s t a t e  o f  th e  edge e does n o t in f lu e n c e  Yv  o r  y , ,

so th e  p r o p o s i t io n  i s  t r i v i a l .  T h e re fo re ,  l e t  v M £ v ,M . Be-
00

cause  th e  fu n c tio n s  Y and Y ^ i  a re  lo c a l ly  in c r e a s in g ,  we have

by P r o p o s i t io n  1

00

00 00 00 _
<Yv ; 2 e G> < <yv ;G> ^  <yv ; f e G>,

<Y I ;2I G> <. <y ,;G> < <Y , ; ^ G > .' w e  w  w  e

I t  fo llo w s  from  eq . (4 .2 3 ) and th e  d e f in i t i o n s  o f W^, W ', S ' and S '

t h a t  in  o rd e r  to  p rove th e  p ro p o s i t io n  i t  i s  s u f f i c i e n t  to  p rove

t h a t  th e  la rg e - r a n g e  c o n n e c t iv i t i e s  in  th e  g raph  6  G im ply th e

co rre sp o n d in g  la rg e - ra n g e  c o n n e c t iv i t i e s  in  th e  g raph  Si G. We
00

s h a l l  make u se  o f  th e  fo llo w in g  p r o p e r t i e s  o f  y^ and . For

a l l  CQs-e,

00 _ 00 f  00 f  .  v 0 0  ,  V

Yv ( C + e )  =  YV ( C )  +  Y ^ ^ n  ( C ) Y v ?n ( C )  +  Yv v t u ( C ) Y v i i ( C )  »

Yw'(C+e)= Yw '^ +8v,V"̂ Ĉw"®̂ %r",V^ +Yw," ^ Yv"v'  ̂)

00 00 00 I  oo

To v e r i f y  ( 4 .2 4 ) ,  o b se rv e  t h a t  y (C+e) = Y (C)y (C+e) + Y (C)y (C+e)=

Y i(C )y  , (C+e) +w  w  .f  0°
YVV,(C ) + (C)yv v , (C+e) . I f  yv (C)yv (C + e)= l,

-  YV(C) + Yv (C)yv (C+e) and y ^ ,  (C+e)

+ 6 , (C)y , (C+e)w  w
v b e lo n g s  to  a f i n i t e  c l u s t e r  o f  G„, however to  an i n f i n i t e

c l u s t e r  o f  G_. I t  fo llo w s  th a t  one end o f  e m ust be  in  th e  same

f i n i t e  c l u s t e r  o f  Gr  as v i s ,  w hereas th e  o th e r  end o f e m ust be
C f  00

in  an i n f i n i t e  c l u s t e r  o f  G , so i n  a n o th e r  one, i . e .  Yv (C)yv (C+e)=

YWl(C)V " (C) + Yw ' " (c)Y v "  (C )* I f  aw *  (C)Yw '  (C+e) = V 311(1
v ' b e lo n g  to  d i f f e r e n t  c l u s t e r s  o f  G„, w hereas th e y  b e lo n g  to  th e

same c l u s t e r  in  G, I f  fo llo w s  t h a t  one end o f  e m ust be  in  th e

same c l u s t e r  o f  G_ as v i s ,  w hereas th e  o th e r  end o f  e m ust be  in
u

a n o th e r  c l u s t e r  o f  G_ c o n ta in in g  v ' , i . e .  5 ^ ,  ( C j y ^ ,  (C+e) =

-  Yw ,(C )Sv„v „ ,(C )Tv ,„ v , (C) ♦ YVV,„ (C )« V„ ,V„CC)YV„V,(C ) .  T hat

com pletes  th e  p ro o f  o f  eq . ( 4 .2 4 ) .

U sing y f  „ <. y „ and = 6g <_ 1, and ta k in g  e x p e c ta t io n  v a lu e s

in  eq . (2 .2 4 ) we o b ta in

68



(4.25)

(4.26)

(4.27)

<y“;^g> < <Y~;0eG> + <yvvmy”,.,;%g> + <yvv,mYv..;%g>,

<Yw ' ;d?eG> -  <Yw ,;5DeG> + <Yw ”Yv"V;% G> + <Yw " ' Yv ' V  j2>eG>

By the reasoning leading to the eqs. (4.2) and (4.1), we get

00 00<y“> i <YvvnYv,.v,..Yv,„> >-<Yv,.v.,.><Yvv„Yvn,>.

<YVV,> > <YvvnYvnv,..Yv,..v»> > <Yv.V "><Yw ,,Yv”V >*

We observe that <yv„v «. J % G >  = <yei \ G > > 0, by the assumption
that e is not a P-isthmus. Using this fact we obtain from eqs.

(4.25), (4.26)

<y“;C g> <.<y;;^o>0 + 2/<Ye;%G»,

<Yw ' ;̂ eG> - <Yw «;4 G>(1 + 2/<Ye;̂ G>)*

Taking the limes inferior over veV' in the first part of eq. (4.27)
we obtain a similar equation for lim inf^G V ,<Yv>* Taking the
lim infv ,eV , and lim inf ̂  lim i n f ^ ^ ,  in the second part of
eq. (4.27) we obtain similar equations for lim *-nfv 'ev*<Yw ,> 300
lim■ i n f ^ l i m  i n ^ . ^ ^ Y ^ . » -  Using eq. (4.27) and the last
obtained similar ones, it is clear that some large-range connectivity
in f G  implies the corresponding large-range connectivity in 2 qG.

That completes the proof of the proposition. ||

5. THE SUPPLEMENTARY VERTEX AND LARGE-RANGE CONNECTIVITY

We shall show in this section that the concept of weak large-range
connectivity in a locally finite percolation model is related with
the accessibility of the supplementary vertex in the supplemented
percolation model, as introduced in I § 7.

We recall the relevant definitions. If (G,P) is a percolation model,
the supplemented percolation model (G°,P°) is obtained by adding the
supplementary vertex o and the set of supplementary edges Eq ,
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consisting of just one edge incident with o and v for each vertex
vEV(G), to the graph G, and the map pQ from E into the interval
[]0,l3. So with G = (V,E,i) we obtain G° = (Vuo, EUEq, iuiQ)
P° = PxPq, where PQ is generated by pq, i.e. P° is generated by
pUpQ = P°* the graph G is locally finite, we say that (G,P)
is a locally finite percolation model and that (G°,P ) is a
supplemented locally finite percolation model. In this section
we consider percolation models with a variable supplementary
measure Pq. In particular, we are interested in the limit where
the function pQ goes to zero; this is the analogue of the limit
of a vanishing magnetic field for the Ising model. We shall then
call (G°,P°) a variable supplementation of (G,P).

Lemma 10 Let (G°,P°) be a supplemented percolation model such that
lim inf „p >0 ,  and let veV. Then <y y ; G°,P°> = 0.vev ov ov v

(5.1)

Proof. If y y , then both o and v belong to the same finite'ov'v
c-cluster of G°, and by lemma 4 we may write

<y yf;G°,P°>ov v If <Yr . ;g °,p °>.
G'CG

If o belongs to a finite c-cluster G', with finite set of
vertices V', evidently all supplementary edges from o to the

E** •vertices of V-V’ are d-edges, so y_, < d , where E" is theb 9 OV
set of supplementary edges incident with vertices of V—V'. Be
cause V' is finite, V-V' is infinite, so E" is infinite. Con-

gii
sequently, <Yoi ;G ,P > < q = 0, by the assumption thatG ;ov 0 0
lim inf TTp > 0. Therefore, <Yr , ;G ,P > = 0 and by eq.vGV ov f I» ,ov
(5.1) also <y ovYv ;G0,P°> = 0. I I

The following proposition contains the essential idea of the
• 00above-mentioned relationship between yv and Yov*
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Proposition

(5.2)

(5.3)

(5.4)

(5.5)

7 Let (G°,P°) be a supplemented locally finite percolation model
GO

such that lim i n f ^ p ^  > 0. Then yv  * YQV a.e. .

Proof. In order to prove that yv  = Y
that y”öoV “ 0 a.e. and that
equivalent to the latter equation, so
<y°& ;G°,P°> = 0. Using the Lemma'sv ov

co o  _  O
<Y 6 ;G°,P°>v ov lim <Y t, »G°,P°> »n vB ov nn

a.e., we have to proveov
* 0 a.e. Lemma 10 is
it remains to prove that
5,6, we obtain

where we used the fact that if 6qv  ̂ Y* in G° - Yv in G > because
the c-clüster containing v cannot contain the vertex o or any of
the supplementary edges. If YvB 5o v in G°, we can say equivalent
ly that there is a c-cluster G' in Gfl such that it contains v and
at least one of the vertices of Bn , i.e. Yq i .vB > and such that
all supplementary edges incident with it are d-edges. Therefore,

~  n n

where E ' is the set of supplementary edges incident with V(G').

If for all C:Yq i .vB ^ 0, G' does not contribute to the sum
can be
and is

in the right-hand side of eq. (5.3). If Ygi.vB can
i.e. G' contains v and at least one vertex of Bn
connected, V(G') contains at least d(v,Bn)+l vertices. By the
assumption lim infvPQv > 0 ,  we have, except for a finite number
of vertices v, qQV <. 1—lim infvPov = a < 1 and hence
V(G')<^ J V(G01 < B ad(v,Bn) for the contributing c-clusters,
*0
where a and b are constants. Therefore, we obtain from eq. (5.3)

d(v,B )d(v,B )
<Y B 6 ;G°,P°> <b a I'vBn ov n G .CG

n
;Gn ’P> ‘

So, using eq. (5< 2)' and (5.4), and the property of locally finite
graphs that lim d(v,B ) = ~ , we have

d(v,B )

' ^ 6ov’G°’p0> * b U m n 3
oo o  _  Oand it follows that <y v <Sqv;G ,P >

0,

0.
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From t h i s  p r o p o s i t io n  we im m ed ia te ly  deduce a r e l a t i o n  betw een
weak la rg e - ra n g e  c o n n e c t iv i ty  and th e  a c c e s s i b i l i t y  o f  th e

su p p lem en ta ry  v e r te x .  F u rth e rm o re , th e  r o le  o f th e  supp lem en tary

v e r te x  w ith  r e s p e c t  to  s t ro n g  la rg e - ra n g e  c o n n e c t iv i ty  i s  c l a r i f i e d

by th e  fo llo w in g  theorem .

Theorem 4 L et (G,P) be a lo c a l ly  f i n i t e  p e r c o la t io n  model and l e t  v ,v 'G V . I f

(G °,P °) i s  a v a r ia b le  su p p le m e n ta tio n  o f  (G ,P) such th a t

lim  i n f  TIp > 0 ,  th e nveV ov

(5 .6 ) lim  <y ;G °,P°> =  <y” ; g , p >,
p +0o

(5 .7 )
O O oo o°

lim  < Yv v « » G  »p  > = < y v v ' » G , P >  + <V w ' Yv ' ;G ,P> '
p 4*0o

(5 .8 )

00 00 goo 00 G f  Goo 00 G f
P ro o f .  E v id e n t ly ,  Yqv =  Yy =  Yy Yv + Yy Yv =  Yy +  YVYV a . e . ,
by P ro p o s i t io n  7 and th e  a ssu m p tio n . H ence,

n  o  oo oo Gf O O
lim  < y  ;G ,P > =  < y  ;G,P> +  lim  < y y  ;G ,P > .

p o + o  ov Po+0

oo Gf oo Gf „G oo Gf G oo G . oo Gf G
E v id e n tly ,  f o r  any n ,  YyYv = YyYv «S + Yv Yy Y ^ -  V v B  + YvYv YvBn *
The number o f  su p p lem en ta ry  edges in c id e n t  w ith  i s  f i n i t e ,

so lim  _ < y * o „ :G °,P°> =  0 , b ecau se  i t  i s  s u f f i c i e n t  to  l e t  gop o+0 'v  vBn
to  zero  th e  p w ith  \eV  in  o rd e r  to  g e t y  = 0 .  So i t  fo llo w sr ov n ov
th a t

(5 .9 )
, . «o Gf . o  „o 1 . oo Gf G o o
lim  <YVYV ; G  ,P  > -  lim  <YyYv YvB ;G ,P > .
p 10 p +0 nr o o

0 0

O b v io u sly , y  < 1, and th u s ,

(5 .1 0 ) U r n  < Y * Y ® f Y®B  ;G °,P°> < lim  i n f Q < y ^ Y v B  JG,P> .
p 4,0 n nr o

00 r
Bv Lemma 6 , Y =  lim  Y _ , and th e  l i m i t  i s  o b ta in e d  m o n o to n ic a l ly ,3 v  n  vB
so by th e  i n t e g r a t i o n  theorem  on monotone sequences and Lemma 6

we have
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(5.11)
£ £ f 00

lit. infn <ï*ïvB ;G,P> = <ïv limn yvB iG,P> - < V vi0>P> * 0’
n n

Using eqs.(5.10), (5.11) and the non-negativeness of indicators it

follows that

(5.12) lim <Y~YGfYGT, ;G°,P°> = 0.v v vBp +0 nro

From eqs. (5.8), (5.9) and (5.12), eq. (5.6) follows.

(5.13)

G G
To prove eq. (5.7), we first observe that Y ^ i  = YV V .YV V .+
p G G 00 G 00

Y i + Y 6 iY . = Y i + Y s ,y  t a.e. Hence,'w '  'ov w  ov w  v w  V

n O oo Q oo o O
lim <Y »;G ,P > = <Y .JG,P> + lim < Y  6 ^ , y v , ;G ,P >.
po+0 ™  Po+0

Let f be a bounded random variable, then

(5.14) lim (<fY“ ;G°P°> - < f y G m  ;G°,P°>) = lim <fYyYG f ;G°,P°> = 0,
P q ^O v  v  Po+0

because by (5.9) and (5.12) limp ^ Y ^ Y ^  ;G°,P°> = 0, whereas f
is bounded. Using (5.14) repeatedly in the right-hand side of

eq. (5.13), we obtain eq. (5.7). ||

Corollary Let (G,P) be a locally finite percolation model and vGV. If
(6°,P°) is a variable supplementation of (G,P) such that
lim inf TTp >0, thenveVrov

(5.15) lim inf lim <Y ,;G°,P°> = lim <Y ;G°,P°> lim inf lim <Y ,;G°,P°>
v'EV' p +0 ™  p +0 ov v ’ev' p + 0rO o o

oo oo OO OO £
Proof. By eq. (4.10), < y ^ >  + - <YVYV «> + <Yvy,> for
(G,P). By (5.7), the left-hand side can be replaced by
lim , <Y ,;G0,P°> . By Th. 3 and eq. (4.6) the right-hand side,

P q  + 0 W  oo # , »
after taking the limes inferior over v ’, becomes <YV> lim infv<Yy>,
which by (5.6) equals lim +0<Yov;G°,P°>lim infy limp +0<Yov*G ,P >

*o *o
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Collecting these results the corollary follows. ||

Another consequence of Theorem 4 is obtained by using the
differentiation relation, I Prop. 1, together with Lemma 5,
thus relating <y > with a derivative of the average number of
clusters.

Corollary

(5.16)

Let (G,P) be a locally finite percolation model and v€V. If
(G°,P°) is a variable supplementation of (G,P) such that
lim inf _TTp > 0, thenvGV ov

<y v ;g ,p > lim lim q -r---. . n’ov 3qp +0 ovo
<y ;g°,p °>.

(5.17)

(5.18)

Proof. By I Prop. 1, applied to the supplementary edge between
o and v, and the finite graph G°

9

<6 ;G°,P°>ov n lov 3q <y ;G°,p °>.
ov

Furthermore, by Lemma 5, eq. (2.10) applied to the ends of the
same edge,

<Y ;G°,P°>ov lim <Y ;G°,P°> .n ov n

By eq. (5.17), eq. (5.18) and eq. (5.6), with <5q v = l"Yov» the
corollary follows. ||

Along the line of the last corollary of Theorem 4 we can give a
characterization of the global large-range connectivity
lim inf |V I” 1 E ̂ TT <y”> , or rather of a quantity closely re-n 1 n 1 v f c V v  . £
lated to it, lim sup |V E < y >. For convenience we shall7 n n vtvn v
use a variable supplementation of the percolation model with
v = p for all v€V in the following proposition. Before giving
*ov o
the proposition we shall derive a lemma.
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Lemma 11

(5 .1 9 )

(5 .2 0 )

(5 .2 1 )

L e t (G °,P°) be a v a r ia b le  su p p le m e n ta tio n  o f  a l o c a l ly  f i n i t e

p e r c o la t io n  model such th a t  p Q , = p q f o r  a l l  v'GV, l e t  vGV and

k be an in te g e r  >0. Then, w ith  pQ = l - q Q,

‘o 3q <6 I Yw 'v 'e v

- l
; g° , p °> <6

OV V

k-1

v ’e v Yw ' ;G ° ,p °>

w here b o th  members o f (5 .1 9 ) a re  c o n tin u o u s ly  d e c re a s in g  and bounded

in  0 < p < 1 •o —

P ro o f . F i r s t  o f  a l l  we n o t i c e  t h a t  by P ro p o s i t io n  7 f o r  p Q> 0 ,

S y f  -  6 a . e .  F or k=0, we have <6 (£ » vY,„r i)  'jG 0 , ? 0» =ov v  - ov - ov v  ev  vv
= <6 Yf (Z . „Y i)  ;G °,P°> b ecau se  even f o r  p =0, i fov v v GV w  °
y°°. £ . y , = «o by th e  lo c a l ly  f in i t e n e s s ,  and hence'v  v GV w

^ v ' g V^w * ^
” ”  0 . F u rth e rm o re , i f  ^ovY » v b e lo n g s  to  a f i n i t e

c - c l u s t e r  o f  G° w hich does n o t c o n ta in  o , so v b e lo n g s  to  a f i n i t e

c - c l u s t e r  o f  G and a l l  supp lem en ta ry  edges in c id e n t  w ith  t h i s

c l u s t e r  a re  d -ed g es . So i t  fo l lo w s , u s in g  Lemma 4 , t h a t

<6 Ï
v'GV

■ ' ;G°,P°> I |V (G ') |
G'CG

-1 I V(G') |
<YG' ;v ; g ,p >.

By in s p e c t io n ,  th e  r ig h t -h a n d  s id e  o f eq . (5 .2 0 ) i s  a  power s e r i e s

in  q w ith  n o n -n e g a tiv e  c o e f f i c i e n t s ,  bounded by 1, so th e  ra d iu s

o f convergence i s  l a r g e r  th a n  1. T h e re fo re ,  th e  s e r i e s  converges

u n ifo rm ly , as w e l l  as i t s  d e r iv a t iv e s ,  and we may in te rc h a n g e

d e r iv a t iv e  and sum m ation, even w ith o u t changing  th e  r a d iu s  o f  con

v e rg e n c e . So we a ls o  have

f . "v k , N
q <63q ovV. ' I Yw '

'•v'GV J

-1
iG°,P°> I f |V ( G ') |k" ‘

G’CG

| V(G') |
<YG’ ;v ;G ,p >

and b o th  s id e s  o f eq . (5 .2 1 ) a re  c o n tin u o u s ly  d e c re a s in g  and bounded

in  0 < p < 1 .  I t  i s  seen  t h a t  th e  r ig h t -h a n d  s id e  o f  eq . (5 .2 1 ) i s“  r O “
eq u a l to  th e  r ig h t-h a n d  s id e  o f eq . (5 .1 9 ) by th e  same re a so n in g  as

was used  to  deduce eq . ( 5 .2 0 ) ,  so th e  lemma fo llo w s . | |

We a re  now in  th e  p o s i t i o n  to  g iv e  a p r o p o s i t io n  abou t th e  g lo b a l
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large-range connectivity for a subclass of the locally finite
percolation models. We shall say that a graph is locally bounded,
if there exists a finite number n such that for all vertices v of
the graph the number of edges incident with the given vertex is
not larger than n, i.e. there is a uniform bound for the number
of edges incident with the same vertex.

Proposition 8 Let (G,P) be a locally bounded percolation model and let the in
creasing sequence of finite subgraphs of G be such that

'” 1'- 1 ~ * 1 ■ - G. If (G°,P°) is a variableB and U Gn nlim IVn 1 i
supplementation of (G,P) such that p p for all vSV, theno

(5.22) lim |V r 1{<y;G°,P0> - I <6n I « I n uvGV l V 'v'eV

-1
;G°,P°>}

(5.23)

If lim Vn' n r^<Y;G®,P°> exists and suP^v<YJ (V e V Yvv,)k 1;G’P> <
where k is an integer >.0, then the following limits exist, are
finite and equal:

lim
p +0o

o 9q l i ”„ l Vn l ' 1<̂ Gn>p0>
lim |Vn' n

i-l r f
t '

r>>-V

vevn

k-1
;G,P>

(5.24)

(5.25)

Proof. The c-clusters of G° may be divided in the c-cluster con-n
taining the supplementary vertex, and those which do not contain
o. Furthermore, as we count for every vertex veVn , c-dis-
connected with o, the inverse of the number of vertices of
c—connected with v, i.e. (I^iY^^i) » we Just count each
c-cluster not containing o once. So we have

-1
;g“ p °>.= 1 * X  <s-liY-'-n n oG G . o o

Obviously, we can write <$ov(Ev ,eV Y^») 5Gn»P°>s<'ov^v'evV^ ;G ^ >
Because 6 in G° is decreasing anct Y,_,.t in G is increasing in n,ov n w  n
.t follows from Lemma 5 that the limit

( ,lW'ev
lim <6n ov

% -i r
I‘■v’ev J

;G°,P°> = <6* n ’ ov\ ^vv'
-1

;G°,P°>
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(5 .2 6 )

(5 .2 7 )

(5 .2 8 )

(5 .2 9 )

(5 .3 0 )

e x i s t s  as th e  l i m i t  o f  a m o n o to n ic a lly  n o n - in c re a s in g  sequence .

H ence,
r  > -1 r 'j

«OVV

I  Y , ;G °,P°> -  <6 I  Y ™ .—  o v , L  w
'•v'GV J

n  o v '•v'GV W  *

-1
; g° , p °>.

E v id e n tly ,  6 6 „ (Z . tty ,)  o n ly  depends on th e  s t a t e s  o f  th e
J ov vB v GV w

edges in  G°, so th e  r ig h t-h a n d  s id e  o f  eq . (5 .2 6 ) i s  eq u a l to

<6 Y nov vB v 'ev Yw '

-1
;G°,P°> -  <6 y Bn  ov vB , [ > „  ! G -Pv'GV

-1 o - O .>  <

<. <6 Y uov vB I Yw .
v 'ev

-1
;G °,P°> .

An upper bound f o r  th e  r ig h t-h a n d  s id e  o f  in e q u a l i ty  (5 .2 7 ) i s  found

as fo llo w s . I f  v  i s  c -c o n n e c te d  w ith  th e  boundary  Bn o f  G^, and

n o t w ith  o , a t  l e a s t  d (v ,B n )+ l v e r t i c e s  a re  c -c o n n e c te d  w ith  v ,

where d (v ,B  ) i s  th e  d is ta n ce

(5 .2 7 ) we o b ta in ,  t h e r e f o r e ,

w here d (v ,B  ) i s  th e  d is ta n c e  betw een v and B . From (5 .2 6 ) andN * n n

-1 f y
< <6 y y i ;G°,P°> -  <6 1 Y„.,»— ov L w '

Ve=V ;
n  ov “ w

W 'ev  J

-1
;G ,P > < .(d(v ,B n ) + l} -1

From th e  e q s . ( 5 .2 4 ) ,  (5 .2 5 ) and (5 .2 8 ) we may conclude  th a t

0 S  U . J V J -  t«V |80 ,P #> -  ^  < * 4 ^ '

n

;G °,P°>} <

: lim  |V I " 1 7 {d(v ,B  ) +l }  *.— n 1 n 1 nv€Vn

, - l

In  o rd e r  to  show t h a t  th e  u tm ost r i g h t  p a r t  o f  in e q . (5 .2 9 ) i s

z e ro ,  we d iv id e  th e  v e r t i c e s  o f  Vn in to  two p a r t s .  One p a r t ,  ®n ]»

c o n s is t s  o f  th e  v e r t i c e s  o f  V w ith in  a d is ta n c e  n ' from  B . So,n u

lim  Vn ' n
-1 I  (d (v ,B n ) + l 1  lim n |Vn | " l { I  * 1 + I

-1 (n1)" 1}.
vGB veV -B .n n l

B ecause th e  number o f  edges in c id e n t  w ith  any v e r te x  i s  bounded

by n " ,  s a y , by assu m p tio n , we may ap p rox im ate  th e  number o f
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(5.31)

(5.32)

vertices of B The vertices of B , may be divided into those ofnl nl
the boundary Bn> those at a distance 1 from Bn> etc., and, finally,
the vertices at a distance (n,— 1) from B^. Each vertex of B^ has
at most (n"-l) edges of Gn incident with it, because by definition
there is at least one edge incident with it which is not in Gn<
Therefore, the number of vertices at a distance 1 from Bn is at
most (n"-l)|B |. Repeating this argument, one finds that

|B ,1 < |B I + (n"-l)|B | + (n"-l)2|Bl+ ... + (n"-l)n ’-1|B | = c|B |,1 nl1 — 1 n 1 1 n 1 ' n  n »

where C is a number depending on n' and n". From eq. (5.31) and
the assumption lim IV I IB I ■ 0 it follows thatn 1 n n

lim |V | ^ ^  1+ £ (n') } i (o')
n n vGB . veV -B ,nl n nl

Because for n' we may choose any number, this limit is zero, and
by eq. (5.30) it follows from (5.29) that (5.22) holds.

To prove the second part of the proposition, we notice that by
Lemma 11 the functions »p > are convex
functions in In q for 3.11 v€=V nnd nil k>.0, bccnusc they nreo
finite and have a non-negative second derivative with respect to
In q . Now for a sequence f of convex functions, if the limitn
exists and is finite, the limit function is convex and continuous
and, moreover, piecewise differentiable, with the property that

10), Lemma III)(d/dx)lim fn (x) = 1 1 %  (d/dx) fn (x) (cf. Fisher
If sup <Yf(Z ,Y ,)k-1 ;G,P> < “ , the functionsyv v v w
<6 y (Z .y t )^,-hG°,P0> are uniformly bounded in p , v and

ov v v w  . . ,
k'<Jc, because they are decreasing in pQ and increasing in k ,
by Lemma 11. Therefore, from the existence, by assumption, of
lim IVn 1 n r 1<Y;G°»p0> so of lim V
we conclude that q (3/3qo)limn |Vr
and is equal, by Lemma 11, to lim

n Evevn 5o v ^ v 'e V YW ^  | Gn ’
“1<Y ; G°,P°> exists piecewise

. f —  v0 „o
J-vev iG p°>.

But, from the convexity of this last limit we know that the limit
function is continuous, and, consequently, eq. (5.23) is valid for
k=l for all p . By the repeated use of this argument, the existence,
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f i n i t e n e s s  end e q u a l i ty  o f  th e  r i g h t - hand s id e  and l e f t - h a n d  s id e

o f eq . (5 .2 3 ) fo llo w s . | |

6 . DISCUSSION

In  t h i s  second p ap e r on th e  ra n d o m -c lu s te r  model ou r a t t e n t i o n  was

fo c u sse d  on th e  p e r c o la t io n  m odel. In  § 2 we proved  th a t  in  in 

f i n i t e  c o u n ta b le  g raphs a number o f  fu n c tio n s  a r e  random v a r i a b l e s ,

and we d e r iv e d  in  § 3 an i n e q u a l i t y ,  im p o rta n t in  th e  a n a ly s i s  o f

§§ 4 and 5 . In  th e  l a s t  s e c t io n s  th e  m ain body o f t h i s  p a p e r i s

c o n ta in e d , from  w hich we ta k e  two main p o in t s .

F i r s t ,  in  § 4 th e  r e l a t i o n  betw een weak and s tro n g  la rg e - ra n g e

c o n n e c t iv i ty  was e s ta b l i s h e d ,  in  p a r t i c u l a r  t h e i r  e q u iv a le n c e  under

a non—t r i v i a l  c o n d i t io n .  T h is e q u iv a le n c e  i s  a ls o  r e l a t e d  w ith  a

c l u s t e r in g  p ro p e r ty .  In  th e  th e o ry  o f ph ase  t r a n s i t i o n s  such a

c l u s t e r in g  p ro p e r ty  i s  r e l a t e d  w ith  th e  t r a n s l a t i o n a l  in v a r ia n c e ,

o r ,  more g e n e r a l ly ,  w ith  th e  e x is te n c e  o f  a group o f autom orphism s

o f th e  system  in  q u e s t io n .  In  th e  p r e s e n t  c a s e ,  how ever, th e

e x is te n c e  o f  such  autom orphism s i s  n o t  r e q u ir e d .

S eco n d ly , in  § 5 i t  i s  shown t h a t  th e  su p p lem en ta ry  v e r te x  p la y s

th e  r o le  o f  i n f i n i t y ,  in  such  a  way t h a t  in s te a d  o f i n v e s t ig a t in g

th e  c o n n e c tio n s  w ith  i n f i n i t y ,  we can in v e s t ig a t e  th e  co n n e c tio n s

w ith  th e  su p p lem en ta ry  v e r te x .  S in ce  th e  su p p lem en ta ry  v e r te x  was

in tro d u c e d  to  p ro v id e  an analogue  f o r  th e  ra n d o m -c lu s te r  model o f

th e  m ag n e tic  f i e l d  in  an I s in g  sy stem , th e  e s ta b l i s h e d  r e l a t i o n 

s h ip  paves th e  way to  a r e l a t i o n  betw een la r g e —range  c o n n e c t iv i ty

( i . e .  th e  o c c u rre n c e  o f  i n f i n i t e  c l u s t e r s )  and spon tan eo u s

m a g n e tiz a tio n . Such a r e l a t i o n  w i l l  be d e r iv e d  in  a su b seq u en t

p a p e r  ( I I I ) , in  w hich th e  p r e s e n t  a n a ly s i s  w i l l  be  ex ten d ed  to  th e

ra n d o m -c lu s te r  m odel.
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ON THE RANDOM-CLUSTER MODEL

III. The simple random-cluster model

Synopsis The possibility of the occurrence of a phase transition in an
infinite simple random-cluster model (0 < p < 1, k > 1), which
includes the percolation model and the ferromagnetic Ising and
Ashkin-Teller-Potts model, is studied by means of several criteria
for large-range connectivity. It is shown that graphs which con
tain the square lattice exhibit a phase transition in this sense.
The large-range connectivities in the simple random-cluster model
turn out to have the same properties as those in the percolation
model. Furthermore, it is shown that in graphs with a lattice
structure the generalized spontaneous magnetization is strongly
related to global large-range connectivity.
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1. INTRODUCTION

T his p a p e r i s  th e  t h i r d  one in  a  sequence o f p a p e rs  on th e  random-
I \

c l u s t e r  m odel. In  th e  f i r s t  p a p e r , to  be  r e f e r r e d  to  as I ,  th e

ra n d o m -c lu s te r  model was d e f in e d  and shown to  in c lu d e  as s p e c ia l

ca se s  th e  p e r c o la t io n  m odel, th e  I s in g  model and th e  A s h k in -T e lle r -
2)P o t ts  m odel. I n  th e  second  p a p e r , to  be  r e f e r r e d  to  as I I ,  we

in v e s t ig a t e d  th e  r e l a t io n s h ip  betw een s e v e r a l  c r i t e r i a  o f l a r g e -

ran g e  c o n n e c t iv i ty  and th e  r o l e  o f th e  supp lem en ta ry  v e r te x  in  th e

p e r c o la t io n  m odel, in  o rd e r  to  g e t  some in s ig h t  in to  th e  p o s s ib le

o c c u rre n c e  o f  p h ase  t r a n s i t i o n s  in  th e  ra n d o m c lu s te r  m odel.

In  t h i s  p a p e r  we a re  concerned  w ith  th e  same q u e s tio n s  re g a rd in g

ph ase  t r a n s i t i o n s  as in  I I ,  g e n e ra l iz e d  to  w hat we s h a l l  c a l l  th e

s im p le  random—c l u s t e r  m odel, w hich in c lu d e s  as s p e c ia l  c a se s  th e

p e r c o la t io n  model and th e  fe r ro m a g n e tic  I s in g  and A s h k in -T e lle r -

P o t t s  m odel. The e x p e c ta t io n ,  fo rm u la te d  in  I I  i 1, t h a t  many

p r o p e r t i e s  o f  th e  p e r c o la t io n  model w i l l  be  ty p i c a l  f o r  th e  random

c l u s t e r  m odel, w i l l  in  t h i s  p a p e r be con firm ed  f o r  th e  s im p le

ra n d o m -c lu s te r  m odel.

An im p o rta n t f e a tu r e  o f  th e  s im p le  random—c l u s t e r  model w i l l  be

th e  f a c t  t h a t  a l l  f u n c t io n s  o f  i n t e r e s t  can be  d e f in e d  on , o r

r e l a t e d  w ith  fu n c tio n s  on i n f i n i t e  c o u n ta b le  g ra p h s . T h is

e n a b le s  us to  s tu d y  th e  q u e s tio n s  re g a rd in g  phase t r a n s i t i o n s  on

i n f i n i t e  c o u n ta b le  g raphs w ith o u t th e  in te r v e n t io n  o f  th e  "therm o

dynamic l i m i t " .  M oreover, th e  p r o p e r t i e s  w hich w here c r u c i a l  in

th e  a n a ly s i s  o f th e  c r i t e r i a  f o r  la rg e - r a n g e  c o n n e c t iv i ty  in  th e

p e r c o l a t i o n  model can b e  ex ten d ed  to  th e  sim p le  random—c l u s t e r

m odel. So th e  w hole a n a ly s i s  o f  th e  c r i t e r i a  f o r  la rg e - ra n g e

c o n n e c t iv i ty ,  as g iv e n  in  I I  § 4 , can be ex tended  to  th e  s im p le

ra n d o m -c lu s te r  m odel, th u s  g e n e r a l iz in g  some o f  th e  m ethods

d ev e lo p ed  f o r  th e  p e r c o la t io n  model o r  f o r  th e  I s in g  m odel.

The p o s s ib le  o c c u rre n c e  o f  a phase  t r a n s i t i o n  w i l l  a g a in  b e  s tu d ie d

by means o f  th e  v a r io u s  c r i t e r i a  o f  la rg e - r a n g e  c o n n e c t iv i ty ,  i n t r o 

duced in  I I .  We s h a l l  show th e  s im p le  ra n d o m -c lu s te r  model shows

a phase  t r a n s i t i o n  in  t h i s  sen se  i f  th e  g raph  i s ,  o r  c o n ta in s ,  th e
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square lattice. The argument used to establish the non-occurrence
of weak large-range connectivity is an extension of an argument

3)used by Hammersley for the percolation model and by Fisher for the
Ising model  ̂ . The argument for the occurrence of weak large-

5 6 7)range connectivity is an extension of the celebrated Peierls ’
argument, used in the analysis of the Ising model and of an

8 )argument used by Hammersley for the percolation model . In § 2
we extend some of the properties of the percolation model to the
simple random-cluster model. In particular we show that the re
cursion theorem, the covariance inequality, and a typical property
of increasing functions can be extended to the simple random-
cluster model, which is shown to exist for countable graphs. In
§ 3 we give the main theorem, stating that all properties of large-
range connectivity which in II were shown to hold for the per
colation model, also hold for the simple random-cluster model. Fur
thermore, we give conditions for the occurrence or non-occurrence
of large-range connectivity, and apply them to the square lattice.
Finally, in § 4, we show that, again, the supplementary vertex in
the simple random-cluster model plays the role of infinity. More
over, for locally finite random-cluster models with a lattice
structure we show that the generalized spontaneous magnetization
is related with global large-range connectivity in a model which
is the limit of the simple random-cluster model with vanishing
supplementary edges.

We conclude this introduction with some remarks about notation.
Expectation values in the percolation model will be denoted by
<f;G,P> , where f is a random variable, G a countable graph and P
the measure generated by the mapping p (see I i 3.1). In the
(simple) random-cluster model we shall denote this expectation
value by <f;G,y> or, more explicitly, as <f;G,p,K> (I § 7.1).
By <f> or <f;G> or <f;y> , we always understand the expectation
value in a random—cluster model. If the model is supplemented
(I § 7.1) we replace G, P, p, y by G°, P°, p°, y°.
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2. RECURSION THEOREM AND COVARIANCE INEQUALITY

Lemma 1

(2.1)

(2.2)

(2.3)

(2.4)

In this section we prove that the recursion theorem I Th. 1 and
the covariance inequality II Th. 1 for the percolation model can
be extended to the random-cluster model under suitable conditions.
We shall require that the measure P is a probability measure, i.e.
P is generated by a mapping such that 0 <. p <. 1. Furthermore, the
values of k are restricted to k > 1. So, for < = 1 the per
colation model is covered, and for k = 2,3,... the ferromagnetic
Ising and Ashkin-Teller-Potts model. We shall call a random-
cluster model (G,p ,k) with 0 < p <. 1 and k > 1 a simple random-
cluster model. In this paper, we consider only simple random-
cluster models.

In order to prove the existence, and properties, of the simple
random-cluster model, we first prove some properties of a finite
simple random-cluster model.

Let (G,p ,k) be a finite simple random-cluster model, e6E and f a
local variable on G. Then

<f;G> = <c :G><T;^?G> + <d ;G><f;l3G>.’ e e e e

Proof. By definition (see I § 7), <f;G> = <fK^;G,P>/Z(G). By
the recursion property I Th. 1, <f<^;G,P> = p <f<^;^?G,P> +
+ q <f<^;2 G,P> , and it follows thate e

<f;G> = {peZ(<?G)/Z(G)}<f;(?eG> + {qgZ (^G)/Z(G) }<f; 2fiG>.

Applying eq. (2.2) to c and dg, and using the fact that cg = 1
on Q G and "c = 0  on 3  G we obtaine e e

<Ce;G> = PeZ(£eG)/Z(G),
<de ;G> = q Z(#eG)/Z(G).

From the eqs. (2.2), (2.3) and (2.4), eq. (2.1) follows.
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Corollary

(2.5)

(2.6)

Lemma 2

(2.7)

If p ^ 0, then

<f;^G,y> = <fc ;G,y>/<c ;G,y>.
0 6  c

If Pe ^ 1, then

<7;^ G,y> = <fd ;G,y>/<d ;G,y>.0 0 6

Proof. First we notice from eq. (2.3) that <ce> = 0 if and only if
p = 0 ,  because Z > k , and analogously that <d > = 0 if and only if0 * ®
p = 1. Applying Lemma 1 to the functions fc and fd we obtain the0 0 0
corollary.

Before proving the covariance inequality for finite graphs, we re
call a few definitions. The covariance of two summable functions
is defined as cov(f,g) = <fg> - <f><g>. A function is called
locally increasing if for all e6E and CCE-e we have f(C) < f(C+e).
A function will be called increasing if for all CCC'QÏ we have
f(C.) <_ f(C'). Evidently, if |e | is finite, there is no difference
between locally increasing and increasing functions. If -f is
(locally) increasing, f is called (locally) decreasing.

Let (G,p,<) be a finite simple random-cluster model and f,g in
creasing local variables on G, then

cov(f,g) >_ 0.

Proof. We prove Lemma 2 by induction on the number of elements

Of |e (G) I .

cov(f,g) =

If |E(G) | = 0,

f f ( 0 ) s ( 0 ) < Y ( 0 ) l f f C 0 ) < Y ( e l > ’ « ( 0 ) « T < 0 )
l  * Y < 0 )  jHk y (0>

 ̂ J
1 J « >  J

so eq. (2.7) holds with the equality sign. Suppose the lemma
is true for |E(G)| < n, and let |E(G)| = n. In the same way as
in the proof of II Th. 1, we obtain for any eSE(G), by the
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recursion property Lemma 1,

(2.8)

(2.9)

(2.10)

(2.11)

cov(f,g;G) = <cg ;G>cov(f,g;£ G) + <dg ;G>cov(f,g;50eG) +

+ <c ;G><d ;G>(<7;£G> - <7;^G>) (<g;(?eG> - <g;^G>).

By the induction hypothesis, observing that |e (^G)| - |E(0G)|-n-l,
we obtain from eq. (2.8)

cov(f,g;G) >. <c ;G><d ;G>(<f;i? G>-<f;0 G>)(<g;C G> - <g;^5G>)

By definition, y f(C+e)KY(C+e)pCqD
<fKY;4G,P> cgE-e______________

< f ; C G> i
e <ky;€  G,P> I <

CCp-e
y(C+e) C DP q

, D = E-e-C,

and by using I Lemma 2, y(C+e) - y(C) - 6 (C), and the assumption
f(C+e) >. f(C), this can be written as

<f;£eG> >_

I £(C).-^(C,^ <C)PC,D /  I
CCE-e / CCE-e

r y(C) C DI <' P q
CCE-e

r y (C) C DI < p qCCE-e

= <fK-<Se; 2)G>/<K"<Se;2 G>.e e

The function is decreasing, so k e is increasing, by the
assumption < > 1, and by the induction hypothesis the lemma
holds for »G, so <lK~öe; 9 G > / « ~ & e ; 5®G> > <f;2» G> , and ite e e e
follows from (2.10) and (2.7) that

<I;(?G> > <7; 21 G>.* e — e

Consequently, (<7;^G> - <7; 2G>) (<g; <?G> - <g;^G>) > 0, and hence
from eq. (2.9) we obtain eq. (2.7), which completes the proof. ||

Using the relation between the Ising model and the random-cluster
model, as described in I § 4.2, we easily obtain the second
Griffiths-Kelly-Sherman inequality for a ferromagnetic Ising model
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Corollary

with pair interactions only. For k=2, and p=l-exp(-28J), by
TT  I_  V'I (4.4), we have for V ’QV that <a >can <ev ,>, where ev ,

is the event that each c-cluster contains an even number of
vertices of V' (including zero, possibly). So the GKS inequality
V * V** V * V**<a a > >. <a >__<o >__ , reads in terms of the random-can can can*

cluster model <ev'^y"> — <eyi><ey*> » where V'AV" - (V '-V")+(V"-V')
It is sufficient to take disjoint sets V', V".

Let V’,V"Cy(G) , then <ev .Av..> > <ev .><ev»«>-

Proof. If ey , and ev„, obviously evfAV„ • Thus <eVIAv„>i<ev .evi.>*
The functions Ey, are increasing, because if ev ,(C) = 1, each
cluster of Gr contains an even number of vertices of V', and there-
fore each cluster of G„ contains an even number of vertices ofC+e
V', so ev ,(C+e) = 1. Consequently, by Lemma 2, <£v ,ev„>><ev ,><ev„>
and the corollary follows.

We have shown that the restriction of the range of p to 0 < p < 1
and of the values of < to k >. 1 are sufficient to guarantee the
covariance inequality for all increasing functions on all finite
graphs. We shall now show that there is no weaker condition on
p and k , independent of G, under which the covariance inequality
holds for all increasing functions on all finite graphs. First,
let G have one edge e with p = p. Taking f = g = cg, we obtain
Z = <(c +d )kY ;P> and Z<c ;y> =<c kY;P>. Zo Z2cov(c ,c )' e e e e e e
= <(c +d )ky ;P><c6kY;P> - <ce<Y ;P>2 = <de<Y;P><ceKY;P>=qpK
If the covariance should be non-negative, it follows that (qp) and
KY(e) y( ) muS£ have the same sign. If e is a loop, Y(e)“Y(0) = 0>
so it follows that this sign must be positive, hence 0 <. p <. 1.
If e is not a loop, Y(e)-Y(0) = 1» an<̂  therefore k > 0. Secondly,
let G have two edges, e and e', with Pe=P P t=p'» Taking

Y.p^_^^Y(0)+Y(e)

f=ce and g=ce,,
Z<c ;y>e

we obtain Z
<c (c ,+d ,)kY;P>, Z<c ,;y>

<(ce+de)(Ce'+de,)KY;P>’
.i<(c +d ) c t k: 1 ;P>e e e ande ' e ' e" ' : e

Z<c c ,;y> =<c c ,<'Y;p>. So Z2cov(c ,c ,) =e e  e e ’ ’ e e
<(c^+d^) (c ,+d ,)kY;P><c c ,kY;P> - <c (c ,+d ,)icT;P><(c +d )c ,k ;P>=e e
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Lemma 3

(2.12)

(2.13)

= <de(cei+def )KY;P><cece»K̂  ;P> - <ce(ce'+de«) <Y ;P>,:dece» kY ;p> =
■ <dfSd„»K^;P><c(1c_iKY ;P> - <ced iKY ;P><deCptJ;P> =

i i Y(0)+y(e+e') , , y(e)+y(e')= qq'ppV1v " pq qp k '
- qq.pp.j(e)+Y(e')||i.Y(e.e’)n((l)-Y(.)-1f(e') . ,j  . In order that
this covariance should be non-negative, taking into account that
0 < p < 1 and K > 0, wa must have that Kï(e+e')+1,<l,)‘Y(e)‘Y<e')> 1.
If e and e' are parallel edges, i.e. both incident with the same
different vertices, y(e+e') + y(0) - y(e) - y(e') = 1, and it
follows that k > 1. Consequently, we see that 0 < p <_ 1 and k > 1
is necessary and sufficient for the covariance inequality.

At this point it is convenient to introduce, in addition to p,
another mapping from E to the real numbers, related to p and k ,
namely p = p/(p+q<). We shall write 1 - p = q and denote by

K K K

P the measure generated by p . Obviously, p is an increasing
K K K

function of p for k > 0, and a non-increasing function of k for
0 < p <_ 1. Further, if 0 <. p <. 1 and k >_ 0, then also 0 < p^ <. 1.

Let G be a finite graph and f a local variable on G. Then f is
increasing if and only if for any two simple random-cluster models
(G,p ,k) and (G,p',<') with p' <. p and p', < p ,

1C 1C

<f;G,p’,<'> < <f;G,p,<>.

Proof. First, suppose that f is increasing, p' < p and p’, <. p̂ .
If k ' >. k , it follows from p' <. p that p', <. p , and if k '<_<, it
follows from p', <. p that p'<. p. So let first k '> k and p'^p.

 ̂ f Y / Y / ytiThen <f> is non-increasing in k because <f> = <f< ;G,P>/<< ;G,P>,
and thus

K <f;G,p,k>
p

<fï lgY8p.>. _ <fKY;P x y < Y.;P>. .  cov (f  , y;G, p , k) ^  o,
<ky ;P> <ky ;P>2

by Lemma 2, f being increasing and y decreasing. Furthermore,
<f> is non-decreasing in p, because it is non-decreasing in
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(2.14)

(2.15)

(2.16)

each pe* Indeed, by Lemma 1,

<f;G> = <ce;G><f;^G> + <de;G><f; $|G> =

= <£',$)G> + <c ;G> (<T; 6 G> - <f;$G>) ,e e e e

where the only pe dependence is in <c ;G>. Furthermore, <ce;G> is
increasing in pg, because by eq. (2.3) it is equal to pgZ(^G)/Z(G)
and Z(G) is decreasing in p by II Prop. 1, and (<f;(?G> - <f;J?G>)e e e
is non-negative by the proof of Lemma 2, in particular eq. (2.11).
It follows that if k '>. k and p'<. p, eq. (2.12) holds. In case
k '<. k and p',< p , we observe that <f> is non-decreasing in k at

IC K

constant p . Indeed,
r IC

<f;G,p ,k>
_  Y „ „ <fKü);G,P ><fk ';G,P> _ ____ k

<ky ;G,P> <k“;G,P >
ic

by eq. 1(7.26) with x = p^, y = q , 5 = 1 and n = <• It follows
that

<f;G,p,K>
Pk

cov(f,oj;G,p ,k) >, 0,

where the inequality holds because m is increasing. So, if
p", = p , we have <f;G,p,«> >. <f;G,p",K'> , which is larger than
<f;G,p',K’> because p", = p > p',, so p" > p', and by the pre-K |C IC
ceding part of the proof. It follows that if k '<_ k and p', <. p^,
eq. (2.12) holds. Consequently, if p* <. p and p',ip , thenK K
eq. (2.12) holds. On the other hand, suppose that for p'£ p and
p’,< p^ we have eq. (2.12). For any two sets C and C' such that
C'QDQE we consider the particular mappings p' and p defined by
p' = 1 for eeC', p' = 0 for e^C', p = 1 for eeC and p = 0  for
® e e Y(C,y) evfC'le^C. Applying eq. (2.12) we obtain f(C') = f(C')icY'' J =

= <f;G,p’,K> < <f;G,p,<> = f(C)kY ^ / kY ^  = f(C), i.e. f is
increasing. This completes the proof of the lemma.

In Lemma 3 we have shown that the bounds on p and k , namely
0 < p <_ 1 and k > 1, are sufficient to guarantee that the ex
pectation value of an increasing local variable is non-decreasing
in p and is non-increasing in k . We shall now show that again
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Proposition 1

these bounds are necessary in order that eq. (2.12) holds for all
increasing functions on all finite graphs.

First, let G have one edge e, which is not a loop. Taking f - c ,
we obtain <ce<Y;G,P> = pe<Y^  and Z(G,P) = <(ce+de)icY;G,P> =
= p + q kY(0) _ p + q 6 +I, because e is not a

e 6 e _i -l -1 .-1
loop. Therefore, <c ;G,p,K>= (1 + qePe <) = (1 + (Pe -1)k )
In order that <ce> is non-decreasing in p, we must have k > 0,
and in order that <c > is non-increasing in k , we must have
(pj-l) >0, so 0 < p < 1.

Secondly, let G have two edges e,e', which are both incident with
the same two vertices, i.e. e and e' are parallel edges. Taking
f = c again, we obtain <c k^;G,P> = <ce(ce* + de«)K ;G,P> =
pepe »KY ê+e  ̂ + Peqe«<Y ^  = PeKY ê+e ^» because e and e' are

Y Y ( g +6 )parallel, and Z(G,P) = <(ce + de)(ce t + det)KT> = k +
♦ ,eqe.(iJ(0)-KY(e+e')) - KY<ete,){l ♦ qeqe’fr-») . thus
<c > = pe/{1 + qeqe’(k-1)} . In order that ce is non-decreasing
in pe* we must have k-1 > 0, so k > 1, taking into account that
0 < p < 1. Consequently, we see that we must have the bounds
0 < p < 1 and k > 1 on p and k in order that eq. (2.12) holds.

Observe that if f is a local variable on a countable graph G, its
values depend only on the states of a finite number of edges,
forming the finite set E', say, i.e. f(C;G) = f(CTE';G). So it
follows that if we define a local variable f* on a subgraph G'CG
by f' (C' ;G') = f(C'nE';G), that then f  = f for E(G') >,E'. We
shall make a frequent use of this extension of f, defined on G,
to subgraphs of G, and hence, by the association procedure, to
descendants of G.

Let (G,y) = (G,p,<) be a simple random-cluster model,(G countable,
0 < p < 1 and k > 1) and let GiCG2CG3... be an increasing sequence
of finite subgraphs of G converging to G. Then the measure y=(p,K)
qxists, is a probability measure, and is independent of the sequence.
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E *Proof. Let E' be a finite subset of E(G) and let f = c . Then
f is an increasing local variable, and by Lemma 3,
<f';Gn+] ,p,K> >. <f;>ÖEn+l EnGn+j,p,<>. By the definition of
association and extension, if CnCEn = E(Gn) = E(2>En+l ^ G ^ j ) ,
TKCn ;ftEn+1"EnGn+1) = f'CCnSG^,) = fCC^nE’jG) = f'CC^iG*). Further-

E i -JLmore, the measures on 2) n+* nGn+i and Gn are equal, because
Y(Cn ;?JEn+1 ^Gn+j) = Y(Cn ;Gn) + |v(Gn+1) - V(Gn)|, as is evident
from the fact that these graphs only differ by the isolated vertices
of V(Gn+j) - V(Gn), and the definition of p(I i 7.1). It follows
that <f’;Gn+j ,p,K> > <f' ;Gn ,p,ic>, so <f';Gn ,p,K> is a non-decreasing
sequence in n, obviously bounded, so the limit exists. Moreover,
if G^ is another increasing sequence converging to G, we can con
struct an increasing sequence Ĝ J consisting altematingly of sub
graphs Gn and subgraphs G', and hence converging to G. Therefore,
liin <f;G^> = limn<f;Gn> = limn<f;G^> = <f;G>, by definition, i.e.
<cE ';G> exists for all finite E'CE(G) and is independent of the

E 1sequence. Consequently, the measure p exists for the events c ,
so for local events, and hence for all random events, and is in
dependent of the sequence. Finally, because p is a probability,
p is obviously a probability measure.

Now we are in a position to extend the recursion property and the
covariance inequality, as well as other properties, to infinite
simple random-cluster models.

Theorem 1

(2.17)

Recursion theorem: Let (G,p,<) be a simple random-cluster model,
e£E and f an integrable random variable. Then

<f;G> = <c ;G><f;^G> + <d ;G><f;#G>.e e e e

Proof. First, let f be a local variable. Then, by definition,
<f> = jf£<a£>, where a^ is the local event f = f^. Hence,
by Prop. 1, <a.;G> = limn<a£;Gn> , and consequently, <f;G> =
limn<f;Gn>. By Lemma 1, <f;Gn> = <ce ;Gn><f; <?eGn> + <de;Gn><f; 3eGn> ,
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so <f;G> = limn<f;Gn> = limn<ce ;Gn>limn<f; £gGn> +
+ limn<de ;Gn>1imn<f;^ Gn> = <ce;G><f;£&G> + <de;Gxf;$G>, by
Prop. 1 and the preceding remark. Notice that limn 2^Gn = ^ G  and

- eeG-

Let L+ be the collection of all non-negative local variables, let
17 be the collection of all non-negative functions which are the
infimum or the supremum of a countable subcollection of L+ , and

Tr | 1
let L+ be the collection of all suprema and infima of countable
subcollections of L+ , with k = 1,2,... . Then it follows that
L+ is non-decreasing in k, converging to the collection of non
negative random variables, to be denoted L+. Moreover, one
verifies that L+k is closed under suprema and infima of finite sub
collections. We have just proved that eq. (2.17) applies to fëL+.
We shall prove that eq. (2.17) applies to feL^ by proving that it
applies to feL+ + , assuming that it applies to L+

By definition, if feL+k+1, either f = supnfn or f = infnfn with
fnGL+k • Furthermore, supnfn = lin^isupn<n ifn and infnfn =
= infn «infn<nifn , and these limits are obtained monotonically
(non-decreasing and non-increasing respectively). By the preceding
remarks, supn<n»fn and infn<nifn belong to L+ , and hence, by the
integration theorem on monotone sequences and the assumption,
<supnfn ;G> = limn»<supn<n»fn;G> = lin^f (<ce;G><supn<n ifn ;^G> +
+ <de ;G><supn<J1ifn ;a^G>) = <ce;G><supnfn ; £eG> + <de;G><supnfn ;3eG>.
Analogously we derive eq. (2.17) for infnfn if at least one of
the fn is bounded. If all fn are not bounded, infnfn can be ob
tained as the supremum of the monotonically increasing sequence of_k+]
functions gn ■ inf{f,n}, which obviously belong to L+ and are
all bounded, and therefore satisfy eq. (2.17). Repeating the
previous argument for suprema we prove eq. (2.17) for infnfn = f =
sup for the case where all f, are not bounded. Consequently,tn°n * n
if feï7k+ » eq. (2.17) applies to f, and hence if f€L+ , eq. (2.17)
applies to f.

Finally, if f is an integrable random variable, f = f+-f where
+  “  -f -  - - +

not both f and f are not summable, f ,f eL+. Hence, <f ;G> =

<ce><f+ ;£eG> + <dex f + ;5SeG> and <f";G> ■ <V < f";(?eG> + <de><f" ^ e G>»
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(2 .1 8 )

Theorem 2

(2 .1 9 )

and , w ith o u t lo s s  o f g e n e r a l i t y ,  <f ;G> i s  f i n i t e ,  s a y . So we may

s u b t r a c t  them and c o l l e c t  th e  te rm s: <f;G> = <f ;G> -  <f ;G> =

= <ce ><f+ ;^ e G> + <de><f+ ;8 eG> -  <ce ><f” ;^ eG> -  <de><f“ ;2JeG> =

= <ce x f ; 6 e G> + <d > < f;2 eG> . I t  fo llo w s  th a t  e q . (2 .1 7 ) a p p l ie s

to  a l l  in t e g r a b le  random v a r i a b le s .

N o tice  t h a t  in  th e  same way one may p ro v e  f o r  a f i n i t e  s e t  E'CE

and in te g r a b le  random v a r ia b le s  f  t h a t

<f;G> = I <cC dD ;G ><f;£C >öD' g> , C' + D* = E ' .
C ' C ^ '

F u n c tio n s  o b ta in e d  by c lo s in g  th e  c o l l e c t io n  o f  n o n -n e g a tiv e  in 

c re a s in g  (d e c re a s in g )  lo c a l  v a r ia b le s  a re  c a l le d  n o n -n e g a tiv e

random in c re a s in g  (d e c re a s in g )  v a r i a b l e s . The d i f f e r e n c e  betw een

a n o n -n e g a tiv e  random in c re a s in g  v a r ia b le  and a n o n -n e g a tiv e

random d e c re a s in g  v a r i a b l e ,  n o t  b o th  assum ing a v a lu e  ^ 0 a t  th e

same tim e , i s  c a l le d  a random in c re a s in g  v a r i a b l e . N o tic e  t h a t  a

random in c re a s in g  v a r ia b le  i s  an in c re a s in g  random v a r i a b l e ,  b u t

t h a t  th e  co n v erse  may n o t  b e  t r u e .

C ovariance  i n e q u a l i t y : L e t (G ,y) be  a  s im p le  ra n d o m -c lu s te r  m odel,

f  and g random in c re a s in g  (o r  d e c re a s in g )  v a r ia b le s  w hich a re  non

n e g a t iv e  o r  y-sum m able. Then

<fg;G ,y> > < f;G ,y>< g;G ,y> .

P ro o f . The p ro o f  o f  Theorem 2 , s t a r t i n g  from  Lemma 2 , i s  q u i te

analogous to  th e  p ro o f  o f  Theorem 1, s t a r t i n g  from  Lemma 1. F i r s t

one p roves  th a t  f o r  in c re a s in g  (o r  d e c re a s in g )  lo c a l  v a r ia b le s

eq . (2 .1 9 ) a p p l ie s ,  by P rop . 1 and Lemma 2 . S eco n d ly , we s t a r t

w ith  th e  c o l l e c t io n  o f  n o n -n e g a tiv e  in c re a s in g  (o r  d e c re a s in g )

lo c a l  v a r i a b l e s ,  i . e .  th e  c o l l e c t io n  L+n i  (o r  L^PD) w here I  (o r  D)

i s  th e  c o l l e c t io n  o f  in c re a s in g  (o r  d e c re a s in g )  f u n c t io n s .  N o tic e

th a t  I ( o r  D) i s  c lo se d  under c o u n ta b le  suprem a and in f im a , and

th a t  i f  f € l ( o r  D) a ls o  in f { f ,n }  (o r  s u p { f ,n } )  i s  an e lem en t o f  I(o rD ).
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Proposition 2

(2.20)

In the same way as in the proof of Th. 1 we can prove that eq. (2.19)
applies to f.geL+nl (or L+OD), i.e. to non-negative random increasing
(or decreasing) variables. Finally, if f and g are summable random
increasing variables, f = f -f and g = g -g , where f+ ,g+S L+f~>I and
f“ ,g“ eL +nD. Therefore, <(fg)+> = <(f+g+ + f g )> > > K & > +
+ <f’><g >, and ~<(fg) > = <f+ (-g ) + (“f )g+> 2 “ <f+><g > ”
- <f"xg+>, where <(fg)-> is finite by the summability of f and g.
Hence we may add the two inequalitities and obtain <fg> =
<(fg)+> - <(fg)”> >. (<f+>-<f“>)(<g+>-<g”>) = <f><g>, so it follows
that eq. (2.19) applies to summable random increasing (or decreasing)
variables. ||

Let (G,y) = (G,p,<) and (G,y') = (G,p ',k') be simple random-cluster
models and f a random increasing variable on G. If p'<. p, P^ii PK
and either f is non-negative or f+ is y-summable or f is y'-
summable, then

<f;G,y’> <. <f;G,y>.

Proof. The proof for non-negative f is quite analogous to the proofs
of Th. 1,2, in this case starting with Lemma 3. If f is a random
increasing variable, f = f —f , where f ,—f are increasing. Hence,
<f+ ;y'> < <f+ ;y> and -<f“ ;y'> <. -<f~;y>. By assumption, either f
is y-sunmable, so f+ is also y'-summable, or f is y'-summable, so
f is also y—summable. So we may add the inequalitities to <f»y > =
<f+ ;y’> - <f-;y'> < <f+ ;y> - <f~;y> - <f;y>. ||

Finally, we observe that by the proof of Prop. 1, if f is an in
creasing local variable, <f;G> = limT1<f;Gn> = supn<f;Gn> . If
f = supn fn , where the fn are increasing local variables, we can
choose the fn in such a way that f is the limit of a monotonically
increasing sequence of increasing local variables, and thus we ob
tain by the integration theorem on monotone sequences that
<f;G> = <supn fn ;G> = supn<fn ;G> = supnsupn i<f^;Gn *> = supn<f^;Gn> =
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Lemma 4

Corollary

(2.21)

3. LARGE-RANGE

= supnsupn t<fIJi ;Gn> = suPn <f';Gn> * Usin8 this it follows that most
of the lemmas in II § 2 apply to the simple random-cluster model.

Let (G,p ,k) be a simple random-cluster model. Then the Lemmas
1,2,4,5 and 7 in II § 2 apply to it.

< y ,;G,p ,k> = lim <y ,;G ,p,k>.1 vv n vv n

One notices that for the indicators e^,, where V' is a finite sub
set of V, we have by the same reasoning as applied in II lemma 5

G_
to Y , = e ,, that e„, = supne„V . Hence, we have analogouslyw  w  V u V
to eq. II (2.10)

<ev ,;G,p,K> = limn<ev ,;Gn ,p,<>,

which in terms of the ferromagnetic Ising model means that

<cjV »G>can = limn<oV ï V c a n  *

CONNECTIVITY

In the previous section we have extended some of the basic properties
of the percolation model to the simple random-cluster model. We are
now in a position to extend the results on large-range connectivity
in the percolation model, as given in II § 4, to the simple random-
cluster model.

First we notice that y , = lim^Cy^, in Gn) , by II Lemma 5, and
it follows that y , is a random increasing variable, becausew
(y , in G ) is an increasing local variable. Secondly, we havev,w  n
in bilocally finite graphs that yv = infnyv^ with Un = V-V^, by
II Lemma 7, and analogously to II Lemma 5 we also have y .. =

vun
lim , (y /TT „ . in G„i). Therefore, in bilocally finite graphs^ n 'v(Vn i-Vn) n f
y°° is a random increasing variable, and hence y is a random1 v v
decreasing variable. We recall that a bilocally finite graph is
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a graph such that for all pairs of vertices v,v'eV(G) the number
of edges incident with both v and v' is finite. In case the

00 •graph is not bilocally finite, we can only prove that y is an
increasing random variable, and the covariance inequality may not
be applied. (See however the Appendix)

By inspection of the proofs in II §4 one will see that, except
for the proofs of II Lemma 9 and II Prop. 6, we only need the co-
variance inequality, apart from general measure and integration
theorems, in order to prove the lemmas, propositions and theorems
in II § 4. But we have just shown that the covariance inequality
holds in a simple random-cluster model and can be applied to Y *
and Yv , provided the graph is bilocally finite. In the proof of
II Lemma 9, we need the assertion that for a finite subset E'CE
we have <c > > 0 if and only if p >0

In order to complete the proof of II Lemma 9 in the case of the
simple random-cluster model, we shall deduce the following lemma,
in which again p = p/(p+q<) and q = 1-p = q/(q+pic J).K K K

Lemma 5

(3.1)

(3.2)

Let (G,p,k) be a simple random-cluster model and E' a subset of
E (G). Then,
E' E ' „ E'

P SK <c ;G,p,<> 1 P ,
E' ,E ’ „ E '
q < <d ;G,p,<> £ q< ‘

(3.3)

E t E ’HEProof. If E' is infinite, <c > = limn<c n>. Therefore, it
is sufficient to prove the lemma for finite E'. By Prop. 1,
F 1 E *<c ;G> = limn<c ;Gn>, so it is sufficient to prove the lemma

holds in a finite graph G such that E'£E(G ). So let G be finite.
n n E'By the recursion relation and the definition of <c >, we have

c E',„> C D y ( C )I c (C)p q k ,v
. E ' „ : CSE
<c ;G’P’K > ----- v C D 7(C)--l p q <

CCE

PE' I pC"^D"KY(C"+E1)
_____ C"QS"_________________

 ̂ CT~ W   ̂ C" D" y (C"+C') *I p q 1 p q KC'CE' C"CE"
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(3 .4 )

C o ro lla ry

Lemma 6

(3 .5 )

w here C+D=E, E '+E"=E, C '+ D ^ E ',  C"+D"=E". By I  Lemma 2 ,

y(C+e) = y(C) -  6e ( C) , and hence y(C+e) <. y(C) <. y(C+e) + 1. Re

p e a t in g  th e  argum ent we o b ta in  y (C "+E '). <. y (C,,+C ') < y ^ ^ E ' )  + | d ' | .

S u b s t i tu t in g  t h i s  in  eq . ( 3 .3 ) ,  we o b ta in  th e  i n e q u a l i t i e s

E '
P

V C' D' D' -1 E ’
I  p  q K = PK

'■C’SE'

E '< c > 1  P 9

from  w hich eq . (3 .1 )  fo llo w s . A nalogously  one p ro v es  eq . ( 3 .2 ) ,

o b se rv in g  t h a t  y(C) -  1 < y(C+e) < y(C) and hence y (C") “ |c'| <_

< y (C"+C') < y (C "). I |

E '
I f  E ' i s  f i n i t e ,  th e n  <c > > 0 i f  and o n ly  i f  f o r  a l l  eeE we

have p > 0 . j | l n  o rd e r  to  com plete  th e  p ro o f  o f I I  P ro p . 6 in  th e

case  o f  th e  s im p le  ra n d o m -c lu s te r  m odel, we u se  th e  fo llo w in g

lemma w hich forms th e  l i n k  betw een th e  e q s . I I  (4 .2 4 ) and I I  ( 4 .2 5 ) .

L e t (G ,y) be  a s im p le  ra n d o m -c lu s te r  model eeE (G ), and l e t  th e

in duced  m easures on th e  e v e n t sp aces  o f  3&G and 2^G be d en o ted  by

y ( <?e G) and y ( ^ ) G) .  Then

K- 1 y(<dG) < y (£ G )  < icy(2>G).e e e

P ro o f . F i r s t ,  l e t  G b e  f i n i t e .  By d e f i n i t i o n ,  f o r  any C Q ï-e,

D = E -e -C , we have
y (C; £eG) = p CqV (C;CeG)/Z (4 G )  = p CqV ( ° fe ;G ) /Z (£TeG) , and

y (C ;» e G) = p ^ V ^ ^ ^ / Z ^ G )  = p Cq V (C;G )/Z (2 eG).

F u rth e rm o re , from  I I  Lemma 2 , y(C;G) -  1 <. y(C+e;G) <_y (C;G),
. , £ , “ 1 Y(C;G) y (C+e;G) ^ y(C;G) ,and c o n se q u e n tly , f o r  k _> 1, < k 1 .< k ' < _ k  and

th u s  1Z(2>e G) < Z (JèG) < Z(2>eG ). I t  fo llo w s  th a t  K_1y (C ;2 eG) <.

<_ y(C ;CeG) <, icy (C;5>eG ), and , c o n se q u e n tly , t h a t  f o r  a l l  e v e n ts

on (?oG (0G ) eq . (3 .5 )  h o ld s .  I f  G i s  i n f i n i t e  c o u n ta b le ,  th ee e
m easure o f  a lo c a l  ev e n t i s  th e  l i m i t  o f  th e  m easures on f i n i t e

g ra p h s , and th e r e f o r e  eq . (3 .5 )  a ls o  h o ld s  f o r  lo c a l  e v e n ts  on

i n f i n i t e  c o u n ta b le  g ra p h s , and c o n se q u e n tly  eq . (3 .5 )  h o ld s
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Theorem 3

f o r  a l l  random e v e n ts  on <f'G ( J^G). | |
N o tic e  t h a t  f o r  < = 1 th e  e q u a l i t i e s  h o ld , as i s  o b v io u s .

From th e  p re c e d in g  c o n s id e r a t io n s ,  and by in s p e c t io n  o f  th e  p ro o fs

in  I I  § 4 , we o b ta in  th e  fo llo w in g  theorem , embodying th e  r e s u l t s

on la rg e - ran g e  c o n n e c t iv i ty  in  th e  sim p le  random- c l u s t e r  m odel.

L e t (G ,y) be a b i l o c a l l y  f i n i t e  s im p le  ra n d o m -c lu s te r  model (G b i -

lo c a l ly  f i n i t e ,  0 <_ p < 1, ie > 1 ). Then a l l  th e  lemmas, p ro 

p o s i t i o n s  and theorem s o f I I  § 4 h o ld  f o r  (G ,y ). | |

One sh o u ld  n o t ic e  t h a t  th e  c o n d it io n  t h a t  th e  graph  sh o u ld  be

b i l o c a l l y  f i n i t e ,  i s  n o t  s e v e re .  I t  o n ly  e x c lu d es  an i n f i n i t e

number o f  lo o p s  a t  th e  same v e r te x ,  and an i n f i n i t e  number o f

p a r a l l e l  edges betw een th e  same p a i r  o f  v e r t i c e s .  Só i f  V i s  in

f i n i t e  c o u n ta b le ,  i t  does n o t  ex c lu d e  th e  com plete  g raph  (V ,E ,i)

w here th e r e  i s  one edge betw een each  p a i r  o f  v e r t i c e s .

The l a s t  theo rem , to g e th e r  w ith  P ro p . 2 , e n a b le s  us to  s tu d y

th e  q u e s tio n  w h e th e r th e  s im p le  ra n d o m -c lu s te r  model e x h ib i t s  a

phase  t r a n s i t i o n  o r  n o t .  To t h a t  end , we f i r s t  o b se rv e  t h a t  i f

we change y c o n tin u o u s ly  in  such a way t h a t  b o th  p and p^ do n o t

d e c re a s e ,  th e  fu n c tio n s  <YV»P> 311(1 <Yv v «»lJ> n o t  d e c re a s e ,  by
00

P ro p . 2 . F u rth e rm o re , a t  p=0, b o th  <YV> 311(1 <Yv v f> a re  z e r o *
00 .

so  we have n o t  Wv , and a t  p = l ,  b o th  <YV> an<* <^ v v >̂ a re  * so
we have S ’ . I t  fo llo w s  from  P ro p . 2 and th e  p ro p o s i t io n s  I I  P rop .

2 ,3 ,4 ,5 ,  t h a t  i f  th e  m easure y changes from  p=0 to  p=l in  th e

way d e s c r ib e d  above, we w i l l  s u c c e s s iv e ly  have th e  fo llo w in g  ty p es

o f la rg e - r a n g e  c o n n e c t iv i ty :  (1) n o t  Wv> (2) Wv b u t n o t  W ,

(3) W b u t n o t  S ' and (4) S ' .  We may re g a rd  th e s e  fo u r  in
co m p a tib le  ty p e s  o f  la rg e - r a n g e  c o n n e c t iv i ty  as fo u r  p h ases  o f th e

m odel. As i s  p o in te d  o u t ,  a t  l e a s t  th e  f i r s t  and l a s t  phase  a re
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alw ays p r e s e n t  in  an i n f i n i t e  b i l o c a l l y  f i n i t e  s im p le  random-

c l u s t e r  m odel. On th e  o th e r  hand , i f  th e  model has a h ig h  d eg ree

o f  r e g u l a r i t y ,  e .g .  a l l  v e r t i c e s  a re  e q u iv a le n t ,  Wv i s  e q u iv a le n t

to  W, i . e .  we do n o t  have th e  phase o f  ty p e  (2 ) .  M oreover, i f

lim  , ,<y°6 iY°0| > = 0 , W' and S ' a re  e q u iv a le n t ,  by I I  Th. 2 ,v  e v  v w  v
and we do n o t  have th e  phase  o f  ty p e  (3 ) .  We s h a l l  now ex ten d  to

th e  ra n d o m -c lu s te r  model th e  argum ents u sed  in  th e  a n a ly s i s  o f th e

p e r c o la t io n  model and in  th e  I s in g  model to  show t h a t  in  c e r t a in

graphs th e r e  i s ,  o r  i s  n o t ,  la rg e - ra n g e  c o n n e c t iv i ty .  These

argum ents a re  o f  th r e e  ty p e s .  F i r s t ,  we have th e  argum ent showing

th a t  th e r e  i s  a  p ^  0 such t h a t  f o r  p ' < p we have n o t W , i . e .
oo 3 )V<Y >  = 0 . T h is argum ent was f i r s t  used  by Hammersley f o r  th e
V / \

p e r c o la t io n  model and l a t e r  on by F is h e r  f o r  th e  I s in g  m odel,

and e s s e n t i a l l y  u ses  m inim al co n n e c tin g  s e t s  ( s e l f - a v o id in g  w a lk s ) .

S eco n d ly , we have th e  argum ent u s in g  i s o l a t i n g  s e t s  (b o u n d a rie s)

showing th a t  th e r e  i s  a  p ^ 1 such  t h a t  f o r  p '  > p we have W, i . e .

<y°°> > 0 . T h is  argum ent was f i r s t  used  by P e i e r l s  ^ f o r  th e
V  y j

I s in g  m odel, and made r ig o ro u s  by G r i f f i t h s  and D obrushin  ,
Q \

and l a t e r  on , in d e p e n d e n tly , by Hammersley f o r  th e  p e r c o la t io n

m odel. F in a l ly ,  we s h a l l  g iv e  an argum ent, w hich i s  r e l a t e d  w ith

b o th  p re c e d in g  ones and e s s e n t i a l l y  u ses  p a r t s  o f  d is c o n n e c tin g

s e t s ,  w hich shows t h a t  th e re  i s  a  p 1 such  t h a t  f o r  p '  > p
< y°°6 . y00. > = 0 , and h en ce , u s in g  th e  p re c e d in g  arg u m en ts , shows

1V W  v
t h a t  th e re  i s  s t ro n g  la rg e - r a n g e  c o n n e c t iv i ty  S ' .  O b v io u s ly , th e

v a lu e s  o f  p to  be  found depend on th e  g raph  un d er c o n s id e r a t io n ,

and can o n ly  be e s ta b l i s h e d  in  g raphs w ith  a r e g u la r  s t r u c t u r e .  We

s h a l l  o n ly  g iv e  th e  g e n e ra l  a rgum en ts , and a c a l c u la t io n  f o r  th e

sq u a re  l a t t i c e  ( f o r  w hich th e  c a lc u la t io n s  a re  s im p le ) .

B efo re  go ing  on we s h a l l  d e f in e  a  few ty p e s  o f edge s e t s  and

c o l l e c t io n s  o f  edge s e t s .  F i r s t ,  l e t  G' be  a co n n ec ted  subgraph

o f G, th e n  we s h a l l  c a l l  th e  s e t  o f  edges o f  G' th e  c o n n e c tin g

s e t  o f  G '. The c o l l e c t io n  o f  a l l  m inim al co n n e c tin g  s e t s  o f

co n n ec ted  subgraphs o f  G c o n ta in in g  th e  v e r t i c e s  v and v '  i s  de

n o te d  by C  i (G) . O b v io u sly , a s e t  o f  edges b e lo n g s  to  (G)

i f  and o n ly  i f  i t  i s  th e  s e t  o f  edges o f a m inim al p a th  betw een
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Proposition 3

v and v' in G (or a vertex-disjoint path, or a self-avoiding walk).
The collection of connecting sets Uv i yC^i (G) is denoted by
C (G). Further, a set of edges E' is called a disconnecting set

V  Tj* t

of G if the number of clusters of V  G is larger than the number of
clusters of G, more precisely, if there is an equivalence class of
the vertices of G under the relation of connection in G which is not

E * • •an equivalence class in u  G. Obviously, a disconnecting set is
minimal if and only if there are two equivalence classes of verticesP I '
of 2> G such that all edges of E' are incident with a vertex of both
equivalence classes. We shall call the set of edges of G which are
incident both with a vertex of G' and with a vertex not in G' the
isolating set of G'. An isolating set is either a disconnecting set
or the empty set. The collection of all isolating sets of finite
connected subgraphs of G containing v is denoted by l>v (G). Finally,
if G is a finite subgraph of G, we shall call a disconnecting set

n E 1E' of G such that v and v' belong to different clusters of^ Gn,
both containing a vertex of the vertex-boundary Bn of Gn in G, a
separating set between v and v* of Gn in G. The collection of
minimal separating sets between v and v' of Gn in G is denoted by

»w'<Gn’G>-

Let (G,p ,k ) be a bilocally finite simple random-cluster model and

(a) If I  pE <» , then <y”;G,p ,,k’> = 0 for p'<p and p̂ ,<. pk,
E'eC (G)Vn | g I

(b) If q < 1 for all E’eD (G) and I  q̂  < 00,
V E'eJ>v(G) K

then <y~;G,p ',k'> > 0 for p\>p and p^t>PK,
T? t

(c) If lim I q = 0,
n E ’̂ >w'(Gn*G) "

then <y"ö ,Y°°i ;G,p',k’> = 0 for p'>p and p'.^P •V W  v K K

Proof. (a) By II Lemma 7, Yv =in n̂Yvu » so obviously
Y°° < infE le=TT Y I* By definition, Y,„.i = sup c , and' v n v 6ü w  W  B
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so we obtain, using Lemma 5,

(3.6)

(3.7)

(3.8)

(3.9)

<y > < infv — n I I E'
v'eu E’eC .n vv

By assumption, E , r pE ,E fcCv
Zv,eVZE,eCvv.P < °°*

E' < oô so by the definition of G we have
E * v- 0, becauseHence, iny^, I j , p

V-Vn decreases to the empty set, and it follows that <y >
from eq. (3.6). So by Prop. 2 and <YV> Z  0, part (a) follows.

£ £ t
(b) We notice that y^ <, supF t(=p  d , by the definition of By. Let
D' be a finite subset of])v , and denote Dv-D’ by I>". Obviously,
(l-dE)^ = n_,^, (l-dE ) and (l-dE )^ are random increasingÜ* fcjj
variables, and thus by a repeated use of the covariance inequality

Evidently, (1-dE ' )P' (1-dE '

infE ^ (1-dE,>
E ' 00,"8UpE ' ^ d “ V

(l-d“ )
by the first remark , and

thus we obtain from eq. (3.7)

oo e ' JY E '<YV> > (l-<d >r (1- <supE,ejyid1!‘ >).
E f £ *By assumption, q <1 for E ,eDv, so <d > < 1 for E'^D^ and by the

E ̂finiteness of D' we have (l-<d >r* > 0. Obviously,
£ I £ I

iid > >. 1 - » snd this can be chosen to be
because Ï lp. q  < <*>, by assumption, and hence for !D' large

£  I K  co
* <1. It follows that we then have <Y > >0, byv

1 ‘ <SUPE ' ^
>0 ,
enough EEtqD(,qK
eq. (3.8), which proves (b)

(c) We observe that 6 , = inf (6 , in G ) by II Lemma 5. Further-n w  n J
more, y < lim inf (y in G_), because if y , the c-cluster* 'v — v v,vBn n'* v
containing v is infinite and hence contains a vertex of the boundary

00 00of G_ in G, as soon as G contains v. Consequently, y 6 ,Y i <n * n ^ ■ v w  v
lim inf (y _ Ó

v"n vv n, (Gn ,G) is <_lim in±nsupE ,
in Gn), which by the definition of

v  77 I

w
fore have

E ,ej)vv,(Gn ,G)' Obviously, we there-

OD  OO  ■ n<y S ,y .> < lim inf / qv W  V  ~  v 4> t(G>G)q<
w  n

E' 0,

by assumption.
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We s h a l l  show th a t  in  th e  sq u a re  l a t t i c e  we can f in d  m appings p

such th a t  th e  c o n d it io n s  i n  ( a ) , (b) and (c) a re  s a t i s f i e d .  For

(a) and (b) t h i s  amounts to  n o th in g  b u t re p ro d u c in g , in  a

g e n e ra l iz e d  s e n s e ,  th e  p ro o fs  in  th e  p e r c o l a t i o n ,  o r  I s in g  m odel.
P  I  ,

F i r s t  we choose a l l  pg = p . An upperbound f o r  SE 'eC v(G )P 1S
p ro v id e d  by ta k in g  th e  summation o v er a l l ,  n o t  n e c e s s a r i ly  v e r te x -

d i s j o i n t ,  p a th s  w ith  i n i t i a l  v e r te x  v . H ence, pE’ <

^ n - 0 <4*> ( l - 4 p ) n , w hich i s  < «  p ro v id e d  p < |.

E ’In  o rd e r  to  bound £_ , «« <1 , one n o t ic e s  t h a t  to  each  i s o l a t i n g
E € 3 ^ ( 0  K ' ' ,

edge s e t  ofX>v in  th e  sq u a re  l a t t i c e  th e r e  co rresp o n d s  in  th e  d u a l

l a t t i c e  (which i s  a g a in  a sq u a re  l a t t i c e )  a p a th  betw een c o in c id in g

v e r t i c e s ,  e n c lo s in g  th e  fa c e  co rre sp o n d in g  to  v . I f  such a c lo se d

p a th  has  le n g th  n ,  th e  number o f  e n c lo se d  fa c e s  canno t be  l a r g e r

th a n  ( |n ) 2 , and hence th e  number o f  c lo se d  p a th s  o f le n g th  n w ith

th e  same shape e n c lo s in g  th e  g iv e n  fa c e  can n o t exceed  n 2/1 6 . Con-
T?t   ̂ # • • •

s e q u e n t ly ,  q can be  bound by a l l  p a th s  w ith  a g iv e n  i n i t i a l
E SJJy K . . .  E '

v e r te x ,  each  one w ith  a s u i t a b l e  m u l t i p l i c i t y .  So, E g —

<£ “  \- r  n 2 (4q )n w hich i s  f i n i t e  f o r  q < i ,  and hence f o r
~  n=0 16 i Ki K
p > (1+ (3 k) - 1 ) .

E *F or an upperbound o f  E ^ , ,^  » we o b se rv e  t h a t  each

elem en t o f  J) t ( ^ n »G) co rre sp o n d s  to  a p a th  betw een two v e r t i c e s

o f th e  v e r te x  boundary  o f  th e  d u a l o f Gn , such th a t  i t  s e p a ra te s

th e  fa c e s  c o rre sp o n d in g  to  v and v ' . We can choose th e  sequence

G as an in c r e a s in g  sequence o f  r e c ta n g u la r  subg raphs o f  th e

sq u a re  l a t t i c e  c o n ta in in g  v and v ' . I n  t h a t  c a s e ,  i f  a (n )  i s  th e

s m a l le s t  o f th e  d is ta n c e s  betw een v o r  v ’ and th e  v e r te x  boundary  Bn

o f  Gn in  G, t h a t  p a th  c o n ta in s  a t  l e a s t  2 a (n ) ed g es . C o n seq u en tly ,

th e  u n io n  o v er th e  v e r t i c e s  o f o f  th e  p a th s  w ith  i n i t i a l  v e r te x

v ' and le n g th  a t  l e a s t  2 a (n )  i s  l a r g e r  th a n  I w , (Gn ,G) , and we
.k

have ZT ' BJ 5:k=2«a(n) (4qiP
|BIj(4qK) 2 a ( n ) ( l - 4qK) " 1 ,E ' <

E ' ^ w i  (Gn ) q< “  -------------X-,
p ro v id e d  4q <1. We can choose th e  sequence Gq such th a t  |Bn |< b * a (n ) ,

w here b i s  a c o n s ta n t ,  and i t  fo llo w s  t h a t  i n f n Ep

b ' i n f  a (n ) (4 q  ) 2a(n ) = 0 i f  4q < 1 o r  p > (1+(3k) -1 )" 1
' (Gn»G)q<

U sing I I  P r o p . ’ s 3 and 4 and I I  Th. 3 , we can sum m arize ou r r e s u l t s
f o r  th e  sq u a re  l a t t i c e  as fo llo w s!  (a) i f  p <|»  th e n  we have n o t
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W , and th u s  th e  phase o f  ty p e  (1 ) ;  (b) i f  p > (1+ (3 k) ) , th en
00 00

W and <y <$ ,y  ,> = 0 , and hence we have S , and th u s  th e  phase
V V  w  V

o f ty p e  (4 ) .

4 . THE SUPPLEMENTARY VERTEX

In  t h i s  s e c t io n  we s h a l l  e x ten d  p a r t  o f  th e  r e s u l t s  o f  I I  § 5 to

th e  s im p le  ra n d o m -c lu s te r  model.. In  t h i s  c a s e ,  how ever, as con

t r a s t e d  w ith  th e  case  d is c u s s e d  in  § 3 , th e  p ro o fs  g iv en  in  I I  § 5

do n o t  h o ld  as such  f o r  th e  ra n d o m -c lu s te r  m odel. In  p a r t i c u l a r ,

one n o t ic e s  t h a t  th e  e x p e c ta t io n  v a lu e  o f  a random v a r ia b le  w hich

does n o t  depend on th e  s t a t e  o f  th e  supp lem en ta ry  e d g e s , i s  in

g e n e ra l n o t e q u a l to  th e  e x p e c ta t io n  v a lu e  o f  t h a t  random v a r ia b le

f o r  pQ ”  0 , i . e .  when th e r e  i s  no supp lem en ta ry  edge . T h is  f a c t

w i l l  f o r  example b re a k  down th e  p ro o fs  o f  I I  P ro p . 7 and I I  Th. 4 .

F u rth e rm o re , th e  p ro o fs  o f  I I  Lemma 11 and I I  P ro p . 8 depend

s tr o n g ly  on th e  f a c t  t h a t  th e  m easure in  th e  p e r c o la t io n  model i s

a p ro d u c t m easu re , and t h i s  i s  n o t  th e  ca se  in  th e  ra n d o m -c lu s te r

m odel. We can f o r  th e  s im p le  ra n d o m -c lu s te r  model d e r iv e  a much

w eaker p r o p o s i t io n ,  w hich i s  s u f f i c i e n t ,  how ever, f o r  e s t a b l i s h in g

a r e l a t i o n  betw een th e  g lo b a l  la rg e - ra n g e  c o n n e c t iv i ty  and th e
g e n e ra l iz e d  f r e e  en e rg y .

Lemma 7 L e t (G °,y °) be  a s im p le  supp lem en ted  ra n d o m -c lu s te r  model such  th a t

lim  i n f  ^ „ p  ^ 0 ,  and l e t  ^ V .  Then <y y ;G °,y°>  ■ 0 .veV*ov ov v

P ro o f . The p ro o f  i s  analogous to  t h a t  o f  I I  Lemma 10. I t  r e q u ir e s

two a d d i t io n a l  s t e p s ,  nam ely Lemma 5 and th e  f a c t  th a t  q^ i s  a

monotone fu n c tio n  o f  q , such t h a t  q = 1 f o r  q = 1, from  w hich i t

fo llo w s  t h a t  lim  i n f  _TT(p ) ^  0 i f  and o n ly  i f  lim  i n f  __p ^ 0 . I Ivev r ov k J vev ov 11

I f  G* i s  a co nnec ted  subgraph  o f  G th e n  we s h a l l  c a l l  th e  s e t  o f

edges o f G n o t  in  G' w hich a re  in c id e n t  w ith  G' (so  w ith  th e  v e r te x
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boundary o f  G' i n  G) th e  edge boundary o f  G' i n  G.

Lemma 8

(4 .1 )

(4 .2 )

(4 .3 )

L e t (G,p , k) be  a s im ple  ra n d o m -c lu s te r  model and G' a f i n i t e

connec ted  subgraph  o f  G w i th  f i n i t e  edge boundary and s e t  o f  edges E

I f  p < p '  f o r  eSE* and p > p '  f o r  e £ E ' ,  th en*e “  e e e

<yg « ;g , p , k> <. <yg , ; g , p ’ ,<>.

P ro o f .  F i r s t  we n o t i c e  t h a t  G*, t o g e th e r  w i th  i t s  edge boundary

E" i s  c o n ta in e d  in  th e  f i n i t e  subgraphs  Gn , f o r  n l a r g e  enough,

becau se  E ' and E" a r e  f i n i t e .  Thus, YGt i n  G e q u a ls  YGt i n  Gn f o r

n l a r g e  enough. F u r th e rm o re ,  y„ i i s  a l o c a l  e v e n t ,  so <YG»»G> —

= l im  <y , ;G > , by d e f i n i t i o n ,  and i t  fo l lo w s  t h a t  i t  s u f f i c e s  to
n G n

p ro v e  e q .  (4 .1 )  f o r  G f i n i t e .  So l e t  G be  f i n i t e ,  and pu t
T7 * 17**

Y , = c d . ThenG

<Y „.;G ,p , k> = <Yr ,KY;G ,P>/Z(G ,p,K ) = PE qE Z i i  G )/Z (G ).
G k

Because G’ i s  a c l u s t e r ,  Z « f V o  = k 1" V(G' ) Z(ïP  V  G ), and con

s e q u e n t ly  we o b t a i n ,  w i th  V' = V (G ') ,

E ’ E" 1-V' /« f '+ E 'V ^ / 7 ( r s<Y/-.i >G,P,k> = p q k  Z(gT G)/Z(G;G

£
1<U

E'
tc 1 ” V* qE '  +E"Z ' +E' G) /Z  (G) £ E'

Kl - V < d E ,+E";G, p , K>.

From eq .  (4 .2 )  and I I  P ro p .  1, i t  fo l lo w s  t h a t  <YG»> i s  in c r e a s in g

i n  p f o r  e£E' .  From eq . (4 .3 )  and Lemma 3, i t  fo l lo w s  t h a t
r e

<y ,> i s  d e c r e a s in g  in  p f o r  e g E ' .  C onsequen tly ,  eq . (4 .1 )  h o ld s ,
G ®

and th e  lemma fo l lo w s .  | |

From th e  Lemmas 7 and 8 we deduce th e  r e l a t i o n  betw een yv and th e

a c c e s s i b i l i t y  o f  th e  supp lem en tary  v e r t e x  o from v ,  i . e .  YQV*

P r o p o s i t i o n  4 L e t (G °,y°)  be a s im p le  supplem ented  l o c a l l y  f i n i t e  r a n d o m -c lu s te r

model such t h a t  l im  i n f ^ v p o v > 0 ,  and l e t  veV. Then Yy “  ’Yqv a *e

104



Proof. The proof is analogous to the proof of II Prop. 7. By II
Lemmas 5 and 6 it is sufficient to prove, analogously to eq. II
(5.2), that

(4.4)

(4.5)

(4.6)

(4.7)

lim <y „ 6 ;G ,y > = lim lim , « 6 ;G ,,y >n vB ov n n >n vB ov nn n

Now,instead of eq. II (5.3), we obtain

<v 5 ; G°. > = y <v . d  ̂ i G° i >.yvB ov n “ yG ;vB nn G'CG . n

where E' is the set of supplementary edges incident with G'. If
G' contributes to the summation, i.e. G' contains v and at least
one vertex of Bn and is connected, then, by the recursion theorem,
and Lemma 8,

,E' _o ,E'
<yG ’;vB d !iV? ’ <d ><1fn

E ' o
G*;vB '’A Gn'‘n

,E'<. <d ><yG';vB ;Gn'n

By the assumption lim inf^„p > 0, it will follow from Lemma 5v€V ov
that for the contributing c-clusters there are constants b and a< 1g I g t J /y g \
such that <d > s. ^  b a ' * n', and therefore, by eqs.(4.5)
and (4.6) that

<YvB ovn

d(v,B )
;G°t> < b  a n <Y, ;G ,> <, b a

d(v,Bn)

Because G is locally finite, it follows from eq. (4.7) that
lim lim ,<y „ 6 :G°,,u°> = b lim = 0, and hence we obtainn n' 'vBn ov’ n'* n
eq. (4.4), which proves the proposition.

From Proposition 4 we obtain a relation between weak large-range
connectivity and the accessibility of the supplementary vertex.
However, it concerns the large-range connectivity of a model with
a measure which is the limit of supplemented random-cluster model
measures. If y° is the measure of a random event on G° in a variable
supplementation of a simple random-cluster model (G,y), we denote by
y* (a) the limit function linip y°(a) = ^ mp <a»G°»li0> which
is defined on the random events a on G; these events are independent
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of the state of the supplementary edges. Because we do not know
whether or nat y is a measure, we define the measure y as the
extension to the random events on G of the limit function y on
the local events of G. In the percolation model, for k = 1, ob
viously y4 = y “ ~y^ because in that case y is a product measure.
However, for < > 1, in particular for k = 2, where we obtain the
Ising model, we do not know whether or not y4 = y, and if they
equal y or not.

The relation between weak and strong large-range connectivity and
the supplementary vertex is provided by the following analogue of
II Th. 4.

Theorem 4

(4.9)

(4.10)

Let (G,y) = (G,p,<) be a locally finite simple random-cluster model
and v,v’eV. If (G°,y°) is a variable supplementation of (G,y) such
that lim inf „p > 0, thenvëVov

limp +0<Yov;G°’yO> = <VC-*-ro

lim irt<Yp +0 w*o
„o o»;G ,y > <Y ,;G,y> + <y 6 iY »;G,y>.’w  v w  v

(4.11)

Proof. The first part of the proof is analogous to the proof of
II Th. 4. Obviously, we have to replace the expectation values
<y“ ;P> etc. by the limit functions y4 (y ) etc. in the eqs. II1 v v
(5.8), (5.10), (5.11) and (5.13). To see that y4 and y coincide
on the event yG , we first observe that y is a random increasing■ v v
variable, and hence by Prop. 2, we have

oo o G°° o_y4 (y v ;G) = lim +Qy (yv ;G )
r O *■<*„ >0<C>G°-^

Moreover, by II Lemma 6, y °̂° = infn (Yvg * w^ere
is ultimately reached monotonically from above, and the indicators
(y in G„) are local variables (in fact increasing). So we obtainvB_ n
. , G“ „o  o
infp >0<Yv ;G >o

lim inf inf <y „n p vBro n

G
inf lim inf <y„£ ;G°,y°> =■n n  Vi)n

G _
;G°,y°> = lim inf <y n ;G,y>

vBn

OO -- —  00<Yv;G,y> =y(Yv ;G),(4.12)

106



Proposition 5

Corollary

(4.13)

by the definition of y. From the eqs. (4.11) and (4.12) the eq.
(4.9) follows. An extension of this argument shows that \i and y

from which the analogue of eq. II
and y coincide on the event

coincide on the event y  yvYvBr ’
(5.12) follows. To see that

00 00Y . +Y 6 ,y • we show that its indicator is a random increasingw  v w  v
variable, and, in particular, is the limit of a monotonically
non-increasing sequence of increasing local variables. Indeed, by

00 00 Q  Q

II Lemmas 5 and 6, Y__, + Y„$„..iY„t = lim infn Ŷvv'+ YvB 6vv,YvBv w
the limit is monotonically non-increasing as soon as v and v'
belong to Gn, because if y  , in Gn+J, either in or

Y , by the definition of vertex boundary, and if y _ Y„itin v Bn . vBn+l v Bn+1} equals the1 vB„Yv'Br 'vB Yv ’B_Observe that sup{y ,,yw  - -n
_ _ iY I., • Because both y i in G„ and yvBn w' ’v'Bt. w' n 'vBr

then y
v'nn v °n

function y , + y „ fi—  ..... w  vun
m  V» are increasing local variables, y  i + YvR in GnIX VV ViŜ  ^
is an increasing local variable. Hence, by the same reasoning as
we used in the first part of the proof, we obtain y = y on the
event y , + y  & ,y ,,1vv v vv v from which eq. (4.10) follows.

Let (G,y) be a bilocally finite simple random-cluster model, then
the clustering property II Th. 3 holds for (G,y).

Proof. Analogous to the proof of II Th. 3. To see that the co-
variance inequality for y^ Y i with the measure y holds, observe
first that it holds with the measure y°, by Th. 2, and therefore
in the limit y°-»-y4 . Further, y* coincides with y on the events
G00 G y®°°y , by the argument used in the proof of Th. 4. | |v v v v

Let (G,y) be a locally finite simple random-cluster model, and v€V.
If (G°,y ) is a variable supplementation of (G,y) such that
lim inf _,.p > 0, thenveV*ov *
lim inf , „,lim in<Y f> ■ lim . _<y >lim inf , ,lim Lft<Y-.T»>*v eV p +0 w  p +0 ov v tv p +0 ov*o o o

Proof. Analogous to the proof of the corollary of II Th. 4.
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(4.14)

(4.15)

Applying the corollary to the ferromagnetic Ising model with
nagmetic field B (which need not be homogenous), and using I §4.3
and I § 4.2, we get

lim infv'GV' limn<0vCTv';Gn*B>can =BrO

= lim lim <a :G ,B> lim inf lim lim <o »G ,B>
B+0 n V n C3n v'eV' B+0 n n Can

In case all vertices are equivalent, this reduces to

lim inf lim limber a , ;G ,B>
v'eV B+O

lim lim <a ;G ,B>n v n can''B+O
which is independent of the vertex v and the set V'.

2

Finally, we give a proposition relating the generalized spontaneous
magnetization with the global large-range connectivity. However,
we shall give this proposition under rather strong conditions on the
system, compared with those used in II Proposition 8. We shall re
quire that the system be very "regular", so that there is in fact
no longer a difference between global large-range connectivity and
weak large-range connectivity.

An automorphism of a graph G = (V,E,i) is a one-to-one mapping of
vertices to vertices and edges to edges such that the incidence
relation is preserved, i.e. ip(V) = V, ip(E) = E and for all e€=E, if
i(e) = {v,v' } then i(ip(e)) = (ip(v) ,ip(v')}. Two vertices v,v'GV are
called equivalent in a graph if there is an automorphism 4> of the
graph such that i|j(v ) = v'. If the number of equivalence classes of
vertices under the relation of equivalence in the graph is finite,
we say that an infinite graph has a lattice structure. An
automorphism of a random-cluster model is an automorphism of the
graph such that p(4>(e)) = p(e) for all eGE. Two vertices v,v'GV
are called equivalent in a random—cluster model is there is an
automorphism ip of the random—cluster model such that 4*(v) = v • If
the number of equivalence classes of vertices of an infinite random-
cluster model under the relation of equivalence in the random-
cluster model is finite, we say that the random-cluster model has a
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l a t t i c e  s tr u c tu r e .

P ro p o s itio n  6

(4 .1 6 )

(4 .1 7 )

Let (G,y) = (G,p,K) be a lo c a l ly  f i n i t e  sim ple random -cluster model
w ith  l a t t i c e  s tr u c tu r e  and w ith  an in cr ea s in g  sequence o f  f i n i t e

subgraphs G such th a t lim  | V | Mb I = 0  and U' G ” G. I f  (G ,y )°  r  n n n 1 n n n
i s  a sim ple v a r ia b le  supplem entation  o f  (G,y) such th a t p = pQ
fo r  a l l  vGV, then th e fo llo w in g  l im it s  e x i s t  and are equal:

lim  (q -r~-]lim |V  | 1 In Z (G °,y°) = (1- k” 1) lim jv  I" 1 £ <y*;G,y> .
p +ol ° 3qoJ n n n n n vGV Vo 11

P roof. F ir s t  we show th a t lim  |v | In Z(G_,h ) e x i s t s  and in  in -n n 11
dependent o f  the sequence G . This w i l l  fo llo w s  from th e sub
a d d it iv i ty  o f  In Z, which i s  a d ir e c t  consequence o f  I I  Prop. 1
a p p lied  to  the d ecreasin g  fu n ctio n  K and the product property  o f

the c lu s te r  fu n c tio n  Z, mentioned in  I § 7 .2  So, i f  Gi and Gz are
two f i n i t e  d is j o in t  subgraphs o f  G°, and G3 i s  a f i n i t e  subgraph
o f G° obtained  from G} and G2 by adding edges o f  G° to  t h e ir  union ,
we have In Z(G3) <. In Z(Gi) + In Z(G2) .  Because (G,y) has a l a t t i c e
s tru c tu re  and i s  lo c a l ly  f i n i t e ,  and hence i s  lo c a l ly  bounded, and

s in c e  on th e o th er hand lim  |v I IB I = 0 , i t  fo llo w s  th a tn 1 n 1 1 n
lim  IV I” In Z (G °,y°) e x i s t s  and i s  independent o f the sequence G

tl n ll ï n
( c f .  F ish er   ̂ , and Hammersley ) .  Second ly , In Z (G °,y°) i s  a
convex fu n ctio n  o f In qQ, by I Prop. 2 and Prop. 2 ,  and hence we
may in terchange d e r iv a t iv e  w ith  re sp ec t to  In qQ and l im it  w ith

resp e c t to  n except fo r  a countab le number o f p o in ts  q • Because
we are in te r e s te d  in  the l im it  o f  pQ d ecreasin g  to  zer o , we may
even n e g le c t  th ose  p o in ts  o f  d is c o n t in u ity ,  i f  p r e se n t , w ithout

changing the l im it  v a lu e , provided we in te r p r e t  the d e r iv a t iv e  as
a tw ovalued fu n ctio n  c o n s is t in g  o f  the le fth a n d -d e r iv a t iv e  and

the r ig h th a n d -d e r iv a tiv e , th e l a s t  o f  which i s  continuous from the

r ig h t .  Thus we have

% W  U " J Vn l ' '  ln  Z<G> ° >  * l * " J W  I  <So v 'G> 0> *V̂ Vn

by the co n v ex ity  and I Prop. 2. Because (G ,y) has a l a t t i c e
s tr u c tu r e , by assum ption, we can choose a f i n i t e  number o f v e r t i c e s ,

one fo r  each eq u iva len ce  c l a s s ,  th e  v e r t ic e s  v j ,  V2 » say .
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(4. 18)

(4 . 19)

Let  G „ be  so l a r g e  t h a t  a l l  v i , . . . ,  v.  be l ong  t o  G Le t  n '  ben i n
t h e  l a r g e s t  o f  t he  d is ta n c e s  o f th e  v e r t i c e s  v i , . . . ,  v . ,  to

v e r t i c e s  o f th e  v e r te x  boundary  B^,, o f  G^,, in  G, i . e .

n ' = s u p ^ s u p ^ g  d ( v ^ ,v ) .  I t  fo l lo w s ,  f o r  n > n " ,  t h a t  i f  Bn j i s

th e  s e t  o f  v e r t i c e s  o f  V w ith in  a d is ta n c e  n '  o f  th e  boundary  B ,n n
f o r  each  v e r te x  vSV -B w hich b e lo n g s  to  th e  c la s s  o f  v .  we haven nl i
<6 ;G °,u°>  < <6 ;G °„ .u °> , b eca u se  th e re  i s  an autom orphismov n ’ ov£ n
such  th a t  i|>v̂  = v and such  th a t  th e  g raph  iJjG^h i s  c o n ta in e d  in  G^

by th e  c o n s tr u c t io n  o f  n '  and n  > n " , so <6 <6o v ^ Gn"’y0>; G ° y ° >
ovj n

by th e  d e f i n i t i o n  o f  e q u iv a le n c e  c l a s s e s ,  and t h i s  i s  l a r g e r  th a n

<6 :G °,u°>  by P ro p . 2 and \pG „CG .ov n n n
<6 :G°> -  <6 ;G°> = <6 ;G°> -  <6 ;G~> h as  f o r  a l l  vSV -B  , aov n  ov ov n  oV£ n  111
bound a (n " )  = sup i (<6Qv>;G°„> -  <00V. J g0>)» w hich i s  in d ep en d en t o f

I t  fo llo w s  th a t

O V £ . .  . . .

M oreover, by eq . I I  ( 5 .3 1 ) ,  |Bn jl
-1

< c B w here c i s  a c o n s ta n t ,

and hence

s e q u e n t ly ,

lim  Vn 1 n ‘ B 0 , by th e  assum ption  on th e  G . Con-

limnlVn l" ‘ 1 <<óo v ;G> 0> ‘  <5ov>G° - " 0>) -  a ( n , , ) ’vevn
and hence th e  le f th a n d  member o f  eq . (4 .1 8 ) e q u a ls  ze ro  b ecau se

a (n " )  te n d s  to  z e ro  f o r  n " + » .  From th e  e q s . (4 .1 7 ) and (4 .1 8 ) we

so o b ta in

Q0 - 3 -  Urn |V I-1 in  Z(G°,n0) -  ( I - k' 1) U ^ l ^ r '  I  <5oviG °.n°>.
H°  n  ^ n

By eq . ( 4 . 9 ) ,  lim p 4.0<6o v ;G °,y°>  = <y^;G,"p> , and by th e  assum ption

t h a t  (G ,p) has a l a t t i c e  s t r u c t u r e ,  th e r e  i s  o n ly  a f ix e d  number o f

d i f f e r e n t  term s <6o v ;G °,y°>  . H ence, th e  sum |Vn | <^ov> con-
v e rg e s  u n ifo rm ly  in  n as a f u n c t io n  o f  pQ, and we o b ta in  from  eq .

(4 .1 9 ) th e  eq . ( 4 . 1 6 ) ,  w hich com ple tes  th e  p ro o f .  | |

One n o t i c e s  t h a t  th e  re q u ire m e n t in  P ro p . 6 t h a t  th e  sequence G^

be such  t h a t  lim  |V | “ 1Ib I = 0 ,  r e s t r i c t s  th e  c l a s s  o f g raphs ton 1 n ' 1 n 1
w hich P ro p . 6 i s  a p p l ic a b le .  In  p a r t i c u l a r  i t  i s  n o t  a p p l ic a b le

to  B ethe l a t t i c e s  w ith  c o o rd in a t io n  number n > 3 , w here f o r  a l l

f i n i t e  subg raphs G' we have |V(G*) | | B(G' )  | > ( n - 2 ) / (n -1 ) _>.
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5. DISCUSSION

The main point in this paper on the simple random-cluster model is,
that the simple random-cluster model has mainly the same properties
with respect to large-range connectivity as were derived for the
percolation model in a preceding paper. We mention again the close
relationship between weak and strong large-range connectivity, in
particular their equivalence under a non-trivial condition. This
equivalence is related with a clustering property, which does not
depend on the occurrence of a group of automorphisms, but holds for
any bilocally finite simple random-cluster model.

In § 3 of this paper we restricted ourselves to bilocally finite
graphs in order to obtain the same properties with respect to large-
range connectivity as were obtained in II i 4. This restriction,
however, is unnecessary, as will be shown in an appendix, and it
turns out that the properties mentioned in II § 4 for the percolation
model hold for all simple random-cluster models.

Another interesting point is the relation between the generalized
spontaneous magnetization and global large-range connectivity, as well
as the relation between the generalized local spontaneous magnetization
and weak large-range connectivity. However, the large-range
connectivities are defined in this case in graphs with a measure y
which has not been shown to be equal to the random-cluster model
measure y. The question whether or not y = y is an intriguing open
question.

APPENDIX

We shall first show that y is a random increasing variable on any
countable graph. This will be a direct consequence of the following
lemmas. We shall denote the set of edges E-En by F . The event
that there is a c-cluster containing the vertex v and an edge of F
is denoted y _ . Notice that F„ is not a set of vertices, contrary

vFn .to B and U . The reader is warned against confusing y „ withn n VJTn
YvBn °r YvU *n n
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Lemma Al If v is a vertex of G, then

(A. 1)
00Y = inf Y „ = lim Y - ,v n vF n vr_n n

(A. 2) <Y°°> = inf <y t, > = lim <Y ■p> •'v n 'vF n 'vFn n

Proof. First we notice that if y~» then the c-cluster containing
v has an infinite number of edges, because otherwise the number of
edges, and therefore the number of vertices, should be finite, and
hence the cluster should be finite contrary to the assumption. Be
cause E is finite, it follows that for any n an infinite number ofn
edges of the c—cluster containing v is not in E , so in F , so y vF »

oo nf 11 n
and thus y < inf y r • On the other hand, if Y„» then the number'v “ n vF v
of c-edges in the c-cluster containing v is finite, so there is an
n such that all these edges are contained in E , so not YvF » and11 n
thus y^ <. suP(1-YvF )• Consequently, y v  = • Obviously,
Y is non-increasing in n, because E is increasing in n, so
vFn nF is decreasing in n, which completes the proof of the first part
of the lemma. The second part follows from the integration theorem
on monotone sequences.

Lemma A2 Let v be a vertex of G, then

(A. 3) y v F = supn'(YvF in Gn f) = limn ,(YvF in Gn f)*n n n

(A. 4) ^ v F  > = SUV <YvF ;Gn f> = limn ,<YvF ^ n ^ *n n n

Proof. If y n , there is an edge of F_ in the c-cluster containing v.
vFnIt follows that there is a c-path with initial vertex v containing an

edge of Fn , so there is an n' such that this path is contained in Gn ,
i,e, y < sup |(y p in Cta the other hand, if there is an
n' such that (y ll? in G ,), obviously y „ in G, soVr*% H vrn ^
supn' (y vF in Gn ^  " YvF » and consequently yvF = suPn » <YVFn in Gn V
Evidently, (y F in Gn t!? is non-decreasing in n^, which completes

n
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th e  p ro o f  o f  th e  f i r s t  p a r t  o f  th e  lemma. The second p a r t  fo llo w s

from  th e  in t e g r a t i o n  theorem  on monotone seq u en ces.

Theorem A1

O b v io u sly , (yvJ, in  G ^,) i s  an in c re a s in g  lo c a l  v a r i a b l e ,  so by

Lemma A2 i t  fo llo w s  th a t  y  „  i s  a random in c re a s in g  v a r i a b le ,
oo v*n

and by Lemma A1, th a t  y  i s  a random in c re a s in g  v a r i a b le .  By th e

c o n s id e ra t io n s  in  § 3 we so have

L e t (G ,y) be  a sim p le  ra n d o m -c lu s te r  m odel, th e n  a l l  th e  lemmas,

p ro p o s i t io n s  and theorem s o f I I  § 4 h o ld  f o r  (G ,y ) . | |
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(Rijksuniversiteit Leiden) in de functie van wetenschappelijk
medewerker bij de Stichting Fundamenteel Onderzoek der Materie
(Werkgroep Vaste Stof Theorie).

Illustratie Peter Struycken, Computerstructuur 4A (1969). Lakverf op perspeks,
oms lag 150 x 150, Museum Boymans-van Beuningen, Rotterdam.

Typewerk Mevrouw S. Hélant Muller-Soegies. Getypt met IBM 72, met
schrijfkoppen Prestige elite 72, symbol 12 en PRX—10—T op OCË
PD 300 offsetplaat.

Drukwerk Copiëerinrichting Beugelsdijk te Leiden, Rotaprint offset.
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STELLINGEN

van C.M. Fortuin

1 De reeds lang bekende ster-driehoekstransformaties in elek
trische netwerken en de in het Ising model bekende ster-
driehoekstransformaties zijn beide een bijzonder geval van
een ster-driehoekstransformatie in het random-cluster model,
die echter alleen in de genoemde twee gevallen algemeen toe
pasbaar is.

2 De reeksontwikkelingen bij hoge en lage temperaturen in het
Ising model zijn bijzondere gevallen van reeksontwikkelingen
in het random-cluster model; de coëfficiënten van dergelijke
reeksen kunnen worden geïnterpreteerd als elementen van de
incidentie-algebra op bepaalde tralies.
Vgl. G.C. Rota, Z.Wahrsch.Th. 2̂ (1964), 340.

3 De invloed van massacommunicatiemiddelen op het massapsycho-
logische gedrag kan worden toegelicht aan de hand van het
percolatiemodel. Daartoe worden individuen voorgesteld door
punten, massacommunicatiemiddelen door supplementaire punten
en communicatiekanalen door lijnen.

4 Het verdient aanbeveling om in de experimenten aan verdunde
oplossingen van magnetische atomen in niet-magnetische mate
rialen te trachten enerzijds de lokale magnetische en ander
zijds de spin-spincorrelaties op lange afstand te meten. Een
eventueel verschil in overgangstemperatuur zou mogelijk aan
de hand van het random-cluster model kunnen worden geïnter
preteerd.

5 Het verdient aanbeveling om de algebra's van observabelen,
zoals die in gebruik zijn in de algebraische aanpak van de
statistische mechanica, uit te breiden tot algebra's met on
begrensde operatoren, teneinde het mogelijk te maken b.v. ook
de soortelijke warmte als observabele te beschouwen.

6 In het algemeen wordt in de fysica te weinig aandacht besteed
aan het asymptotisch gedrag van systemen bestaande uit veel
deeltjes. In het bijzonder geldt dit bij het gebruik van
periodieke-randvoorwaarden en de grote-volumelimiet.

7 Het verdient aanbeveling om het begrip samenhangend van een
graaf als volgt te definiëren: een niet-lege graaf is samen
hangend als er geen twee niet-lege disjuncte subgrafen van
die graaf zijn waarvan de som gelijk is aan de graaf.
Vgl. J. Edmonds, Can.J.Math. 17 (1965) 449-467.



8 A ls z een  atoom van een t r a l i e  L i s ,  L' de v e rzam elin g  b e
s ta a n d e  u i t  z en a l l e  e lem en ten  van L d ie  boven z l ig g e n
en L" de v e rza m e lin g  L-L', dan z i j n  L' en L" t r a l i e s  dan
en s l e c h t s  dan a l s  v o o r a l l e  x en y u i t  L g e ld t  d a t
(xV!y)Az = (xAz)V(yAz).

9 A ls x ,  y en z e lem en ten  van een t r a l i e  z i j n ,  dan z i j n  onder de
de c o n d i t ie  xVz = yVz de r e l a t i e s  x=y en xA(yVz) = xAy e q u i
v a l e n t .  A ls te v e n s  g e ld t  d a t  xAz = yAz, dan z i j n  de r e l a t i e s
x=y en xV(yAz) = (xVy)A(xVz) e q u iv a le n t .
Vgl. G. Birkhoff-Lattice Theory, 3rd edition 1967, Corollary
of II Th. 13.
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