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1. De Debye temperatuur 0D wordt vaak afgeleid uit soortelijke warmte
metingen bij lage temperatuur; voor dat geval zijn twee definities van 6jj
in gebruik. Die definitie waarbij het aantal atomen c.q. atoomgroepen
in de eenheidscel in rekening wordt gebracht, verdient de voorkeur.

2. Voor de ijking van meetmethoden van de warmtegeleiding bij zeer lage
temperatuur zijn LiF kristallen aan te bevelen als standaardmateriaal.

3. De door Wolfmeier en Dillinger gesignaleerde overeenkomst tussen de
gemeten warmtegeleiding in A120 3 en de door hen berekende waarde
berust slechts op een samenloop van omstandigheden.
M.W. Wolfmeier and J.R. Dillinger, Phys. Letters 34A (1971) 247.

4. Er zijn aanwijzingen dat in een driedimensionale Heisenberg ferromagneet
de warmtegeleiding door magnetische excitaties, dan wel de afgeleide
naar de temperatuur daarvan, discontinu is bij de faseovergang.

5. Het gedrag van de warmtegeleiding nabij een magnetische faseovergang
kan als functie van de temperatuur en tevens als functie van het magneet
veld worden bestudeerd; het laatste verdient veelal de voorkeur.

6. De temperatuurafhankelijkheid van de warmtegeleiding van FeCl2 nabij
r N wordt veeleer bepaald door het transport van magnetische excitaties,
dan door kritische fluctuaties in het spinsysteem.
G. Laurence, Phys. Letters 34A (1971) 308.

7. Het is mogelijk dat de warmteweerstand van het grensvlak tussen twee
(bijvoorbeeld para-) magnetische zouten een ander karakter heeft dan
die tussen diamagnetische zouten.

8. Het is te verwachten dat de absorptiecoëfficiënt voor ultrageluid in
Cu(NH4)2Br4’ 2H20  bij de ferromagnetische faseovergang niet divergeert,
doch eindig blijft en sterk toeneemt beneden Tc .



9. In een geschikt gekozen combinatie van halfgeleiders zou, bij het grens
vlak, een monochromatische fononenbundel kunnen worden opgewekt.

10. Met een experiment analoog aan de proef van Young zou interferentie
van warmtegolven in een kristal kunnen worden aangetoond.

11. Het is wenselijk een permanente, van inhoud variërende, tentoonstelling
over het wetenschappelijk onderzoek aan de universiteiten in te richten.

12. Het is wenselijk werkbezoeken aan een universiteit op te nemen in het
programma van de hogere klassen van de middelbare scholen. De
universiteit zou hiertoe faciliteiten ter beschikking moeten stellen.

13. Een visie op het geheel is nodig wanneer men details wil interpreteren;
dit leidt bij wetenschappelijk onderzoek tot het werken met modellen,
en bij nieuwsmedia tot (dus niet laakbare) tendentieuze voorlichting.

14. De vrijheid tot meningsuiting en meningsvorming wordt verwezenlijkt
door middel van onderwijs, gesprekken, pers, radio en televisie.
Van deze komt alleen de pers tot stand binnen een commerciële
organisatie. Gezien de huidige ontwikkeling bij de dagbladpers is het de
hoogste tijd dat deze uitzonderingspositie wordt opgeheven.

15. Bij de huidige opzet van de kinderbescherming schuilt in de ‘uithuis
plaatsing’ een risico van het buiten de maatschappij plaatsen. De aanpak
waarbij de kinderen met hun groepsleiders een gezin vormen in een
gewoon huis in een gewone straat zou hiervoor een oplossing kunnen
brengen.
‘Browndale’ de Groene 13-3-1971.
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SAMENVATTING

Warmtegeleiding bij zeer lage temperatuur is een to t nu toe weinig onderzocht gebied van de
natuurkunde der vaste stof. Dit is waarschijnlijk een gevolg van het feit dat de warmte-
geleiding bij lage temperatuur in het algemeen op eenvoudige wijze wordt beschreven. Deze
eenvoudige beschrijving betreft dan kristaltrillingen (fononen) en, in een metaal, vrije
electronen. Maar naast deze gebruikelijke transportmechanismen kunnen ook andere
thermische excitaties een rol spelen. Dit komt in de warmtegeleiding tot uiting hetzij als een
verlaging door extra fonon-verstrooiing, dan wel als een verhoging door transport ten gevolge
van deze excitaties. In principe kunnen deze effecten zowel in dielectrische kristallen als in
metalen bij willekeurige temperatuur worden bestudeerd. In dit proefschrift hebben we ons
beperkt tot het onderzoek van de warmtegeleiding bij lage temperatuur in magnetische
dielectrische kristallen, om op deze wijze te trachten thermische excitaties in een magnetisch
spin systeem te onderzoeken.
Warmte-transport door thermische excitaties in een magnetisch systeem werd respectievelijk
voor een paramagneet door Fröhlich en Heitler1, en voor een ferromagneet door Sato2
voorspeld. Van Kempen3 vermeldt een aantal warmtegeleidingsmetingen bij zeer lage
temperatuur, met als belangrijkste resultaten dat de metingen aan waterhoudende kristallen
reproduceren, en dat in een aantal gevallen de warmtegeleiding inderdaad wordt beïnvloed
door de aanwezigheid van een magnetisch spin systeem. Het voorgaande was de aanzet voor
het onderzoek dat in dit proefschrift is vermeld. Het hoofdonderwerp kon echter pas worden
aangevat nadat een geschikte methode voor warmtegeleidingsmetingen bij zeer lage tempe
ratuur was ontworpen.
In 1.4 is de ‘switchmethode’ beschreven, welke geschikt is voor metingen bij temperaturen
lager dan 1 K; de resultaten (1.6) bevestigen de conclusies van Van Kempen. Uit een nadere
bespreking van de switchmethode (zie 1.7) blijkt dat deze methode een aantal ongewenste
beperkingen aan de meetmogelijkheden oplegt. Deze overwegingen leidden tot een nieuwe
opzet voor de warmtegeleidingsmetingen, waarbij een groter temperatuurgebied wordt
bestreken, en tevens magneetveldafhankelijkheid kan worden gemeten. Vooral de laatst
genoemde uitbreiding van de mogelijkheden bleek van groot belang voor de interpretatie van
de metingen aan magnetische kristallen.
Hoofdstuk II beschrijft de opstelling voor het temperatuurgebied 0.05 <  T <  5 K. Dit
temperatuurgebied wordt bestreken door koeling met zowel vloeibaar 3He als adiabatische



demagnetisatie. Voor de, in een dergelijke opzet noodzakelijke, warmte-schakelaar tussen de
twee koelmethoden is 4He gas toegepast. Deze zogenoemde gas-switch is beschreven in H.4;
metingen van de warmtegeleiding in een dergelijke constructie worden besproken in IV.2.
De, in het temperatuurgebied beneden 1 K gebruikelijke, magnetische thermometrie is
onhandelbaar als er in magneetveld wordt gemeten. Een alternatief is thermometrie op basis
van de temperatuurafhankelijke electrische weerstand van met name koolweerstanden. De
bij koolweerstandsthermometrie optredende problemen, de ijking als functie van magneet
veld en temperatuur, en de gebruikte procedure voor warmtegeleidingsmetingen worden
besproken in hoofdstuk III.
Een aantal experimentele resultaten worden besproken in hoofdstuk IV. In IV. 1 zijn de
testmetingen vermeld, waarbij zowel de absolute waarde, als de resulterende temperatuur-
en magneetveldafhankelijkheid van de warmtegeleidingsmeting is gecontroleerd. De experi
mentele resultaten met LiF, verkregen in temperatuurgebied van 0.08 -1.4 K, stemmen
overeen met de theoretisch voorspelde temperatuurafhankelijkheid4. De theoretische
absolute waarde blijkt echter een factor 2 groter te zijn dan de experimentele waarde. Dit
leidde tot het uitgangspunt, verwerkt in dit proefschrift, dat de theoretische warmte
geleiding in het ‘T3 gebied’ moet worden gereduceerd met een fa c to ry , waarbij s wordt
bepaald door het aantal atomen, c.q. atoomgroepen (NH4, H20  e.d.) in het molecuul van de
beschouwde stof. Dit uitgangspunt is, als voorbeeld, toegepast op de warmtegeleiding van
ZnSiF6- 6H20. De experimenteel gevonden waarde voor s (16 ± 3) stemt goed overeen met
de gegeven definitie van s (= 14 voor ZnSiF6-6H20).
Het hoofdonderwerp van dit proefschrift betreft de warmtegeleiding van een aantal magne
tische zouten, die zowel als functie van het magneetveld als van de temperatuur is bestu
deerd (IV.3). De meeste resultaten hebben betrekking op kristallen met een magnetische
fase-overgang in het beschouwde temperatuurgebied. De warmtegeleiding van CoCs3Cl5
(representant voor het 3D Ising-model) blijkt onafhankelijk van de fase-overgang. De warmte
geleiding van Cu(NH4)2CV2H20  en Cu(NH4)2Br4-2H20  (representanten voor het 3D
Heisenberg-model) wordt daarentegen sterk beihvloed door de fase-overgang, resulterend m
een minimum in de geleiding nabij Tc. Ook in de warmtegeleiding van Ni3La2(N03)12-24H20
komt de fase-overgang duidelijk tot uiting, in dit geval echter als een toename van de fonon-
verstrooiing beneden Tc. De magneetveldafhankelijkheid van de warmtegeleiding bleek een
belangrijk gegeven te verschaffen voor de interpretatie van de resultaten. In de koperzouten
kon, dank zij de metingen in magneetveld, warmte-transport in het magnetische spin systeem
worden aangetoond.
Hoewel de literatuur over het gedrag van transportgrootheden bij een (magnetische) fase
overgang snel uitbreidt, zijn er tot nu toe slechts zeer weinig voorspellingen aangaande het
gedrag van de warmtegeleiding bij een fase-overgang. Gezien de significante resultaten met
de koperzouten leek het gewenst speciale aandacht te besteden aan de temperatuurafhanke
lijkheid van de warmtegeleiding in de nabijheid van de fase-overgang. Dit is beschreven m
hoofdstuk V. De behandeling in V.l is vooral fenomenologisch (dynamic scaling); in V.2



zijn de resultaten van Cu(NH4)2C14-2H20  vergeleken met een theoretisch model5. Voor
T >  Tc wordt de fononvrije weglengte in eerste instantie bepaald door een proces dat
omgekeerd evenredig is met de warmtegeleiding van het magnetische spin systeem. Als dit
proces ook in de geordende toestand domineert, dient de warmtegeleiding van
Cu(NH4)2C14 • 2H20  voor T <  Tc te worden toegeschreven aan warmte-transport door spin-
golven. De resultaten (IV.2) en de nadere analyse (V) tonen aan dat warmtegeleidings-
metingen bruikbaar zijn voor het onderzoek van excitaties in een magnetisch spin systeem;
mogen zij een uitnodiging zijn tot verder onderzoek van de warmtegeleiding bij zeer lage
temperatuur.
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INTRODUCTION AND SURVEY

Thermal conductivity at very low temperatures, as treated in most textbooks on solid state
physics, is expected to show a quite simple behaviour. The question, as to why there is
a need for a thesis pertaining to the measurement of thermal conductivity at very low
temperatures, may therefore be posed quite legimately. However, an examination of the
literature shows that very little experimental evidence exists for this postulated simple
behaviour. Moreover, the above mentioned behaviour is to be expected only for thermal
transport due to either electrons or vibrations of the atoms constituting the solid; and, as
shown in this thesis, thermal energy carriers different from these may be effective as well.
Actually, instead of being simple, a wide variety in temperature dependence and /or absolute
values of the thermal conductivity may occur, even at very low temperature.
Experimentally, the thermal conductivity Xis, apart from a geometry factor L/S, defined as
the proportionality constant between the heat f\pw Q and the corresponding temperature
difference AT  along the sample, hence X =-|f .
Theoretically, thermal conductivity in a solid can be understood in the following way.
A solid may be regarded as an ideal crystal at rest with certain thermal excitations. If these
excitations are free to move through the crystal, they give rise to thermal transport. The
dispersion relation of these excitations leads to the thermodynamic quantities.
The easiest way to arrive at an expression for X is to treat the excitations as the particles of
an ideal gas. In that case, thermal transport is described by the well-known formula of the
kinetic gas theory

x - i « *
where c is the specific heat per unit volume, v the mean velocity and I the mean free path
of the particles.
Similarly, for a solid with various excitations i one can write

X = | s q v i/i .
i

In an actual solid, both q  and /; may be strongly temperature dependent. Furthermore, the
mean free path will be determined by lattice defects, impurities, crystal size, and last but
not least, by interactions between excitations of the same and/or different kind. Hence X
depends on both the substance and the particular sample chosen for the X measurements.
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The purpose of the experiments described in this thesis is an investigation of thermal
excitations in a magnetic system and their interactions in a solid. In principle, one can
measure these effects both in dielectric crystals and in metals and at arbitrary temperatures.
Dielectric crystals were chosen since in that case the dominant excitations are usually lattice
vibrations only, while in metals both lattice vibrations and electrons have always to be
taken into account. Low temperatures are preferred since, as will be shown, the heat trans
port by lattice vibrations is quite simple to describe, and moreover, the magnetic excitations
are relatively more important at low temperatures.
In an ordinary thermal conductivity experiment on dielectric crystals, the heat input and
cooling will be through the lattice, and the thermometer readings correspond to lattice
temperatures. In order to conclude whether the thermal conductivity is affected by
magnetic excitations, one has to know the unaffected lattice conductivity. Furthermore
a quite good interaction between the lattice vibrations and the magnetic excitations is
necessary.
The possibility of thermal transport by magnetic excitations was originally suggested by
Frölich and Heitler1. Contemporary theories may be divided into three categories:
a. thermal conductivity in magnetically ordered crystals, originally treated by Sato2’3’ ’
b. thermal conductivity in magnetically disordered (paramagnetic) crystals®’7,3’9
c. thermal conductivity near a magnetic phase transition, originally treated by Kawasaki

and Stem11.
Experimental results may be divided into the same categories:
a. In magnetically ordered crystals, the thermal transport may partly be carried by magnetic

excitations i.e. spin waves. Until recently13, merely the thermal conductivity of yttrium
iron garnet12 supported the idea of spin wave thermal transport. In general, it is difficult
to decide whether the results in such cases are due to additional scattering of the lattice
waves or to conductivity in the magnetic system.

b. In magnetically disordered crystals, the either concentrated or diluted (para)magnetic
system may have single particle excitations, such as crystalline field or Zeeman splittings.
At sufficiently low temperature, the absorption and reemission of lattice waves (phonons)
having an energy equal to that of the magnetic ions may be the predominant scattering
mechanism. The concomittant reduction of X may be explained as a virtual removal of a
certain band of phonons from the phonon spectrum. In such systems it appears to be
possible to do ‘thermal spectroscopy’16> 17,18’19

c. The occurrence of an anomalous ‘dip’ in X near was found by Slack in MnO . The
behaviour of X near a phase transition, as reported by several authors21,22may be similar
to or quite different from MnO.

In the last few years some experimental and theoretical papers on the above subjects have
been published, however very few problems have been solved, particularly in category c.
Experimental data at very low temperatures suggest that the Debye model for the lattice
vibrations is essentially correct, particularly the T* dependence of the phonon energy density.
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However, little is known about the temperature dependence of collective excitations in a
magnetic system, and virtually nothing about the corresponding transport properties. In all
three categories, knowledge is lacking, both experimentally and theoretically, on the
coupling of lattice vibrations to magnetic excitations below roughly 1 K. The extension of
the temperature region to considerably below 1 K is desirable:
a. to avoid complications at T  > 5 K arising from phonon-phonon interactions and

complicated interaction mechanisms between phonons and the magnetic system.
b. since, in practice, one needs data extending over at least one decade in the temperature

scale in order to derive meaningful results from the comparison with theory.
The experiments described in this thesis concern with the ‘low and very low’ temperature
region (liquid He, and temperatures below 1 K). Experimental results in this range are
commonly obtained in either a demagnetization cryostat e-g- 21.23 or an 3jje cry0state-g- 24.25
An apparatus, similar to that described in chapter II, was reported by Harrison2^.
Recently measurements were reported using an 3He-4He refrigerator15’27.
In the following chapters we discuss primarily how to measure thermal conductivities at
(very) low temperatures. Chapter I serves as an introduction to this subject and some results,
obtained in a demagnetization cryostat, will be discussed. In chapter II, an apparatus to
carry out thermal conductivity measurements in the range 0.05-5 K is described. Chapter III
deals with temperature measurement and control in this apparatus. In chapter IV, the
experimental results are presented, apart from the results on a number of magnetic crystals
the thermal conductivity of He gas and its use as a thermal switch is discussed. In chapter V,
the results on the conductivity in a 3D Heisenberg system, in particular near the phase
transition, are compared Vvith theories on this subject.

13
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CHAPTER I

INTRODUCTION TO LOW TEMPERATURE THERMAL CONDUCTIVITY

1.1 Lattice conductivity

The theory of thermal conductivity in dielectric crystals has been developed by Peierls’ .
Additional material, references and discussion of experimental results may be found in
review articles by several authors®1®' A brief review will be given here in order to
provide a frame work for the discussion of experimental results.
The thermal conductivity is defined as the proportionality constant between the heat
current density and the corresponding temperature gradient. In the case of a uniform rod
of length L, and a cross section S  one may write for the heat current

• S
ö  = —XAT, ^ ’ (1)

provided AT is small. In the'actual experiments, eq. (1) has been used as the definition of
the conductivity of a particular sample. In order to obtain the thermal conductivity, one has
thus to measure the temperature difference, the heat current, and the geometry factor L/S.
Theoretically, the basic problem is the calculation of the heat current, starting from the
temperature gradient and certain excitations in the crystal.
In the Debye model of the solid state the excitations in a dielectric crystal are lattice waves,
or phonons, having wave vector k  and frequency w. Usually the phonon velocity, i.e. the
group velocity -4 -̂, is taken as a constant (v). Though it is not used explicitly, we assume
for simplicity the crystal to be an isotropic monatomic lattice.
Consider the flow of phonons through the walls of a small volume in which neither the
number of phonons nor their energy are separately conserved. The number of phonons
within this volume, e.g. those of a particular wave vector nk , changes for two reasons:
a. collisions of phonons, with each other and with impurities. This may be written as

3Hfc
, and must be calculated according to the detailed scattering mechanisms involved.

31
b. transport of phonons due to a temperature gradient. This may be expressed by

bnk
-  vfc*gradnk or -  v^-gradT--- .

15



In the steady state the total rate of change must be zero (continuity equation for the
phonons), so we arrive at the Boltzmann equation

9 nk bnk
-----= Vt-gradr----- .
91 9 T

(2)

In general eq. (2) is a complicated integral equation. An important simplification may be
made by the relaxation time assumption

(3)
31 rk
This assumption appears to give a good approximation in practice4, ̂ . The relaxation time
assumption is especially useful if it is also assumed that scattering processes are mutually
independent; and the combined relaxation time is given as4

r k i Tft

This assumption is analogous to Matthiesen’s rule in the theory of metals.
The heat current may be expressed as

Q= 2nktlu kvkco&t>k , (5)
k

where ipk is the angle between vfc and gradT.
Combination of eq. (2), (3) and (5) leads to

•0 = 2 ------tlo}kv2TkAT, (6)
k 9 T

where v2 is an average of vj^cos2<pk .
The internal energy is given by nkh u k and thus the specific heat ck = tio)k-----
Substituting this into eq. (6) and combining with eq. (1) leads to

X = ’t c kv1Tk = 2cfcv/*, (7>
k k

which is analogous to the kinetic gas theory formula. To arrive at the familiar formula for
the thermal conductivity in the Debye model we use:
a. The density of states in k space is sufficiently great that the summation over k  may be

replaced by an integral.
b. Normally the integral has an upper limit at a certain maximum k value (defining the

Debye temperature 0D). However, for T<6D the exponential dependence of ck

(Ticol2 enoj/kBTCt- (to) ~  -— — ---------------- - allows us to set the upper bound equal to °°.
k^T 1 (e*w/kBr _ i ) J
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c. It is convenient to change to the dimensionless variable x = flcj/kBT.
Combining a, b, and c, with eq. (7) leads to

v2fcB /  kBT  \  3 00 ,
^ v * r 7  J (8)

krtT -»
Consider the idealized case rk ~  k  n = --------- x“ n, then eq. (8) becomes

flv
° °  Y4 - n .x

X ~  r 3-n f ---- J L dx _  r 3-n (9)
o (ex—l)2 K )

which is a useful rule for finding the temperature dependence of X in a particular scattering
process. In this way, the most important scattering processes in dielectric crystals give rise
to characteristic temperature dependences of X (see fig. 1):

0p
1. phonon-phonon scattering X ~  T3eaT
2. point-defect scattering X ~  T~l
3. dislocation scattering T2
4. boundary scattering X ~ T3

Fig. LI
Thermal conductivity as a function of temperature,
the numbers refer to different scattering processes.

cm sK

Since usually a combination of these scattering processes are simultaneously operative, it is
difficult to say which T dependence is expected. But if T is low enough, the conductivity
will be limited by boundary scattering alone, and X varies as T3 ; this was originally derived
by Casimir6 using a theory analogous to black body radiation.
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As already stated in the introduction, the study of spin-phonon interaction is best performed
at low temperatures. At this stage this statement can be made more precise as far as the
phonons are concerned. Low temperatures are preferred because:

a. Only boundary scattering is important, the other ‘intrinsic’ phonon processes being
frozen out.

b. The T  dependence for X means a maximum lattice conductivity, hence X is as sensitive
as possible for other, e.g. magnetic, phonon scattering processes.

c. X is independent of point defects, so chemical purity is not very important, hence the
requirements for the crystals are not difficult to meet. The reverse may be true in studies
on the phonon scattering by dilute magnetic impurities; however, this thesis pertains to
the study of magnetically concentrated crystals.

The‘7’3 conductivity’ may be calculated from eq. (8) as

In the derivation of eq. (10) a number of assumptions were made:
a. Diffuse scattering at the boundaries3,6. This assumption may be invalid for long wave

lengths. When specular reflection occurs in stead of diffuse scattering, the conductivity
will be relatively too high, and fitting a power law X ~  7® to the data, n<3 will be found.

b. In general, real crystals are not isotropic. Elastic anisotropy does not affect the
temperature dependence of X (compare with the discussion on the thermal conductivity
of LiF in section IV. 1 and 7).

c. In general, there are more, say s, atoms in a unit cell, this means that one has to reduce
eq. (10) by a factor— (compare with LiF in section IV.1).

d. In the derivation of eq. (10) a crystal with infinite length is assumed. The finite length
causes another reduction compared to eq. (10)3, .

e. In actual crystals internal boundaries may occur, in which case the mean free path will
not reach the ‘Casimir value’, although the conductivity may remain proportional to T3.

From the foregoing it may be concluded that a T3 dependence at low temperatures is quite
likely, but the proportionality constant depends on so many factors that it can not, in
general, be calculated. It can be demonstrated9 that if the maximum in X is reached at, say
7 ^ , the T3 dependence will almost certainly be realized for T< T^/\0, independently of the
dominant scattering processes at higher temperatures. For hydrated crystals T will
usually be found between 5 K and 15 K, hence a T3 dependence of X is expected for
temperatures lower than 1 K.

ov
X = 6.47 x 107 -------IT3 erg/cm s K,

M6D3
( 10)

where p is the crystal density and M is the molecular weight.
Either v or 0D may then be eliminated, using the relation

2.52 x 10"3vt( A (ID
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1.2 A simple model for phonon scattering in a magnetic crystal

In the preceding section we concluded, from the phonon point of view, that low temperatures
are preferred for studying the interaction between the lattic and magnetic excitations by
means of thermal conductivity measurements. Now we will investigate which kind of
behaviour we can expect for X in the presence of magnetic excitations, beginning with the
following simplifying assumptions:
a. The temperature at which X is measured is such that boundary scattering is the only

intrinsic process.
b. The magnetic system is described by an energy splitting flco0 and a bandwidth tlAu (for

instance a spin-i- paramagnet in a magnetic field H).
c. Phonons having frequencies between wc -  and are scattered so strongly

that they no longer contribute to the thermal transport.
Without magnetic scattering, the conductivity is

r x4ex
X = AT3 J I(x)dx, with I(x) = ---------  (12)

o (ex—l)2

Due to the magnetic system, X will change and, as a consequence of c, this change, AX, will be
given as (see fig. 1.2)

AX = AT3 I(x)dx A T ^xjA x, where x0
*B T

(13)

Fig. 1.2
Phonon distribution at different temperatures. u
According to the assumptions for the band model,
phonons having frequencies within the band,
centered at w0, do not contribute to the thermal
transport.

J

Usually experimental results are presented as—  = versus// or and —
X X(0) kBT  x

may be expressed by---- = -  ClfxJAx = C lfxJ—  ̂ (14)
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Here we meet another advantage of measuring these effects at low temperatures: the effect,
inversely proportional to T, becomes more important at lower temperatures.
In principle, there are two ways to measure this magnetic scattering:
a. Constant magnetic field and variable temperature method. At constant w0 and variable T,

the scattering will be largest for maximal i.e. for T *> ^cj0/5/cb (see fig. 1.3) and
the magnitude of the scattering will be

AX Aco ,, . .-----= 0 .73 ------- (14a)
X w0

b. Constant temperature and variable field method. At constant T and variable co0 (that is
variable magnetic field strength), the scattering is largest for maximal IfxJ, i.e. for
H <*> 4kftTlgn (see fig. 1.3), and the magnitude of the scattering will be

AX _ hAot ,, . . .-----= 0.188------  (14b)
X

Concluding, one may say that the height of the scattering maximum is proportional to the
phonon-spin interaction bandwidth, and, in this simple ‘band-model’, the form of the curve
is entirely determined by the phonon spectrum.

Fig. 1.3
Computed change in X for the band-model, the curves are labelled with their bandwidth in K.
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Experimental data concerning phonon-spin interaction strengths are scarce; on the other
hand, many spin-phonon interaction data (paramagnetic relaxation) are known. It is there
fore interesting to relate the mean free path ( v t )  of the scattered phonons with the spin-
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lattice relaxation time. The assumptions b and c correspond to the so called direct process
considered in the theory of spin lattice relaxation. Although we encounter here the import
ant question of the line shape10 it is simply assumed, as in the preceding discussion, that all
phonons within the band interact ‘quite strongly’ with the magnetic system, while phonons
outside the band have no interaction with the magnetic system (compare with u ).
The phonon relaxation time r is given by the ratio

total number of phonons in band
r = ---- -------—— -—:--------------------------------  (1

total number of absorbed phonons per second

The spin-phonon relaxation time Tj is related to the transition probability, W, according
to

(16)

eq. (15) may be expressed in the phonon density of states p and the population density p
of the phonon and spin system as

_ p(.flu0)p(fluc)flAu
W (Na- N b)p(ticjJ

Substitution of the relevant quantities in eq. (17) leads to

3h2u  2hA u fio)a ^
r = -g-------------coth----  ^

fv2v2ny WN 2kBT,

(17)

(18)

where N  is the number of spins per unit volume.
Now suppose the magnetic energy splitting to be caused by an external field, so that
fiuB = gfiH; the bandwidth expressed in magnetic field units is AB, and it can be shown for
a direct process in a Kramers doublet13 that W = AH5. Substitution in eq. (18) gives rise to

r = 3g3p3AB
2ttV ftWA

H~* coth ,
k t T

(19)

which may be evaluated to

r -  10'18—# - 3coth— .
A kBT ( 20)

A may be found with the aid of eq. (16) if the direct process relaxation time is known
from experiments.
For instance, in a typical paramagnetic crystal, the linewidth may be 200 Oe and the relax
ation time 0.2 T~ls, implying W «  1 and A «  10"15. In the case of interest, the coth is
about 1, thus r = 0.2 H~3s. From these numbers we conclude that the assumption c
(phonons within the band do not contribute to the thermal transport) is fulfilled if
tf>1000 Oe.
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1.3 Experimental requirements

Suppose the experiment aims at an accuracy of 1% in the thermal conductivity X. Then a
number of experimental requirements can be formulated,
a. Sensitivity of the thermometry.

It should be realized that Q = \AT  is an approximation of the integral equation (21)
T+AT

Q= J  Xd T. (22)
T

In order to evaluate this approximation, we consider the case X = -47°; then one finds
with eq. (22)

Q = ATaAT(l + y ^ - + .........•)• (23)

Hence not only AT, T  and Q need to be known with an accuracy of better than 1% but
also AT/T itself should be 1/n % in order to be able to apply eq. (21) instead of eq. (23).
So the temperature sensitivity has to be better than 1/n parts in 104.

b. The heat leak.
In general, the conductivity of the samples is of the order of magnitude of 10s7’3 erg/s K.
So, for example at T  = 0.1 K, the maximum heat current through the sample will be
about 0.03 erg/s. In order to measure X, the heat leak has to be considerably smaller.

c. Dimensions of the sample.
At low temperatures, the wavelength of the phonons becomes very long, on the other
hand the mean free path will be of the order of magnitude of the crystal diameter. It is
evident, that the theory, outlined in section 1.1, may merely be used if the dominant
phonon wavelength is much smaller than the crystal diameter. The dominant phonon
wavelength can be estimated with

——x lattice spacing.
T
Taking a lattice spacing of 5 A and 0D = 60 K, the dominant wavelengths will be
approximately 300/T  A, which is negligible compared to the actual sample diameters,
even at the lowest temperatures. However, for instance in diamond (0£> = 2000 K), the
wavelengths may be as large as 0.01 mm, and it becomes doubtful whether the simple
phonon concept is applicable in this temperature range.

1.4 Method for measuring thermal conductivity below 1 Kelvin

Temperatures below 1 K are easily obtained by adiabatic demagnetization. Van Kempen
reported a method for measuring X below 1 K. That method with two magnetic thermo
meters, shows disadvantages due to the problem of the calibration accuracy of a magnetic
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Fig. 1.4
Apparatus for measuring thermal conductivity below 1 K.

A: magnetic thermometer; B: heater; C: specimen; Dj, Djj: coils and thermal switches; E: perspex
insulating plate; F: cooling salt; H: connection to heater (lead wires on nylon).
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thermometer. Although the temperature resolution of a magnetic thermometer may be
about 1 part in 104 15, the absolute measurement can hardly be better than a few tenths of
a percent. As stated in the preceding section, the temperature differences are also in the
order of a few tenths of a percent of the temperature. Hence it is hardly possible to make
accurate X measurements with two magnetic thermometers. We have therefore chosen a
method using one thermometer and two thermal switches, instead of two thermometers.
In this way, one measures both T and AT with one thermometer, and in our case the
accuracy in AT will be about the same as that in T.
The method, described in this section, is based on a sample-holder which is part of an
apparatus described by several authorse,g-14,16,17. So here, only the relevant part of the
sample-holder will be described.
The apparatus is shown in fig. 1.4. The Ce-Mg-nitrate single crystal measures the two
temperatures by means of the thermal switches. The cooling reservoir consists of Cr-K-alum
single crystal slabs, glued with grease between brass plates. The plates are screwed to a
0.3 cm diameter copper rod by which the lower end of the specimen is cooled. The thermal
switches are lead wires of 0.01 cm diameter and 0.5 cm length. The (superconducting) lead
is inside a brass coil form filled with about 5000 turns 0.05 Nb wire. A current of about
200 mA is sufficient to bring the lead into the normal state. The heater serves both for
creating a temperature gradient and for raising the temperature of the sample as a whole.
As a heater, a brass strip with a resistance of about 0.01 n  is used. Electrical contact to the
heater, which must have a high electrical and a poor thermal conductivity, is provided by
15 cm long, 0.01 cm diameter superconducting lead wires, wound on a thin nylon rod.
The steady state condition is realized to a good approximation, as long as the sample
temperature is considerably higher than that of the cooling salt, while the latter has to be in
the region of large heat capacity (T<0.25 K). How long the steady state can be maintained
depends strongly on the heat input, and consequently on the temperature at which X is
measured. For small heat input (T<0.2S K) the steady state lasted for several hours, whereas
this time is only about 10 minutes for the case T*> 1 K.
The temperature was derived from the susceptibility of a CMN single crystal thermometer.
As stated earlier, the absolute accuracy will not be much better than about 1%; but since we
used only one thermometer with a much better relative accuracy, the temperature gradient
could be measured with practically the same accuracy.
Thermal contact between the specimen and cooling salt, thermal switches, and heater, was
obtained by soldering them to a copper foil which in turn was glued to the specimen with
Apiezon N grease. The samples were cut from large single crystals, abraded to suitable
dimensions (about -x  -x2  cm), and selected in such a way that they were optically trans-

4 4
parent.
In fig. 1.4, the switches are shown mounted on the top of the cooling salt. A slightly
different version, in which the switches were mounted between the sample and the thermo
meter, was also used. The latter has the advantage of easier sample mounting but is less
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compact compared to the first version.
With the above precautions taken, it was possible to measure with heat currents as low as
0.1 erg/s, and consequently the heat leak had to be considerably smaller.
The temperature of the ‘cold side’ was determined by the heat current and the boundary
resistance between the sample and the cooling rod. The boundary resistance can be given as17

Q= 10 5S(Tl* -T 2*).

In addition to this thermal resistance there is the resistance of the sample itself (between the
connection point of the ‘cold thermometer’ and the cold side). Due to this resistance and
file nonideal mounting of the copper foil to the sample, the effective relation between T  and
Q was found to be Q = lO3! 4.
This thermal resistance caused a large temperature difference between the sample and the
cooling rod. Hence the steady state could be realized although the temperature of the
cooling salt rose continuously.
The actual measurements were performed in the following way. After demagnetization a
certain Q was applied, and one of the switches was opened, that is put in the normal, i.e.
heat conducting, state. The thermometer (and sample) cooled down to an equilibrium
temperature. Subsequently the other switch was opened (and the first one closed), and the
temperature of the other side of the sample was measured. Finally the attainment of the
steady state was checked by measuring again the first temperature.

1.5 Equilibrium time of the process

The attainment of a stationnary temperature distribution over the sample depends on the
particular heat current and the specific heat of sample and thermometer. A characteristic
time constant, r, may be found by assuming that initially the entire heat current is absorbed
by the sample and thermometer. The steady state will be obtained after a few times this
characteristic time constant.
Take a sample of length L, cross section S, specific heat c and conductivity X. The temper
ature difference will reach its equilibrium value according to

S „  dAT
-XA7’= -L Sc------ ,
L df

(24)

having the characteristic time r = L2c /\  which may be considered as (25)
a reasonable estimate for the time constant.
The conductivity at low T  is given by

X =~cvl. (26)

Inserting eq. (26) into eq. (25), r appears to be temperature independent and taking for
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instance L = 1 and / = 0.1 we find t to be about 10~4s.
For a paramagnetic crystal, the specific heat may be expressed by

c = — + b r .  (27)
T

Substitution of eq. (26) and eq. (27) in eq. (25) leads to

3L2 a
r  =-----( - r s + 1). (28)

vl b

This characteristic time becomes very long at low temperatures, e.g. the alums (jj ** 35) give
rise to t = 3 x 10'37^ss, hence t = 300 s at 0.1 K. The time required to obtain the steady
state is considerably (5-10 times) longer.
For the thermometer with a specific heat of 2T~2 erg/K and-jr = 0.5, a similar estimate may
be made, leading to r = 10~47'~5 s. After operating the thermal switches, the thermometer
has to cool down (warm up), which corresponds to a removal of cAT erg. Inserting the
values for CMN this amounts to 2 x 10”27~‘ erg. At low temperatures, the removal of this
thermal energy seriously distorts the steady state, since the corresponding heat flow is of
the same order of magnitude as the heat current XAT which was already present.
The conclusion of this discussion is, that the time needed for steady state measurements at
low temperatures, becomes very long indeed.

1.6 Some experimental results

LiF, a diamagnetic crystal
LiF is a cubic crystal with a high Debye temperature (722 K), and has therefore been used
in a number of experiments to study lattice conductivity. The sample was grown at the
Harshaw Chemical Company, its thermal conductivity was measured by Seward and Thacher
at Cornell University, and it was kindly given to us by professor R.O. Pohl.
As a consequence of the high Debye temperature one may expect the thermal conductivity
to be proportional to T3 over the whole temperature range of interest. Therefore this LiF
sample serves as a check of the method. Unfortunately the crystal was too large (dimensions
0.55 x 0.52 x 4.1 cm) to measure in the mentioned version of the apparatus, while it was
undesirable to change the sample shape. Hence the results shown in fig. 1.5 were obtained
in the second, enlarged version of the apparatus.
The agreement with the measurements of Seward is satisfactory, and the conductivity is
indeed proportional to T3. A detailed discussion of the thermal conductivity of LiF will be
given in section IV. 1.
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Fig. L5
Thermal conductivity of LiF
as a function of temperature.
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In order to measure metals with our ‘switch apparatus’, one has to make electrically
insulated contacts, since otherwise the use of the switches would cause a considerable heat
input.
In metals, the heat transport will be due to both electrons and phonons. Hence X = Xe+ X„
In the low temperature limit and using the kinetic formula X =—cvl one can show Xe to be
proportional to T and Xp to be proportional to T1 (see e.g. 18). In general, Xp will be
negligible in pure metals; but in alloys, in a certain temperature range, Xp may be an
appreciable part of the conductivity.



Stainless steel
The sample was a tube, length 2.78 cm, diameter 0.4 cm, wall thickness 0.05 cm, and
mounted with geometry factor 15.8 cm"1. It was measured in the enlarged version of the
apparatus; the results are shown in fig. 1.6. We find for stainless steel at low temperatures

X = 1.45 x 104T erg/cm s K.

Near 1 K the conductivity deviates from a T proportionality. Whether this is due to the
lattice conductivity or to the parasitic parallel conductivity through the switches (see fig. 1.4)
is difficult to decide.

Fig. 1.6
Thermal conductivity of stainless steel,

and two silver samples ^ k)3
as a function of temperature.

K)2
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Silver
The silver sample Ag I (dimensions about 10 x 0.1 x 0.01 cm) was of high purity Ag. Ag II was
— of the length of Ag I. Sample Ag II was also measured in the range 1.3-4 K*, the conduct
ivity being linear and given by

X = 353 T erg/s K.

As can be seen in fig. 1.6 this value fits to the measurements between 0.2 and 0.3 K.
The parallel conductivity through the switches is expected to show a T3 dependence19.
Therefore the results were fitted to the formula X = aT + bT3. Although this formula gives

* We thank dr. W.M. Star for doing the measurement for us.

O R.V.S.
A A g l
V Ag n
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a fair description of the data, the fact that the coefficient b varies with thé length of the
sample is not understood.
The steep descent of X at low temperatures for Ag II (which was reproducible in different
series on the same and on different days) is peculiar. This may be due to the fact that the
mean free path and wavelength of the phonons become so large that the heat transfer to the
sample may be impeded (compare with 20).
Since we are primarily interested in the conductivity of non-metallic crystals, we shall not
go into details, but merely state that even for pure metals, the conductivity is not as simple
as expected.

Paramagnetic crystals

In view of the band-model, given in section 1.2, one expects that crystals with splittings
corresponding to temperatures below the range of interest (0.07CT<1 K) will show an
undisturbed lattice conductivity, hence a T3 dependence for X is expected. Such para
magnetic crystals may be found among the salts commonly used in adiabatic demagnetization
experiments.
As was stated in section 1.1, one has to take account of the number s, of atoms in the unit
cell. Since it is uncertain, whether atomic groups (e.g. NH4 , H20) or atoms have to be
counted, the value of s is not clear in these hydrated crystals. The 0p is therefore, at very
low T , usually defined by

thus corresponding to the definition of 0D for a monatomic lattice. Using this definition of
0D, the thermal conductivity may be expressed by

where I should correspond to the sample diameter. In the following analysis we have taken
the number of atomic groups for the value of s, hence for instance for the alums s — 16
(compare with 27).

FeNH4-alum (dimensions: 2.7 x 0.34 x 0.34 cm, geometry factor: 9.1 cm-1)

The conductivity is shown in fig. 1.7, and for T<0A K it was found to be

X = 2.3 x 104r  erg/s cm K.

Substitution of this experimental value for X, 0D = 82.3 K21, p = 1.71, and M=  482 in
eq. (30) yields a mean free path of 14 times the crystal diameter. From this value, we may
conclude that specular reflection of the phonons at the crystal boundaries occurs.

(29)

X = 2.57 x 101J (30)
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Fig. 17
Thermal conductivity

ot four dielectric, hydrated, paramagnetic crystals
as a function of temperature.

CrK-alum (dimensions: 4 x 0.35 x 0.33 cm, geometry factor: 8.5 cm”1)

The conductivity is shown in fig. 1.7, and for T<0.25 K it was found to be

X = 3.3 x 10s T3 erg/s cm K.

Taking 0D = 77.9 K, p = 1.83, and Af = 499, eq. (30) yields a mean free path of 1.6 times
the sample diameter, so that we find in this case a fair agreement between our experimental
result and the Debye theory. Moreover, the absolute value agrees quite well with that
reported by Van Kempen14 and Garret22.

CeMg-nitrate (dimensions: 1.8 x 0.33 x 0.31 cm, geometry factor: 5.0 cm”1)

Several samples of CMN are measured, both the absolute value and temperature dependence
(~ 7* with 2.5<n<3) depended on the particular sample. This must be due to lattice
defects (compare with section IV.3). For comparison with the following sample, one of the
results on CMN is shown in fig. 1.7; this conductivity corresponds to a mean free path of
about 7 times the crystal diameter.

CeMg-nitrate with 5% Cu (dimensions: 2.1 x 0.39 x 0.30 cm, geometry factor: 5.5 cm ')

In this sample, 5% of the Mg are replace by Cu. The remarkable fact in this case is that the
temperature dependence (X proportional to T*'s) is very different from that in pure CMN
(see fig. 1.7). Since such a high power of T  cannot be caused by an intrinsic phonon process,
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it has to be due to phonon scattering by the Cu ions.
Similar temperature dependences were reported for the thermal conductivity of KMgF3 in
which a part of the Mg was replaced by N i^ .

linear chain crystals

In magnetic crystals, in addition to the intrinsic phonon processes, phonon scattering by the
magnetic system may occur. On the other hand diffusion or wave-like excitations (‘spin-
waves’) in the magnetic system may give rise to an additional heat transport. Since, in
general, the phonon conductivity in itself is a quantity which is not known, it is difficult to
make a distiiiction between the two effects.
There are a number of magnetic crystals in which the magnetic exchange coupling is predomin
antly among ions lying along a certain direction of the crystal, for instance along a crystallo
graphic axis, thus forming a magnetic linear chain. Heat transport in the magnetic system, if any,
should merely occur in the direction of this chain. Hence, measuring the conductivity in
such a crystal perpendicular to and parallel to the chain, the two effects may be separated:
in the first case only scattering occurs and in the second both scattering and additional
transport may be found. We therefore measured the conductivity of two ‘chain crystals’ in
different directions. The results above 1.5 K were obtained by dr. F.W. Gorter.

Cu(NH3)4S04 H20
It was shown (e.g. ) that copper-tetraamine -sulfate behaves like a one-dimensional
Heisenberg antiferromagnet, in which the chains lie along the c axis. At TN = 0.37 K, three-
dimensional long range order occurs throughout the crystal, due to interaction between the
chains.
The samples were cut from different single crystals*. The results of the heat conductivity
measurements are shown in fig. 1.8. Two other samples, cut perpendicualr to the c axis,
were also measured and the results agreed with fig. 1.8 at least in as much as the temperature
dependence is concerned (7>0.3 K, X ~  T* and 7’<0.3 K, X ~  T3).
The difference in temperature dependence between the results for the perpendicular
direction (X ~  T2)_  and those for the parallel direction (X ~  T2'5) is attributed to the
magnetic system. An analysis of this result obtains as follows.
Let us define:
/ is the mean free path associated with boundary scattering (which is found for J< 0 .3  K)
/m is the mean free path under influence of the magnetic system
le is the effective mean free path derived from the measurements
le can be given by

i - i  - i - i  +  I - i*e * T ‘m •

* kindly placed to our disposal by prof. Haseda.
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Fig. 1.8
Thermal conductivity of copper tetraamine sulfate;

the heat flow being either perpendicular to or parallel to
the magnetic linear chain i.e. c axis.

erg/cmsK

Fig. 1.9
Mean free path for magnetic scattering

in a linear chain crystal;
the heat flow being either perpendicular to,

or parallel to, or making 30° with
the magnetic linear chain Le. c axis.
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The quantity lm/l (which shows the effect of the magnetic system) may be expressed in
measured conductivities as

M t - 1)"
in which is the T* conductivity. In fig. 1.9 lm/l versus T is shown, and we notice that;
a. The temperature dependence of lm/l for 7>0.5 K is the same for the samples with longest

direction perpendicular to or making 30° with the c axis. However, it is different for the
sample cut parallel to the c axis. This strongly suggests that the difference is not due to
anisotropic spin lattice interaction or to anisotropy in the lattice conductivity, but a
consequence of transport in the magnetic linear chain.

b. The onset of long range order is seen as a change in temperature dependence of lm/l.
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CuSQ, -5H20

Miedema e.a. suggested that in this substance, one half of the Cu ions are magnetically
coupled in antiferromagnetic linear chains, whereas the remaining Cu ions are very weakly
coupled, i.e. showing paramagnetic behaviour down to »  0.05 K. Further Wittekoek e.a.26
investigated this compound by proton N.M.R., in order to identify at which crystallographic
positions the Cu ions, which took part in the intra chain coupling, were located. The direction
of the chain is found in our conductivity measurements to be along the a axis (fig. 1.10).

Fig. 1.10
Thermal conductivity of copper sulfate;

the heat flow being either perpendicular to or parallel to
the magnetic linear chain i.e. a axis.

*ro
cm sK
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The results shown in fig. 1.10 have been obtained from 4 samples cut from the same single
crystal. The conductivity appears to be very anisotropic (a factor of about 5 between
parallel and perpendicular direction). This was further checked by measuring the temperature
gradient perpendicular to the heat flow for a sample having its longest direction making 45°
with the a axis.
Unfortunately there is not a definite indication of the T3 dependent conductivity; so we
can not make the same analysis as was made for copper-tetraamine-sulfate.

Neither the experiments nor the theoretical discussions of the mentioned thermal conduct
ivities are complete. However, some general conclusions may be drawn:
a. Magnetic effects in thermal conductivity may indeed occur in a wide temperature range.
b. Thermal transport by the magnetic excitations may be as large as that by the lattice, even

if only short range magnetic order exists.
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1.7 Discussion of the method

The results, mentioned in the preceding section, especially those with LiF and stainless steel,
confirm the expectation that it is possible to measure X with our ‘switch apparatus’. The
results on the hydrated salts confirm the conclusion of Van Kempen14 that, although these
samples have been repeatedly cooled and recycled to room temperature, they do reproduce
in general.
There are a number of difficulties encountered in this method, namely:
a. Due to the relation between the heat flow, the mean temperature of the sample, and the

temperature sensitivity, there is an upper bound for the admissable conductivity of the
sample. Due to the parallel conductivity through the switches there is a lower bound for
the conductivity of the sample. For an accurate measurement the conductivity of a
sample must lie between 1047  ̂<  X <  3 x 1067’3 erg/s K.
As a consequence of the temperature dependence, these limits will not give serious
problems in measuring dielectric crystals. However, for metal samples, with a conductivity
proportional to T, the choice of the dimensions becomes very important (compare fig. 1.6,
1.7, wherein the limits are drawn). For instance in the measurement of Ag, the conduct
ivity of the sample is relatively low near 1 K, hence the parallel conductivity through the
switches will be important. This may be the origin of the deviation from a linear T
dependence of the conductivity from these samples.

b. The effect of the switches may be characterized by a switch factor which is defined as the
ratio of the thermal conductivity in the normal state to that in the superconducting state,

and which for Pb is given by
fo rm a l A S T 2.
"supercond.

Thus 1 K presents an upper limit for the switch method. Due to the equilibrium times at
low temperatures (section 1.5), there is an effective low temperature limit, which depends
slightly on the particular sample. For an accurate measurement of X the temperature is
limited to the range 0.07 <  T < 1 K.

c. The cooling capacity of a cooling salt is some times 10s erg. Hence measuring near 1 K,
with consequent heat flows of roughly 103 erg/s, only about 10 minutes are left for a
conductivity measurement.

d. The interpretation of results on magnetic crystals would greatly benefit from measure
ments of the field dependence of the conductivity. Since, however, superconducting heat
switches cease to function in the presence of large external fields, it is hardly possible to
measure field dependences with our ‘switch apparatus’.

The lower limit for the conductivity, the upper limit for the temperature and the drawbacks
c and d, are consequences of the choice of a ‘switch method’. Thus for measurements on
magnetic crystals one would prefer another method. In the next chapter an apparatus will
be described, which covers the temperature range 0.05<7’<5 Kin magnetic fields up to 11 kOe.
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Fig. II. 1
Sketch of the apparatus

for thermal conductivity measurements
in the range 0.0S <  T <  5 K.

vac.

He Dewar

magnet
Gas-switch
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CHAPTER II

CRYOSTAT COVERING THE RANGE 0.05 < T <  5 K

n.1 The cryostat and 3He system

In order to cover the temperature range 0.05 <  T< 5 K both 3He and demagnetization are
used. As a consequence of the sequence of construction, it is possible to use this cryostat
either as a 3He, or as a demagnetization cryostat, or as one in which both systems are used
to cover the mentioned range intone run.
The different parts of the apparatus are shown in fig. II. 1. The top of the cryostat is cooled
with liquid nitrogen; the purpose of this is twofold:
a. cooling of the electrical leads of the superconducting magnet so as to reduce Joule

heating in the leads, and also to minimize the heat leak into the 4He bath.
b. cooling of the pumping tubes, which reduces the pumping resistance.
Thermal conductivity measurements could be performed in magnetic fields with the aid of
an electromagnet (Bruker BE25C8) giving a field of 11.5 kOe in a pole gap of 8 cm. The
magnet, also utilized for N.M.R., produces a stable homogeneous magnetic field, which, for
our purpose, is also sufficiently homogeneous over a large volume.
The vacuum can is a 55 cm long, 3.8 cm inner diameter brass tube, and is sealed to its cover
by a Wood s metal joint. On the cover, 4 electrovac seals are mounted, so there are 12 feed
throughs for electrical leads into the high vacuum space.
The pumping scheme for the high vacuum and 3He system is given in fig. II.2. The choice of
the diameter of the 3He pumping-line is rather important. A large diameter is to be preferred
when aiming at a low 3He temperature, but this goes at the expense of a faster 4He boil off,
hence a shorter period of measurement before refill of 4He. Utilizing the formulae for gas ’
flow , the resistance of the pumping-line was estimated. That part of the pumping-line
which is inside the cryostat is strongly dependent on the 4He level. The chosen diameter of
the tube in the cryostat (german silver 1.6 cm diameter) is such that with a low 4He level
the resistance in the cryostat is about the same as the resistance between the pump and the
top of the cryostat. The tube in the high vacuum is stainless steel (0.6 cm diameter, wall
thickness 0.05 cm). Due to the poor thermal conductivity of stainless steel (compare
section 1.6) the heat leak into the 3He bath was estimated to be 10-20 erg/s.
The result of the foregoing is that in our 3He system, in a single shot, a steady temperature
of 0.28 K can be reached. This temperature was measured with a magnetic (CMN) thermo-
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meter (and heater) connected to the 3He can.
Also important, apart from the ultimate temperature, is the cooling capacity. To improve
the thermal contact with the 3He, the copper bottom of the can is corrugated. The cooling
capacity is shown in fig. II.3, the line is an idealized case (without heat leak), the result of
several measurements.

Fig. II.2
Pumping scheme

® valves
k> butterfly valves
B ionisation manometer (Balzer IMR 3)
1. container (1.5 1 gas n.t.p.)
2. rotary pump for 3He system (Balzer Duo I)
3. diffusion pump for 3He system

(Edwards EM 2)
4. 3He can in the cryostat
5. diffusion pump for high vacuum (Leybold)
6. rotary pump for high vacuum

(Edwards ES 150)

Fig. H.3
Heat flow to the liquid 3 He

versus inverse temperature of the 3 He can,
representing the cooling capacity of the 3 He system.

heat leak 20erg/s
. . 50 .. . «0 .

II.2 The superconducting magnet

The superconducting magnet is a coil on a stainless steel coilform- (inner diameter 4 cm,
outer diameter 6 cm, 10 cm long), which is fixed with two clamps onto the brass vacuum
can. The coil consists of 24 layers of 275 turns NbZr wire (supercon, 0.01 inch diameter,
copper plated and insulated). The coilform and each layer are mutually isolated with mylar,
to prevent a short-circuit within the coil.
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The magnet is energized by a 0-10 V, 0-100 A, 1 : 10s stabilized power supply (Hewlett and
Packard). The electrical leads consist of two strands of copper wire (0.03 diameter and 10
each). The coil may be short-circuited at the top of the cryostat, which serves to
demagnetize the cooling salt; in this way the field decrease takes place gradually (AH/H is
constant), thereby minimizing the eddy current heating in the metal parts. This is
particularly important if the cooling salt is already partly demagnetized, i.e. in the low
field region. The maximum current is found to be about 35 A, this limit being primarily due
to Joule heating in the electrical leads.
The field per unit current in the center of the coil may be calculated from 1=0.1 m,
r= 0.025 m and A= 6.6 x 103/m leading to 740 Oe/A. At room temperature the field was
measured with a Hall probe and found to be 750 Oe/A (fig. II.4a).

Fig. H.4
Calibration of the superconducting magnet

a. magnetic field H  in the center of the coil, measured with the coil at room temperature.
b. strayfield Hs from the coil, measured with the coil at liquid He temperature, H— 39.0 Hs.

750 0e/A

-i— 1— ► 2 3 4 5 6mA J _____ 10 20 30A

In the superconducting state the coil was checked in two ways:
a. By measuring the strayfield one may find the field in the center of the coil. In fig. II.4b

the strayfield Hs at 6 cm outside the center of the coil is given as a function of the
current. The resultant value of the field in the center of the coil (744 Oe/A) agrees quite
well with the room temperature value.

b. The inductance of the coil may be measured by the rise time of the current or by short-
circuiting the coil and measuring the magnetic field (current) decay time. In the latter
case one expects
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Fig. II.5 shows log/ƒ<, versus t, which is not a straight line; this is probably due to Joule
heating of the electrical leads by which R becomes ƒ dependent. From the curves we found
L =  1.1 ± 0.1 H corresponding to the calculated value L = 1.2 H.

Fig. II. 5
Decay of the (stray) field from the coil as a function of time, after short-circuiting at t =  0.

The foregoing leads to the conclusion that the calibration of the coil is 745 Oe/A and even
a fast rising (lowering) of the current through the superconducting coil does not give rise to
any problems.
Finally, the remanent field in the coil was measured by means of magnetoresistance of Bi
( *  5 cm, 0.04diameter wire*). The probe was calibrated with the magnetic field of the
coil (see fig. II.6), and the line found in that way was extrapolated down to low field
values. The remanent field depends on the highest previously generated field. To get rid of
this remanent field the magnet has to be energized (for some time) with a small, suitably
chosen, negative current. Large negative currents give rise to a remanent field with a
reversed sign. The remanent field is found to be less than 200 Oe for a previous field of
20 kOe (see fig. 11*6). remanent fie ld '

20 SO 100 200 Oe

Fig. II.6
Calibration of the bismuth magnetometer

(lower curve), and remanent field
versus highest previously generated current

(upper curve).

so ioo n
We thank mister C.E. Snel for preparing the Bi wire for us.
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II.3 The cooling salt

As a cooling salt usually one of the alums is used. In our case, a large specific heat is more
important than the ultimate temperature that can be reached, hence our choice of
FeNH4(S04)2,12H20  instead of CrK-alum.
The known possibilities for the construction of a cooling salt are:
a. Single crystals between metal plates parallel to the magnetic field. As a consequence of

the boundary resistance the contact area is of crucial importance for the heat transfer to
the cooling salt. In our case this area would be about 60 cm2.

b. Powder, mixed with grease and a brush of Cu wires for thermal contact. In this case the
contact area is variable, and it is not difficult to make it as large as, for instance, 150 cm2.
As a consequence of the use of grease, the amount of paramagnetic salt per cm3 is
considerably reduced.

We found that, using FeNH4-alum, it is possible to make a cooling salt with the high packing
density of case a and the large contact area of case b. When FeNH4-alum is heated up to
about 50°C the crystal melts (that is, it forms a solution with its own crystal water). By
inserting a brush of copper wires before recrystallization, it is possible to reach a satisfactory
combination of the advantages of a and b.
The cooling salt is magnetized by means of the superconducting coil described in the
preceding section, giving a field along the cryostat axis. The length of the cooling salt is
about the same as that of the magnet. Hence demagnetization occurs in a rather inhomo
geneous field, and therefore different parts of the cooling salt will reach different temper
atures. Since the brush, inserted in the cooling salt, reestablishes the thermal equilibrium,
this is not a serious problem.

H.4 The thermal contact between 3He and cooling salt

There should be a thermal connection between the 3He bath and the cooling salt, in such
a way that its conduction is poor when the salt is demagnetized (T<0.3 K) and good other
wise. In that way the 3He is used most effectively and for the high temperature measure
ments, it is possible to cool the sample with the aid of the large heat capacity of the liquid
3He.
Several solutions are known for such a thermal switch (e.g. Gorter2) and the superconducting
switch is widely used. For operation of a superconducting switch, a magnetic field is
necessary. It is convenient to use the strayfield of the (magnetizing) magnet for this purpose.
Moreover, a separate magnetic field for operating the switch Would be inconveniently close
to the field of the superconducting coil and to the cooling salt.
The use of a superconducting switch in such an arrangement implies:
a. The switch stays in the superconducting, i.e. thermally isolating, state, more or less
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Fig. n.7
Construction of a gas-switch, the cooling copper shield being inside (a) or outside (b) the gas space

Epjbond 1 s
FeNH4 alum

iF« N all
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independently of temperature. Hence one would not be able to benefit from the cooling
capacity of the 3He for the measurements above 0.4 K.

b. Isolation of the cooling salt from the 3He occurs merely at low field values, hence fast
demagnetization is necessary.

c. If either the remanent field is too large, or normal enclosures in the bulk of the super-
conductor- occur, the switch will not break thermal contact.

d. The choice of the geometry of the switch is necessarily a compromise, since a short, thick
connection is desirable to carry off the heat of magnetization; while on the other hand
a long, thin connection is desired to reduce the heat leak after demagnetization.

Point a is a particularly serious drawback for thermal conductivity measurements. In fact,
we found it to be very difficult to measure thermal conductivity between 0.5 K and 0.9 K
using a superconducting switch.
An alternative solution is provided by the thermal conductivity of 4He gas. From the
saturated vapour pressure versus temperature relation of 4He, one may expect a reasonable
heat transport by 4He gas down to about 0.35 K. At demagnetization temperatures
(r<0.1 K) the saturated pressure is quite low, hence there is negligible heat transport by
4He gas. Provided the amount of 4He is small, the condensed gas (presumably as a superfluid
film on the walls of the holder) will not give rise to an appreciable heat transport either.
For the construction of a ‘gas-switch’, epibond 100 A^ is a very suitable material, in view
of its poor thermal conductivity4. Epibond 100 A is commercially available as a powder,
which melts to a thick fluid upon heating, and which hardens (for example in 24 hours at
122°C) to a machinable ingot. Precautions need to be taken in order to prevent formation
of small bubbles in the bulk of the epibond. We found as a convenient solution for this
problem:
a. Melt the powder at 100°C and pump on the fluid until it is free of gas (mostly air).
b. Pour the degassed epibond in teflon matrices for hardening. Teflon was chosen since it is

one of the very few materials that does not adhere to the epibond.
With the aid of epibond 121 it is possible to attach epibond 100 A to pieces of metal or to
epibond 100 A, thereby producing high vacuum tight joints at low temperatures.
Two methods for constructing a gas switch, which proved satisfactory, are shown in fig. H.7.
The first construction consists of two concentric 4.5 cm long and 0.05 cm thick epibond
cylinders interspaced by a copper shield connected to the 3He bath (see fig. II.7a). The inner
cylinder is filled with an iron ammonium alum cooling salt (see section II.3). Some problems,
due to the difference in thermal expansion between salt and epibond, were encountered,
which caused cracking of the epibond cylinder when cooling down from nitrogen to helium
temperatures. The second construction (see fig. II.7b) consists of two concentric, 12 cm
long and 0.05 cm thick epibond cylinders. The outer cylinder has two thicker rings, for
mounting in the apparatus. Between the rings, the outer cylinder is covered with copper foil,
which is thermally connected to the 3He bath. The alum pill is made separately, leaving
some space for shrinkage of the epibond. With the aid of Apiezon N grease the pill is stuck
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Fig. n.8
Inner apparatus of the equipment for measuring thermal conductivity between 0.05 and 5 K.

The screwed thermal connection is shown on an enlarged scale.
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in the epibond cylinder. In both cases, the gas space has thoroughly been tested at room and
nitrogen temperature, and afterwards filled with 0.1 atm 4He gas.
The performance of the second construction is less effective than that of the first one. The
cooling of the magnetized cooling salt for the second case takes about five times the cooling
time for the first one (about 5 minutes). A discussion of the performance of gas switches
will be given in section IV.2.

II. 5 Apparatus mounting and sample holder

As shown in fig. II.8, the inner apparatus is mounted in a frame consisting of three german
silver capillaries. The upper ends of the capillaries are soldered to a brass ring, which is
fastened to the 3He can. The frame is strengthened by a number of epibond rings. The lower
end of the capillaries are fastened to an epibond disk. A stainless steel tripod is screwed into
the middle of this disk in order to center the frame in the vacuum can. A cylindrical thermal
shield, consisting of coil-foil (in this case copper wire on mylar), surrounds the frame. This
shield is thermally grounded to the 3He bath.
The tripod causes a continuous heat leak from the vacuum can, at about 1 K, to the 3He
bath. To get an idea of the temperature of the thermal shield, we measured the temperature
of the disk by a carbon resistor, which was found to be below 0.45 K during the whole
experiment; the same will certainly be true for the thermal shield.
Several sample holders have been used. The last version is shown in the figure. Thermal
connections to crystalline samples were made by glueing copper foil to the sample with
‘Bisonkit’5. The use of ‘Bisonkit’ appeared to give better results than mounting with
‘Apiezon N’, probably because it is difficult to fasten the small copper foils reliably to the
crystal surfaces. The samples were glued in a brass foot, which is screwed onto the copper
bottom of the sample holder.
The copper bottom is cooled by a copper rod, connected to the central rod, which in turn
is cooled by the brush of the cooling salt. The sample holder is surrounded by a coil-foil
cylindrical thermal shield, which is also connected to the central rod. Hence the wall of the
sample holder is colder than, or at least equal to, the temperature of the sample itself.
The top of the sample holder is an epibond disk having a number of feedthroughs; the
thermometers and heaters are mounted in the sample holder. The electrical connections to
the feedthroughs are made of 0.005 cm diameter ‘constantan’ wire. The mounting of thermo
meters and heaters can be left intact while interchanging samples. This is important for a
proper analysis of the data, since in this way, heat leak and parallel conductivity along the
electrical leads remain unaltered.
It is undesirable to solder the sample holder rod to the central rod, since the heat needed
to make a reliable joint, may ruin the sample and/or the cooling salt. Moreover, the use of
(soft) solder should be avoided, since it becomes superconducting, which causes additional
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thermal resistance. We therefore tried a method by which the sample holder rod is screwed
to the central rod. Our design for such a thermal connection (see fig. II.8) consisted of a
copper cone in a conical ‘house’, fixed with a brass nut. This construction has several
advantages:
a. Large contact area in spite of small dimensions.
b. Due to the larger thermal expansion of brass compared to copper, cooling will press the

cone tightly into the house.
c. It is a rigid, mechanically strong connection.
Some Apiezon N grease was put onto the surface of the cone before mounting to facilitate
disconnection and to prevent oxidation of the copper.
The thermal conductivity of the cooling rod, including the thermal connection, was
determined in a separate experiment and found to agree with the value calculated for a
copper rod without interruption.

References

1. R. Jaeckel, Handbuch der Physik, part 12 (1956) 606.
2. F.W. Gorter, Thesis Amsterdam (1969).
3. ‘Epibond’, Furane Plastics Inc.
4. A.C. Anderson, W. Reese and J.C. Wheatley, Rev. Sci. Instr. 34 (1968) 1386.
5. ‘Bisonkit’, contactadhesive. Perfecta Chemie N.V., Goes, Holland.

46



CHAPTER III

TEMPERATURE MEASUREMENT AND CONTROL

HI.1 Carbon resistance thermometry

The purpose of the experimental arrangement, described in the previous chapter, is to
measure thermal conductivity of crystals in magnetic fields; the use of magnetic thermometry
is therefore hardly possible. Several authors1"4 showed Speer carbon resistors to be useful
down to very low temperatures. Their conclusions were:
a. neither R nor —  becomes prohibitively large even at low temperatures (see fig. III. 1).
b. the resistance is only slightly sensitive to magnetic fields.
c. the R-T  calibrations reproduce quite well, if electrical and thermal connections to the

resistors are handled with care.
Fig. III.1

Calibration of a Speer resistor. The full curve represents the resistance versus temperature,
the dashed curve the resistance versus the temperature derivative of the resistance.

dR
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A disadvantage of resistance thermometry is the Joule heating in the resistor. For a given
amount of heat, developed per unit time, Q, the mean temperature Tc of the carbon is a
function of the surface temperature T  (i.e. the temperature to be measured), and the
thermal resistance causing a difference between Tc and T. This thermal resistance is due to:
a. The boundary resistance between the surface of the carbon and the cooling surface

(e.g. coil-foil). The contact area will be about 0.5 cm2 and consequently

Q= 5 x 10, ( r c4 - D e i ? / s .

We require for our thermometer Tc -  T  < 10'3 T; hence Q < 200 7" erg/s.
b. The thermal resistance in the carbon of the thermometer. Assume

Q = cT3 (Tc -  T).

Substitution of the mentioned requirement leads to Q < c 10‘3 T*.
The constant c may be found from experimental data. This was done by measuring the
power dependence at 0.1 K by varying the voltage of the Wheatstone bridge, resulting in
c = 50 erg/s K4. Joule heating in the resistor due to the bridge voltage has therefore to be
smaller than 0.05 T* erg/s.

This very low admissable power level has the following consequences:

a. The power level of the Wheatstone bridge has to be kept quite low, as is shown in the
table:

T[K] /?[k«] 0maxterg/s]
0.3 5 5 x 10'4 500
0.1 30 5 x 10'6 120
0.05 160 3 x 10'* 20

b. Both the leads and the resistor have to be carefully shielded against stray electromagnetic
fields. It appeared to be rather difficult to get rid of the 50 Hz fields, which are probably
picked up through capacitive coupling between the leads, thus causing a constant current.

c. A heat leak along the electrical leads (10 cm long, 0.005 cm diameter ‘constantan’)
would cause the same effect as Joule heating, unless the leads, before reaching the carbon,
are thermally grounded at the temperature to be measured.

Concluding, we may state that the boundary resistance between the resistor and the
temperature to be measured, was not very important compared to the thermal resistance in
the carbon. Secondly, we found that, provided the heating rate in the carbon was less than
0.05 T4 erg/s (i.e. the mentioned precautions were taken), the R-T calibration reproduced
quite well.
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III.2 Procedure of the measurement

For a measurement of the thermal conductivity, i.e. the average conductivity in a certain
interval of temperature, either two temperatures or one temperature and a temperature
difference have to be determined. This was done with the aid of two Speer carbon resistors.
The resistances of the carbon resistors were measured by means of two Wheatstone bridges,
operating at low frequency (28 and 31 Hz). Alternating currents have the advantage that the
generation of thermal voltages are avoided, but on the other hand low frequencies are
required to limit losses in the metal parts of the apparatus. Moreover, with low frequency
alternating current, it is easier to meet the requirements of the preceding section. Detection
is made with lock-in amplifiers (see fig. III.2).

Fig. III.2
Block-diagram of the measuring system and heater circuit.

Attan.

At ten.

L- Integral
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0.1-1 sec
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Wheatstone
Bridge

Wheatstone
3 <

Bridge
Lock in ampi 32 Hz

Lock in amp. 37Hz

For the known, variable R, an E.S.I. 5 decade (maximum R = 1111100 fl) Dekabox, with
an accuracy of 1 part in 104 , was used. The bridges could be used in the ratio’s 1:1, 1:10,
and 1:100. In general, we measured in the ratio 1:10, which has the advantage, compared
to 1:1, of being less sensitive to parasitic capacities.
Although it is possible to calibrate R j and f? 2  with respect to each other, the accuracy
obtained (3 :104) is not sufficient (compare section 1.3). The arguments, leading to the use
of thermal switches (section 1.4) are valid in this case too. We therefore searched for a
method to measure both T  and AT with one thermometer only, in this arrangement. The
solution is quite similar to the ‘temperature to standard’ method^, wherein the conductivity
is measured with two thermometers, R j and R i ,  and two heaters, Hj and H2  (1 refers to
the ‘warm side’, 2 to the ‘cold side’ of the sample). H2  continuously supplies heat to the
sample, thereby keeping R 2  constant. The limitation, imposed by the boundary resistance,
implies that H2  has to be mounted on the sample too, and, in that case, Q2  is of the same
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order of magnitude as the maximum heat flow through the sample (compare with section 1.3).
Hence, in the low temperature region, the cooling salt will not warm up much faster than
in a thermal conductivity measurement using one heater only.
Varying Q j and keeping constant by appropriate adjustment of Q2, the temperature
differences may be obtained from R i only. A chosen set of heat current values through the
sample give rise to a corresponding set of temperature differences, which can be plotted in
a graph. The slope of the resulting line is the thermal conduction of the sample. The mag
nitude of ö i  is limited by Q2 (with Qj = 0). The magnitude of Q2 is related to the sample
temperature chosen, and to the thermal resistance between sample and cooling reservoir.
This method, in which X is derived from a set (in general 3) of heat current values, has
several advantages:
a. Since the slope of the Q\ versus AT graph is insensitive to heat leaks, it is possible to

measure with very small heat currents through the sample (heat currents smaller than
10~2 erg/s can be actually used).

b. If the set of heat current values is taken in the sequence zero, large, middle, small and
zero heat current, possible errors due to long equilibrium times may be eliminated. This
is of particular importance for samples with a large specific heat (e.g. near a phase
transition).

c. From the set of measurements the accuracy of X may be calculated following standard
procedures. The accuracy was mainly determined by instabilities in the thermometer
readings. In general, for T > 0.15 K an accuracy of 2-3% has been obtained. In magnetic
fields, this accuracy will be reached at higher temperatures.

Whereas initially the current through H2 was hand-regulated with a potentiometric circuit,
later on an automatic system was built. This automatic system consists of two parts, both
driven by the out-of-balance signal from R 2 (see fig. III.2). One part, ‘proportional
regulation’, compensates fast thermal variations (e.g. vibrations due to a shock). The other
part, ‘integral regulation’, compensates drift in the temperature (e.g. due to warming up of
the cooling salt).
Both the specific heat and the thermal conductivity may vary strongly over the whole
temperature range of the experiments, and also the sample characteristics may be quite
different. For measurements under such different circumstances, the time constants of the
heater circuit must be correspondingly adjusted. This can be realized by the variable
attenuators V i, V2, V3 , and a variable RC-time.
The electronic design is such that the heater circuit does not change the heater current for
an out-of-balance of less than 1 mV and an attenuation factor 100. Usually -= -«  3%
corresponds to an out-of-balance of about 300 mV. Hence the heater circuit compensates
up to ^ ^ =  10"4. Under favourable circumstances (i.e. large specific heat and/or large
conductivity) this may be improved up to 10”6.
During the experiment, the out-of-balance signals of the lock-in amplifiers were continuously
recorded. Instead of Qi versus AT, ö i  versus the out-of-balance signal Au of the lock-in
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measuring R j was used for computation of X. This simplified the computation, but intro
duced a systematic error due to the non-linearity of the Wheatstone bridge. If AR/R  »  5%,
this error was found to be about 1 %, and depended slightly on the value of R.

d D
Another systematic error was due to the use of a single value of for the set of values for

A R  d ione point. The magnitude of this error depends strongly o n ~  and , but did not
exceed 1% in the actual measurements.
The systematic errors, introduced by using Au instead of AT were within the accuracy of the
measurement. It is possible to improve the accuracy (especially above 0.25 K), but in that
case the systematic errors would have to be avoided. An interesting possibility is an auto
matic circuit for H j, driven by R j . In that case, one would measure with a balanced circuit
for R j , and it is possible to choose AT (that is AR) instead of Q j .

HI.3 R-T calibration and magnetic thermometry

Carbon thermometers are secondary thermometers, and as far as is known, the R-T curve
cannot be described by a simple formula. A number of formulae have been proposed, to
describe the R-T curve in a limited temperature range. For instance^

R A
log—  = —— ,

R„ y/T
can quite well be fitted to the data of Speer resistors in the range 1-4 K. We have tested this
formula for extrapolation down to lower temperatures. Down to 0.1 K the formula was
found to describe the R-T curve with an accuracy of 5%, which was insufficient for our
purpose. Hence the carbon resistors had to be calibrated over the whole temperature range.
The results can be expressed in tabular form, but for interpolation, and in particular also for
the purpose of computer handling of the data, an analytic expression is advantageous.
Therefore the formula7

n
log R = 2 a; log1-1 T, where n is 10 or 12,

i= 1

was fitted to the experimental data in the range 0.05 < T  < 5 K. The aj values found in this
way were used for the computation of the thermal conductivity. At regular time intervals
the R-T  calibration was rechecked, and the a, were found to reproduce within several
percents.
As mentioned in section III. 1, the requirements for carbon resistance thermometry are
rather high. Consequently it is desirable to calibrate the resistors in exactly the same situation
as in the actual measurements. We therefore constructed a Ce-Mg nitrate susceptibility
thermometer of such a size that it could replace the sample. For the susceptibility measure
ments, a commercial® low frequency (21 Hz) mutual inductance bridge was used.
The familiar construction of a set of inductance coils outside the vacuum space is subject to
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serious objections if only small susceptibilities are to be measured. A construction in which
the coils are mounted onto the CMN has several advantages:
a. optimum filling factor.
b. parasitic susceptibilities of the construction materials are kept to a minimum.
c. as a consequence of the small diameter of the coils, the influence of other magnetic

materials (e.g. cooling salt) will be unimportant.
d. condensation of air (oxygen) on the coils will be avoided by mounting the thermometer

in the high vacuum (parasitic oxygen can be one of the most important origins of errors
in the calibration).

A disadvantage of such a thermometer is that a current through the coils causes Joule
heating. This was avoided by using superconducting wire (Nb) for the primary coil, and by
measuring with a balanced bridge, in which case the current through the secondary coil is
zero.
In fig. III.3 such a magnetic thermometer is shown. The secondary consists of two, oppositely
wound coils (14 layers of 125 turns each, 0.005 cm diameter Cu wire). The primary consists
of one layer of 450 turns of 0.005 cm Nb wire, having at both ends 30 additional turns to
improve the homogenity of the primary field. One half of the inner part of the thermometer
(with a total length of 3 cm and 0.6 cm diameter) is filled with 0.14 g ‘molten’ CMN
(compare the construction of the cooling salt section II.3). The total weight of the thermo
meter is 2 g and the total specific heat is estimated to be

c therm. = 0-15 T *  + 3 T+ 80 7* erg/K.

Fig. ra.3
Magnetic thermometer, used as calibration standard

between 0.05 and 5 K.

1cm ^
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The calibration to the 4He temperature scale is found to be reproducible, within 1%. For
CMN the Curie-Weiss 0 will be mainly determined by the form factor o f the sample; in our
case 0 is estimated to be less than 1 mK. Hence, in the temperature range o f our experiments,
Curie’s law will provide a sufficiently accurate (at the lowest temperatures the error is
about 1%) relation between the susceptibility readings and the absolute temperature o f our
thermometer.
This magnetic thermometer serves as a calibration standard, and all temperatures mentioned
in the following chapter, although measured with Speer resistors, refer to this Curie law
thermometer.

IH.4 Magnetic field dependence o f Speer resistors

Some results on the magnetic field dependence o f Speer resistors are reported in the
litterature2,3. However, for our purposes R(H) should be known to a higher accuracy. We
therefore measured the field dependence o f a Speer resistor (R j see fig. III.2) in a separate
experiment, similar to that described by Mess3.
The resistor (R j) was mounted close to the CMN susceptibility thermometer. A second
resistor (R2) was mounted 26 cm from R j. Hence with R { in the center o f the magnet, R2
was merely influenced by the stray field, which is about 6% of the field strength in the
center o f the magnet. Several runs in different magnetic fields were taken, according to the
procedure:
a. R\ and R2 were calibrated to each other and (in zero field) to the CMN thermometer.

In fig. III.4 this R-T calibration is compared to the calibration measured in the other
apparatus (section III.3). Starting from a certain susceptibility x i , this corresponds to a
certain resistance o f the carbon resistor, which in turn is related to a particular value of
X2 - For a x i versus X2 graph, one expects a straight line, the slope being the ratio o f  the
two slopes in the X i» X2  versus 1/7’graphs. The agreement was found to be about 1%0.
The largest susceptibilities in fig. III.4 correspond to a temperature o f about 0.08 K.

b. In a magnetic field R X(H) was calibrated against R2.
c. The, strayfield corrected, R2 value was used to derive R j (0).
The resultant field dependence is shown in the table.

//[kOe] T range [K] R range [k£2] AR
R

0.9 0.05 - 2 1 - 120 9 x 10"4 R 10
3.9 0.08 - 2 1 - 45 3.9 x 10'3 R 0-92
8.0 0 . 1 2 - 2 1-  25 8.0 x 10‘3 R 0J9

12.0 0 . 1 0 - 2 1 - 30 1.3 x 10-* /?0.76
In the last column R is given in k£l.
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For the mentioned temperature and resistance range the combined data may be expressed as

— = -  0.10ffi?1'° 02ff %
R
where H is the field strength in kOe and R in k n . This formula has been used for the
correction in the X measurements.

Fig. ra.4
Comparison of two R-T  calibrations; the susceptibilities of the two magnetic thermometers are related

through the resistance of the Speer resistor.
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CHAPTER IV

SOME CONSIDERATIONS CONCERNING THE EXPERIMENTAL RESULTS

IV-1 Calibration and test of the procedure

Three samples were chosen to calibrate and test the apparatus, namely a brass rod, a single
crystal of LiF, and a single crystal of ZnSiF6 • 6H20  (see fig. IV. 1). In the low temperature
region, the thermal conductivity of brass is expected to be proportional to T\ the absolute
value may be found from the electrical resistance, using the Wiedemann-Franz relation.
LiF is a diamagnetic crystal, and the dimensions of our crystal were such that a high
conduction may be expected. ZnSiF6 -6H20  is also a diamagnetic crystal. The dimensions
were chosen in such a way that the conduction of the sample will be quite low. In this case,
X at 71 0.1 K was measured using heat currents as low as 0.003 erg/s.

Fig. IV-1
The overall conductivities of the three samples

used to  calibrate and check the apparatus.

erg/sK

io6
o Li F
* brass
□ Zn Si Fft.óHjO

T 0 .1 K
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With these three samples we obtained a test on the temperature dependence and absolute
value for large and small conductivities. The corrections necessary when measuring in
magnetic field, may be checked with these samples also, the conductivities being expected
to be independent o f magnetic field. All this was confirmed, if the field corrections on the

thermometry were used.

Brass
The conductivity of metals consists in general o f an electronic and a lattice component

. ( 1)
X Xg Xg.

In the case o f alloys, such as brass, the electronic component is rather small, due to a large
impurity scattering, and the role o f electron-phonon interaction would not reflect in Xe at
low temperature. In that case, Xe is related to the electrical resistance R, as (Wiedemann-

Franz)
(2)

\ tR -  LaT,
in which the Lorentz numberLa =  0.245 erg n/s K2 .
The lattice component will be determined by phonon-electron interaction and dislocation
scattering, both giving rise to a conductivity proportional to T . So we expect the conduct

ivity o f brass to be given by

+ b r  (3)
The sample consisted o f a 5.7 cm long, 0.2 cm diameter brass wire. The ^ m a l  contacts
were made by hard soldering 0.06 cm diameter Cu wire in small holes drilled in the braf
The distance between the thermometer connections was 2.48 cm, hence the geome ry

M show n hi fig. IV.2, the low temperature conductivity tends to a linear T dependence; and
the low temperature specific conductivity is found to be

X =  6.2 x 104 erg/cm s K.

A comparison of the data with e , .  (3) k  shown in f* . IV.3. The sttaight line cottespond. to

a =  (7.85 ± 0.05) 102 erg/s K2
b = (0.9 ± 0.2 ) 102 erg/s K3 .

The electrical resistance of the sample was measured and found to be constant in the range
1-4 k . The various (specific) values are given in the table, and may be compared with the
results o f Kemp e.a.1 on strained (30 S) and annealed (30) brass.
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pi Q, cm erg/cm s K

P m P 90 P o

this experiment 6.49 4.41 3.93 6.20 x 104 7 x 103
30 S 6.9 5.0 4.3 5.7 7.1
30 6.3 4.2 3.6 6.8 5.

Fig. IV.2
Thermal conductivity of brass
as a function of temperature

Brass.

Fig. IV.3
Thermal conductivity of brass,
plotted as "K/T2 versus l/7 \ so that the
value at \/T=0  gives the coefficient
for the lattice part of the conductivity,
and the tangent gives the coefficient of
the electronic part of the conductivity.

1 1 I

Bross

I ■ .

Consequently our data lie between the values of the strained and annealed samples of 1.
Our sample appears to be ‘partly annealed’, which may be caused by hard soldering of the
thermal connections. The residual electrical resistivity and the linear term of the thermal
conductivity are related by eq. (2), and the experimental results agree with eq. (2) within
the accuracy of the measurement.
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LiF (sample dimensions: O.SS x 0.S2 x 4.1 cm)

LiF single crystals are often used to study lattice thermal conductivity, because it is a simple
(two ions in the unit cell), cubic crystal. Having a high Debye temperature (0D = 722 K2,3),
one may find for LiF a T3 dependence over quite a wide and easily attainable temperature
range. The single crystal was grown at the Harshaw Chemical Company and kindly given to
us by prof. Pohl (Cornell University). The thermal connections were (four) small Cu strips,
glued around the sample and the crystal was mounted in a brass holder (compare with
section II.5).
As is shown in fig. IV.4, a T3 dependence fits nicely to the data over more than a decade in
temperature, and consequently the boundary resistance completely determines the
behaviour of X. The experimental data lead to

X = 7.12 x 10s T3 erg/cm s K.

Fig. IV 4
Thermal conductivity of LiF, plotted as X/T2
versus T, demonstrating that X is proportional
to f 3 in the range 0 .08< r< 1 .4  K, with
7.12 x 10s erg/cm s K4 as proportionality
constant.

sK3

20

B

o

X7
0 t____ 05 10 IS K

The specific heat, velocity of sound and elastic constants of LiF are known2,3, hence it is
interesting to compare the measured conductivity with the theory of lattice thermal
conductivity in the boundary scattering region (section 1.1).
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The thermal conductivity resulting from Casimir’s theory4 may be expressed in the form

X = Ic[(v_rï)/(^ )]/c (4)
in which diffuse boundary scattering and an infinitely long sample are assumed. As stated
in section 1.1, the thermal conductivity will be proportional to 7* with n<3 if specular
reflection occurs. For our LiF crystal the conductivity appeared to be quite accurately
proportional to T3, hence we may conclude that reflection was of no importance.
To evaluate eq. (4), one may use the Debye theory, for a monatomic lattice leading to
(eq. 1.10)

X = j l  1,941 x W10̂ ( f D)3n3,95 x 10* 1 f e D]lc. (5)

For an s atomic lattice, using the definition of the Debye temperature according to
Keesom5, the formulae for c, v and X have to be changed into

cmoi = s 1,941 x 1010 (—- )3 erg/K mol, ^
3 f g D

v = 3,95 x 102 y  ^ - e D cm/s (7)

x = I  ] m  CmolV‘c erg/cm s K (8)
Hence for the diatomic lattice LiF, one finds

X = 8.32 x 10s IqT3 erg/cm s K ^

Equation (4) applies to an infinitely long sample; Berman e.a.6 have derived a correction
valid in case of a finite ratio of sample length to sample width. This effect reduces the
conductivity below that predicted by Casimir4. For the actual LiF sample this reduction
is 10%-
A further refinement is obtained when the elastic properties of LiF are taken into account.
These cause a deviation from the assumed isotropic sound velocity; hence the ratio of the
mean squared and cubed velocities has to be calculated. Moreover heat pulse studies have
shown that, if the group velocity is not in the same direction as the wave vector, the energy
flow will be enhanced, or focussed in some directions and reduced in others. McCurdy e.a.
evaluated this effect for a number of cubic crystals among which LiF. For our sample, a
<100> axis rod, with {100} side faces9 the mean free path expressed in sample diameter
(including the ‘Casimir length’ and the non isotropic velocities) is given as

/=  1.80 d, (10)

For our sample the geometric mean diameter is 0.53 cm. Combining eq. (9), (10), and the
finite length correction, we find for the theoretically expected conductivity

X = 7.14 x 10s T3 erg/cm s K,

which is in excellent agreement with the experimental value.



Pure LiF is diamagnetic, it is therefore a suitable substance to check the field correction on
the thermometry. In fig. IV.5, the conductivity as a function of magnetic field for T=0.5 K
is shown, it is evident that the field correction is necessary. If the measurement is performed
keeping constant R 2 and applying the field correction to R j , then there is apparently still
a field dependence in the conductivity. But this is due to measuring with constant R 2
instead of constant 7’2. If the field correction is applied to both R j and f?2, the conductivity
is indeed constant within the accuracy of the measurement.

Fig. IV.5
Thermal conductivity of LiF, plotted as X and X/T2 versus H,

showing the necessity of magnetic field corrections on the thermometry,
o without field correction
X field correction applied to R t
■ ■ field correction applied to R 1 and R 2

O____

ZnSiF6-6H20  (sample dimensions: 3.0 x 0.22 x 0.25 cm, geometry factor: 29.4 cm"1)

An additional calibration of the apparatus provided the measurement of a crystalline sample
having a poor thermal conductivity. Comparison of the results (fig. IV.6), with those of LiF
and brass (fig. IV.2, IV.4) shows that the accuracy had been improved significantly by the
introduction of the automatic temperature regulation (section III.2). ZnSiF6-6H20  is a
diamagnetic crystal of hexagonal symmetry, spacegroup C2i(R3) and, having a large
number of ions in the unit cell, better comparable to the samples mentioned in section IV.3,
than LiF.
The temperature dependence of X suggests that an other scattering process than boundary
scattering was important. This other process occurred down to quite low temperatures,
hence it is reasonable to describe the data with boundary and dislocation scattering. If these
two scattering processes occur, the conductivity may, in first approximation, be given as

60



i  = i - + J ^ .  ' (11)
X x b  \ d
As stated in section 1.1, Xb = nT3 and \ i  = b P ,  and consequently the conductivity will be

! . ! _ ' + 1_
X aP  b P  ■

( 12)

In fig. IV.6, the data, fit to this relation, are shown, and eq. (12) describes the temperature
dependence quite well up to about 1 K.

Fig. IV.6
Thermal conductivity of ZnSiF6'6H20 , plotted
as T1[K versus I IT, so that the value at 1/ 7=0
gives the inverse of the coefficient due to
dislocation scattering, and the tangent gives the
inverse of the coefficient due to boundary
scattering.

The experimental value of the conductivity in the boundary scattering regime

Xb = 5.31 x 104 T’ erg/cm s K,

may be compared to the theoty of lattice conductivity using eq. (8). For the Debye temper
ature we take 102 K, as found from specific heat measurements of CuSiF6*6H20  . (Since
s is unknown, this 0D has been calculated from the specific heat using the formula for a
monatomic lattice.) The crystal was found to be broken parallel to its longest direction when
taking it out of the sample holder, we therefore use Z=0.1 cm instead of the sample
diameter. In this case eq. (8) may be written as

X = 2.56 x lO13-1 ^ ) 2'3 -  V I  (13)s M 0^
Inserting the mentioned values of Xb, 0p and /, p=2 g/cm3, and M= 315 in eq. (13) yields
s= 16. This experimental value agrees rather well with s= 14, expected on basis of the
number of atoms and atomic groups in ZnSiF6-6H20.
In fig. IV.6, some data measured in magnetic fields of 4 kOe and 8 kOe are shown as well,
and in this case, the same conclusion holds as for LiF: the field correction for the thermo
metry is accurate enough to show, within the accuracy of the measurement, a field
independent conductivity.
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IV. 2 Thermal conductivity of He gas and its use as thermal switch

Section II.4 describes the construction of a gas-switch as thermal connection between the
3He bath and the cooling salt. As a consequence of the rather succesful operation, we were
interested in the actual conductivity of such a thermal switch. This section concerns the
measurements on a ‘mini-switch’, its characteristics being comparable to the one used in
section II.4.
Fig. IV.7 shows the construction of the mini-switch, in principle a copper shield and a
copper pen in an epibond enclosure. The copper pen replaces the cooling salt of the
section II.4 construction. The conductivity of both the epibond wall and the gas may be
estimated in advance, using the geometry factors (75 for the gas and 0.04 for the epibond
wall) and the known specific conductivities10,11. The geometry factors were chosen in such
a way that the switch factor (the ratio of the conductivities of the switch in the conducting
and non conducting state) is comparable to that of a lead superconductive switch. The
switches were filled with 10 cm He gas at room temperature; 10 cm because in that case the
gas will not reach saturated vapour pressure above 1 K. If only few absorptions on the wall
occur, there will be enough gas in the lowest temperature range, and the amount of gas is
far too small to give troubles with condensation.

Fig. IV.7
Construction of the mini-switch.

C u C
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In fig. IV.8, the conductivity of the mini-switch, filled with either 4He or 3He, is shown.

Fig. IV.8
Thermal conductivity of the mini-switch; enj/sK

the values of X for 4He and 3He io6
refer to those reported by Fokkens10.

o 4He gas switch
a 3 He gas switcha 3 He gas sv
•  75 X4 He

For T > 1.3 K the conductivity agrees quite well with the values of Fokkens10. For T < \3  K
the 3He conductivity is lower than the values reported by Fokkens10. This is probably due
to the fact that both the boundary resistance and the thermal resistance of the copper pen
(shield) are measured in series with the thermal resistance (i.e. the inverse conductivity) of
the 3He gas. Near 0.15 K, the lower bound, due to the conductivity along the epibond wall,
is reached. The conductivity of the epibond wall was derived from the Q versus T  curve up
to 0.6 K; this could be described by Q = aT4 resulting in a conductivity of 400 T3 erg/s K.
For the 4He filled gas-switch a remarkable rise in the conductivity occurs near 1.2 K; note
that this temperature corresponds to the one where 4He gas is expected to be at saturated
vapour pressure. The rise in conductivity must be due to the onset of superfluid film flow
on the epibond wall. In this case the operation of the switch is quite similar to that of a
heat pipe12. The thermal transport is a consequence of evaporation on the warm and
condensation on the cold side; the superfluid film reestablishes the mass equilibrium. This
process may be effective, independent of the temperature of the cold side (provided it is
below a certain temperature). Hence, when measuring the Q versus T curve in this case the
temperature dependence changes near 0.35 K from T* to T9. This behaviour is probably
the origin of the negative result on the 4He gas-switch reported by Gorter12.
The characteristics of He filled gas-switches are summarized in the following points:
a. The use of 4He gas as thermal switch between a 3He bath and a cooling salt is quite

a good possibility, provided the 3He bath is colder than 0.35 K. In the temperature range
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of interest, the switch factor can be made 100 (or more) times larger than the switch
factor of lead.

b. 3He gas may be used as a thermal switch down to about 0.15 K. Hence it may serve as a
switch between two cooling salts (e.g. MnNH4 -alum and CMN).

c. Whether the switch is open or closed, depends on the temperature of the warm side for
the 4He gas-switch and on the temperature of the cold side for the 3He gas-switch.

IV.3 Thermal conductivity in magnetic crystals

Experimental and theoretical investigations of magnetic crystals, in particular near the
magnetic phase transition, show that a wide variety in behaviour may be found, depending
on the spin-spin and spin-phonon interaction in a particular crystal. In general the inter
action term in the hamiltonian may be written as

^ * * = - 2  I  /jjSi-Sj
1J 1

Contemporary theories are primarily concerned with two limiting cases, i.e. a magnetic
system with Heisenberg interaction, given by

9 t-u =  —2J 2 Sj • S:
U 1 1

and a magnetic system with Ising interaction, given by

dC\ = - 2 J 2 Sf Sjz

One of the important differences between the two types of interaction is that spin waves
(a continuous excitation spectrum for the ordered magnetic system) may occur in crystals
with the Heisenberg type interaction, but not in crystals with the Ising type interaction.
The occurrence of spin waves may give rise to an alternative way for heat transport
(magnon conductivity), hence a larger conductivity than that expected from lattice
conductivity alone. Whether or not appreciable heat transport in the magnetic system
occurs, can be investigated by thermal conductivity measurements as a function of magnetic
field. In a magnetically ordered system the application of a magnetic field causes a shift,
AE = gnH, in the magnon energy spectrum, leading to an extra term in the Boltzmann
distribution for the excitation of magnon modes. For an isotropic ferromagnet, this leads to
a decrease in the number of magnons, thus a decrease in the magnon contribution to the
conductivity, with increasing field; so that merely the phonon contribution survives at high
magnetic field strengths.
The choice of crystals was made in a sequence of increasing complexity of the expected
conductivity behaviour:
a. crystals with a disordered magnetic system over the whole experimentally accessible

temperature range. The band-model of section 1.2 can be tested.
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b. crystals with an Ising type magnetic system, and a magnetic phase transition within the
available temperature range.

c. crystals with a Heisenberg type magnetic system, and a magnetic phase transition within
the available temperature range.

Thermal conductivity of Ce2Mg3(N03),2-24H20
Ce-Mg-nitrate (CMN) is chosen as an example of a paramagnetic crystal because:
a. CMN has been a subject of a great deal of experimental work and although its properties

at ultra low temperatures are not well understood, it behaves as a spin — paramagnet
following Curie’s law down to about 0.006 K.

b. The g tensor in CMN is very anisotropic (%// — 0.02 and gj_ = 1.84). As stated in
section 1.2, the conductivity is expected to be a function of gp///fcB7\ Hence by varying
g, H, and T, one has in this case three possibilities for comparison with the band-model
of section 1.2.

The rod shaped samples were cut along a direction perpendicular to the hexagonal axis
(=minimum g direction). The rod was mounted vertically, and the magnetic field direction
(perpendicular to the heat flow) could be rotated in a horizontal plane.
In fig. IV.9, the change in X for a field of 4 kOe along a direction for which g= 1 (i.e. the
angle between H  and the c axis is 33°), and in the g=g^ direction, versus gpH/k^T is shown.
As can be seen from fig. IV.9b, merely the location of the maximum scattering, measured
in the g  ̂direction is in moderate agreement with eq. (1.14).

Fig. IV.9
Thermal conductivity of Ce3Mg2(N03)12*24H20
in a magnetic field; the direction of the field
making 33 with (a) or being perpendicular to
(b) the c axis.

a CM N b
H =  4 0 0 0  Oc
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Although many experimental runs were taken on several CMN samples, we were unable to
give an adequate description of their results in terms of our simple scattering model.
Some comments on this rather disappointing conclusion can be made:
a. The single crystals, grown from aqueous solution, are always in the form of hexagonal

plates. Damage (such as cracks from cooling the sample) and crystalline defects will occur
principally in planes perpendicular to the c axis. These ‘defect planes’ are parallel to the
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heat flow, hence a favourable situation for specular reflection. This may be the origin of
both the different temperature dependences (7”  with 2.5<n<3) and different absolute
values (differences up to a factor 10) found for different samples.

b. Due to the small line width, the change in X is rather small, so for a more precise analysis
of the change in X as a function of gnH/k%T, the accuracy should be improved.

c. All the samples, at low enough temperatures (e.g. T<0.2 K) yield a conductivity in
magnetic field exceeding the zero field value. This must have been due to either scatter
ing in zero field by the magnetic system (Ce ions), which is rather unlikely; or to an
additional conductivity in the magnetic system (e.g. diffusive thermal transport).

The band-model (section 1.2) does not include the possibility of an increase in thermal
conductivity caused by the magnetic field. For such cases, a more refined model is necessary,
such as, for instance, the treatment of a paramagnetic crystal as a coupled magnetic-lattice
system with magneto-elastic modes (magneto-phonons). The thermal conductivity for this
model has been calculated by several authors14,15, . It would be interesting to repeat the
measurements on CMN with an improved accuracy, to be able to make a comparison
between the thermal conductivity in a (concentrated) paramagnetic crystal and the magneto
phonon theory.

Therm al conductivity of CoCs3Q 5 (sample dimensions: 1.5 x 0.2 x 0.35 cm)

As an example of a three dimensional (3D) Ising system we measured the thermal conduct
ivity of CoCs3Cl5 (CCC). A wide variety of data are known on this substance:
a. The crystallographic structure, spacegroup D‘® (I4/mcm), shows that all Co ions are

™  m 1 n
magnetically equivalent, and arranged in a single Bravais lattice .

b. Electron paramagnetic resonance data on CCC1® show that, due to the tetragonal
distortion of the cubic crystalline field, the fourfold degenerate ground state is split into
two doublets. The energy difference between the two doublets amounts to
2Z)/kB= —12.4 K. Hence, at low temperatures, the Co ions may be described by an
effective spin-^-having a very anisotropic splitting factor, i.e. Z// — 7.20 and g  ̂= 0. In
view of this very anisotropic g tensor, the magnetic exchange interaction may be des
cribed by the Ising model.

c. Caloric1̂  and magnetic20 investigations in CCC show that the magnetic phase transition
occurs at Tn = 0.53 K, and that CCC has some characteristic properties, which are in
agreement with the theoretical predictions for the 3D simple cubic Ising anti-ferromagnet.
By simple reasoning, one can show that the dipolar hamiltonian also simplifies to the
Ising-hamiltonian in this crystal (neglecting the long range character of the dipolar
interaction). Hence dipolar interaction does not affect the Ising model characteristic that
spin wave excitations are absent.

Thermal conductivity was measured in a sample having its longest direction perpendicular
to the c axis . During the experiment the magnetic field was along the c axis (that is the
direction of the maximum % = %// value). The direction of the c axis could be accurately
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determined by means of rotating the magnetic field with respect to the crystal axis. Due to
the anisotropic g value a rotation of the field caused a change of the temperature of the
sample, which could be seen by the carbon thermometers. In this way it was possible to
align the field along the c axis, with accuracy of 1°.
We measured the thermal conductivity as a function of temperature, in zero field as well as
in 10 kOe, and further as a function of magnetic field strength at 1.703 K and 0.645 K. The
results are shown in fig. IV.10, IV.11. From these data we conclude:
a. There is no notable change in temperature dependence of X near 7jj. So the ordering of

the magnetic system is not reflected in the thermal conductivity of this crystal.
b. Within the accuracy of the measurement, the conductivity is independent of the magnetic

field strength.

Fig. IV.10
Thermal conductivity of C0C83CI5

as a function of temperature.

Fig. IV.11
Magnetic field dependence

of the thermal conductivity of CoCs3Cls.
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Although, apparently, neither magnetic field nor the phase transition affect the thermal
conductivity, the absolute value of X is quite low. This may indicate a depression of the
conductivity due to the magnetic system over the whole temperature range, in that case,
both doublets heed to be taken into account for an evaluation of the phonon scattering by
the magnetic system. The H  independence of X may be related to the observation2® that the
spin-lattice relaxation is predominantly due to a Raman process, and practically independent
of the magnetic field strength.
The absence of a marked variation in X near 7^ may be characteristic for the Ising model.
According to Kawasaki21 phonon scattering by the magnetic spin system may be
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proportional to the thermal conductivity of the magnetic spin system itself. As stated
earlier there are no magnons in an Ising system, hence if any heat transport in the spin
system occurs, this is not due to wave-like excitations but to a diffusive process. It is
plausible that such a diffusive (i.e. short range) process is little dependent on T  in the
immediate vicinity of the phase transition temperature. Consequently, the magnetic phonon
scattering is independent of 7^ , and the same will be true for the thermal conductivity.

Thermal conductivity o f Cu(NH4)2Br4*2H20  (sample I, dimensions: 1.95 x 0.23 x 0.23 cm;
sample I abraded, dimensions: 1.95 x 0.20 x 0.20 cm; sample III, dimensions: 1.85 x 0.22 x 0.22 cm)

Copper ammonium bromide (CAB) belongs to a group of ferromagnetic salts, with the
general formula CuM2(Hal)4*2H20. The crystallographic structure, spacegroup D‘*
(P4/mnm), is tetragonal, and the body centered unit cell contains two Cu ions. As far as
their magnetic properties are concerned, these two ions are equivalent, apart from a
different orientation of the principal axis of the g tensor. Caloric and magnetic
investigations22 show that these salts behave like body centered cubic Heisenberg ferro-
magnets. CAB was chosen primarily because of its relatively high transition temperature
Tq = 1.8 K23. (Appreciable lower values of Tc  may be found in samples containing a small
percentage of chlorine.)

Thermal conductivity was measured on two samples (I and III). Sample I was abraded to
smaller dimensions, and studied again. Results on X as a function of T  and H  are shown in
fig. IV. 12 and IV. 13. From our measurements, the following conclusions may be drawn.

a. At high temperatures (T > Tq), the absolute value of the conductivity is the same for
both samples. The conductivity increases with magnetic field. This may obviously be
interpreted as phonon conductivity limited by magnetic scattering.

b. At low temperatures (T  < 0.4 K), the curves are qualitatively the same. For sample III
the conductivity is about 2 times lower than for sample I. Abrading sample I did not
influence the conductivity, hence size dependence is not apparent in this case.

c. For the abraded sample I, X has been measured in 5 kOe down to 0.15 K. In the region
0.15 < T < 0.20 K, the data correspond to a T3 dependence of X, with an absolute
value lower than the zero field value. Moreover, as shown in fig. IV. 13, for sample III the
conductivity decreases continuously with increasing magnetic field. Both field and
temperature dependence suggest that magnon heat transport predominates at low
temperature.
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Fig. IV.12
Thermal conductivity of Cu(NH4)2Br4*2H20

as a function of temperature.
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Thermal conductivity of Cu(NH4)2Cl4'2H20  (sample dimensions: 1.77 x 0.23 x 0.27 cm;
abraded: 1.22 x 0.14 x 0.20 cm)

Copper ammonium chloride (CAC) is another example of the ‘3D Heisenberg ferromagnets’,
having Tq = 0.70 K . In addition to the measurements on CAB, the conductivity of CAC
has been measured. The sample, having its longest direction along the c axis, has been
measured and thereafter abraded to check for size dependence.
As can be seen from fig. IV. 14, the results of the abraded sample coincide with the
original curve (drawn in the figure), except in zero field for 0.3 <  T < 0.6 K and in 11 kOe
for T <  0.3 K. Especially the last deviation will be due to the size dependence of the phonon
conductivity. Although the conductivity of the abraded sample is larger than the original
one, which may be due to specular reflection of the phonons, this size dependence proves
that, in 11 kOe at low temperatures the conductivity is due to phonons limited by boundary
scattering.
The main features of the results on CAB are also, and to some extent more pronouncedly,
demonstrated in the conductivity of CAC. Especially the saturation of the field effect at low
temperatures, expected for a crystal with heat transport by magnons, is nicely demonstrated
in the H  dependence of the conductivity at 0.153 K and 0.177 K.
A remarkable difference in the zero field curves of CAB and CAC is the rather sharp mini
mum (fig. IV. 16) in the conductivity of CAC at Tc . From specific heat measurements24,
it was found that the sharp maximum in the heat capacity, due to the phase transition, is
considerably broadened by the presence of a small magnetic field. As shown in fig. IV. 16,
a similar effect occurs in the thermal conductivity.
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Fig. IV. 15
Magnetic field dependence

of the thermal conductivity of Cu(NH4 )2 Cl4 *2 H20 .

Fig. IV. 14
Thermal conductivity of Cu(NH4)2Cl4*2H20

as a function of temperature.
The drawn line corresponds to

the conductivity of the unabraded sample.
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Fig. IV. 16
Thermal conductivity of CuINH^C^ * 2H20

as a function of temperature near Tq=0.70 K.
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Thermal conductivity of Ni3La2(N03)12*24H20  (sample dimensions: 1.6 x 0.25 x 0.26 cm)

The rare earth double nitrates have been fairly extensively investigated by various methods.
Mess e.a. investigated those double nitrates in which an iron group ion and diamagnetic
lanthanum are the metal ions. For thermal conductivity, we chose NiLaN because its
transition temperature (7'c =0.393 K) is the highest one in this group, and because it is the
only one which shows ferromagnetic behaviour below its phase transition temperature.
From E.P.R. data26,27 it is known that there are two lattice sites, X and Y, for the divalent
ions, two thirds of the ions being at crystallographic X sites and one third at Y sites. The
g tensor is isotropic, for both the X and Y site ions g=2.23. The zero field energy level
splitting (Z) term) is different for the X and Y site ions; for NiLaN Dx/kB = +0.288 K and
Dy/kft = —3.24 K. Mess e.a. conclude the magnetic structure to be an antiferromagnetic
order of X ion pairs, linked by Y ions to obtain long range order in the magnetic spin
system below the phase transition temperature. The maximum in the specific heat was.
found at 0.393 K, and below that temperature the crystal behaves ferromagnetically. This
behaviour is apparently not drastically altered by external fields of a few hundred Oe. The
measurements of isentropes in the H-T diagram25 suggest an antiferromagnetic phase
boundary, with an upper limit (!T=0) for the critical field of about 6 kOe.
Thermal conductivity data, measured on a sample having its longest direction perpendicular
to the crystalline c axis, are shown in fig. IV. 17. In addition to these data, X has been
measured as a function of the magnetic field strength H, at various temperatures, and as a
function of the angle between H  and the c axis at constant H  and T .

Fig.IV.17
Thermal conductivity of Ni3La2(N03)i2*24H20 .
The drawn line corresponds to the conductivities

calculated with the band-model,
starting from an assumed lattice conductivity

(dashed curve).

NiLaN.

o 0 kOe
v 6 k O t

a 11 k0«
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From the zero field curve we note that the effect of the phase transition is a steeper T
dependence of X below Tc  than above Tc . From the mentioned properties of NiLaN one
may conclude that it behaves like a paramagnet io iH >  6 kOe. We have calculated the
conductivity on the basis of the band-model of section 1.2 starting from the assumptions:
a. an estimated ‘undisturbed’ lattice conductivity, shown in fig. IV. 17 as a dashed curve.
b. instead of the two-level scheme of section 1.2, we use the level scheme suggested by

Mess e.a.25, given by the hamiltonian for the X site ion pairs:

9 t=  gpH-Sj + gf5H-S2 -  l /S r S2 + DXISSZ - - S j (S i  + 1) ] + Dx[S2* -  |S 2(S2 +  1)1,

where Sj = S2 = 1; g = 2.23;Dx/k^  = 0.288 K;//kg  = 0.33 K.
And for the Y site ions

9 t  = gfJHS + Dy[Sz2 -  |S(S + 1)]

where g and S are as before and Dy/k% = —3.24 K22.
c. for the line width we use 2000 Oe, corresponding to the y/b/c value obtained from specific

heat measurements25.
The calculated result appears to be almost independent of line width in the range
1800-2400 Oe. This is due to the fact that in the assumed level scheme many transitions may
occur, and the corresponding bands of strongly scattered phonons may coincide at certain
field strengths. As a consequence of the D term, magnetic scattering occurs in zero field
as well.
The calculated conductivities are shown as drawn lines in the figure. As can be seen from
fig. IV. 17, this crude model fits the experimental data quite well at high temperatures and
in a magnetic field. The deviations at low temperatures may be due to magnetic saturation
in the spin system, causing a decreasing line width.
We have also calculated the conductivity for the case of scattering by single X ions instead
of pairs. The calculated result does not fit to the experimental data. Hence X site ion pairs
appears to be a necessary assumption for interpretation of the thermal conductivity data.
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CHAPTER V

THERMAL CONDUCTIVITY IN A 3D HEISENBERG FERROMAGNET

In the preceding chapter, thermal conductivity data were presented on a number of
magnetic crystals at temperatures in the vicinity of their phase transitions. Comparison of
these results show that the shapes of the conductivity versus temperature curves are quite
different for the various magnetic compounds, suggesting that the actual conductivity
depends on the type of magnetic interaction in a particular compound. The thermal
conductivity behaviour of Cu(NH4)2Br4-2H20  and Cu(NH4)2C14-2H20  may therefore be
representative for the conductivity of a dielectric crystal containing a 3D Heisenberg ferro-
magnet. This conclusion is supported by similar data on Cu(K)2C14*2H20, reported by
Van Kempen1 and Dixon e.a.2. It may therefore be worthwhile to give a more detailed
discussion of the thermal conductivity data on CuNH4chloride and -bromide. The analysis
will be primarily concerned with the behaviour of the thermal conductivity at temperatures
near the phase transition.

V.l Scaling of the thermal conductivity near a magnetic phase transition

A marked difference in the zero magnetic field curves from Cu(NH4)2Br4-2H20  and
Cu(NH4)2C14*2H20  is their behaviour near Tc: a broad minimum of X in the bromide can be
compared to a rather sharp one in the chloride.
Theoretically, the temperature dependence of the transport properties near a second order
magnetic phase transition may be derived using ‘dynamic scaling’ arguments. We first recall
the ‘static scaling’ concept for the thermodynamic behaviour in the critical region. Near the
phase transition (T+ Tc), several properties of the magnetic system diverge (e.g. specific heat
susceptibility). The character of the divergence may be expressed by a function of the
variable e = I T — TC\ITC, so that a divergent observable f may be characterized by the
‘critical exponent’ p of the leading term in the singularity for e ♦ 0, hence

f(e) ~  e~p. (1)

A number of critical exponents have been defined in order to characterize equilibrium
(static) properties (see e.g. 3>4). These exponents are of interest because of the similarity of
physical systems near the critical point.
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A key to the present understanding of equilibrium behaviour near Tc is the realization, that
the thermodynamic derivatives, expressed as correlation functions, are related to the
fluctuations in the system. The number of particles (e.g. magnetic spins) involved in a
fluctuation, diverges as T  approaches Tc. The fluctuations may be characterized by a cor
relation length £, which in turn diverges and is given by

(2)

where r0 is some characteristic length, e.g. the lattice parameter in a magnetic spin system
and v is the £ characterizing exponent.
The crucial assumption in ‘static scaling’ is that, in spite of the complexity of the phase
transition, the thermodynamic derivatives may be characterized by the single parameter £.
Put in another way, the correlation function expression for a particular thermodynamic
quantity, which is in general a function of the distance r or the wavenumber k, is assumed to
be a homogeneous function in /•/£ or k£. In order to describe transport properties, the static
scaling assumption is extended to the frequency domain (see e.g.^’®*6). A transport
coefficient is proportional to a time dependent correlation function, which may be character
ized by a frequency as well as a length. That frequency is expected to diverge (‘slowing
down ) near Tc, and in ‘dynamic scaling’, it is assumed to be a homogeneous function of it£
as well.
To calculate the temperature dependence of transport properties, one proceeds as follows.
The macroscopic laws of motion (hydrodynamic-equations) are valid in the region

< 1; since £ depends on T  through e, k% < 1 implies two regions: the ordered, T<  Tc,
and the disordered, T > Tc, region. On the other hand, in the region k% > 1, the macro
scopic laws break down, i.e. the transport coefficients, entering the macroscopic laws,
become wave vector and/or frequency dependent. The ‘dynamic scaling’ assumption serves
as a matching condition in the k-£ plane at k£ = 1. Therefore, when measuring a transport
property near the phase transition, it is important to known the value of fc£.
We now turn our attention to the specific case of thermal conductivity in a magnetic crystal
near the phase transition. It should be realized that the phase transition is studied by the
scattering of phonons, and in particular those phonons which are dominant in the thermal
transport process. In the case of thermal conductivity in dielectric crystals, the dominant
phonons therefore determine the relevant k  value. If we assume that Tc = IK , that the
conductivity is measured near Tc, and that the velocity of sound is 2 x 10s cm/sec, then the
dominant phonon argument leads to a wavelength of about 30 lattice spacings. We are
interested in the boundary between the hydrodynamic and the critical region fc£ = 1, this
condition leads to £ = 30 r0 . Using eq. (2), with v = we find the boundary to be given
by e ** 10~2. For Tc >  1 K the value of k, and consequently e, will be larger; thus the
critical region may become manifest as a contribution to the phonon scattering which is not
a function of e. If, on the other hand, Tc < 1 K, e will be smaller and, as far as thermal
conductivity measurements with the mentioned temperature resolution are concerned, the
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behaviour of X can be interpreted on basis of the hydrodynamic equations up to T  = Tc, i.e.
the phonon Scattering is a function of e up to T  = Tc.
Whether or not the preceding argument is the correct explanation of the difference in
behaviour of X in Cu(NH4)2Cl4*2H20  and Cu(NH4)2Br4*2H20, a possible divergence in X
near Tc is more likely to be seen in the thermal conductivity of the chloride than in that of
the bromide. The following discussion pertains therefore in particular to the data of
CufNH^jCV 2H20.
Since thermal conductivity data near Tc are rather scarce, it is uncertain from an
experimental point of view, whether or not a power law analysis is valid (recently Senger e.a.'
reported a succesful analysis in terms of a power law for X in C02). On the other hand, quite
accurate data have been reported on ultrasonic attenuation near a magnetic phase transition8;
and as far as the longitudinal modes are concerned the attenuation (a*) was found to be
described by

ak ~ u 1e~p. (3)

For transverse modes the divergence in the attenuation, if any, was found to be weaker, and
less pronounced than for the longitudinal modes. Theoretical p values, depending on the
particular magnetic ordering, anisotropy, and coupling of the sound waves to the magnetic
spin system6,8, range between 0 and 5/3. In a review article, Lüthi e.a.8 show that the
critical longitudinal sound attenuation in rare earth metals can be nicely accounted for by
the present theories, however in the case of magnetic insulators, the situation is less satis
factory. In fact the experimental results on ultrasonic attenuation in magnetic insulators
yield p values which are considerably lower than 1.
In thermal conductivity experiments, the phonon frequencies are 102- 104 times larger than
in the usual ultrasonic experiments. Moreover, heat transport in solids may be mainly
determined by the transverse modes. Disregarding these differences between ultrasonic
attenuation and thermal conductivity, i.e. assuming the co2 dependence to be valid,
together with a strong intra-phonon coupling to restore the thermal equilibrium between the
transverse and longitudinal modes, eq. (3) may be used in an analysis of X.
The relaxation time rk for phonon scattering by the magnetic system is related to the ultra
sonic attenuation by

Tk = vkak- (4)

If boundary and magnetic scattering are present, X may be expressed by (Debye model, see
section I.

X A T 3 7 _______dx
J (ex—l)2 \+Bx1T1(ep+C)-1

(5)

The constant C accounts for the fact that the actual conductivity is non zero at T -  Tc. A
comparison of the undisturbed lattice conductivity of Cu(NH4)2C14*2H20 , i.e. the extra-
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polated T3 dependence of X (H= 11), with the actual conductivity near Tc shows that the
magnetic scattering reduces the conductivity by about a factor 15. Hence, for the purpose
of discussion, we may neglect the boundary scattering, and eq. (5) simplifies to

X ~  T(ep + Q . (6)

C may be found from the value Xc of X at T  = Tc, and consequently

— c ~e*.  (7)

As can be seen in fig. V.l, this relation fits the data (those of section IV, fig. IV. 15) fairly
well. It is evident that more data for e < 0.1 are necessary to give a reliable estimate of p ;
the drawn line corresponds to p = 1.

Fig. V.l°  erg
Thermal conductivity of Cu(NH4)2G4- 2H20  near Tc cm sK2

plotted as \ - \ / T  versus T-Te/Te. ,0
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In the preceding analysis of X, the variation of e, i.e. T, corresponds to a variation of the
phonon spectrum; it is uncertain whether this affects the resultant p value. The ‘scaling law’
predictions have usually been restricted to the situation of zero magnetic field and then the
variable e serves as a measure of the deviation from the transition point. However, at T=TC,
in the presence of a field H ,H  - Hc (where for a ferromagnet Hc= 0), is a measure of the
deviation from the transition point as well. Hence measuring at constant temperature (i.e.
constant phonon spectrum), and using H  as a variable, a more reliable test of ‘scaling law’
predictions can be made. (Compare with ' ,  where a scaling law analysis of X of C02 is
reported as a function of T  and p.) As can be seen from fig. IV. 13 and IV. 16, in low
magnetic fields and far from Tc, the field dependence of the conductivity is linear in H. On
the other hand, near Tc the resultant curve (fig. IV. 16) is definitely convex. Hence a power
law analysis, similar to the one given by Sengers e.a.'for X in C02, may be made by sub
tracting the ‘back ground H  dependence’ from the total H  dependence at T=TC. It is evident
that more measurements are necessary to realize such an analysis.
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V.2 Thermal conductivity near a magnetic phase transition, comparison with a microscopic
model

The analysis in the preceding section is mainly phenomenological. A quite different approach
would be a comparison between the experimental data, and a theoretical calculation of the
conductivity, starting from a certain spin-phonon interaction. Kawasaki11 and Stem10 derived
formulae for the thermal conductivity in a magnetic crystal, where the magnetic spin system
is described by a nearest neighbour Heisenberg exchange interaction, and where the phonons
couple to the spin energy density. In such a magnetic crystal, the thermal expansion
coefficient is proportional to the specific heat. This has actually been found for
CuK2C14- 2H2Ü11. Hence one may expect that also Cu-NH,- chloride and -bromide (iso-
morphous with the K-salt) represent the same model.
Both, the derivation of Kawasaki and the refined one of Stem, lead to the same conclusion:
in first order, the phonon-spin energy density coupling gives rise to an inverse phonon
relaxation time proportional to the thermal conductivity Xs of the spin system, or to the
specific heat cs of the spin system, when second order effects of the phonon-spin energy
density coupling are taken into account. Hence, two scattering processes are considered:
first, the absorption and emission of phonons by the spin system (‘direct process’), and
second, the scattering of phonons by critical fluctuations in the energy density. Kawasaki’s
formulae, evaluated forCu(NH4)2Cl4*2H20 , lead to the mean free path expressions

Zj = 2.3 x 10s /a27*Xg cm, (8)

and

12 = 3.3 x \0 i6/a*T*cs cm, (9)

where a is a measure of the spin-phonon interaction strength, being defined as the loga
rithmic derivative of the exchange energy J  with respect to the interionic distance r:

a = 3 In//3  In r. (10)

As stated in the previous section for the purpose of discussion, merely the magnetic part of
the phonon scattering needs to be taken into account. Hence, with the use of

\  = AT3l, (11)

a comparison between the mentioned mean free path estimates and the observed conductivity
may be made.
Kawasaki and Stem argue that the second order process is responsible for the behaviour of X
near Tc such as found for CoF2; we therefore start with a discussion of lj- The specific heat
of Cu(NH4)2C14*2H20  has been experimentally determined by Van Kempen1, showing the
specific heat to be proportional to T~2 above 1.3 Tc. Hence, using eq. (9) and eq. (11), X is
expected to be proportional to T~l above 1.3 Tc. Since this is evidently not corroborated
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by our experimental results (see fig. V.2 and fig. IV. 14), the conductivity is not limited by
the /2-determining scattering mechanism. We therefore turn our attention to eq. (8), and
remark that the influence of the first order process depends on the behaviour of the thermal
conductivity Xs in the spin system. When the thermal transport in the spin system is
regarded as a diffusive process, hence depending on short range correlations, Xs is expected
to show a mild temperature dependence in the vicinity of Tc. Under this assumption,
Kawasaki evaluated Xs, and inserting the parameters pertaining to Cu(NH4)2C14*2H20  we
obtain

Xs = 23 T~2 erg/cm s K. ( 12)

As stated in section IV.3, heat transport in the spin system is evident below 0.4 K, and it is
therefore quite reasonable to assume Xs to be non-negligible even in the vicinity of Tc.
Substitution of eq. (12) and (8) into eq. (11) predicts a thermal conductivity proportional
to T1. The experimental conductivity tends towards a T2-proportionality above Tc (see
fig. V.2). Using the extrapolated value of X/T2 for T i  Tc we find / = 0.011 T~l cm.
Equating this experimental mean free path to / j , it follows that |a| = 950 (due to a some
what different analysis of the data, this a value is slightly different from that reported in **).
Inserting this value of a, and the ‘high temperature’ Cg1 we find 1% = 0.6 T* cm. This is in
agreement with the previous discussion where I2 was rejected on basis of the temperature
dependence of the conductivity. On the other hand, for T=TC we find l\ = 0.016 cm and
/2 = 0.24 cm, thus near Tc the ‘critical scattering’ presumebly gives rise to an additional
scattering of about 7%, which roughly corresponds to \(H=0.5)-\(H=0). See fig. IV. 16.

Fig. V.2
Thermal conductivity of Cu(NH4)2Cl4*2H20

plotted as X/T2 versus T/Te.

OOO > O

o 0  kOe
a // kOe

Kawasaki derived |a| = 30 for CoF2 and a = -3 .6  for MnF2, hence our value of |u| may be
surprisingly large. Equation (10) defining a, may be written as
a = (9 In J/dT)(d In r/dT)'1 O 3)
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Recently both the temperature dependence o f / 13 and the linear thermal expansion along
the a axis11 have been reported for CuK2C14*2H20. Inserting the reported values, we find
for Cu-K-chloride \a\ <*> 300 at T -T c and \a\ »  1037  ̂ for T > Tc, and these values are, at
least in order of magnitude, in agreement with our value.
In conclusion we may say that above Tc, Kawasaki’s theory describes our data quite well.
A numerical calculation, based on a formula similar to eq. (5), showed this conclusion to be
correct in the region close to Tc only. Actually, for T  considerably above Tc, a calculation
of X under the influence of a paramagnetic system would be more appropriate. For the case
of strong spin-phonon coupling, calculations have been made for the thermal conductivity
of the coupled excitations (magneto-phonons), the coupling mechanism being similar to
that used by Kawasaki. In the calculation by Roundy e.a.14, pertaining to a two level spin
system e.g. S = (like Cu2+) in a magnetic field, it is shown that, if the dominant scattering
is due to fluctuations in the spin density, X will be proportional to T3, with a proportional
ity constant less than the one appropriate to boundary scattering alone. As can be seen in
fig. IV. 12 and IV.14, the thermal conductivity of Cu(NH4)2Br4*2H20  and Cu(NH4)2C14*2H20
in the presence of a magnetic field tends to a T3 dependence at the high temperature side
of the curve. Although it is not certain whether Roundy’s calculation is valid in the zero
field limit, the zero field conductivities of the two copper salts are also proportional to T3
in the region 1.6 Tc to 2.5 Tc. It is evident that at this stage, a detailed numerical calculation
is necessary to conclude whether this theoretical model gives a satisfactory description of
the data above Tc.
For T<TC, Kawasaki’s theory does not account for the data; one may speculate, this to be
due to the assumption that Xs is a smooth function of T  around Tc. Since the lattice
conductivity is derived to be inversely proportional to Xs, the experimental data suggest a
sudden change in Xs at Tc. As stated before, below 0.4 K, Xs accounts at least for an
appreciable part of the total thermal transport: it is therefore unlikely that Xs decreases
below Tc. Hence our conclusion of a sudden increase of Xs below Tc. According to eq. (8),
an increase in Xs corresponds to a decrease in the lattice conductivity. (This may be the
explanation of the behaviour of \(H=0) in NiLa-nitrate in the vicinity of Tc, see section IV.3.)
Actually, the experimental data show an increase of the total conductivity below Tc. We
therefore suggest that the thermal transport below Tc is entirely due to transport in the
magnetic spin system.
For thermal transport in an ordered magnetic system, using spin wave theory, the calculation
of magnon conductivity may be made according to a derivation quite similar to the one for
phonon conductivity. In the low temperature region, where the magnetic specific heat is
proportional to T312, the thermal conductivity may be expressed by15

= 0.765—^ — T2,
h2JSr02

where / is the magnon mean free path, leading in the case of Cu(NH4)2C14 • 2H20  to

(14)
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( 15)\ g = 7.5 x 10® IT1 erg/cm s K.
Refering to fig. V.2, Xs is proportional to T2 below 0.35 Tc, and the absolute value
substituted in eq. (15) yields Z = 2.0 x 10 4cm.
Some remarks on this result may be made.
a. The specific heat of the spin system should be proportional to T312 in order to yield a

X ~  J* relation. Heat capacity measurements below 0.2 T were found to give cs ~ T312
indeed. Xs being proportional to T1 between 0.2 Tc and 0.35 Tc may have no special
significance.

b. Since Xs ~ 7* corresponds to magnon boundary scattering, the resulting mean free path
(2 x 10'4 cm) is probably the one for phonons as well. In that case, the lattice conductivity,
about 500 T3, is negligible indeed, compared to the total (experimental) conductivity of
1.5 x 10s T .

c. The resulting mean free path cannot be due to scattering at the sample boundaries (size
effect). We suggest the scattering to be due to the ferromagnetic domains, present in the
crystal. This explanation is supported by the low field behaviour of the conductivity. As
can be seen from fig. IV. 17, small fields (H < 300 Oe) cause an increase in the conductivity.
This behaviour may be expected for scattering at domain boundaries, since, in weak
applied fields, the volume of the domains increases with increasing magnetic field, up to
a single domain as large as the sample itself.

In the preceding section an analysis has been made of the thermal conductivity data of one
of our samples (i.e. CuNa,-chloride), from the point of view of a rather transparant
theoretical model. Although far more sophisticated theories could have been used for
comparison with the experimental data, it does not make sense to give a detailed analysis
before knowing the qualitative behaviour of the thermal conductivity near a phase transition.
We therefore confined ourselves to a qualitative analysis of the data. However, one may
hope that some features are characteristic for the thermal conductivity in a 3D Heisenberg
ferromagnet.
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CONCLUDING REMARKS

We have demonstrated in this thesis the use of thermal conductivity measurements for the
study of excitations in a magnetic spin system. It is evident that analysis would be facilitated
if more transport properties (e.g. ultrasonic attenuation, spin diffusion coefficient) of the
crystals were known. Nevertheless, it is perhaps worthwhile mentioning several conclusions
which may be drawn from our measurements, in particular those with implications for
further research.
1. The thermal conductivity is shown to be influenced by magnetic excitations and, near the

phase transition, it is sensitive to the type of interaction in the magnetic spin system.
2. The thermal conductivity of Cu(NH4)2Cl4'2H20  and Cu(NH4)2Br4-2H20  (representing the

3D Heisenberg ferromagnet) near the phase transition may be described by scaling law
relations. The critical region is probably reflected in the conductivity of the bromide.
Further experiments are necessary to support this conclusion. It is desirable to involve the
magnetic field dependence of the conductivity at Tc in both the experiments and the
theoretical treatment on this problem.

3. In view of the results with the copper salts, it would be quite interesting to investigate the
conductivity of 3D Heisenberg antiferromagnets such as for instance Rb2MnCl4'2H 20  and
Cs2MnCl4 • 2H20 . The points of view presented in V.1,2 should be valid in these salts as well.

4. We found the thermal conductivity to be independent of the phase-transition in an Ising
antiferromagnet (CoCs3Cl5). This has to be confirmed with thermal conductivity measure
ments on other salts representing the Ising model such as for instance CoCs3Br5 and DyP04.

5. The thermal conductivity of Ni3La2(N 03)12- 24H20  in large magnetic fields can be
described assuming Ni ion pairs. It is worth investigating the thermal conductivity of
Cu(N03)2*3H20 , since the existence of Cu ion pairs should be reflected in the thermal
conductivity of this salt as well.

6. The thermal conductivity of Ce2Mg3(N 03)l2*24H20  in magnetic fields is still a problem
to be solved.

7. We have shown the thermal conductivity of Cu(NH4)2C14 • 2H20  and Cu(NH4)2Br4-2H20
at low temperatures to be largely determined by magnons. It would be worthwhile to
investigate magnon scattering processes in these salts.

In this thesis we have attempted to summarize, from an experimental point of view, our
present understanding of the influence of a magnetic spin system on the thermal conduct
ivity. Many questions are still unanswered, but we are convinced that the solution of these
problems would greatly benefit from further measurements of thermal conductivity at very
low temperatures.
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