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STELLINGEN

I

Variatie van de energie van een fermionengas beschreven door een Jas-
trow-golffunctie, levert in eerste orde een gemodificeerde tweedeeltj es-ver­
gelijking, die verwant is met de zgn. Bethe-Goldstone vergelijking.

H. A. B eth e en J. G oldstone, Proc. Roy. Soc. A 238
(1957) 551.

II

De generalisatie van Jastrow-golffuncties tot mengsels van fermionen
levert de mogelijkheid (naast de volume-energie) de symmetrie-energie van
kemmaterie, althans qualitatief, te berekenen.

Hoofdstuk III van dit proefschrift.

III

Het is te verwachten dat de in dit proefschrift gegeven methode ook kan
worden toegepast op de grondtoestand van een mengsel van fermionen en
bosonen en bovendien, dat de clusterontwikkelingen van de distributie­
functies uitsluitend irreducible clusterintegralen bevatten.

Hoofdstuk II van dit proefschrift.

IV

De splitsing van de quantummechanische configuratie-integrand van
een Bose- of Fermigas in een ‘statistisch’ en een ‘dynamisch’ deel, maakt
het mogelijk meer gedetailleerde clusterintegralen in te voeren. Deze zijn
van belang bij de fugaciteitsontwikkeling van druk en dichtheid in geval
van lage temperatuur.

K. H uang, C. N. Y ang en J. M. L u ttin ger , Phys.
Rev. 105 (1957) 776.
Hoofdstuk III, appendix, van dit proefschrift.
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V

De invloed van de kernspinprecessie ten gevolge van voorafgaande
X-vangst op de hoekverdeling van y-straling, uitgezonden door gerichte
atoomkernen, is verwaarloosbaar klein.

H. A. Tolhoek, C. D. H a rto g h  en S. R. de G root,
J. Phys. Rad. 16 (1955) 615.

VI

Bij een y-y-overgang levert het waarnemen van de polarisatie van een
der stralingen, naast het meten van de hoekcorrelatie tussen die twee stra­
lingen, de mogelijkheid het teken van het electrische quadrupoolmoment
van de tussentoestand te bepalen.

VII

De beschouwing van B ethe  en de H offm ann over de tekenkeuze
bij de afleiding van de Kemmer-interactie tussen mesonen en nucleonen,
is onjuist.

H. A. B ethe en J. de H offm ann, Mesons and Fields
II, § 31, Row, New-York, 1955.

VIII

Het gebruik van de door Abe ingevoerde pseudopotentiaal voor een gas
van harde bollen verdient de voorkeur boven de pseudopotentiaal ingevoerd
door H uang en Yang.

R. Abe, Progr. theor. Phys. 19 (1958) 1,699.
K. H uang  en C. N. Yang, Phys. Rev. 105 (1957) 767.

IX

De door Rose gegeven formulering van het eerste decompositietheorema
voor tensoren van de eerste rang is niet geheel juist.

M. E. Rose, Elementary Theory of Angular Momen­
tum, § 20, Chapman, London, 1957.

X

Tegen de door Cooper en H enley gebruikte uitdrukking voor de Cou-
lombenergie (ter berekening van de kemstraal uit het energieverschil tussen
spiegelkernen) kunnen bezwaren worden aangevoerd.

L. M. Cooper en E. M. H enley, Phys. Rev. 92 (1953)
810.
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INTRODUCTION

The purpose of this thesis is the study of the ground state, described by
a J as t r ow wave function, of a fermion gas with short range interactions
(which may have a hard core). The influence of the introduction of forces
is represented by a correlation factor multiplying the unperturbed ground
state wave function; this correlation factor is a function of the position
coordinates of the particles and may contain variational parameters.

In chapter I cluster-like expansions for the Uparticle distribution functions
are derived in a general form for fermions without spin, provided a certain
condition has been satisfied. This condition, imposed on the correlation
factor, is of importance when using the wave function as a trial wave
function in a variational calculation. In chapter II a reduction of the result,
generalized to mixtures of fermions, is carried out by means of the intro­
duction of irreducible cluster functions and the use of certain combinatorial
methods. In chapter III the method is extended to particles with spin and
explicit results are given for the distribution functions and the energy,
including the case of fermion mixtures. A discussion is given of the appli­
cation of the method to nuclear matter. In the appendix to this chapter,
the method is applied to an imperfect Bose or Fermi gas at low temperature
and leads to the fugacity expansion of the pressure and the density in terms
of more detailed cluster integrals.

The contents of this thesis are also published in Physica (Physica 24
(1958) 721, 875, 896).



Chapter  I

GENERAL CLUSTER DEVELOPMENT
OF THE DISTRIBUTION FUNCTIONS

Synopsis
This chapter is concerned with a form of wave function, which was'proposed by

J a s tro w  for the ground state of a fermion gas with short range interactions. The
influence of the introduction of forces is represented by a correlation factor F, which
is a function of the particle coordinates and which may contain variational parameters,
in front of the Slater determinant for the unperturbed ground state wave function.
This wave function may be used as a trial function in a variational principle. The
evaluation of the energy can make use of cluster-like expansions for the ^-particle
distribution function gic(rk), which are given in this paper in a general form for
fermions without spin. The expansion of gk(r!c) can be made for the limit of large total
volume and reads

gk{rk) =  nk Y^=kbk<l{rk),

where the bk i(rk)’s are cluster integrals which depend on the density, n, only, and
not on the total number of particles. I t seems plausible that this expansion converges
rapidly, if nd3 1 (<S range of correlations in the F-factor).

§ 1. Introduction. During the last few years the many-body problem of
interaction fermions in the ground state has received renewed attention
of many authors. Different lines of approach were used by (a) B rueckner,
Bethe, G oldstone and H ugenholtz, (b) Lee, Y ang arid H uang,
(c) J a s t ro w 1), Iw am oto  and Y a m ad a 2). The application of these
developments, which has most interest at present, is to the problem of the
structure of nuclear matter. The relative merits of the various approaches
may be different in different applications, e.g., the problems of infinite
nuclear matter, the theory of the nuclear “surface” and finite nuclei. It
seems therefore of interest to make a further investigation of the various
methods even if previous methods have met with reasonable success.

In the series of papers, of which this one is the first, we want to give the
mathematics of the cluster developments, to be used in connection with
Ja s tro w ’s wave function (cf. (2.1), (2.4) and (2.8)) in a general form,
avoiding a number of objections, which can be raised against Ja s tro w ’s
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calculations and generalizing it in various aspects. Our method differs
also substantially from the cluster development method which was used
b y lw am o to  and Y am ada 2) for this type of wave functions.

Ja s tro w ’s method was applied to nuclear matter by E m e ry 3) and
D ab ro w sk i4). We want further to point to the paper by Gomes,
W alecka and W eisskopf 5), in which a clear physical discussion of a
number of features of the wave function of nuclear matter and the ex­
pression of the Correlation between nucleons is given. In our opinion it
shows that J a s tro w ’s wave function represents these correlations in a
way which seems simple and attractive and hence worthy of further in­
vestigation.

We shall give in this chapter the general form of the cluster developments
for the ^-particle distribution functions for a system of fermions without
spin specified by a Ja s tro w  wave function. The estimate of the explicit
dependence of the various cluster contributions on the total number of
fermions requires a careful handling of the momentum relations originating
from the orthogonality of the different plane waves, which describe the
unperturbed ground state. In subsequent chapters of this thesis we shall
give: (a) a reduction of these expressions by means of the introduction of so
called “irreducible cluster functions” ; (b) the expressions for the kinetic and
potential energy for such a system and a comparison with the work of
Jas tro w , Iw am oto and Y am ada; (c) a generalization to fermions with
spin; (d) an application of the methods used to a Bose or Fermi gas of
interacting particles at low temperature.

§2. The wave function and the distribution functions. We consider the
problem of N  interacting fermions, contained in a volume Q. We are inter­
ested here in volume effects only, so that we shall take the limit for N  -» oo,
at constant density n — NjQ. For the sake of formal simplicity we shall
limit ourselves in this paper to “fermions without spin” (particles, without
spin coordinate, for which the wave function must be antisymmetric in
the place coordinates). We shall further assume that the volume, in which
the system is contained, is of a cubic shape with sides L (fi =  L3), and we
shall require periodic boundary conditions.

If the particles have no interactions, the normalized wave function for
the ground state of the system will simply be given by the Slater determinant

&o{rN, n) = (QN N \)_i Det [exp (iki-rf)] =
— {QN N \)-l S p bP exp [i S i kPi ■ r<] =
=  (Q« N \)-i S p óp exp [* S i fti ■ rpi], (21).

which we shall sometimes write as a sum over the permutations P of the
subscripts i (dp =  +  1 or — 1 for even and odd permutations). rN represents
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the set of N  one-particle coordinates rj (j =  1,2, . . . ,  N). The possible
values ki (i =  1, 2 , ___, N) for the single particle momenta are given by

ki =  (2n IL)nt, (2.2)

where the n* are three-dimensional vectors with integer components
(0, ±1 , ±2, . . . ) .  In the limit of large N, the allowed values for k t are
those values (2.2) lying within the Fermi sphere in momentum space, which
has the radius

Af (w) =  (6ti2)%*. (2-3)

The wave functions for interacting fermions, which will be studied in this
paper, are of the form

0(rN, n) =  F(rN, n) <Fo(rN, n), (2.4)

where F(rN, n) is a symmetrical function in the N  one particle coordinates.
It is then seen that &(rN, n) again satisfies the requirement of antisymmetry
in the particle coordinates. The correlations of the nucleons caused by the
interaction are expressed by the factor F(rN, n). The interest of the approach
using such wave functions, which must be considered as approximate trial
wave functions, was explained in § 1. We shall suppose in all our develop­
ments that we have short range forces and also that the nucleon correlations
expressed by the F-factor have a short range, d. We shall always require the
following properties for F(rN):

I. The product property.
F(rN) =  Firt (ri, . . . ,  rNi) Fn^ N j+i , ■••.»>) (N =  N i  +  N%);

if ry =  |r* — T)\ > 6 for every i =  1,2, . . . ,  N± and
every ƒ =  iVi +  1 N. (2.5)

The functions (Â i <  N) are defined by this equation.

II. Normalization to one for separate configurations:
Fi(r,) =  1, (2-6)

where Fi(r<) is defined according to (2.5) if N\ — 1. It should be noted that
the wave function &(rN, n) according to (2.4) is generally not normalized,
if F(rN) is normalized according to (2.6). The value of the normalization
constant, which has to be added, is derived in § 4 (cf. (4.28) and (4.32)).

It is an immediate consequence of (2.5) and (2.6) that the F-factor equals
one, for a configuration in which no two points are closer than 6:

F(rN) =  1, if ry >  S for every i, j — 1, . . . ,  N. (i #  j). (2.7)

The wave function &(rN, n) deviates from the wave function @o{rN, n)
for non-interacting fermions as soon as any two particles approach each
other within the distance <5.
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The simplest and most important example of an F-factor satisfying (2.5)
and (2.6) is given by 1)

F(rN) =  nf>,=i f(rn), (2-8)
where f(r) satisfies

f(r) =  1, if r >  d. (2.9)

The introduction of a correlation factor of this type yields, already in first
order, a finite result for the energy in case of a hard core potential.

The F-factor (2.8) introduces explicitly only two-particle correlations. Of
course it is easy to generalize (2.8) so that also explicit 3-particle correlations
are added:

■F(rF) =  [n £ ,-= i /M [n f> z> ™ |i g(r*. rh rm)], (2.10)

where g(rk, n, rm) must satisfy

g{rk, Ti, rm) =  1, if rki >  ö, rim >  <5, rkm > 6 .  (2.11)

The functions /  and g (and hence the F-factor) may depend on one or more
parameters a, which may be used as adjustable parameters when taking
(2.4) as trial wave function in a quantum mechanical variational principle.

The expectation values of operators such as the energy can be calculated
simply for a given wave function (2.4) once we have obtained the values of
the so-called ^-particle distribution function gk(rk). These are defined by
the equation

gk(rk) =  akf  0*(rk, rN~k) &{rk, rN~k) dr*-* (2.12)

rk stands for the set of k coordinates forming the basis; rN~k stands for
the other variables, over which the integration is performed (k N).
ak is a normalization constant, which is chosen in such a way that

fgt(r*) dr* =  N\/(N -  h)!. (2.13)

This normalization makes gk{rk) oa nk for configurations in which the k
particle coordinates lie sufficiently far apart.

The distribution functions can be generalized to expressions, which are
non-diagonal in the coordinates:

gk(rk, r'k) — akf  <P*(r'k, rN~k) <P(rk, rN~k) drN~k. (2.14)

Although such distribution functions are needed for the evaluation of the
kinetic energy (k =  1), we shall limit our attention in the following section
mainly to expressions (2.12) for the sake of simplicity of the presentation.

§ 3. Introduction of the correlation functions. In the following section a
cluster-like expansion for the distribution functions gk(rk) will be deduced.
The methods which are used have a certain analogy to those which are used
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in statistical mechanics 6)7). In this section we shall introduce or summarize
a number of definitions and notions, which will be employed in the further
developments, also for avoiding too frequent references to papers in the
field of statistical mechanics.

We start by considering the ^-particle distribution function for non­
interacting fermions; this function is a special case of (2.12)

gk(0){rk) — akf  0*o(rk, rN~k) 0o(rk, rN~k) drN~k. (3.1)

It is easily shown, according to standard methods, that this can be reduced
to

gfc<0,(rk) =  nk LkiN)(rk), ■ . . (3.2)

where Li{N) is generally defined as

Li{N){rlt . . . ,r i)  =  Det [h](N)) {i, j =  1,2, . . . ,  I), (3.3)

with
ltjiN) =  jv-i eifeA• {ri~Ti) (hence lu{N) =  1). (3.4)

The summation should be performed over all k\ within the Fermi sphere.
The summation may.be replaced by an integration (which is then easily
carried out) for small values of r  and in the limit of large Q. This provides
hj<N) =  with

l(r) =  3 (sin y — y cos y)y~3 with y =  kpr =  (6n2)i n*r. . (3.5)

We shall indicate below when li]{N) may be replaced by the expression (3.5)
(for convenience we shall mostly omit the superscript N).

As an illustration we may specialize to k =  2. We then find the pair
distribution function for non-interacting fermions

g,2(0)(r i> r 2) — n2 L<i{N)(ri, r%) = n2[ 1 — l2{riz)]. (3,6)

We shall say that the function gk{0) (rfc) expresses the statistical correlation
of fermions (the correlation due to Fermi statistics only) and we shall call
Li{N)(ri, .. .,ri) the statistical correlation function for I fermions.

The part of the correlation of interacting fermions, which exists in
deviations from the correlation given by Li{N), as a consequence of their
interaction, will be designated as the dynamical correlation. The dynamical
correlation is expressed by means of the F-factor, if wave functions of the
type (2.4) are used. We shall introduce a number of functions (W, U, R, V),
which depend directly on the F-factor, and which we shall call (dynamical)
correlation functions. They will be used for the cluster developments. We
shall often use correlation functions for a certain basis rk, which means that
a set of functions is used which all depend on some given set of k place
coordinates and mostly also on other variables.
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The general correlation function Wk,i {rk, fk+i, • ■ •, ri) (for the basis rk,
and containing I variables) is defined by the equation

Wk,i{rk, rk+1, . . . , r i )  =  Fi*(rk, rk+1, Ft(rk, rk+i, . . . .  ri). (3.7)

This function can be introduced for an IV-particle system, because Ft is
defined for such a system according to (2.5). In case the F-factor has the
explicit form (2.8), we can immediately give the expression for Ft for this
example

Fi(n, ...,rj) =  IIi> ,=i/('«)• (3-8)

It follows directly from the definition (3.7) that Wktf- (a) satisfies the
;product property (2.5), (b) is normalized to one for separate configurations.
Hence one has in particular

W0A= \ .  (3.9)

It follows further from the definition of Wkj  that it is symmetric in all
variables r\, . . . ,  rj. The general correlation function Wk,i is analogous to
a certain extent to the cluster functions Wk,i =  exp (—
occurring as configurational integrands in the statistical mechanics of an
imperfect classical gas with short range interactions 6)7). If the wave function
0(rN, n) according to (2.4) would not have the factor &o(rN, ri), cluster
expansions for the quantum mechanical system in the ground state could
be given by the methods already known from statistical mechanics 6)7). This
applies to the case of bosons, where we may put &o =  1. J a s t ro w  has
given the cluster development for a system of bosons in the ground state !).
However, a procedure which is appreciably more complicated must be
followed for a system of fermions in the ground state (cf. § 4). This finds
expression in the more complicated dependence of the final result on the
density, in contrast with bosons, where the final result for gk(rk) can be
written as a power series in the density. This is a consequence of the
kp =  (ótt2)*# occurring in the statistical correlation function (cf. 3.5)).

The separated correlation functions Uk,i{rk,rk+i, . . . , r i )  are defined in
terms of the Wk<i-iunctions by the following equations, which are known
in statistical mechanics as the Ursell-Mayer development 6)7).

Wk,k(rk) =  Uk,k(rk),
Wk,k+i(rk, rv) =  Ukik(rk) U0,i(rv) +  Uk,k+i(rk, r„),
Wktk+2[rk, rv, rA) =  Uklk{rk) U0,i{rv) U0,i(rx) +  (3-10)
+  Uktk(rk) U0,2(rv, rA) +  Uk,k+1{rk, r„) t/o .iW  +
+  Uk,k+1{rk,rk)U0,i{rv) +  Uk,k+2{rk, r„, rA), •
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The general form of these equations may be written in an abbreviated form
as (containing k =  0 as a special case)

Wk,i(rk, rl~k) =  S 'mo U t^ r* . rh~k) Ylï>i J (3.11)
The summation S'/(/() should be extended over all possible partitions of the
I —  k non-basis coordinates over the different U^-functions, hence the
summation over the numbers h must be such that I =  2*=1 h, while k
basis coordinates always remain concentrated in one C/^.q-function. The
equations (3.10) can be solved for the 17-functions. One obtains for k =  0.

U0,i{rv) =  JFo,i(r„) =  1,
U0,2{rv, rx) =  WoMrv r*) ~  JFo,i(r*)^o,i(r*), (3.12)

The UA^-functions for k >  0 are obtained as

Uk,k[ r l c )  =  Wk,k(rk),
Uk,k+i(r*, rv) =  Wk,k+i(rk,ry) — Wktk{rk) fT0,i(rv), (3.13)

It is easily seen that the Uk,i-iunctions are (a) symmetric in the k basis
coordinates, (b) symmetric in the I — k non-basis coordinates. Further one
can deduce rather easily from the defining equations (3.10), and from the
product property and normalization of the TT-functions that the 17-functions
satisfy the following property, which we call the separation property:

A Uk.i-function approaches zero for a configuration in which the coordinates
are divided into two groups with a mutual distance of at least d (the basis
coordinates should occur in one group only).

This can be expressed by the formula (3.14). This formula expresses a
special division, from which the general case follows directly from the
symmetry of Ukj :

Uk,i(rk, r*+i, . . . ,  rt) =  0, if rif > d for every i =  1,2, . . . , p
and for every

ƒ =  p -(- 1, . . . ,  I (p may have any value k <  p <  I). (3.14) '

We shall call a correlation function, which has this separation property, a
cluster function.

It is easily seen from the equations (3.11) defining the relation of the
Uk,i to the Wk,i that Wk<q can be expanded according to
Wk,Q(rk, r«-fc)=S?_* Stiw Uk,i(rk, rAt+i, . . . ,  rA,) W0.q-i(rXl+l, .. •, rA,). (3.15)

The summation S<A<> represents a summation over the different possible
ways in which the coordinates ri~k can be divided into two sets of coordi­
nates (rAl+i, . . . ,  rAl) and (rAl+i, . . . ,  rK), which occur in the t/*,/-function
and the ITo.a-z-function respectively.
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In  view of the developments of the next section we define the incomplete
correlation functions Vkti(rk, r k+ \ . . .rf) in the following way. Vkti is defined
by an expansion similar to the expansion (3.11) for Wk,i\ however,, we omit
all terms of (3.11) which contain a factor Uo,ii with =  1 (in other words
all terms with Uo,i are omitted), or written in a similar way as (3.11)

ViM(r*, r l~k) =  S 'Ml) Uk,h(rk, rh~k) U[Û% - U0,i,(r1')- (3-16)
I t follows immediately from the definitions (3.11) and (3.16) and the fact

th a t I/o.i =  1, if we arrange (3.11) according to powers of Uo,i, th a t

Wjt'i{rk, r<-*) =  2 '= fc £u„> Vk,q{rk, rAt+i, . . . ,  rK). (3.17)

The summation 2u„> indicates tha t we should take as non-basis coordinates
in Vk,q every possible set of {q — k) coordinates, which can be selected from
the (I — k) non-basis coordinates in W k,i- This can be done in

Nk,qw (* —  * ) !

(q - k ) \ ( l - q ) \
(3.18)

possible ways.
The V k<q can be expanded in an entirely analogous way as the W k, q

according to (3.15); we see th a t the following formula for the V k,q follows
from (3.16), exactly as (3.15) follows from (3.11)

Vk,q{r*, ra-k) =  S «=fc2(A() [7M (r* rXt+1, . . . .  rXl) F 0,9-z(rAl+i, . . . .  rAJ. (3.19)

Representation of correlation functions by means of graphs. I t  is often
useful to visualize correlation functions by means of graphs, in particular
if the F-factor has the form (2.8). We summarize the definitions concerning
graphs, which will be used here: A graph is a figure built from numbered
points and lines (connecting the points) as elements. A graph is connected,
if any two points are connected directly or indirectly by one or more lines.
An articulation point of a graph is a point, where a graph m ay be cut into
two or more parts, which are not m utually connected. An irreducible graph
is a connected graph without articulation points. A complete star is a graph,
which contains all possible lines connecting the points.

Uk,i-iunctions m ay be represented by graphs. In  the general case we
represent a U^-function  simply by the complete star with the I coordinate
points. We distinguish between basis-lines, connecting two points of the
basis, and U-lines, being all other connections. The expansion (3.11) can be
expressed as related to a certain set of graphs, the different terms in the
right-hand member correspond to all possible partitions of the I points over
a number of (mutually not connected) complete stars, the k basis-points
always being situated in the same complete star. Each term  of the right-
hand member of (3.11) is a product of [/-functions, each [/-function corre­
sponding to a complete star resulting from a certain partition, and not being
connected to other points.

9



(3.20)

In  case the F-factor is given by (2.,8) we shall write

Km) % \flmi\* -  i.
We can then write the correlation function W k>i as

W t,i =  l/«!2 =  n i> ,= i  l/tfl2 n ; , m=i(l +  hum). (3.21)

H ' indicates th a t no term  with both n, m  <  k should be included; we write
fi) for f{ri}) and Ay for h(ri}). In  this case of two-particle correlations given
by (3.21) more specific representations of functions then for th e  general
case can be given: a function, which is a product of a number of Ay-factors
may now be represented by a graph if we make every Ay-factor correspond
to a line connecting the points numbered i and ƒ. We m ay introduce the
following “ types” of lines: f-lines corresponding to  ]/y|2-factors; h-lines
corresponding to Ay-factors. We then obtain graphs (which may contain
2 types of lines) which can represent any product of |/y |2- and Ay-factors.
The /-lines will correspond to the basis lines of the general case. A
Utc,v function is now represented by the collection of all connected graphs
formed with A-lines, the basis points being m utually connected by /-lines.

The expressions for the Uk,i-iunctions for the form (3.21) for W k,i are
easily deduced from the equations (3.10), . . . ,  (3.13); we give some simple
examples

C70,2( n ,  r2) =  Al2 ; UoMr i ’ r 2> r 3) =  ^12A23 +  &2lAl3 +  A13A32 +  A12A23A3I.

U2 ,z(r i> r2) .=  |/ (n 2)l2; U2,z{ri> r2 \ r3) =  \f{ri2)\Hh13 +  h23 +  h13h32). (3.22)

The graphs corresponding to  these functions are shown in Fig. 1.

Fig. 1. Some examples of graphs representing [/-functions, (cf. (3.22)); a single line
represents a A-connection, a double line represents a basis-connection (|/|2-factor).

I t  is sometimes useful to  introduce the irreducible correlation functions
R/c,i(rk, rk+1, . .  ,,ri)  defined by the equations

Uk,k(rk) =  Rk,k(rk),
Uk,k+i(rk, r„) =  Rk,k{rk) RoAr\ • r v) +  R>c,ic+i(r *. r v ) > ........  (3.23)

I?t^-functions may be represented in the general case by complete stars,
entirely analogous to U^-functions. The general form of the expansion
(3.23) for Uk'i can then be expressed in the following way by means of
graphs: consider all possible connected graphs of I points of the following
ty p e :

(1) the A basis-points should all be contained in the same complete star,
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(2) the graphs may be reducible, bu t the irreducible parts should be
complete stars.

Each term  of a right-hand member of (3.23) is a product of 7?-functions,
each ^-function corresponding to an irreducible part of a graph.

I t  is seen tha t the ^-functions have the same separation property (3.14)
as the 17-function and are also symmetric in the basis coordinates and
symmetric in the non-basis coordinates.

As an example we write down some equations for k =  0

*7o,2(1*1, r 2) =  Ro,z(ri, r 2);
f70,3(ri, r 2, r 8) =  RoMri, r 2) 7?o,2(r2, r 3) +  R 0,2(ri, r 3) i?o,2(r3, r 2) +

+  R oA r2, r{) RoMru  r 3) +  ^o,3(»*i, r 2, r 3). (3.24)

In case is given by (3.21) one can derive the expressions for the Ric,i
functions in terms of /y  and Ay functions. We give some examples:

^o,2(**i. r 2) =  hi2 ', R'o,a(r i> **2, **3) =  Ai 2A23 As i ;
^o,4(ri, r 2, r 3, r4) =  hwhv&sohM +  Ai3A32A24A4i +  . . . ;  (3.25)
I ? 2 ,2 ( r2) =  1/12I2 ; I ? 2 ,3 ( r 2, T3) =  I/12I2 A l3A23 ;

■R2,4(f*2, T3, T4) =  |/l2|2 -(- ••••)•

Fig. 2 shows graphs representing some of these functions by means of the more
specific representation by graphs, which is possible in the case th a t Wk,i
is given by (3.21). I t  can be shown in general for this case th a t the R k,r
functions are sums of all possible terms represented by the different irre­
ducible graphs formed with A-lines and /-lines between the basis points.

„  A  _ _  A
1 2 1  2 1  2 1  2

^ 0 ,2  R q ,3 R  2,2 R  2,3

2 1  2 1  2 1  2 1  2 1  2 1  2 1  2
^ 2,4

Fig. 2. Some examples of graphs representing irreducible correlation functions R
(cf. (3.25)); a single line represents a ^-connection, a double line represents a basis-

connection (|/|2-factor).

Mixed correlation functions will be used in the following section for the
expansion of V k,q L qiN). These functions are introduced as functions con­
taining dynamical correlations as well as statistical correlations. We shall
give their definitions by means of graphs containing different kinds of
connections. A statistical correlation function L qiN) is given by a determi­
nant, which can be written as a sum over permutations, while perm utations

11



can be analyzed in terms of cyclic permutations; examples

cycle (1) corresponds to l \ i  =  1, .
cycle (1, 2) corresponds to — /12/21,
cycle (1,2,3) corresponds to lizhshi,
cycle (1,3,2) corresponds to hzhzhi,
cycle (1, 2, 4, 3) corresponds to — hihihshi-

(3.26)

The total number of cycles for a given group of s coordinates is (s — 1)!;
each function representing such a cycle has the sign (— l)*-1, which indicates
whether the cycle is an even or odd permutation. Hence, if we make every
/y-f actor with i ^  ƒ correspond to a line connecting the points i and ■ƒ, we can
obtain all terms for the statistical correlations by confining ourselves to
/-connections which connect certain numbered coordinates in a cycle of
definite order. Fig. 3 shows the graphs representing the terms of (3.26) for
s >  1; the different orders of the cycles can be distinguished by arrows.

4«?“

“ ll2 *21
'" 2

• T  V  ' X/  „ v  ✓  N .
4-— ► — V  ^ ^
1 2 1 2
l l2 I23 h i  — ̂ 12124 U 3  *31

Fig. 3. Some examples of graphs representing cycles of 1-connections, (cf. (3.26));
a dotted liné represents a /-connection.

We now define the mixed correlation function Bkti(rk, r l~k) as the correla­
tion function corresponding to all connected graphs formed with k basis-
coordinates and / — k non-basis coordinates; the connections in the graph
may be either basis-connections, /7-connections or /-connections; the
/-connections should form cycles; the {/-connections should be such that one
or more complete stars (of at least two points, one point being admitted only
in the cluster containing the basis if k — 1) are formed by the U- and basis-
connections, when the /-connections are omitted; further the basis con­
nections should form a complete star (of k points), when omitting the other
connections. It should be noted that this definition is given in such a way
that no [/0,1-factors occur in the expression for Bkj.

In general the F^-functions will have a number of terms, each of which
can be specified by a graph. Sometimes it is useful to take a number of
terms together and define Bktiim)- and fi*,7m,3))-functions in the following
way:

The function B k/ m)(rk, r l~k) is defined in the same way as Bkfi{rk, rl~k)
except that only those graphs are considered, which fall apart in a number
m of //-clusters, if the /-connections are omitted. We indicate a set of points
as a {/-cluster, if the points are connected by {/-lines and (or) basis-lines.

The function Bk r /-fc) is defined in the same way as

12



Bk,im) (rk, r l~k) except for a further restriction for the graphs: only the
graphs with a number p of /-connections should be considered here.

It is an immediate consequence of the definitions that one can write

Bk,i =  2*<i-ll)+1 É ff  and Bk,t =  Z m,p BkJ™,v\ (3.27)

It is seen from the definitions that the B*,j-functions are symmetric in the
basis coordinates and symmetric in the non-basis coordinates. In Fig. 4
some examples are given of graphs, which are used for the definition of

t  > 4

Fig. 4. Examples of graphs corresponding to terms of mixed correlation functions
Each graph represents one of the many terms, belonging to the B/c

which is indicated. A single line represents a U-connection; a double line represents a
basis-connection; a dotted line represents an Z-Connection.

fifc,i<m-:p)-functions. We also write down the explicit formulae for some
Bk'i-iunctions

B0)2(r2) =  t/0,2(1-2)
Bo,sir3) =  U0,s(r3) L s^ (r%  (3.28)
5 0>4(r4) =  C70,4(r4) L4‘*>(r4) +

+  Uo,s{ri, rs)Uo,z{ts, *"4) { —  /13/31 +  / i 3/ 34 4̂i  —  luU shshi +  • • •}  +

Mixed correlation functions are used in the following expansion of
Vk,g Lq{N> which is entirely analogous to (3.16)

Vk,q(rk, r«-*) LgiN)(rs) =  r l̂ k) U ^ ^ B o , ^ ) .  (3.29)

This expansion is simply the generalization of (3.16), expanding Vk,QLq(N) in­
stead of Vk,q, where the expansion corresponds to all possible partitions
into connected graphs; the difference of (3.29) and (3.16) being formed by
the addition of the /-connections as possible elements for the graphs.

The mixed correlation functions further occur in the following expansion
analogous to (3.19), which is easily proved by consideration of the graphs
involved, and which will be used in the following section

Vk,q{rk, r<?-*) LQ<N){rk, r«~k) =

=  £?=* Sup Bk,i{rk, rV i, . . . ,  rx) V0,q-i{rXl+i, . . . .  rx)

Bg-ilN)(rXl+1, (3.30)
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§ 4. The cluster expansion for the distribution functions. We shall develop
in this section a general method, which provides a cluster expansion for the
distribution function gk(rk), if the wave function is given by (2.4). As
mentioned before the methods which are used are analogous in many respects
to the cluster expansion methods of statistical mechanics 6)7)f However, the
analogy is often primarily a formal one, while physical interpretations of
formally corresponding quantities are different. We first mention some
general points, before going into the details of the derivation.

(1) A new element, which does not occur in the usual developments (for
classical mechanics or temperatures, appreciably higher than zero) is the
large influence of the statistical correlations, which necessitates the intro­
duction of values of m which are also in excess of 1 in the mixed correlation
functions Bk,iM). In allowing m to be greater than one, the statistical
correlations are then not restricted to configurations in which the particles
are within the range of their dynamical interactions. Something analogous
will hold for an imperfect gas at such temperatures, T, where-the De
Broglie wave length (A =  {h^fljimkT]^), which is a measure for the range of
the “statistical” correlations, is not small compared to the range of the
dynamical correlations, <5, caused by the short-ranged interactions.

(2) The integrations over the momentum variables must be carried out
with care: the orthogonality of the plane waves with different ft* has to be
taken into account and gives rise to a number of relations between the
momenta, which occur. Only after satisfying such momentum relations the
transition to the limit of continuously varying k  (transition from sum to
integral) can be made.

(3) It is essential for the convergence of the cluster expansions with the
mixed correlation functions B k,t to require for the [/-clusters, which are
obtained by omitting the /-connections, that they contain at least two points
(cf. the estimate (4.13) below; if separate points should be admitted as
[/-clusters, the factor [wó3]ï-OT should not necessarily decrease for increasing
l . a s w s i l  would be possible; however, for [/-clusters with at least two
points: m <  \l  and [nd3]1̂ "1 must decrease for increasing I),

We start the reduction of the expression for the distribution function
gk(rk) by inserting (2.4) into (2.12) and writing out the determinants as
sums over permutations according to (2.1)

glc(rk) =  ak ƒ &o*(rk, r*~*) Wk,N(rk, r*-*) 0 o(r*. r*-*) dr*-* =
=  ak Q~N (/V!)-1/ h i n l i  exp ( -  ik i-rQi)] Wk,N{rk, r*-*)

£<*> ó p tn ili exp (t'fei • rPi)] dr*-*. (4.1)

The superscripts (N ) indicate that P and Q are to be understood as all per­
mutations of N  coordinates. A reduction of (4.1) is made by inserting the
expansion (3.17) for Wk,N. Because of the symmetry of the F*>a-functions
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in the non-basis coordinates, all N ktQU) (cf. (3.18)) similar Vk<Q terms give
the same result in the integral, and we may substitute for Wu,n in (4.1)

•rwKr*,*»-*) - . s j L , « u y  ̂ i r  r r< ) - (4'2)

After this substitution, we can carry out the integration over the variables
rN~Q, for which the integrand has only plane wave factors. We write:
ƒ drN~k . . .  — f  dr®- * ƒ drN~Q . . . ;  we designate by rk, r ~̂k, rN~i the
three groups of coordinates with the following numbers rk(ri, . . . ,  rk) ;
r9-k(rk+i, . . . ,  rq)] rN-*(rq+i, . . . ,  rN). We note that the result of the
integration ƒ dr^-ff over the plane wave factors is QN~i for such permu­
tations P  and Q that Qi =  Pi for every Qi, which is one of the numbers
q -f- l ( . . . ,  N. The integration gives zero for other sets of P and Q because
of the orthogonality of the different plane waves. It follows that the double
sum S q,p gives (N — q) ! times the result QN~*, as far as one is concerned
with permutations of the coordinates rN~e. The following result is deduced
in this way from (4.1)

pk(rk) =  ——— £ 'V . ------ ---------------- QN-q (AT — q) 1
J QNN \ q=k {q -  k) \ (N — q)\ V

J d r i-k VkiQ{rk, r<i~k) X(r«), (4.3)

with (the superscript (q) indicating that P  and Q are now permutations of the
q coordinates)

X(r«) =  2$) <5q èp S o * ..., A,. n?=i exp [ikXi ■ (rPi -  r Qi)]. (4.4)

The summation over (Ai, . . . ,  Aff) should be extended over all possible sets
of momenta kx , . . . ,  kXq. It can further be seen that the following reduction
can be made in (4.4) concerning the 2 -signs

£ u x.....v  m - iH ? ! ) - 1 SS-1.S2-1. • • 2 £ - i  n u - m - 1 n u  s i u  (4-5)

The first equality contained in (4.5) is seen to be valid by noting that (4.4)
can be considered a product of two determinants, over which the sum
S(A,. . • •, a.) is taken. It then follows from the property of determinants to be
zero, if any two rows are equal, that terms of the sum 2jaJ=i • • • 2jA„=i
with some A* =  X] are zero, so that the latter sum is q\ times (number of
permutations of Ai,. . .  ,A9) the sum 2j<ax> • • • >Agi- It follows from (4.4) and (4.5)
that (cf. also (3.3))
X(r9) =  (? !)-i Sg> 2Ï* ÖQöp n U  Zff-i exp [ikXi • (rPi -  r Qi)] =

=  NQ(q\)-1 Sg» öqÖp U U  A m  ~  rQi) =
=  N« 2 “  n?=i l(rP{ -  rt) =  N«L^N\rs). (4.6)
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Combining (4.3) and (4.6), we obtain:

(N—k) !2V« Q - t f  Vk,q{r*. ri~k) L f ]{rk, rH )  dr«-*.
{ q - k ) \

A further reduction of (4.7) can be made by inserting (3.30) for the integrand

after carrying out the integration, because the result of the integration
is independent of the names of the integration variables. Hence the integral
in (4.7) may be written as

ƒ Vk,g ZV*> dr«-* =  ^  _  *)Jdr*-*B*,,(r* r*-*f

ƒ dr®-* F0,a-j(r«-J) Ta-z(iV) (r«-*)- (4-8)

We have now to study some -properties of integrals with correlation functions.
We first consider an integral of the type

The expression (4.9) has the form of a m atrix element of the operator
Uo,i{r1)] when considering it as such, (4.10) can be expressed as the con­
servation of the to ta l momentum. The proof of (4.10) is given by introducing
relative coordinates and one reference coordinate (with respect to which the
I — 1 relative coordinates are taken) and integrating over the reference
coordinate, of which Uq,i is then independent. I t  is easily seen th a t the value
of the integral (4.9) is of the order

if (4.10) is satisfied, as is seen by noting th a t U0,i differs from zero in a
volume of the order (5® for each of the (I — 1) relative coordinates.

An analogous estimate of the order of magnitude can be made for the
integral

f  Bo,i{m’p) (r*) dr*. (4.12)
The integrand contains p statistical correlation factors kj{i ^  j) defined
by (3.4). If we should consider the 17-factors of the integrand only, we should
obtain the order of magnitude Qmd3{l~m) for the integral, as we should then
have m unconnected [/-clusters, each [/-cluster providing a factor Dd3ili 11
after integration (with 2 J I i  h — *)•' As to the p ftA-values occurring in the
/y-factors, we can obtain momentum relations analogous to  (4.10) by first
carrying out m integrations taking one reference coordinate for each of the

in (4.7). The summation 2<A(> in (3.30) simply provides a factor

ƒ  exp [ - *  E U  ■ n ] U0,i(rl) exp [i £ < -i ■ r«] dr*.

I t  is easily shown th a t this integral vanishes, unless

, S i = l k \, =  S i= l /̂i(- (4.10)

(4.9)

Q ó®'*"1», (4.11)
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m [/-clusters. This provides m momentum relations which must be satisfied
in order that the integral should differ from zero. The definition of the Zy’s
and the fact that they form cycles, ensures the conservation of the “total
momentum” of such a cycle. This reduces the number of momentum
relations to »  — 1, since the “total momentum” of Bjc,i{m’p) is now auto­
matically conserved. It follows moreover that the remaining m — 1 mo­
mentum relations involve only those summation variables k \  occurring in
/y-factors connecting points i and j of different [/-clusters. The normalization
of Zy according to (3.4) is such that the result of a summation over an
independent k y variable gives a result of order unity, while each momentum
relation restricts a sum to one term and provides a factor N _1. It follows
that the order of magnitude for a term of the integral (4.12) is given by

Qrn <53(1—7») N-m+1 — Q lN -^[nds]l~m. (4.13)

The estimates (4.11) and (4.13) are order of magnitude estimates for one
term of the integral. It should be remembered that a further combinational
factor will enter for the number of different graphs contributing to a certain
Bk'i. After the momentum relations (such as (4.10)) have been taken into
account, one can see that the remaining /-factors can be replaced by the
result (3.5) found by passing to the limit N  -*■ oo and carrying out an
integration.

In order to pass to the limit N  -> oo in the expression (4.7) we define
b0,i(m) as the integral (4.12) provided with such a factor that it remains
finite for N  -> oo (cf. (4.13)):

&o,z(ml =  lim£=^nat) fl-W H f/!)-1 f B 0,ilm) (r*) dr*, {m > I, I > 2 )  (4.14)

Considerations of entirely the same type may be given for integrals with
Bic,i{m) (r*, rl~k) ; we then define

=  lim ^=,0°n8t) Q-i+k N l~k [(/ — k) l]~1f B k/ m){rk, r*-*) dr*-*.
(m > 1 , l >  k >  1) (4.15)

We write down some examples of (4.14)
&o,2a) =  \n Q-1/ U 0,2(r2) Lz{r2) dr2 =  \ n f  U0,2(ri2)[l —  /2(ri2)] dri2,
bo,3a) =  \n* f  [/o,3(1*12, r13) 1.3(1*12, ri3) dri2 dri3, (4.16)
[>o,4<2> =  — 2nZ/Uo,2  (ri2) f/o,2(1-13) dri2 dri3 -f-
+  1*2 J  f/o,2(1-12) [/o,2(i"i3)Z2(i-i2) dri2 dri3 —
— \n 2 f  [/0>2(ri2) [/o,2(1-13) l{ri2) ^23) Z(i-3i) d ri2 d ri3 + ........

We can now reduce the expression (4.7) for gfc(r*), making use of (4.8)
and (4.15); we obtain

g*(r*) =  (at (N -  k) ! N k/QkN\) bkfl(rk) Q ^ \  (4.17)
with <?,<**> =  2 m- o (Nm/QmM  !) /  d rM V0,M{rM) L M(N){rM). (4.18)
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In order to obtain (4.17), we have reduced the summations, according
to 2 g lfc 2?=fc =  S ilk  putting M = q - l .  It is seen
from (3.27) and (4.15) that &fc,z(rfc) may be expanded as

a*,i(r*) =  2 E t +2) (*■*)• . (4.i9)

The expression for (?z(Ar) can be reduced by substituting the expansion (3.29)
(for k =  0) into the integral ƒ drMVo,M[rM) L m(N) (rM), which provides
the following result, using (4.14) and characterizing a partition into clusters
by numbers ms, specifying the number of clusters of s coordinates

N M M 1
Q t (N) =  y x - j  ---------S'Mm.) I L -a -------- 1—  (fto «12s iV-*+1 si]*»*, (4.20)

*jM 0QMM\ * 8- 2w ,!(s !)w«

where S'Mms) indicates the sum over all partitions such that

i;^£2 sm8 =  M  . (m, =  0,1, . . . )  (4.21)

In view of (4.21), we see that (4.20) can be written as

Qi(N) =  F m(N), (4.22)
with

F m{N) =  S'Mms) n s-2 (iV6of.).*•(#•»,f)-1. (4.23)

In order to arrive at the cluster development for g/t(rfc), there is a problem
of convergence of these expansions. It seems plausible for physical reasons
that expansions should exist, which approach the limit of no dynamical
correlation at all, if d3n -*■ 0. In a similar way as (4.13) is obtained, one sees
that biC'i(m) should contain a factor \nSs]l~m~lc+1 (m <  \(l —  k) +  1), so
that it seems reasonable, to consider series of the type ordered
to increasing I or I — m if nd3 <  1. However, it is a notorious problem of
cluster developments in statistical mechanics to obtain rigorous mathematic­
al proofs for the convergence of such expansions and at the moment the
problem is still unsolved, although it has received much attention 8). Hence
we shall content ourselves here simply by assuming that the following series
converges

b =  60(«, n) =  S ~ 2  bo .*• (4-24>
In order to be able to derive explicit expressions for gfc(rfc), we have to know
how Qi(N) and Qo{N) are related. On the basis of the expression (4.22) we have
been led to assume

lim ^^^ {Qi(N)IQoiN)) — 1. (I '• some fixed number) (4.25)

This is seen by noting that Qi(N) differs from Qo(N) according to (4.22) only
by the omission of I terms in a number of N  terms. This difference will
become relatively negligible for N  —>oo under certain conditions. A more
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detailed discussion of these points is given in the appendix, where the validity
of (4.25) is shown, provided the (sufficient) condition

L', sb0,s +  L'l 4s |V .| <  1 (4.26)
is satisfied. The first summation in (4.26) is extended over values of s( ^  2)
for which bo,s is positive, the second summation over all values s( >  2)
for which bo,s is negative. Hence one should limit the choice of the functions
f(r, a), when using J a s t r o w  wave functions in a variational principle, to
such functions for which (4.26) is statisfied.

Specializing (2.12), (2.13) and (4.7) for k =  0, one sees that

go = \ =  aof 0*0  dr* =
=  «o (AH)"1 SJL0 AT!(? !)-i iV® ƒ F*>s (r®) !,«*> (r®) dr®. (4.27)

Comparing this with (4.18) for I — 0, one sees that
Q0W) =  ƒ |tf>(r*)|2 dr*. (4.28)

The value of the normalization constant ak is then obtained by writing
according to (2.12) and (2.13)

N\[(N — k) I]-1 =  ƒ g*(r*) d rfc =  akf  \0\3 d r*  =  akQ0{N). (4.29)

The normalized expression for gic{rk) is now obtained from (4.17) and
(4.29)

g*(r*) =  ( i W  Z l *  hAr^Q i^'IQ o'™ ). (4.30)

The transition to the limit N  -*■ oo according to (4.25) provides us with a
form for the cluster development such as we wanted to obtain

gk(r*) = n* 2 “  h ,i(rk). (4.31)
The different bk,i contain increasing powers of nd3. However, they also
contain a dependence on n in a different way, as the l(r) -functions occurring
in the integral expression for bk,i depend on the Fermi limit kp — (óti2)4̂ *.

The knowledge of the ^-particle distribution function of a system has an
interest in itself. However, the primary interest of obtaining these cluster
expansions is that they also provide us with a way to calculate the potential
and kinetic energy of the system. We shall give the expressions for the energy
in a subsequent paper.

Equation (4.28) provides us with the meaning of QoiN) as the normali­
zation constant of the J a s t row wave function 0(rN), which was not
normalized before: a factor [@oW)]-i should be added to 0(rN) in order to
normalize it. The considerations, which led us to (4.25) (see appendix) lead
also to an expression for the principal behaviour of Qq{N) for N  -*■ oo,
namely

(?o<*> =  eNb (1 +  e), where e -> 0 for N  -*oo. (4.32)
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This provides us with the meaning of the constant b, given by (4.24), which
can be considered as the result (4.31) for the value k — 0. It should be noted
that the normalization constant for &(rN) is not a quantity dependent on
the density only, but a factor depending roughly exponentially on the total
number of particles.

The preceding developments can be extended in an entirely analogous way
to distribution functions gk{rk, r 'k) (cf. (2.14)), which are not diagonal in the
basis coordinates. One has to replace rk by r'k in those parts originating
from the complex conjugate wave function. A “doubled” basis has then to be
considered as one unit in the definition of the spatial cluster functions
Uk,i and Rk,i- The cycles of /-connections retain the same formal expression,
if the Iff are now defined by

ltj — l(rt — rj*) with rj* —  r /, if f  < k (4.33)

Tj*  =  T],  if ƒ >  k.

In a subsequent chapter, we shall further give a reduction of the ex­
pressions for bk,i{rk) making use of the irreducible cluster functions. We
note that equation (4.31) reads

i =  S f l i  h ,i  =  1 +  K i  (4-34)

for the special case k =  1. The introduction of the irreducible cluster functions
will provide a direct and independent proof of this equation.

A ppen d ix

The magnitude of the expressions QiWh The derivation in § 4 required the
limiting value of for large N. It follows from (4.22) and (4.23)
that

QiW  =  S*N-tm8) Us (Nb0,g)m'(ms\) - \  (A.1)

where S*y-ims) indicates the sum over all sets of ms, such that

S g>2 sms <  /V -  I. (A.2)

We introduce a quantity Q(iV), which is defined by the right member of
(A. 1) in case the summations over ms are not restricted. Hence

Q m  =  eNb„„  =  eN b > (A.3)

where b is given by (4.24). In the following we shall only consider s values
for which b0,t ¥=■ 0. If the cluster development is not too slowly convergent,
only a very limited number of terms b0>s will differ essentially from zero;
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we shall think of this case. Suppose we have a set of positive numbers,
ocs, such that for large values of N  the following inequality is satisfied:

2* («sN)s < N  — I. (A.4)

It follows then from the definition of QW), (A. 1) and (A. 2), that

|$(*> -  Qiw | <  |S"(m8) K !)-11, (A.S)

if we denote by S"ms) the summation over all sets of ms values such that ms
is larger than <xsN  for at least one value of s. The right member of (A. 5) can
be written as

Qw  |1 -  II«(1 ~  e-»bo„ Q n )) I (A. 6)

where we have abbreviated

U lN) =  Z £ a* w+i(M o..)N m .!)-1. (A. 7)

Suppose that it is possible to find a set of a* values, such that a* >  |60,«|-
In this case, one easily sees that

|/a W| <  (iV|è0,g|)“̂ [ (a glV )!]-l^ =1 (|V .|/«.)* =

=  (N  |èo,s|)a,Ar [(«^V) n -1 (|6o,. N ( l -  löo.sl/a.)-1. (A.8)

Using the S t i r l in g  formula for (xsN)\, it follows from (A.8) that

lim £ ™ '-  \e~Mo,. f^N )  | =  o, (A. 9)

if the following inequalities hold

>  IV ,| and 1 — (V,/««) +  hi (|6o,*|/«,) <  0. (A. 10)

The conditions (A. 10) can be written in the following simpler form

«s > b 0,s if bo,s >  0 and a* >  4 |J0.,| if V* <  (A-11)

((A. 11) implies (A. 10); the coefficient 4 may be replaced by c =  3.5 . . ,
being the root of In c =  c-1 +  1).

Combining the preceding results, one finds, from (A. 5) and (A. 6), using
(A.4) and (A. 11), that

limiV̂ M |$W  — =  0 (/: some fixed number), (A. 12)

provided the condition (s >  2)

sb0,8 +  2g 4s |6o,,| <  1 (A. 13)

is satisfied. The first summation in (A. 13) is extended over all values of s
for which bo,$ >  0; the second summation over s values for which bo,s <  0.
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The inequality (A. 13) serves as a (sufficient) condition for the validity of
(4.25), which follows immediately from (A. 12). One finds moreover (I =  0)

Q0W) =  eNb(\ -f- s) with . s -»■ 0 for N  ->oo. (A. 14)

Finally, we just want to mention, that another less restrictive condition can
be derived, in case it would be known that Fm ^  is positive for large M
and N ; one can then derive (using certain results of app. XI of 7))

S,>2 sbo,, <  1. (A. 15)

However, it should be realized that FMm  is not always positive if 60,2 <  0
and if the behavior of FMiN) would be mainly determined by &o,2, which
case may very well occur in real applications.
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Ch a p t e r  II

INTRODUCTION OF IRREDUCIBLE CLUSTER FUNCTIONS

Synopsis
In  the  previous chapter a cluster developm ent of the ^-particle d istribution function,

gk(rk), for a  system  of in teracting fermions in the ground sta te  represented by a
J a s t r o w  wave function was considered. I t  was w ritten as

gk{rk) =

(n particle density), where the bk_i(rk) denote the cluster integrals. In  th is chapter a
reduction is carried out by  means of the introduction of irreducible cluster functions
and the use of certain  com binatorial methods. The reduction results in a developm ent
of gk(rk), in which the bk,i(rk) are replaced by simpler term s, which are sums ot cluster
integrals involving irreducible cluster functions only. The presentation includes a
generalization to  m ixtures of fermions of different types.

§ 1. Introduction. The cluster expansion method which was developed in
the previous chapter x) (further cited as I) is carried further in this chapter by
means of the introduction of irreducible cluster functions (notations will
be the same as in paper I, unless otherwise stated). In this way the result
I (4.31) for the ^-particle distribution function, gk{rk), for a system of in­
teracting fermions, represented by a Ja s tro w  wave function can be
reduced considerably: it will be shown that the cluster integrals bic,i{rk)
can be replaced by terms (ik,i which are sums of cluster integrals containing
only certain irreducible cluster functions. We want to mention here two
things about the introduction of irreducible cluster functions:

(a) This introduction is similar to a certain extent to the introduction of
the irreducible cluster functions in statistical mechanics by M ayer2). If our
wave function I (2.4) would contain only the F-factor but not the Slater
determinant $>o (this could be applied to interacting bosons), this would
result in the introduction of the irreducible cluster functions R k,i instead of
the cluster functions Ug i (see I § 3). The Fjfc.j-functions are represented by
graphs without articulation points.

(b) However, the presence of the Slater determinant d>o in the case of
interacting fermions resulted in the introduction of the F ^ - f  unctions, which
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then replace the [/^-functions to a certain extent (see I § 3). We now have
to introduce new “mixed” irreducible correlation functions Svik), containing
also statistical correlations. The presence of the <Z>o-factor requires a renewed
consideration of relations between momenta contained in the plane wave part &o-

We shall present the reduction in this chapter immediately for a somewhat
more general system than in I (no 'essential complications are caused by
this generalization). We assume a mixture of fermions of different types,
indicated by the index t (we may think, for instance, of protons and neutrons
indicated by t =  1 and t =  2, respectively). However, the particles are
still “fermions without spin” . The extension to real fermions shall be given
in the subsequent chapter. We first mention the generalization of the result
I (4.31)

gk(rk) =  rc* * bktl(r*) ( 1 . 1 )

for one type of fermions, without repeating any derivation as the generaliza­
tion is straightforward. ,We indicate by Nt the total number of particles of
type t and by nt the partial density of this type: nt =  NtfQ- We further
put: N  =  SiiVj and n =  Y*tnt- Note that each type of fermions will in
general have its own fermi limit kptf  We indicate by k and I the sets of kt
and It values, e.g. k =  (k\, k2) and I =  {l\, h) if there are two types of fer­
mions (we shall often give the examples for two types of particles below,
although this number of types is by no means essential for the method).
The trial wave function taken as a starting point (instead of I (2.4)) will
now be (for two types of particles)

&(r*) = F(rN) &oa){rNl) (2,( r ^ ) ; (iVi +  N 2 =  N) (1.2)

where &oa) and <?o<2) are the Slater determinants for particles of type 1
and 2 respectively. The F-factor should now be symmetrical in the 1-
particles and in the 2-particles. The special form of the F-factor correspond­
ing to I (2.8) may now be written as

F(rN) =  Fn(r-^i) F22(rN*) Fn(rN), > • (1.3)
with:

Fu(r*i) =  n f>7=1 f ai)(rn),

Fa«(rw*) =  n £ = v 1+1 /<22,('y)> ' ■ 0-4)
Fn(r») =  n f ii  Il£w1+i /aa,M .

containing 3 functions fai)(r), /<22)(r), fa2)(r), which may be different. The
total wave function 0  is, as is required, antisymmetrical in the 1-particles
and in the 2-particles, but not in all particles together. The generalization
of the result (1.1) for a system specified by the wave function (1.2) can now
be given by the equation

g*(r*) =  (m ^*«) 2 £ fc&*,/(r*) (1.5)
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with (cf. I (4.14) and (4.15))
b0,i =  lim<»!T“ nsM iV-ï [ U t iN t lÜ M t l^ /B o ^ r i )  dr* (1.6)

and for k 0 (I ^  k)
h , i  =  { n t(NtlQ)ltr*,[(lt -  kt) I]"1} ƒ Bk,t(rk, r*-*)dH-*. (1.7)

The normalization of the distribution function gk is now fixed according to
(cf. I (2.13))

fgk(rk) dr* =  lit  N t \/(Nt — kt) !. (1.8)
It should be noted that the Bk,i(rk, rl~k)-functions are generalizations of the
fifc^-functions used before as k, I, rk and rl~k represent in fact (k\, kz), (h, fa),
r*ir*2 and rh-*i r ^ ,  respectively.

The functions Rk,i(rk, rl~k), defined by I (3.10) and I (3.23), can be gener­
alized in the same way. The generalized Rfc.rfunctions can again be re­
presented by complete stars, which have as elements:

(a) 2 types of points for type t =  1 and t — 2,
(b) basis-connections of 3 types: (11), (22) and (12),
(c) R-connections (being all other connections) of 3 types: (11), (22) and

(12). R or basis-connections are said to be of type (htz), when connecting
two points of type ti and fa.

In the general case we shall express the dynamical part of the Bk,r
functions in terms of R-functions. If we represent the I(É,(r*,rj)-factors
(if i =£ j) by lH) connections (only between particles of the same type t), the
function corresponds to all connected graphs, formed with the set of k
basis points and the set of I — k non-basis points. The connections in the
graph may be either basis-connections, R-connections or /-connections; the
/-connections should form cycles. The basis- and R-connections should be
such, that the irreducible parts of each of the connected graphs, which are
obtained when omitting the /-connections, are complete stars R (one of
them containing all the basis coordinates; Ro,i should not occur, as a non­
basis point with only /-connections is not admitted).

n p

Fig. 1. Example of a graph representing a term of a generalized B k, (-function in case
two types of fermions exist. A single line represents an i?-connection; a double line a

basis-connection; a dotted line an /-connection; n : neutron; p : proton.

In case the R-factor is given by (1.3), (1.4) the function Bk,i corresponds
to all connected graphs formed with /-connections (/<1,(fy), /<2,(ry)),
^-connections (Aa i,(r^) — |/a i)(ry)|2 — 1; h(22)(ri}) =  |/(22)(ry)|2 — 1;
ha2)(rtj) =  |/<12»(ry)|2 — 1) and with /-connections between the basis points
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( | / ( 11) ( r y ) l 2 > |/(22)(fy)l2< l / ( 12) ( r y ) ! 2 ) -  The /-connections must again form
cycles, while no points with /-connections only may occur.

The generalization to mixtures of fermions can also be made for distribu­
tion functions, gic{rk, r'k), not diagonal in the basis coordinates.

In § 2 we shall explain the definition and introduction of the irreducible
correlation functions. In § 3 the general combinatorial methods, which are
used for a further reduction, are explained. They are applied to the present
problem in § 4. A discussion of the result is given in § 5.

§ 2. The introduction of irreducible correlation functions. In order to
introduce irreducible correlation functions in the case that as well dynamical
as statistical correlations exist (and possibly different types of fermions)
we first discuss some notions useful for the characterization of the general
type of graphs we have to consider:

We introduce three numbers (/, a, b), each expressing a characteristic of
a certain point of a graph and often denoted in abbreviated form by
r  =  (/, a, b). t =  1 ,2 ,... indicates the type of fermion specified by the point.
a =  1, 2, 3; a — 1 indicates a point with R- or basis-connections only;
a =  2 indicates a point with as well R- or basis-connections as /-connections;
a =  3 indicates a point with /-connections only, b =  1, 2; b =  1 indicates a
basis point; b =  2 indicates a non-basis point.

A graph may be characterized by a function iT specifying the numbers of
points of the different types r  =  (/, a, b). The total number of points is
denoted as i — HT/T; while we write further ia =  bitab', Ha =  'TLbitab-

We have often to consider different functions iT, which we shall distinguish
by an index v (we might put v — 1, 2, 3, ...), so that we can then write
ivT, iv, iva, ivta-

We now define S-functions corresponding to certain irreducible graphs as
follows:

Sv(riv) is the function corresponding to all irreducible graphs
formed with /-, R-, and basis-connections and characterized by a
definite /^-function, if the (distinguishable) points of the type r
are given for each value of r. After the omission of the /-connections
(which connections should again form cycles connecting only points
of the same type t) the irreducible parts should be complete stars,
R, one of them containing all the ivtai basis coordinates. Sv is
a symmetrical function in the variables corresponding to points of
the same type t  =  (/, a, b).

(2 . 1)

Note, that we admit in this definition (contrary to the definition of the Bk,r
functions) that points may occur with /-connections only.

The expansion I (3.23) of Ukj-iunctions in terms of irreducible cluster
functions Rjc i has a certain analogue in an expansion of the B/c ^-functions
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in terms of the 5-functions. We can write (k ^  0)
Bt.i(r* rl~k) =  S i(v, SVo(k)(rk, r*-*) IL  S,(r^). (2.2)

The S-factor SP(jik) should contain all basis variables; the other 5-factors Sv
may contain 0 or 1 basis variables. 2 ;(v) indicates a sum of all possible
products of 5-functions, subject to the following conditions: (a) the graph
corresponding to each product of S-factors Is a graph of I points, which may
be reducible, (b) the irreducible parts correspond to the different 5-factors,
(c) the graphs of should contain no points of the type r  =  (t, 3, 2). One
should note, that a variable corresponding to an articulation point of the
graph, occurs in two or more S-factors.

We shall distinguish two types of cluster integrals, /?„, according to the
definitions (the superscript k indicates the number of basis variables, which
occur)

/V*>(r*) =  U IT(NtlQ)iVT[ivTl]-1} J S v<k'(rk, r^-*) dr*v~k if k #  0, (2.3)
j9„<0) =  { n T(Ntl&)iVT[ivT\]~1} f  S J 0)(riv) dr«v- i  if k =  0. (2.4)

After substitution of (2.2) in the expressions (1.6) and (1.7) for the cluster
integrals bkj,  a reduction is obtained in case of a large system, as the
integrations over the different S-factors can be carried out separately in
the same way as was indicated by Mayer in statistical mechanics2).
This is possible, because /?„(0) can be taken as independent of the value of the
variable, over which no integration is performed, if the total volume is large.

We shall restrict ourselves to distribution functions, gic{rk), which are
diagonal in the basis coordinates, rk (r=  r'). The cluster integrals /S„a)(rj),
occurring if the basis coordinate r$ corresponds to an articulation point in
the graph, are independent of r* in this case. It follows from (2.3) and (2.4)
that /3„(1>(r«) is (apart from a difference in the normalization factor) equal to

(0), if fi is such, that i t̂a2 — Ptab and i^tai — 0. As far as the combina­
torial problem is concerned, the difference between basis coordinates and
non-basis coordinates (expressed by the index b) is now no longer essential
and may be eliminated by the following change in the notation: (1) f  =  (t,a) ;
(2) v characterizes as well the function iv- =  ivtab as the set of values
ktv =  2a=1,2 ivtai; (3) we introduce the cluster integral defined by the
following equation if kv =/= 0

h  =  [IIf (Am * * ]  £„ [ r w  \}vtab!]—1] Sp/ S„«*>(r* riv~k) dr**’-*. (2.5)

indicates a summation over all values of v, which give the same V;
is the summation over all permutations P, which permute the basis coordi­
nates of the same type t. /?p is a symmetrical function in the basis coordinates.
If kt =  1 for t =  V and kt =  0 for t ^  t', the only irreducible cluster integral
is /S =  nf.  In case kv =  0, pv is defined by (2.4) for that value of v, for which
i vta =  ivtaï- If we want to indicate the set of basis variables for we write
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fijk \  if £* h v and /V0) if S« ktV =  0 (so that /V01 is ïust a constant).
A reducible graph may be characterized by numbers m~, indicating the

number of irreducible parts of the type V. We shall denote by -Kqmp} the
number of different {connected) graphs of I points rwhich have irreducible parts,
specified by the numbers m-. {mv} denotes the set of numbers mv, of which
Ki[mv\ is therefore a function*), / represents a set of numbers /*. To an
irreducible part, characterized by V, there corresponds a set of points, for
each value of f  =  (/, a), the number of points for the different sets are given
by *'?. In the total graph no points of the type f  =  (/, 3) should occur.
One should note, that in the determination of Ki<m y only the numbers iv-
are essential; but that there may be different V values with the same function

distinguished by different values of ktv.
T The formula (1.5) for gfc(rfc) may now be brought in a different shape by

substituting the expansion (2.2) in the expression (1.6), (1.7) for bk,i[rk) and
introducing the /9-s according to (2.4) and (2.5). The result for 2* kt >  1
can be written as

gfc(r*0 =  g W r*) =  S i K l{mv) [Ut{Ntlü)Hlt \)-1]
rip Wv (2.6)

The summation S^mp} is a summation restricted in the following way: Each
set of {wp} values, over which the summation is extended, should be such
that the corresponding term contains one and only one factor /3P with
Si ktv >  0. For this factor, {kf} should equal the value of k specified in
gk{rk). If kt =  1 for Z =  t' and kt =  0 for t ^  /', gi equals nt- (cf. (1.8)).

If 2* kt — 0, we can still consider the expression (2.6)  ̂ defining the
summation S'pp} bY tbe requirement that mv = 0 if Si h v>  0. For this
case the right member of (2.6) equals nb (cf. I (4.24)).

The result gk{rk) is of the form (if Si^t >  0

gk{rk) =  S iP p} Al{mp} fa»  (rk) n v{Pv(0))mv (2-7)

and the problem is to reduce A to its simplest form. For this purpose we
have to insert an expression for Ki^mvy The general combinatorial methods
to be used for determining Kiyn^ are discussed in the next section. In order
to simplify the notation we shall omit below the bar of v and f  and write
simply v and r.

§ 3. The general combinatorial problem. In our derivation of the value
of the coefficients of the different U.vfivmv factors, we shall use the terminolo­
gy of M ayer (cf.2), App. X and also I § 3). We speak of a graph as a figure
with numbered points, obtained by filling the holes of a frame (figure in

*) We shall use the notation with { } parentheses also in other cases for distinguishing a de­
pendence on a set of values {wp} from a dependence on a particular mv.
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which the points are not numbered) by bolts, representing numbered
coordinates. A certain term of the expansion (2.2) is represented by a graph,
which is in general reducible (graph with articulation points), and can be
dissociated. The dissociated arrangement consists of a number of frames
(representing the irreducible parts) in which each hole, or all holes except
one, are filled with the numbered bolts. We can determine the dissociated
arrangement uniquely, by choosing some irreducible part as the root and
removing it first with all its bolts. In case of a reducible graph, the dissociated
arrangement consists now of one or more connected graphs, each of them
with one hole. If the hole is of character r, such a part is called a branch of
character r. The further dissociation is carried out by dissociating the
branches, in such a way that each irreducible part gets only one empty hole.
If 2« kt ^  0. we may choose the irreducible part containing all basis varia­
bles as the root, but this is by no means necessary.

ro o t root

Fig. 2. Example of a reducible graph and a dissociated arrangement, resulting from it.

In order to reduce the result (2.6) for gk{rk) we have to find a value for
For this purpose we consider the different reducible graphs and

different dissociated arrangements, which lead to a definite set of values mv.
Each irreducible part may be characterized by v. In the dissociated arrange­
ment each irreducible part may be characterized in addition by the character,
t , of the hole, which is not filled by a bolt, and by the character, r, of the
branch to which it belongs. We introduce numbers mvr-T for a dissociated
arrangement, specifying the number of irreducible parts v, with hole t , in a
branch of character r. Let vr be the type of the root. We have

mv =  2 t',twV t if v ¥= vr (3.1)
and

mv =  1 +  S t',t *»Vy if ’’ =  Vr.  (3.2)
Further one sees immediately that

We put further
2* h =  1 +  mv(iv — 1).

«V = 2 t *»v t.
The total number of points of character t may be written as

h =  Sa i \  +  2„,0,t' « V  [ i\  — öTiT']. (t  =  t, a)

(3.3)

(3.4)

(3.5)
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The numbers mvr-T depend obviously on the choice of the root. If the root
is of the type vr (while a number mVr of frames of this type exist), the number
Ki[mv) (see § 2, e.g., (2.6)) can be written as2)

Kl{inv} = im vr) ~ 1 S'{mVr} Ll{mvT'T} Ml^mvT-Ty (3.6)
In this f o r m u l a i s  the number of different dissociated arrangements,
characterized by the set {mvT'T\ and a root vr, which can be formed with a set
of I (numbered) bolts. Af ĵ V t} is the number of ways in which each dissociat­
ed arrangement can be bolted together. The type of bolt is characterized
by t, the type of hole by t’ =  (t, a). The summation EjinVr}is meant as a
summation over all values of mvr'T, which are in agreement with a reducible
graph characterized by {mv} and a root of the type vr (cf. (3.1), (3.2)).

It is often preferable to use a generalization of (3.6), in which a set {rr}
is given, such that any frame of some type vr (r =  1,2,...) may be chosen
as a root. One will have certain numbers mvT\  if a root is chosen of the type
vr. One obtains instead of (3.6)

K l{m v) =  m ~1 SV,{m VT} Llr{mvT'r} -^ { ro V r}  ,, I3 ,7)

with m — S r mVr, (3-8)
while the summation now extends over all dissociated ar­
rangements belonging to the composition {%}, also choosing the roots of
all different types vr. "

The value Lir{mvT'r} is easily found by considering its definition: the
number of ways that the I bolts can be distributed over the frames of the
dissociated arrangement characterized by {mvT’r}, taking a root of type vr.

Lir{mvT',T} =
____________________EM)» _____________ _ (3.9)

1 ïïpM i -  l]! ’

The expressions (3.7) and (3.9) will be used for a reduction of the expression
(2.6) for g*(rfc). It will prove convenient below not to reduce the series (2.6)
itself but to reduce a very similar series, in which the basis coordinates do no
longer play any particular role. We can write this “symmetrized series,
gs, as:

gS — gSl{mv) —
=  K l[mv} [Ut (Ntiay* m - 1] n v W ) i r  =

=  'Zi{mv}A \ m v }n v(pv)mv  1 ( 3 - 1 0 )

The summation 2 {m„} is not subjected to the restriction, which the sum­
mation S '{mv} has in (2.6).The expression (3.10) is considered as a polynomial
in the /3v’s. The /Vs are considered here simply as variables depending on v
(for which it is not necessary to specify any particular value). The extension

30



of the summation from (2.6) to (3.10) is possible, because Ki^nv} was already
defined for the more general {m„}-sets occurring in the summation (3.10).
The expression for gk[rk) can be derived in a simple way from the series for
gs by recalling the meaning of the accent of the summation sign in (2.6).
By substitution of (3.7) and (3.9) into (3.10), we obtain an expression for
gsnmvu which may be written as

gsi,mv} =  2'r.{»vT) fivr P{mvT'T, ft}, (3.11)
if we introduce the abbreviations

/?} =  r w  (" V * . PI
U r { m  t 't ) !

[<V *V P ^ r ' TP > V , P )  = l l v . T

aT = n r 1 if
(wVT) !

=  ( t ,  « ) •

Hence we can write

gs =  m~1 S  r,{mvr ',T) Mlr[mvT' ,t) P»r P { ^ vt't> ft}-

(3.12)

(3.13)

(3.14)

(3.15)

The summation SV,{mVT} ^as the same meaning as in (3.7). We shall also
make use of a series gs', which is obtained from (3.15) by omitting the
factor wrx,

gs' =  S r,{mvT,r} Mlr{mvT'T} P{tnvT’rl ft}- (3.16)
It is clear that the expression for gs can be found immediately, once the
expression for gs' is obtained (one has only to add the factor m~l =  [Sr^vr]-1
in each term).

We are now going to consider the problem of determining MirimvT'T\ and
reducing the expression (3.16) for gs'. We solve this problem first in a general
form, and specialize in the next section to the case considered in § 2. We
denote by n{XT-} the number of ways, that a set of holes specified by {AT-} can be
bolted together with a “neutral” bolt. 7T- specifies the number of holes of
character t' (not considering any other characteristic of the graph in which
the hole is contained). In the problem of § 2 we have w{AT-} =  0 or 1. If not
all holes are of the same type t (either neutrons or protons) w{AT'} =  0; cf.
further the beginning of § 4. In the treatment of this section we leave the
numbern {AT-}unspecified. We now introduce “counting series” 2) 3) (genera­
ting functions) for use in the further developments defined by

Z(y) =  £{AT'} 'M{V} n T'[(3V)AW(V)!]- (3-17)
We shall use the following notation to indicate the coefficient of Wr'(y7')K’
in the power series f(y)

[n  T'(jv)V]:/(y).- (3.18)
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With this notation (3.17) can alternatively be written as

n{K'} =  [nT'(V)! b v )^ '] : M -  \  - (3-19)
If the numbers w{AT'} are assumed to be known, certain combinatorial

factors depending on them can be derived and expressed by means of count­
ing series. In the first place the number of ways, riT{XT’}, that a set of holes,
specified by {AT-} can be attached to a bolt of character t  is given by

»t{V} =  «&'} with V  =  j* T' +  J !j T, 2  J  ' (3-20)

This is expressed by means of a counting series as

nT{K'} =  CIIt'(V) ! (yT')Ar'] : Uiy). with fT(y) =  (8f0yr)f(y). (3.21)
Further it is easily deduced that the number of way§ in which a set of {AT-}

holes can be attached to the bolts of a graph of character v with a TQ-hole (any
distribution over the different bolts being allowed) is given by-

[ n T'(AT')! (yT')A"l :F roV(y) (3.22)
with

F-rAV) =  UroWr™-1 n  rtroU M r*- (3-23)
We want to consider next the number of ways, QT({mvT'T}, 'NT), in which

frames belonging to branches of a definite type t  can be bolted together to N r
branches of this type, if the dissociated arrangement is specified by {mvT'T}
(these branches are not yet bolted to the root). We use the notation

m T’r  =  S v  T -  '  ' (3-24)
A distribution of the holes over the frames is allowed, if such a distribution
corresponds to a number of N r singly Connected structures, each with a
hole of character r. The number of distributions for fixed values of
which is the set of holes such as is used in (3.23) added to frame number
p, can be determined by extending the method given in Appendix X,
p. 458 of ref. 2). With (3.23), and after a summation over all possible
values of {AT’P} (£pAT'P =  mT>r if t- ^  t ; Y*v K v =  mrr — N r), one finds

Qr({m \’r}, n t) =  [  |^ TT ~  (yT)WTT “ IItVt K v) ! (yr')mT'T_ ■

[ I l r J F r J y ) r V̂ -  (3-25)
If N t =  0, we have Qr ({0}, 0) =  1. (3.25a)

We shall now denote by R({NT}, vr) the number of ways, in which the set of
{1VT} branches can be attached to the root vr. It is found to be (Nr 0)

R({Nt}, vr) =  [U r ( N T) ! yr Fvr[y), (3.26)
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With F  vr(y) =  n J J M T ” - (3.27)

The number Mir m̂vT'T\, which must be substituted in (3.16), can now
be expressed as

=  S{JVr} R W v r ) I I t  ( ? t ({w ”r'r}> N T). (3.28)

Further, it follows from (3.11), (3.12) and (3.28) that the expression for
gsi<mv\ can be written as

gSl[mv} =  m 1 2) r,{mvT'r} P*r E{WT} 7?({ATt}, vr) YlTQT({mvT'T}, N T)
PT{m \.r,P). (3.29)

In order to find a reduced form for gs , (3.16), we calculate first

^ t ( K ' t . £ } , N t) =  S ' {mvTV} N t ) P } -  (3 .30)

The summation should be extended here over all sets of {w%.-T}-values
(for a definite r), such that ^ vmvT-r =  mT-T, where the mT'T-values are
specified in the left member of (3.30). In case of ambiguity, we shall use a
second index r  for the variables yr- (yT*T) and aT- (<rT»T), to indicate the charac­
ter of the branches, r, to which the variables belong. From the expressions
(3.13) and (3.25) for fixed r, making use of

~2{m Vr} U vy
[<Vt*V Fr’v(yT-T)pv]mVt't

( m vT-T) !

and putting
=  I I t' exp [oyT

=  ^ VT -P r 'v iy T -r )P v .

(3.31)

(3.32)

we find that (NT ^  0)

n ( K v  /?}. ivT)
(™ t t  —  1 ) !

(} 't t ) ” 1t t  (d rr)mrT T l r U M r ’rV-L (IVT-  1)1

(yT'r)”lT'T(,5T'T)ra,''TJ  : I I t' exp [oT'TFT'(f, P)]. (3.33)

In (3.33) we have abbreviated nt~1aT>T =  5T-T (if t =  (t', a),  cf. (3.14)) and
extended the notation (3.18) to the variables a (hence (5r'r)k : =  nt~k
(crT!T)fc:). For the special case N T =  0, we have Tt =  1.

The expression (3.16) for gs' can now be simplified by noting that according
to (3.30)

gs =  S r  S { j»t't} SJAV) P*r P{{NT}, Jv) Ü t̂ tK^Vt» P}> N t). (3.34)

We introduce the abbreviation (designating the y-variables further as yTT
instead of yT)

F[f(y), P] =  Sr Fvr(y)Pvr, (3.35)
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so that we can write
2 r  R({Nt}, vr)fivr =  [ n T(iVT) ! {y„)Nr] : /?]• (3.36)

We finally introduce

GT(yTT, O  =  [ r iTV r(«rV )l (yT;T)raT'T(5T'T)”lT'T] :
n T0 exp {uToT F To [/(yT-T), /3]}, (3.37)

where the summation is over all values of mT-T ^  0 with t ^  r. Making use
of (3.33), (3.34), (3.36), (3.37) and

i(Nr) ! (yTT) P - ] : FU(y„)f fi] =  [(Nr -  1)! y ^ i ] : —  ffl. (3.38)
V T T

if iVT ^  0, we find for gs'

s' =  | n T [(y TT°:) +  [(»»„ — 1 )1  (y ^ ) " * " - 1 :]

M l
^ ( y T T . f f r ŷTT J ^[(/(yTv).ffl- (3.39)

One should note that the derivations (acting on F) must be carried out,
after the n T"sign> but before the :-signs.

§ 4. Specialization of the combinatorial problem. We now want to apply
the general developments of § 3 to the problem of interacting fermions, as
described in § 2. For this specialization we must give in detail the values
of n{XT-} for the different cases and the expressions for /(y). As we do not
distinguish in this context whether points are basis points or not, the
variable r  is specified merely by giving (t, a) (see § 2 for the definition of
t =  1,2 and a = 1 ,  2, 3). We first specify the value of n{XT>) for a pair
(T1) r 2) =  (hai, faaz) of holes, which should be joined. We then have
case (a): (h, t%) =  (1,1) or (2,2):

«{V} =  1, if («1, a2) =  (1,1), (1,2), (2,1), (1,3), (3,1), (I)
n{kT-} =  0, if (ai, a2) =  (2,2), (2,3), (3,2), (3,3),

case (/?): {h, h) =  (1,2) or (2,1):
»{At '} == 0. (4.1)

(4.1) expresses that n{XT'} =  0, if holes of different t-value should be joined
and that no two holes with /-connections (having [a\, a2) =  (2,2), (2,3), (3,2)
or (3,3)) can be joined, as the /-connections should form cycles only. If we
consider further only sets where all holes are of the same type t («{AT-} being
zero for other sets), and specify {A/} by the number of holes with a =  1,
2 or 3, we have for sets of more than two holes:

. . . (1 if all pairs which may occur are of type (I). ,.
«U o=1 ,4«=2> 7a=3} =  I . ,, (4.2)1 ’ [0 in any other case.
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Although, an irreducible frame may contain holes of the type a =  3 (cf.
(2.1)), it should be noted that in the graph of B k i no bolts of this type should
occur, as they should correspond to points having /-connections only (the
hole in the irreducible frame with k =  1 is considered to be of the type
a =  1).

The above statements can be expressed more explicitly as

n{Ai, 0,0} =  1 for every fa >  0,
n{Xi, 1,0} =  1 for every Ai ^  0, (4.3)
w{Ai, 0,1} =  1 for every >  1,
n{Xi ,  f a ,  f a }  —  0 in any other case.

Introducing this in (3.17) we obtain for f(y)
f(y) =  Stte»'1 +  yt2 zVtx +  yta (e*'1 — 1)] (4.4)

and
fti(y) =  (i +  yt-2 +  yta) ^Vn>
ftaiy) — eVtl, (4-5)
tta(y) =  eytl — 1-

The specialization of the result (3.39) for gs ' requires the introduction
of the results (4.4) and (4.5), but a further reduction may be obtained,
because in the expressions for the different /9„ integrations over points with
a — 3 (having /-connections only) can always be carried out. This is easily
seen in the following way: suppose a point ƒ has /^’-connections with the
points i and k. We have then according to the definition I (3.4)

/«<» l]kU) = N r 2 e**'"""’] e* (4.6)
In view of the orthogonality of plane waves for different values of A, the
integral over rj reduces simply to

/  hi hk dr; =  (Q/Nilhk- (4-7)
In a similar way a f}„ for a graph with a =  3 points can always be reduced
to a f}v’ for a graph without a =  3 points. The following relation can be
derived for this reduction

(ivt2 +  ivta - 1 ) ! “
(*v«2 - 1) ! ( ^ 3) ! -

(4.8)

where v is related in such a way to v that

iv'ti — ivti > iv t2 =  i"t2 1 iv'ta — 0 {htv‘ =  htv)- (4.8a)
It is supposed in (4.8) that not all points have a =  3. In the derivation one
has to take into account the sign of the permutation and the normalization
factors according to the definition (2.3), (2.4), (2.5). Further one has to
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consider the relation between a frame specified by v and the frame specified
b y / .  It is found that the /-frame can be extended to the r-frame by adding
a =  3 points on the /-cycles of the /-frame in

n < r(»v<2 +•**'«8 -  .1) - 1’)!]  ̂ ' (4.9)
ways. This number enters as a factor in (4.8).

One special case of irreducible graphs was excluded in (4.8), namely pure
permutation cycles for some definite type t of fermions. The integrations
over all points except one must now be carried out; one finds in this case
(*' =  *'«)

Pv =  (— I)4””-1 i*hf*vts)- (4.10)
The expressions (4.8) and (4.10) allow to make the following reductions

2,'y Pv n t(ft3)iV‘> =  Py' ILO +  ft3)-iV\  (4.1 1)

Sv /W stfi 's )"1 =  - f y ' i v't’2 ( 1 +  fra)-1 IL  (1 +  fta)~iv'^ (4.12)
The summations 2 '  in (4.11) and (4.12) extend over all v (with ivt3 >  0)
to which the same value of /  (according to (4.8a)) corresponds

tUfta)»" /?„ =  -  nt[fta -  In (1 +  ƒ«,)], (4.13)

S '  ivta (.h a Y P v =  nt[( 1 +  /«3)_1 —. 1]. , (4.14)
The summations 2v in (4.13) and (4.14) extend over all v with iv =  ivt3 5* 2.

Substituting these results in (3.35) and using (4.5), one obtains) if every
type vr is admitted as a possible root

F =  SvtEU/ti)^1]^, — S i ««(e1'*1 — 1 — y«i)- (4.15)
Substituting the results into (3.32) and using (4.5), leads to the following
expressions for Fr'

Ft’ 1 =  s ,  *Vi (ft’i)-1 [n« (ftiYv»lPy, (4.16)

Ft’ 2 =  Sv ivf2(ft-2)~1[Ih(ftiY'J‘YPv, (4.17)

Fra — — S v *vt’2 (/t'2) 1 [Ut(fnY^] Pv +  nt‘ (e~2i«'i — 1). (4.18)
The summations 2 V in (4.15)—(4.18) are extended over all values v, for which
S« ivta =  0.

It is seen from (4.5) that there is no difference in the number of ways that
a =  2 and a — 3 holes can be connected to some bolt in a frame. As far as
the holes are concerned, we may therefore combine the indices 2 and 3 to
one index, 4 say, and write yti +  yi3 =  yti, etc. This may also be done
for the cr’s in formula (3.39), because the value of the parameter oyT depends
only on /', if /  =  (/', a'). Introducing the abbreviation:

Mu} =  S A  (4-19)
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where the summation E„ extends over all v with ivn = in  (the fn-values
are specified in the left member of (4.19)) and with Et ivtz =  0, the formulae
(4.15)-(4.18) can be written as

F  =  2 {i<i} {Ut [e»«(l +  yt4)]W 13{in} -  S t  -  1 -  ytl], (4.20)

Fn — E{<<i} itl [e^(l +  yu)]itl- 1{Tlt'*t[zy' l(} + yt’i)]*'1} P{in], (4.21)
Fti =  F tz +  Ftz =  nt (e-^i — 1). (4.22)

The summation E;«n} over possible values of in  >  0.
It is our purpose to obtain a reduced result for g* by means of the result

(3.39) for gs’. The different terms of the series for gs correspond to different
graphs. In the general formula (3.38) it is not yet specified which type of
graphs may be chosen as roots. We shall use different roots for different
groups of terms and write

gs = gi +  gn .t-i +  g u i,t- \ +  gn.t-2  +  g m .t-2 (4.23)
The groups of terms indicated by I, l i t ,  etc. are chosen in the following way:

I. All graphs containing as irreducible part a frame of a type Et ivti=  0,
Et ivt2 ^  0, Et ivt3 arbitrary. The root is then chosen of such a type.

II , t — 1. All graphs, not containing any graphs of a type as specified
under I, but containing at least one pure permutation cycle of points with
t =  1. The root is chosen to be a permutation cycle of type t =  1.

I I Ï ,  t =  1. All graphs, not containing any irreducible part as mentioned
under I  or II , t =  1, but with at least one bolt of type t =  1 which is not
contained i n a «  =  2 o r «  =  3 hole. We now choose as a root a single bolt
of this type.

II , t =  2. All graphs not containing any irreducible parts specified under
I ; II , t =  1; II I , t =  1, but containing a pure permutation cycle of points
t =  2.

II I , t =  2. All graphs not containing any irreducible parts specified
under I ; ; II , t =  2. They should then contain at least one bolt of type
t — 2 which is not contained i n a a  =  2 o r «  =  3 hole. We now choose as a
root a single bolt of this type.

(In case more values then t — 1 ,2  are possible the grouping of terms
(4.23) should still be supplemented in an obvious way).

We now consider the contributions of the different groups of terms
I. Taking a root of the type specified under I, we find (cf. (4.20) and

(3.39) ; F  is found as a part of (4.20), excluding the contribution from the
pure permutation cycles, i.e., the second term, and taking only the parts
with in  =  0 from the first term)

FUiy-rr), ffl =  m >  (4-24)

(gs')l =  [Ut n«=l,4 y0rr\ ■ m  =  m -  (4-25)
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II, t =  1. In calculating this contribution, we take as a root all pure
permutation cycles of the type t =  1 (F is obtained from (4.20) faking only
the contribution from the second term for the permutation cycles with t =  1)

F{yu) = — «i (e»n — 1 — yn) (yii =  yu.n), ' (4.26)

(gs')n.t-i = S m>i [(wii-1)! (yii)TOll“1(ffii)m”]:Gii(yii,(rii) -—  .F(yu). (4.27)
oy ii

The functions Fti and Fu, occurring in Gu (cf. (3.37)), are given by (4.21)
and (4.22), respectively, if the summation in (4.21) is restricted to values
of {*n} for which Hi 0- We shall use the equality (mu ^  0, t =  1,2)

[(ntu) \ (öu)mti] : exp(<Tt4Ff4(yti)) =  (e~»n — 1 )mu. (4.28)

The expression Gu, according to (3.37) contains summations over W21, m24,
and mu- It follows from (4.28) with t =  2, that the summation over m<u
can be performed by omitting the part S mM>0 (>«24) ! (y24)TO24 (ö2)m2i:
exp[c24 F 24(y2i)] in Gu and substituting for y24

y24 -► e- »" — 1 (4.29)

wherever y24 occurs in the part II T̂ 24 exP {arFrU> ft]} of Gu. After this
substitution, it is seen that the result is independent of y2i (cf. result for
F 24 obtained by substituting (4.27) into (4.21)); hence only the term *«21 =  0
remains of the summation over m2\. The summation over m u  cannot be
carried out in the same way as for W24. This is because we have to add a
factor mrx =  («14 +  I)-1 to pass from gs to gs, as follows from (3.8) and
the type of root in this case.

The substitution m = m u  +  1 needs some explanation: According to
(3.8) m =  S r mvr is the number of frames which may serve as a root. This
number is in the present case the number of pure permutation cycles
with t - - 1 and can bé written as m =  1 +  S r f n \ 'T with r" =  (1,4)
and t =  (1,1). Because values were substituted for for pure permutation
cycles according to (4.10), we can no longer count directly the number
of such /?,/s which contributed in the result for gs’. However, it is easily
seen that a term of gs', which results from taking (ai4)mi*: (cf. (4.31) and
(3.37)) had W14 factors contributing to 2 V mvu- But it follows from the
expression for F u, according to (4.22), that the contributions to gs from
frames, which are not pure permutation cycles with t — 1, cancel, so th a t:

mVru  = mvu  and m =  m u  +  1, for the terms in the result for gs
obtained by taking (5\i)m̂ \ exp [CT14F 14].

We now introduce a new (auxiliary) variable f u  in the expression for Gu
by replacing (1 +  yi4) (in the part of the expression for Gu after the :) by
(1 +  yi4)fn- The notation (3.18) is also used for the variable fu . We note
that if A(y) =  «*(1 +  y)k, we may put here A(y) =  A(y, £)
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with A(y, f) =  X/c «*0 +  y)k£k. We make further use of the relation
(Zn >  0; the factor m"1 is added)

[(W14)! ( m u  +  I)“i (yi4)mi4(5i4)”,“ ] • (1 +  y i4),n« i ( l  — e*'11)

exp [<Ti-tFi4(yn)] =

=  [(wi4 +  1)! (yi4)”*l4+1 (5i4)m“+1] : (1 +  yi4)*ll+1 (Z11 +  l)-1
n 1 evu exp [cri4-Fi4(yn)]- (4.30)

The expression (4.27) is now reduced to (replacing (mu +  1) by mi4)

(gsln.t-i =  2 lu>o [(Z11+  l)-1(fn),u:] S mn>i [(»» ii-l)l (yu)»»-1: (in )”1":]
W i t ^ i * ) !  (yu)mii ■ (ffi4)mi4:] e^n (1 +  ym)

exp {o-ii 2 '{id} in  [e^11 (1 +  yi4)lii]il1-1 /?{*«} +  C14 -Pi4(yn)}- (4.31)

The summation 2  {i«i} in (4-31) is over all sets {t'ti}. for which 2 t Ui #  0.
I l l ,  t =  1. For calculating the contribution g m  t-i, we shall first give

a somewhat modified expression for gs■ In the derivation of (3.39), we have
dissociated the graph by choosing as root a frame, vr, of a certain type, {vr}.
In a similar way, one can start by choosing as root bolts of certain types,
tr (r =  1. ...), specified by a given set of t-values, {/?■}. The dissociated ar­
rangement then consists of one separate bolt (the root) and frames, which
all have one hole in this case. The further derivation in this case, is quite
analogous to § 3 and the result for gs' can be written in the same form as
(3.39), if we omit the term corresponding to H T[yTT°] '■ (as it would corre­
spond to a bolt without a hole) and replace the function F  by a similar
function, F. The function F  is given by

^(yTv ) =  Sr ««, ht, (yTv.)» (4-32)
h(y) =  2{At'} nt{K'} n T' [(yr^'KK') H- (4-33)

nt{K'} denotes the number of ways that a set of holes, specified by {AT'}, can
be bolted together with a bolt of character t. To pass from gs to gs, one has
to add a factor L~x =  (2r hr)-1 in each term (cf. (3.8)), L specifying the
number of bolts which may serve as a root. The factor Z,-1 can be calculated
for each term, if one notes that It (being the number of bolts of the type t)
is equal to the power of in such a term, if we replace /T and ht by f</T and

respectively (r =  (t, a); cf. e.g., the expression (3.23) where it is seen
that the number of /T-factors is also the number of f-bolts in the frame, if
t  =  (t, a)).

We shall apply these formulae to the graphs, specified in I I I ,  t =  1.
However, we use (4.32) and (4.33) in this case, still with a modification in the
following sense: as roots we choose bolts of the type t =  1 which are not
contained in a t =  (1,2) or t =  (1,3) hole, hence not any bolt of type t =  1.
The function F  is then obtained from (4.33) by putting t =  1 and restricting
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the summations to sets {ATI-} with ?.T- > 1  for r ' =  (1,1) and =  0 for
r ' ^  (1,1). It is again possible tó combine the indices a — 2 and a =  3, as
far as the holes are concerned, to) one index, 4. This follows from the fact,
that there is no difference in the number of ways that a — 2 holes and a — 3
holes can be connected to a bolt in a frame and the fact, that the bolt, which
was chosen as the root is not contained in a — 2 or a =  3 hole. In order to
pass from gs' to gs one now has to add a factor Z,-1 in each term, L specifying
the number of bolts in the graph of type t =  1 and not contained in a a =  4
hole. We shall calculate L for terms of gs , which result from taking (5u)mii’-
(cf. (3.37) with t =  (1,4); r  =  (1,1), because there are only t =  (1,1)-
branches) and for which h i  is the power of In  if the function /u  in the bran­
ches is replaced by h i fn  and if F  is replaced by I n F. It is seen (cf. (3.23))
that l\\ is the number of t =  1 bolts in the dissociated graph which are not
contained in a a =  4 hole. The number of holes with t — 1 and a =  4 in the
dissociated graph is m». It follows from the fact that these holes must be
attached to bolts with t =  1 and a =  1 and the fact that only one hole of
this type can be attached to such a bolt, that the number of bolts in the
non-dissociated graph which can serve as a root is equal to L = h i  — « i 4.
We can therefore make use of the reduction from (4.18) to (4.22). The
values of Fr are found by taking certain parts of (4.21) and (4.22), namely
leaving out the frames admitted as roots under I  or II , t =  1.

F(y, In) =  « ïln  (evu — 1) ’ ' (4.34)

Fn(y, In) =  *n[e»n(l +  y i4 )^n]ill_1[e*'ai(l y2'4j]*21/8{ni} (4.35)

Fu(y, In) = 0  (4.36)

Fiily, In) =  2'{*<i} *2i[ev«(l +  y24)]<21~1[e*'n( 1 +  yi^ln]*11 p{iti) (4.37)

F a ly ,  In) =  « 2  (e-y*i — 1) (4.38)

It follows from (4.36) that the contribution of the 14-holes cancel (yi4

and m u  may be put zero, hence L = l\i)- The summation over m u  can
be carried out by using (4.28), with t =  2, and (4.29), after which the
result is independent of y2i, so that only the term with m2i =  0 must be
conserved. One finds

fes)///.«=i =  Hzn>i [/li-Mlii)*11 :] 2 mil>i [(mu — 1)! (yn)™11-1 : («m)™1*:]

Miln e^n exp [(Tn 2'{i«i} *ii (e^ii In)*»-1 (4.39)

It is seen from (4.31), that [(g5 )//,«=i +  (gs)ni,t=i) is expressed by the right
member of (4.31), if we extend the summation over m u  >  0. Using (4.28)
with t =  1, one sees that, after the summation over m u  has been carried out
(in a similar way as the summation over m u  for the part (gs)u,t=i), the
result is independent of yu, so that only the term with m u  =  1 remains.
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{gs)ll.t=l +  {gs)m,t=l =
— 2 * 5 *  [(*11+ 1)“1 (^Ïi)'11] : S'jiti} *lifil<11-1/?{*7i} =  2{iu} P{*ti}, (4.40)

where S "{iti\ indicates a summation over all sets with in  #  0. In an
entirely similar way, one finds

(gs)n,t=2 +  (gs)iii.t=2 =  2{<n} P{Ui}, (4-41)
where the summation extends over all sets {in), for which * 2 1  ^  0 and
i’ll =  0. Adding the different contributions (4.25), (4.40) and (4.41) to (4.23)
and recalling the abbreviation (4.19), one finds

gs =  Z v pv, (4.42)

where the summation extends over all values of v (v is still an abbreviation
for v, cf. § 3) for which ivtz =  0. To pass from gs to gk{rk) is now very
simple.

§ 5. Discussion of the result. In this section we want to give a discussion
of the simplification of the expansion for the ^-particle distribution, g*(rfc),
obtained in § 4. The general form, with which we started, was given by

gk(rk) =  (IL »**•) bKi(rk). (5.1)
The simplified result, according to §§ 2, 3, 4 can be written as (cf. (4.42),
(3.10), (2.6))

g*{r*) =  Pv{k) with 2 ,  =  0. (5.2)

We shall discuss the reduction for the case that the correlation factor, F,
is given by (1.3), so that the graphs have ^-connections (of the types hai),
h{22>, ha2)) and basis-connections (of the types / (11), / (22), / <12)) and /-connec­
tions (/(1) and /<2)). The significance of the reduction from (5.1) to (5.2) will
be realized if we remember the types of graphs, which correspond to the
b/c r  and /Sp-terms, respectively:

bk,i(rk) corresponds to all connected graphs (reducible and irreducible)
of k (ki, k%) basis points and / — k (l\ — k\, 1% — k£) non-basis points,
formed with h- and /-connections, the basis points being mutually connected
by basis lines, and which do not contain any (non-basis) points with /-
connections only. If we introduce bicfi{rk)ia, defined in the same way as
bk.i{rk) except that only those graphs are considered, which are irreducible,
it is easily seen, that (cf. (2.1), (2.3) and (2.5))

(IL ntk)  bk,i{rk)ia. =  2 P /V*’- (5-3)
if the summation in the right member of (5.3) is extended over all values of
V, for which ivti +  ivt2 =  h and ivts =  0 (/ =  1,2). We can therefore write
the simplified result (5.2) as

gk(rk) =  (IL ntk<) bk.i(rk)td. (5.4)
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This formulation is valid for an arbitrary correlation factor, if we use the
graph representation with basis-, R- and /-connections. If k == 0, (5.4)
equals b (cf. (4.24) and (4.32)).

We note the following points about the forms (5.2) and (5.4): (1) It is
remarkable that the result is linear in terms corresponding to irreducible
graphs, as the general form of a b]d will contain products of different /Sp’s
(cf. (2.2), (2.7)). The reduction from (5.1) to (5.4) was obtained by reordering
the different terms of the b/cjs- The terms, which are products of more than
one (and which occur with opposite signs in s with different values of
/) all cancel (cf. Fig. 3).

Fig. 3. Graphs corresponding to terms of fe* but which cancel in the reduction to
(5.4); for the notation, cf. fig. 1.

(2) If we omit the /-connections in the graphs corresponding to the
bk i{rk)id's from (5.4), the resulting graphs of h- and basis-connections may
be: A, irreducible; B, reducible and C, unconnected. The results given by
J as trow 3 4) for gu correspond to the type A only, the terms corresponding
to the casis B and C were neglected. For an illustration of such graphs cf.
Fig. 4.

1 r,—a

c
Fig. 4. Graphs, corresponding to different terms occurring in the bid 's of (5.4);
leaving out the /-connections, we have: A, irreducible graphs; B, reducible graphs;

C, unconnected graphs; for the notation, cf. fig. 1.

(3) It should be noted, that terms of (bk,i)id of the type C can be further
reduced to some extent, by a further study of the momentum relations.

The equation (5.4) reduces simply to one term (nt), in case kt =  S r  k f =
1, as the only irreducible cluster with one basis point consists of just this
point only. However, this result may also be written in the form of the
series (5.1). We thus obtain an alternative derivation of the identity I (4.34)
mentioned in I.

The reduction from (5.1) to (5.4) was derived in case of a diagonal distri-
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bution function. It can be used for the calculation of the pair distribution
function, which is sufficient for calculating the expectation value of the
potential energy in case of two-body forces. However, for the calculation
of the expectation value of the kinetic energy, the non-diagonal distribution
function gi(r, r') is needed. Although in this case, a similar reduction occurs,
we shall use the expression (5.1), to calculate a non-diagonal distribution
function. In a third paper, we shall give explicit results for the distribution
functions and the expectation value of the energy. In the same paper, we
shall give the extension to (mixtures of) particles with spin (and isobaric
spin).

It can finally be mentioned that it was also proposed by J a s t ro w  4) to
use cluster expansions for the case of interacting bosons, using a wave
function of the form 1(2.4), but without Slater determinant. The cluster
expansions are then much easier than for fermions and closely analogous
to the usual treatment in classical statistical mechanics. It was checked in
some cases that a similar reduction as from (5.1) to (5.2) for fermions, holds
also for bosons (taking as b’s, terms corresponding to irreducible graphs with
basis- and /^-connections only) and it can be conjectured that such a reduc­
tion will hold generally for bosons and even for a mixed gas of bosons and
fermions in the ground state.
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Chapter  III

EXPRESSIENS FOR THE DISTRIBUTION FUNCTIONS
AND THE ENERGY; APPLICATION TO NUCLEAR MATTER;

EXPANSIONS AT LOW TEMPERATURE

Synopsis
The cluster developments for J as tro w  wave functions, formulated in two previous

chapters, are extended to particles with spin. Explicit results are given for the distribu­
tion functions and the energy, including the case of fermion mixtures. A discussion is
given of the application of the method to nuclear matter. The splitting in a “statistical”
part and a “dynamical” part can also be made for a Bose or Fermi gas at low tempera­
ture. I t leads to the. introduction of more detailed cluster integrals. In the fugacity
expansion of the pressure and the density, they can be rearranged, roughly to in­
creasing powers of (S/X) (8, range of the forces; A, the De Broglie wave length).

§ 1. Introduction. In two preceding chapters1)2) (hereafter referred to as
I and II) we derived cluster expansions for the ground state of interacting
fermions, specified by a J a s tro  w wave function. The fermions were assumed
to be particles without spin coordinate. The extension to real fermions can
easily be made in the simple case of a Ja s tro w  wave function, with spin
dependent one-particle wave functions and a spin independent dynamical
correlation factor, F. This extension will be made in section 2. In the same
section, we shall give the explicit results for the distribution functions and
the energy in case of a system, containing “spinless” fermions, fermions
(with spin) and a mixture of fermions (nuclear matter), respectively. A
comparison is made with the work of Iw am oto and Y am ada 3). In section
£, a discussion of the method is given, in case it is applied to nuclear matter.
In the appendix, finally, the method is applied to an imperfect Bose or Fermi
gas at low temperature. In the evaluation of the grand partition function of
such a system, the splitting in a “dynamical” part and a “statistical” part,
offers the possibility to introduce more detailed cluster integrals. In the
fugacity expansion of the pressure and the density, at low temperature,
these cluster integrals can be ordered, roughly, to increasing powers of
(d/A) (d, range of the interaction; I, the De B roglie wave length).
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§ 2. Explicit results for the distribution functions and the energy,
a. Spinless fermions. Using the graph representation (cf. Fig. 1), intro­

duced in § 2 of II, the terms of the cluster development can easily be written
down. The first terms of the normalized pair distribution function (cf.
I (2.4), I (2.12), I (2.13), I (3.25) for definitions and notations), write

£2(^12) =  n2R 2,2(̂ 12) Lz(r2) +  n3/ R 2i3(r2; r3) L3(r3) d r3 +

+  « 3i ? 2,2( r i 2) ƒ  [ t f o ^ i s )  (*12*23*31 +  *13*32*21 — *11*23*32) +

+  Ro,2(̂ 23)(*12*23*31 +  *13*32*21 — *22*13*31)] d r3 -)-
+  2ni R2 ,2(ri2) /R o ,2(r34) ( l M 23l32 +  *13*31*24*42 —

*14*43*32*21 *13*34*42*21 — *12*24*43*31 —■ *12*23*34*41 —
— *14*42*23*31 — *13*32*24*41) d r3 d r4 +

+  i» 4/ R 2,4 {r2; r 3, r 4)T4(r4) d r3d r4 + ...........  (2.1)

In the derivation of (2.1), we have applied the result (5.4) of II, where we
proved that the graph representation of a diagonal distribution function
contains only irreducible graphs.

The non-diagonal 1-distribution function, gi(ri, rT), which is needed in
the evaluation of the kinetic energy, is given by (cf. I (2.14), I (4.33); point
1 in the graph corresponds to the coordinates r 4 and n ')

£i(r i> r i') =  «*11 +  «2 ƒ  # i , 2(1*1, r i ';  r2)(ln l22 — / 12/ 2i )  d r2 +

ƒ  f? o ,2(^23) ( — *12*21*33— *13*31*22+*12*23*31+*13*32*21) d r2 d r3+ . . .  (2 .2)

The function li}, in (2.1) and (2.2), is defined according to (I (3.4) and I (4.33))

*« =  *V- 1 SAV_1e<‘A*(« -•>'). (2.3)

If 1 corresponds to a non-basis coordinate, over which coordinate is integrat­
ed, one has r} =  r / .  The same holds for a basis coordinate in case of a
diagonal distribution function (cf. (2.1)). A cycle of one point contributes
with a factor lu. Only in case of plane waves, spinless particles and r< =  r / ,
one has /« =  1 (cf. (2.3)).

The energy per particle, E, for a system of N  particles and a hamiltonian

Fig. 1. Examples of graphs corresponding to terms of bkj  with k =  2 and k  =  1,
respectively. A double line represents a basis-connection, a single line represents an
Jf-connection; a dotted line represents an /-connection, forming cycles of all possible
orders; a cycle of one point, which corresponds to a /«-factor, is not indicated in the
figure; in case k =  1 we have used the symbol * to distinguish the basis point, (n, rF),

from the non-basis points.
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(admitting &-body forces to some order in k)
%2

H =  Zi  ~  — Ai +  Sfc Z(,*r F«>(r*)2m \
(2.4)

can be expressed in the distribution functions gk} normalized according to
I (2.13), as

In case of short range interactions and a large number N , the energy E,
for the state  specified by the J  as t r o w  wave function I (2.4), is obtained by
inserting the cluster developments for gic, derived in I and II, The result is
a cluster development for E(n, a), which is a function of the density, n, and
the param eters a, specifying the dynamical correlation factor, F, in I (2.4).
E(n, a) m ay be used in a variational principle, by varying a a t constant
density, n, in order to find the best approximate wave function for the
ground state. One should note, however, th a t the choice of functions F(rN, «)
is limited to such functions for which I (4.26) is satisfied. (bo s in I (4.26)
m ay not be replaced by (b0,$)id.). The necessity of a restriction on F (besides
the normalization property I (2.6)), in order to get a finite result for Emin
was already pointed out by E m e r y  4). If we may restrict ourselves to s =  2,
this (sufficient) condition is

— \  <  2&o,2(w, a) =  N ~x n2 J  Ro,2(^12)(/11/22 — /12/21) d r 2 <  1. (2.6)

We can use the order of magnitude extimate I (4.13), in order to arrange the
various terms of the cluster developments.

In  case F is given by I (2.8) one can derive expressions in terms of /-, h-
and /-functions (cf. I (3.25); and the definition of 6*,j in terms of graphs, to
be given in § 2d of this section, in case only one type of particles occurs.) The
energy E, in case of two-body forces specified by a potential V (r) (which may
have a hard core), can now be written as

The dash and double dash in (2.7) indicate the first and second derivatives
with respect to r, respectively. The function l(r) in the two integrands of
(2.7) m ay be replaced by I (3.5):

l(r) =  3 [sin (kpr) — (kpr) cos {kfr)\{kpr)-z, with kF =  (6n2)hi*. (2.8)

E  =  N - 1 d r i  +
rl= r i

(^(^ )!)-1J F (fc)(r*)g*(r*) d;

E(n, a) = ^ — kF2 -  n —  ITf*[r)(f"(r) +  -l*{r)) -
' IO» 2m J L t

-  2f*(r)f'(r)l(r)l'{r) d r  +  —  ƒ /*(f)/W  V{r)(1 -  l2(r)) dr +  ... (2.7)
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§ 2b. Particles with spin. The normalized wave function for the ground
state of N  non-interacting fermions (with spin), is given by

0 o(Xx,n) =  (Q»N\)~i Det (n (x})), (2.9)

where xj abbreviates the place coordinate rj and spin coordinate ( j ; j =  1,2,
N. The one-particle wave functions <p\(x) (A =  1,2, .... N  and A =  (/u, v))

are
n i x) =  e V  *„(£), with <<px-\<px> =  ÜÓX'X- (2.10)

The possible values of k^/j, =  1,2, ..., ZV/2) are given by I (2.2) and lie
within the Fermi sphere, which has now the radius kp =  (6tt2)*(»/2)* ;
v =  -f- and — correspond to spin up, %+, and spin down, respectively.

We shall limit ourselves to wave functions for the ground state of the
interacting fermions, which are of the form

0(xN, n) =  F(rN, n) &q(xn , n),  (2-11)

where the dynamical correlation factor F(rN,n) is a function of the place
coordinates only. The derivation in I then remains unchanged, if we replace
lij everywhere by its generalization

hi =  l(Xi, Xj') =  2V-1 2f_ i <pxixi) n*(x}') =
=  hbc+(ti)x+*m  +  m -1 KN-¥ (2.12)

This replacement must also be carried out for la, which is now no longer
equal to 1.

The reduction in case of diagonal distribution functions, formulated in
II, remains also valid, as one has again (xj =  xj')

hjhk d»v =  rt Hj]c- (2.13)

The results for g2(*i, x<i) and gi(x\, x i)  can again be written as (2.1) and
(2.2), if we use (2.12) instead of (2.3) and replace dr by dx =  dr. The
same holds for the condition I (4.26). Using these results for an F^r^)-factor
specified by I (2.8) and a spin dependent two-body potential

V12 — Vs{ri%) Ps° +  Vr{y 12) Pt°, (2-14)

where Ps° =  £ — J oq. »2 and Pt° =  f  +  \<J\. are the singlet and
triplet projection operators, respectively (a =  ox, ay, az are the usual spin
operators), one finds for the energy per particle, E,

3%2 nh2
E -------- k p 2 ---------

10 m 2m
+ j f ( r ) ) (  1 -  |/8(r))

f*(r)f'(r)l(r)l'(r) dr +

+ - j f * ( r ) f m V T(r) +  £Fs (r) +  Z2(r)( _  |F r (f) +  iF s (r))] d r+ ...  (2.15)
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The function l[r) in (2.15) is again given by (2.8), but now with a Fermi
limit kF =  (6ti2)* (nf2)*.

§ 2c. Particles w ith sp in  and isobaric spin. In this subsection
we generalize the formulation of § 2b, by including an isobaric spin variable
indicating two types of fermions (so that we have results applicable to nuclear
matter). However, we, restrict ourselves to equal numbers of fermions of
both types and dynamical correlations independent of spin and isobaric spin.
In the next subsection (§ 2d) we shall treat the more general case of different
densities for the different types of fermions and dynamical Correlations
which depend on the types of the fermions (without the use of the isobaric
spin formalism). In the present case &o ia again given by (2.9), if we introduce

n ( x) = eikfl'TxM^p{v): with <9>A;to>a> =  (2.16)
where xi =  (rj, £i, rn), i =  1,2, X =  ( / 1 , v, p), X =  1,2, ..., IV; and
p =  +  and — correspond to the isobaric spin functions 7i+[rj), proton, and
n-(rj), neutron, respectively. The allowed values of k^p. =  1,2 ..., 2V/4)
are now such, that & <  kF =  (6jr2)i (w/4)i . In case of a dynamical correlation
factor F(rN), independent of £N and rjN, the results of I and II (e.g. (2.1),
(2.2), (2.6)) can be generalized in a similar way as in § 2b, if we put

h) =  l{xi, Xi') =  IV-1 2 f_ i <P\{xi)n*(x/) =

=  II'X+^i)Jt+(Vi)X+*W )Jt+*(rU') +  X+(£i)n-{y i)x+*(£}')n-*(rl ï )  +•••
... +  ...] (IV/4)-1 Z jtlf  e V ‘- r/). (2.17)

Applied to the case of an F-factor of the form I (2.8) and a two-body
potential
V = 1V+(r)Psa PTT+ 3V~(r) P T°PTT+ 1V-(r)PsaPsT+ sV+(r)PT°PsT, (2.18)

the result for E takes the form
3h2 n%2 rr 2 1

E = W mkp2~  2m j \J*{r) (/'W +  -  f 'm i - m r ) ) - y * ( r ) n r ) l(r)l'(r)j d r+

+  — ƒ f*(r) fir) T\  [3 i V+(r) +  9 W~{r) +  W~{r) +  3 W+(r) +

+  (3 W+{r) — 9 W~(r) -  W~{r) +  3 3F+(r))/2(r)] dr +  ... (2.19)

jn  (2.18) we have introduced the isobaric spin projection operators P$r =
= I  — iTi.T2 and PTr =  I  +  ix i.r.2 , where Ti(Tix, riy, riz) is the usual
isobaric spin operator of particle i. The function l(r) in (2.19) is given by
(2.8) with kF =  (6tt2)* (»/4)h

Using a different method, Iw am oto and Y am ada derived an expression
for E (cf. form (II.8), ..., (11.14) of ref.3)) in case of a Serber force and an
F-factor of the form I (2.8). As far as we have compared this expression for
E, it is in agreement with the results derived here (although we could only
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derive this expression for E from formula (1.32) of ref.3) by omitting the
second sum or an equal part of the fourth sum in this formula). The value
of 2 bo,2 (being the first order term in the condition 1(4.26)), for those values
of ƒ and n, for which Iw am oto and Yam a da found £  to be a minimum,
is of the order: — 0,66 <  2bo,z< —0,49, in disagreement (in this approxi­
mation) with our condition (2.6). However, they have made the calculations
for a diameter a of the hard core of the potential as large as a =  0,6 X 10-13
cm. Recent determinations of the nuclear potential provide a value a m 0,4
X 10~13 cm. For this value of a, the condition (2.6) is probably satisfied.

Em ery (4) § 3.) noticed that certain restrictions should be applied to the
trial functions f(r). We have only been able to derive our cluster development
under the condition I (4.26) (or (2.6) of this paper), which thus seems a
natural condition to impose on f(r). (That Iw am oto and Y am ada do not
find such a condition is only because they suppose from the beginning that
a certain type of cluster development will exist.) It should also be required
that nd3 is sufficiently small (ó, distance over which f(r) differes appreciably
from unity) in order to have a reasonable convergence of the cluster ex­
pansion. It is plausible that some paradoxal results, indicated by Em ery,
occurring for certain /(r)-functions are eliminated by imposing these con­
ditions on f(r). However, further work on the best choice of f(r), the influence
of higher cluster terms and the application to nuclear matter with realistic
forces (with a core radius a sa 0,4 X 10~13 cm) remains desirable.

The part of the energy correction which is linear in n, E\, is obtained from
(2.19) by putting l(r) =  1 and l'(r) =  0. In case of a hard core potential,
with diameter a, and a correlation factor

f(r) =  1 — (ajr) e~a,r~a> r >  a,
f(r) =  0 r <  0,

one easily finds
Ei = Anna(%2j2m)[2 //(2 / -}- 1)] [1 +  a],

200,2 =  n/(\f\* -  1)[1 -  1/(2/ +  1)] dr =
=  -  4nna3[2JI(2J +  1)][* +  f(«a)-l +  2(a<x)-2], (2.22)

The cases § 2a, § 2b and § 2c correspond to / =  0 (“fermions without spin’’),
J  =  \  and ƒ =  f , respectively. The result derived by H uang and Y ang 5)
in this case, is obtained from (2.21) by putting a =  0. Although E\ is a
minimum for « =  0, one has the difficulty that 2&o,2 according to (2.22) will
violate (2.6) for « 0. However, for small values of n (i.e. na3 1) it is
easily seen that (2.6) is still satisfied for such small values of a, that the term
\v.a in (2.21) gives only a correction of the order (na3)i 1.

§ 2d. Mixture of fermions. The normalized wave function for a system
containing several (possibly more than two) types of non-interacting

(2 . 20)

(2 .21)
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fermions, is given by
&o(xNl =  nt<?>o(t)(xN‘), (2.23)

with xt(t) =  (ri(t), £t(t)), i =  1,2, ..., Nt and where the function &o(t)(xNt)
for each type of fermions, characterized by the index t, is given by expressions
similar to (2.9) and (2.10). The number of fermions of type t, Nt, may be
different for different t. This is expressed by replacing N, n and kp in (2.9)
and (2 . 10) by Nt, nt and kptt =  (6t i2)* (ntl2)J, respectively.

The J a s t ro w  wave functions for the interacting ground state, which
will be studied now, are of the form

0(XN) =  F(rN) 0o(xN), (2.24)

where the dynamical correlation factor is a function of the place coordinates
only (cf. II (1.2)). The results derived in II, for mixtures of spinless particles,
remain valid in the case of fermion mixtures, if we replace the function
ly{t) =  llt){rt, r/) everywhere by its generalization

h]U) =  i (t)(xi, x/)  =  N r 1 2 a= i  q>\(*i) n * i x/ )  =
= *Ez+(fi) x+*m  + x-m x-*m w ti2)~i (2.25)

The values of k\  for the type of fermions t lie within the Fermi sphere with
radius kptt =  (6tt2)* (nt/2)*. The partial densities, nt, may be different for
different values of t. The reduction of the cluster developments for diagonal
distribution functions, gjc(xk), to irreducible graphs remains also valied. A
generalization of condition (2.6) (which is a sufficient condition), is now
(cf. app. of I)

2g stbo,s +  2* 4s« |&o,»| <  («</«) for each value of t. (2.26)
The first summation in (2.26) is extended over sets {s*} (s« is the number of
particles of the type t), for which bo,s is positive, the second summation over
all sets {s<}, for which bo,s is negative; 2 1 st > 2.

The result of this subsection can be applied to nuclear matter: t — 1,
a proton; t =  2, a neutron. The wave function (2.24) is more general than
the one treated in § 2c, because the dynamical correlation factor may depend
on the nucleon type, and because n\ and n% may now have different values.

We shall write down some explicit results in case of an F-factor, speci­
fied by II (1.3). We abbreviate /*(|r<' — r/|) /(|r< — rj\), /*(|r<' — r/|)
f(\rt — rj\) — 1 and l{x%, xj)  by by, hy and ly, respectively. One should
note that the functions b, and hence h, may be different in the three different
cases, corresponding to a proton-proton pair: byai) , a neutron-neutron pair:
by{22), and a proton-neutron pair: bya2). It is convenient to use the graph
representation, which was formulated in II for mixtures and a general
F-factor. In this case, it can be formulated as:

bk,i(xk, xl~k) is the function, corresponding to all connected graphs of
l\ protons and 1% neutrons, formed with ^-connections and /-connections,
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the (ki +  k2) basis points being mutually connected by ^-connections; the
/^'-connections should form cycles of all •possible orders (note, that in general
/y ^  ljt and lu ^  1); points corresponding to non-basis variables (and for
which we put x = x') may not be connected by /-connections only. A point
without /-connections contributes with a factor lu (which factor was equal
to 1 for spinless particles and rj =  r/). In case of a diagonal distribution
function, rk =  r 'k, only irreducible graphs, {bjc,i)ia., have to be considered.

Using this graph representation and the generalization of formula II (1.5)
to non-diagonal distribution functions, one easily finds for the 1 -distribution
function of a proton
g l {1){%l, X l )  =  «l/ll*1» -f- « I 2 / (/ll<1,/22<1) — /l2<1)/21<1)) d * 2  +

-)-----—  ƒ  /l23(11)( —  2 / i2 (1’/21<1)^33(1) +  2 / l2 <1*/23t l ’/ 9 l <1’) d # 2  d # 3  +

-(- W i«2 ƒ  ^1 2 <12>̂ 11<1^22<2) d ^ 2  “1“ Wi 2W2

ƒ /?23<12,(—/l2<1,̂ 21<1)̂ 33<2>) <1*2 d#3 +  ... (2.27)
In (2.23) we have abbreviated 2 ^ / dr^ by ƒ cLr*. For a neutron, one finds
an expression similar to (2.27). The diagonal pair distribution functions are
(cf. II (5.4))

g2(11)(*l> *2) =  «I2 |/<11,(*'12)|2 (/ll<1)/22<1) — /l2<1)/21<1)) +  ••• (2.28)
g2(22,(*l> X 2) =  «22 |/(22,(ri2)|2 (/ll*2>/22(2> -  /l2<2,/21(2>) +  ... (2-29)
g2U2)(^ï.*2) =  »i» 2  |/<i2>(rx2)|2 In (1V22<21 +  ... (2.30)

The energy per particle, E, can be calculated with these expressions, for
a hamiltonian with kinetic energy — (h2/2m\)A, — {h2j2m2) A and two-body
potentials, which may be different for different nucleon pairs.

§ 3. Application of the cluster development method to nuclear matter. In this
section we want to discuss the application of the variational method using
cluster developments to the nuclear problem. We shall also summarize a
number of conclusions concerning this method resulting from our work.

The first purpose of our study was to investigate the consistency of the
variational method using cluster developments, in particular for potentials,
which have a hard core. Our work leads to the following conclusions:

(1) Wave functions of the Ja s tro w  form I (2.4), I (2.8) are appropriate
trial functions for a variational method, in which the /(ry)-function re­
presents “dynamical correlations”, caused, e.g., by a hard core of a two-
body potential.

(2) Expressions for the /e-particle distribution function gk and the energy
E can be worked out as cluster developments (see I (4.31) for g*(rfc) and § 2
for explicit expressions for g2 and E). The methods, which are used are
analogous to the Ursell-M ayer development of statistical mechanics,
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but the simultaneous occurrence of dynamical and statistical correlations
causes additional complications. The normalization factor (exp (—%Nb))
of the wave functions is also obtained; 7(4.32).

(3) In the derivation of the cluster developments a condition I (4.26)
is derived, which is essentially a condition for the /-functions, which should
be satisfied if the range d of the dynamical correlations is sufficiently small
in comparison with the average mutual distance.

(4) The methods used provide a systematic way for finding the different
terms of the cluster developments, also the higher order terms. The simplifi­
cations, which are obtained by introducing irreducible cluster functions are
discussed in chapter II.

An attractive feature of the use o fja s tro w  wave functions in a variational
method is that no difficulty occurs at all in the calculation of the energy for
a two-body potential with a hard core, whereas an infinite result is found
for the energy if simple perturbation theory (Born approximation) is used
for the energy calculation.

A disadvantage of a variational method, starting with wave functions
containing some parameters, is that no rigorous solutions are obtained,
but only approximate solutions. One can never improve on the best approxi­
mate wave function contained in. the set of wave functions taken as a
starting point, so long one stays within the set.

It is therefore desirable to have a further discussion of this initial choice
of wave functions. In this respect the work of Gomes, W alecka and
W eisskopf 6) is of importance. These authors discuss some properties of
nuclear matter on the basis of the “independent pair model”, which can be
considered as a certain approximation to the Brueckner  theory; they
consider the “wounds” in the independent particle wave function caused
by the repulsive core of the nuclear two-body potential, and show that these
wounds become rather small after a certain “healing distance”. It is seen
further, e.g. from Fig. 4 and 5 (or 8 and 9) 6) that the shape of the wounds
is very similar for different relative momenta of the two particles. If we
now want to make a comparison with the method using Ja s t ro w  wave
functions, where the dynamical correlations for pairs of particles are ex­
pressed by the functions /(ry), it seems that the two approaches show a
correspondence in the following way: the J a s t ro w  wave functions specify
the state in configuration space, if the following two approximations are
made for the dynamical correlations between pairs of particles (the “wounds”
in the wave function in the terminology of 6))
(a) they are taken to be spin independent,
(b) they are taken to be momentum independent.

In view of 6), this drastic simplification seems still rather satisfactory
from a qualitative point of view.

In view of approximation (b) (momentum independent pair correlations)
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it would seem reasonable also to use a wave function & =  F<Po for finite
nuclei, F being the same factor I  (2.8) as for infinite nuclear matter and &o
being a shell model wave function (without pair correlations), in the same
order of approximation.

The numerical results for the volume energy and density at the equilibrium
density of nuclear matter are quite similar, calculated by the method of
Gomes, W alecka and W eisskopf 6) and with the aid of Ja s tro w  wave
functions by E m e ry 4), Iw am oto and Y a m ad a 3) (however, a precise
comparison would require new calculations, because somewhat different
nuclear forces were used). The saturation property is obtained by both
methods for a Serber force with hard core potential. The binding energy
per nucleon is found as a difference of two large quantities (kinetic and
potential energy) and is therefore not easily calculated with high accuracy.
The value which is found (about 5 MeV) is substantially lower than the ex­
perimental value (about 15 MeV), probably as a result of an averaging out of
the tensor force by the approximations which are made.

Summarizing, it may be said that the variational method using cluster
developments is a consistent but approximate method for dealing with
interacting fermions with e.g. a hard core potential, such as occurs in nuclear
matter. The following might be added concerning the method:

(a) The result for the first approximation is quite simple and allows a
qualitative (to semi-quantitative) understanding of some properties of
nuclear matter such as the nuclear saturation property, as discussed along
these lines by Iw am oto and Y am ada3), E m ery 4) and D ab ro w sk i7).

(b) Further work should show whether the approach making use of
Jas tro w  wave functions (containing the dynamical correlations in a
resonable way) provides a good and relatively simple way to obtain a qualita­
tive (to semi-quantitative) understanding of other properties of (finite)
nuclei, which depend essentially on such correlations, and where the more
precise methods developed by B rueckner (and others) may only be appli­
cable with difficulty or great complication.

Appendix

Cluster expansion for an imperfect Bose or Fermi gas at low temperatures.
The cluster development for the ^-particle distribution function, gk, of
a Fermi gas in the ground state, was obtained by writing the integrand
of gk, |<P|2, as a product of two factors: (1) |</>o|2, being the integrand for
non-interacting particles. This part was expanded into permutation cycles,
which were graphically represented by means of /-connections, expressing
“statistical” correlations with an effective range &f-1 n~K (2) W  =  F |2,
describing the change in the integrand caused by the introduction of short-
ranged forces. W  was assumed to contain mainly “dynamical” correlations,
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with a short range, (5, of the order of the range of the forces. This part was
expanded into {/-functions, which functions were defined by an Ursell-
M ayer development and could be represented by stars. The total integrand
of gk was expanded in ^-functions, corresponding to connected graphs
containing /-connections as well < as {/-stars. The order of magnitude of a
contribution, corresponding to a certain (complete) graph, could be estimated
by comparing the lengths d and kp-1 (cf. I (4.13)).

Although it is quite a different problem, something analogous can be done
in the cluster development of an imperfect Bose or Fermi gas, by writing
the “configurational integrand” as a product of two factors: (1) the con­
figurational integrand of such a system at the same temperature, T, but
without interactions, (2) the remaining part, which part we shall again call:
W. The first factor can be expanded into permutation cycles, which can be
represented by /-connections between numbered points (coordinates). They
express the statistical correlations between particles without interaction.
The range of these correlations is given by the De B roglie wave length,
A, which depends on the temperature. The second factor, W, describing
“dynamical” correlations with a range, d say, is expanded in {/-functions by
means of an Ursell-M ayer development. The total integrand is expanded
in B-functions, represented by connected graphs containing both “statistical’
(/) and “dynamical” ({/) elements. The splitting of the integrand into two
factors, offers the possibility to introduce more detailed cluster integrals,
b. In case A <5, they can be rearranged, roughly to increasing powers of
(<5/A), by an order of magnitude estimate, which is similar to I (4.13). It is
assumed that <5 is not very temperature dependent and is of the order of the
range of the forces.

The partition function, Qy, of N  particles (which are assumed to be
spinless, for the sake of formal simplicity) with hamiltonian H(N) =  K (N) +
F (iv) (KlN) and F liV): kinetic and potential energy for N  particles, /3 =
=  1 IkT) is

Qn =  Tr [ e - ^ ' 1) =  Tr{WN t r W N)}. (A. 1)

The trace is taken over all, orthonormal, properly symmetrized states

\kN(rN) >  =  [QNN\(m\m2\ ... )]-* (±  l)p n & ï e W .  (A. 2)

The upper and lower sign refer to bosons and fermions, respectively;
k =  (27t/L)n/i (cf. I (2.2)); the number of momenta in the set kN
equal to k is arbitrary for bosons and 0 or 1 for fermions. If W(r'N; rN)
is a matrix element of the operator W, defined in (A. 1), in case of coordinate
representation, we can write

Qn =  (N\ QX)-1 Jf dr’x  drN WN( r ; r») XN(r* ; r'X), . (A. 3)

54



where we have abbreviated

Xy(r»; r'*) =  A»  S p (±  1)  ̂n< -i k,pu (A. 4)
mg

lii =  l{rt -  r /)  = 4 - 1 ^  eik̂ n~T>)-  2^  V  . (A. 5)

The normalization constant, A, in (A. 5) is such that 1(0) =  1; putting
A =  QX~3, one has A =  (/s2/2jrm&7')i, if T is not extremely low. The second
factor is expanded in permutation cycles (sign (±  l)s-1» s number of “points”
in the cycle, a point, with number i now represents the coordinates r* and
n')', W y  is expanded in {/-functions, which are defined by an U rsell-
M ayer development

Wi(r'] r) =  Ui(r'\ r) =  d(r’ -  r);

JT2(ri', r 2'; r x, r 2) =  C7i(rx'; r x) {/x(r2'; r 2) +  {/2(rx', r 2'; r x, r2); ... (A. 6)

We introduce a detailed cluster function:
Bi,m,n(r'1) rl), the function corresponding to all connected graphs of /

points (rx', r x; ...) formed with /-connections and a number of (unconnected)
f/s-stars (s >  1), with the restriction that the number of stars with s >  2
is m and the number of stars with s =  1 is n ; the /-connections should form
cycles.

We put Bi(r'1) rl) =  Sm,n Bitm<n(r’1] rl). According to the definition of
Wy, X y  and B\ we can now expand (cf., e.g., the analogous formula I (3.29))

Wy(r'N\ rX) XN(r»; r  *0 =  AK S’N{lt) Ui Bi,(r%; 1*) (A. 7)

We further introduce the cluster integrals

Km,n =  (£-J A*-!/(/)!) ƒƒ dr'i dr* Bltm,n(r’i-, r*). (A. 8)

If we assume that fT^r'-N’; r- )̂ has, qualitatively, the properties of
d(r'N — rN) exp (— j3V(N)(rN)) (d(r'N — rN): Alike function of short range
cf. form. (7) of ref. 8)), it follows from an order of magnitude extimate,
similar to I (4.13) (m +  n — 1 relations between the momenta k , ortho­
gonality of the plane waves, normalization of (A. 5)), that for a large
volume Q and A <5, biim>n «a (ó/A)3(*~m~”). Using standard procedures
(cf. App. XI 9) and § 4 1)), one finds from (A. 3), (A. 7) and (A. 8) for the
partition function, Qy

Qn  =  coefficient of zN in : exp [A Si,»,» zlbi,m,n\- (A. 9)

Hence the grand partition function, Q, is immediately found as

Q =  £ “ =„ ew t T  Qn  =  exp (A Si.».» zl &i.».*). (A. 10)

where z is the fugacity, z — exp (jijkT) (it should not be confused with the
activity, A-3 exp (/zjkT)). Each graph, corresponding to a term of Bi<m<n,
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m ^  O, can be obtained from a graph of Bi-n,m,o by extending the (I —- n)
factors lij (including i =  j) with n points: ly -> ln U \{r{ ; r{) ly \  ......
The integration over these points can be carried out and one finds.

%,n zlh,rn,n =  {m > \ ) I — n =  I' > 2) (A. 11)

where bi<m* is defined in the same way as if each /y-factor (also for
i =  ƒ) is replaced by

fl2 %2

li}* =  l*(rt -  r / ; z) = a - 1 eiV (r,~r/) " aUrp* (1 ^ 2  =

(=  S 8>1 (±  2)*'1 s“3/2 exp [— n ITi -  r / | 2/sA2]). (A. 12)

The function Z*(r) is related to the pair distribution function of non-in­
teracting particles. The same reduction can be carried out for the part
which is independent of V{N)(W =  1, Us =  0 for s >  2 if ViN) =  0)

zb0,o* = zlbi,o,i = A - i  £ s>1 ±  (±  ZY s-1 exp [— s h ^ k zl2m] =

( = £ 8>1± ( ± 2 ) s s“5/*). (A. 13)

According to (A. 11) and (A. 13) the expression (A. 10) for Q reduces to

Q =  exp {A[zb*o,o +  zl è*hm(2)]}- (A - 14)

Using the relations e~Pw = Q and N  =  pQ — — ^z(8cl>/8z)q t̂ (with cm —
=  — p&), we obtain from (A. 14) for the pressure p and density p

PpIkT  = i zb*0,0(2) +  zlb*i,m{z), (A. 15)
0

X*P =  Zl)z +  Sz»2,m>l zl b*i,m{z)\ (A. 16)

The terms in these series contain higher powers of (öjX) if (I — m) increases.
Using the graph representation (the same as for bi>nit0 but now with (A. 12)
instead of (A. 5)), the explicit results for b*itTn can easily be written down;
e.g. I — 2, m =  1, where it can be reduced to -

z*b*2,1(2)=2-irc-3 I dfe I d r - \ - [ e +* r± e - ikr]*0~ ^-[e i,,r±  e ^ J ,  (A.17)
J J y/2 y/2

where we have introduced the relative coordinate r, and abbreviated

0  =  (e-PHr e+PKr-1) ^ (>1 (±  zy+t (s+ t)~ ^  exp [ - 2 stpKrl(s+t)]. (A. 18)

(Hr =  K r +  V (r) ; K r = — (h2/m)Ar.) We indicate how two results from
the literature can be deduced as special cases from the result (A. 15):
(a) Putting s =  t =  1 in (A. 18) (permutations only between the two
interacting particles) gives the result (8.30) of ref. 10).
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(b) The term which is of the first order in V, -can be calculated from
(A. 17) and (A. 18) by approximating e~PHr e+PK' — 1 =  — fiV(r). Permu­
tations are here taken into account to any order. Using a pseudopotential,
V(r) =  4na(%2jm) 6(r) 8/8r (r ...), for hard spheres with diameter a, this
term equals the corresponding term in form. (20) of ref.11).

One should be careful in the replacement of summations over k by inte­
grations over k (cf. the expression between brackets in (A. 12) and (A. 13)).
This means that the results which are given and which are of importance
for quantum effects at low temperatures, need no longer be valid in the
limit T  =  0; at extremely low temperatures further developments are
needed; also the difference between bosons and fermions then becomes still
more important.

The classical limit, T -> oo, is formally obtained by putting

Wxf(r'N; rN) =  6 { r -  r*t) exp [ -  pV<X'{r*)] and li}* =  öi} (7->0: rt -  r*',

s =  t =  m =  1 in (A. 5), (A. 12), (A. 13), (A. 15) and (A. 16)).
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SAMENVATTING

Uitgangspunt van dit proefschrift is de grondtoestand, van een fermionen-
gas met wisselwerking van korte dracht (eventueel met afstotende pit),
beschreven door een J astrow-golffunctie. De verandering veroorzaakt door
de invoering van de krachten, wordt hierbij weergegeven door een correlatie-
factor voor de golffunctie van de ongestoorde grondtoestand. Deze correlatie-
factor is een functie van de plaatscoordinaten der deeltjes en van een of
meer variatieparameters.

In hoofdstuk I wordt, voor het geval van spinloze fermionen, een cluster-
ontwikkeling afgeleid voor de distributiefuncties. De verkregen resultaten,
die gebruikt kunnen worden voor het berekenen van de energie, zijn geldig
indien aan een zekere voorwaarde, opgelegd aan de correlatief act or, is
voldaan. Deze voorwaarde beperkt de keuze van Jastrow-golffuncties
indien deze worden gebruikt als probeerfuncties in een variatieprincipe.

In hoofdstuk II worden de resultaten van het eerste hoofdstuk, na uit­
breiding tot mengsels van spinloze fermionen, vereenvoudigd door de
invoering van irreducible clusterfuncties en het gebruik van combinatorische
methoden.

De generalisatie tot deeltjes met spin wordt in hoofdstuk II behandeld.
Expliciete resultaten voor de distributiefuncties en de energie worden
achtereenvolgens gegeven voor fermionen, deeltjes met spin en isobarische
spin, mengsels van fermionen. Dit hoofdstuk bevat tevens een bespreking
van de toepassing van de methode op kernmaterie. In de appendix wordt
de methode tenslotte toegepast op een Bose- of Fermigas bij lage tempera­
tuur. De splitsing in een “statistisch” en een “dynamisch” deel leidt hier
tot de fugaciteitsontwikkeling van druk en dichtheid met behulp van meer
gedetailleerde clusterintegralen.
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