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STELLINGEN

Bij zijn beschouwingen over de transporteigenschappen in supergeleiders met
elkaar overlappende geleidingsbanden, sluit Kresin de mogelijkheid uit,

dat bij lage temperaturen een elektron door wisselwerking met de rooster-
trillingen van het kristal tussen die energiebanden kan worden verstrooid.
Dit betekent dat zijn theorie niet van toepassing is op niobium.

V.Z. Kresin, J. Low Temp. Phys. 11, 519 (1973).

Het verband tussen weerstand en temperatuur voor germanium thermometers
van het merk Cryocal wordt beneden 2 K gegeven door een eenvoudige formule

uit de half-geleider theorie.

Het verdient aanbeveling susceptibiliteitsmetingen te verrichten aan

irreversibele type-l| supergeleiders in afnemende velden beneden Hcl'

De lijn in het (M,H)-diagram die volgens Aston, Dubeck en Rothwarf voor
reversibele type-|| supergeleiders met Kk = 3/2 de overgang aangeeft tussen
de intermediaire mengtoestand en de zuivere mengtoestand als funktie van de
demagnetisatie-coéfficiént, is verkeerd getekend.

D.A. Aston, L.W. Dubeck en F. Rothwarf, Phys. Rev. B3, 2231 (1971).

Het feit dat Clement en Quinnell enerzijds en Zimmerman en Hoare anderzi jds
verschillende exponenten vinden voor de term (log R)/T in hun, overigens
identieke, aanpassingsformules voor Allen-Bradley koolthermometers, waarmee
zij bovendien dezelfde nauwkeurigheid bereiken, is niet verwonderli jk.

J.R. Clement en E.H. Quinnell, Rev. Sc. Instr. 23, 213 (1952) .

J.E. Zimmerman en F.E. Hoare, Phys. Chem. Solids 17, 52 (1960).

Dit proefschrift, §3.3.

Bij de verklaring van het funktioneren van p-n gelijkrichters wordt ten
onrechte het gewone weerstandsgedrag van het halfgeleidende materiaal
veelal buiten beschouwing gelaten.
C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1969).
H. de Waard en D. Lazarus, Modern Electronics (Addison Wesley,
London, 1966).



Om een beter inzicht te verkrijgen in de verschillende spin-rooster=
relaxatieprocessen van MnC12~hH20 en MnBrz-hHZO, is het gewenst metingen
van de relaxatietijd uit te voeren in het temperatuurgebied tussen 20 K

en 78 K als funktie van zowel de temperatuur als van het magnetisch veld.

Het begrip levensduur van een energieniveau zoals Haupt dat gebruikt kan
gemakkelijk aanleiding geven tot verwarring.

J. Haupt, Z. Naturforsch. 26a,1578 (1971).

De vaak gepubliceerde bewering dat kernfusie een ,schone' en veilige

energiebron vormt, dient gerelativeerd te worden.

Om het zuinig rijden te bevorderen, zouden motorvoertuigen moeten worden
uitgerust met een wijzerinstrument waarmee op elk moment het brandstof-
verbruik per kilometer is af te lezen. Een dergelijk apparaat is op een-

voudige wijze te konstrueren.

P.H. Kes 27 februari 1974




CHAPTER 1
GENERAL INTRODUCTION

In this thesis the thermal conductivity of type-|| superconductors is
studied in the purely superconducting, the mixed, and the normal states. The
thermal conductivity is influenced in a more complicated way by the transition
to the superconducting phase than the electrical conductivity. This is due to
the fact that both the electrons and the phonons contribute to it, whereas both
components are influenced by the appearance of a gap in the energy spectrum of
the electrons around the Fermi energy.

The ratio of the thermal conductivities of superconductors in zero magnetic
field (purely superconducting state) and fields well above H. (normal state)
as a function of temperature is well described by the theory of Bardeen,
Rickayzen, and Tewordt 1), and by that of Tewordt 2). It follows from these
theories that the thermal conductivity of the electrons in the superconducting
state, whether they are scattered by lattice defects or by the phonons, de-
creases below the normal state value. The conductivity of the phonons, to the
contrary, increases nearly exponentially as the temperature is lowered. From
the heat conductivity curves in the normal and (purely) superconducting states
one can conclude whether the electron or the phonon conductivity is predominant,
and which is the main scattering mechanism.

A rather complicated situation is encountered if a type-I| superconductor
is placed in a magnetic field. Below the first critical field Hc the super-
conductor is in the Meissner state in which the magnetic field is excluded from
the bulk of the sample. Above the second critical field Hc it is in the normal
state. In both field regions the thermal conductivity is independent of the
field value. Between HC and HC2 a gradual transition from the Meissner to the
normal state takes place. This situation is characterized by a triangular
lattice of normal regions of cylindrical shape (flux vortices) embedded in
purely superconducting material, and is therefore denoted as the 'mixed state''.
In the simplest case the magnetic induction in the bulk is given by the
Abrikosov curve 3). Crystal lattice defects and surface irregularities, however,
disturb the idealized picture by pinning of the flux vortices, which can give

rise to appreciable deviations from the Abrikosov curve and the occurrence of
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hysteresis phenomena. Due to the recent work of Fietz and Webb h), Labusch

s
and Kramer 6) the mechanism of flux pinning is better understood than before,
but nevertheless quite often the experimental circumstances are not ideal, so
that the results can still be described more accurately by simple phenomenolo-

7:8)

gical models than by the more fundamental theoretical expressions.

The mixed state, whether reversible or irreversible, must obviously in-
fluence the thermal conductivity. In general the consequences are difficult to
predict. In four special cases, however, the results of theoretical considera-
tions are available.

T For the dirty limit Caroli and Cyrot 9) predicted a linear behaviour of
the coefficient of thermal conductivity A as a function of the magnetic induc-
tion near Hg

2 Maki 10§ demonstrated that for a pure superconductor A should be propor-
tional to (HC - B)i, so that an infinite slope of the A(B) and A(H) curves
must be found at ch. The coefficient of proportionality not only depends on
temperature but also on the mutual angle between the field and the direction

of heat flow.

33 Canel ]]) derived that in a pure superconductor a sharp decrease in A
should occur just above Hc] aF low temperatures. For those temperatures we have
predominantly phonon conductivity and the decrease is due to phonon-electron
scattering in the normal cores of the flux vortices. Surprisingly, however, no
direct increase of the conductivity of the electrons in the vortex cores can be
expected due to their low group velocity.

4, Cleary 12) pointed out that at temperatures near Tc' where the conductivity
is predominantly electronic, a decrease in A should be expected just above Hc]
for pure superconductors. This decrease is due to scattering of the electronic
excitations by the vortices.

In the above considerations ''dirty' means that the mean free path of the
electrons % is short as compared to the coherence length 50, whereas '‘pure'!
means £ >> 50.

All the investigations in this thesis were carried out on rectangular

samples of niobium, an intrinsic type-ll superconductor, of which the flux

pinning properties are well understood 8). lts high critical temperature TC

(9.1 K) makes it possible to cover a wide temperature range by conventional
cooling techniques. A serious difficulty is, however, the accurate calibration
of the thermometers in the region between liquid helium and hydrogen.

In chapter 2 we give a more extensive survey of the theory of the thermal

conductivity of metals at low temperatures in general, and of superconductors

8




particularly, both as a function of temperature and of magnetic field.

In chapter 3 a description is given of the measuring apparatus, the
auxiliary equipment, and the experimental procedure, together with a detailed
explanation of the calibration procedures and a discussion of the final experi-
mental accuracy.

Chapter 4 deals with the experimental results and the discussion of the
temperature dependence of the thermal conductivity of five niobium samples in
the purely superconducting and normal states. The samples differ in crystalline
defect structures due to different heat treatments and, in one case, subsequent
neutron irradiation. By means of a precise analysis of the A(T) curves in the
normal and superconducting states it is possible to separate the electron and
phonon contributions applying the theories of BRT l) and of Tewordt 2). The
dependence of the phonon conductivity on the defect structure is discussed.

For a discussion of the thermal conductivity in the mixed state it is
necessary to know more about the flux distribution in a sample. In chapter 5
this problem is elucidated. We introduce a mathematically simple expression for
the description of the reversible magnetization curve, which fits the experimen-
tal data rather well 7). Next, the formulae for the irreversible magnetization
curves between Hc and HC are derived for a general flux pinning model. For
the most reversible sample the model of Labusch 5) turned out to give the best
fit with the measurements. As a result the internal magnetic induction as a
function of position inside the sample could be calculated.

The effect of an induction-free region just above Hc1 in increasing field
is clearly demonstrated by the irreversible behaviour of the thermal conduc-
tivity in the mixed state for small inductions. This, and the behaviour in
the vicinity of Hc2 are the subjects which are discussed in chapter 6. The
field dependence of X\ has been measured for three different orientations of the
magnetic field with respect to the direction of the heat flow and the sample
surface. The problem of demagnetization effects in the transversal and perpen-
dicular field orientations is elucidated.

Al though the purest sample can not be considered as a ''pure'' superconductor
according to the definition given above, because 2 ™ 50, a reasonably good
agreement was found for the results in the region just above HCl with the theory
for pure superconductors. For fields near HCZ, however, the conductivity turned
out to be a linear function of the magnetic field, but with a slope which was
an order of magnitude larger than what was theoretically predicted for 'dirty"

superconductors.
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CHAPTER: 2
THEORETICAL CONSIDERATIONS
Introduction

In this chapter a rather extensive survey is given of the theoretical
background necessary to understand the phenomenon of thermal conductivity in
the steady mixed state of a type-|| superconductor. First of all one has to
know something about transport theory in solid state physics, both in the
semi-classical and in the pure quantum statistical mechanical limit, section 1.
From the normal state thermal conductivity one can conclude which particles
mainly contribute to the heat transport, and which is the main scattering
phenomenon relaxing the transport current. The formulae underlying this pro-
cedure of separation will be discussed in section 2. Properties of super-
conductors (both type-l and type-11), concerning the temperature dependence as
well as the magnetic field dependence, must be known before any interpretation
of the thermal conductivity behaviour is possible. These topics are to be
elucidated in section 3. After this has been done, one has the tools to tackle
the problem of thermal conductivity in superconductors, firstly with respect
to its temperature dependence (section 4), secondly concerning its behaviour in
the mixed state (section 5). Finally, this chapter will be concluded (section
6) with some remarks about the specific solid state properties of the material

(niobium) on which the experiments described in this thesis were carried out.
§2.1 Some Properties of Transport Theory in Metals

251l Metals in Equilibrium. Quasi-Particles. The properties of a metal

are characterized by the properties of the free electrons and the quantized
lattice waves, the phonons. A simple model for the electrons is that of the
free electron gas with its well-known properties ]). At temperatures well below
the Fermi temperature the only electron states with physical importance are
those lying in a range * kBT around the Fermi level EF (k8 is the Boltzmann
constant) . Their density of states is N(0). The states of lower and higher

energies are completely filled or empty. One may consider the occupied states
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(electrons) above and the empty states (holes) below the Fermi level as
independent quasi-particles with positive respectively negative energies,
measured with respect to EF' In this picture the technique of annihilation and
creation operators (second quantization) fits quite well. The number of quasi-
particles is not conserved, so in order to obtain thermodynamic quantities

one has to use the grand ensemble average.

In reality the electrons in a metal are not free at all. Instead, they
are continuously interacting with each other, with the phonons, and with impuri-
ties. In the quasi-particle language this means that an electron state can not
exist forever, but will be destroyed by a scattering event; it has a finite
lifetime and, because of the uncertainty principle, its energy is not exactly
determined. It only is meaningful to speak about particles in a classical way
if the uncertainty in energy is restricted toa narrowband around the energy
state itself. This requires that one has to construct quasi-particles with only
weak mutual interaction. This can be done by transforming the Hamiltonian in a
suitable way, which for example has been done (Pines and Bohm Z)) for the strong
Coulomb interaction between the electrons in a metal. The quasi-particle in this
case is an electron with a "positive' cloud around it, corresponding to the
effective exclusion of other electrons from its neighbourhood. The remaining
interaction is only a weak screened-Coulomb interaction. The effect of the cloud
can be incorporated in the effective mass of the quasi-particle. Another example
is the complicated problem of the electron-phonon interaction, which has been
dealt with by Frohlich 3), providing the key for a microscopic theory of super-
conductivity.

The same considerations can be given for the phonons, which themselves are
already a kind of quasi-particle or, rather, collective excitations. The number
of phonon modes of a certain frequency is given by a spectral. density function,
which can be rather complicated. As a first approximation the Debye spectrum is
often used.

0f course, one can distinguish two kinds of quasi-particles: the fermions,
obeying Fermi-Dirac statistics (their occupation number being given by the
Fermi-Dirac distribution function), and the bosons, their occupation number is

given by the Bose-Einstein distribution function.

2152 The Boltazmann Equation ?). In non-equilibrium conditions the distribu-

tion functions depend not only on momentum but also on position and time, say

f(i,?,t), considering only electrons in the first instance. This local distribu-

tion function can be changed by diffusion of particles from or into neighbouring

12




regions, by applying an external field, which gives rise to changes in the
wave-vector K, or by scattering of an electron out of or into the state k. The
Boltzmann equation follows from the steady state condition %% = 0, leading to:

v d.f & Fegrad, ¢ (2.1)
= vk grad k*gra K .

af
(Bt)scatt

£
& h
an electric field E. The quantity to be determined from eq. (2.1) is the de-

in which ;k is the group velocity of the electrons, and k== E, if we have only

viation from the local equilibrium distribution function Fz, viz:
> L > = o -
g, (r) = £ (r) - £ (T(r)) (2.2)

The scattering term in (2.1) can be a complicated integral expression
involving the matrix elements of the scattering mechanism, but can often be
expressed in terms of a relaxation time t by the assumption:

of 3
(:‘_k) e (2.3)
Jat “scatt at T
If the diffusion term is zero (no thermal gradient), and if gk(?) is

assumed to be small, eq. (2.1) is easily solved:

g O
(F) = ( Ofk) v oE (2.4)
9 = agk etv, 2
2k2
where £k e EF. The electrical conductivity follows from the relation
> 3
for the current density J = o+F = 2Ie3kgkdz. Substitution of eq. (2.4) gives
o
4 of
3 A o e k 2> >
o = 2t/dk ( a€k) eV, v, (2.5)

For a free electron gas eq. (2.5) becomes equal to the well-known expression

2
ezrviN(O) = e"f” (2.6)

3
3

where vF is the Fermi velocity, in the electron mass, and n the number of

electrons per unit volume.
If we only have a thermal gradient (£ = 0) the solution of (2.1) is

(o]
afk
agk

9, (F) = = (- 529 () ¥, +grad T (2.7)

13



2 =
The heat flux is given by ZIngkgkzk. This is equal to =-Asgrad T, which yields

for the thermal conductivity

2
e
1 o » k k T
jfe - Znfdl aak)(_T ) VY, (2.8)

In the case of a free electron gas eq. (2.8) simplifies to a formula also

khown from kinetic gas theory:
C v.L (2.9)

in which Ce is the specific heat of the electrons per unit volume, and % their

mean free path. Together with C_ = i kBZTN(O), eqs. (2.6) and (2.9) lead to

3
the well-known Wiedemann-Franz law:
nz kB2
Ae = T—e-i- To = LOTO (2.10)

where LO is the Lorenz number.
The expression for T depends on the scattering mechanism. |f there are
several simultaneous scattering mechanisms, acting independently, each with a
specific relaxation time T Matthiessen's rule yields:
=1 =

[ = 5T,
i

: (2.11a)

A difficulty is that not always a relaxation time can be defined as was done in
eq. (2.3). For example, Frohlich 5) pointed out that in the case of electrical
conductivity T could not be defined at low temperatures if the electrons were
scattered by phonons. However, it turned out to be possible to replace t by a
transport lifetime t = 10|3E7§]_], in which T is the mean time between two
events of an electron (scattering lifetime), and |Ak/k| the average relative
change of momentum per scattering event. The latter factor is correlated to the
effectiveness of the scattering mechanism. We can generalize this replacement
by defining:

T =€ T (2.12)
in which € is a parameter expressing the scattering effectiveness, depending

on the mechanism and on the transport phenomenon being considered. Under these

circumstances equation (2.11) has to be replaced by




1-] = I r-] -
i tri

tr, (2.11b)

This procedure is certainly not correct from a purely theoretical point of
view, but in practice it can be used in order to explain the temperature depen-
dence of the transport coefficients.

For the phonon thermal conductivity one can also derive an expression from
the Boltzmann equation in terms of a parameter 1, but in this case it is always

a function of the phonon wave-vector 4. The analogue of eq. (2.9) becomes

1 .=+ 2 ,» >
Ap -y fdqv, c(q)t(q) (2.13)
in which v_ is the velocity of sound and c(q) the phonon specific heat per
unit volume for phonons with wave-vector a.

Finally we want to conclude this section by remarking that a general res-
triction for using the Boltzmann equation is, that a distribution function can

only be defined for the quasi-particles if they have well-defined energies.

2:1.3 The Kubo Formalism 6). There are situations in which it is not pos-
sible to use the formalism of the preceeding section. For example, in super=
conductors in the gapless region (see section 2.3) the energy of the electrons
with momentum near the Fermi momentum can not be treated as a narrow band of
energies. So the quasi-particle approximation breaks down. This kind of situation
is only taken into account in a quite new set-up of the transport theory, the
Kubo formalism.

It is not my intention to give a complete discussion of the Kubo formulae
for the transport coefficients. Worth mentioning, however, is its general
validity, as it has been derived from first principles of quantum statistical
mechanics. Moreover, in solving the problem one always makes use of the advanced
technique of modern many-body theory, the Green's function method. With this
method both the energy spectrum and the lifetimes of the quasi-particles are
treated simultaneously. Any kind of scattering mechanism can, in principle, be
dealt with by means of diagrammatical series expansions, although the mathematics
can be very complicated.

The Kubo formula, together with the Green's functions technique, makes it
possible to calculate the coefficient of thermal conductivity in complicated

physical situations, such as superconductors in the mixed state.
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§2.2 Thermal Conductivity of Normal Metals at Low Temperatures 7)

In metals energy can be transported by electrons and phonons. It is
commonly accepted, as a first approximation, to consider both mechanisms as
operating separately, but parallel, so that their conductivities add together
to

A=
Ag + A (2.14)

Let us first give our attention to the electronic contribution, for it is by

far the greatest in pure normal metals at low temperatures.

22251 Contribution of the Electrons. Firstly we define a thermal resistivity,
we, equal to A;‘. As indicated by eq. (2.8), Ae « 1 and therefore we « 1-1. In
view of the eqs. (2.11a) and (2.11b) we obtain for several independent scattering

mechanisms:

Ue = ? wei (2.15)
We distinguish:
wed: Elastic scattering of the electrons by lattice defects. The effect is a
change of the angle of the electron momentum with respect to the direction of
the transport current; the magnitude (energy) does not change. This scattering
mechanism will affect energy and charge transport in the same way, that is, both
will have the same transport lifetime (see eq. (2.12)), and the Wiedemann-
Franz law, eq. (2.10), will be obeyed:

! (2.16)

Weg = PolZgT)
where o is the residual resistivity.
EEB: The electrons are inelastically scattered by absorption or emission of
phonons. The energy transfer is of the order of kBT, which is about the mean
phonon energy. Because this is of the same order of magnitude as the spread in
the distribution function of the electrons, it can change a relatively hot elec-
tron into a cold one, and vice versa. That is, the effectiveness is almost one:
Ttr = TO for heat transport. For charge transport, however, the effectiveness
is of the order of magnitude of the relative momentum change, which is more a
change of angle than of magnitude. It will depend on temperature via the phonon

momentum: € « Tz. The scattering lifetime is inversely proportional to the

16




phonon number, so that TO « T-3. Therefore we have for the electrical conduc-
5

tivity Oep « T 2, the well-known Bloch-Griineisen law. For the thermal resistivi-
ty we obtain:
W = bT (2.17)
ep

b is a constant b). The Wiedemann-Franz law is not obeyed.

Substituting the results, egs. (2.16) and (2.17), into eq. (2.15) we obtain

for the electronic heat resistivity at low temperatures
W = a/T +bT? (2.18)
where a = po/Lo. This law has been verified by many experiments.

20202 Contribution of the Phonons. Although the phonon conductivity in

normal metals can usually be ignored, it plays an important part in supercon-
ductors well below the critical temperature. Therefore it will be discussed

here. Again we have the impurities as an important scattering source, and, of
course, also the electrons. Each kind of impurity now has its specific scattering
cross section or inverse scattering time, depending on the phonon frequency w,

as was calculated by Klemens 8). His results are presented in the following

table: (phonon-phonon Umklapp processes do not contribute at low temperatures)

scattering mechanism T temperature dependence in A
dislocations w1 T2
point defects wb T-]
external, grain boundaries wO T3
] 2
electrons W T

The temperature dependence of A for one scattering mechanism follows directly
from eq. (2.13) after substitution of a Debye spectrum and changing the variable
of integration into x = hu/kBT. In the temperature range of our experiment and
for the samples we investigated, only point defect, grain boundary, dislocation,
and electron scattering are important. In that case we obtain for the phonon

thermal conductivity (using Matthiessen's rule):

17



e x'eX(eX - 1)72
AL dx (2.19)
P 2n2h3vs 3 Px'T" + B + ExT + DxT]

v is the velocity of sound. For details about the constants P (point defects),
B (boundaries), D (dislocation), and E (electrons) we refer to Klemens' papers 8l
We see that it is not possible to separate the different terms contributing to
the phonon resistivity, as could be done for the electrons. This obviously is
due to the different frequency dependences of the t's.

Now we can show why Ap << Ae. If only phonon-electron scattering is taken
into account we can relate the resistivity belonging to this mechanism W e tO
wep. We obtain for Nb: wpe/wep = 10 2(OD/T)L}. Moreover, wep = (bT3/a)wed. Below

10 K it is correct to replace We by We (depending on the sample purity

d
0.5 we 3 wed < we). Putting everything together we obtain:
2
y g 210 (;L)h (2.20)
Po% ardl 9
5

For our Nb samples a/b ~v 10°

3

and the Debye temperature OD of Nb is 275 K 9),

thus we have Xp <10 TAe. The phonon contribution at temperatures below 10 K
is smaller than one percent of the total thermal conductivity in the normal
state. |f the impurity increases (increasing a) the phonon contribution in-

creases proportionally.
§2.3 Properties of Superconductors

2.3 Weak-Coupling Superconductore in Zero Field. The energy spectrum of
the electrons in superconductors below the critical temperature Tc deviates

from the normal state energy spectrum by the appearance of a temperature depen-
dent energy gap just around the Fermi level and an infinite density of states

at the gap edges. Bardeen, Cooper andSchriefferlO) (hereafter referred to as
BCS) provided the explanation of this peculiar phenomenon by showing that at

T = 0 under the influence of an attractive electron-phonon-electron interaction
all the electrons near the Fermi level will lower their energy by the formation
of Cooper pairs ‘l), characterized by anti-parallel momentum and spin. The range

of this pair correlation is given by the Pippard coherence length

=0.18 ﬁvF/kBTC (2.21)

&0




To create an excited state from the BCS ground state, whether this is a
hole-1ike or electron-like quasi-particle, a minimum energy A(T), equal to the
energy gap, is necessary. It is sel f-consistently given by the gap equation,
which can be easily solved in the BCS approximation, in which the actual
electron-phonon interaction is replaced by a constant potential V, defined in
an energy band limited by the Debye frequency huD. Moreover, it is assumed that
the coupling constant N(0)+V is smaller than 0.25 (weak coupling limit). Taking
into account these assumptions the BCS theory predicts that all superconductors
will exhibit a universal behaviour governed by the temperature dependence of
ABCS’ shown in fig. 2.1, with Tc as the only parameter. Some features of
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ABCS are:
ABCS(O) = 1.76 kBTc (2.22)
ABCS(T) = 3.06 kBTC(I - T/TC)‘ (2.23)

near Tc' In the weak coupling limit ABCS(O) = ZﬁwD exp[-1/N(0)V], which to-
gether with eq. (2.22) yields a simple relation between Tc and DD:

Tc = 0.88 ODexp[-l/N(O)V] (2.24)

from which N(0)V can be calculated.

2532 The Influence of a Magnetic Field. Phenomenological Thecrj? Well
before the development of the microscopic theory Ginzburg and Landau ]2) pro-
posed in 1950 a phenomenological relation for the free energy of a superconduc-
tor in a magnetic field for temperatures close to Tc' It was a generalization
of an original theory of Landau 13) describing the ordered phase near a second

order ferromagnetic phase transition. The idea is that the free energy near the

transition can be expanded in powers of an internal order parameter ¥, which is
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small in that region. Landau proved that the first and third order terms must
be identically zero if the ordered and disordered phases were separated by a
transition line in the phase diagram.

The extension of the theory to superconductivity consists of the introduc-
tion of a magnetic field term and a term accounting for spatial variations of
W(?), which now also could be a complex quantity. It was interpreted as the
wave function of the macroscopically occupied quantum state of the superconduc-
ting electrons, also proposed by Landau 1“). Its squared amplitude is equal to

L

the superfluid density of the Gorter-Casimir theory its phase is related

to phenomena like flux quantization and the Josephson effects. By minimizing

the free energy expression the two Landau-Ginzburg equations are obtained, one
giving a relation for the order parameter, the other for the superfluid currents
in the superconductor. From these equations the characteristic lengths can be de-
rived over which |¥| and the current (or associated internal magnetic induction)
can vary from zero to their maximum values. One obtains for the Landau-Ginzburg

coherence length

T

§(T) = 0.74 50<7:—§—f)* (2.25)

(in which £y obeys (2.21)) and for the L-G penetration depth

3
‘- e R
A(T) = 3/2 AL(O)(TC < =) (2.26)

in which AL(O) is the London penetration depth at zero temperature:
A (0) = (hm¥|Ze?/mc?)

The ratio of £(T) and A(T) is a constant called the Landau-Ginzburg parameter
k. GL already pointed out that this parameter determines to a great extent the
surface energy of a normal-superconducting interface. It is negative for
K > 5/7, indicating that, in a magnetic field, a mixed state of alternating
superconducting and normal regions will be a more stable state than the homo-
geneous Meissner state with zero internal induction.

The existence of the mixed state was theoretically predicted by Abrikosov]
in 1957. He solved the L-G equations for small ]V] and strong magnetic fields.
In decreasing field a spontaneous nucleation of superconducting regions will

show up at a certain field H = HCZ, obeying the relation
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HCZ = k/2 H. (2.27)
where HC is the thermodynamic critical field. If k < $V/2 no anomalous effect
can be observed, because in that case HC < Hc and a transition into the
Meissner state takes already place at Hc' The latter behaviour is called type-|
superconductivity. If ¢ > /2, or HC2 > Hc’ the L-G equations have a solution
Y # 0 for fields well above Hc' Energetically most favourable is ?7triangular
| periodicity of the order parameter and of the magnetic induction ). Where
¢(7) = 0 (normal regions), the induction is maximum, where ¥ is maximum, the
induction is minimum. The Meissner state will be realized only below a field
Hc , which occurs well below Hc' In this case we are dealing with type-I| super-
conductivity. Between H and H_the triangular lattice is also the most
favourable one ]8), as ?n the r:gion between Hc and HC . Just above Hc the
normal regions are well separated and the magnetic flux they carry is ;uantized
in units of ¢0 - %%, the flux quantum. One quantum per normal region gives the
lowest energy. The shape of a normal region, because of the symmetry, is cylin-
drical with its axes parallel to the external field; its radius is of the order
£(T). Superfluid currents around the normal core screen off the magnetic field
of the core. They circulate over a characteristic distance A(T) (obeying (2.26))
around the core. In analogy with superfluid helium the cylinders are called
vortex lines, or vortices, or flux lines, because of the flux they carry.

The current of a vortex in the field of an other one causes a repulsive
mutual interaction leading to the triangular lattice of the flux lines described

above. Near HcI the distance a, between neighbouring vortices is related to the

0
average internal induction B according to

¢
3y = 2 9 (2.28)
V3 B

A quite useful relation between ch and £(T) is

¢

[y (2.29)

e(m) = 5
<3

This leads to:



If H approaches ch, the vortex cores begin to overlap, so that the maximum
value of the order parameter between the vortices will be considerably reduced.
In this field region one can hardly speak about vortices, merely about a small
order parameter fluctuation with triangular periodicity. The spatial average
<|?(F)|2> will go to zero linearly with field, if H goes to He s which means
that the transition to the normal state is of second order for all temperatures
below Tc' The magnetization, as Abrikosov showed, is proportional with < ?]2*

He obtained for H < H
e
Ho- Hep B - He,

baM =
(2<2 - 1) +1

R 2 - N
LA(ZK 1) Ba

is a constant which reaches its minimum for the triangular configuration:
= 1.16.

®a
Ba

2:3:3 Extension of the Microscopic Theory to Non—Homogeneous Situations.

The BCS theory only deals with a homogeneous electron gas with attractive inter-
action. In order to describe the effect of a magnetic field or of impurities

the theory had to be generalized. This has been done by Bogolubov 19), who
eventually derived two coupled equations for the operators ;(?,a) and ;f(?,a)
which annihilate or create a quasi-particle excitation from the BCS ground

state at a position T with spin a, up (4) or down (+). These operators are
functions of the pair potential A(?) which - in the BCS approximation = is self-

consistently given by the relation
A(F) = ver(rh)¥(re)> (2.32)

V is the BCS electron-phonon interaction. The average is taken over a grand
ensemble, because the number of quasi-particles is not conserved, for terms

with A in the Hamiltonian create or annihilate two quasi-particles, so respec-
tively annihilate or create a Cooper pair. In the absence of an applied field

and without impurities, a(r) is spatially constant and is equal to the BCS energy
gap Bpeg-

The Bogolubov equations = or, in a modified form, the Gorkov equations -
together with the self-consistency equation (2.32) (which still can be gene-
ralized to strong coupling superconductors) are the starting point of modern
superconductivity theory, of which we will present some important features here.

In 1964 Caroli, de Gennes, and Matricon 20) solved the problem of the
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spectrum of low energy excitations in the core of an isolated vortex in a pure

type-11 superconductor with k >> 1(g << }), (bound excitations). |t was derived

. 2 =3 4
that there is a very small energy gap (v ABCS/EF ~ 10 ABCS) inside the core
increasing to ABCS for r >> £. The density of states is approximately equal to
that of a normal metal cylinder of radius £. So the bound excitations behave

like normal electrons. The high energy (> A._..) excitations, both in the core

BCS
and far from the core (free excitations), behave like the ordinary quasi-par-

ticles of the BCS theory, although there remains a phase shift of the wave
function in the core region due to the presence of a local magnetic field,
superfluid currents and a variation of A(F) 21). Bergk and Tewordt 2') extended
the calculations to low k. The small gap now disappears, the density of states
remains that of a normal metal cylinder with radius £.

For small A(T) it is possible to expand the gap equation (2.32) in powers
of A. In this way Gorkov 22) has made a link between the microscopic theory and
the phenomenological Landau-Ginzburg theory. He showed that A(¥) is proportional
to W(?), the order parameter of the L-G theory. For that reason A(F¥) is often
called order parameter as well. The Gorkov equation clarified theoretically
the distinction between pure (2 >> 50) and dirty (2 << 50) superconductors
(2 is the mean free path of the electrons). This was already known from ex-
periment 23) and then could be explained by the assumption that impurity
scattering would destroy the ordening of the electrons and thus would result

in a smaller effective coherence length. Pippard suggested

] =
Seff

|-

1
+ g (2.33)

o

0

which yields geff =2 if 2 << 50, as was later derived from microscopic theory.
All kinds of parameters, like k in egs. (2.27) and (2.28), and characteristic
lengths like £(T) and A(T) in egs. (2.25) and (2.26) turned out to be purity
dependent, see for example de Gennes' book on superconductivity 2l‘). Equations
(2.25) and (2.26) are valid for & >> Eg» €9- (2.27) becomes

HCZ - K](r)/i H, (2.27a)

in which K'(T) is a purity dependent parameter which increases slowly with
decreasing temperature 25). In eq. (2.31) k has to be replaced by a different
parameter, referred to as KZ(T) 2 Ys

Concerning the density of states there is a very interesting distinction

between pure and dirty type-I| superconductors in magnetic fields near Hc .
2
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: 2 > - 2
For dirty superconductors 7) the low energy excitation spectrum is that of a
normal metal corrected with a small second order perturbation term proportional

to Az(?). There is no gap in the energy spectrum (gapless superconductivity),

but there remains a certain amount of ordening due to a non-zero averaged
order parameter. The high energy spectrum tends to the conventional BCS spectrum,
which for those energies approaches that of a normal metal. The spatial average

of the density of states is given by:

<N5(?)>

e Pyl [ 50 =
\Ot0) 1 [aCr) | HC2 H (2.34)

(The superscripts s and n will be used throughout this thesis to refer to the

superconducting and the normal state respectively). For the transport properties

this means that they will decrease linearly in H with respect to the normal
state values 28).

In pure superconductors near HC 29) the energy spectrum is anisotropic,
because quasi-particles moving along the field direction on the average will
behave like BCS quasi-particle excitations, and experience a gap equal to
<|A12>i, whereas quasi-particles moving perpendicular to the field direction
on the average will experience no gap because of a strong oscillating phase
of the order parameter along the path of the quasi-particles. A perturbation
expansion like that in the dirty case now diverges due to the BCS like quasi-
particles with a gap in their energy spectrum and an infinite density of states
at the gap edge. The density of states thus depends not only on the energy but
also on the propagation direction of the quasi-particles with respect to H. By
30)

making a conjecture for the spectral density function Maki could derive

expressions for the ultrasonic attenuation and for the thermal conductivity.

He derived a decrease of the transport quantities proportional to (ch = H)*,

in striking difference with eq. (2.34).

2.3.4 Extension of the Microscopic Theory to Strong-Coupling Super—
conductors. As follows from eq. (2.24) superconductive materials with
relatively low OD and high Tc will not satisfy the BCS weak-coupling assumption.
Well-known exceptions are Pb and Hg with respectively N(0)V values of 0.39 and
0.35. Also Nb, with OD

coupling superconductors: N(0)V = 0.32. In Nb this large value merely follows

= 270 K and TC = 9.2 K, belongs to the class of strong-

from the transition metal character, which accounts for a large density of
3 ? 5 i
states of the d-electrons and a nearly constant interaction potential 3 ) (see

section 2.6). This is in contrast with Pb or Hg, where the large coupling
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constant follows from the strong electron-phonon interaction. In that case
also the BCS approximation with a constant V can no longer be applied and one
has to generalize the gap equation (2.32). This generalization has been given
by Eliashberg 32). It forms the starting point of the strong coupling theory
which was extensively reviewed by Scalapino 33).

We will only mention one result important for the following section of
this chapter. In spite of the value of the coupling constant the reduced energy
gap A(T)/A(0) as a function of /T, follows the same curve as was predicted by
the BCS theory, fig. 2.1. Only the numerical constants in egs. (2.22) and (2.23)
have to be adapted to the specific material.

34)

§2.4 Thermal Conductivity in Superconductors. Temperature Deperndence
The difference between the electron thermal conductivity in the supercon-

ducting and the normal state can be understood qualitatively in view of a simple

two-fluid model. One kind of particles, the Cooper pairs, are unable to transport

energy, the other kind, the normal excitations from the BCS ground state, can.
2.4.1 Contribution of the Electrons

2.4.1.1 Defect Scattering. Let us first pay attention to the electronic ther-
mal conductivity in superconductors with dilute defect ccncentration. Elastic
defect scattering does not break up the Cooper pairs. Therefore the only effect
of entering into the superconducting state by lowering the temperature below

Tc will be the appearance of the energy gap and from this the decrease in the

! B BCS(T)/kBT].
(T), it is clear that A~ ,/A_, will decrease below

ed” "ed

number of normal excitations, roughly spoken proportional to exp[-=A
From fig. 2.1, showing ABCS
T3 at reduced temperature t(=T/TC) of 0.2 it will be almost negligibly small.
35)

The exact derivation of the formula was given by Geilikman
36)

and, indepen-
dently, by Bardeen, Rickayzen, and Tewordt, referred to as BRT . These authors

used asimple Bol tzmann equation. Later derivations 37) making use of the Kubo forma-
lism and Green's functions technique confirmed the earlier result for arbitrary

impurity concentrations. We restrict ourselves to the formula in the BRT form:

AT 2F. (=y) + 2yIn(1 + e Y) + y2/(| +e’)

ed 1
— = (2.35)
Xed 2F, (0)
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7Bl p D S ) I 5 @
BCS BCS (= n y+z, =1
where y = . «+ = and F_(-y) = J dz'z2" (1 et o)
ABCS(O) kBTC T n 5

The functions F_ were tabulated by Rhodes 38), the values of A

(T) /4, .. (0)
]n39). BCS BCS

aes(0)/kgTe = % -
Therefore, witha suitable adaptation of this parameter, eq. (2.35) should hold for

by Mihlschlege The only parameter in this equation is A

all coupling constants (see section 2.3.4). The graph of eq. (2.35) is shown
infig. 2.2with the BCS value, eq. (2.22), substituted. The slope at T, is zero.
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2.4.1.2  Phonon Scattering. Next we will discuss the thermal conductivity of
the electrons when scattering by phonons is predominant, which will occur in
very pure superconductors near Tc' (It is the real electron-phonon interaction,
which is considered here, not the virtual exchange of a phonon between the
electrons of a Cooper pair.) This scattering is not elastic and can lead to
pair breaking or pair creation. This effect accompanies the effect of the
diminishing number of excitations with increasing gap, as was already discussed.
In that case the mean free path of the normal excitations was the same both in
superconducting and normal states, but in the case of phonon scattering there
will be a difference in lifetime of the quasi-particles in the normal and
superconducting state.

Again several authors tackled this problem. BRT 36), Kresin ho), and
Geilikman and Kresin hl) treated it by considering the Boltzmann equation. BRT
used three trial functions which appeared to be much too simple as was shown

by the Russian authors, who were able to derive an approximate solution near

Tc' In fig. 2.3 it is shown as the dashed curve. Tewordt hz) also used the BRT

Boltzmann equation, but calculated the quasi-particle lifetime by means of
Green's functions. He arrived at an expression depending on temperature through
the parameter y of eq. (2.35) and through the lifetime of the normal excita-
tions. The results for two values of y, are shown in fig. 2.3 as well. The slope

of the A° /A" curve at T has a value of about 1.6.
ep' ‘e c
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Fig. 2.3 Ratio of superconducting to
normal state electronic thermal
conductivity versus reduced tem—

perature if phonon scattering is

05 i predominant. Broken curve, cal-
sz culated by Geilikman and Kresin;
A continuous curves, caleulated by
* A Tewordt, upper one: y,= 1.76,
OO Tl MO 1.0 lover one: y,= 2.0.
2.4.2 Contribution of the Phonons. The phonon contribution in the super-
conducting state will also be different from the normal state contribution. As

we saw in section 2.2.2 the phonons contribute negligibly in the normal state
due to the large phonon-electron scattering. But in the superconducting state,
especially at temperatures well below TC, the number of normal excitations is
drastically reduced. In addition, phonons with energies < ZABCS(T)
can not annihilate Cooper pairs, so they are hardly scattered by them. On the
other hand, phonons with energy > 2ABCS(T) will behave as in the normal state.
However, their numbers and therefore their total contribution to the thermal
conductivity is largely decreased at low temperatures. |f we regard the elec-
trons as the only phonon scatterers the result will be an exponentially in-
creasing phonon conductivity with decreasing temperature.

The theoretical calculation has been carried out by Geilikman and Kresin
h3) and by BRT 36), leading to the curves in fig. 2.4. Again we only give the

result of BRT: 5 o o -2 =
Ao jodx x'e (e” = 1) “[g(x)ExT]

n - (2.36)
lpe [o dx x‘*ex(ex - 1)—2[ExT]_l
2
107 . o s ’

Fig. 2.4 Ratio of superconducting to
normal state phonon conductivity
versus reduced temperature, if

10 electron scattering is predomin-
ant. Continuous curve, calculated

x by BRT; broken curve, calculated

pe o o .
7@“’ by Geilikman and Kresin.
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1

O TITe 05 10

——

27




(compare eq. (2.19)), in which x = hw/keT and g(x) is a function given by an
integral expression depending on temperature through the parameter y of eq.
(2.35).

In reality more phonon scattering mechanisms are operating simultaneously,
providing a limitation to the increasing mean free path at decreasing tempera-
ture. Eventually this leads to a power-like decrease of A at the lowest tempera-
tures. Although the different defects will have equal scattering times in the
normal and superconducting states, it still will cause a lowering of the total
phonon conductivity ratio with respect to eq. (2.36). This was shown by Klemens
and Tewordt hh) for point defects, but their formula is easily extended with

the help of eq. (2.19) to include grain boundaries and dislocations as well:

j; fo dx xL'ex e® - l)-Z[thTb + B + DxT + g(x)ExT]_l

n =
Ap fo dx xl'ex e - 1) 2[PxAT“ + B + DxT + ExT] :

(2.37)

However, it will not be easy to derive the contributions of the different

mechanisms separately from the experimental results.

§2.5 Thermal Conductivity in the Mized State of Type—-II Superconductors
Y J

A typical graph of the thermal conductivity of a type-|| superconductor

in a longitudinal magnetic field is shown in fig. 2.5. With the entrance of

10 T
Fig. 2.5 Typteal behaviour of the
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type—1I superconductor in a
C)B%- i longitudinal applied magnetic
AH) ‘ freld.
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flux lines above HCI a sharp decrease in A is observed due to the additional scat-
tering of the energy carriers by the flux lines. If the field is increased, the
vortices begin to overlap and the quasi-particle excitations bound to the vortex
cores begin to contribute more and more until HC is reached.

Rather little fundamental theoretical work has been published to explain

these phenomena. This is not too surprising in view of the complexity of the
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problem. Most experimental results will have to be compared with qualitative
formulae derived from phenomenological models. To give an impression of this
complexity the following table is presented, which deals only with the case of
pure type-l| superconductors without taking into account the anisotropy due to

the angle between heat flow direction and magnetic field.

Temperature Field Principle Theory,
Region Region Heat Carriers Phenom. Models
H > Hc phonons Canelqs); Vinenu6); Lowellh7)
1
Tre ¥ H <H<<H both Vinen et.alh6)
C C] C2
Hs<H electrons Maki30)
c2
2 1 electrons Clearyso)
T<T H <H<H electrons #
C C] CZ
HsH electrons MakiSl)
€2
In the case of a dirty type-ll| superconductor the situation is even worse. We

only have at our disposal the theory of Caroli and Cyrot dealing with the
electronic thermal conductivity near HC -
In the following subsections we will elucidate in more detail the merits

of the theories and models thus far available in the literature.
2.5.1 Pure Type-II Superconductors (L >> 50)

2.5.1.1 At low temperatures and small inductions (I << Tc’ A2 Hcl). For
these circumstances the contribution to the thermal conductivity may come from
the phonons and bound excitations (sections 2.3.3 and 2.4.1). One should expect
that the bound quasi-particles (inside the vortex cores) with a normal density
of states should behave like normal electrons in a cylinder with radius £, so
that A should be proportional to the number of (well-separated) vortices per

bS)

unit area: A = B. This idea turns out to be wrong as Canel was able to
prove qualitatively. Although the scattering time of the bound excitations is
the same as that of normal electrons, their group velocity along the vortex
core is nearly zero. Canel's conclusion was that bound excitations can not

transport energy very effectively and do not contribute to the thermal
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conductivity. The only carriers of heat therefore will be the phonons: A_:_Ap;
The phonons will be scattered very effectively by the bound excitations

in the vortex cores, as by electrons in the normal state (section 2.2.2). At

least, if their wavelength is smaller than the core dimension, thus for tempera-

tures T > hvs/ksg (= 1 K in niobium), and if the angle between wave vector and

magnetic field exceeds: (vs/vF)-(ABCS(O)/kBT) (~ 0.26 rad at 1 K)l;6
Based on Canel's conclusions Vinen, Forgan, Gough, and Hood ) proposed

the following relation for the phonon mean free path if the field is perpen-

dicular to the heat current, and if a random array of vortices is assumed:

o) Co (o
zp(s) zp(o)

wa—. (2.38)
H
2

in which a is a constant of order unity, and ﬁg the phonon mean free path in

the normal state. This yields for the thermal conductivity:

(2.39)
AP(B)
which accounts for the fast decrease of A beyond HC . Their measurement agreed
with this relation quite well. Even in longitudinal fields the agreement was
satisfactory for the lowest inductions. This justifies Canel's conclusion that
the bound excitations have an anomalously low group velocity along the vortex

core.

2.5.1.2 At low temperatures and intermediate inductions (T << T ,

HQ < H << H ). At intermediate perpendicular fields ahdeviation
from eq. (2. 39) shows u; (Vinen et al. QG))' which can be contributed to the
tunnel ing of the bound excitations between neighbouring vortex cores. The
eigenfunctions outside the core are roughly behaving like 20) r-iexp(-a r/g)
(x = %) so that the electronic contribution to A will be (see egs. (2.28) -
(2.30)):

A (B) = B exp{-B(HCZ/B)i} (2.40)

with 8 & 1.7. This relation fits well with their experiments (g8 = 1.66).

2.5.1.3 At low temperatures near H o (T << T e Hs Hn J. In section 2.3.3

we already mentioned the anomalous orientation dependence of the density of
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states in the pure limit, which urged Maki 30) to make his conjecture. He
proved that in first approximation A should be proportional to <|A|2>i and thus

obtained the relation:

n_ & - H)? 4
A Ae(H) cp(T) (ch H) (2.47)
The A(H) curve should exhibit an infinite slope at chl This expression can be
directly compared with experimental results, because the phonon contribution
can be neglected in this field region, A = A . Equation (2.41) was confirmed

qualitatively by experiments of several authors 46,47,48

). However, it turned
out that the experimental values of C_(T) were an order of magnitude larger than
theoretically predicted, and, in addition, depended on the electron mean free
path. In a later publication, together with Houghton, Maki h9) could eliminate
these discrepancies by making use of the BPT 29) Green's function of a pure
type-ll superconductor, yielding an increasing coefficient with increasing

mean free path.

."’ P

2.5.1.4 At high temperatures and small inductions (T < T , H 2 HCJ). At high
temperatures the electron contribution to the thermal conductivity is pre-
dominant, A = A

—e

At small inductions only the free excitations will contribute to the con-

ductivity. Far from the vortex cores r >> A (penetration depth) they behave

like ordinary BCS excitations, but they are modified if they approach a flux line

and interact with the superfluid current, magnetic field, and the modulation

in ]A(?)| (section 2.3.3). Cleary 50) treated this interaction and the elastic

scattering involved in detail. Scattering by the modulation in the pair poten-

tial is predominant for the thermal resistivity, because it can scatter an

electron-like quasi-particle into a hole-like quasi-particle, or vice versa. |f

this occurs the energy (with respect to EF) changes sign whereas the particle

still moves in the same direction, so the contribution to the energy flow is

reversed by the interaction.

The effective scattering diameter a of a flux line has been calculated by

Cleary. It is of the order of 300 R, both if the field and the heat flow are

perpendicular and if they are parallel; the first case being somewhat more

effective. The thermal conductivity just above HC will decrease like:
1




2.5.1.5 At high temperaturee near Hc9 (T s Tc’ Hs Hc ). Near HC the conduc-
2 ; 2 & 2 2

tivity will obey the same equation as at low temperatures near Hc . It is given

by eq. (2.41), but with a somewhat higher coefficient, if electron-phonon scat-

51).

tering is also taken into account
2:5:2 Dirty Type-II Superconductors (% << 50)

2.5.2.1 At low temperatures and small inductions (T << T, Hz2H ). If the
mean free path of the phonons is much smaller than £, we may consider the flux
lines as conductors of normal metal parallel to the superconducting matrix. Then
s s n
A_(B) =x” = e(XZ = X)B/H. 5-¢ % 0.5,
o(B) =A% = (2 = a8/ 5

2.5.2.2 For all temperatures near Hc (0'siTS Tc, H s Hc‘). The behaviour
is quite different from that in the pure limit, because all quasi-particles in
the dirty limit near H are gapless, although the excitation energies are
modified in second order by an amount proportional with <la(r)| > (section
2.3.3). Caroli and Cyrot 24 ) proved that this property is reflected in the
thermal conductivity if the main contribution comes from the electrons scat-
tered by impurities.
3 =1-C(T) (H_-H)
>‘2 d c2

so no infinite slope at HC

The slope of the A(H) curve at Hc can be related to the slope of the

reversible magnetization curve, which yields:

drg d4nM ckg (2)(§ + p)

—r—) p{1 +p —T—y--——-—ﬁ
dH  dH ch 2|e| (2 +p)

in which p is a temperature dependent parameter given by

ln(T/Tc) =vy(} +p) - ¥(d) (2.45)

(1) (2)

The functions ¥(z), ¥' ‘and ¥ are the di-gamma function and its first and
second derivatives; e is the electron charge in CGS units, c the light velocity.
Equation (2.43) is in good agreement with experiments carried out on
concentrated alloys, but discrepancies are found for dilute alloys. It turned
out that for those cases Cd(T) was always larger than the theoretical predic-

tion. Very interesting is the result of an experiment on an evaporated

32




InO.QSPbO.OS film carried out by Parks, Zumsteg, and Mochel 53). The phonon
conductivity is strongly reduced in such films. The measurements confirmed eq.
(2.43), not only near HC , but in the whole field region between HC] and HCZ.
This might indicate that for such films even in fields down to HC,the super=

conductor is essentially gapless.
§2.6 Metal Properties of Niobium

Niobium is a transition metal with one electron in the 5s-state and
four electrons in the incomplete 4d-shell. In the solid state configuration
the electron states will split up into energy bands because of the spatial
overlap of the electron wave functions of neighbouring ions, The s-elec-
trons form a broad s-band not very different from the conduction band in ordi-
nary metals. The d-electrons are localized inside the ion cores, so that the
overlap is small, giving rise to a relatively narrow d-band. |t must be capable
to hold 10 electrons. Therefore, the density of states of the d-band is much
larger than that of the s-band, resulting into a large effective mass, and a
low group velocity of the d-electrons with respect to the s-electrons. The

Fermi surface will consist of s- and d-regions.

2.6.1 Transport Properties of Normal Niobium. The properties mentioned above
explain the relatively large electrical resistivity of the transition metals.
The s-electrons will contribute predominantly to the current, but they have

a considerable chance to be scattered into, and trapped by, the d-band, as

was first suggested by Mott 5”').

In fact scattering of electrons can be divided into s-s or d-d Zntraband
scattering, and s-d Znterband scattering. Typical transition metal effects will
arise from the latter, which in very pure materials is mainly caused by electron-
phonon scattering. Wilson 55) extended Mott's idea, introducing a model in
which two sheets of the Fermi surface, one with s-, the other with d-band
character, are assumed to be spherical and very close in k space. In addition,
it was assumed that interband scattering completely removes the momentum, so
that the effectiveness of the scattering process is equal to one, and Ter = T
(see sections 2.1.2 and 2.2.1). If all phonons were able to give rise to
s-d-band transitions, the electrical resistivity due to this process would be
proportional to T3. If not (at low temperatures a considerable number of
phonons will not have large enough wave vectors), the resistivity would fall

of f exponentially. We notice that this kind of scattering process will not have
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any influence on the thermal conductivity, because we already know that for

heat transpor = a
t port T .= T4

In Nb a T? dependence of p actually was measured in extremely pure mono-

crystals by Webb 56). This can be explained by the specific shape of the Fermi

surface of Nb calculated by Mattheiss 57). There turned out to be three sheets
which touch each other at several points and intersect along some lines. The
electrons lying near the touching regions will be involved in the interband

electron-phonon scattering.

2.6.2 Superconducting Properties of Transition Metals. In 1959 Suhl,

. 8 : :
Matthias, and Walker > ) suggested the existence of a second energy gap in
transition metal superconductors. Experiments in pure Nb on the specific heat

)

(Shen, Senozan, and Phillips thermal conductivity (Carlson and
Satterthwait 60)), and tunneling (Hafstrém and MacVicar 6])) seemed to justi-
fy the two gap idea. There should be a large gap, associated with the d-band
equal to the BCS gap, and a small one, associated with the s-band electrons:
AS(O) u O.lAd(O). But later experiments on thermal conductivity and specific

heat 62’63)

could explain the anomalies measured before, but did not support
the two gap theory in Nb. |f there were electrons with a small gap, it should

only be a very small fraction, < 10-3. A careful analysis of ultrasonic atten-

uation data at temperatures well below Tc by Almond, Lea, and Dobbs 6l') showed

unambiguously that this fraction must even be smaller than IO-Q.

At temperatures near T_ultrasonic attenuation experiments in very pure

Nb 65'66’67) showed a Iargecdiscrepancy with the BCS theory. A good fit to the
experimental data could be obtained by assuming two energy gaps, one equal to
the BCS gap (at T << Tc), the other (near Tc) being thgge times as large, which
looks rather strange. Very recently, Forgan and Gough ) elucidated why the
effective gap measured near Tc is much larger than the BCS gap. This has nothing
to do with a second energy gap, but is rather due to an additional temperature
dependent electron-phonon scattering becoming important if kBT > ABCS(T), near
Tc.

We therefore finish this chapter with the conclusion that no special
transition metal properties have to be taken into account in the discussion

of our measurements.
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CEH RPYTE RT3
DESCRIPTION OF THE EXPERIMENT
§3.1 Introduction. The Magnitude of the Temperature Difference

The thermal conductivity measurements have been carried out on rectangular
samples of niobium with typical dimensions 20 x 3 x 0.2 mm in a temperature
range from 1 to 10 kelvin in magnetic fields up to 6 kOe (= 477 kA/m in MKSA
units). A temperature difference AT over a distance L along the longest side
of the samples causes a heat flow through the samples parallel to this side.

In stationary state the thermal conductivity A is determined by the relation:
L

A(T) =J, = =

L
Q AT AT (3.1)

in which T is the mean temperature of the sample, J. the heat flow per unit

Q
area of cross section, A the area of cross section, and Q the total amount of
heat passing per second through the sample. This formula will be used through-
out this thesis for the determination of A from measured quantities, although

the exact definition of A is given by:

dT A(T) (3.2)

1 JT(L)

¢ Lt
The difference between eqs. (3.1) and (3.2) causes a systematic error
58X, which can be determined by expanding X ina Taylor series around T. The impare

order terms vanish, the second order term yields:
(3.3)

Higher order terms can be neglected. If the relation between X and T is known,
and if we put AT = 50 mK, which is the maximum value we used throughout the
experiments, it is possible to calculate the theoretical error si/x. If

A= TV with v equal to one or zero, it is easy to see that the error is zero.
A1l the other integer values of v, which occur in practice, lay between -2 and

+3. For these values the maximum error - occurring at the lowest temperatures -
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turns out to be 6 x 10 '. If A follows a BRT-1ike relation (2.35) the maximum

3

error is 1.5 x 10 , also for the lowest temperatures. Therefore our choice of
AT =~ 50 mK is justified so far.

It may seem that at temperatures near Tc (which is » 9 K for Nb), the

temperature difference can be chosen much larger than 50 mK in order to guarantee

more accurate measurements. However, the variation of HC , H ,and A (T) along

c BCS
the samples can become appreciable for those temperatures. Fo% example at T =
8 K they are respectively 3, 2.5, and 1.3 percent for AT = 50 mK, increasing
fast for temperatures still closer to Tc' As to this it would be desirable
to diminish AT, but this will result into less accurate measurements. As a
compromise we decided to use AT = 50 mK at all measuring temperatures.

Detailed accuracy considerations will be given in the following sections.
In section 2 we give a description of the apparatus, the auxiliary equipment,
and the measuring procedure. Here we include a discussion of the error sources
and the corrections to be made. In section 3 we describe the calibration pro-
cedure of the thermometers and the corrections necessary for measurements in a

magnetic field.
§3.2 The Experimental Set-Up and Measuring Procedure

3.2.1 The Apparatus. The apparatus shown in fig. 3.1 was designed in such
a way that the samples could be easily exchanged. Four platinum wires of 0.2 mm
diameter were welded to the samples. Via copper leads, soldered to the platinum

wires, thermal contact was established between sample, heater H thermometers

»
GI' GZ’ and C, and the thermal anchor TA. A thin nylon thread, Otll mm diameter,
supported heater Hl and thermometer G]. It prevented them from vibrating,
causing a possible eddy-current heating during measurements in a magnetic field.
The thread was attached to a brass bar mounted on the thermal anchor, on which
also a second heater Hz was soldered. The anchor, made of pure copper, was
soldered to a copper bar which, in turn, was mounted on a massive copper flange
F forming the top of the vacuum can. Several holes were drilled into it, one
for the pumping tube and four for the electrical wire feedthroughs FT. Copper
radiation shields RS in the pumping tube prevented the interior of the vacuum
can from warming up. All the soldering was carried out with hard solder and tin,
so that the final joint of the can with F could be made with Wood's metal.

A superconducting coil magnet could be connected to a flange FL supported
by the pumping tube. In this way the vacuum can could not vibrate with respect

to the coil, which would give rise to extra heating of the metallic parts in
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lower than 3 x 10

Fig. 3.1

helium and nitrogen dewars by finger dewars.

Lo

Apparatus for measuring thermal
conductivity. S = sample; G,, G,

372
and C = germanium and carbon

thermometers; = heaters;

H 10
TA = thermal anchor; F = copper
flange; FT = wire feedthroughs;
RS = radiation shtelds; FL =

supporting flange for supercorn-

J

ducting coil magnet.

inhomogeneous field regions. The current leads of the coil were constructed
from folded copper foil with a superconducting NbSn wire soldered to it. Each
one ran through a glass tube functioning as a heat exchanger ]). Vacuum can
and superconducting coil were immersed in the same helium bath. For the
measurements in a magnetic field perpendicular to the heat current we used an

iron magnet after removing the superconducting coil magnet and replacing the
The vacuum was obtained by means of a mercury diffusion pump in series
with a rotary pump. Before cooling the cryostat we first pumped the vacuum

can during 24 hours at room temperature. The pressure could be measured with

torr. It was possible to fill the vacuum can with He

3

Penning and MclLeod gauges. During the thermal conductivity measurements it was




exchange gas for calibration purposes.

3422 Magnetic Field. A superconducting coil generated a magnetic field
both parallel to the longest side of the samples and to the direction of the

heat flow. We will call this field direction H An iron magnet was used for

the generation of a field perpendicular to theA;irection of the heat current.
This field could be rotated with respect to the sample surface, we call it He,
where 8 is the angle between field and sample surface. If 8 = 90° we will talk
about H,, if 8 = 0° about H_ (see fig. 3.2).

Fig. 3.2 Definition of the

) magnetic field directions.

The superconducting coil magnet, inner diameter 2.8 cm, length 13 cm,
was wound from single core niobium=titanium wire covered with a copper layer
and insulating material (Niomax S, 0.3 mm). It consisted of 19 layers of about
280 turns each and 5 layers of 44 turns each at both ends, the latter serving
as correction coils to improve the homogeneity. Experimentally this turned
out to be just as good as we had calculated: better than 0.1 per cent over a
distance of 7 cm along the axis. The field to current ratio was measured in
several ways at room temperature and at He temperatures. Within the measuring
accuracy we did not find any temperature dependence. The H/l-value was
582 + 3 Oe/A. The current source was a Hewlett-Packard 6256B 10V/20A power
supply.

The iron magnet showed an H versus | curve which was linear up to 7 kOe
with a slope of 199 + 1 Oe/A. During cycling back to zero current we find a
fieldshift of 25 Oe with respect to the increasing field curve. The remnant
field was of the same order of magnitude. It could be shielded off by means of
a cylinder consisting of two layers of u-metal (Allegheny Ludlum Moly Permalloy).
After ''shaking' with an ac field the remaining field at the sample site was
weaker than 0.5 Oe. The magnet current was electronically stabilized and could

be regulated continuously or in steps of 0.1 A.
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3:2453 Spurious Heat Sources. The thermal conductivity of niobium as a

function of magnetic field far below Tc showed a fast decrease just above the
first critical field Hc . This effect, which will be extensively discussed in
later chapters, results in a minimum value of the conductivity, which, at the

-]. The dimensions of the sam-

lowest temperatures, is as low as a few mW K_lcm
ples and the magnitude of the temperature difference required that under these
condi tions the heat production in heater H] (= ds) should be smaller than

5 erg/s. This meant that we had to be aware of extra heating by spurious sour-
ces.

We already mentioned the effect of vibrations and thermal radiation. As
for the latter, it proved to be the cause of many troubles in the early days
of the experiments. We detected an extra heating of about 100 erg/s in spite
of the presence of four radiation shields. This amount of heat is a fraction
of 10-3

perature down through the pumping tube. It finally turned out that the absorp-

of the black body radiation energy that might come in from room tem-

tion of the radiation shields was rather poor, the effect being totally sup-
pressed by painting black the tube and the shield with aquadag. Moreover, the
carbon on the wall acted as a cryogenic pump.

R.f. radiation heating of metallic parts in the vacuum can was prevented
by surrounding the can with copper foil. The shielding of the can itself (made
of german silver) might not have been good enough: for 1 MHz the skin depth
is 0.3 mm, whereas the wall thickness was 0.5 mm.

The electrical current in the thermometers was kept so low that the Joule
heating always was less than 10-3 X Qs'

In order to get experimental evidence that no important extra heat sources
were present we measured the temperature difference between GI and G2 at Qs =0
before and after some He exchange gas was admitted into the vacuum can. We
could not detect any change in AT, which assured us that spurious heat produc-

tion is certainly less than 10-2 erg/s.

3.2.4 Parallel Conduction. A quite different source of systematic errors
might be parallel conduction, ép’ through residual He gas, or along the measuring
leads and supporting thread. Concerning the first possibility we can use the

wel l-known formula 2):

2 =
8 x P(torr)x AT (mK) % 0(cm®) x 10 3

= erg/s.
10 / 102 1

. 1
Qp 3 X 2s
Substituting P = 3 x 10-7 torr, AT = 50 mK, 0 = 2 cm2 (= area of 1S + Hl - G]

L2




of fig. 3.1) we arrive at Q = 3 x 10-3 erg/s, thus less than 0.1 per cent of
the lowest value o; Qs' The nylon thread gives no trouble either: for all tem-
peratures Qp < 10 X QS.

To get an idea of the correction due to parallel conduction through the

measuring leads we can use the following simplified picture, fig. 3.3. We call
Ha E\ufr ‘ .‘fs’

L'hqrmm t-nrnE]
oo | Fig. 3.3 Schematic picture of the
o) ‘
S s
W W%
P <
1 1
A5y 4 Qp
e
LRaterth)

the total heat development Qm; WS and wp are the heat resistances of the sample
and the leads (W = (KA/L)-]). The corresponding heat conductivities are As and
xp. The relation between Ay and the measured conductivity Am is now given by:
A Ls
o | “‘m i A m o &3 (3.5)
AL
s p

The leads were made of Nb-25%Zr strips (further referred to as NbZr),
rolled from 0.28 mm Supercon wire. This shape provided a good thermal contact
with the thermal anchor, on which they were glued by means of GE 7031 varnish.
NbZr is a type-|I| superconductor with high Tc (10.8 K) and high upper critical
field (at 4.2 K=70 kOe) , so that there was no Joule heating in the leads. Further,
the thermal conductivity is appreciably lower than that of pure niobium.

From (3.5) one can see that the parallel conductivity AX also depends on the
dimensional ratios of sample and leads. This yielded a factor of only 0.15,
So it was necessary to measure the thermal conductivity of the NbZr strips.

We cut 32 parts of 1.5 cm length of NbZr strip and welded each 4 of them
parallel to each other. The 8 samples obtained in this way were welded parallel
to each other between two platinum wires at their ends. Then, two more platinum
wires for the thermometer connections were welded in between at a mutual distance
of 10 mm. This sample was mounted in the apparatus. Because now the same material
was used for the sample and the measuring leads it was easy to estimate the
correction for the parallel conduction: AA was about 4 per cent of Xm. The final
accuracy in Am was estimated to be about 5 per cent.

In fig. 3.4 the results of the measurements in zero magnetic field for
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Fig. 3.4 Thermal conductivity of a rolled
Y O]

: T =¥
10 g 5 Nb-25%2Zr sample versus temperature.
I
mW| i O , measured in zero
Kem ! N
i obtatned from Wiedemann—-Franz law;
] 4
| / 3 *q 2 - = 5 ’
o / / heavily drawn line, electron thermal
& ! / -
? it conductivity in the normal state;
/
g S broken line, idem in superconducting
Al 7 Sy TS e e
/ 7 8tate. AL80 shown are the typreal
~
/ == |y i T AeIA T raar AP 1he N
@) 7 minimum eonauctivities of the No
O T ) 10% K

»
samples: [] .

different temperatures A*(T) are shown together with the estimated electron con-
ductivity in the normal state X: - deduced from a specific resistance measurement
and the Wiedemann-Franz law -, and the estimated electron conductivity in the
superconducting state FZ, using the BRT formula, eq. (2.35), together with the
value 1.9 for the parameter A(O)/kBTC. One reads from the figure that the phonons
contribute appreciably to the thermal conductivity, so that we certainly have

to correct our low temperature measurements for parallel conduction. To illu-
strate this we have also given in fig. 3.4 the low-temperature values of the

typical minimum conductivities of our Nb samples. Moreover, table 3.1 shows the

T(K) NbZr Nb " max.correction
x> F et AN in per cent
minimum

1 0.3 1.6 0.05 3

2 0.8 4.1 0.12 3

3 1.3 1353 0.22 2

4 258 30.6 0.35 1

5 352 60.7 0.49 0.8

6 4.3 102 0.66 0.7

7 5.4 149 0.83 0.6

8 6.4 202 0.98 0.5

9 7.5 297 1.15 0.4

9.5 8.0 315 1.23 0.4

*) all A's in mWK-lcm-

~ ] - y 4 £ 132 YV 7 2 e 111
sample at several temperatures ‘

Table 3.1 Thermal conducti

and the resulting paral eonduction.,

measured NbZr conductivities, the typical minimum values of the Nb conductivities,

the parallel conductivity, and the maximum correction we have to make for ‘m
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The correction can be as large as 3 percent, but it can easily be dealt
with in the case of A measurements versus magnetic field. It appeared that the
field dependence of the NbZr sample was very small up to fields of 6 kOe,
showing a slight decrease of at most 5percent. This feature justifies a simple
shift of the A(H) curves of niobium over a distance A\ as the only correction
to be made.

In the following we will always work with corrected values of the thermal
conductivity. The remaining error due to the uncertainty in the correction and

due to spurious heat sources is estimated to be smaller than 0.2 per cent.

325 Temperature Stability. Since the temperature difference between both
ends of the samples was only 50 mK, much care was given to the control of the
temperature. First of all the temperature of the He bath was kept constant
within one millidegree. Above the A-point a manostat gave satisfactory results.
Below the A-point, however, the pumping speed through this device was not suf=
ficient; here we used an electronic stabilizer. The temperature was measured
with an Allen-Bradley carbon resistor (0.1 W, 100 ) in a dc Wheatstone bridge.
The unbalance of the bridge, amplified by an Analog Device 180 B dc amplifier,
regulated the current through a heater in the helium bath. The short term
temperature constancy was much better than 10-3 K, but due to dc drift a varia-
tion up to a few millidegrees might be generated in the long run.

A second temperature stabilizer directly regulated the temperature at the
upper end of the sample. It followed the same principle, but had to be much more
sensitive than the circuit we just described, because we had to use low bridge
voltages (v mV) to avoid Joule heating of the thermometers. Therefore an ac

method with phase sensitive detection was used, see fig. 3.5. The carbon

|twneconstont} -
* phase

attenuator [ oscillator [, Isensitive

heater| 1016 Hz detector
circuit H2

constant 2
current c ac r pre selective
control | bridge amplifier amplifier

Fig. 3.5 Block diagram of the sample

temperature stabilizer.
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resistor C (again Allen-Bradley, 0.1 W, 100 @) was mounted on the capsule of the

germanium thermometer G so that both had the same temperature. The current of

’
the heater circuit ranzthrough heater H2 (100 @ constantan, non-inductively
wound) . The desired measuring temperature, which could vary from 0.1 to 6 K
above the bath temperature, was established by adjusting the constant current
control and stabilized by the output voltage of the phase sensitive detector.
The influence of the magnetic field on the stabilization could be ignored
for the field values we used, since the magneto-resistance of Allen-Bradley
resistors is very small. This has already been mentioned by Clement and Quinnell

‘4,5.6,7). It shows a slight

in 1952 3), and has been confirmed by many authors
increase with decreasing temperatures, giving rise to a corresponding shift in
temperature of at most 1 mK at 1.3 K in a field of 5 kOe. For this estimation
we used the empirical formula of Belanger S).

Apart from the magneto-resistance effect it turned out experimentally that
the temperature stability of GZ’ both in presence and in absence of heat flux
through the sample, was always better than 1 mK. Therefore we may say that,

roughly spoken, G2 was at constant temperature during the measurements.

3.2.6 Measuring Procedure. Measured Quantities. The measuring procedure was
as follows. We started with a careful measurement of the resistances of G] and

G, in zero field without heat production in H, . This was repeated several times

diring the measurements. We assumed that bothlthermometers under these circum=
stances had the same temperature. Next the heater current was switched on and
adjusted to a value that increased the temperature of G] by 50 mK. The heat

flow and G‘ and G2

If this caused a change in conductivity we had to readjust the heater current

were measured. After that the magnetic field was cycled up.

in order to keep AT constant. At the stronger fields a correction for the
magneto-resistance of G] had to be incorporated.

The power dissipation in H, (100 2 manganin, non-inductively wound) was

1

derived from the product of the voltages over H] and over a 100 & standard

resistor in series with H]. Both were measured with a digital voltmeter
(Scheiner VT200, 99.99 mV full scale). The influence of the resistance of the
feedthroughs was negligible, as they were less than 40 mQ each at room temper-

ature. Thermal emfs were certainly smaller than 5 pV, which followed from

current commutation. We may therefore conclude that the accuracy of Qs is better

than 0.1 per cent.
The germanium resistors were manufactured by Cryocal Incorporation., The

resistance at 4.2 K was about 1300 . It was measured in a dc Wheatstone bridge
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Fig. 3.6 Diagram of the Wheatstone

bridge.
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shown in fig. 3.6. Actually not G1 and G2 were measured, but G] and AG = G] - GZ'
By connecting one end of the null-detector leads directly to G] the influence
of thermometer leads was greatly reduced. For the measurement of G] and AG two
ES| 6 decade Decaboxes were used (R] and AR) with an accuracy of 1 part in IO“
and maximum value of 111 111.0 Q. The zero setting of the Keithley 1508 uV
null-detector was established by varying R] or AR until commutation of the
bridge current showed the smallest change. The amount of the change could
easily be used to increase the sensitivity to 0.01 @, which is useful at tem-
peratures above 4 K.

The reason for measuring G] and AG instead of G‘ and G2 was the more direct
relationship between AG and the temperature difference AT, which was the quan-
tity we had to know in order to determine A. Suppose that G1 and G2 obey the

following simplified temperature dependence:
T, =c.(6)7i (3.6)

with i =1o0or 2, y = 0.4 and C =z 70 at 4 K (both were slowly varying functions

of temperature). This leads to:

AT T
246 2 E; (3.7a)
iﬂ ol T_2 . AG + 02(1 "1T1/Y2T2)
JGI 2 G2 G]
T
2 1.5AG
P O [ (3.7b)
2 G, G,

k7




The factor 1.5 in (3.7b) held for the resistors in the temperature range from
1 to 10 K.

T(K) G, (@) A(;/Gl 86, (2) 8AG(R)
1 32780 0.52 13 10
3 2831 0.21 0.45 0.14
5 946 0.13 0.17 0.03
7 438 0.07 0.12 0.01
9 244 0.03 0.12 0.006

Table 3.2 The necessary measuring accuracy of GZ and AG allowing an

error of 0.1 mK in AT for several temperatures.

Since AG/G] << 1, especially above 5 K (see table 3.2), AT was much more
sensitive to measuring errors in AG, than to errors in G]. This means that -
in order to obtain the same partial error in AT - only AG has to be measured
very accurately, whereas for G‘ an accuracy, often a factor of 10 less, is
already sufficient (table 3.2). If GI and G2 were measured instead, both had to
be measured as accurately as now only was necessary for AG. A second advantage
of the chosen procedure is that AG was not so sensitive to bath temperature
fluctuations, which made it easier to measure and increased the accuracy.

Even at the highest temperatures the scattering of the measuring points
in the A(H)-curves below HC] and above Hc , which should be straight horizontal
lines, did not exceed 0.3 per cent. Therefore we considered this value as the
maximum relative error of the measurements at any temperature.

Till now we ignored the error due to the uncertainty in the factor L/A
of eq. (3.1), which is a systematic one, independent of temperature or magnetic
field and therefore only important, ifwe want to compare the absolute data of dif-
ferent samples with eachother. We estimated this error to be less than 1 per cent.
Quite often, however, only relative data, like AS/A", are compared, in which
case the error in L/A is irrelevant. The other systematic errors we did not
account for till now, are the uncertainty of the thermometer calibration and
magneto-resistance correction, which certainly are temperature dependent. These

will be discussed in the following section.




§3.3 The Thermometer Calibration. The Influence of a Magnetic Field

3.3.1 Preliminary Remarke. The crucial quantity to be determined in our

experiment was the change in temperature corresponding to the measured change

in resistance of G] or GZ’ rather than the absolute temperature itself. There-
fore it was the slope of the calibration curve (log R versus log T, because of
the semi-conductor properties of the thermometers), which we wanted to know as

a function of temperature or resistance.

Let LTI 2 and AG] 2 be the changes in temperature and resistance of G] and
Gz, caused by switching on a current through heater H1. Their relationship
follows from
AT, = 5. (T./G,)AG, (3.8a)
S; = -d log T./d log G, (3.8b)

i =1or 2. Amiscalibration éSi would cause an error in ATi of
§(AT,) = (AT /s;)6S, (3.9)

Since, owing to our experimental procedure, AT,I 2 30AT2, it is clear that G]

would have to be calibrated with much higher precision than GZ'
A serious difficulty encountered with the calibration of germanium ther=-
mometers in the temperature region between liquid helium and hydrogen was,

as can be seen from fig. 3.7, the irregularity in the slope of the calibration
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curves in that region. Because such a phenomenon had never been observed with
carbon resistors, we decided to use an Allen-Bradley resistor as a standard in
this temperature range. Actually we did the calibration two times with two
different A-B resistors of the same type (0.1 W, 100 2). They will be referred
to as ABI and ABII'

3.3.2 The Calibration Procedure. The three thermometers G], GZ’ and ABI

or ABII were sealed with GE 7031 varnish into three holes in a copper block

which was, in turn, connected with copper foil to the thermal anchor. The wiring
consisted of 0.1 mm manganin wires of equal lengths. They were thermally an-

chored in the copper foil. G, and the carbon resistor were measured in the dc

1

Wheatstone bridge shown in fig. 3.6, G, in the ac bridge of the temperature

2
stabilizer (fig. 3.5), which on this occasion did not function as such. Below
4.3 K and above 14 K the vacuum can was filled with He exchange gas. In the
intermediate region the can was evacuated, and the temperature adjusted by means

of a constant current through the heater H,. The cryostat was kept at liquid

2
nitrogen temperatures between the calibration days to be sure of the reproduci-
bility of the carbon resistor.

The temperatures below 4.3 K were deduced from the 1958 He“ temperature

scale 8) and those in the liquid hydrogen region from the International Practical

Temperature Scale of 1968 9). In order to deduce the slope S, we always took
five calibration points in a small temperature range and adapted a straight line
to the (log R, log T) data by means of a least squares procedure. It is well-
known that the reproducibility of germanium thermometers is very good, much
better than that of carbon thermometers; actually, this was the reason why we
preferred to use germanium thermometers. Therefore it was not so surprising

that also the slope reproduced at least within the measuring accuracy.

3.3.3 Elaboration of the Carbon Thermometer Data. The calibration data of
the carbon resistors was elaborated using two quite different methods. Never-
theless the results turned out to be in very good mutual agreement, both for the
log R(log T) curve and for the slope, which in this section stands for
-d log R/d log T.

As for the first method we started from formulae available in the
literature. In their original paper Clement and Quinnell suggested a three

3):~

parameter formula

In R+ K/InR=A + B/T (3.10a)




which can be written as
(In R)/T = a(ln R)2 +blnR+c (3.10b)

The coefficients could be determined from a least squares fit to the calibration
data. The authors claimed a precision of + 0.5 per cent in T in the range from
2 K to 20 K.

A second empirical relation has been proposed by Zimmerman and Hoare 10):
log Ry3 _ 2
( 7 )2 = a(log R)" + b log R + ¢ (3.11)

where a, b, and c are again adaptable parameters. The precision claimed by these
authors was of the same order of magnitude, which is surprising because of the
different powers in the left hand members of the formulae (3.10b) and (3.11).

Therefore, we thought that a four parameter formula of the form:

(lg%_ﬁ)a = a(log R)2 +blog R+ c (3.12)

might give a better agreement, if a is properly chosen between 0.5 and 1.

We checked this idea on both ABI and AB but we will only describe here

o b

in detail the results we obtained with AB||. For each chosen value of a the

parameters a, b, and c of eq. (3.12) were adapted to the experimental data by

means of a least squares fit procedure. It turned out that the root mean square
8T (8T = - i i 0

of the &T(s8T Tmeas Tcalc) was a sharply varying function of «, as can be

seen from fig. 3.8. There are two pronounced minima, one somewhat above a = 0.5

| ' T T 1 Tﬁ T
80 |- -
\ Fig. 3.8 Root mean square of the
Loy | tenperature deviations versus
60 + /4 \ { (S
y X ‘ the parameter o of eq. (3.12).

/ !
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(Zimmerman's value), .and one somewhere near o« = 1 (Clement's value). For the
values @ = 0.5 and & = 1 the root mean squares are of the same order of mag-

nitude, which is the reason that both authors found almost the same accuracy.
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This can be more clearly illustrated in a graph of 8T versus the measured

temperature. In fig. 3.9 we show some of the 6T values calculated in the helium

Fig. 3.9

Deviation curves, (6T = T -
o meas
O, Clement's formula (o = 1);
V., Zimmerman's formula (a = 0.5);
[, eq. (3.12) (o = 0.552 and & =
1.049); @, semi-empirical formula,

eq. (3.16).

0 T 15

and hydrogen regions for a = 0.5 and 1 and for « = 0.552 and 1.049, the values
at which the minima occur. In the latter cases the points in the helium region
have been omitted for clearity, 6T here always being smaller than 0.5 mK; the
points in the hydrogen region nearly coincide. In the intermediate region we
only know the differences between calculated temperatures. The fact, that for
a = 0.552 and 1.049 the deviations in the helium and hydrogen regions are
negligible, and the fact that the mutual differences in the intermediate region
never exceed 4 mK, give us some support for the assumption that the real
temperature is equal to the average of the temperatures calculated from both
a's within an accuracy of + 0.05 per cent. The interpolations in fig. 3.9 are
based on this assumption. Moreover, the room and liquid nitrogen temperatures
derived from our formula are in agreement with the experimental data within two
percent, whereas with eq. (3.10) or (3.11) the deviations are of the order of
20 per cent.

For ABI we obtained almost the same results, with minima at somewhat dif-
ferent values of a: a = 0.593 and o = 0.915.

In the second method our starting point was a simplified formula for the

conductivity of a semi-conductor ]]), leading to the following relation:

R = cpr(M exp (-E/kgT) (3.13)

in which C is a constant, E the main energy gap of the carriers (it appeared
to be v 5 kBT), and y(T) a slowly varying function of T, remaining between 0

and 3. The value of y(T) depends on the scattering mechanism of the carriers.
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It increases to a constant value at the lowest temperatures, where impurity

scattering dominates. We could also write:
~InR=1InC+vy(T) xInT - E/kBT (3.14)

which yielded for the derivative:

d In R _ dy
T s TInT ar * y(T) + E/kBT (3.15)
A plot of experimentally derived - d In R/d In T values versus T-] sugges ted
that a good approximation for d(y In T)/d In T between 2 and 20 K would be
AlInT+ B; A and B constants, y(T) varying from 1.1 to 0.75 for T = 2 K to
20 K respectively. This led to a simple four parameter formula, which | should
like to call semi-empirical rather than eqs. (3.10), (3.11), and (3.12), viz.
InR=a(lnT? +bInT+c/T+d (3.16)
with a, b, c, and d adaptable to the experimental data.
The calculated temperature in the intermediate temperature region coin-
cided for ABII exactly with those derived from eq. (3.12) with a = 1.049.
We concluded therefore, that the calibration of the temperature in the region
between liquid helium and hydrogen by means of an Allen-Bradley carbon resistor
was reliable with an accuracy of at least 0.05 per cent,and, what was even more

important, the same was true for the logarithmic slope.

3.3.4 Elaboration of the Germanium Thermometer Calibrations. The inter-
polation difficulty in the intermediate temperature range (between liquid Heb
and liquid HZ)’ as mentioned in section 3.3.1, is very clearly illustrated in
fig. 3.10, where S, = -(d log T/d log G)i was plotted against the resistance for
both thermometers. The horizontal 'error bars'' represent the resistance regions
in which the five calibration points had been taken in order to deduce the
slope. In the liquid H2 region and in the Heu region above 2 K there were no
special problems. One can see that the slope reproduced within the measuring
accuracy for the several calibration runs we made over two years. The inter-
mediate region could be handled with the help of the results discussed above.
Below 2 K the measuring accuracy becomes the worse the lower the temperature.
Therefore we first made a double-logarithmic graph of resistance against tem-

perature and deduced the slope graphically. In fig. 3.10 the points with
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Slopes of calibration curves (fig. 3.7) of the germanium

thermometers versus resistance.

vertical error bars were derived by this method. A serious objection against
this procedure is the uncertainty in the extrapolation from 1.2 K to 1 K.
Therefore we started from the semi-empirical formula eq. (3.14). At these low
temperatures y(T) will be a constant, which means that in eq. (3.16) the para-
meter a is equal to zero. So a least squares fit of eq. (3.16) to the calibra-
tion data below 2 K was carried out with a = 0. The result was very promising:
all the deviations between calculated and measured temperatures were smaller
than 0.5 mK. The curves in fig. 3.10 below 2 K were derived in this way.

In the region above 2 K the drawn curves were obtained from least squares
fits of orthogonal polynomials ‘2) to the calibration data *). In the liquid
helium region good agreement was obtained by means of a fifth degree polynomial,
at the higher temperatures a seventh degree polynomial was necessary.

After reading a sufficient number of points from fig. 3.10 we made a

") 1 would like to thank the thermometry group of the Kamerlingh Onnes

Laboratory for putting their computer program at my disposal.
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polynomial fit in order to obtain the coefficients of the series expansion:

@1 _ ;13 J
(d % G)i = _E Cji{ln(Gi/IOO)} (3.17)
j=0
(i = 1,2) which agreed with the curves of fig. 3.10 within 0.15 percent. Eq.
(3.17) could be easily integrated, yielding the temperature belonging to a
certain measured resistance. The constants of integration were determined by

measuring G, and G2 in the absence of heat flux through the sample.

1
3.3.5 Magneto—Resistance. For the experiments carried out in a magnetic

field the resistance of the germanium thermometers had to be corrected for a
positive magneto-resistance, which turned out to be dependent on' the orienta-

tion of the field. For the field strengths we had to deal with (lower than 6

kOe) the increase in resistance depended quadratically on the field, which was

13,14)'

also found by several other authors In addition, a strong temperature
dependence was measured.

results for G] are shown in fig. 3.11 in a double-logarithmic plot

L IR | ) [ e =

Fig. 3.11 Magneto-resistance of Gz
versus temperature. Open
dots, 404 black dots, H
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against the temperature. As is clear from the figure, the magneto-resistances
in HA’ and H; were not equal, which could be expected because the thermometers
were cut from mono-crystals. Theory, even if based on a simplified semi-conductor

model, did not provide a simple relation between magneto-resistance and
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temperature or resistance. Therefore we tried to adapt several ad-hoc formulae
to the experimental data, unfortunately not successfully. Finally we chose a
polynomial adaptation of the form:

Gi(H) - si(o) 7

}= &' b..(In T)j (3.18)
H2 j=0 7'

In {

(I =1,2) which yielded an agreement with the curves better than 0.5 per cent.
The maximum accuracy we needed to keep the inaccuracy in AT below a certain
limit could be calculated from the maximum field required at a given temperature
and the relation between {T(H) - T(O)}/H2 and T(0); T(H) is the temperature
corresponding to R(H), without correction. It is shown, for a precision better

than one per cent by the shaded area in fig. 3.12. From the scattering of the

10 10
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experimental data we concluded that the error in A(H), due to the magneto-
resistance, always was smaller than 0.5 percent.

One problem remained: the dependence of the magneto-resistance on the
orientation angle © of the iron magnet. It was a small effect and very diffi-
cult to measure, but still there could be made a correction for it. We started
from the assumption that the dependence on © would be proportional to cosZO,

leading to

GMRi(O) = uicosz(o - ¢i) (3.19)

where p and ¢ are constants, depending on the specific properties of each
thermometer. |f no correction would be applied, this would give rise to an

error in the thermal conductivity of the form:

2o ;
Sx(0,H) = H{sin 2(0 - 00) - sin 2(0MR - 00)} (3.20)

where OMR is the orientation angle of the magnet at which the original deter-

mination of the magneto-resistance was carried out; @0 isdefinedin fig. 3.13.
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Fig. 3.13 shows an experiment carried out well above HC , where the orientation
of the magnet could not influence the thermal conductivity. The broken horizontal 1ine

corresponds to @ = so this was the true conductivity of the sample. The

“MR’
drawn line follows from eq. (3.20), in very good agreement with the experimen-
tal data. The proportionality constant in eq. (3.20) could be obtained from the
figure, and enabled us to determine the true thermal conductivity for all

orientations and all magnitudes of the magnetic field.
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CHAPTER A&

EXPERIMENTS IN THE PURELY SUPERCONDUCTING
AND NORMAL STATE

§4.1 Description of the Samples

The metallurgical character of the niobium samples on which we carried
out our thermal conductivity measurements was, or will be, discussed in some
papers by Van der Klein et al. ]’2’3). We will shortly review the most impor=
tant features.

Two of the samples were prepared from a rod of high-purity niobium ob-
tained from Semi Elements Inc. The material was cold rolled into foil of 0.15
mm thickness. The three other samples were cut from a niobium foil (thickness
0.20 mm) of triple zone refined material (Marz grade) obtained from Materials
Research Corp: They were annealed during one hour in a vacuum better than
10-7 torr, one at 1400 O¢, the others at 1600 O¢, referred to respectively as
PIAOO’ P1600 (the SEI samples), and N=0 (the MRC samples). From one of the
samples N-0 the surface layer was chemically removed, after which it was heat
treated for one minute in an oxygen atmosphere at 400 Oc. This surface oxida=-
tion greatly removes the effect of pinning of flux vortices at the sample
surface (see section 6.1). It will be further denoted by NO-0. The third sample
N-0 was irradiated at about 60 O¢ with a dose of 3.6 x 10‘9 fast neutrons per
cmz; it will be referred to as N-319.

The chemical purity of the samples did not differ very much, tantalum being
the largest amount of impurity (about 200 ppm). The defect structures of P1600’
N-0, and NO-0 were almost the same. The grain size was determined from light
microscopy, the dislocation density from electron microscopy (see table 4.1).
For P“’00 the grain size was about 4 times smaller, the dislocation density
about 10 times larger than for the other samples.

The influence of neutron irradiation was discussed by Elen et al. h).
Interstitials are created which cluster together in order to minimize the de-=
formation energy. They form dislocation loops which can clearly be seen on elec-
tron microscope pictures 2'3). Their average size in N-319 is about 100 R, their

spacing about 350 R. Another result of the irradiation is the trapping of
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Table 4.1

Sample Grain size Dislocation p300 TC(K)

(um) density

Priao 90 6 x30% " 5.6 9.14
Ty ~2
Pcoo 350 <5 x 10/ em 2.3 9.12
N-0,NO-0 400 <h x107 em® 211 9.12
N-319 400 %yt 51002 9

) Cluster density.

interstitials by the original dislocations and grain boundaries. Moreover, the

background thermal neutron flux of 1.4 xlO20 neutrons/cm2 is responsible for

the creation of a large amount of point defects with deviating nuclear masses.
The specific resistances at room and liquid helium temperatures were

measured. This yielded the resistance ratios shown in table 4.1. From the

resistance measurements we could determine TC with an accuracy of at least

5 mK, which means that the variations of TC are not due to the measuring

inaccuracy.
§4.2 Thermal Conductivity in the Normal State

The thermal conductivity as a function of temperature in zero magnetic
field and fields well above ch of the samples P]bOO' P1600’ N-0 and NO-0,
and N-319 are shown in the figs. 4.1a, b, c, and d. The data of NO-0 coincide
with that measured for N-0, as one should expect because the bulk properties
remained unchanged after the surface oxidation.

The lower temperature measurements on N-319 had to be corrected for a
secondary heating process due to g-radioactivity of the sample, caused by the
neutron irradiation. The predominant contribution came from Ta]gz,but also the
effects of Nb9h and Nb95 were non-negligible. It follows from y-ray spectro-
scopy *) that the radioactivity of the three isotopes was 38, 2.7, and 1.4 uC
respectively. This gives rise to a calculated g-heating of 0.7 erg/s, which
can account for 90 per centof the secondary heating we could detect in the

thermal conductivity device by measuring the temperature difference with zero

h) We want to thank Dr. L. Niessen for carrying out this experiment.

60




250 T T T T

mw
Kem

: 200F d 4
GOO=—T1=— 1 T T
mw

Ko

I
|

150 150

350— e A S PR Vi
mw mw
s Kcm

200 -1 200

|
!

150 =1 180 =

100~ = §100F =

| I
O
0T 2 4 6 8 K10
Fig. 4.1 Thermal conductivity of P, .-

and N-139 (d) in the normal state I superconducting state

thermal conduc—

1t zero field 9 Alao show
at zero freta, O . AL8O 8ACW

tivity in the superconducting st

61




current in heater Hl (fig. 3.1). The other 10 per cent can be accounted for by
direct heating due to absorption of y-rays in the capsules of the thermometers.

Below 0.5 Tc the thermal conductivity in the normal state, An, decreases
linearly with decreasing temperature indicating that the main contribution to
X comes from the electrons, and that the defect scattering is the source of
thermal resistance (see section 2.2). Above 0.5 Tc the electron-phonon inter-
action becomes more and more important, resulting into a slight decrease from
the linear behaviour.

From a plot of T/)\n versus T3 one can determine the constants a and b of

eq. (2.18): T/A: =a + bT3. In fig. 4.2 we show this plot for all the samples.

48
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The straight lines in the figure were determined by means of a least squares
fit. The values of a and b obtained in this way are collected in table 4.2,
together with the residual resistivity o of the samples. From the values of

poa-]L;1 (L0 = 2.45 x 10-8V2/K2, the Lorenz number) we see that the Wiedemann-
Franz law is fairly well obeyed.
One can determine the mean free path of the electrons, ie’ (at least

below 0.5 Tc’ but above this temperature it will not be very much different)
from eq. (2.6): 06] = % evaieN(O). We substituted v = 3 x 107 cn/s 5) and

N(0) = 5.6 x 103“ states cm'3erg'] 6). For all the samples ie turns out to be
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Table 4.2

p a b b' 1 2
Sample 5 =5 1 21ia ooa-]Lo1 o
(uem) (ch W ) (10° 3emk” Mw ) (10 “cmK ‘W ) (R)
Plhoo 1.08 L6.6 3.78 k.10 0.95 305
Pl600 0.68 27.5 1.34 1.50 1.01 520
N-0,NO-0 0.7k 30.2 1.43 1.71 1.00 470
N-319  0.95 37.4 1.20 1.39 1.04 380

of the same order of magnitude as the coherence length 50 = 430 R 5). |t may
be noted that the irradiation damage does not affect the mean free path of the
electrons very much, annealing clearly has more effect. We may conclude, then,
that the extended defects like line dislocations and grain boundaries scatter
the electrons much more effectively than the small clusters of interstitials

and other point defects.
§4.3 Separation of the Phonon and Electron Contribution

In this section we describe a separation procedure for the phonon and

electron contributions to the thermal conductivity both in the superconducting

and in the normal states. The discussion will be carried out for N-0 and NO-0
first, after which it will be extended to PlbOD and Pl600' The sample N-319
will be treated separately at the end of this section.

In fig. 4.3 we plotted the ratio of the conductivities, in the superconduc-
ting and normal states, ks/x”, versus the reduced temperature T/TC for the
samples N-0 and NO-0. Fig. 4.4 shows a detail of the same curve near Tc' the
open dots and triangles represent the experimental data.

We first assumed that near TC the thermal conductivity is mainly electronic,
both in the normal and superconducting states, so that As/xn = AZ/A:. In that
case we can compare the experimental results with the theories presented in
section 2.4. BRT derived an expression for A /A 4’ that is, the effect of
elastic scattering by lattice defects. Tewordt calculated AZP/AZP, the influence
of electron-phonon scattering.

We can easily demonstrate that the latter contribution is small as com-

pared with the first one, even close to TC. Starting from
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T/TC = 0.85, below T = 0.6 TC it becomes negligible. Therefore we can, as a
first step, neglect the electron-phonon interaction and estimate the value of
the parameter A(D)/kBTc from a direct comparison of the experiment with the

BRT theory. This yields for N-0 and NO-0 the value 1.90, from which the upper
curve in fig. 4.4 and the lower one in fig. 4.3 were calculated by means of

eq. (4.1). There is a good agreement for T/TC > 0.78. At the lower temperatures,
however, the experimental data is much higher than the theoretical values of
A:/AZ. This must be due to the increasing phonon conductivity in the supercon-
ducting state, A:, with decreasing temperatures, as was discussed in section
2.4.2.

: - | 5 : s
Still assuming that Ae = A we can calculate Ae and then obtain A~ =
1S S s . s T
AT = A from the experimental data. The open circles in fig. 4.5 represent
(O e e e e
|
3 o > 18 yme m /m
Fig. 4.5 Plot of Ap/z versus T/T .
(]
‘ O, uncorrected experimental
0ok data; @, corrected data.
Lower curve, eq. (2.36) with
’ A(O)/kETg = 1.90; upper curve,
‘ eq. (2.36) with A(0)/k.T. =
D e
]Li 1.95. The value at T = !c
‘ ytelds the constant A in
n Are
I A= AT,
| ot
10+
|
No
7
17 1 | L ]
AN

O T/T,_ 04 06 08 10

A:/Tz, obtained in this way, versus T/TC on a semi-logarithmic scale (for
N-0 only). It is clear that the accuracy at the higher temperatures must
become rather poor, since here A: is the small difference of two large terms.
This is illustrated by the vertical error bars, assuming an error of 0.5 per
cent in A° and AZ.

Under the plausible assumption that for this rather pure sample the
scattering mechanism for the phonons is predominantly phonon-electron inter-

action we may compare A:/Tz with eq. (2.36), in which the function g(x) has to
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be calculated for the value A(O)/kBTc = 1.90. The result is represented by the
lower curve of fig. 4.5. In spite of the large inaccuracy in the experimental
points a clear discrepancy is observed at the higher temperatures. This must be
due to the neglect of the phonon conductivity in the normal state, which must
obey A; = AT2 (see section 2.2.2). From the value of the theoretical curve at
T/T_= 1 we obtain A = 0.024 mWK cm”|

the highest temperatures of about 1 per centand to a small modification of the

cm . This leads to a correction in AZ at
values a and b of table 4.2. The difference in''a" proves to be negligible, but
the change in b can amount to up to 20 per cent. The new values (for all our
samples) have been collected in table 4.2 as b'.

At the higher temperatures we now can recalculate A; from eq. (2.36) and

determine A: = As

- A; as well. If now the values obtained in this way for
A:/A: coincide with the curve of eq. (4.1) with a newly adapted value of
A(O)/kBT we may conclude that our iteration process is correct. The corrected
values of x:/xz are represented by the black dots and triangles in fig. 4.4
and the curve through these points is given by eq. (4.1) with A(O)/kBTC = 1.95.
The agreement is very good both for N-0 and NO-0.

It turns out, moreover, that if the whole procedure is repeated for the

1400 2™ P1600
A(O)/kBTc is found. We believe that this result justifies our separation

samples P the result is equally good and the same value for
procedure.

The electronic contribution in the superconducting state, derived in this
way, is shown for each of the samples in the figs. 4.1 too, the phonon contri-

bution has been plotted versus T in the figs. 4.7. The value of the constant A

in A; = AT2 does not change very much by.the iteration procedure in spite of

the fact that the x; values have been increased, as can be seen from fig. 4.5
(black dots). The theoretical curve, however, also changes because of the new
value A(O)/kBTc (the upper curve in the figure), and the value of A nearly
remains constant. The final results are collected in table 4.3.

A check on the reliability of the value of A can be obtained by considering
the]groduct of A and b'. On the one hand the ratio of A;e and *Zp can be written

as )s A"

“pe _ 313 T,k 4.2
n - 5/3 Op )
ep a

where n, is the effective number of conduction electrons per atom. On the

other hand we have




)‘n
—EE = Ab'TY (4.3)

A
ep

so that the product of A and b' should be a constant for all the niobium sam-
ples. Table 4.3 shows that this requirement is reasonably well fulfilled in
spite of the fact that the A value of P is a factor of two smaller than

for P N-0, and NO-0.

1400

1600’
Table 4.3
A Ab' n, E
Sample . 7 e SN
vk 3em™ ) (107 107k 's™!)

Bles 0.0125 4.7 1.1 3.2

I 0.025 3.8 1.3 1.5
N-0,NO-0 0.024 b1 1.2 1.6
N-319 ) 0.030 4.2 1.3

¥) See section 4.6.

Niobium has 5 conduction electrons per atom. Nevertheless the effective
number of conduction electrons n, may well be smaller, because only the s-
electrons contribute to the conductivity. In fact we can now calculate n, from
the product Ab' and the value of @D’ which is 275 K for niobium. The values for
the different samples are given in table 4.3.

For the irradiated sample it is not possible to follow the same separation
procedure as for the other samples. As is clearly seen from fig. 4.1d and from
fig. 4.6, the phonon conductivity in the superconducting state does not show a
very large increase with falling temperature. This suggests that due to the
irradiation damage other scattering mechanisms than the phonon-electron inter-
action must play an important part. Therefore we can not use eq. (2.36) in
order to determine A;. For this reason we assumed that for N-319 the parameter
A(O)/kBTC has the same value as for the other samples, 1.95. In this way we
calculated the A:/AZ curve in fig. 4.6, the AZ curve in fig. 4.1d and the
A: points in fig. 4.7d. The experimental points in fig. 4.6 even at temperatures

near TC lie slightly higher than the theoretical curve, indicating that no
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correction has yet been made for the phonon contribution.

In the following sections we will discuss the A; and X: behaviour in more
detail, but we want to stress already now that the curve in fig. 4.7d is a
theoretical fit, which enables us to calculate A; too. By subtracting it from
the normal state thermal conductivity data we obtained Az and from that AZ/XZ,
which coincided within the measuring accuracy with the theoretical curve in
fig. 4.6. This gave us the confidence that the assumption was right.

The value 1.95 we derived for A(O)/kBTC is in reasonable agreement with
the value 1.92 recently determined by Lea and Dobbs 7) from their ultrasonic
attenuation measurements at low temperatures on a very pure niobium single
crystal (resistance ratio ~ 5200). A careful analysis of Forgan and Gough 8)
of similar measurements yields a value of 1.95 for T > 5 K. At lower temper-
atures their measurements scale with a theoretical curve determined by an energy
gap A(0) = 1.55 kBTC, close to the BCS value. The same effect was found in
ultrasonic absorption experiments on Nb by Carsey et al. 9) and is not well

8
understood ).
§4.4 Discussion of the Phonon Conductivity in the Normal State

The phonon conductivity in the normal state at temperatures well below

OD may be described by the relation (eq. (2.19)):

kuT3 w© xhex(ex -1)
Freafdbii ,,
P 2n2ﬁ3vS 0 [B + DxT + ExT + Px Tb]

with x = ﬁu/kBT. The denominator represents the sum of the inverse relaxation

times of the four most probable scattering mechanisms: grain boundaries,
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5

dislocations, electrons, and point defects. With v_ = 3 x 10 cm/s the constant
k:(ZWZﬁBVS)-I is equal to 5.3 x IOGmWK-hcm-]s-l. For the sample PIQOO’ P]600'
and N-0 we can calculate the magnitude of E from the values of A in table 4.3
and from f: dx x3ex(ex -~ I)_2 = 7.2. The values for the different samples are
given in table 4.3 as well.

It is not clear why the electron-phonon interaction is so much stronger

inP than in the other samples. There will be a correlation between the

eleclﬁgg and phonon mean free paths, as was suggested by Pippard ll), but his
formula can at most account for a factor 1.2. Nevertheless we believe that

2 x IO9K-|S-1 is a good order of magnitude for the constant E, so that now we
can check whether the other terms in the denominator of eq. (2.19) are important
with respect to the inverse phonon-electron relaxation time.

The grain boundary scattering relaxation time is given by an expression

derived by Klemens ‘0):

L oag w300 5% 5N (4.4)
Ty s'g

where y is the Griineisenconstant (y = 1.4 for Nb ]2)). o is the angle of tilt
of the crystal lattices separated by the boundary (clearly a < n/4), and Ng

is the number of grain boundaries crossing a line of unit length. Ng is the

2 6 2 -1
1400 (1.1 x 10

largest for P cm-‘), but even then B is smaller than 2 x 10°a"s ',
which must be compared with Ex T = 8 x 10

9

Ts_], and consequently can be neglected

above 1 K (xm is the value of x for which x“ex(ex - I)_2 is maximum, R 3.83).

The same author also obtained an expression for the scattering by the

strain field of a line dislocation:

L = oxT = 33.1073y%%N 0 (4.5)
T d
in which b is the Burgers vector (3.3 x 10'8cm in Nb), and N, is the number of

d
dislocation lines per unit area. We obtain

o 93.10'7NdK"s"

1400 (Nd =6 x 108cm-2), given rise to a negligible term, both

with respect to ExT and B.

which, even for P

For point defects with a concentration np Klemens derived:




(4.6)

where a3 is the volume per atom (1.8 x 10-23cm3 for Nb), and S is the scattering

amplitude of the point defects. It consists of two contributions:
(AM/M)ZIIZ, due to the difference in mass of the impurities,
2 2 s : > F CF
3vy"(AR/R)®, due to the lattice distortion by the impurities.

R is the lattice spacing. We obtain:

4 2

P =19.10"n s e

If we think of Ta as the impurity atom, we have np =2 x IO-Q, Sf = 0.075,
2 - -

and Szb—_?.OSS (here we assumed AR/R (RTa RNb)/RNb)' This yields P =

6.6 K 's

The conclusion is that in the normal state and at the temperatures of our

» which only gives rise to a comparable form if T > 175 K.

experiments, the phonon-electron interaction is the only effective scattering

mechanism. The low lying curves in the figs. 4.7 show A; as a function of T.

The mean free path of the phonons can be determined from Rp = vS/(ExT) 108ﬂ.

If we insert for x the value at which the maximum in the phonon spectrum is

adopted (x = 1.6), we obtain ip = 0.94 x IOAT-IR x T_] um (T in K).
§4.5 Discussion of the Phonon Conductivity in the Superconducting State

In the superconducting state at the lowest temperatures the situation is
quite different. The average phonon energy is much smaller than the energy gap
in the electron spectrum, so that the phonon-electron scattering probability
becomes very small. BRT expressed this by inserting a factor g(x,T) in front of
the ExT term in eq. (2.19), giving rise to:

s kgT3 xl’ex(ex - l)-2
e [f
(o}

P 2n2ﬁ3v5 [B + DXT + g(x,T)EXT + PgKfH]

where g(x,T) is a monotonously decreasing function of x; g(xm,T) is not much
smaller than g(0,T) = 2(e” - l)_l, in which y = A(T)/kBT. In fig. 4.8 g(0,T)E

and g(O,T)Eme are shown in a semi-logarithmic plot as functions of temperature,
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with the values E = 2 x 109K 's |, 8(0)/kgT_ = 1.95, and T_ = 9.12 K inserted.
It clearly illustrates that at some temperature the scattering by the electrons
must become so small that the largest of the other scattering mechanisms takes
over and further determines A;. At this temperature the maximum in AZ mus t
occur.

As an example we consider fig. 4.7a of P The maximum occurs at

. 6.<1 =y 1400° 3.-1_~1
T~ 2.5 K for which g(0)E = 2.95 x 10K 's (compare D = 5.6 x 10°K 's '),
and g(O)Eme = 3.09 x 1075-] (compare B = 2 x 106a25-‘). Point defects can
still be ignored. Klemens already noted that the value of D is often underes-
timated a factor of 10 to 20 by his formula. On the other hand it seems reasona-
ble to put az v 0.1, so that both the theoretical values for D and B are roughly
a factor of 100 too small.

Another way of approach is to consider a grain boundary as an array of

parallel line dislocations with mutual distance d v b/a. Klemens derived lo):
L = 6107542 (b%/dN o (4.8)
TBl g

which turns out to be of the same order of magnitude as 15‘

Since we can not distinguish between D, B, and B' on theoretical grounds,
we tried two two-parameter fits of eq. (4.7) to the experimental data both with
E and D and with E and B. For the parameter E we substituted the value given in
table 4.3, for the other parameter we inserted the value determined from the
experimental curve at T = 1.50 K, where the g(x,T)ExT term can be neglected as
clearly follows from fig. 4.8. This did not give the best fit at the higher
temperatures, but better results were readily obtained at E values (denoted by
Egjp in table L.4) that only differ a few per cent from the earlier values. The
drawn curves in the figs. 4.7a, b, and ¢ resulted from the D, E fit, the broken

curves from the B, E fit. It is clear that the dislocation scattering term gives
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Table 4.4

E_. D B D/N D/N
Sample fit 6 L 9 d
ks (IOGK-‘S-]) (1%~ (10 ek lshy (107 2emPk s
& ik 3.1 5.5 30 5.0 0.92
Piaso 1.6 1.5 6.5 4.2 >2.4
N-0,NO-0 1.7 0.95 5.1 3.8 >2.4
N-319 1.4 17

by far the best agreement, which would mean that the formulae (4.5) and (4.8)
underestimate the value of D by a factor of about 1000. In addition there is a
rather good agreement between D/N_ of the different samples, but a less good
one between D/Nd' as one can see in table 4.4. Therefore it seems that the
grain boundaries - considered as an array of parallel line dislocations = play
the most important part in the phonon thermal resistivity at low temperatures

in the superconducting state.
§4.6 The Phonon Conductivity in the Irradiated Sample

In the sample N-319 the phonon conductivity in the superconducting state
is much smaller than in the other samples and, in addition, it does not show a
very sharp increase with decreasing temperature, see fig. 4.7d. The error bars
in this figure correspond with an assumed error of 0.5 per centin 2% and . IF
we suppose that for this sample the relation Ab' = 4.2 x IO-SK-h
we obtain A = 0.030 mWK >cm | and from that E = 1.26 x 109K '™
table 4.3).

2> at T =
P

will hold too,
(included in
With E substituted in eq. (4.7) and B, D, and P taken equal to zero,
5.5 K would be a factor 2.5 too large. This must be due to a large
point defect scattering term which suppresses the conductivity at the higher
temperatures. |t must originate from the clusters of interstitials created by

the fast neutron irradiation, rather than the mass defects created by the

thermal neutrons, because the latter only have a very

tude. Klemens ]0) pointed out that, if the dimensions
as compared with the phonon wavelength (a few hundred
probability is reinforced and varies as the square of

the cluster, but it still has the same wb dependence.
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of a cluster are small
angstréms) , the scattering
the number of defects in

Therefore:




(4.9)
where ncI is the concentration of clusters (= 10|6a3 = 1.8 x 10_7), and Ni the
average number of interstitials per cluster.

Suppose there is one interstitial per q ions of the original lattice. The
average dimension of a cluster is 100 R, so that the number of ions per cluster
is 7 x 103

change in the lattice spacing is AR/R v (q + I)-I/3, which gives Sg

» and the number of interstitials per cluster is Ni =7x% 103/q. The relative
v (g +1)72/3,

The final result is:

6
= _3?;Z_£.li%7§ Kt 7! (4.10)
q (q + 1)
3T3
m
point defect scattering will certainly play an important part in the supercon-

With g = 10 the term Px is already comparable with E at T = 9 K, so that
ducting state.

Dislocation scattering must be responsible again for the decrease of =
at low temperatures. Unfortunately, one can not obtain D directly from the ex-
perimental curve at 1.5 K, because point defect scattering can not yet be
neglected. It turns out that the best fit over the whole temperature range is
obtained for D = 17 x 10°%"s™", € = 1.4 x 10%"s™!, and P = 8.1 x 104k %",
These values give rise to the upper curve in fig. 4.7d. The value of P can be
obtained by inserting q = 6 in eq. (4.10), correspondingly in a cluster there
should be one interstitial per 6 ions of the lattice.

It is not quite clear which phenomenon is responsible for the increase in

D (compare N-0: D = 1 x IOGK-‘S-‘). Perhaps the trapped interstitials in the
grain boundaries and line dislocations give rise to the increase of the scat-

tering amplitude of these defects.

The lower curve in fig. 4.7d represents 1; calculated by means of eq. (2.19)

with the same values of D, E, and P substituted. It contributes less than 0.4

per cent to An, which is of the same order of magnitude as the measuring accuracy.
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CHAPTER 5

THE FLUX DISTRIBUTION IN THE MIXED STATE

§5.1 Introduction

In this chapter we will discuss the magnetic behaviour of reversible and
irreversible low-« type-I| superconductors in the mixed state ]) (see also
section 2.3). In irreversible type-l| superconductors the free movement of the

flux line lattice is counteracted by the interaction of the vortices with the
imperfections of the crystal lattice (pinning centres), causing a gradient in
the flux density 8B/5x. The critical state can be described by an equation in
which the driving force is in equilibrium with the pinning force.

An expressaon for the driving force F per unit volume has been given by
Friedel et al. ), who derived, from thermodynamlc considerations, the relation

between Fd and 3B/3x in the one-dimensional case:

e bt

in which (BB/BH)rev =1+ (BhnM/aH)rev can be derived from the slope of the

reversible magnetization (Abrikosov) curve; B(x) is the local induction. A

more general expression was derived by Evetts et al. 3):
B(r) .2 . »~
f R H(r) (5.1b)

of which (5.1a) is a special case.

A much more complicated problem is the derivation of an adequate expres-
sion for the pinning force per unit volume Fp' Because the mutual interaction
of the vortices is strong, resulting into a rather rigid vortex lattice (section
5.4), a statistical average has to be made up over all the interaction forces
experienced by this rigid lattice h). This cooperative effect gives rise to a
less effective pinning than results from a linear superposition of the contri-
butions of all the effective pinning centres, such as the models of Goedemoed
et al. 5) for point defects, and of Campbell et al. 6) for line defects per-

pendicular to the vortices. The problem was for the first time formulated in
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this general way by Fietz and Webb b) and somewhat later confirmed theoreti=-

cally for some special cases by Labusch 7) and by Good and Kramer 8).

Equalizing F, and F_ we obtain the critical state equation from which,

in principle, onedshould be able to calculate the local flux distribution B(x),
and, by means of integration, the irreversible magnetization curve in increasing
and decreasing fields. However, this can only be carried out in practice if the
reversible relation between B and H is known. The approximation B = H, which is
often encountered in the literature on critical state studies 9), is only jus-
tified for high-k type-1l| superconductors in fields well above Hcl. The assump-
tion is certainly not correct, however, for the much more interesting intrinsic
type-11 superconductors niobium and vanadium, which have a low kappa, x « 0.8.

Theoretical expressions have only been given in some limiting cases. E.H.
Brandt 10) solved the Landau-Ginzburg equations near Tc’ but it is evident from
a comparison with experimental results that his final equation does not describe
the Abrikosov curve very well at temperatures below the Landau-Ginzburg region.
U.Brandtll) solved the Gorkov equations in the low temperature limit in fields
well above Hc , but unfortunately his result is only implicitly given by an
equation which is too complicated for the numerical calculations. We succeeded
to find a mathematically simple expression for Brev(H)’ which makes it possible
to carry out calculations of the flux distribution B(x) and the irreversible
magnetization curves for various critical state models.

In section 5.2 we will discuss our choice for the Brev(H) relation and
check its validity by comparing it with experimental results. In section 5.3
a derivation is given of the formulae for the irreversible magnetization curves
for a general critical state equation. In addition, we will describe a method
to determine the parameters which occur in the theory from the experimental
curves. Finally, in section 5.4, a more detailed discussion will be given of

some critical state models.

§5.2 The Reversible Magnetization Model

In the following we will use the reduced quantities:
bam = (47M + Hcl)/ch (5.2a)
h, = (Ha = Hc])/ch (5.2b)
b = B/H (5.2¢)
€2

77



Cl)/HCZ

where Ha is the externally applied magnetic field.
14

Reversible magnetization curves of pure niobium ]2’13) and vanadium )
show a strikingly sharp decrease of - 4wM just above Hc1’ followed by a much
more gradual decrease to zero. This shape is so very similar to a power function
that we decided to represent the magnetization between Hc1 and ch by

B
bam = « hJ (5.3)

in which a and B are constants for constant temperature. We want to emphasize
that this relation is just an ad hoc hypothesis, which is not based upon any
solution of the Gorkov equations.

The constants o and B can be derived from the boundary conditions at HCZ:

hnM(ch) = : hﬂm(hz) = h] (5.4a)

= (dbnm
dH

g, =) ‘mxcz (5.4b)
€2

B
a = h]/h2

B = hﬂxc2°h /h

21

In non-reduced quantities this corresponds to:

H -H
B=H_+UrM(H) =H_-H +H (—2—=FL)B
a a a €1 ¢ H =TH
Cz C]

B = hﬂxcz(H - Hc1)/H (5.6b)

€2 <1

The constant § may be deduced from the experimental Abrikosov curve in two
different ways:
(i) one can measure the values of Hc], Hc2 and bnxcz, then g8 follows from (5.6b)

(ii) one can measure H_ and ch and take one arbitrary point of the Abrikosov
1
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curve; now B follows from (5.6a). In the ideal case both methods should give
the same result. The magnitude of B8 depends on temperature and is of the order
0.3.

Two features of relation (5.6a) are the infinite slope at HCI’ since B < 1,
and the linear character near ch, since a Taylor series expansion converges
very rapidly in this field region.

In fig. 5.1 relation (5.6a) has been checked for the experimental curve

kG T ¥ | T

kOe 0O8

Magnetization curve of very pure V at T = 4.207 K (t = 0.775),
measured by Sekula and Kernohan. Continuous curve: experimental

results; Q , present model.

measured by Sekula and Kernohan ]k) on very pure vanadium (x = 0.82) at a
reduced temperature T/Tc =t = 0.775. The fully drawn line represents the ex-

perimental result, the points indicate our calculations using Sekula's values

of hﬂxc = [1.16(2K§ - 1)]-], HCl and HC (a correction for the demagnetization

factor of 0.0264 has been made). It turns out that our model fits the experi-
mental data surprisingly well.

Subsequently we wanted to check our model at lower reduced temperatures.
For this purpose we used Freyhardt's data on pure niobium (x = 0.83) 13). The
results are shown in fig. 5.2, in which the drawn lines represent the experimen-
tal data. The circles are calculated from our model (again a correction for the
demagnetization coefficient of 0.025 had to be made), using the values given in
table 2 of ref. 13. The agreement is good for t > 0.65 and still within a few
per cent for t > 0.45. For lower t, however, the agreement becomes worse. The
12). At
t = 0.835 the agreement is very good (circles in fig. 5.3), at t = 0.26 there
is a disagreement of 25 percent at H ~ 0.5 Hc

same trend can be seen in fig. 5.3 for Nb, measured by Finnemore et al.
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Fig. 5.2 Magnetization curves of very pure Nb at
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Fig. 5.3 Magnetization curves of very pure NO
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In the above calculations only method (i) was used to determine B. In
the case of Finnemore's data at t = 0.26 we also used method (ii) making the
adaptation at H = 1900 Oe. Now there is a good agreement for fields between Hc]
and 2000 Oe, but above this field region the calculated points (squares in
fig. 5.3) lay about 15 percent too high. The difference between the two 8's and
thus between the slopes at HC is about 30 per cent.

Data on reversible material with k >> 1 does not agree anymore with the
present model, or only in the neighbourhood of Hc . Beyond this region the best
approximation is a straight line as was suggested by Campbell et al. ]S).

We may conclude, then, that the validity of the present model is good over
the total field region between Hc1 and HCz for materials with low k at reduced
temperatures t > 0.4. At lower temperatures good agreement is only obtained in
part of the field region using method (ii).

§5.3 The Irreversible Magnetization Curves

531 Deduction of the Formulae. In this section we will derive expressions
for the irreversible magnetization curves in the first and second field quadrants
between HC and HC . Only the case of a rectangular sample will be considered
with the field Ha applied parallel to the longest side. The thickness 2d is
assumed to be much smaller than the other dimensions, so that demagnetization
effects may be neglected.

The critical state equation for this one-dimensional case can generally be

written as:

dH aB

Birev o " vF(B,H)'(HCZ B) (5.7)
in which y is a parameter of the pinning model (in decreasing field it has to
be replaced by -y), and F(B,H) is some function determined by the pinning model
being considered. It generally depends on the local induction B(x) and the local

field H(x), which are related to each other, according to eq. (5.6a), by:

H(x) = HC] 8

(5.8)

B(x) = H(x) = K +H_(

H ="H
) Ci

Using this relation it is possible to write eq. (5.7) as a differential equation
for H(x). Introducing £ = x/d and the reduced quantities defined in eqs. (5.4a)

- (5.4c) it passes into
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Fo = v'd flb(h) b1+ (1 = b) = v'd £(h)=(1 = h - an)

The solution is implicitly given by

h
a

y'd(1 - €) =J '
h(z)

dh[f(h)+(1 = h - «h®)]”

from which b(§) follows as well.

In order to obtain an expression for the irreversible magnetization curves
we have to calculate the average induction over the sample. However, it is not
necessary to know b(Z) explicitly. We just rewrite eq. (5.9), obtaining

' -1 3
b(g) =1 - [y'd f(h)] ~ == (5.11)
which can be substituted into the expression for the irreversible magnetization
in reduced quantities

bam = [ dé b(g) - ha

0
For increasing field we have to distinguish two field regions.
(A) For the fields just above H_, the flux has not yet reached the central
plane of the sample: b(£) = 0 for 0 S bk 50.
(B) For the higher fields, b(£) is non-zero throughout the whole sample.
In decreasing field only case (B) exists.
Performing the integration of eq. (5.12) we arrive at:

l (5.13a)

h
(A) bmm 3 J = dhly'd f(h)]~
0

(B) Laim 3 dhlvd Fh)1~" - h, (5.13b)

in which h0 stands for h(£ = 0). The quantities 50 and h0 can be derived from

eq. (5.10), inserting the proper limits:

\ ha By1=1
(8) Va1 - 5y) = JO anlF(h) (1 = b = ah)]

dhlf(h) (1 - h - ahP)]”?




The field for which (A) passes into (B) is found byLsubstituting Eg =0 in
(5.14a); we call it h; or, in non-reduced units, H; ;

With the help of a computer it is easy to solve eqs. (5.10) and (5.13a) -
(5.14b) numerically. This has been carried out on the IBM computer of the

Centraal Reken Instituut of the University of Leiden.

532 Application of the Formulae. In reference 1 we described a method to
determine the parameter y of the critical state model from the slopes, bnx]
and bnxz, of the irreversible magnetization curves at Hc in increasing and de-
creasing fields. The parameter § can be deduced, using method (i), from the
slope of the Abrikosov curve which one should expect to measure in the absence
of flux pinning. This slope is in very good approximation equal to (bnx] -
hnxz)/Z. e

Quite often, however, the peak effect just below Hc ) makes it impos-
sible to use this procedure. Moreover, the inaccuracy in the slopes can be
considerable. A much better and more general method (in some way analogous with
method (ii) for the determination of B) can be obtained from a series expansion
of B(x) to second order in (d - x), as was already discussed on page 774 of

ref. 1. We derived for an external field H_ obeying H o< H <H_:
a a a €2

2
E = l - l 3B
h(.MreV(Ha) = Z{lmM](Ha) + tw.Mz(Ha)} 6(3-"2)”.3 (5.15)
(-‘E)H = - B(hM) = - (hrM () - baM(H ) (5.16)

where the subscripts 1 and 2 refer to increasing and decreasing fields.

From the experimental curves han and QWMZ can be determined at Ha' Then,
using an iteration procedure, the ultimate values of B and y can be deduced
from the eqs. (5.15), (5.16), and (5.7). It is not necessary to correct
(AB/wi)Ha for the third order term of the$series expaniion of the value of Ha
is chosen sufficiently much larger than H;, say H, > H; + O.I(Hc2 = Ha) which
can be checked afterwards.

This method has the advantage of being applicable at temperatures below
0.4 Tc too. Moreover, it turned out to be much more reliable than the former
procedure. The reversible model expressed by eq. (5.6a) and the equations de-
rived in this section for the irreversible magnetization curves turned out to
be quite useful for comparison of some critical state models with the experimen-

tal results obtained for several niobium samples with different defect structure
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introduced by neutron irradiation or by annealing at different temperatures

1,16,18).

§5.4 Discussion of Some Critical State Models

The flux lines form a two-dimensional array with a hexagonal unit cell.
For such an isotropic system three independent elastic moduli can be defined.
They have been derived by Labusch l7a) in the case of well-separated vortices,

jule. H <SR
c

2
8% aH
€11 " %6 * T G rev (5.17a)
BHrEV(B)
N A o (5.17b)
2 H
c66,Hc] ) %? (%%)rev - E% [H Brev(Hl)dHI (5.17¢)

<1
C”-C66 is the compression modulus of the vortex lattice, Chh is a measure of
the tilting of a flux line from its equilibrium position, and c66 is the shear
modulus. In a subsequent paper ]7b) Labusch pointed out that the expressions for
c]l-c66 and cbh hold for the entire field region between Hc, and HCZ. In ad-

dition, he proved that near HCZ C66 goes to zero obeying the relation:

2 _

66,H 87

2 )
c {1 +1.16(2«;, - 1)}

c (5.17d)

2 (ch

10°

dyne

e

1

|
O H 1 2 3 kOe 4

Fig. 5.4 Elastic moduli of the vortex lattice of NO-0 at T = 4.3 K.
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In fig. 5.4 the elastic moduli of the sample NO-0 at T = 4.3 K are shown as
functions of H using eqs. (5.6a) and (5.17a) - (5.17d). The curve for Cgq cON-
sists of two parts corresponding with eqs. (5.17¢c) and (5.17d). Although Ce6
is not well-defined for the intermediate fields it seems reasonable to suppose
that it is much smaller than the other moduli over the whole field region.

A rough criterion for flux pinning follows from the way in which the stored
deformation energy is released during the movement of a flux line through a
pinning centre. If the pinning force fp decreases too fast at the edge of the
pinning potential well, theelastic reaction force fgofthevortexIatticeexperien-
ced by the distorted flux line, is no longer inequilibriumwith the pinning force. In
that case the stored energy is not released reversibly.Thiswilloccurifdfp/dx>
dfi/du in which u is the distortion of the flux line from its equilibrium
position in the lattice.

If 6 is the width of the pinning potential and fm is the maximum pinning

force still in equilibrium with f?' then dfp/dx 4y fm/d. On the other hand

u = fv » SO that the maximum distortion, apart from a numerical constant, is

given by

(5.18)
eff

where Ceff is the effective elastic modulus of the flux line lattice and a is

a characteristic length, both still depending on the shape of the pinning
centres being considered and their arrangement with respect to the vortex lat-
tice. Then, the criterion for pinning can be expressed by a parameter ¢ um/d,
which should be roughly larger than one for pinning to become effective.

The resulting pinning force per unit volume is the statistical sum of all
the effective pinning forces:

N ¥ At (5.19)
0 eff

in the case of N cm of small dislocation lines per unit volume, B/(b0 is the
number of vortices per unit area.

The effective modulus Ceff which appears in the egs. (5.18) and (5.19) can
be expressed in terms of the moduli cii' Without going into detail we can already
argue that the pinning is more effective if C66 enters into the expression of
c than if it does not.

eff
If the pinning centres are small dislocations (i.e. small as compared to
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£) and if they have a spacing larger than the vortex spacing a; = 1.07 (@0/8)5,

Labusch 7) derived for the maximum distortion

f
u=‘°7 (c,

-4
n" s 3 4Cee) +(c”c66)} (5.20)

If the pinning centres are dislocation lines with spacing >> ays which are

parallel to the vortices and much longer than &, Good and Kramer ) derived:
n(R/aO) (5.21)

in which fm/A is the maximum pinning force per unit length, and R is an outer
cut off distance of the order of half the dislocation spacing. Clearly, the
result is not very sensitive for the exact definition of R.

If the pinning centres are long dislocation lines perpendicular to the
vortices, Campbell and Evetts 9) derived an expression for U which only con-
tains C]]. This result is incorrect, because they ignored the possibility that
the flux lattice might be tilted. From energy considerations we arrived at an
arf = iy 2
the average spacing of the dislocation lines. Anyhow, both Campbell's result

estimation for the effective modulus C c66) + xcuh/ao, where L is
and our derivation yield moduli which are much larger than those of eqs. (5.20)
and (5.21). Therefore this configuration of dislocation and vortex lines will
not contribute very considerably to the volume pinning force, whereas the

parallel configuration gives rise to a very effective pinning. Especially near

o 2
Hc2 the pinning can become very strong because C66 goes to zero as (ch B)

Perhaps very close to HC the pinning is also somewhat more effective, but

c66’ as all the moduli, rises very fast in this field region (fig. 5.4), because
of the sharp increase of B as a function of (H - HCI) (figs. 6.1, 2, and 3). The
Labusch theory is an intermediate case.

In the sample NO-0 the dislocation structure is very dilute except at the
grain boundaries, but there the most probable configuration is the perpendicular
one (if Ha is parallel to the longest side of the sample) with very weak pinning.
Therefore we used the Labusch model in order to describe the irreversibility
of the magnetization in this sample. The critical state equation for this case

is
-1/2 + (€, ¢ )—1/2} (5.22)

B(a
T ‘5B 4411

For H < Hc it is allowed to neglect the second term of the effective

2
elastic modulus (C66 << C]1), but for lower fields the exact equation should be
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solved. This is a (computer) time consuming procedure and the question rises
if this has any sense because the exact expression of C66 and therefore also

is not known between the limiting field regions of eqs. (5.17¢) and

(5.17d) . Therefore van der Klein et al. ‘8) postulated a relation for the

effective modulus

He ;
fey :
i CuCes,H,,’

(5.23)

This modulus is shown in fig. 5.5 for NO-0 at T = 4.3 K as the broken curve,
whereas the continuous curve represents the modulus of the Labusch theory. The
agreement is satisfactory over the whole field region.

Substitution into eq. (5.19) leads to the following critical state equation:

aH aB
3§)rev Croam (5.243

in which fig2 (Hc - B) has been inserted too 9). This equation will be used
in chapter 6 to describe the experimental magnetization curves of NO-0 with a

very satisfactory result.

dyne
cm?

30

QP«DQ :3 ch‘l

Fig. 5.5 Comparison of the effective elastic modulus of the Labusch
theory (continuous curve) and the relation postulated by

van der Klein et al. (broken curve).
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CHAPTER 6
THE THERMAL CONDUCTIVITY IN THE MIXED STATE
§6.1 Introduction. Magnetization Measurements

In this chapter the results of the thermal conductivity experiments in the
mixed state will be compared with the theories discussed in section 2.5. The
measurements have been carried out for three orientations of the magnetic field
with respect to the sample surface and the direction of heat flow: H”, H_ and
H, (fig. 3.2), respectively referred to as 'parallel", 'transverse', and
“"perpendicular' field. We will give special attention to three temperatures:
2.13 K, where the phonon conductivity in zero field is predominant; 4.31 K,
where the phonon and electron conductivities are both of the same order of
magnitude; and 6.04 K, where the electron conductivity is the main contributor

to the thermal conductivity.

For a discussion of the behaviour of A just above Hc] in increasing field,

and in decreasing field below Hc , it is necessary to know the average magnetic
induction B and the local induction B(x) inside the sample. Therefore magneti-
zation measurements were carried out for all the samples discussed so far
(PIQOO' Pi6og: N-0» NO-0, and N=319), but also for the same samples after

1400° P0|600’ and NO-319. Most

of these experiments were kindly performed by C.A.M. van der Klein. For ex-

surface oxidation, henceforth referred to as PO

perimental details see references 1 and 2.

In section 6.2 we will discuss our method to determine, from the magneti=-
zation curves, the local induction in parallel field and the average inductions
B(H”), B(H_), and B(H,). In section 6.3 these results will be applied to
determine the A(B) relation from the measured A(H) curves. Some other general
features are discussed there too. The discussion for the low induction range
will be given in section 6.4 but, for several reasons mentioned below, only
for the sample NO-0. The behaviour of the thermal conductivity in the vicinity
of ch will finally be discussed in section 6.5 for all our samples, because
no restricting difficulties arise in this case.

One reason to discuss the low induction behaviour only for NO-0 and not

for P1600 is that the physical properties of both samples are almost the same,
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and N-319 were left out of the discussion is that even the small magnetic
irreversibility of NO-0 makes a reliable discussion rather cumbersome. The much

more pronounced irreversibility of the other samples leads to unsurmountable

difficulties.

The irreversibility can be determined from the magnetization curves shown
in fig. 6.1. The large difference in the irreversibility before and after the
surface oxidation can be ascribed to a strong surface pinning removed by this
treatment. The shift in the maxima of the curves in increasing and decreasing
fields is an indication for this phenomenon 3).

in a larger concentration of oxygen in the surface layer (niobium is a very
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so that we do not expect greatly different results. The reason that also P
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good oxygen getter), resulting into a larger density of pinning centres near

the surface. In addition, the pinning centres near the surface are more effec-
tive than in the bulk, because the shear modulus C66 of the flux lattice
(section 5.4) is much smaller here h). All this results into a strong surface
pinning. Chemical removal of the surface layer, immediately followed by oxida-
tion at 400 0C, gives rise to a very thin NbOZ-Iayer which protects the bulk

of the sample S). Only the pinning of the bulk remains, which for NO-0, as
follows from fig. 6.1a, is very weak, because only just above Hc the difference
in the magnetization in increasing and decreasing fields is larger than the
measuring accuracy of a few Oersteds. It is clearly seen from the figures 6.1b
and c that the irreversibility of PO”‘00 and NO-319 turns out to be much larger.
This gives rise to strong flux density gradients which prohibit a reliable

discussion of the thermal conductivity results at low inductions.
§6.2 The Average and Local Inductions for the Three Field Orientations

6.2.1 The Magnetic Behaviour in Parallel Fields. The magnetization curves
of NO-0 between Hc and HC could be well described by the critical state
equation of Labusch with the effective modulus of Van der Klein et al. 3)
inserted (eq. (5.24)). In fig. 6.2 the calculated points are compared with the
experimental curves at three temperatures. For the calculations we used method
(ii) described in section 5.3.2 with the adaptations made at H = 800, 1210,

and 1500 Oe respectively for T = 6.04, 4.31, and 2.13 K. The slight misfit at
the lower temperatures and the higher fields is due to the difference between
the Abrikosov curve and the mathematical expression we proposed in section 5.2,
eq. (5.6a).

The local induction as calculated at T = 4.31 K for several external field

values in the vicinity of Hc1 is shown in fig. 6.3. Below the field H the flux

has not yet reached the central plane of the sample in increasing field, so
that there remains a zone of zero induction referred to as the '"Meissner zone''.
Above H it is obvious that for each increasing field we can find a decreasing
field with the same average induction value. The local induction distributions
for both fields are, turned inside out, but further identical, so that the
thermal conductivities should be equal as well.

In decreasing field below Hc the critical state theory predicts a field-
independent induction, but from fig. 6.2 it is clear that there still leaks flux
out of the sample. This is even more obvious from fig. 6.4 in which we show

B(H”) (continuous curves) determined from the experimental magnetization curves
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Fig. 6.2 Comparison of the ) on curves of NO-0 with the
theory of Labusch at T = 6.04, 4.31, and 2.13 K.

Crnlrilared T » . 1 o ] 5 . £ 57 2 .99
Calculated points: O , freld up; @ , field down.

Fig. 6.3 Fluxm—density distribution for NO-0 at T = 4.31 K in some in-

ereasing and decreasing fi

given on the right-hand side; 2d is the thickness of the sample.
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3 kOe

The average magnetic induction plotted versus the applied
magnetic field for three orientations. Continuous curves,
parallel field; broken curves, transverse field; point—dash

curves, perpendicular field.

using the relation B = H + 4uM. An explanation for this effect may be the very

large induction gradient at the sample surface which possibly is not stable

any more for fields below Hc1’ so that the flux leaks from the sample. We

believe that this results into a smaller induction over the whole sample,

rather than into the formation of a Meissner zone at the surface. At least it

is difficult to understand that flux should pass through this zone without being
pinned. Perhaps susceptibility measurements in this field region can yield more

information about this still unsolved problem.

6.2.2 Determination of the Induction in Transverse and Perpendicular Field.
Since we could not measure magnetization curves in the transverse and perpen-
dicular field orientations, we tried to deduce the induction from the parallel
field measurements. We approximated the shape of the sample by an ellipsoid
with axes equal to the dimensions of the sample.

In a reversible type-I| superconductor the flux is homogeneously distribu-
ted over the sample. The homogeneous internal field Hi and the external field
at the surface can be matched along the ellipses for which both fields are
parallel: Hz = Hi' The relation between the applied field Ha and Hz for a homo-

geneous magnetization is:
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o = - -
Hsj = Ha Nj bﬂMrev(Hi) (6.1)

where j stands for //, =, or i, The formulae for the demagnetization coefficients

NJ are given by Osborn 7). Since N, << 1 it is allowed to assume Hzﬁ’= Ha’ S0

that the relation between 47M and g2 is known from the measured Abrikosov curve.
Starting from a certain value of H:= or Hgl we can determine the corresponding
value of Ha'

If the sample is irreversible the induction and the magnetization are not
homogeneous. In this case we suppose that the local induction is only deter-
mined by the field Hg and the critical state equation (5.24). The simplest
solution is then to insert into eq. (6.1), instead of h“Mrev’ the values of
thirr(Hg) as measured in parallel field, after which the determination of
Ha(ng) is analogous to that for the reversible case. The B(H=) and B(H,) curves
obtained in this way are also shown in fig. 6.4. The inaccuracy in B due to a
slight irreproducibility of the magnetization measurements is the largest in
increasing fields just above Hc where the curves are very steep.

A fundamental problem, however, arises from the occurrence of a Meissner
zone for increasing fields between HC and H*. In this situation the flux dis-
tribution is so inhomogeneous (fig. 6.3) that the question arises whether this
configuration can still be described by eq. (6.1). For decreasing fields below
Hc it is most probable that the flux is distributed rather homogeneously, as
was discussed in section 6.2.1. Therefore it seems plausible that the inductions
determined in this region are more reliable.

In the perpendicular field the problem is the most complicated, because
the flux lines enter the sample in a direction perpendicular to that for the
parallel or transverse fields. Since the solution of the critical state
equation depends among other things on the mutual distance between the sample
surfaces parallel to the field direction, it is clear that the irreversible
magnetization curves in perpendicular field differ from those in the other
field directions. |f the sample is nearly reversible, like NO-0, the difference
will be negligible well above H* as we were able to calculate. But below H
it is not allowed to use the measured irreversible magnetization curves in
order to calculate the average induction in perpendicular fields. As a rough
approximation one can put B equal to H, as was done by Lowell and Sousa 8),

but we still prefer to apply the method described in this section.
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§6.3 Some Experimental Results

The thermal conductivities of NO-0 at T = 6.04, 4.31, and 2.13 K and of
N-319 at T = 2.13 K are shown in fig. 6.5 as functions of the parallel field.

Fig. 6.5 The thermal conductivity of NO-0 at T = 6.04, 4.31

and of N-319 at T = 2.13 K as a funetion of parallel fie

Q ., increasing field; [\ , decreasing field.
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In this figure, and in the following figures, the circles refer to points
measured in increasing fields, whereas the triangles denote the measurements

in decreasing fields. Although the magnetization curves of NO-0 still show some
irreversibility, this can hardly be found back in the thermal conductivity
curves, at least, if plotted on this scale. Apparently the thermal conductivity
is not very sensitive for small magnetic irreversibilities. However, if these
irreversibilities are large, as in N-319, they are detectable indeed. Even the
peak effect in the vicinity of HC can be observed in fig. 6.5.

The values of Hc can be read quite precisely from the curves. They coincide
nicely with those obtained from the corresponding magnetization and resistance
measurements. Hc , on the contrary, can not be determined very accurately from
the A(H”) curves.

The most striking feature is the steep decrease of A just above HC] (de-
fined as the maxima in the magnetization curves 3)) for the sample NO-0 and the
absence of such a decrease for N-319. There obviously is a correlation between
the magnitude of this decrease and the zero field phonon contribution AS, as
follows from the table 6.1. In the two columns at right the maximum values of
the decrease in parallel, respectively perpendicular (or transverse) fields
are given. It must be concluded that at the lowest temperature the decrease is

due to scattering of the phonons by the flux lines. At the highest temperatures

Table 6.1

s * s
Sample T(K) A A BA,  BA,
NO-0  6.04 120.4 8.5 2.09  6.07

NO-0  4.31 40.35 23.70 13.80 17.29
NO-0 2.13 0.89 133.6 126.6 126.9
N=319. 2013 0.60 L.42 0.45

* SN / - i b )
)all thermal conductivities are given in mW.K ".s .

a secondary effect may be involved, i.e. the scattering of the BCS quasi-
particles by the vortices, discussed in section 2.5.1. At these temperatures
we also observe a dependence of A\ on the field orientations.

Fig. 6.6 shows a plot of A\ versus B”, as derived from the magnetization
curves, for NO-0 at 4.31 K and for N-319 at 2.13 K. Clearly the behaviour of
N=-319 is reversible within the measuring accuracy over the whole field region,

even including the peak effect near ch. For NO-0 at inductions Bﬂ,> B”
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The thermal conductivity of NO-0 at T = 4.31 K and of

N-319 at T = 2.13 K plotted as a function of B/.

(where B, is the average induction at the field Hz;) the thermal conductivity

/

is reversible, too. For BA/ < B; an irreversibility is observed which is due to

the occurrence of a Meissner zone in increasing field, in which the phonon
conductivity will be approximately equal to that in zero field. The value of
B at which the increasing and decreasing field curves join together nearly
coincides with the calculated value of B; marked in the figure.

Fig. 6.7 shows the thermal conductivity of NO-0 at T = 4.31 K in transverse
and perpendicular field. Fig. 6.8 shows the same results plotted versus B_ and
B,. At the higher inductions both curves coincide exactly, whereas they are
widely different in fig. 6.7. This indicates that in this region the procedure

followed in order to obtain B_ and B, gives satisfactory results. For the
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smaller inductions a clear difference between the curves in increasing and
perpendicular fields is observed. Because for increasing perpendicular fields
the Meissner zone is wider than in transverse fields at the same average induc-
tion, a larger thermal conductivity in the perpendicular fields results. For
small decreasing perpendicular fields much more flux will remain pinned in the
sample than for the transverse case at the same field value. This yields a more
irreversible B(H,) relation than was obtained by the method described before
and results into a calculated B, value which is too low.

We conclude this section by presenting the experimental method by which
we adjusted the magnetic field in either the transverse or perpendicular direc-
tion. We measured the thermal conductivity as a function of the indicated angle

on the scale of the iron magnet, O,. This was done at a field value below HC

M 1
in transverse fields, but above the minimum in the A(HL) curve, see fig. 6.7.

At each angle we started from the virginal situation without trapped flux in

the sample. The result of such a rotation diagram is shown for NO-0 at T = 4.31K
in fig. 6.9. It turned out that at @M - 175.5o the field was in the transverse
position OM=’ whereas for OM = 85.5o it was perpendicular to the sample, OM;
The explanation for the shape of the rotation diagram is that, in first approxi-
mation, the perpendicular field component Hcos® (with © the angle between the
field direction and the normal to the sample surface) penetrates into the sample,
whereas the component parallel to it is shielded off. Therefore, by rotating

the magnet from ©

| to OM=’ we follow more or less the A(H,) curve in a non-

M
linear way. We estimate the accuracy of this method to be better than 0.2 degree.

§6.4 Discuseton of the Results at Small Inductions

6.4.1 At Low Temperatures. The experimental results for NO-0 at small in-
ductions at three temperatures and three field orientations are shown in fig.
6.10. The results at T = 2.13 K can be discussed most conveniently, because the
electronic thermal conductivity can completely be ignored at B = 0, and if
Canel's 9) prediction is true (section 2.5.1), also for inductions of a

few hundred Gauss. Then we can restrict the discussion to the behaviour of the

Fig. 6.7 The thermal conductivity of NO-0 at T = 4.31 K measured as

a function of both the transverse and perpendicular field.

Fig. 6.8 The thermal conductivity of NO-0 at T = 4.31 K plotted versus
B_ and B, as derived from fig. 6.4.
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Fig. 6.9

A rotation diagram of the thermal conduc

M= 4 21T % nd Ho= 220 0O
I' = 4.1 K ana 1 = 7oV Oe.

phonon conductivity only.

Table 6.2 shows the ratio of X; and A" as derived from the data of chapter

4. There we also determined the mean free path of the phonons in the normal

state: i; = 10“/7 R. From this we calculated ;;, which is also given in the
table. The mean free path in the superconducting state turns out to be much
larger than the flux line distance at say 100 G, where 3, = 4800 R according

to eq. (2.28). Therefore the conditions are fulfilled (random flux line distri-

10

bution) under which Vinen et al. ) derived equation (2.39):

A_(0) B Aa_(0)

- | = q =

n
A (B i A
p() c2 'p

where o is a constant related to the average scattering diameter D of a flux

line for the phonons:

|-

B (6.2)
H

L

T 3

<2

In fig. 6.11 we plotted [A(0)/A(B)] - 1 versus 8”, B_, and B,. Although
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the irreversibility makes a comparison with the theory rather difficult, we
believe that we still can estimate a from the slopes of the straight portions
of the lines in decreasing fields for the parallel and transverse orientations.
The results for T = 2.13 K are given in the lowest line of table 6.2.

Perhaps the fact that the slope for the transverse inductions is almost
equal to the average of the slopes of the linear parts in the curves versus B,
in increasing and decreasing fields is somewhat fortuitous (a, should of course
be equal to u=). A remarkable result is that the parameter a turned out to be
almost independent of the angle between the flux lines and the direction of
heat flow. We obtained &y = 0.16 and o, = 0.19, so that indeed oy is smaller
than a,, as one should expect, but the difference is small, which must be due
to the fact that E; >> ag.

The deviations from the linear behaviour at the larger inductions are due
to the increasing contribution of the electron excitations localized in the
vortex cores. We determined this contribution by subtracting from the measured

thermal conductivity both the electron conductivity in zero field and the

phonon contribution calculated from eq. (2.39) with the experimental values of
®. In fig. 6.10 at T = 2.13 K the values of [Ae(o) - Ap(B)] obtained in this

way are indicated by the crosses.

For the flux line configuration perpendicular to the heat flow we obtained
a good agreement with the idea of Vinen et al. ]0) that the increase in Ae
results from the tunneling of "bound' electrons between the vortices (section
2.5.1.2). In that case a plot of log ([Ae(B) - Xe(O)]//E) versus 1/VB should
give a straight line, as follows from eq. (2.40). In fig. 6.12 the black dots
represent the experimental results. From the slope of the straight line we
obtained B, = 1.4, which seems to be in satisfactory agreement with Vinen's
result B, = 1.66 for much purer niobium, £ 2 150 Ey+ The value obtained from
the theory of Caroli and Matricon ]l) for a pure type-Il| superconductor is
B, = 1.7.

For the parallel flux line configuration we made a similar plot, shown by
the open dots in fig. 6.12. Again a linear dependence was obtained; BA/ turned
out to be 1.5.

The results are in qualitative agreement with the theory. First of all
Ae for the perpendicular configuration is larger than for the parallel one.
Secondly 5” is somewhat larger than B,. Theoretically this can be explained
by the factor (sin o)" in front of the argument of the exponent in the elec-
tronic wave function of Caroli and Matricon I]), in which © is the angle between

the direction of propagation of an electron and the flux lines. In the perpen-
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Fig. 6.12 Semi-logarithmic plot of [Ae(B) = Ae(O)]//ﬁ versus 1/VB for
NO-0 at T = 2.13 K for the parallel and transverse field

orientations.

dicular case the largest contribution to the thermal conductivity is expected
for sin @ = 1, but in the parallel case this value of sin © will be smaller,

resulting into a larger value of B.

6.4.2 At High Temperatures. The results at T = 4.31 K and 6.04 K are also
shown in the figs. 6.10 and 6.11. The minima of A in the parallel configuration
are less pronounced than in the perpendicular case. From fig. 6.11 it follows
that at the lowest inductions [A(0)/A(B)]- 1 is again a linear function of

B, which can be formally described by eq. (2.39). The deduced a-values are
tabulated in table 6.2. It turns out that at both temperatures Y is smaller
than a,. In addition, an increase in both a's is observed with increasing tem-
perature.

From Canel's theory 9) a small temperature dependence of a, is expected
because only the phonons with wavelengths smaller than £ are scattered by the
vortices, see chapter 2 §5.1.1. At low temperatures this is a more important
fraction of the phonons than at high temperatures. Because Canel's criterion
is not very exact, it is difficult to give a quantitative prediction for the
temperature dependence of o,. However, the ratio of a, at T = 2 K and at 6 K

can be estimated to be smaller than a factor of two. With respect to this o,
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Table 6.2

s,.n
AT/
pPp

i;(pm) ;.:(um) He,(00) )

9.7 0.16 15 2375 0.4 3.3

53 0.22 19 3640 0.33 0.h44

lelO2 0.44 540 49ko 0.16 0.19

at T = 6.04 K is an order of magnitude too large. This anomaly can only be ex-
plained by taking into account the effect of scattering of the normal electrons
by the vortex cores, first mentioned by Forgan et al. l2), later theoretically
calculated by Cleary ]3),see section 2.5.1.4. It is difficult to separate this
effect experimentally from the decrease due to the phonon-vortex scattering,
because both effects have the same B dependence, as follows from eqs. (2.39)
and (2.42). Therefore we used eq. (2.42) in order to calculate Ae(B) and
subtracted the results from the measured thermal conductivity. The remaining
phonon conductivity was compared again with eq. (2.39). In this way we obtained
the reasonable value a«; = 0.35 at T = 6.04 K, if in eq. (2.42) the value
Le = 470 R and a, = 650 R were substituted, in which a, ‘is the scattering
diameter for the BCS quasi-particles by a flux line orientated perpendicular to
the heat flow. At T = 4,31 K the change in a, using the same values of Qe and
a, is much smaller, only 15 per cent, giving rise to a, = 0.32. The values of
o, obtained in this way are given in table 6.2 as %catet Vinen et al. ]0)
reported a temperature dependent value for a, varying from 400 R at 3 K to
about 100 R near Tc’ but the possibility of a two or more times higher value
could not be ruled out.

The striking difference between the decreases of the thermal conductivity
in the parallel and perpendicular flux line configurations can not satisfactorily
be explained by the orientation dependence of the phonon scattering by the
vortices. It has to be given in terms of the behaviour of the electrons. There
are two possible explanations:
15 The scattering diameter in the parallel configuration a” is much smaller
than a,. Compare Vinen's result: at T = 3 K ay = 140 R and a, = 400 R, near
T.a, =50 R and a, = 100 R.

s The contribution of the normal electrons localized in the vortex cores

may not be neglected if the heat flow is parallel to the vortices, in contradiction
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with Canel's theory.
We are not able to discriminate between these two possibilities. As an
example we can calculate the electron contribution as a function of induction
a, at T = 6.04 K
/%

is the same as was experimentally determined by Vinen et al. 10). We finally

inserting into eq. (2.42) LR 230 R, so that our ratio of a

obtain for the phonon conductivity a decrease which corresponds with eq. (2.39)

but with a value of “A/ = 0.15, somewhat smaller than a =2.13 K. In

at T
/
view of the poor accuracy with which our o values could be determined this result
seems not impossible, but it does not exclude the second explanation.
Moreover, it is not at all clear how the value of Y. depends on temperature.

First of all there is Canel's criterion which leads to a slight increase of o
but there also is the influence of the large decrease in the mean free path

s ; . . ;
Qp as the temperature is raised (table 6.2), which must result into a decrease

of oy
§6.5 Discussion of the Results near Hcr

The most interesting quantity of the thermal conductivity in the vicinity
of Hc2 is the derivative of the electronic contribution with respect to H. It
is in good approximation equal to the derivative of the experimental curve,
because the phonon contribution does not vary very much for fields near HCZ.

The measured slopes turned out to be finite, which agrees qualitatively with

the theory of Caroli and Cyrot 1l‘) for dirty type-I|| superconductors in which

B, << EO (eqs. (2.42) - (2.45)). The theory of Maki ]5) for the pure limit

(2 >> go) predicts Ae « (ch - H)i, which results into an infinite sl?ze at Hc
Our experiments do not support the suggestion of Tittmann and Bdmmel ) leading
to a relation Ae « (HCZ - H)p with 0.5 <p<1ifan 50.

In fig. 6.13 the experimental results are plotted versus the reduced tem-
perature. If the thermal conductivity curves were irreversible, the slope was
determined by averaging the H values at equal A. The reason is that the deriva-
tive with respect to B is reversible.

Eq. (2.44) predicts the relation between (dA/dH)ch and (dbnM/dH)HC =
bnxc as a function of temperature. The values of “"Xc were determined
from the magnetization curves taking the average of the slopes in increasing and
decreasing fields if 4wM was irreversible. At temperatures above about 6 K the
accuracy was rather poor because of surface and peak effects. Therefore we cal-
culated KZ(T) by means of eq. (2.31) and the value KZ(TC) = g from Goodman's 17)

relation:
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K=Ky +7.5x% 10390\(i (6.3)

in which k

0 is the Landau-Ginzburg parameter of the pure material, Ch is the

residual resistivity in pQ.cm, and y the Sommerfeld constant. We substituted

the values determined by Finnemore et al. 18), respectively Ko = 0.78 and

y=7.3 x 103erg.cm-3.K-2. By interpolation of the data from 6 K to Tc we could

deduce “"Xcz at thé temperatures in between. Two curves of k., versus T, for

2
N-0 and N-319, are shown in fig. 6.14. The values of KZ(T)/K turned out to be
in satisfactory agreement with the results obtained for several niobium samples

by McConville and Serin ]9) and by Fietz and Webb 20)

, but they are much larger
than the theoretical predictions of Eilenberger 21). The theoretical curve for
N-0 is given as the broken line in fig. 6.14 as well.

We finally compared in fig. 6.15 the data of [(dA/dH)/(dLmM/dH)]Hf‘2 with
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Fig. 6.15 Comparison of the experimental results with the theory of
Caroli and Cyrot (lower curve) for four samples:/\ , P1600;
O, ¥0; 7, #-319; O, P1400' The broken curve represents
the calculated values for N-0 using the experimental (dk/dH)Hc?
data and the theoretical KP(T) values shown as the broken curve

in fig. 6.14.
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eq. (2.44). The experimental results deviate in two aspects from the universal
theoretical curve of Caroli and Cyrot, shown at the bottom of the figure. The
maxima were nearly an order of magnitude too large and always occurred at a
somewhat too high temperature. The deviation factors (= the experimental maxima
divided by the theoretical maximum) are tabulated in table 6.3. Obviously there
exists a relation between these factors and the mean free paths of the electrons.

This is elucidated in fig. 6.16 by a plot of the maxima versus !Le/E,o. Similar

Table 6.3
maxe
Sample po(pﬂ.cm) K Ze(ﬂ) max, Ee/go
PIAOO 1.08 1.47 305 5.0 0.71
Pl600 0.68 1.22 520 9.4 1.21
N-0,NO-0 0.74 1.25 470 8.2 1.09
N-319 0.95 1.39 380 6.2 0.88
08 T {
_mW| ]
Kem.G
0.6 =
04 =
02 =
dA jdanm
dH/ dH |Hcpmax
@)
O gle,. 1 2

—_

Fig. 6.16 The maximum values of [(d)\/dH)/(denM/dH)]Hcg plotted versus
ze/go. O, Wb, this work; @ , Nb, Wasim and Zebouni 22)

(Ee = 656 A and not 328 &, as was reported ; for 4TTX(32 we took

the values of our purest sample);\/, Pb[nx with * = 3, §, 10,
and 21 at%, Gupta and Wolf 23);‘, Nb]—xMOx with x = 2, 15,
Lowell and Sousa 8),' O , the theoretical value for the dirty

1imit 14),
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8,22,23)

deviations have been reported in the literature for several type-I|

superconductors of intermediate purity. These results arealso shown in the figure.
The curve has been drawn smoothly through the experimental points and extrapola-
ted to the theoretical value in the dirty limit, ze = 0.

The reason for the deviation might be the same as for the deviation between
the experimental and theoretical data of KZ(T)/ﬁ and therefore we calculated
the values of [(dx/dH)/(dl&nM/dH)]Hc2 making use of the experimental data for
(dA/dH)Hc2 and the theoretical calculations of Eilenberger for wacz. In fig.
6.15 the result for N-0 is shown as the broken curve. Although the disagreement
is smaller than originally, it is clear that the Caroli-Cyrot theory does not
provide a satisfactory quantitative description of the thermal conductivity

behaviour near HC2 of type-I|| superconductors of intermediate purity.
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SAMENVATTIN

G

Het gedrag van de warmtegeleiding in een supergeleider wijkt sterk af van
hetgeen in een normaal metaal bij lage temperaturen wordt waargenomen. De
oorzaak hiervan is het feit dat zowel de elektronen en de fononen, die beide
een bijdrage leveren tot het warmtegeleidingsvermogen, de invloed ondergaan
van de verboden zone in het energiespectrum van de elektronen rondom de Fermi
energie.

De verhouding van de warmtegeleidingscoéfficiénten in de supergeleidende
en normale toestand als funktie van de temperatuur wordt goed beschreven door
de theorie van Bardeen, Rickayzen en Tewordt. De elektronen bijdrage in de
supergeleidende fase is altijd kleiner dan in de normale toestand, terwijl voor
de fononen bijdrage wordt aangetoond dat deze bijna exponentieel toeneemt voor
afnemende temperatuur. Dit gedrag werd door ons gevonden en kon door de genoem-
de theorieén goed worden beschreven voor de vijf niobium preparaten die wij
onderzochten. Deze preparaten, rechthoekig van vorm, verschilden in kristal-
defekt struktuur ten gevolge van een verschil in warmtebehandeling of door het
bestralen met snelle neutronen. Door een nauwgezette analyse van de meetresul-
taten en door toepassing van de BRT theorie voor de elektronen kon de fononen
bi jdrage van het totale warmtegeleidingsvermogen worden afgesplitst en in
verband gebracht worden met de defekt struktuur. Een kwalitatieve overeenstemming
met de theorie van Klemens werd gevonden voor de onbestraalde preparaten. Het
gevolg van de neutronen bestraling was een vergrote puntdefekt en dislokatie
verstrooiings term. De verklaring van het eerste effekt was te geven binnen het
kader van Klemens' theorie, de herkomst van het tweede effekt is nog niet
geheel verklaard.

De warmtegeleiding als funktie van het magneetveld is door ons onderzocht
door metingen te verrichten bij drie verschillende orientaties van het veld
ten opzichte van de warmtestroomrichting en het opperviak van het preparaat.
Beneden het eerste en boven het tweede kritische veld, Hc‘ respektievelijk ch,
is de warmtegeleiding onathankelijk van het veld. In de ,mengtoestand'", het
veldgebied tussen Hc en Hc , is vlak boven Hc] bij temperaturen laag ten op-
zichte van TC een zeer duidelijk effekt merkbaar van de aanwezigheid van flux-
draden. De fononen worden sterk verstrooid door de normale elektronen, ge-
lokaliseerd in de kern van de vortices, zodat hun bijdrage grotendeels wordt

teniet gedaan. Een verrassend neveneffekt voor zuivere supergeleiders (d.w.z.
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supergeleiders waarvoor de gemiddelde vrije weglengte van de elektronen % veel
groter is dan de koherentie lengte go) is het feit dat de gelokaliseerde normale
elektronen zelf nauwelijks bijdragen tot het warmtegeleidingsvermogen. Dit komt,
zoals door Canel kwalitatief werd aangetoond, doordat hun effektieve groep-
snelheid vrijwel nihil is. Pas wanneer de afstand tussen de vortices afneemt
(toenemende induktie), wordt de kans groter dat de gelokaliseerde excitaties
zich via een tunneleffekt van de ene vortex naar de andere verplaatsen. Bij
temperaturen dicht bij Tc’ waar de elektronen de belangrijkste bijdrage leveren,
vindt ook een afname plaats van de warmtegeleiding vlak boven HC , maar nu door
de extra verstrooiing van de niet-gelokaliseerde elektronen aan de fluxdraden.
Dit effekt, dat voor zuivere supergeleiders een goed meetbare afname tot gevolg
heeft, werd beschreven door Cleary.

Een belangrijke voorwaarde om de experimenten te kunnen toetsen aan de
theoretische beschouwingen is dat de fluxverdeling, dus de lokale magnetische
induktie binnen het preparaat, goed bekend is. Deze volgt uit de meting van de
magnetisatie in toe-en afnemend veld. Met behulp van een eenvoudige mathematische
uitdrukking voor het reversibele verband tussen induktie en veld en een theore-
tisch model voor de fluxdraad verankering is het mogelijk het induktiepatroon
binnen het preparaat te berekenen voor elk uitwendig veld tussen Hc1 en ch.
Zelfs in ons meest reversibele preparaat was het effekt van een induktievrije
kern vlak boven HCI merkbaar in het gedrag van de warmtegeleiding. Desondanks
konden we konkluderen dat, ofschoon in dit preparaat % = &0, de theorieén voor
de warmtegeleiding in zuivere type-I| supergeleiders de experimentele resulta-
ten goed beschrijven.

Voor veldsterkten in de buurt van HC vonden we voor alle preparaten een
lineair verband tussen warmtegeleiding en induktie. Dit gedrag voldoet
kwalitatief aan de theorie van Caroli en Cyrot voor ,vuile" (% << 50) type-| |

supergeleiders, maar niet aan Maki's beschrijving voor zuivere type-I1| super=-

geleiders bij ch, waarvoor een evenredigheid met (ch - H)* wordt voorspeld.

De eksperimenteel gevonden evenredigheidskonstanten waren een orde groter dan
door de theorie was aangegeven; de overeenstemming werd echter beter naarmate

de vrije weglengte van de elektronen kleiner was.







Studieoverzicht

Na in juni 1961 het diploma HBS-b te hebben behaald aan het Grotius Lyceum
in Den Haag besloot ik wis- en natuurkunde te gaan studeren aan de Rijksuniversi-
teit te Leiden. Het kandidaatsexamen a' (bijvak sterrenkunde) legde ik af in
juni 1964, waarna ik in september van dat jaar mijn werkzaamheden begon op het
Kamerlingh Onnes laboratorium in de werkgroep onder leiding van Dr. D. de Klerk.
Aanvankeli jk assisteerde ik Dr. S.H. Goedemoed bij zijn onderzoek omtrent de
verankering van magnetische flux in supergeleidend niobium in de mengtoestand.
Vlak voor mijn doctoraalexamen experimentele natuurkunde - afgelegd in juni
1967 met als bijvak klassieke mechanica - werden de eerste metingen verricht
aan de warmtegeleiding van een niobium preparaat. Een jaar later werd besloten
om de opstelling grondig te verbeteren in verband met de vereiste meetnauw-
keurigheid. In de loop van 1970 kon een begin gemaakt worden met de eigenlijke
metingen, vermeld in dit proefschrift.

Naast het fysisch onderzoek vervulde ik mijn onderwijstaak als assistent

op het praktikum, sedert september 1968 als één der hoofdassistenten van het

eerste-jaars praktikum voor hoofdvakstudenten.

Velen hebben hun bijdragen geleverd voor het tot stand komen van dit
proefschrift. In de eerste plaats wil ik noemen Drs. J.J. Bosselaar,

Drs. J.G.A. Rolfes en de heer J.P.M. van der Veeken voor hun hulp bij de ex-
perimenten en de uitwerking der meetresultaten.

De samenwerking met Drs. C.A.M. van der Klein heb ik bijzonder op prijs
gesteld. Een groot deel van de magnetisatie experimenten werden door hem -
en ook door de heer G.P. van der Mey - verricht. Tevens verzorgde hij het kon-
takt met Drs. J.D. Elen van de afdeling ,materiaalkunde' van het R.C.N. te
Petten, waar de preparaten werden vervaardigd.

De heer T.P.M. van der Burg zorgde voor het technische gedeelte van de
opstelling. De hoogvacuumpomp en het overige glaswerk werden verzorgd door de
heren C.J. van Klink en L. van As. De temperatuurstabilisator werd vervaardigd
door de heer J. van der Zeeuw.

De viotte afwerking van dit proefschrift is te danken aan het efficiénte
typewerk van mevrouw E. de Haas-Walraven en de ijver van de heren W.J. Brokaar

en W.F. Tegelaar die de tekeningen en de foto's maakten.













