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“ Truth is more likely to come out
of error, if this is clear and definite,
than out of confusion".

F r a n c is  B acon

INTRODUCTION AND SUMMARY

The main purpose of this thesis is to develop the relativistic thermody
namics of irreversible processes in a continuous mixture consisting of an
arbitrary number of chemical components. The second purpose is to investi
gate the energy-momentum tensor of the macroscopic electromagnetic field
in ponderable matter.

We shall restrict ourselves to the special theory of relativity and we shall
assume that atomic particles are neither created nor vanish. The validity of
the thermodynamical theory is limited by the condition that, for an observer
moving with the barycentric velocity, the variations in temperature, pressure
etc. must be small over a distance comparable with, say, the mean free path
of the molecules.

In chapter I we give the theory for systems which are influenced by forces
which do not depend on the velocities of the chemical components. The theo
ry is presented in four-dimensional tensor form. First, we introduce some
useful notions such as densities, concentrations and flows of matter, the
barycentric velocity and the barycentric Lorentz frame. The four-vectors
which represent the relative flows of matter and the heat flow are defined in
such a way that they are perpendicular to the four-vector which represents
the barycentric velocity. The tensors which represent the stresses possess
similar orthogonality properties. From the relativistic macroscopic funda
mental laws (i.e., the balance equation for rest mass, the momentum and
energy laws and the second law of thermodynamics) the entropy balance is
derived. The phenomenological equations are given for isotropic media and it
is shown that the Onsager relations are Lorentz invariant. A new cross-effect
is found between diffusion and heat conduction, arising from a relativistic
term in the force conjugate to the heat flow. It appears that due to this cross
effect the diffusion phenomena are influenced by the barycentric motion.

As far as heat conduction, diffusion and entropy are concerned, the results
of the theory given in chapter I are elaborated in chapter II. Moreover, this
chapter contains considerations of heats of transfer and of almost Lorentz
invariant quantities. The results of the theory given in chapter I concerning
heat conduction and diffusion are reformulated in three-dimensional tensor
form with the help of quantities which are used in the non-relativistic theory.
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Formulae are given from which the difference between the results of the
relativistic and the non-relativistic theory may easily be surveyed. The
transformation properties of diverse quantities are examined. As a conse
quence of the developed formalism it is seen that the density of entropy is
the fourth component of a four-vector and it appears that in general the
entropy in a small element of volume is not a Lorentz invariant quantity.
The connection between different sets of heats of transfer, occurring in the
literature, is derived. Some of the quantities occurring in the theory appear
to be almost Lorentz invariant. A formulation of the theory with the help of
relative flows of matter which are defined with respect to a reference
velocity other than the barycentric velocity is deduced from the formalism
developed.

In chapter III we deal with systems, without polarization and magnet
ization, in an electromagnetic field. The entropy balance is derived from the
relativistic macroscopic fundamental laws by means of a procedure which
is slightly different from the one used in chapter I. The phenomenological
equations for isotropic media are given in four-dimensional and three-
dimensional tensor form. Also the Onsager relations are discussed. The
relativistic law of Ohm appears to be a special case of the general equations
which are obtained for diffusion phenomena. It appears that the electric
current is a function not only of the electric and the magnetic field vectors
and of the gradients of the temperature and of the partial specific Gibbs
potentials of the chemical components, but is a function also of the local
derivatives with respect to time of the two latter quantities and a function of
the barycentric acceleration.

The thermodynamical theory for systems with polarization and magnet
ization is given in chapter IV. We restrict ourselves to systems which are
isotropic as far as polarization and magnetization are concerned. In the case
that the medium is polarized and magnetized terms occur in the non-rela-
tivistic second law of thermodynamics which are due to the polarization and
magnetization of the matter. In this chapter we first derive the relativistic
second law of thermodynamics for the case under consideration. If we wish
to deduce a satisfactory form for the entropy balance from the fundamental
equations, it appears that the explicit expression for the ponderomotive
force must be closely connected to the form of the relativistic second law of
thermodynamics. The phenomenological equations and the Onsager re
lations are given for media which are anisotropic with respect to irreversible
processes.

In chapter V we consider the energy-momentum tensor of the macroscopic
electromagnetic field. We also give further discussions of the first and second
laws of thermodynamics and of the macroscopic forces which the electro
magnetic field exerts on the matter. As in chapter IV we restrict ourselves to
systems which are isotropic as far as polarization and magnetization are
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concerned. To have our considerations as general as possible we introduced
in chapter IV several quantities for which we did not give further specifi
cation. It is seen that it is possible to make such choices for these quantities
that an explicit expression can be deduced for a symmetric energy-momentum
tensor of the macroscopic electromagnetic field. It appears that the non
diagonal elements of the tensor found in this way are equal to the corre
sponding elements of the tensor of A b r a h a m .  It is shown that A b r a -
h a m’s tensor leads to an equivalent formalism. It appears, however, that
the form for the relativistic second law of thermodynamics which follows
from A b r a h a m’s tensor corresponds to a rather unusual form for the
non-relativistic second law of thermodynamics. Finally, it is shown that
from the point of view of the developed formalism A b r a h a m’s tensor is
preferable to M i n k o w s k i ’s tensor.

This work forms a part of the research programme of the „Stichting voor
Fundamenteel Onderzoek der Materie (F.O.M.). The latter foundation is
financially supported by the „Nederlandse Organisatie voor Zuiver Weten
schappelijk Onderzoek” (Z.W.O.).

Parts of the contents of this thesis have been published (Physica, Amster
dam 19 (1953) 689; 19 (1953) 1079; 20 (1954) 199). The rest will appear
shortly.

Institute Lorentz for Theoretical Physics G. A. Kluitenberg
of the University of Leyden,
Langebrug 111,
Leyden, Netherlands.
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Chapter I

SYSTEMS INFLUENCED BY FORCES WHICH DO
NOT DEPEND ON THE VELOCITIES OF THE

CHEMICAL COMPONENTS

§ 1. Introduction. The purpose of this chapter is to extend E c k a r t  s
theory x) of the relativistic thermodynamics of irreversible processes in a
simple fluid to a mixture of an arbitrary number of chemical components
and to derive physical results with the help of the Onsager relations. We
shfill assume that matter (rest mass) cannot change into other forms of
energy and we shall limit ourselves to the special theory of relativity. Further,
we shall make the restrictions that there are no external forces depending on
the velocity of matter and that the medium is isotropic. We give the
theory in four-dimensional tensor form, hence, the relativistic invariance is
assured. We shall deal with the phenomena of diffusion, heat conduction,
viscous flow and chemical reactions and with their cross-effects.

Having defined a barycentric velocity, the Lorentz frame in which this ve
locity vanishes will be called the barycentric Lorentz frame. As guiding
principle we shall assume that in the barycentric Lorentz frame all equations
have to correspond closely to the non-relativistic equations. Our method is
analogous t o E c k a r t ’s procedure x) (except in some points of interpretation)
and is closely related to the non-relativistic one *).

The validity of the theory is limited by the condition that in the barycentric
Lorentz frame the variations in temperature, pressure etc. must be smaU
over a distance comparable with the mean free path of the molecules. This
state of affairs is analogous to the non-relativistic case 8).

In §§ 2 and 3 we discuss some preliminaries needed in the development of
the theory. In § 4 we introduce four fundamental laws. In the first place we
have the momentum law and the balance equation for the energy. Since we
assume that matter cannot change into other forms of energy we can also
introduce a conservation law for total rest mass. As fourth fundamental
equation we introduce the second law of thermodynamics (Gibbs relation).
In § 5 we derive the first law of thermodynamics for the internal energy
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of the system, measured by an observer in the barycentric Lorentz frame,
from the first three fundamental equations mentioned before. In § 6 we de
duce the relativistic analog of the entropy production, well-known from the
non-relativistic theory. The phenomenological laws are formulated in § 7 and
it is shown that the Onsager relations are invariant under Lorentz transfor
mations. E c k a r t  has found that acceleration of matter causes a heat
flow and it will be shown that it also gives rise to a diffusion flow. This
phenomenon resembles thermal diffusion because both are cross-effects of
heat conduction and diffusion.

In the following chapter we shall formulate the theory with the aid of three-
dimensional vectors, by means of which concepts of physical interest will
be introduced.

§ 2. Flows of matter and related notions. Before stating the fundamental
equations, which we need for the calculation of the entropy production, we
shall first introduce some useful notions. In § 3 we shall consider the energy-
momentum tensor and some quantities which may be derived from this
tensor, while in this section we shall deal with such notions as densities,
concentrations and flows of matter, the barycentric Lorentz frame, the
substantial derivative with respect to time and an auxiliary tensor.

We assume a four-dimensional coordinate system (xu x2, x3, x4 =  id),
where xu x2 and x3 are the coordinates in ordinary space, c is the velocity
of light and t is the time. By taking x4 =  id, we have the metric tensor
given by the Kronecker tensor and thus associated contravariant and
covariant tensors become identical.

Furthermore, we shall assume that we have a mixture of n components.
If N w is the number of atomic particles (electrons and atomic nuclei) of
component j per unit volume (the volume being at rest with respect to
the observer) and .M$)W is the rest mass of particle k if it is free (not
bound in an atom, molecule or ion) we define as density of rest mass of
component j  the quantity q® =  SJW M$)(k). We can represent the flow of
matter of component j, as is well-known, by a four-vector of which the
components in the space-time continuum are defined by

m 'ï)—q"M?; m2 =  m 3 =  qU)v3 ; (2.1)

where v(,) is the velocity of component j. Chemical components will always
be denoted by a superscript and tensor components by a subscript.

The total density of rest mass is given by

(2.2)

The specific volume is defined by

v = q~', (2.3)
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and the concentration of component j by

c(j) _  gW/g. (ƒ =  1, . . . ,  n) ’ (2.4)

From the preceding equation and (2.2) we have

£ ”=1 c(’> =  1. (2.5)

We shall define the barycentric velocity by

V  =s S;_, c(/) v(,). (2.6)

We now introduce a four-vector with components

ma ee2?_, « y , (a =  1, . . ,  4) - (2.7)

I t  is easily seen tha t

w, =  QVi \ m2 =  gv2; m3 =  gi>3; w4 — icq. (2.8)

We see th a t this four-vector represents the to ta l flow of rest mass. By m
we shall indicate the scalar

m-rn(—  m2)* -- q{<? — v2)1. (2.9)

For the following considerations it is useful to  introduce the dimensionless
four-vector

ua =  mjtn. (a =  1, . 4 )  (2.10)

From this equation we have w ith the help of (2.8) and (2.9)

ul =  v1(cl — v2)~i ; u 2 =  v2{<? — v i)-*;
U3 =  v3((? — v2)" 1; m4 =  ic(c* — v2) - 1.

We see th a t this four-vector can be interpreted as the four-dimensional
analog of the barycentric velocity v. Further, we see from the preceding
equation th a t

hence, it follows tha t
K -i«aP »Jdxfi)~= 0. (p =  1, . . , 4 )  (2.13)

At any particular time we can assign to every point of the system a
Lorentz frame in which v  vanishes. We shall call this frame the barycentric
Lorentz frame belonging to  the point in the space-time continuum under
consideration. All quantities at a point in the space-time continuum measured
in the barycentric Lorentz frame belonging to this point will be distinguished
by primes. According to  (2.9) we then have

g' =  m/c =  e(l — v2/^)*. (2.14)
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(2.15)

From this equation and (2.3) we have

v' =  c\m,
and from (2.11) we have

ua =  id(a; 4), (a =  1, . 4 )  (2.16)

where ó(a; fi) is the Kronecker symbol. Further, we have according to (2.4)

c'W =  e'W/e'. (ƒ =  1, . . . ,  n) (2.17)

We can show that c'(,) may also be expressed as

c'w =  — m~l (j =  1, . . . , « )  (2.18)

This can be done in the following way. In the first place we remark that
the right hand side of this equation is a scalar. Hence, if we prove the
validity of (2.18) in one Lorentz frame we may infer that the equation is
valid in any Lorentz frame. Inserting (2.1), (2.9) and (2.11) into (2.18) gives
with the help of (2.4)

C2 — yfr’) • y

c’[i)= — ? -- v  c<#)- { i = h ..........n)  (Z 1 9 )

It is seen that this equation is identically fulfilled in the barycentric Lorentz
frame. Thus, (2.18) is proved and therefore (2.19) too. Furthermore, we have

S”=i c'w =  1. (2.20)

The most convenient way to represent by four-vectors the relative flows
of matter of the components with respect to the barycentric motion is

I f c’®m„ (« 1, . . , 4 ;  ƒ — 1, (2.21)

Substitution of (2.1), (2.8) and (2.19) into this equation gives with the help
of (2.4)

I f M v f -

c2 — v2

C2 —  V(,) • V

C2 —  V2 5); I f

C2 ----V2

C2 ----V(”  • V

C2 ----V2

(f—1........ ») (2.22)
These equations give the flows in terms of densities and velocities. The
four-vectors I f  have been defined by the preceding equations in such a
way as to have two important properties. First, it follows from (2.21) with
the help of (2.7) and (2.20) that

S;=1 I f  =  0, (a =  1, . . ,  4). (2.23)
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which expresses that the sum of the relative flows of the components
vanishes. Further, we deduce from (2.21) with the help of (2.10), (2.12)
and (2.18)

S t t * . l « = 0 .  (ƒ == i f  . . .. n )  (2.24)

From this equation we see that all the relative flows, I ®, are perpen
dicular to the four-vector ua representing the barycentric velocity.

We shall define the substantial derivative with respect to time as the
Lorentz invariant operator

D s= c S t  i u a (3/0xa). (2.25)

With the help of (2.16) we see that

D =  0/0*', (2.26)

where t' is the time measured by an observer in the barycentric Lorentz
frame.

The density of rest mass, gg|, of component j measured by an observer
moving with this component is given by

<$, =  Q(i) (1 - v0)V ) 1- 0 = 1 .  . . . . » )  (2-27)

In principle the quantities and q'U) are different; however, in practical
cases their difference in value is very small.

F in ally, we introduce the tensor

4 *  +  uaup, (a, ft =  1, . . .  4) (2.28)

<5 „ being the Kronecker tensor. We immediately see that

4 *  =  4,0, («, 0 = 1 . . . , 4 )  (2.29)

and with the help of (2.12) we deduce that

S t ,  =  S t ,  Afiaua =  0. (P =  1. • 4 )  (2.30)

Using (2.16) it follows from (2.28) that

or
^  =  <H«; 0) —  «(«*; 4) d(p; 4 ): (a, p =  l, . . ,  4)

0
1
0
0

0
0
1
0

0
0
0
0

(2.31)

(2.32)

The sum of the diagonal elements of a tensor is a scalar. Using (2.12) and
(2.28) we get for the sum of the diagonal elements of Aa?

S t ,  4 ,  =  3. (2.33)
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In the following it is seen that the tensor Aafi {a, p =  1, . . .  4) plays the role
which dap(a, p =  1, 2, 3) has in the non-relativistic theory. From (2.10),
(2.18), (2.21) and (2.28) we have

I(a ~  m f. (a =  1, . . ,  4; j =? 1, .. „  n) (2.34)

§3. The energy-momentum tensor and some deduced quantities. In this
section we shall consider the energy-momentum tensor and some other quanti
ties which may be defined with its help. We denote by e(v) the energy per
unit volume and by J (<) the energy flow. In principle both quantities differ
from the corresponding non-relativistic quantities because the theory of
relativity recognizes the fact that rest mass is a form of energy. Since the
barycentric Lorentz frame is defined in such a way that the total flow of rest
mass vanishes, J[e) corresponds closely to the non-relativistic energy flow in
the barycentric Lorentz frame. According to the theory of relativity an
energy flow is associated with a momentum density g given by

ê  =  c~2 J w. (3.1)

We write the energy-momentum tensor in the form

W,# = t^  +  gaVp (a, p =  1,2, 3); Wai =  icga (a =  1, 2, 3) ;
w 4a =  «■ 'ƒ M« (a =  1, 2, 3); Wu  =  -  e(v). (3.2)

The components W„p (a, p =  1,2, 3) correspond to the momentum flows.
These terms have been split up into a part gavp corresponding to the trans
fer of momentum with the barycentric velocity (convective part) and a
remaining part which defines the stress tensor. According to (3.1) we have
W*4 =  W4u (a =1, 2, 3) and we extend this by assuming to be a symme
tric tensor. Thus,

W4> =  Wfla- (a, P =  1, . . ,  4) (3.3)
It is easily shown that is given, by

eU =  Uy Wvi ut. (3.4)

The right hand side of this equation is Lorentz invariant. If we calculate
the right hand side in the barycentric Lorentz frame we get with (2.16) and
(3.2) just the left hand side. Hence, the equation is proved.

We represent the heat flow by a four-vector defined by

^° =  C AayWyCUt- [a =  1. • •» 4) (3.5)
With the help of (2.16), (2.31), (3.2) and (3.3) we find from the preceding
definition

—  J  Ml; 2̂(0) =  ƒ(«) 2> 3̂(0) =  J  (e)3 > I'a 0) =  0- (3.6)
From this equation we see that / ' (0) corresponds to J ('e). Further, J[e) corre-
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sponds to the non-relativistic energy flow in the barycentric Lorentz frame
as was stressed above. The heat flow in the non-relativistic thermodynamics
of irreversible processes is usually defined in such a way that it equals the
energy flow in the barycentric frame. (Discussion of various ways to define
the heat flow in ref. 4.) From these considerations it follows that 7*,0) may
represent the heat flow. With the help of (2.30) and (3.5) the following
important property of the heat flow may be derived

22_i «„/<?> =  0, (3.7)

showing that I {°] is perpendicular to the four-vector ua representing the
barycentric velocity (cf. (2.24)).

Further, we may represent the stresses by the tensor
WyCAv . («,/? =  1, . . .4)  (3.8)

As a matter of fact we find from this definition with the help of (2.31)
and (3.2)

w'af> =  t'al) ( a , p = \ , 2 , 3 ) - ,  w'ai =  w l  =  0 ( o = l , . , .4), (3.9)

showing that indeed may represent the stresses. From (2.29), (3.3)
and (3.8) it follows that

u\* =  VOfm, (o, P =  1, . .. 4) (3.10)

and from (2.30) and (3.8) we have

2*=1 «o«W =  SJ-1 “VaWa =  (0 =  1, . 4) (3.11)

The equations (3.10) and (3.11) reduce the number of independent com
ponents of the tensor to six.

It may be readily verified that

Wafi =  Uau / W +  c~ 1 (V<0) +  UJ ? )  +  wofi (a. P— 1.......4) (3.12)
by substituting (3.4), (3.5) and (3.8) into the right hand side of this equation
and making use of (2.28) and (3.3).

We now define, analogous to the specific internal energy in the non-
relativistic thermodynamics, the specific energy measured by an observer
in the barycentric Lorentz frame by

e' == v'e[v) — a, (3.13)

where a is an arbitrary constant, fixing the zero point of e'. It will appear
that a drops out of the final results.

By p' we denote the hydrostatic pressure measured in the barycentric
Lorentz frame. We may define as viscous stress tensor

P0p =  — Wtf -F p' Aa?. (a, P =  1, . . .  4) (3.14)
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From the preceding definition we have with the help of (2.32) and (3.9)

PaP~ — tafi +  P'dap («./?= 1,2,3); P '4 =  P ^  =  0 ( a = l ,  . . ,4),  (3.15)

showing that P ^  indeed may represent the viscous stress tensor. From
(2.29), (3.10) and (3.14) it follows that

Pae =  Ppa, (a, fi = 1 ,  . 4) (3.16)

and from (2.30), (3.11) and (3.14) we have

S<=1 uaP^ Ppaua =  0. (ft =  1, . ., 4) (3.17)

We shall not introduce the simplifying assumption p '= J 2*=1 so that
volume viscosity effects will not be neglected.

§ 4. The fundamental laws. We can now formulate four fundamental
laws which are the starting point for the calculation of the entropy pro
duction.

I. T h e  b a l a n c e  e q u a t i o n  f o r  r e s t  m a s s .  We assume one
chemical reaction among the components of the system. We shall denote
by v(k)J(c) the chemical production of rest mass of component k per unit
volume and per unit time. It is obvious that this quantity is Lorentz invariant.
The quantity vw divided by the molecular mass of substance k is pro
portional to the stoechiometric number of this component in the chemical
reaction. Thus, v(k) is Lorentz invariant too. Hence, it follows that J(c),
called the chemical reaction rate in mass per unit volume and per unit
time, is also Lorentz invariant. Now, we can write the balance equation
for rest mass in the form

dQ /̂dt =  — d i v +  vwJ {c). (k =  1, . . . , «)  (4.1)

(For several reactions the last term would be a sum of similar expressions
for each reaction.) With the help of (2.1) we can write this law in the
four-dimensional form

S U  dm^l8xa =  v <*>ƒ,„. (k = l , . . . , » )  (4.2)

Hence, it follows that this law is Lorentz invariant. Summing the n equations
(4.2) over all values of k, we get with the help of (2.7) and of ££_, „<*> =  0

Sa=l 8 m a l8 x a =  0. (4.3)

This means that the total rest mass is conserved.
II- T h e  m o m e n t u m  a n d  e n e r g y  l aw.  We shall assume that the

external forces acting on the system do not depend on the velocities of the
chemical components. If Fw is the force per unit of rest mass on component
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k, we can define, as is well-known, a four-vector with components

Km «  eWFPie®; K? =  ^  =  e^ /effl ;

5  **><*> (v<*> • F'*>)/(ce|§). (* =  l , . . . , ») (4.4)

From (2.1) and the preceding equation we have

S i . ,  tnfK®  =  0. (ƒ =  1, . . . ,  «) . (4.5)

Thus, we see that the vectors and /E® are perpendicular. The balance
equation for momentum is expressed by

dgafót -f“ /̂}=1 d(ëaVp)föXp =  S*_j (a =  1 >2,3) (4.6)

The energy balance reads

de jd t =  -  div J w +  S?_, e«  v(’> • F®. (4.7)

With the help of (3.2) and (4.4) we can combine (4.6) and (4.7) into the four
dimensional equation

S j ., BWJdXf, =  s;_, <$, IE®-,, (a =  1, . . , 4) (4.8)

showing the relativistic invariance of the two laws.
III. T h e  s e c o n d  l a w  of  t h e r m o d y n a m i c s  ( G i b b s

r e l a t i o n ) .  Just as in the non-relativistic thermodynamics of irreversible
processes we assume that the second law,

T '(8s'/et') =  8e'/ét' +  p'(8v'18t') — S?_, /®(0e'®/0*'), (4.9)

is valid in the barycentric frame. T  is the temperature, s the specific entropy
and the partial specific Gibbs function of component j (chemical potential).
With the help of the Lorentz invariant operator D defined by (2.25) we can
write

T'Ds' =  Be' + p'Bv' —  S*_, /i'wDc,(,V (4.10)

The quantities with primes, measured in the barycentric frame, are here
expressed as functions of space coordinates and time in an arbitrary Lorentz
frame.

§ 5. The first law of thermodynamics. In the non-relativistic theory the first
law of thermodynamics is obtained by multiplying the momentum law
by v and subtracting the result from the energy equation. By multiplying
the equation (4.8) by ua and summing the result over all values of a, it
is obvious that we perform an analogous procedure. Therefore, we must study
the equation

S ^ . ,  UapWJdx,) =  S?_, S i . ,  Q&u.K? (5.1)
in more detail.
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With the help of (2.10), (2.21) and (4.5) we can transform the right hand
side of this equation into

SJL, ZJ_, <?!§> uaKf  =  s;_i E t, eiS, (mc'^r1 cWmaKl? =
=  — 2?„t S i- ,  r ' ^ w ,  (5.2)

with the Lorentz invariant quantity a,tf) being defined by

co(') =  e((g)c(mc'w)-1. (j =  1, . . n) (5.3)

Considering the left hand side of (5.1) we have with the help of (3.12)

si,0=1 ua(dWJdx,) —

=  Sj_, (e/dXf,) [Si_, u a {u a up e[v) +  c- 1 ( V i0) +  u J f )  +  »*}] —

— {«„Vw +  C“ '(V i0) +  M°40>) +  «W»} (0MJdXf). (5.4)
Using the relations (2.12), (2.13), (3.7) and (3.11) we can simplify this
expression

Si,0=i ua(8W j8xp) =

=  — Si„i (0/0*0) (Up e[v) +  c-7<0)) — Si,0=1(c- ‘«0 7<,0) +  ®O0) ( faJdXp).  (5.5)

We now transform two terms on the right hand side of (5.5). With the help
of (2.10), (2.14), (2.15), (2.25), (3.13) and (4.3) we deduce

Si_i (0/0*0) (Upe(„)) =  c q De . (5-6)

Using (2.10), (2.13), (2.14), (2.15), (2.25), (2.28) and (4.3) we derive

Si,0=1  A a p f ë U p / d X , , )  —  C l Q  Dw , (5-7)

and from this equation and (3.14) we have

Si,0= i w îdup/dXa) =  c- ' q'P’Dv' — Si,0=, P ^(dU pldx„). (5.8)

Substitution of (5.6) and (5.8) into (5.5) and the use of the definition (2.25)
gives with the help of (3.10)

Si,0=1 «a(0W V0*,)=-  c ~ y D e ' - c - 1 2 4p=l (dljj»/dXp +  c^IfDup)  -
— c 'q'P'Dv' +  Si^=, Pa0(0«0/0*a). (5-9)

Substitution of the results (5.2) and (5.9) into (5.1) gives the equation

e'(De' +  p'Dv') =  — S i=1 (dlM/dXp +  c~xlfT>Up) +

+  s;_, S i=1 coPljpK^ +  c Si,0=1 Pap (8Upldxa), (5.10)

which may be considered as the first law of thermodynamics for the energy
e'. The left hand side of this equation is completely analogous to the left hand
side of the corresponding equation of the non-relativistic theory. The first
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term on the right hand side of (5.10) corresponds to the divergence of the
heat flow in the non-relativistic theory. It should be remarked, however,
that in (5.10) the four-dimensional divergence of the heat flow occurs. The
second term on the right hand side has no non-relativistic analog and was first
found by E c k a r t 1). The third and fourth terms are analogous to the
corresponding non-relativistic ones, viz. energy dissipated by external forces
and by viscous stresses.

§ 6. The entropy balance. In the preceding section we derived the first
law of thermodynamics from the balance equation for the energy with the
help of the momentum and mass laws. We shall now calculate the entropy
balance from the first and second laws of thermodynamics and the balance
equation for rest mass.

We first derive with the aid of (2.10), (2.14), (2.21), (2.25), (4.2) and (4.3)

o/e') s t ,  (d/dxa) ----- (l/e'K S t, « / a g  -  *»ƒ„}.

(ƒ =  1, . . . , » )  (6.1)

Substitution of this expression and (5.10) into (4.10) gives after some
calculation

g’Ds' = -  S t, (3/ao {(1 IT ) (if -  s;_, ̂ I ? ) }  -
-  (IIT)  St, I <0) {(1 IT') (8r/aO + c -‘D#0} +  '

+  (1 IT) S”=1 S t ,  I f  {(o[i)K {i ] — T(8/8xa) (ji'^IT)} +

+  (cIT) S t „ ,  Pop (dufildxa) -  (1 IT ) J ic) I? .,  ' (6-2)
We now define the scalar quantity

# - è S t . P o * .  (6.3)
Substitution of (3.14) into the preceding equation gives with the help of
(2.33)

n = p r —  i  S t  1 “'oa- (6.4)

From this equation we see that 17 is the difference between the hydrostatic
pressure and J of the sum of the diagonal elements of the stress tensor. Further,
we introduce the tensor

Pa# =  Pafi — . (a, ft =  1, .. ,  4) (6.5)
Using (2.33) and (6.3) we have from the preceding equation

S t ,  Poo =  0. (6.6)
With the aid of (2.29) and (3.16) we immediately see from (6.5) that

P aP =  P ^  (a> P — 1 > 4) (6.7)
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and using (2.30) and (3.17) we have from (6.5)

?a—1 UaPap — â=X Pfia Ua — 0. (/9 — 1, . . , 4) (6.8)

We now define as "forces” (affinities) the four-vectors

y<0) =  -  {(I/T) (8T'ldxa) +  c -1 D ua}, (a =  1, . . ,4)  (6.9)

Yï> K?—r  (d/dxa) Ou'w/ r )f (« = 1, . . ,  4; ƒ = ! , . . . ,  n) (6.10)

and the scalar

A =  — s;=1 yW /W. (6 . 11)

Substituting (6.5) and the three preceding equations into (6.2) gives
with the aid of (5.7)

+ (1 IT') [s;=0 , ƒ<’■> y<'>+ c J P^dUpIdX')+I7q'Dv'+J(c)A] . (6.12)

The first and second parts on the right hand side of this expression are
analogous respectively to the divergence of the entropy flow and the entropy
production of the non-relativistic theory. The first term in the second part
contains the contribution of the heat conduction (ƒ =  0) and the diffusion
(j ^  0), the second and third terms the contributions of ordinary and
volume viscosity and the last term the contribution of the chemical reaction.

§7. The phenomenological equations and the Onsager relations. Taking
into account C u r i e  s law we introduce the phenomenological laws in such
a way that a certain flux only depends on forces having the gamp tensorial
character as this flux. On the other hand, this flux may depend on all
the forces having its tensorial character.

Therefore, we introduce for the vectorial fluxes and forces I {’] and Y%
the equations

where the L ^ k) are (n +  1 )2 tensors (j, k =  0, I, . . . , « )  each having
42 components (a, =  1, . . ,  4).

We shall now show that we can derive an explicit form for £,$<*> from
the assumption that the medium is isotropic, using the postulate that all
equations should correspond closely to the non-relativistic equations in the
barycentric Lorentz frame. From (2.22) we have

e'Ds' =  - t l  (e/dxa) {(1 IT') (ƒ<?>-s ;_ ,^ T ? )}  +

/ < ? > = S L 0 ( « 4; 7=0, l,

I t  =  ( t ' V  ( « = 1 , 2 , 3 ;  j  =B 1, . . . , » ) ;
7'W =  0 (ƒ =  1........n). (7.2)
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Using (2.14) and (2.17) we have from (5.3)
a,w =  ew/e'W (7 =  1........ n) (7.3)

Substitution of the preceding equation and (4.4) into (6.10) gives

Yy  =  r ®  -  T'(dldx'a) (a =  1, 2, 3; j =  1, . . . , « ) ;  *

y;<’> =  (*-/c) v'w • F'<;)+(tT'/c) (»/»') (/i'^/T') (ƒ =  1, . .'.,«).
From (7.2) and (7.4) and from (3.6) and (6.9) we can conclude that (7.1)
corresponds to the non-relativistic equations for an isotropic medium in the
barycentric Lorentz frame if

L '$ «  =  L(,)(*> {«(a; 0) — <3(a; 4) <5QS; 4)},
(a, p =  1, . . , 4 ;  ƒ, * =  0, 1. . . . , » )  (7.5)

where the are the phenomenological coefficients of the non-relativistic
theory. With the help of (2.31) we can write for (7.5)

L $ m=  I«M*> \a, p =  1, . 4 ;  j ,k  =  0 , \ .........n) (7.6)

Since if two tensors are equal in one Lorentz frame they are equal in all
Lorentz frames, we can conclude from (7.6)

Lmw =  Lm ) Aafi (a, 0 =  l, . . , 4 ;  j, k =  0, 1, . . . , « )  (7.7)

As the are the phenomenological coefficients of the non-relativistic
theory we have among them the Onsager relations

£<ƒ)<*> =  £<*>«. (j ,k =  0 , \ ,  . . . , n )  (7.8)

From (2.29) and the two preceding equations we get
(a, /3=1, . . ,  4;/ ,  *=0,1 , . . . , » )  (7.9)

We see that the Onsager relations enter again in the relativistic theory
and that they are invariant under Lorentz transformations.

In a mixture of n chemical components we may have n — 1 independent
relative flows of matter and one heat flow. Together these flows have 3n
components in ordinary space. Hence, we should expect 3n independent
phenomenological equations; however, (7.1) gives 4(n + 1 )  equations.
Therefore, we must now prove that n +  4 of the equations are dependent on
the others. From (2.30) and (7.7) it follows that

S j , l «„ ( £ ; _ o 1 L$<*>Yj?>) =  0. (ƒ =  o, 1, . . . ,  n) (7.10)

According to (2.11) we have uA #  0 in every Lorentz frame. Hence, from the
preceding equation, (2.24) and (3.7) we can draw the conclusion that in
(7.1) for each value of j  the equation with a =  4 depends on the equations
with a =  1, 2, 3 for the same value of j . This reduces the number of inde-
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pendent equations by n +  1. As is well-known from the non-relativistic
theory we have

s ”=, L«(*>=0. ' (* =  0, 1, . . . , « )  (7.11)

Using the preceding equation and (7.7) we find

s /=i (25-o lT*Yf>) =  0. (a =  1, 2, 3) (7.12)

From this equation and (2.23) we see that in (7.1) for a =  1, 2 or 3 the
equation with j =  n depends on the equations with ƒ =  1, 2, . . n —  1
for the same value of a and this reduces the number of independent equations
by 3. Thus, finally, we get the right number of 3n independent equations.

It should be emphasized that the term c~l Dua, occurring in (6.9), repre
sents an effect which the non-relativistic theory does not predict. This term,
discovered already by E c k a r t 1), shows that acceleration of matter
causes a heat flow. Moreover, as we now see, it also gives a cross-effect with
diffusion.

For the tensor Pap we can introduce the phenomenological equations

■*V =  C ŷ,C=l ï'aflyC (ÖUy/^*j), (<t, fi — I, . 4) (7.13)

where Lapyt is a tensor of the fourth order. Taking into account the as
sumption that the medium is isotropic, the postulate that all equations have
to correspond closely to the equations of the non-relativistic theory in the
barycentric frame and the equations (6.6), (6.7) and (6.8), which equations
express properties of the tensor Pa/S, we can derive, along the same lines which
gave the result (7.7), a form for Lap which leads to the equation

p <*= [4*4e{(«ya*e) + ( « « A F iV t t  (to y l8 * c )l

( a , p=  1, . . ,4) (7.14)

where the scalar rj is the ordinary viscosity. Again, we may show that among
the sixteen equations given by (7.14) eleven equations are dependent on
the others. This reduces the number of independent equations to five which
would be expected from physical considerations.

For the scalar quantities I I  and we can introduce phenomenological
equations of the form

n  =  V(v)Q’ d »' +  Lme) A, (7.15)

/(c) =  (̂c)(p) Q Du' +  LA,  (7-16)

where is called the volume viscosity. All quantities occurring in (7.15)
and (7.16) are Lorentz invariant. The Onsager relations, in the Casimir
form, read

(̂c)(« =  7,(w(c). (7.17)
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Substitution of (7.14) and (7.15) into (6.5) gives

=  r?cS*c=1 [Aay Ap:{{8uyl8x:) +  (duJBx^— ^A^A^ {duY/dxc)] +

+  V(v) ^afl q' Dw' '+  P(p)(C) Aap A. {a, P — 1, . . ,  4) (7.18)

The first term in( 7.16) and the last terms in (7.15) and (7.18) represent cross
effects of volume viscosity and chemical reactions which one could call
“visco-chemical” effects.
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Chapter II

FURTHER DEVELOPMENT OF THE THEORY

§ 1. Introduction. In the preceding chapter we developed the relativistic
thermodynamics of irreversible processes in an isotropic mixture of an
arbitrary number of chemical components. Heat conduction, diffusion,
viscous flow, chemical reactions and the cross-effects of these phenomena
were studied. The four-dimensional tensor form in which the theory was
presented warranted relativistic invariance.

In this chapter the results of the theory concerning the entropy, heat con
duction and diffusion will be studied in more detail. The theory will be
presented in three-dimensional tensor form. It should be emphasized that
the relativistic invariance of the theory is maintained. Further, we shall consider
to what extent the relativistic theory deviates from the non-relativistic one.
We shall also discuss the transformation properties of various quantities.

In § 2 we give the connection between the four-vectors introduced in the
preceding chapter, which represented the relative flows of matter of the
chemical components with respect to the barycentric velocity and the three-
dimensional vectors, J (,) (ƒ =  1, . . . ,  n), which are used in the non-relativistic
theory for this representation. We also introduce another heat flow, J <0), in
this section. We consider the phenomenological equations for the flows J w
(j =  0, 1, . . . , » )  in § 3. It appears to be useful to introduce new three-
dimensional forces Xtf) (ƒ =  0, 1, . . . ,  n). We derive in § 4 the transformation
properties of the flows J '7) and the forces X(,) for the transition from the
barycentric Lorentz frame to an arbitrary Lorentz frame. The entropy and
the entropy balance are discussed in § 5. Further, we draw some conclusions
in this section concerning the phenomenological coefficients from the positive
definite character of the entropy production. In § 6 the heats of transfer are
introduced. Their transformation properties are examined and the connection
is given between diverse definitions for these quantities occurring in the
literature. Another form for the forces and the phenomenological equations,
with the help of which the results of the relativistic and the non-relativistic
theory may easily be compared, is derived in § 7. We discuss some almost
Lorentz invariant quantities in § 8. Finally, in § 9 we formulate the theory
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with the help of relative flows of matter which are defined with respect to
a different reference velocity.

§ 2. Relative flows of matter and heat flow. In chapter I we defined with the
help of equation (1.2.21) *) a set oin four-vectors, I® (a =  1, . . ,  4 ; j =  1, . . . ,  n),
which represented in our theory the relative flows of matter with respect to
the barycentric velocity. The first three components of every four-vector
form a three-vector in ordinary space. Hence, according to (1.2.22) we used
as relative flow of matter of component j the three-dimensional vector

I »  =  e{i) ( \ {i) — ** v)  • (ƒ =  1, . . . ,« )  (2.1)

Thus, we see, that we do not take v as reference velocity, but v multiplied by
the factor (c2 — v(,) • v) (c2 — v2)-1. This factor, however, still depends on v(,)
and therefore we have in fact a different reference velocity for each chemical
component. Because of this it seems to be useful to reformulate our results,
without giving up the relativistic invariance of the theory, with the help of the
relative flows of matter as used in the non-relativistic theory and defined by

J(J> =. gO) (ym — v). (ƒ =  1, . . . , « )  (2.2)

The physical picture with this description is simpler than with the description
using the vectors Itf) as we now take v as reference velocity for each chemical
component. Moreover, we may now easily compare our results with those
of the non-relativistic theory.

By eliminating the vector g0)v(,) with the help of (2.2) from the right hand
side of (2.1) we find as relation between I(,) and J(,)

|(f) =  J (,) -f- (v J « )  (c2 — v2)-1 v. n) (2.3)

Written out in components these equations read

(c2—y2) 7^»=S^_I {(c2—v2) J j \ , («=1,2,3; j= \ , . . . ,n )  (2.4)

where <5a« is the three-dimensional Kronecker tensor. Thus, for each value
of j (2.4) gives three equations with the help of which we can express the
three components of in those of I(,) and v. This gives

J f  =  SjL 1 (ó* — c '2 vav0) I f ,  (a =  1, 2, 3; j =  1, ..  •. ») (2-5)

or
J(7) =  ][()> _  c~2 (v • I(,)) v. ( / = ! , . . . , » )  (2-6)

*) Equation (2.21) of chapter I of this thesis will be indicated as (1.2.21) and in the same way
we denote the other equations of chapter I.
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With the aid of (1.2.2), (1.2.4) and (1.2.6) it follows from (2.2) that

S;=1 J w -  0. . (2.7)

Again, the first three components of the four-vector 7*,0) (a =  1, . . ,  4),
representing the heat flow in the theory and defined by (1.3.5), form a three-
dimensional vector. Substitution of (1.2.28) and (1.3.2) into (1.3.5) gives with
the help of (1.2.11) and (1.3.3)

I(0> =  c{<? —  v2)-* [(1 — v^c2) J („ +
+  {c“2 +  (c2— v2) -  ’} (v • Jw) v — c2 (c2 — v2)"1 eM v —

(c2 — V2) - 1 (Sa,/5=1 Vu ta/j Vp) v], (2.8)

where i0 is the unit vector in the direction of the positive a-axis in ordinary
space. We now split up J(e) into two parts, one being parallel and the other
being perpendicular to v. Thus,

J(«) — J(«)|| +  J (.u> (2.9)
with

J MII ^ v (v 'J W)/v2. (2.10)
and

JWI =  Jw — v (v-J wJ/v2. (2.11)

With the help of (2.9), (2.10) and (2.11) we find for (2.8)

I < ° >  =  c(c?-v2) *{Jfe)-(v2/c?) JW1 +  v2(c2-v 2) - 1J(e)i|-c2(c2-v 2) - 1e(„)v -

— K n -i  Vfi — (c2 — v2) - 1 ($ •* ., v„) v}. (2.12)

We now define a new heat flow, J (0), by the equation

ƒ« ’ =  S |- i  (<50/J — c~2 va vp) I f ,  (a =  1,2,3) (2.13)
or

J<°> =  i<o>__c-2 (v . !«»)) v. (2.14)

Substitution of (2.12) into (2.14) gives with the help of (2.10) and (2.11),

J<°> =  C(C2 — v2)-*{Jw— y / c 2) U W -  (2.15)

Comparison of the expressions (2.12) for I(0) and (2.15) for J (0) with the
definitions for the heat flow of the non-relativistic theory x) shows that
J(0) is more closely related to the heat flows introduced in the nofi-relativistic
theory than I(0) and in the following it is seen that for the three-dimensional
formulation J <0) is to be preferred over I(0).

As is well-known from the non-relativistic theory, there is, however*
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a  certain freedom in defining the heat flow. For instance, we may also
introduce as heat flow the vector

J {#): =  — v2) {J (0) — c~2(v • J (0>) v}. (2.16)

Inserting (2.15) into (2.16) gives with the aid of (2.9), (2.10) and (2.11)

I2-17)

From the preceding equation we have

J (f) =  J M — (*W + P ) v if U  =  P  6 <*> («. P  =  1 > 2, 3) (2.18)
which form is the same as a well-known definition in the non-relativistic
theory for the heat flow in a non-viscous medium x).

§ 3. Forces, phenomenological equations and Onsager relations. To obtain
the phenomenological equations for the flows (ƒ =  0, 1, . . . .  n), we
substitute (1.7.1) into (2.5) and (2.13). Using (1.7.7) we then find

J f  =  E j=0 L mk) S j=1 (3* — c~2vavp) Apy Y?1}.
(a =  1 , 2 , 3 ; / =  0, 1, . . . , » )  (3.1)

We now define the three-dimensional “forces” (affinities) X(*’(& =  0, 1,
by

(«=1-2,3; * - 0 , 1 . . . . , » )  (3.2)

W ith these forces (3.1) takes the simple form

JW =  p m )  x<*’- (f =  0, 1, . . . .  ») (3-3)

The definitions of the relative flows of matter, J (;) (ƒ =  1, •••, »), are
analogous to those of the non-relativistic theory (cf. (2.2) and 2)). This is
not the case with the definitions of the heat flow, J <0> (cf. (2.15) and 1)), and
the forces, X(i) (* =  0 , 1 , . , . , ») (cf. (3.9), (3.12) and *)). The phenomenological
coefficients are the same as in the non-relativistic theory an,d satisfy the
Onsager relations

£<#><»> =  L m )  (ƒ, * =  0, 1, . . .  , n) (3.4)

according to (1.7.8). From (1.7.11) we have with the aid of the preceding
equation

£<ƒ)(•)   2 » -1 IP )(*>. (7 =  0, 1, . . . ,  n) (3.5)

By substituting (3.5) into (3.3) we obtain the equation

L im) (X(i> X(n)) +  L (im X(0), (f—O, I, . , , ,  n—1) (3.6)
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which contains only independent quantities. The forms of the preceding
equation and of (3.3) are well-known in the non-relativistic theory2). For
I*a (a — 1» • •> 4; 7 =  0, 1, . . . ,  n — 1) we can derive a similar expression

/ < ? ■ > = L T ( Y f ] -  n n)) + u r m
( a =  1, . . . 4 ; /  =  0, 1, 1) (3.7)

We shall now consider the explicit form of Xw in more detail. For that
purpose we substitute (1.2.28) into (3.2). Using (1.2.11) we then find

X W =  y<»> _j_ ic~x vaY f -  (a -  1, 2 ,3 ; k  =  0, I.........*) (3.8)

Inserting (1.6.9) into (3.8) gives with the help of (1.2.11) and (I.2.2S) for k =  0

X,0) =  — {(1 /T') grad T '-f  (c2—v2)-1 (dy/dt)+(y/T')c~2 (dT'/dt)}, (3.9)

where the operator d/d* is the substantial derivative with respect to time
defined by

d/dt =  djdt +  vp (d/dxp). (3.10)

From (1.5.3) we have with the aid of (1.2.4), (1.2.14) and (1.2.19)

w<V *7e$ =  (̂c2 — v2)* (c2 — v w • v)- 1. ( k =  l, . . . ,» )  (3.11)

Substitution of (1.6.10) into (3.8) gives with the help of (1.4.4) and (3.11)
for k =  1, . . . ,  n

X<*> =  c(c2 — v2)* (c2 — v(*J• v)~' {F**1 — c~2(vfk> • F***) v}__
— T '[grad(ju 'w/T ')+ c -2{d(/i'w/T')/di}v]. ( k = l , . . . , n ) .  (3.12)

From (3.9) it follows that in the barycentric Lorentz frame X<0) has the
form

X'<°> =  — {(1/f )  grad' T  +  c -2 (dy/dt)'}, (3.13)

while we find from (3.12) for the form of X(*> (k =  1, . . . , « )  in the bary
centric Lorentz frame

X 'w> ;  F 'w -  T  grad' (fi'w/T'). (k =  I, . . . ,  n) (3.14)

In the two preceding formulae grad' means that the operation of the
forming of the gradient must be performed with the help of x[, x2 and x'3. The
forms (3.13) and (3.14) for X '(A) (k =  0, 1, . . . , « )  correspond closely to the
expressions for the forces in the non-relativistic theory2), the only difference
being the second term on the right hand side of (3.13). I t should be remarked
that, though v =  0 in the barycentric Lorentz frame, in general (dy/dt)' does
not vanish. The general expressions for the forces (3.9) and (3.12) show
that, in contradistinction to the non-relativistic theory, the forces depend
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on and on derivatives with respect to time of several quantities. In § 7
we shall derive another form for the forces in which v{k) and derivatives with
respect to time, except the time derivative of the barycentric velocity, do
not occur explicitly.

§ 4. The transformation properties of flows and forces. The phenomenological
coefficients Lmh), occurring in (3.3), are Lorentz invariant. The flows and
forces occurring in (3.3), however, do not transform as the components of
a four-dimensional tensor and we shall now examine their transformation
properties.

We have from (1.3.6), (1.7.2), (2.6) and (2.14)
=/;<'>; I'M= J'3m; 7 ^ = 0 .  (ƒ =  0, 1, . . . ,  n) (4.1)

We now consider two Lorentz frames. Quantities measured in one of the
frames we denote by double primes. We then have according to the theory
of the Lorentz transformations 8) 4)

7« =  (a =  1, . .,4 ; 7 =  0, 1, . . . , « )  . (4.2)

Excluding rotations of the three-dimensional axis-frame, we have for the
coefficients a^ s) 4)

«’a f =  P ) +  V(r)aV(r)0 X lr f r )  (“ ’ P  ~  3), / 4  3V

aa4 =  - a 4a =  iv ^c - 'il-v f^ /c 2)-* (ct =  1,2,3); «44 =  (l-v^/c2)-*,

where V(r) is the velocity of the Lorentz frame without primes with respect
to the Lorentz frame "with double primes” and x is given by

* =  (1 _  v* j/c2) — 1. (4-4)

We now take for the Lorentz frame “with double primes” the barycentric
Lorentz frame. We then have v(f) =  — v and (4.2) becomes with the help
of (4.1) and (4.3)

ƒ</>= *lv2) J'P , ( o - l .  2, 3; ƒ=(>, \ , . . . , n )  (4.5)
or ,

I<»> =  J ,(>> v(v- J ' tfl) «/v2. (7’ =  0, 1, . . . , « )  (4.6)

Substitution of (4.6) into (2.6) and (2.14) gives with the aid of (4.4)

j (»)= j '(j)+ v (v  J'<»>) {(1 — v V )* —Q/v2. (j =  0,1, ..  ..,■*») (4.7)

We now split up J ' (,) into two parts; one being perpendicular to v and the
other parallel to v. Thus,

J'{j> =  v ( v J ' V ,  (ƒ =  0, 1, . . . , « )  (4-8)
and

J '«  =  J '«  — v(v• J ' tf))/v*. (7 =  0,1, . . . , » )  (4.9)
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With the aid of (4.8) and (4.9) we get for (4.7)

J(fl =  J ' r  +  — v2/^)*. (ƒ =  0, 1, . . . , « )  (4.10)

Hence, we see that the component of J l,'> perpendicular to v is the same
as the component of J 'w perpendicular to v, however, the component of J w
parallel to v becomes smaller if one goes to a Lorentz frame in which |v| is
larger and differs a factor (1 — v^c2)* from the component of J 'w parallel to v.

From (1.2.31) and (3.2) we have

S j-i W (k) =  K W =  K {k) (a =1* 2 ,3; k =  0,1........»);
4̂|9 Ypk) =  0 (k — 0, 1, . . . ,  n).  ̂ ^

With the help of the preceding equation we can deduce in the same way as
above that

X<*> =  x '« ; +  X'<*> (1 - v V ) * .  (* =  o, 1, . . . ,  n) (4.12)

where Xf|W and X'[k) are defined by equations analogous to (4.8) and (4.9)
respectively.

In the same way as we derived the transformation properties of
{k =  0, 1, . . . , « )  we can find those of J (?).

§ 5. The entropy and the entropy balance. In § 6 of chapter I we derived
the entropy balance. We shall now examine this balance further. According
to (1.6.12) we have

e'Ds' =  — 2 a=i (9/Wa/3*a) +  a, (5.1)

where 7(s)a and a are given by

Iit)a =  (1 IT') (ƒ«»> -  S-_, //">ƒ<’>), (a =  1, . . ,  4) (5.2)
and

0 - ( i / n { ^ ox L Iijn'yi».+ _
+  c (dup/dxa) -f IJq'Dv' +  /(c)-d} (5.3)

respectively.
We shall now transform the expression (5.1). For that purpose we first

derive with the help of (1.2.10), (1.2.14), (1.2.25) and (1.4.3)

6' Ds> =  2 a=i d(mas')ldxa. (5.4)
Inserting (5.4) into (5.1) gives

2 «=i dSJdxa — a, (5.5)

where the four-vector Sa is given by

Sa =  mas' +  7(I)a. (a =  1, . . .  4) (5.6)
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We now introduce the quantities

s(i>) =  *c (5.7)

and
ƒ(*)„ =  Sa — *(.)"«• (a =  1, 2, 3)

Substitution of the two preceding equations into (5.5) gives

(5.8)

ds{v)fdt =  — div (J (s) -f- s(B)v) +  a. (5.9)

Introducing
s =  s(„)/e, (5.10)

we find from (5.9) with the help of (1.2.8), (1.4.3) and (3.10)

Q(ds/dt) =  — div J (s) +  a. (5.11)

The preceding equation has exactly the form of the entropy balance as it is
u s u a l l y  given in the non-relativistic theory2). Hence, we can interpret s as
the specific entropy, s(o) as the density of entropy and J (s) as the density of
the conductive flow of entropy.

Inserting (5.6) into (5.7) gives with the help of (1.2.8), (1.2.14) and (5.10)

s(o) =  s('B, 0  — v2/c2) * — ic ‘ / W4. (5.12)

According to the Lorentz contraction we have

dF  =  d F ' (1 — v2/c2)*, (5.13)

where d F  is an infinitesimal volume element in ordinary space. Multi
plying (5.12) by d F  and using (5.13) gives for the entropy in the volume
element dF

sw dF  =  s'(v) d F ' -  ic~l I m  dF , (5.14)

From (5.2) and the preceding equation we see that the entropy in the volume
element is only a Lorentz invariant quantity if there is no diffusion and
heat conduction (ƒ„* =  0 (a =  1, . . ,  4; ƒ =  0, 1, . . . .  n)). We shall show,
however, in § 8 that in all practical cases the second term on the right hand
side of (5.14) is very small with respect to the first term, so that the entropy
in a small volume element has almost the same value in all Lorentz frames.
Hence, we can conclude that according to (5.7) the density of entropy multi
plied by ic appears to be the fourth component of a four-vector, while the
entropy in a small volume element is not a. Lorentz invariant quantity
because the transport of entropy is due not only to convection (the term
sw v in (5.9)), but also to conduction (the term J (s) in (5.9)). Thus, P la n c k ’s
point of view 5) *), which is also adopted by E i n s t  e i n 7), and according
to which the entropy is Lorentz invariant, is according to our formalism only
correct if there is no diffusion and heat conduction. E c k a r t 8) interprets
the quantity s' as the entropy, whereas we think it is more correct to call this
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quantity the specific entropy measured by an observer in the barycentric
Lorentz frame.

To avoid confusion we make the following remark. If in a Lorentz frame
at the time t and at the position r we have v (r, t) =  0, then s(ï) (r, t) =  sL (r, t).
In general, however, at the time t +  dt we shall have v (r, t -f- d<) ^  0 and
then s(B) (r, t +  d<) #  s[v) (r, t +  dt). I t  appears that lim ^ o  {s(8) (r, t +  di) —
s(v) (r, t)}/dt differs from limd(==0 {s('„, (r, t +  dt) — s[v) (r, t)}/dt. Applying (5.5)
or (5.9) in the barycentric Lorentz frame, we must take for ds,vJdt the first
limit mentioned above. Also by applying (5.11) in the barycentric Lorentz
frame we must take a limit of this kind for ds/dt. Similar considerations
also hold for the derivatives with respect to space coordinates of the entropy
and the entropy flow. In general if 3  is some arbitrary quantity (for instance
a tensor component) depending on xv x2, x3 and x4, we denote by (dS/dx„)'
[a =  1, . . ,  4) a limit of the first kind (Cf. (3.13)) and by d5'/dx'a (a =  1, . . .  4)
a limit of the second kind (Cf. (1.4.9)).

According to (5.3) the contribution, (7WW, of heat conduction and diffusion
to a is given by

T  amd) =  S»=0 S t ,  i m  =  S;=0 J ' (’>-X'«, (5.15)

where we have used (4.1) and (4.11). From (4.10) and (4.12) we have

J'<>> =  JW +  (1 — v2/*2)-* jffl (ƒ =  0, 1, . . . ,  *) (5.16)

X '<') =  X<i> +  (1 — v2/^) -* Xjf, 0 =  0, 1, ......n) (5.17)

where Jfj* and X|{? are defined analogous to (2.10) and and X® are
defined analogous to (2.11). Inserting the two preceding equations into
(5.15) gives

r am i) =  S ^ 0{j®-X® +  (1 -  v2/C2)-> J® -X|f}, (5.18)
or

T 'a mi) =  S to J ^ X ® ,  ...........  (5.19)

where X® is given by

X® =  X® +  (1 — v2/^ ) - 1 X®. 0 =  0, 1, . . . , « )  (5.20)

The form (5.19) is analogous to the form which is usually given in the non-
relativistic theory for o{h)[d).

According to the second law of thermodynamics a must be a positive
definite expression. Analogous to the non-relativistic theory2) we can
draw some conclusions concerning the phenomenological coefficients from
this positive definite character of a. Substitution of (3.3) into (5.15) gives

T  omJ) =  L®'*> X'® • X'<*». (5.21)
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As is a part of a we must have <rW(li) >  0. Hence, from (5.21) we find,
analogous to the non-relativistic theory2), that the must satisfy
several inequalities as, for instance

Lm ) >  0, (ƒ =  0, 1, '. . . ,  n) (5.22)
and

Lm )L(m) _  j jm j j fm  >  o. (j, k =  0, l, . . . , ») (5.23)

From (1.7.15), (1.7.16), (1.7.17) and (5.3) we find for the contribution, a(e)(v),
of the chemical reaction and the volume viscosity to a

T' a(cm — LA2 +  *?(f) ((?' Dt>')2. (5.24)

Again, ct(c)(b) >  0 and thus,
L  >  0, (5.25)

and
(̂b) ^  (5.26)

It is interesting to note that there are no cross-terms in the expression (5.24);
therefore, L {p){c) and L{c){p) need not satisfy an inequality of the type given
above. Along arguments analogous to those which lead to (5.22) we can
derive

r) >  0, (5.27)

which assures that the contribution of the viscous flow of the medium to a is
positive definite. As a, aww, etc. are Lorentz invariant quantities, the given
inequalities assure the positive definite character of a in all Lorentz frames.

§ 6. The heats of transfer. In the literature the heats of transfer are intro
duced in different ways. A set of n — 1 independent quantities, Q*in,

. . . ,  to which one gives the name heats of transfer are defined by

H > m  =  s»- i  l M ) q *W ' ( ƒ= 1 — 1) (6.1)

With the help of the n — 1 equations (6.1) we can express Q*(2\  ■ ■
g*(»-D ^  terms of the Lorentz invariant phenomenological coefficients.
Hence, these heats of transfer are also Lorentz invariant. Substitution of
(6.1) into (3.6) gives for j  =  1, . . . ,  n — 1 the equations

Lmk)(Xw — X«»> +  Q*WX (0)), (ƒ =  1, . . . ,  «— 1) (6.2)

while we find from (3.6) with the help of the two preceding equations and
(3.4) for j  — 0 the equation

J<°> =  s ;- ,1 Q*MJ tf> +  XT' X(0), (6.3)
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where the Lorentz invariant quantity A is defined by

A =  (1 IT) (L(0)(0) — T.nkZ\ Lmk)Q*(k)). (6.4)

This quantity is the coefficient of heat conduction in the stationary state.
The four preceding equations are analogous to those of the non-relativistic
theory. According to (3.13) and (4.12) we have X(0) =  0, if in the barycentric
Lorentz frame T’ is uniform and at the same time (dvjdt)' =  0; therefore,
one calls the quantities Q*® (ƒ =  1 , . . . ,  n — 1) heats of transfer. We remark
that if for an observer at a certain point in the space-time continuum
grad T '= 0  (uniformity of the temperature T') for an observer in a different
Lorentz frame in general grad T' ,0.

From (6.3) we can derive another form for J (0) which is also used in the
literature 9). For that purpose we substitute (2.2) into (6.3) and we then get
with the aid of (1.2.4) and (1.2.6)

J(°) =  cwQ*w) e(i)Y{i)-{Znhz \c<*)@*(*>)e(B)v(") +  AT'X(0). (6.5)

The n quantities Q{1), Q(2), .. .,Q(n), which are related to Q*(1), Q*{2), . . . .
^*("-1)by the equations

Q(i) _  Q*(i) _  s« -i c<»> Q*Wt (ƒ =  i ; 1) (6.6)
and

Qin) =  _  s j;}  cwQ*ik\  < (6.7)

are also denoted as heats of transfer, since (6.5) can be written with the
help of the two preceding definitions in the form

J (0) =  Z;=i -i- XT' X (0). (6.8)

In this equation the absolute flows of matter e(,)v(,) are used instead of the
relative flows of matter J 0’, defined by (2.2), which occur in (6.3). From
(1.2.5), (6.6) and (6.7) we see that the quantities Q{i) (j =  1, . . . , * )  satisfy
the relation

cm W  =  0. (6-9)

According to (1.2.19) the concentrations are not Lorentz invariant. Hence,
we see from (6.6) and (6.7) that also the quantities Q(i) are not Lorentz
invariant. In § 8 we shall show, however, that in all practical cases these
quantities have almost the same value in all Lorentz frames.

If we use the heat flowl(0) we can obtain a set of n heats of transfer which
are exactly Lorentz invariant. Analogous to (6.2) we find for I® (j ^  0)

/Ö) =  SJ-; (Y<*)-yM +  Q*{k)Y f )),
(a =  1, . . ;4;  ƒ =  1, 1) (6.10)
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whereas, analogous to (6.3), we find for I {°]

/<°> =  S <?*« J f  +  XT' YfK (a =  1, . . ,4) (6.11)

Inserting (1.2.21) into this equation gives with the aid of (1.2.7)

4 0) =  SjU  +  XT' S<=1 , (a =  1, . . ,4) (6.12)

where the quantities Q® (j =  1, . . . , « )  are defined by

QU) m Q*(i) _ cW (?*<*>, <ƒ =  l ........ n _  1) (6.13)
and

Q(n) =_25-lc'(*)e*(*). (6.14)

We now see that in contradistinction to the (j =  1, . . . , « )  the quantities
(?(?) (ƒ =  1. ■ ■ - ,n) are exactly Lorentz invariant because the right hand sides
of the two preceding equations contain only Lorentz invariant quantities.
It is easily seen that

0- (6.15)
From the positive definite character of aw {i) it follows that

X >  0, (6.16)

showing that the coefficient of heat conduction in the stationary state, X,
must be positive or zero (cf. 2)).

§ 7. Other forms for the forces and the phenomenological equations. We shall
now give other expressions for the forces in which the velocities of the
components and derivatives with respect to time, except the time-derivative
of the barycentric velocity, do not occur explicitly. The desired expressions
are readily obtained by inserting (3.13) and (3.14) into (4.12) which gives

X(0) =  — [(1 /T') {(grad' T')x +  (grad' T ')y (1 — v2/^)*}
+  c~2 {(dv/dt)'x +  (dv/dt)' (1 -  v2/^)*}], (7.1)

and
X<*> =  F'f> +  F'<*> (1 — v2/*)' —

-  H ferad '(n'^/T')}x +  {grad,(/m'<*>/7',)}ii (1 -v2/^)*] {k =  1,...,») (7.2)

respectively. In these expressions the components of grad' T', grad' (ja'^/T'),
(dv/dt)’ and F '(A), parallel and perpendicular to v, are defined analogous to
(4.8) and (4.9). The partial specific enthalpy of component k measured by an
observer in the barycentric Lorentz frame is given by

A'<*> =  /<»> +  TV <*>, (A =  1, . . . , » )  (7.3)

where s(fc) is the partial specific entropy of chemical component k. We now
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consider fi'w as a function of c'(1),c '(2), ..  f  and T'. We then have
the relation 2)

grad' fj,’w =  — s’w gradT  +  z/w grad' p’ +  2»-/ (d/j,l{k)Jdc{i)) grad' c'w,

( * = 1 ,  (7.4)
where i/w is the partial specific volume of the chemical component k.
Substitution of (7.4) into (7.2) gives with the help of (7.3)

x<*> = r<*> + f'(*> (1 — v2/̂ )* +
+  (A,(*>/r').{(grad' T ')± +  (grad' T \  ( l - v 2/ ^ } -
— V'W {(grad' p ')x +  (grad' p') ü (1 — v2/^)*} —
— S p /  (d/i'-^/dc (,)){(grad' c'm) ± +  (grad' c'0’),, (1—•v2/^)*}.

( A = l ,  ...,*») (7.5)
Inserting (7.1) and (7.5) into (6.2) gives for the phenomenological equations

for the relative flows of m atter J (,)

Jtf) =  [(F'W -  F'«”>) +  (F'<*> -  F'W) (1 _  v2/*2)* +
+  {(h'w-h 'M -Q * W )/T '}  {(grad' T ')± +  (grad' T \  (1 - v 2/^)*} _
_  (»'(*) _  «'<">) {(grad' p')L +  (grad' p \  (1 — v2/^)*} —

- s r-i‘ % ' (‘, - / . ' w)/3c'(')} {(grad' c '«)x +  (grad' *'«)„(l - v 2/^ )* } -
-  (<?*(V )  {(3v/3<)1+(3v/30'4 ( l- ^ /c 2)*}]. ( ƒ = ! , . . .  ,«_i) (7.6)

If c tends to infinity (7.6) goes over into the well-known phenomenological
equations for — 1) of the non-relativistic theory 2).

The phenomenological equations may also be written in the form

J (a ~  25-0 ^ = i L ^ k)X [p \  (a =  1, 2, 3; ƒ =  0, 1, . . . ,  n) (7.7)
where

s i * (* i( i^ -c '2» ^ ) .  (a, ^ = 1 ,2 ,3 ; / , £ = 0 , 1 (7.8)

This is readily verified, for by inserting (5.20) and (7.8) into (7.7) we get the
phenom enology equations (3.3) back again if we take into account that
XH and Xx are defined analogous to (2.10) and (2.11) respectively.

§8. Some almost Lorentz invariant quantities. As emphasized in the
introduction of chapter I, the validity of the theory is limited by the con
dition that the state of the system is not too far from the state of thermo
dynamical equilibrium; therefore, we must have

| v ' « | < c^  (ƒ =  1, . . . , « )  (8.l)
and '  '

lJ («)l <  c (8.2)
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We shall now show that it follows from (8.1) that

(1 _ v « V ) *  (1 — v2/c V * =  1 (ƒ =  1, - (8-3)

in any Lorentz frame. According to the well-known Einstein addition
theorem we have 8) 4)

v'TO+ ^ + 2|y'«l||y|cosO--v'«'Vc-2Sin y  .......  (8 4)
(1 +  | v ,(,) || v| c 2 cos ê')2

where is the angle between v 'm and v measured by an observer in the
barycentric Lorentz frame. After a short calculation we find from the
preceding equation

(1 — yW/c2)* (1 — v2/^)-*  =  (1 — v '(')2/c2)* (1 +  Iv'^ll V| c -2 cos 0 ')_1>
(ƒ =  1, (8.5)

and from this equation and (8.1) we immediately see that (8.3) is correct
in any Lorentz frame.

I t is now easily shown that the concentrations tfi) (ƒ =  1, . . . , « )  are
almost Lorentz invariant quantities. Using (1.2.4), (1.2.14), (1.2.17) and
(1.2.27) we have

ctf)= ( l _ v<fl2/c2)-* (i—v2/^)* (1—v '^ /c 2)* e'w. 6 = 1 ,. • -,«) (8.6)

From the preceding equation, (8.1) and (8.3) it follows that
g , c'tft. (ƒ =  1, . . . , n) (8.7)

Comparing (6.6) and (6.7) with (6.13) and (6.14) gives with the help of (8.7)

Q<i)^QU\ (ƒ =  1, . . . , » )  (8-8)

showing that the heats of transfer Q® (ƒ =  1, . . . , « )  are also almost Lorentz
invariant quantities.

We now consider the transformation properties of'the entropy in a small
volume element. From (4.1) and (5.2) we have

7 ^  =  0. (8-9)

Using the Lorentz transformation (4.3), we have with the aid of the preceding
equation ,

7(4)4 =  ic~l (1 — v V )"*  2$_, vt I m  (8-10)

because in this case v(f) =  — v. Substitution of (8.10) into (5.12) gives
with the help of (1.2.8), (5.6) and (5.8)

*,,) =  (1 — v2/^) '*  («(',) +  c“2 v • J,'s)). (8-11)

From the preceding equation, (5.13) and (8.2) we have
sw d F S S ; , d 7 '  (8-12)
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showing that the entropy in a small volume element is an almost Lorentz
invariant quantity.

Finally, we remark that we have from (1.2.27) and (1.7.3)

0 >W =  (1 — v '^ /c 2)*. (ƒ =  1. •• ., «) (8.13)
Hence, we see that according to (8.1)

jytj) ^  j (ƒ=  1. •• ., n) (8.14)
which may be used in practical calculations.

§ 9. Formulation with other relative flows of matter. Sometimes, for practical
applications, it is useful to reformulate the theory with the help of other
relative flows of matter. These relative flows of matter have the form
J* <J) a j* ( v *  — v*) (ƒ — 1, . . . ,  «), where v* is a linear function of
v(1), v(2), . . . .  v(B) and differs from the barycentric velocity. For this
reformulation we shall give a method which can be applied in the rela
tivistic theory as well as in the non-relativistic theory. Hence, we introduce
as relative flows of matter

j*M =  eV) (V« — v*), (ƒ =  1, . n) (9.1)
where

v* (9.2)

We shall assume that the quantities I 01, f (2), . . . ,  £(B) satisfy the relation
s ; - i  =  1. (9.3)

From the three preceding equations and (1.2.4) we have

J*(B) =  — 2?-/ (9.4)
where

C«> =  py  c<»> ( | ( « ) ( ƒ= 1, 1) (9.5)

We now introduce the matrix A ^ k) (ƒ, k =  1, . . . ,  n — 1) defined by
A vm m d{j; k) +  c<«(£<*>~1). (ƒ ,*=  1, 1) (9.6)

The matrix given by
A-'®*» s  <?(ƒ; k) — (*»/£«) (£<*> — 1), (ƒ,* =  1, — 1) (9.7)

has the property

S?-,1 A m  A -*»(*) =  J - j ,1 ri™*> =  <5(/; 6), (ƒ, *=»1, . . . ,  «—1) (9.8)

as is easily derived with the help of (1.2.5), (9.3), (9.5), (9.6) and (9.7).
Hence, is the inverse matrix of A ^ k\  Using (1.2.4), (1.2.5), (1.2.6),
(2.2), (9.1), (9.4) and (9.6) we can derive

A m ) (j =  1 — 1) (9.9)
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From (5.19) we have with the help of (2.7) and the preceding equation

T'ami) =  Spo1 J**0 • X*('», (9.10)
where

J*«» s  JP», (9.11)
X*<o) = x (0), (9-12)
x * w =  Zjjl} ^ (*)t,') (X(*> — X<B)). (ƒ =  1, — 1) (9.13)

Using (3.5) and (7.8) we have from (7.7)

+ s;:l 2§_, £<T W  -  • (9.i4)
(a =  1, 2, 3; ƒ =  0, 1, 1)

From this equation we have with the help of (9.8), (9.9), (9.11), (9.12) and
(9-13)

J W  =  S^=1 L* <*><*> X*<*>, (« =  1, 2, 3; j  =  0, 1, — 1) (9.15)

where the new phenomenological coefficients, are given by

L*(0)(0) =  £ $ (0)* (a, P =  1, 2, 3) (9.16)
L*P* =  Srr/ ^ - 1W(,) Z$(0), (a, £ =  1, 2, 3; ƒ =  1, 1) (9.17)

^ - ,(A)(J) jGJg®. (a, £ =  1,2,3;  k =  \, . . . , « — 1) (9.18)
^4-‘<*)W> (a , £=1 , 2 , 3 ;  j , £ = l ,  . . 1 )  (9.19)

From (3.4), (7.8) and the four preceding equations it follows that
L*Jjm  =  =  L^*)W =  (9.20)

(<*,£ =  1 ,2 ,3 ; / , * 5= 0; 1, 1)

We see that the Onsager relations are maintained. I t  is easily seen that we
can derive analogous formulae for the transition from a formulation using
relative flows of m atter given by g^(vw — V*) to a formulation using
relative flows of m atter given by g<?)(v(,) — v**), where neither v* nor v**
are equal to the barycentric velocity.

REFERENCES

1) T o l h o e k ,  H. A., and G r o o t ,  S. R. d e, Physica, Amsterdam 18 (1952) 780.
2) G r o o t, S. R. d e, Thermodynamics of irreversible processes, North-Holland Publishing

Company, Amsterdam and Interscience Publishers Inc., New York (1951).
3) F o k k e r ,  A. D., Relativiteitstheorie, P. Noordhoff, Groningen (1929).-
4) B e c k e r, ‘ R., Theorie der Elektrizitat, Band II, B. G. Teubner, Leipzig und Berlinf 1944).
5) P l a n c k ,  M., Berl. Ber. (1907) 542.
6) P l a n c k ,  M., Ann. Physik 26 (1908) 1.
7) E i n s t e i n ,  A., Jahrb. Radioakt. Elektronik 4 (1907) 411.
8) E c k a r t ,  C., Phys. Rev. 58 (1940) 919.
9) G r o o t, S. R. d e, L’effet Soret, N.V. Noord-Hollandse Uitgevers Maatschappij, Amsterdam

(1945).

34



Chapter III

SYSTEMS WITHOUT POLARIZATION AND
MAGNETIZATION IN AN ELECTROMAGNETIC FIELD

§ 1. Introduction. In this chapter we shall develop the relativistic thermo
dynamics of the irreversible processes in a continuous system which is
influenced by an electromagnetic field. We shall limit ourselves to systems
which are neither polarizable nor magnetizable. Further, we shall assume
that the system is an isotropic mixture of an arbitrary number of chemical
components. As in the two preceding chapters of this thesis we shall limit
ourselves to the special theory of relativity.

As is well-known, the force exerted on each of the chemical components
by the electromagnetic field is given by the formula of Lorentz. According
to this formula, the force acting on a certain chemical component depends
among other things on the velocity of the component under consideration.
If we should adopt the formalism of chapter I without alterations, the con
sequence would be that also in the barycentric Lorentz frame the thermo
dynamical "force” (affinity), conjugate to the relative flow of matter of a
certain chemical component, would depend on the velocity of this component.
In the Appendix we shall show that this is not allowed. Therefore, in this
chapter we shall follow a method which differs in some respects from the one
given in chapter I.

In § 2 we give the equations of the electromagnetic field. The fundamental
laws which form the starting point for the thermodynamical consider
ations are given in § 3. In § 4 we discuss the first law of thermodynamics, in
§ 5 the entropy balance and in § 6 the phenomenological equations and the
Onsager relations. To compare our results with those of M a z u r  and
P r i g o g i n e 1) we formulate the phenomenological equations in three-
dimensional tensor form in § 7. The relativistic law of Ohm is discussed in § 8.

§ 2. The electromagnetic field. The macroscopic electromagnetic field in
ponderable matter is described by the electric field vectors E and D and
the magnetic field vectors H and B. Throughout this chapter we shall
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and

assume that the medium is neither polarizable nor magnetizable i.e.,

D =  E, (2.1)
H =  B. (2.2)

Again, we shall consider a mixture of n chemical components. Ions and
free electrons will be considered as separate chemical components. If e{k)
is the charge per unit of rest mass of component k, the density of the electric
charge is given by

<?(*, =  22-1 «'V*'- (2.3)
In the same way the density of the electric current, j, is given by

j =  «<*> qw v<*>. (2.4)

If we take into account (2.1) and (2.2), the Maxwell equations read

rot B — c-1 (dJL/dt) ==' c~l j, (2.5)
div E =  qw , (2.6)

rot E +  c~1(83/dt) — 0, (2.7)
div B =  0. (2.8)

The quantities satisfy the relation

f t = i 1
,(*> ,,<*) 0 . (2.9)

By multiplying (1.4.1) *) with e(k) and summing over k we obtain with the
help of (2.3), (2.4) and the preceding equation

=  — div J- (2- !0)
In this chapter we shall assume that the forces acting on the matter are
only of an electromagnetic nature. Hence, the force, F1*’, per unit mass
on component k is given by the formula of Eorentz

{E +  c->(vw /n B)} . (k — \, . . . ,n ) (2. 11)

As is well-known E x, E2, E3, B v B2 and B3 are the components of a tensor,
Bafi> given by

B.ap

0 b 3 - b 2 — iE
- B 3 0 B l — iE.
b 2 — B\ 0 — iE.
iEx iE2 iE3 0

This tensor is antisymmetric, i.e., it possesses the property

Bafi — B,pa* [a ,p=  1, . . .4)

(2 . 12)

(2.13)

*) Equation (4.1) of chapter I of this thesis will be indicated as (1.4.1) and in the same way we
denote the other equations of chapter I and chapter II.
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(2.14)

From (1.2.1) and (2.3) it follows that

icQ(d) =  ^ ”=i •

According to (1.2.1) and (2.4) we also have for the components of j

ia =  s ; . i (a =  1, 2, 3). ( (2.15)

As the quantities ew (k =  1 , . . . , » )  are Lorentz invariant it follows from
(2.14) and (2.15) that ƒ,, j2, j3 and icQ(el) form a four-vector. Using (2.12),
(2.14) and (2.15) we can combine the Maxwell equations (2.5) and (2.6) into
the form

S j- i SB J8 xp =  c~' 2*=1 e<*> *»<*>. (a =  1, . . ,  4) (2.16)

In the same way we find for the Maxwell equations (2.7) and (2.8) with the
help of (2.12)

8B JdxY +  8BPy/8xa -F dBJdXp =  0. (a, p , y =  1..... 4) (2.17)

Using (2.14) and (2.15) we can rewrite the equation of continuity (2.10)
in the form

S i - i * ( 3 5 - , ^ 0 / * * i -  0. (2.18)

Since the quantities em (k — 1, . . . , » )  and v{k) (k =  1, . . . , « )  are Lorentz
invariant, (2.9) is valid in any Lorentz frame. Using (1.2.1), (2.11) and (2.12)
we find for K *,** (a =  1, . . .  4; k =  1, . . . , « ) ,  defined by (1.4.4),

K f  =  «<*> (cej*»)"1 B ^ m f .  (o =  1, . . ,  4; A =  1, . . . , » )  (2.19)

From this equation and (1.2.1) we see that the quantities (a =  1,
. . ,  4; A =  1, . . . ,  n) depend explicitly on v<4).

§ 3. The fundamental laws. Analogous to (1.4.8) the equations of motion
and the balance equation for the energy read

2?-i 8W J8X, =  ZJLj (a =  1, . . ,  4) (3.1)

Using (2.16) and (2.19) we find for the right-hand side of this equation

^y-i 6(0) =  B ^  (SBfa/SXy). (a =  1, . . ,  4). (3-2)

We can also assign an energy-momentum tensor to the electromagnetic
field. This tensor, W Wa/3, satisfies the relation

6(0) SW<nJ d x p. (a =  1, . . ,  4). (3.3)

From the preceding equation we can derive with the help of (2.13), (2.17)
and (3.2)

^{f)ap =  ^v=i Bay Byp (Byt)2- (a, ft =  1, . . .  4) (3.4)
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It follows from (3.1) and (3.3) that we can write for the equations of motion
and the energy balance

S j - idW^/dXf =  0, (a =  1, ...4 )  (3.5)

where JV(t)q/} is the energy-momentum tensor of the system (matter and
electromagnetic field together) given by

w (t)ap =  W„ +  W(M. («,£ =  1. - . 4 )  (3.6)

We have from (3.4)
(«./3= 1, --.4) (3.7)

i.e., the energy-momentum tensor of the electromagnetic field is symmetric.
As in chapter I we shall also assume that the energy-momentum tensor of
the matter is symmetric. Hence,

=  W^. {a, ft =  1, . . ,4) (3.8)

We have from the three preceding equations

WWaP =  W{m, ' (a,,fS =  1, . . ,  4) (3.9)

i.e., the energy-momentum tensor of the system is symmetric. From this
symmetry of we can derive 2) that the total macroscopic angular
momentum of the whole system (field and matter together) is constant, i.e.,

(d/dt) f  {r /s g(<) (r, t)) dV =  0. (3.10)

In this equation g(() (r, t) is the density of momentum of the system at time t
and position r, while dV is ,an element of volume in the ordinary three-
dimensional space. The integration must be extended over the whole of
the system. Because the energy-momentum tensors of the electromagnetic
field and of the matter are also symmetric separately, equations of type
(3.10) are also valid for the electromagnetic field and the matter separately.

Since we assume that the medium is neither polarizable nor magnetizable
the second law of thermodynamics (Gibbs relation) is again given by
(1.4.10) . The balance equation for rest mass is given by (1.4.1).

§ 4. The first law of thermodynamics. As stated already in the introduction
to this chapter we cannot follow the same procedure as in the two preceding
chapters of this thesis. For, according to (2.11) and (II.3.14) the conse
quence would be that would depend on v § * * * * ***, i.e., in the barycentric
Lorentz frame the thermodynamical "force” (affinity) conjugate to the
relative flow of matter of a certain chemical component would depend on the
velocity of this component. In the Appendix we shall show that this is not
allowed. Therefore, in this section we shall deduce an expression for the
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first law of thermodynamics which leads to a form for the entropy production
• such that X 'w does not depend on v '(*>.

Using (1.2.10), (1.2.21), (2.13) and (2.19) we can derive

u ^ m f - c ^ r n u f )  =
=  -  S t ,  /?>(*-* S t ,  B^up). (k =  1, . . . ,  n) (4.1)

It is now easily seen that we can follow the same procedure as in § 5 of
chapter I, except that according to (1.5.2) and the preceding equation,
we must replace a>wKf) by ew S t  ,£<* up. We then get instead of (1.5.10)

e'(De’ +  p'Dv') =  — S t ,  {SlfjSxp +  c -1 If)  Dup) +

+  t ”=l S£/>=1 e{,) la BapUp + C Pafi (4.2)
as first law of thermodynamics.

§ 5. The entropy balance. In the same way as in § 6 of chapter I we can
derive the entropy balance. This gives

e'Ds' -  -  S t ,  (d/dxa) {{IIT){If) -  S t ,  +

+  (1/P') [ S to Z t l  I {a Y® +  c ̂ t= l  Fafiifafiltof) +  II  q'Uv' +  J (c) A], (5.1)

where the "forces” (affinities), Y f  (a =  1,. . ,4; ƒ =  0, 1, . . . , » ) ,  are given by

yw * -{ ( i/f ') (0 T '/d x J  +  r 1 Du j, (a =  1, . .. 4) (5.2)
Y®=eP) S t ,  B'pUp-T'idldxf) ^ / T ) .  (a=l ,  . 4 ;  j=  1, . . . ,«)  (5.3)

Hence, we see from (1.2.11) and (2.12) that Y«> (a =  1, . . , 4 ;  ƒ =  0,
1 , given by the preceding equation, does not depend explicitly on
vw in the barycentric Lorentz frame where v =  0.

§ 6. The phenomenological equations and the Onsager relations. For the
phenomenological equations, describing the diffusion phenomena and the
heat conduction, we can write

JW =  S t 0S t , 2 T , *T- (a = . 1, y> 4; ƒ - 0 ,  1........n) .(6.1)

As shown in § 7 of chapter I we have for the (n +  l)2 tensors
\a> P — 1) • 4; j, k =  0, 1, . . . ,  w) in the case of an isotropic mixture

i(j)(*) _  Lm \A ap. (a, p =  1, . . ,  4; ƒ, * =  0, 1, , . . ,  n) (6.2)

The (n -f- l)2 quantities Z.(?)W are the phenomenological coefficients of the
non-relativistic thermodynamics of the irreversible processes in an isotropic
mixture of n chemical components. From the preceding equation we see
that these coefficients enter in the relativistic theory as Lorentz invariant
quantities. We may consider these coefficients as functions of p', T ' ,
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c'(2), c'(B_1), E' and B', i.e., as functions of quantities measured in the
barycentric Lorentz frame. As is well-known, the Onsager relations read 3“7)

£(«<*>(B') == L(*k#)(—B'). (ƒ, k =  0, 1, . . . , » )  (6-3)

In the case ƒ =  k the preceding equation expresses that the Lmj) (j =  0,
1, . . . , n )  are even functions of B'. According to (1.7.11) we also have the
relation

2»_! Lum{B ') =  0. {k =  0, 1, . . . ,  n) (6.4)

Substituting (5.2), (5.3) and (6.2) into (6.1) gives with the help of (1.2.28)
and (2.13)

I f  =  (S ;_ , LWk) *<*>)
— XA ^  [ T  S"= 1L°')(A){0(/x'w/7'')/8^}+L(’)lO){( 1 /T ')(dT'/dX/,)+c 'Dm̂ }]. (6.5)

( « =  1, . . , 4 ;  ƒ =  0, 1, . . . , » )

The phenomenological equations for P^, I I  and J  {c) have the same forms
as in chapter I. It is easily seen from symmetry considerations that in an
isotropic medium Lm )  and Lm )  must be even functions of B'. Hence,
the Onsager relations for these phenomenological coefficients are agam
given by (1.7.17).

§7. Three-dimensional ■ tensor form for the phenomenological equations.
To be able to compare our results with those obtained by M a z u r  an
P r i g o g i n e 1), we shah reformulate the phenomenological equations
for heat conduction and diffusion in three-dimensional tensor form. We
shall use the procedure which was given in chapter II. It should be empha
sized that the relativistic invariance of the theory will be maintained. As m
chapter II we shall use relative flows of matter defined by

J«) =  e(')(v<»> — v). (j =  1,*. . . .n )  (7-1)

As shown in § 3 of chapter II we can write the phenomenological equations
in the form

j<)> =  SJ_0Lm ) X(*>, (/ =  0, 1, . . . , « )  (7-2)

whére J (0) is given by (11.2,13) and X<*> (k =  0, 1, . , . ,  n) by (II.3.8),
According to (II.3.9) we have

X<°> =  — {(1/T') grad T  +  (c2 — v2)- I (dv/d<) +  {vlT')c-2{&Tfdt)}. (7.3)

Substitution of (5.3) into (11.3.8) gives with the help of (1.2.11) and (2.12)
for k =  1, . • n

X<*> =  (1 — v2/c2)~Vft){E +  c -’(v ^B ) — c- 2(v -E)t} —
— T'[grad +  c~2{d(fi'{k)IT')ldt}v]. {k = ! , . . . , « )  (7.4)
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Substituting (7.3) and. (7.4) into (7.2) gives

Jtf> =  (£”=1 Lmwew) (1 — v2/c2)~i {E +  c-1(v B) — c~2 ( v  E)v} —
— S ; . ,  I™? [T  grad +  c~2 V  {8{^k)IT')l8t} v] —
— £<«'«»{(1 IT )  grad T  +  (c2—v2)" 1 (dv/dt) +  (v /7 > -2(sr/a<)}. (7.5)

(ƒ =  0, 1, . . . ,  n)

If we compare the result which (7.5) gives for the diffusion flows J (,)
(ƒ =  1, . . . , #)  with that obtained by M a z u r  and P r i g o g i n e 1)
we see that besides the term E -f- c~'(v /s B), there occurs the term
— c~2(v- E)v. This term is of the order v^c2. Moreover, these two terms are
multiplied by the factor (1 — v2/c2) Besides terms containing the gradients
of fi'wIT' and T' we also get terms with local derivatives with respect to
time of these quantities. Finally, there is the term with dv/dt which ex
presses that heat conduction and diffusion are influenced by the barycentric
acceleration.

§ 8. The relativistic law of Ohm. We now consider a mixture of two
chemical components. We then have from (6.3) and (6.4)

L(1)(’2)(B') =  L(2)(1)(— B') =  — Z,<I)(i)(— B') =  — L(1)(,)(B'). (8.1)

From the preceding equation and (6.3) it follows that

L(1)(2)(B') =  — L<1)(1>(— B') =  Lm2){—  B') =  L(2>(1)(B'). (8.2)

Hence, we see that L(1)(2)(B') and L(2)(1)(B') are even functions of B' in
the case of a binary mixture. With the help of (1.2.13), (1.2.25), (1.2.28) and
(8.1) we now find for (6.5)

/<'> =  (*/*<») -  LwwT'(d/8xa) {(/<" -  p ' V }  -
— L"m (llT')(dT’ldxa) —  I |1)l1V 1r 'D  { ( /(,) — n'{2))/T'} —
-  Lmo)ua(cT')-lD T  —  L(1)l0) c -1 Dua, (a =  1, . . ,  4) (8.3)

where the Lorentz invariant quantity %, the electric conductivity, is given
by

x =  ewL<- W)(e( i ) _ c(2)). (8.4)

The first term on the right hand side of (8.3) gives the influence of the
electromagnetic field on diffusion phenomena. The second and third terms
are found in the same form in the non-relativistic theory. The second
term is proportional to the gradient of (jm'(1) — /u'(2))/7'' (“eingepragte
Kraft”) and the third term gives the cross-effect with the heat con
duction (thermal diffusion). The remaining terms on the right hand side
of (8.3), all containing substantial derivatives with respect to time, do not
occur in the non-relativistic theory.
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We now consider the case that one of the two chemical components
consists of electrons. Taking the electrons as component 1, then in literature
the relativistic law of Ohm is given by 2) 8“12)

It is seen that the right hand side of (8.5) is equal to the first term on the
right hand side of (8.3). The latter equation gives the general expression for
the diffusion flow in a mixture of two chemical components. The four-
vector ua, which is used in the definition of the four-vector 1 ^  (Cf. (1.2.28)
and (1.2.34)) and which also occurs on the right hand side of (8.5), is often
not sharply defined in the literature. According to our formalism ua is
given by (1.2.6) and (1.2.11).

As the electrons have a very small rest mass we have p'(1> <  q’. Hence,
according to (1.7.3) and (II.8.14) we also have e|J} < $ '.  With the help of
(1.2.2), (1.2.14), (1.2.27) and (II.8.3) it follows that in any Lorentz frame

Using (1.2.7), (1.2.9), (1.2.10) and (1.2.28) we have from (1.2.34)

If | v | is sufficiently great, v(1), v(2) and v have nearly the same direction
while the length of these vectors is of the same order of magnitude. Ac
cording to (1.2.1), (1.2.7) and (8.6) we then have in general m f
(0 _  , 4). If | v(1) |, | v(2) | and | v | are not of the same order of magni
tude we are in the non-relativistic region and it appears that we may replace
mp by (/3 =  1, . . ,  4) in the numerator of the right hand side of (8.7) for
a =  1, 2, 3 (Cf. (1.2.22)). I t is also easily seen that we may replace E^^wfy)2
by E£=1(mj,2))2 in the denominator of the right hand side of (8.7). Hence,
from the preceding considerations we can infer that in any Lorentz frame

By analogous considerations we can find that we may replace up by
w<2>{— (ra®)2}- * in the right hand side of (8.5).

As already stated in the introduction and in § 4, the procedure given in the
chapters I and II of this thesis would be wrong in case the medium is
influenced by an electromagnetic field. We shall now show that even in the
barycentric Lorentz frame this procedure would lead to wrong results.

( « = ! , . . ,  4) (8.5)

e(1> <  q{2). (8 .6)

(w!u m\
2 ^ = i  imp)

(8.7)

1, 2,3)
s2-iK>2>)

(8 .8)

Appendix
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According to (7.5) we have in the barycentric Lorentz frame

J'w =  (SL i E' — T'^l=xLmk) grad' —

-  L{im { ( 1 /T') grad' T' +  c~2 (dv/dt)'}, ( / =  0, 1, . . . , « )  (A. 1)

where we have taken into account the definition (II.3.10) for d/dt. From
(II.3.3), (IL3.13), (II.3.14) and (2.11) we should have according to the
procedure given in the chapters I and II

J'(/) =  (2J_i !<«<*) eW){E' +  c—V**’ /-s B')} —
-  T  S»=1 L(,)Wgrad' (p'W /r)— L ^ { ( l / T ' )  grad' T ' +  c~2 (0v/0/)'}. (A.2)

(ƒ =  0, 1, . . . , « )

According to F i e s c h i ,  d e  G r o o t ,  M a z u r  and V l i e g e r 7)
the result (A. 1) is correct. From (7.1) we have v'<A) =  (1 /g'<A))J'w (>fe =  1,
. . . , « ) .  Using this expression for v'w and comparing (A.1) and (A.2), one
can easily see that (A.2) gives a result which is different from the one given
by (A.1). Hence, (A.2) is wrong in the barycentric Lorentz frame and then,
of course, the procedure given in the chapters I and II gives wrong results
in any Lorentz frame.
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Chapter IV

SYSTEMS WITH POLARIZATION AND MAGNETIZATION
IN AN ELECTROMAGNETIC FIELD

§ 1. Introduction. The purpose of this chapter is to extend the considerations
given in chapter III to systems which are polarizable and magnetizable. We
shall deal with the case where the medium is isotropic as far as polarization
and magnetization are concerned. As in chapter III we shall assume that
the forces acting on the matter are only of an electromagnetic nature.

In the case that the medium is polarized and magnetized terms occur in
the non-relativistic second law of thermodynamics which are connected with
the polarization and magnetization of the matter. In this chapter our first aim
will be to derive the appropriate relativistic second law of thermodynamics.

If there is no polarization and magnetization, the electromagnetic field
only influences the medium by exerting a force on each chemical component
which is electrically charged. As a consequence of the polarization and
magnetization, however, the electromagnetic field exerts a force which we
cannot regard as acting on each chemical component separately. This
force will be called the ponderomotive force. It. will appear that the ex
plicit expression for the ponderomotive force is closely connected with the
form of the relativistic second law of thermodynamics.

Again, we consider a continuous mixture of an arbitrary number of
chemical components. The barycentric velocity, defined by (1.2.6) *)
and measured by an observer in a Lorentz frame A at the position r and
at the time t, will be denoted by v(r, t). As in the preceding chapters
we shall assign to each point of the- space-time continuum a special Lorentz
frame (the barycentric Lorentz frame) such, that in the point under con
sideration, for an observer in this special Lorentz frame, the barycentric
velocity vanishes. It should be remarked that by this condition the bary
centric frame assigned to a point of the space-time continuum is not uni
quely determined. For, if for an observer in some Lorentz frame at a certain
point of the space-time continuum the barycentric velocity vanishes, the

*) Equation (2.6) of chapter I of this thesis will be indicated as (1.2.6) and in the same way
\ye denote the other equations of the chapters I, II and III.
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barycentric velocity also vanishes at the same point of the space-time
continuum for an observer in a Lorentz frame which is at rest with respect
to the Lorentz frame first mentioned but for which the ordinary three-
dimensional axis-frame has been rotated with respect to the ordinary
three-dimensional axis-frame of the first Lorentz frame. This indefiniteness
did not play a role in the considerations in the preceding chapters.
For example, in the relativistic second law of thermodynamics, given
by (I. 4.10), quantities occurred which were measured in the barycentric
Lorentz frame, but which were invariant with respect to rotations of the
ordinary three-dimensional axis-frame. It will appear that also in the
considerations in this chapter this indefiniteness of the orientations of the
ordinary three-dimensional axis-frames of the barycentric Lorentz frames
does not play a role.

We shall denote by Br>( the barycentric Lorentz frame assigned to that
point of the space-time continuum which is described by position r and
time t by an observer in Lorentz frame A. We shall denote by r' and t'
the position and time respectively which an observer in the Lorentz frame
Br( assigns to the point of the space-time continuum which is described
by an observer in Lorentz frame A by position r and time t.

Again, we shall distinguish by primes all quantities at a point in the
space-time continuum measured in the barycentric Lorentz frame be
longing to this point.

The second law of thermodynamics is discussed in § 2. In § 3 we deal
with two four-dimensional tensors introduced in § 2. In § 4 further con
siderations are given on the second law of thermodynamics. We then
discuss in § 5 the balance equations for momentum and energy and in
§ 6 the balance equation for rest mass. The first law of thermodynamics
and the entropy balance are derived in § 7 and § 8 respectively. It is also
shown in § 8 that the explicit expression for the ponderomotive force is
closely connected with the form of the second law of thermodynamics.
The phenomenological equations and the Onsager relations for vectorial,
tensorial and scalar fluxes are given for anisotropic media in § 9, § 10
and § 11 respectively. Finally, in § 12 we deal with the phenomenological
equations for isotropic media.

§ 2. The second law of thermodynamics. We first remark that the com
ponents of the electric field vector E and the magnetic field vector B form

l four-dimensional tensor, Bap, de

0 b 3 — B2 -  tE j

- b 3 0 B x — iE2

b 2 - B x 0 — iE3

iE x iE2 iE3 0

(2 . 1)
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(2 .2)

It is seen from this definition that this tensor is antisymmetric i.e.,

B a p  =  B p a -  { a > P  —  1 > • • > 4)

The components of the polarization vector P and the magnetization vector
M also form the components of a four-dimensional tensor, M ap. This tensor
is defined by

0 M 3 -  m 2 iP r

- m 3 0 M x i P 2

m 2 -  M x 0 i P 3

- i P i -  i P 2 - i P 3 0

(2.3)

and is also antisymmetric. Thus,

M „ p  —  M p a. (a ,P=  1, . . .4) (2.4)

Before dealing with the relativistic second law of thermodynamics we
shall first consider the non-relativistic second law of thermodynamics.
In the case that the medium is polarized and magnetized, terms occur
in the non-relativistic second law of thermodynamics which are connected
with the polarization and magnetization of the matter. As said already
in the introduction to this chapter we shall only deal with systems which are
isotropic as far as polarization and magnetization are concerned. For such
systems M a z u r  and P r i g o g i n e 1) take as the form for these special
terms — E-{d(f P)/di}, where v is the specific volume and d/di is the oper
ator defined by (II.3.10). (The authors quoted leave magnetization out
of consideration.) By definition we have dP/dt =  limdi==0{P(r -(- vdi, t +  di)
— P(r, Usually, P(r +  vdi, i +  di) and - P(r, i) are measured in
the same three-dimensional axis-frame. It should be remarked, however,
that P(r +  vdi, i di) and P(r, i) may be measured in three-dimensional
axis-frames which are rotated with respect to each other over an arbitrary
angle (of which, however, the (mathematical) order of magnitude is not
greater than the order of magnitude of di). To make this clear we remark
that dP =  P(r -f- vdi, i -\- di) — P(r, i) may be split up into two parts.
The first part, dfP, is due to the rotation of the axis-frame and the second
part, dsP, equals dP if P(r +  vdi, i +  di) and P(r, i) are measured in the
same axis-frame. It is obvious that d,P J_ P. Since the medium is assumed
to be isotropic as far as polarization and magnetization are concerned
we have P // E. Hence, we have d,P _|_ E and therefore E-dP =  E-dsP.
Thus, we see that it is not necessary to measure P(r +  vdi, i di) and
P(r, i) with respect to the same axis-frame. It is easily seen that if the
theory of M a z u r  and P r i g o g i n e 1) is extended to the case where
we have polarization as well as magnetization the special terms in
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the non-relativistic second law of thermodynamics will have the form
— E-{d(vP)/d/} -  B-{d(»M)/d/}.

We shall now discuss the relativistic second law of thermodynamics.
As is well-known, the non-relativistic second law of thermodynamics for
systems without polarization and magnetization reads T(ds/di) =  (de/dt) -\-

p(dv/dt) ^j=i ffi\dc®/dt) 2). According to (1.4.10) the corresponding
relativistic second law of thermodynamics reads T'Ds' =  De' -f- p' D v '_
— SJLi fi'{1)Dc'[l). Thus, we see that the operator djdt, defined by (II.3.10),
is replaced by the operator D, defined by (1.2.25), and the quantities
T, s, e, p, v, fi{l) and c(,) are replaced by T , s', e', p ', v', p®  and On
taking the forms mentioned above for the special terms, the non-relativistic
second law of thermodynamics for systems with polarization and magnet
ization reads T(ds/dt) =  (de/dt) +  p(dv/dt) -  E-{d(i>P)/d/} -  B-{d(i;M)/d/} -

^>=1 /^(dc^/d t). Hence, the most natural assumption for the relativ
istic second law of thermodynamics seems to be T'Ds' =  De' -f p'Dv' —
— E'-D(v'P') — B'-D(t/M') — S”=1 //'wDc'tf) or, using (2.1) and (2.3)
T'Ds' =  De' + P'Dv' -  £ B '^ v 'M '^ )  -  S?=1 ^ D c'« It should be
remarked, however, that the special terms in the non-relativistic second
law of thermodynamics which are connected with polarization and mag
netization need not necessarily have the form given above. Examples of
different forms will be discussed in the following chapter. (Cf. also formula
(2.67) of reference 1.) To have our discussion as general as possible, we
introduce two four-dimensional tensors, and Z^(a, /?, =  1, . 4), which
will further be specified in § 3, and we take as the relativistic second law
of thermodynamics

T'Ds' =  De' +  p'Dv' +  * G'^ DZ^ -  S;_, Dc’<’\  (2.5)

(By taking G^ and Z^ =  vM ^  we obtain from (2.5) the form
for the relativistic second law of thermodynamics which corresponds
to the form for the non-relativistic second law of thermodynamics assumed
above.) It should be remarked that the quantities /x'(i)(j =  1, . . . ,« )  may be
considered as functions of T', f ,  G 'ja, ,3 =  1, ...4 ) and (ƒ -  1 1 ) .

From (1.2.11), (1.2.25) and (II.3.10) we have D =  (1 — \ 2/c?)~i(d/dt)
and hence, DZ^ =  (1 -  v2/c2)“* [lim*.,, (Z^(r + v d t ,t  +  d t ) ~  Z ^ r ,  t)}/dt].
It should be noted that Z^(r -)- vd/, t -\- dt) is measured in Br+Td( <+dj
and Z^(r, t) in Br (. As is well-known, the pure Lorentz transformations
(i.e., Lorentz transformations without rotation of the ordinary three-
dimensional axis-frame, for which transformations the coefficients are
given by (11.4:3)) do not form a group. Thus, it is impossible to choose
the barycentric Lorentz frames such that they all transform into each
other by means of pure Lorentz transformations. Since, as we have said
already above, Z^(r  -f- vd/, t +  d/) is measured in Br+vdM+d, and Z^(r, t)
m Br ( the quantity DZ^ will depend on the choice for the orientations of

\ 47



the ordinary three-dimensional axis-frames of Br+Vd,_ (+dJ and Br In § 4
we shall show that, though DZ'^ depends on this choice, the second law
of thermodynamics, given by (2.5), does not depend on it. This is the same
situation as the non-relativistic one which we have discussed above.

§ 3. Discussion of the tensors and Z^. We shall now further specify
the tensors and (a, p =  1, . . ,  4). For that purpose we introduce
the four-dimensional tensors and (a, p — 1, . . ,  4) defined by

£*  m I h * i 4 * B * * »  ( a , f } = l , . . . A )  (3.1)

M* «  Av  M r( Aw, (a, p =  1, . . ,  4) (3.2)

and the four-vectors B* and M*(a =  1, . . ,  4) defined by

(a =  1, . . ,  4) (3.3)

M* ss Up. (a =  1, . . ,  4) (3.4)

With the help of (1.2.29), (2.2) and (2.4) we have from (3.1) and (3.2)

(a> P =  1 * • »4) (3.5)

=  ( a , p =  1, . . , 4)  (3.6)

Using (1.2.30) we also find from (3.1) and (3.2)

2$=1 -®a/! Up =  ^ = 1  Up Bpa = 0 ,  (a — 1, • • > 4)
Up =  Mpa =  0. (a =  1, . . ,  4)

From (3.3) and (3.4) we obtain with the help of (2.2) and (2.4)

= o,
S i- i  “a M*a =  0.

Using (1.2.32), (2.1) and (2.3) it follows from (3.1) and (3.2) that

0 B'3 - B 2 0

-B '3 0 B\ 0

b '2 - B [ 0 0

0 0 0 0

0 m '3 -  m 2 0

- m '3 0 M\ 0

m '2 - M \ 0 0

0 0 0 0

(3.7)

(3.8)

(3.9)

(3.10)

(3.111

(3.12)
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and from (1.2.16), (2.1), (2.3), (3.3) and (3.4) we get

B'* =  E[- B ?  =  E'2; B'* =  E'3, B'* =  0, (3.13)

M'* =  -  p ’2] M'3* =  -  P '3; M'* =  0. (3.14)

With the help of (1.2.28), (2.2), (2.4), (3.1), (3.2), (3.3) and (3.4) we derive

Bap —- B„p B *  Up -(- u a B p , (a, p =  1, . 4 ) (3.15)

M ae =  M*p -  M *  Up +  u a M * . { a ,p =  1, . . .  4) (3.16)

We now define the tensors G%p and Z^ (a, p =  1, . . .  4) by

Gap =  (̂1) B fp  -f- A(2) M^p, II (3.17)

Zf  — (̂3) B tp  +  2(4) M^p, II«a. (3.18)

and the four-vectors G* and Z* (a =  1, , 4) by

Ga — (̂5) B a +  (̂6) M* , ’ (o =  1, . .  , 4) (3.19)

Z a =  (̂7) B *  +  2(8) M * . (« =  1, . . , 4 ) (3.20)

In  these equations the coefficients \ k)[k =  1, . . . , 8 )  are Lorentz in
variant quantities which will be specified in the following chapter. I t will
appear that they do not occur explicitly in the final results (i.e., the entropy
balance and the phenomenological equations) obtained in this chapter. We
now take for the tensors and analogous to (3.15) and (3.16)

G°t> =  G%, — G*ufi +  ua G%, (a, p =  1, . . ,4) (3.21)

Z °P — z t p  ~~ Z *  u p + u a  Z p .  (a, p  = 1, . . ,  4) (3.22)

Substituting (3.17), (3.18), (3.19) and (3.20) into the two preceding equations
gives

Gap =  (̂i) B^ +  A(2) M* -f A('S) (ua B* — B* Up) +

+  K b ) (*« M* -  M* Up), (a, p =  1, . . ,  4) (3.23)

= (̂3) + (̂4) + K j )  (M« B * — B *  u p ) +
+  Kb> K  M ; - M *  Up). (a,/S = 1 ,  . . ,  4) (3.24)

From the two above equations it is seen with the help of (3.5) and (3.6) that

Gap —  —  Gpa, (3.25)

(3.26)

(a, p =  1, . . ,4 )

(a, P — 1, . . .  4)
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We shall now derive some properties of the tensors G^  and and of
the four-vectors G* and Z*. For that purpose we first consider the consti
tutive equations. As is well-known these equations read for media which
are isotropic with respect to polarization and magnetization

M ' — (1 — (3.27)

P ' =  (e -  1)E', (3.28)

where the Lorentz invariant quantities fx and s are the magnetic perme
ability and the dielectric constant respectively. From (3.11), (3.12), (3.13)
and (3.14) it is seen that the two preceding equations can also be written
in the form

M'* =  (1 -  (a, p =  1, . . ,  4) (3.29)

M'* =  (1 -  e)B’*. (a =  1, . 4 )  (3.30)

Since these tensor-equations hold at position r' and at time t' for an ob
server in B, i they also hold for an observer in A at position r and at time t.
Thus,

M* =  (1 -  { a , p =  1, .,  ,4) (3.31)

M* =  (1 -  s)B*. (a =  1, . . ,  4) (3.32)

It follows from (3.17) and (3.18) with the help of (3.5) and (3.6) that

(a, 0 = 1 , . . ,  4) (3.33)

Z* = - Z ; o, (a,p =  1, . . , 4)  (3.34)

and with the help of (3.7) and (3.8) that

G*Up  =  S*=1 Up Gfr =  0, (a =  1, . . ,  4) (3.35)

Z* Up =  Sj_, Up z;a =  0. (a -  1, . . ,  4) (3.36)

Using (3.9) and (3.10) we have from (3.19) and (3.20)
S L i«aG o* =  0, (3.37)

'%=xuaZ*a = 0 .  ' ;  (3.38)

From the four preceding equations we get with the help of (1.2.16)

G'J =  G'* =  0, ( « = 1 ,  . . , 4)  (3.39)

Z'* =  Z'* =  0, (a =  1, . . ,  4) (3.40)

G't * =  0, • (3-41)

Z *  =  0. ' (3.42)
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Inserting (3.31) and (3.32) into (3.17), (3.18), (3.19) and (3.20) gives

— f tn  +  (̂2j (1 — 1* ')} (a , P — 1» . ..4 ) (3.43)

Z tf  — {+) +  + )  (1 — p ~ l)}B*f,t (a, /? =  1, . . ,  4) (3.44)

G*a =  ( 4  +  4  (1 -  s)}.B*a , (« =  1, . , ,4 ) (3.45)
^  =  ( 4 , +  4 ( 1  - e ) } B l (a — 1, . . , 4 ) (3.46)

From these equations we find

=  r c ^ ,  r (a, ft — I, . 4 ) (3.47)
Z t ~ Ü G t

where
( a =  1, - . ,4) (3.48)

r> _  (̂3) +  (̂4) 0  “  j“ -1)
(̂1) +  (̂2) (1 — /M"1)

(3.49)

r> _  %) +  K«\ (1 — «)
(̂5) +  •3*6) (1 — e) (3.50)

Finally, we remark that we have from
of (1.2.28), (1.2.30)» (3.35) and (3.36)

(3.21) and (3.22) with the help

G*fl =  Gyj d t/), (a, p  «= 1, 4) (3.51)

■̂a/3 — ^y{ +0- (a, p  = 1 ,  . . .  4) (3.52)
We also have

Ba =  ] Ggp Up, (a =  1, . . ,  4) (3.53)
Z a =  ^0=1 Z apUp. ( « =  1, . . .4 ) (3.54)

These two equations are readily verified with the help of (1.2.12), (3.21),
(3.22), (3.35), (3.36), (3.37) and (3.38).

§ 4. Further discussion of the second law of thermodynamics. We first
remark that, according to (1.2.16) ua (a =  1, . . ,4 )  does not depend on
X\> x2, x3 or x 4 and hence, using (1.2.25), we have

D m' =  0. (a — 1, . . , 4 ) (4.1)
In the same way we find from (3.39), (3.40), (3.41) and (3.42)

DG:: =  DGi* =  0, ( « =  1, . . . 4 ) (4.2)
D Z '*  =  D Z '*  =  0, ( a =  1, . . . 4 ) (4.3)
BG '*  =  0, (4.4)

D Z '*  =  0. (4.5)
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We now substitute (3.21) and (3.22) into (2.5), We then get with the
help of (4.1)

T'Bs' =  Be' +  p'Bv' -  fi'm Dc'ö> +

+  i  (C* -  G'* u’p +  <  G'p*) (DZ'* -  up D Z': +  <  BZ'p*), (4.6)

or, using (1.2.16), (3.39), (3.41) and (4.3)

T 'B s '= B e '+ p 'B v '+ ^ lp =lG'* B Z '* - !% _ & *  B Z ? - ^ ? ™  Dc'W. (4.7)

Inserting (3.17), (3.18), (3.19) and (3.20) into the preceding equation gives

T'Ds' =  Be’ +  p'Bv' -  S;_, Dc'(,) +

+  i  ^a,^=i (̂ (i) Bap -(- A(2) • ^ J ,)D(A(3) +. A(4) MJJ1) —

-  S t !  ( 4  B '* +  4  +  A('8) M'S), (4.8)

or, with the help of (3.11), (3.12), (3.13) and (3.14)

T ’Bs' =  Be’ +  p'Bv' -  S;=1 /<»> Dc'm +

+  (A,',, B ' +  A(2) M')-D(A('3) B ' +  A('4) M'), -

-  ( 4  E ' -  A('6) P')-D(A;7) E ' -  4  P'). (4.9)

We obtain the non-relativistic second law of thermodynamics corresponding
to (4.9) by dropping the primes and replacing D by d/dt in (4.9). (Cf. § 2).
Hence, we consider all those forms for the relativistic second law of thermo
dynamics of which the non-relativistic analogs can be written in the form
of the non-relativistic analog of (4.9). I t  should be remarked that not all
sets of values for X[h) (k =  1, . . . ,  8) give correct forms for the second
law of thermodynamics.

We shall now derive another form for the relativistic second law of
thermodynamics which will be useful for the considerations in the following
sections. Using (3.39) and (3.41) we can write for (4.7)

T 'B s '^ B e '+ p 'D v '+ ^ ip - i  G'J BZ'*-Z*a_ t G'a*BZ'a* -X J=l c«K (4.10)

Substituting (3.47) and (3.48) into the preceding equation gives

T'Ds' =  Be’ +  p'Bv' -  2JL, Dc'(,) +

+  £ {(G 'S fvr  +  \rB{G'*?} -

-  S2_, { ( O 2 Dfi +  £ £ D ( 0 2}. (4.11)
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We have

(4.12) .

(4.13)

Kfi-i ( O 2 =  (G*>)2>
S i - t  ( O 2 =  S j- ,  (G*)2,

since the right hand sides of these equations have the same values in all
Lorentz frames. Inserting the two preceding equations into (4.11) gives
with the help of (3.47) and (3.48)

T'Ds' =  De' +  p'Dv' +  £ 2 * ,- i  G% DZ% -  Sj_, G*a DZa* -

- 2 £ _ lAi'tf>D c™. (4.14).

Using (3.21) and (3.22) we can write for (4.14)

T'Ds' =  De' +  p'Dv' -  S,"_, Dc'b> -  G* DZ* +

+  è 2éU=i (G,  ̂+  G* Up — ua G*)D(Zap +  Z* Up — ua Z*). (4.15)-

With the help of (1.2.12), (1.2.13), (1.2.25), (3.25), (3.26), (3.37) and (3.38).
we find for the above equation

T V s ’ =  De' +  p'Dv' -  S;_, Dc,(,) +  £ 2 * , . ,  G«/> DZ«* +

“I" Z„ â/9 Ma G ap DZp +  2*0=, Ga Up DZ„p —

-  2 2 ^  G* DZ*. (4.16).

Using (3.54) we have

K f - x  g :  up DZ„p =  2 ^ ., G* DZ* -  S ^ . i  G* Z ^  D«,. (4.17)

Substituting the preceding equation into (4.16) gives with the help of
(3.25) and (3.53)

T'Ds' =  De' +  p'Dv' -  S*L, Dc'{i) +

+  K fi-I  (iGap DZap +  Z* G^ DUp — G* Zap Dup), (4.18)-

or, using (3.25), (3.26), (3.53) and (3.54)

TVs*  =  De' +  p'Dv' -  S;=1 Dc'tf> +  £ 2 ^ . ,  G^ DZ,* +

+  1 Ma (^ay — Zay Gyp) DUp. (4-19).

From this final form for the second law of thermodynamics it is seen that,
as is required, our result is independent of the choice for the orientations
of the three-dimensional axis-frames of the barycentric Lorentz frames.
This may also be seen from (4.11) since the quantities S ^ =,(G^)2 and
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S^=i(GÓ*)2 are invariant with respect to rotations of the ordinary three-
dimensional axis-frames of the barycentric frames. (In our derivations,
however, we have assumed that these orientations are chosen such that
derivatives with respect to xt, x2, x3 and xA of such quantities as Z'ap,
Z'£ and Z'* exist.)

§ 5. The balance equations for momentum and energy. Again, we shall
assume that the energy-momentum tensor of the matter is symmetric.
Hence,

Waf= W Pm. ( « . 0 = 1 ,  . . .4) (5.1)
We shall assume that the forces acting on the matter are only of an electro
magnetic nature. The balance equations for momentum and energy read

S j- , dW Jdx, = ka. (a =  1, . . ,  4) (5.2)

The first three components of the four-vector ka (a =  1, .. ,  4) are the
components of the force per unit volume which the electromagnetic field
exerts on the matter. The quantity (c/i)kt is the energy which the electro
magnetic field contributes to the matter per unit volume and per unit time.

In two ways the electromagnetic field exerts a force on the medium.
In the first place the Lorentz force acts on each chemical component which
is electrically charged. In the second place, in consequence of the polar
ization and magnetization of the matter, the electromagnetic field exerts
a force on the medium which cannot be interpreted as acting on the chemical
components separately. This force will be called the ponderomotive force.
Hence, we have

K =  s?_, do) K« +  (a == 1, . . .  4) (5.3)
where (a — 1, . ,  4) is the four-vector representing the Lorentz
force per unit volume acting on component j and k(P)a (a =  1, . . ,  4) is
the four-vector representing the ponderomotive force per unit volume.

In chapter III K <J> was given by (III.2.19). We shall now assume that

K ? =  (<*$)-' m f, (« =  1, . . , 4 ; / =  1, . . . , * )  (5.4)

where F^l (j =  1, . . . ,  n) is a four-dimensional tensor. This tensor repre
sents the “local” electric and magnetic fields to which the ions of the
chemical component j (j =  1, . . . ,  n) are subjected. To have our discussions
as general as possible we shall not yet completely specify this tensor but
we shall assume that it is given by an equation analogous to (3.23) and
(3.24). Hence,

F% =  a||> B% +  A,'«> M* +  K  B; -  B*a u„) +

+  *:$(«<> M f — Mfup). (a,p=  1, . . . 4 ; j  =  1, . . . , «)  (5.5)
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From the above equation it is seen with the help of (3.5) and (3.6) that

(a, ft =  1, . . ,  4; ƒ =  1, , . , , « )  (5.6)
In § 8 we shall investigate the explicit form of k{P)a (a =  1, . . ,  4).

§ 6. The balance equation for rest mass. Analogous to (1.4.1) the balance
equation for rest mass reads

dQ^/dt =  — div qw v(A) +  v(*> J {c). (k — 1, . .  .,n) (6.1)

Using the four-vectors m(?  (a =  1 , . . ,  4; k =  1 , . . . , «) ,  defined by (1.2.1),
we can write for the preceding equation

2a=l d m i =  V W  7(c)- ( k =  1, . . . , « )  (6.2)
Analogous to (1.4.3) we have the conservation law

2a=i dm jdxa =  0. (6.3)

The equation (6.1) can also be written in the form

q'Dc'M =  -  d l f f c  +  f  J[c)! ( ƒ = ! , . . . , * )  (6.4)

which equation is identical with (1.6.1).

§ 7. The first law of thermodynamics. To deduce the first law of thermo
dynamics, we use the same method as in § 5 of chapter I; i.e., we study
the equation which we obtain by multiplying (5.2) by ua and su m m in g
over a. Hence, we must consider the equation

â,/S=l Ua(dWap/dXp) =  £4=1 ua ka. (7.1)

Using (1.2.10), (1.2.21), (5.3), (5.4) and (5.6) we derive

S «=i Uaka = -  S L i  S4=1 T?(c-' *<*> s 4=1 F<*> U„) + ua k(P)a. (7.2)

Substitution of (1.5.9) and the above equation into (7.1) gives

Q'{T>e' +  p'Bv') =  -  +  c -1 7'°» Du„) +
+ c Ilt_p=1PaP(8ul,l8xa) + S ^ 1S4=17'*>(^)^ =1F<*>%) (7.3)

as first law of thermodynamics.

§ 8. 77te entropy balance and the ponderomotive forces. We have not yet
discussed the form of the four-vector A(P)a (a — 1, . . ,  4) which represents
the ponderomotive force. In this section it will appear that certain con
ditions must be imposed on k{P)a if we want to obtain a satisfactory ex
pression for the entropy balance. These conditions, however, are not such
that k(P)a is uniquely determined.
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We first substitute (6.4) and (7.3) into (4.19). Using (I. 2.25) we then find

e'Ds' =  -  sti(a/«*-> {(i/n(/<0) -  S'U  ^ ]i f ) }  +
+  ( l /T)  [ -  S t ,  Z<°> {(1 IT')(8T'ldxa) +  c -1 D uJ +

+  2?-, SS-i I f  {eV) ^  -  T(d/dxa) ( ^ / T ) }  +

+  c K fi-i Pap(8upldxa) -  J {c) S*=, v(,) -

C ^ t ,  Ma {^ (P )o  ~  I ? ’ ^ i s , y - l  Gpy(dZpyl8xa) —

~ P ,̂y,C=l Uflippy Zyt — Zfa, Gy() (SMj/SxJ}]. (8.1)

The last two hnes of the preceding equation do not contain quantities
which may be interpreted as fluxes in the sense of thermodynamics, be
cause k(P)a represents the ponderomotive force, the tensors Gap and
describe the electromagnetic field and the polarization and magnetization
of the matter, the four-vector ua represents the barycentric velocity and q
is the total density of rest mass. The entropy production always consists
of a sum of products of fluxes and “forces” (affinities), while the entropy
flow equals a sum of terms where each term contains a flux as factor.
Hence, if we want to obtain a satisfactory form for the entropy balance
the last two lines of the preceding equation must vanish. This means that
k(P)a must have the form

—  Q { I  Gpy(dZpy/dXa). + .  ^ t  1 Q p  +

T" 2^>nc—1 up[Gpy Zyt Zpy Gyt) (8u^/dxa)}. (a — 1, . . ,  4) (8.2)

The four-vector 0p(fi =  1, . . ,  4) which occurs on the right hand side of
this equation cannot be determined with the help of pure thermodynami
cal considerations; for, if we insert the preceding expression for k(P)a into
(7.3) or (8.1) the term containing 0$ vanishes according to (1.2.30).

We now define

y<0) «  -  { ( l /r )  (dT’l8xa) + c -1 DwJ, (0 = 1, . . ,4) (8.3)

Y f  -  S<=, F §up -  T'(8/d*a) (ji’̂ IT ) . (a = 1 , . .,4; ƒ =  1, . . . , n) (8.4)

Substituting (1.6.5), (1.6.11) and the three preceding equations into (8.1)
gives with the help of (1.2.30) and (1.5.7)

e’Ds’ =  -  s t , ( a / a o  {(iI T )  (/‘0) -  i f ) )  +
+  ( l / n  {S”=0 S t ,  I f  Y f  +  c S t l ,  Pap(8Upl8xa) +  n QV V  +  ƒ „  A). (8.5)

If we define
I {s)a *  (\ /T)  (Z<?> -  S'*,, ^  I f ) ,  ( 0 = 1 / . . ,  4) (8.6)

o «  ( l / r )  {S;=0S t ,  I f  Y f  +  c S t - ,  Paptfupldxf) +  IIq'Dv' +  ƒ<„ A), (8.7)
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we have for (8.5)
q'Bs' =  -  Sj.1  dl{t)jdxa +  a. (8.8)

This is the final form for the entropy balance. We can interpret a as the
entropy production per unit time and per unit volume. The four-vector
I (s)a represents the conductive flow of entropy per unit surface.

From (8.7) it follows that a is a Lorentz invariant quantity. It is seen
that the entropy balr.:»cc (8.5) is formally equal to the entropy balance
(III.5.1) for the case without polarization and magnetization. M a z u r
and P r i g  o g i n e also find this formal analogy as one of the results of
their non-rclativistic theory !).

§ 9. The ■phenomenological equations for vectorial fluxes in anisotropic
media and the Onsag^r relations. In the preceding chapters we have given
the phenomenological equations for isotropic media. We shall now treat the
general case of media which are anisotropic as far as the irreversible processes
are concerned. It should be remarked that the medium can become aniso
tropic (as far as the irreversible processes are concerned) owing to the
polarization and magnetization of the matter. In this section we shall
deal with vectorial fluxes. These fluxes represent the heat flow and the
relative flows of matter.

According to (8.7) the contribution, of the vectorial fluxes to
the entropy production, a, is given by

amd) =  (1 /T') I f  Y f .  (9.1)

We now introduce as new vectorial "forces” (affinities) the four-vectors
Y-f. (a =  1, .. , 4; j =  0, 1, . . . ,  n) defined by

Y f  m A* Y f ,  (a =  1, . . .  4; ƒ =  0, 1, . . . ,  n) (9.2)

Using (1.2.30) it follows from this definition that

Z L t  K  f f  =  0. (ƒ =  0,1, _...,«) (9.3)

With the help of (1.2.24), (1.2.28), (1,3.7) and (9.2) we can write for (9.1)

' %)(«) =  W )  ST.* 22-, w  • (9.4)
We shaU leave out of Consideration cross-effects between quantities of

different tensorial character. (It should be remarked that such cross-effects
might exist in anisotropic media.) We shall assume, howevér, that a flux
depends on all “forces’/ (affinities) having the same tensorial character as
this flux. Therefore, taking into account the above form for we have
for the four-vectors I® (a =  1, . . ,  4; j  =  0, 1, . . . , « )  the phenomenological
equations

I f  =  SLo Z U 1 I T "  (« =  1, • •, 4; j =  0, 1.........n) (9.5)
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From (1.2.24), (1.3.7) and the preceding equation it  follows tha t

2*-0  S^ - 1  «a l T k) (ƒ =  0, 1, . . . .  n) (9.6)

Using (1.2.28), (9.3) and the above equation we w rite  for (9.5)

i f  =  S Lo 2 T »  Y<*>, (a =  1, . ., 4; j  =  0, 1, . . . ,  «) (9.7)
where

ps £ * {=I (a, p =  1, . . ,  4; j, k =  0,1, . . . ,  n) (9.8)

We shall now deduce some properties of the phenomenological tensors
(a, /? =  1, . . ,  4; j , k  =  0, 1, . . . ,  «). W ith  the help of (1.2.30) we

have from  (9.8)

s L i  I T  =  o , II

• 
^r

4 II O . ,  n ) (9.9)

l T  u p =  o.

<
sII* ̂» ■., n ) (9.10)

losing (1.2.16) it  follows from  the two preceding equations tha t

1 ' T  ___ £'(>)(*) =  o (a =  j,  , . , 4 ;  j t k =  0, 1, . . . , « )  (9.11)

From (9.7) and the above equation we conclude

i y  =  S Lo r y .  (a =  1, . . ,  4; j  =  0, 1, . . . , » )  (9.12)

Since the Y ^ ’(/3 =  1, 2, 3; k =  0, 1, . . . , « )  are independent from  each
other we have from  (1.2.23) and the preceding equation

2 ^ )(*) -  0, (« =  1, . . , 4 ;  /3=  1,2,3; A =  0,1, . . . , « )  (9.13)

or w ith  the help of (9.11)

=  o. (a, 0 = 1 , . . , 4 ;  *  =  0,1, . . . ,« )  (9.14)

As th is tensor relation holds at position r ' and at tim e t ' for an observer in
Br t i t  also holds *at position r  and at tim e t fo r an observer in  A. Hence,

2"=i 2$<*> =  0. («,/?= 1, . . , 4 ;  A =  0,1, . . . , « )  (9.15)

Using (1.3.6) and (1.7.2) we have from  (9.4)

=  (9.i6)

W ith  the help of (1.2.23) we find  from  the above equation

Tami) =  S L i i y  Y'J0) + s ; - /  S L i K{i) (Y’y  -  Yy), (9.17)

Inserting (9.12) in to  the preceding equation gives

T ’rt _ Y " Y,3 7 '(°)(*> y 'W  v'(0) i
1  a Qi){d) —  ^ Jk = 0  ^ 0 ,0 = 1  x p  x  a +

+  SLo Sfo1 z:r*> y ;<*> (y ;«> -  y :<->). (9.18)
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From this equation it follows that

t% w = Umo) (V01)2 + (z:_, L'sfm) ?;<*> y;(o> if
y'tfj^ y'W (j=x< . . n -  1), y;<°>= 0 for a # £ ,  Y?B>=0 for a #  f, (9.19)

where f  and £ are two numbers, each of them having one of the values
1, 2 or 3. Since T'a{hm must be a positive definite quantity, it follows
from the preceding equation that

z ; r ° >  >  0 , (£ =  1,2,3) (9.20)

s t i  z * " » *  =  0 , ( l £ =  1,2,3) (9.21)

because Y{<0) and Y^n> may be chosen arbitrarily. From (9.18) we also
have

T'°(W) =  ~L'tf{l) (Y'tm -  Y'Mf +  (s;_ , l $ m ) y>> (y;w _  y;<»>) if

Y y = Y ' M ( j = \ ,  . . r , n - \ )  for j ^ l ,  Y'(0)= 0 , ?'<*>= Y'a{n) for a # f ,

y ' (B) =  0 for a #  £, (9.22)

where f  and £ are two numbers, each of . them having one of the values
1,2, or3 and 2 is a number which may have one of the values 1,2, . . . ,  n— 1.
Since Y(w — Y^n) and Yt(B) may be chosen arbitrarily and since T o
must be a positive definite quantity it follows from the above equation that

VE® > 0 ,  (f =  1,2, 3; I =  1, 1) (9.23)
and

2J -, 0. ( U = l , 2 , 3 ; l = l , . . „ » - l )  (9.24)

It is easily seen that the two preceding equations are also valid for I =  n.
Moreover, on account of (9.11) |  and £ may run from 1 to 4 in the equations
(9.20), (9.21), (9.23) and (9.24). Thus, we get

>  0, (a =  1, . . ,  4; ƒ =  0, 1, . . . ,  n) (9.25)
and

=  0. (a, /? =  1, . . ,  4; j  =  0, 1, . . ; ,  n) (9.26)

Since the last tensor equation holds for an observer in Br t at position r'
and at time t this equation is also valid for an observer in A at position r
and time t. Hence,

=  0. (a, 0 =  \, . ,, 4; j  =  0, I n )  (9.27)

It may easily be verified that (9.12) is identical with the non-relativistic
phenomenological equations for heat conduction and diffusion in aniso-
tropic media for the case that v  and dv/dt vanish 2). Thus, the coefficients
Lap*' > (a, /? =  1, 2, 3; 7 , h =  0, 1, . . . , « )  are the phenomenological coef-
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ficients, of the non-relativistic theory, among which we have the Onsager
relations

I ' T  (»') = Lpam  B'). (a, ft =  1,2,3; j ,k  =  0, 1, ..*, n) (9.28)

From (9.11) and the preceding equation we find

I T *  (B') =  ( -  B')- (a, ft =  1, . . ,  4; j, k =  0, 1, . . . ,  n) (9.29)

Since these tensor relations hold for an observer in Brt at position r ' and
at time t' they also hold for an observer in A at position r  and at time t.
Therefore, we get

I T  (B') =  Z&)('> ( -  B') (a,ft =  1, . . , 4 ;  j ,k  =  0,1, . . . , «)  (9.30)

as relativistic Onsager relations for heat conduction and diffusion in ani
sotropic media.

It should be noted that it is also possible to derive (9.27) from (9.15) and
(9.30). As we have seen, however, it is not necessary to use the Onsager
relations for the derivation of (9.27) since this equation may also be deduced
from the positive definite character of T'a{ĥ dy The method used above
to deduce (9.27) is an extension of a procedure used by d e  G r o o t 2)
to derive this equation for isotropic media. Finally, we remark that the
tensors occurring in (9.5) need not have any of the properties which
we have derived for the tensors V T -

§ 10. The phenomenological equations for tensorial fluxes in anisotropic
media and the Onsager relations. The only tensorial flux occurring in the
expression (8.7) for a is the ordinary viscous pressure tensor Pap (a, ft =
=  1, . . ,  4). It is seen from (8.7) that the contribution, <r(o), of the viscous
flow to a is given by

a(v) =  (C/^V) (SŴ /dXa) • O^-l)

We now introduce the four-dimensional tensor Ya/S (a, ft =  1, . . ,4)

YO0 — C [ i^ a y ^ K  {(8uyl8xc) +  (8uJ 8xy)} ~  A yC (8uJ 8xt ) l  (10-2)
(a, ft == 1, . .,4)

From (1.2.30) and the preceding equation we have

«« Y *  =  0, (|8= 1, •„4) (10.3)

i Y„p Up =  0. (a =  1, . -,4) (10.4)

With the help of (1.2.29) we find from (10.2)

Y„p =  Ypa- (a, 0 = 1 , • •, 4) (10.5)
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Using (1.2.28), (1.2.29), (1.2.30) and (1.2.33) we get from (10.2)

K - i  Y m =  0. (10.6)

With the help of (1.2.28), (1.6.6), (1.6.7), (1.6.8) and (10.2) we can write
for (10.1)

*w =  O/T') H * - .  p *e Y ap- (10.7)
As noted already in the preceding section we shall leave out of consider

ation cross-effects among quantities of different tensorial character. There
fore, taking into account the preceding form for <r(B), we have for the tensor
p ap (a, P == 1, . . ,  4) the phenomenological equations

Pop =  Sj.c-1  L 'J*  Yy{, (a, P =  1, . . ,  4) (10.8)

where {a, p, y, £ =  1, . . ,  4) is a phenomenological tensor. We now
introduce the four-dimensional tensor L ^ t (a, p, y, £ =  1, . . ,  4) defined
t>y

A«n Apx An  Alr (a, fi, y, £ =  1, . . ,  4) (10.9)

Using (1.2.28), (1.6.8), (10.3), (10.4) and (10.9) we can write for (10.8)
Pap =  L ” t Yyf. (a, P — 1, . . ,  4) (10.10)

Finally, we introduce the four-dimensional tensor (a, f), y, £ =  1, . . ,  4)
defined by

/ ■ *  ___- 1 7 /■ * *  i r * *  i t * *  i t ♦  *  v■̂afiyC ' 4 afiyC I ■‘■'ffayC ■ ifiCy \ " fiaCy) .

— i AaP ^f-1 ,+ Lp£t) +

(a , /9 ,y ,£ =  1, . . .4 )  (10.11)

With the help of (1.2.28), (1.6.6), (1.6.7), (10.3), (10.4), (10.5), (10.6) and
the preceding equation we find for (10.10)

p  _y4 t *  v, op ^apyt 1 yC- {a,p =  ■ ■.4) (10.12)

We shall now deduce some properties of the tensor L ^ yt.
and (10.9) it is seen from (10.11) that

Using (1.2.30)

So4- ,  ua PaPyl ~  0) (P, y, X =  l, •7 » 4 ), (10.13)

UP PtpyC — 0. (a, y, £ — 1, . . .4 ) (10.14)

My T̂ Jyf =  0, (a, p, £ =  1, . . . 4 ) (10.15)

I f - .  ut PaPyt ~  0- (a, P, y — 1, . . . 4 ) (10.16)

With the help of (1.2.33) we obtain from (10.11)

PaPyy — 0» (a, P =  1, . -.4) (10.17)

^a«l P*ay: =  0- (y, f  *= 1, .. . . . 4 ) (10.18)
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Further, we get from (1.2.29) and (10.11)
T  ♦  ____  ~r 9§C •

^afiyC —  LPayt> (a, p ,  y ,  £ =  1, . . ,  4) (10.19)

L afiyc =  L ^ Cr (a, p ,  y , £ =  1, . 4 )  (10.20)

We shall now derive the Onsager relations. Using (1.2.16) we find from
(1.6.8), (10.3), (10.4), (10.13), (10.14), (10.15) and (10.16)

K ,  =  P i  = o , ( a  =  1, . ., 4) (10.21)

a 
x

II

£•
 >

•

II O ( «  =  1, . . .4) (10.22)
J  ' *  _ T  ' *    T  ' *  T  ’ *  n

4afiy -L-atPy —  U . [a, P, y  =  1, . . ,4) (10.23)
Using the three preceding equations it follows from (10.12) that

P '  __ y 3 t  ' *  v '
- " y , : = 1 -afiyC 1  yS • (a ,p=  1,2, 3) (10.24)

It may be easily verified that (10.24) is identical with the non-relativistic
phenomenological equations for the ordinary viscous pressure tensor
in anisotropic media and that the coefficients [a, (S, y, £ =  1,2,3)
are the same coefficients as the phenomenological coefficients used by
d e  G r o o t  and M a z u r 8). Therefore, we have the Onsager relations

Lafiyc (B') =  £ £ ,  (— B'). (a, /?, y, £ =  1, 2, 3) (10.25)

Using (10.23) we may extend the preceding equation to

(B') =  Ktafi (— B'). (a, p, y, £ 1, 4) (10.26)

Since this tensor relation holds at position r ' and at time V for an observer
in Br t it also holds at position r  and at time t for an observer in A. Hence,

L*rC (B') =  L*(afi (— B'). (a, P , y ,£ =  1, . . ,  4) (10.27)

This equation is the relativistic form for the Onsager relations for viscous
flow in anisotropic media.

Finally, it should be remarked that the tensor L™y* (a, /?, y, £ =  1, . . ,  4)
need not have any of the properties which we have derived for the tensor
L4>yt { <* , P , y , t =  1, . . .  4).

§ 11. The -phenomenological equations for scalar fluxes in anisotropic media
and the Onsager relations. For the scalar quantities 77 and J {c) we have the
phenomenological equations

n ' —  r)(v)Q,^ v' +  T(P)(e) A , ( 1 1 . 1 )

J(c) — P(c)(p) q'O v' - f -  L A . ( 1 1 .2 )
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The coefficients L{p){c) and L[c){p) are identical with those of the non-rela-
tivistic theory. Between them we have

L {PHc) (R ') =  —  L {c){p) B'), (11.3)
which is the Onsager relation for visco-chemical effects in anisotropic
media.

§ 12. The case of isotropy. The three-dimensional tensor P'^ (a, (} =  1,2, 3)
is the ordinary three-dimensional viscous stress tensor of the non-relativistic
theory. The three-dimensional tensor Y'^ (a, ft =  1,2,3) is the “force”
(affinity) conjugate to P'ap in the non-relativistic theory. As may be seen
from (1.6.7) and (10.5), the two tensors are symmetrical. Moreover, the
trace of these two three-dimensional tensors vanishes according to (1.6.6),
(10.6), (10.21) and (10.22). As is well-known, isotropy means that the
two tensors are proportional to each other. Hence, we can write

2??Y .̂ (a , /9=1,  2, 3) (12.1)

From (10.21), (10.22) and the preceding equation we have

P'^ = 2f]Y'aft. (a, P — 1, . . ,  4) (12.2)
In the same way we can derive

r * -  (a =  i, . . , 4; /  =  o, i, . . . , w) (i2 .3)

for isotropic media. Since the two preceding tensor relations hold for an
observer ‘in Br< at position r ' and at time V these relations also hold for
an observer in A at position r  and at time t. Hence,

Pafi ~  ZrjYap, (a, f} =  1, . . ,  4) (12.4)
and

=  25-0Lm )  n*’- (« =  1, . . . 4;  j =  0, 1 , . . . , „ )  (12.5)

Inserting (10.2) into (12.4) shows that (12.4) is identical with (1.7.14).
From (1.7.7) and (9.2) we see that also (12.5) is identical with (1.7.1).

Comparing (10.8) and (12.4) we see that in the case of isotropy

V  (a, P, y, C =  1, . . ,  4) (12.6)

Similarly we see from (9.5) and (12.5) that in the case of isotropy
l T k) =  L m daP. { a J =  1; , . )4; i>k =  0> n .. ,>n) (1Z7)

Substitution of (12.6) into (10.9) gives with the help of (1.2.28) and (1.2.30)

=  2r]Aav /ipi. (a, p, y, C =  1, . . ,  4) (12.8)

Inserting the preceding equation into (10.11) gives with the aid of (1.2.28),
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(12.9)

(1.2.30) and (1.2.33)

=  »?(^ov —  i ^ a f i  ^ y t i -

(a, P.y .C — 1, • 4 )

Substitution of (12.7) into (9.8) gives with the help of (1.2.28) and (1.2.30)

£</><*> =  Lm ) A o f '  (a,/S =  1 ,. , 4 ; j ,k  =  0, 1, . . .,») (12.10)

If we take a =  /? =  y =  £ we have from (10.27) and (12.9)

# ' ) = > ï ( - B ' ) ,  (12.11)

*.c., ?; is an even function of B '. The Onsager relations for heat conduction
and diffusion read

Lvm  (B') =  Lm )  ( -  B'), • (j, k =  0 , \ ,  . . . ,n)  (12.12)

which follows from (1.2.29), (9.30) and (12.10).
In  isotropic media the phenomenological equations for the scalar fluxes

n  and J(c) are again given by (11.1) and (11.2). I t  is easily seen from
sym m etry considerations th a t in an isotropic medium and must
be even functions of B '. Hence, we have from (11.3)

Lmc) (B') =  -  L{cm (B') (12.13)

for the Onsager relation for visco-chemical effects in an isotropic medium.
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Chapter V

THE ENERGY-MOMENTUM TENSOR OF THE
MACROSCOPIC ELECTROMAGNETIC FIELD, THE

MACROSCOPIC FORCES ACTING ON THE MATTER AND
TH E FIRST AND SECOND LAWS OF THERMODYNAMICS

§ 1. Introduction. In chapter IV of this thesis quantities occurred, in
the expressions for the Lorentz force and the ponderomotive force and
in the first and second laws of thermodynamics, which were not completely
specified. In this chapter we shall give such explicit expressions for these
quantities that the four-vector which represents the total force exerted
by the electromagnetic field on the matter may be taken as the divergence
of a four-dimensional tensor (the energy-momentum tensor of the electro
magnetic field).

We shall deal with media which are isotropic as far as polarization and
magnetization are concerned.

The equations for the electromagnetic field are given in § 2. In § 3 we
give explicit expressions for the quantities mentioned above and we derive
an expression for the energy-momentum tensor of the electromagnetic field.
In § 4 we discuss the conservation laws for energy, momentum and angular
momentum. The energy-momentum tensor of the electromagnetic field,
derived in § 3, and the forces exerted by the electromagnetic field on the
matter are discussed in § 5 and § 6 respectively. In § 7 we compare the
energy-momentum tensor of the electromagnetic field, found in § 3, with
the tensors of A b r a h a m  and M i n k o w s k i .  The first and second
laws of thermodynamics are discussed in § 8. In § 9 we discuss the in
definiteness of the energy-momentum tensots of the matter and of the
electromagnetic field. Finally, in § 10 it is shown that A b r a h a m ’s
tensor leads to an equivalent formalism and that from the point of view
of the developed theory this tensor is preferable to M i n k o w s k i’s
tensor.

§ 2. The electromagnetic field. The electromagnetic field in ponderable
matter is described by the electric field vectors E and D and the magnetic
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(2 . 1)

field vectors H and B. The polarization vector, P, is defined by
p =  D -  E,

and the magnetization vector, M, by
M =  B — H.

The Maxwell equations read
ro tH  — c-1 (dD/dt) =  c~' j,

divD  =  Q(d),
rot E +  c ' 1 (3B fdt) =  0,

div B =  0.

As is well-known E x, E2, E3, B x, B2 and B3 are the components of
a/3 (a, p =  1, . . ,  4), defined by

' o f

0
- b 3

b 2
i£ i

0

-  B.

- b 2

B i

0

-  iE t
-  iE2
- iE ,

This tensor is antisymmetric, i.e., it possesses the property
B Bpa- (a, p =  1, . . ,  4)

Also Du D2, D3, H x, H2 and H3 are the components of a tensor, Ha
=  1, . ., 4), given by

0 h 3 - h 2 — iD

Hap =
- H 3 0 — iD

h 2 ~ H X 0 — iD
iDx iD2 iD3 0

tensor is also antisymmetric. Hence,

HaP=  ~  Hpa- (a.P =  1, .

From (2.1), (2.2), (2.7) and (2.9) it follows that P x, P2, P3, M x, M 2

l aP

where also

s of a tensor, M ^ (a,P =  1, . . .4 ) , given by
0 m 3 - m 2 iPx

1 C*> 0 M x iP2
m 2 - M x 0 iP3 *

~ i p x - i P 2 ~ i P 3 0

(t 1 J? (a, P = 1, . . , 4)

(2.2)

(2.3)
(2.4)
(2.5)
(2 .6)

a tensor,

(2.7)

(2.8)

(«./? =

(2.9)

(2 . 10)

and M 3

(2 . 11)

(2. 12)

66



Using (2.7), (2.9) and (2.11) we can combine the equations (2.1) and
(2.2) into the tensor equation

M aft =  — H#. {a ,P =  1, • ., 4) (2.13)

With the help of (III.2.14) *), (III.2.15) and (2.9) we can combine the
Maxwell equations (2.3) and (2.4) into the form

SHJdXp =  c - 1 S t ,  mlkK (a =  1, . . , 4)  (2.14)

In the same way we can write for the Maxwell equations (2.5) and (2.6)

8B Jdxy 4- d B j8 x a +  SBJdx,, =  0, (a, p , y — 1, . .,4) (2.15)
where we have used (2.7).

We now introduce some four-dimensional vectors and tensors which are
useful for the discussions in this chapter. We define the tensors B*„ and
Bap (a, p =  1, . . ,  4) by the equations

B * o p ^ n ^ x ^ a CBa A(p, (a,/? =  1, . . , 4) (2.16)
B-afi =  {̂,£=1 d a{ B C( Atp, (a» P — 1, . 4) (2.17)

and the four-vectors B* and H* (a =  1, . . ,  4) by the equations

Ba =  i Bap Up, (a =  1, 4) (2.18)
B a =  -̂ 8=1 Bap Up. (a — I  . . , 4) (2.19)

Using (1.2.28), (2.8), (2.10) and the four preceding equations we derive
Bafi Bap BaUp ua B*, (a, p =  1, . . ,  4) (2.20)
Bap — Bap H a Up ua H * . (a> P =  1, • 4) (2.21)

From (2.16) and (2.18) it follows with the help of (1.2.30) and (2.8) that
^UB*apUp =  ^ U p B * p a ^ 0 , ( « =  1, - . ,4) (2.22)
S t ,  U aK  =  0. (2.23)

In the same way we deduce

Z U l H Ï U p  =  y _ i UpH'pa =  0, (a =  1, . , ,  4) (2.24)
S t ,  uaH * =  0. (2.25)

Using (1.2.29), (2.8) and (2.10) it follows from (2.16) and (2.17) that
B*ap =  -  B ;a, (a, p =  1, . . , 4) (2.26)
Hip =  -  H i. (a, (} =  1, . ., 4) , (2-27)

*) Equation (2.14) of chapter III of this thesis will be indicated as (III.2.14) and in the same way
we denote the other equations of the chapters I, II, III and IV.
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From (2.16) we derive with the help of (1.2.32) and (2.7)

0 b 3 - b 2 0

B'* =
- B ' 3 0 B\ 0

b '2 ~ B [ 0 0 .* (2.28)

0 0 0 0

and using (1.2.32) and (2.9) we find from (2.17)

0 h '3 - H 2 0

H'J =
-  B'3 0 H\ 0

- H [
(2.29)

h 2 0 0
0 0 0 0

Using (1.2.16), (2.7) and (2.9) it follows from (2.18) and (2.19) that

B'* --• K {a = 1,2 ,3); B'* = 0 , (2.30)

K * = D'a (a = 1,2,3); H'* = 0 . (2.31)

For media which are isotropic, as far as polarization and magnetization
are concerned, we have the constitutive equations

H' =  f i ~ x B', (2.32)
D' =  êE', (2.33)

where the Lorentz invariant quantities fi and e are the magnetic permeability
and the dielectric constant respectively. From the six preceding equations
we find

=  («,/? =  1, . . .4) (2.34)
( a = l , . . , 4 )  (2.35)

and since these tensor equations hold for an observer in Br( at position r'
and at time V they also hold at position r and at time t for an observer in A.
H pnrp

^  =  (a, fi =  1, 4) (2.36)
H : =  eB*. (a =  1, .-.,4) (2.37)

A well-known different form for (2.36) reads

■ +  Hv°uf> +  Htsvu« = > " 1 (Bap ur +  Byaup +  BPv ua). (2.38)

, (a. f i ,y =  1. • •, 4)

With the help of (1.2.16), (2.7) and (2.9) one easily verifies that this relation
holds for an observer in Br j at position r' and at time V. Hence, this equation
also holds at position r and at time t for an observer in A. From (2.37) and
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(2.38) we have with the help of (1.2.11), (2.7), (2.9), (2.18) and (2.19)

H —  c~l (v / s  D) =  /i- 1 {B — c~l (v / n  E)}, (2.39)

D +  c - ' (vvs H) =  e{E +  c~l (vvs B)}. (2.40)

By solving these equations for the vectors H and D we obtain

H =  (1 -  v V ) - 1 A*-* [(1 -  e ^ / c ^ B  +

+  (e/i — l){c-1 (v^ E ) +  c~ 2 (vB)v)], (2.41)

D =  (1 — v2/c2)-1 e[(l — e ' 1 fi~x v^c^E +

+  (1 — e-1 (jl~ 1){c~ x (v ^ B ) — c~ 2 (vE)v)], (2.42)

which are the three-dimensional tensor forms for the relativistic consti
tutive equations.

§ 3. Derivation of the energy-momentum tensor of the electromagnetic field. As
in chapter III we shall assign an energy-momentum tensor, W(f)ap(a, 0=  1,.. ,4),
to the èlectromagnetic field such that

=  — i dW^p/dXp, (a =  1, . . ,  4) (3-1)

where ka(a — 1, . . ,  4) is the four-vector given by (IV.5.3). In this section
we shall derive an expression for W(/)a/}.

In chapter IV we did not specify the tensors Z ^  and G#(a, 0 =  1, . . ,  4)
and the four-vector @a(a =  1, . . ,  4) which occurred in the expression (IV.8.2)
for the ponderomotive force and the tensor JF^(a, 0 =  1, . . , 4 ;  ƒ =  1,..., n)
which occurred in the expression (IV.5.4) for the Lorentz force. We shall
now choose these quantities such that an explicit expression may be ob
tained for the tensor Wy)ap which is closely related to the expressions of
A b r a h a m  and M i n k o w s k i  for the energy-momentum tensor of
the electromagnetic field (Cf. § 7). We shall make the choices (Cf. (IV.3.16)
and (IV.3.23), (IV.3.15) and (IV.3.24), (IV.3.15) and (IV.5.5))

Gafi == VM 'P , ( « .  0  =  1 , . . .4 ) (3.2)

Z ap = (a, 0  =  1 , . . . 4 ) (3.3)

F §  =  B^, ( « »  0 = 1 - ,4 ;  ƒ = ! , . .., n) (3.4)
and

— v MpyBYi) (duJdX') - ( -

+  c -1 D{w' M BPy M v« -  M Py Bya)l ( a = l ,  . . .4 )  (3.5)
Using (1.2.25), (2.8) and (2.12) we have from (3.5)

S j- i ua 0 a =  0, (3.6)
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and from this equation we have with the help of (1.2.28)

A *  (« =  1V • •, 4) (3.7)
Inserting (3.4) into (IV.5.4) gives for the four-vector representing the
Lorentz force

K ?  =  (fcfSir1 (a =  1, . . , 4 ;  ƒ =  1, . . . , « )  (3.8)

Substitution of (3.2), (3.3) and (3.5) into (IV.8.2) gives with the help of
(1.2.3) and (3.7) for the ponderomotive force

k{P)a — è^ ,y=  1 MpY(dBpy/dXa) +

+  c"1 e' D {»' S*y_, «„(%  Mya -  M„y F ya)}. (a =  1, . . ,  4) (3.9)

From (IV.5.3) and the two preceding equations we have

K  =  C-' &  3EJ-. +  \ A r -1 M fr(8Bj 8 x a) +

+  c - 1 e'D {r' Z£y_, Mp( ^ y Mya -  Af^, Bya)}. (a =  1, . . ,  4) (3.10)

Using (1.2.10), (1.2.14), (1.2.25), (2.13) and (2.14) we can write for the
above equation.

ka =  ^s,y=i Bay(dHrp/dXp) Hpy(8Bpy/dxa) -

— <r‘ mpid/dx,,) {»' E*f_, M:(Bfy tfya -  77CyS ya)} +

+  i  1 (a =  1, . . ,  4) (3.11)

and from this equation it follows with the help of (IV.6.3) and (2.15) that

ka =  Zpy= i Bay(8Hypl8xp) * 2 ^ . ,  7/^y {(dBap/dXy) -f- (8Bya/8xp)}

-  c~‘ 2p=l{8l8xp) {v'mp Sy,{_, u^B^Hya -  HCy Bya)} +

+  i  S*y=1 { 0 (^ )7 ^ } -  (« =  1. 4) (3.12)

Finally, we find from the last equation with the help of (1.2.10), (1.2.15),
(2.8) and (2.10)

K  =  2$_,(0/a*,) {S*=1 BayHyp +  i  <5a/J S*t=1(Sy{)2} -

-  ^ (B fdX p) {up 2*:_, uc(BCyHya -  HCyBya)}. (a =  1, . . ,  4) (3.13)

From (3.1) and (3.13) it follows that we may take

WV)ap — ^y=i BayHyp i  öap Sy{=j(By{) +

+  {S*f_ , uc(Bty Hya -  HCy Bya)} Up (a, 1, . . .  4) (3.14)

as an explicit expression for the energy-momentum tensor of the electro
magnetic field.
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§ 4. The conservation laws for energy, momentum and angular momentum.
We define the tensor W,t)a(s by

WW =  4" (a> ft =  1. • •. 4) (4.1)
We can consider this tensor as the energy-momentum tensor of the system
(electromagnetic field and matter together).

From (IV.5.2), (3.1) and the preceding equation we have

^ 0 = 1  dWy^fdXp =  0. (a =  1, . . ,  4) (4.2)

For a =  1, 2 and 3 it follows from this equation that the total momentum
of the whole system (t.e., the density of momentum of the matter and the
field together, integrated over the whole volume of the system) is conserved.
For a =  4 it follows from (4.2) that the total energy of the whole system
(i.e., the density of energy of the matter and the field together, integrated
over the whole volume of the system) is conserved.

To be able to discuss the law of conservation of angular momentum
we shall first show that the tensor (a, /S =  1, . . ,  4) is symmetric
for media which are isotropic as far as polarization and magnetization are
concerned. Using (1.2.28), (2.8) and (2.10) we have from (3.14)

(̂/)«0 ^(/)0a ^af{B(y Hyf Hfy Byf) A (a, ft =  1, . . ,  4) (4.3)
With the help of (1.2.12), (2.20), (2.21), (2.22), (2.23), (2.24) and (2.25)
we can derive that

X U ( B CyHy( ~  HtyBy() U  q ^ B t y H l  HfyBrf) —

-  {?£., (B*yH* -  H*y B*)} U( + B*H* -  H* B* +
+  % -  H*B*y()}. (C,e =  1, . . ,  4) (4.4)

Inserting (4.4) into (4.3) gives with the help of (1.2.28), (1.2.30), (2.22),
(2.23), (2.24) and (2.25)

~  =  K -x  (B*V H% -  H*ayB*fi) +

+  B*H* -  H*B; .  (a, ft — 1, . . , 4) (4.5)

We now introduce into (4.5) the relations (2.36) and (2.37) which hold for
media which are isotropic as far as polarization and magnetization are
concerned. This gives

(a, ft =  1, 4) (4.6)
In our considerations we assumed that the energy-momentum tensor
of the matter, W ^ (a, ft =  1, . . ,  4), is symmetric (Cf. § 5 of chapter IV).
Hence,

- (a> ft =  !>’••> 4) (4.7)
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(4.8)

From (4.1) and the two preceding equations we have

Wflafi — W (,)£„; (a, P =  1, . . ,  4)

i.e., the energy-momentum tensor of the system is symmetric.
We introduce the three-dimensional vector g (/) of which the components

are given by

£</)« =  (*fTl W <W (a = 1 , 2 , 3 )  (4.9)

This vector gives the density of momentum of the electromagnetic field.
The density of momentum of the system, g (J), is given by

&(t) =  ê  +  g(/>. (4.10)

where g is the density of momentum of the m atter, given by (1.3.2).
We now consider a finite system. Using (4.7) we then can derive 1)

(d/cb) ƒ  {r  /s  g(r, *)}dF =  0, (4.11)

i.e., the to ta l macroscopic angular momentum of all the m atter within
the whole system is conserved. In  the same way we have from (4.6)

(d/(b) ƒ  {r ^  g (/) (r, t)}dV  =  0, (4.12)

i.e., also the to ta l macroscopic angular momentum of the entire electro
magnetic field within the whole system is conserved. From the three
preceding equations we find

(d/cb) ƒ  {r/x g (<) (r, £)}dF =  0, (4.13)

which shows th a t the to tal macroscopic angular momentum of the whole
system is conserved.

§ 5. Further discussion of the energy-momentum tensor. In  this section
we shall express the components of the energy-momentum tensor of the
electromagnetic field with the help of three-dimensional vectors. For th a t
purpose we first deduce from (2.7) and (2.9)

S j- , B ^ H yP =  -  (B-H) + H aBp +  E aDp, (a, /? = 1,2,3) (5.1)

Bay Hyi =  t(B  A D )a, ( a =  1, 2,3) (5.2)

Z*y=1B iyH yl>=  - i (  E ^ H ) „ , I 2,3) (5.3)

S j-i B^ ,H yi -  E D . (5.4)

Using (1.2.11), (2.8), (2.10), (5.1), (5.2) and (5.3) we derive

1 u :  { B ( y H y a  B y a )  = =

(c2 -  V2) - *  [{v ✓ N (B ^  H)}—{v ̂  (E /X D)}+c(E ^  H) + c(B  /x D)]„, (5.5)

(a =  1, 2, 3)
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and using (1.2.11), (2.8), (2.10), (5.2) and (5.3) we deduce

i(c2 -  v2)-* {v(B ^  D) +  v (E  ^  H)}. (5.6)

Inserting (1.2.11), (2.7), (5.1) and (5.5) into (3.14) gives for a, ft =  1,2, 3

WV*  =  {(B 'H) +  i E2 ~  iB 2} ^  — Ha Bp — EaDp +
+  (c2—v2) ~'[{v X (B H)} — {v -a (E ^  D)}-fc(E ^  H) +c(B a  D)]0i^. (5.7)

(a ,/S =  1,2,3)

Substitution of (1.2.11), (5.3) and (5.6) into (3.14) gives for a =  4 and
P =  1,2,3,

W(/>4fi =  *'(E ^  H)^ +  i(c2 -  v2) - 1 {y(B ^  D) +  v-(E /s H)}»,. (5.8)

(fi=  1,2,3)
Inserting (1.2.11), (2.7), (5.4) and (5.6) into (3.14) gives with the help
of (2.1) for a =  0 =  4,

W M t =  -  {iE2 +  è®2 +  (E-P)} +

'+  c(c2 — y2)~1 {v-(D a B) +  v (H / \  E)}. (5.9)

The Maxwell stress tensor is given by (5.7). On account of (4.6) this three-
dimensional tensor is symmetric. The components of the Poynting vector
J (P), which gives the density of the energy flow of the electromagnetic
field, are given by

/ (P)d =  (c/i)W {l)4p. (ft =  1, 2, 3) (5.10)

From (5.8) and the preceding equation we have

J (P) - . c(E a H) +  c(c2 — v2) - ' {v(B /a.D) +  v (E a H)}v. (5.11)
It follows from (4.6), (4.9) and (5.10) that

ê (f) =  c~2 J (P). (5.12)
From the two preceding equations we get

é(/) = ^ ' ( E a H) 4- c - ‘ (c2 -  v2) - 1 (v(Ba D) + v (E  a H)}v. (5.13)

The density of energy, emv), of the electromagnetic field is given by

eWM ~  ^ff)44. (5-14)
From (5.9) and the preceding equation we find

eVH*) ~  ^E2 +  £B2 -|- (E-P) +

~  v2) - 1 { v (B ^ D ) +  v (E a H)}. (5.15)
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(5.16)

Using (2.8), (2.10) and (2.13) it follows from (3.14) that

S<Li Ĵ (/)aa = — Mpy.

Substitution of (2.7) and (2.11) into this equation gives

Sj_ , W Waa =  -  2{(B-M) +  (E-P)} (5.17)

for the trace of the energy-momentum tensor of the electromagnetic field.

§ 6. Discussion of the forces acting on the matter. We shall also express
the forces acting on the matter with the help of three-dimensional vectors.

Using (1.2.1), (2.7) and (3.8) we find from (1.4.4) for the Lorentz force,
Fw, per unit mass, acting on component k

F<*> =  ew {E +  c~ 1 (v<*> a\B )}. (k = 1 ___ _ n) (6.1)

We have from (1.2.1), (1.2.27), (2.7),and (3.8)

K™ =  ie(h) qw  (eg'*»)-1 (vw-E) =
=  «?-* ew {1 -  (yWf/c2} (v<*>-E). (6.2)

(k =  1, . . . , » )

It follows from the two preceding equations that the quantity (c/*)ejo)^4>
can be interpreted as the work done per unit time and per unit volume
on component k by the Lorentz force.

We shall now express the components of the four-vector, k(P)a, repre
senting the ponderomotive force, in terms of three-dimensional vectors.
For that purpose we first remark that we have from (2.7) and (2.11)

E j ., M v„ =  -  (B-M)ó^ +  M aBp — Ea Pp, [a, p =  1, 2, 3) (6.3)

BayMy4 =  -  t (B ^  P)a, ( « =  1.2, 3) (6.4)

BiyM yp =  -  j (E a M)?, (P =  1, 2, 3) (6.5)

S j . ,B 4yMj4 =  - (  E-P). (6-6)

With the help of (1.2.11), (2.8), (2.12), (6.3), (6.4) and (6.5) we find

Sj,y_, up (Bpy M ya M Py Bya) =

=  (c2—v2)- ^ ^  /s (B an M )}+{v an (E an P)}+c(E  a  M)—c(B an P)]a, (6.7)

(a =  1, 2, 3)
and

Sjs,y=i Up(BpyM y4 Mpy Byi) -
, i(c2 _  v2)-* {v-(E a M ) - v ( B a  P)}. (6.8)
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The first three components of the four-vector k{P)a are the components
of a three-dimensional vector k(i>,. Inserting (1.2.25), (2.7), (2.11) and
(6.7) into (3.9) gives with the help of (1.2.11), (1.2.14) and (II.3.10) for k(P)

k(p> =  (Grad E)-P -)- (Grad B)-M +
+  c-1 g{d/di) {v'(c■? — v2)- * [{v ^  (B ^  M)} +  {v / \  (E P)} +

+  c(E -a M) -  c(B ^  P)]}, (6.9)
where

(Grad E)-P ^  S * ., {8E/8xayP}ia, (6.10)
and

(Grad B)-M »  {(aB/0*a)-M}ia. (6.11)

We can interpret k(P) as the ponderomotive force per unit volume.
We now define

k(EP) =  (Grad E)-P +  c~xg{djdt)[v'(cl — v2)- * {v a  (E P)}], (6.12)

k(BMj — (Grad B)-M +  c-1 Q(d/dt) [v'(c2 — v2) { v  ^  (B M)}], (6.13)

k(EM) =  c^lQ(d/dt) {v'(l — v2/c2)- t  (E a M)}, (6.14)

k(BP) =  -  c"‘ e(d/di) {v'( 1 -  v2/c2) -* (B a  P)}. (6.15)

From (6.9) and the four preceding equations we have

k(pj — k(EP) k(BMj -f- k(EMj -f- k(BP). (6.16)

We can interpret k (EP) and k(EM) as the forces which the electric field
exerts on the medium in consequence of the polarization of the matter
and the magnetization of the matter respectively. In the same way we can
interpret k(BM) and k(BP) as the forces which the magnetic field exerts on
the medium as a consequence of the magnetization and the polarization
of the matter respectively. The term (Grad E)-P reduces, in case the magnetic
field is constant (i.e., 8B/8t =  0), to the Kelvin form for the force which
the electric field exerts on polarized matter 2). The term (Grad B)-M is
the magnetic analog of the term (Grad E)-P. Only terms of this kind are
taken into consideration by S m i t  h-W h i t e 3) and by M a z u r  and
P r i g o g i n e 2).

Substitution of (1.2.25), (2.7), (2.11) and (6.8) into (3.9) gives with the
help of (1.2.11), (1.2.14) and (II.3.10)

V )4 =  -  (*■/ c) {P-(8E/8t) +  M-(8B/8t)} +
+  (i/c)e(d/di)[v'(c2 — v2)-* {v-(E a  M) — v-(B -a P)}]. (6.17)

The first three components of ka {a — 1, . . ,  4) are the components
of a three-dimensional vector k. From (1.4.4) and (IV.5.3) we have

k =  SJL, Fw -F k(P), (6.18)
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where k is the total macroscopic density of force which is exerted by the
electromagnetic field on the matter.

Further, it follows from (IV.5.3) that
=  S;=i gjoj (6-19)

The quantity (c/i)k4 is the total work done on the matter by the electro
magnetic field per unit volume and per unit time. As we have seen at the
beginning of this section (cf i )gK$}  is the work done on component j by
the Lorentz force. Hence, (c/f)S”=1 q% K ^  is the work done by the electro
magnetic field on the medium because the matter is bearing electric charges.
From the preceding equation and the given interpretation of (c\ï)k4 and
(c/t)E”=I K f  it follows that we can interpret (c/t)A(P)4 as the work which
the electromagnetic field does on the matter because the matter is polar
ized and magnetized.

§ 7. Comparison with the tensors of A b r a h a m  and M i n k o w s k i .
To be able to compare the energy-momentum tensor derived in § 3 with
the energy-momentum tensors which A b r a h a m  and M i n k o w s k i
assign to the macroscopic electromagnetic field in media which are isotropic
as far as polarization and magnetization are concerned, we shall change
the expression (3.14) for Wy)aP.

For that purpose we first introduce the Minkowski vector, Wa(a =  1,.., 4),
(“Ruhstrahlvector”) which is given by

=  Sy,M=i «fBvCuc{Hyau( +  H(yua +  H ^u J, (a =  1, . ., 4) (7.1)

and the four-vector W* (a =  1, . . ,  4) given by
*Fa =  £y,c,f=i ut Wj(By» -)- Bfyua T- B^Uy). (a =  1, . 4 )  (7-2)

Using (1.2.12), (2.8) and (2.10) we can also write for these two equations
— 2yj{=i ut BivHya +  ua i u(B(YHyèu(, (a — 1, . . ,  4) (7.3)

W*a =  SyiJ=i ucHty By» +  ua ucHtyBy(u(, (a =  1, . . , 4)  (7.4)
or with the help of (1.2.28)

^  =  S*A,-1 u ,B ,yHySASa) (a =  I, . . .  4) (7.5)
V ;  =  u( HCyBy( A,a. (a =  1. 4) (7.6)

From, the two preceding equations we find with the help of (1.2.30)
(7.7)

“ a =  0. (7.8)
Using (1.2.28), (2.8) and (2.10) we have from (7.5) and (7.6)

Wa -  w :  =  £*c. ,  ut(B(y Hya -  H (y B^ . (7.9)
( « =  1, . . ,4)
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Inserting (7.9) into (3.14) gives
Ww  =  -  X U  BayHvP -  i  (By:)2 +  (Va -  v ;)u f . (7.10)

(a,p =  I'j’. t ,  4)

In the case of media which are isotropic as far as polarization and mag
netization are concerned we have from (7.1) and (7.2) with the help of (2.18),
(2.19), (2.37) and (2.38)

W: =  e ^ a. ( o = l ,  . - 4 )  (7.11)

By substituting the preceding equation into (7.10) we find

w w  =  -  BarHyP -  i  (Byf)2 -  (ty -  1 ) « W  (7.12)
(a. P =  1, - .,4)

For media which are isotropic as far as polarization and magnetization are
concerned the symmetric tensor of A b r a h a m ,  (a, p — 1, . . ,4),
has the form 4) 5) 6)

——  ^y-i B^Hyp — \  dap'L^:=l By( Hyc (e/i — l)Waup. (7.13)
(«, /?= 1, . . ,4)

From the two preceding equations we see that the first and the third
terms in Wft)ap and W{t)aP are equal; the second terms, however, differ.
Hence, we see that Wff)ap =  JF(/)a/j if a ^  p, i.e., the non-diagonal elements
of the tensor found in § 3 equal the corresponding elements of the tensor
of A b r a h a m .  The asymmetric tensor of M i n k o w s k i ,  Wfj)ap (a, P =
=  1, . . ,  4), has the form 6)

BayHyp -  BYlHYt. (a ,p =  1, . . .  4) (7.14)

Only the first terms occurring in (7.12) and (7.14) are equal. We conclude
that our form for the energy-momentum tensor of the electromagnetic
field is thus essentially (apart from a difference in the diagonal terms)
the same as A b r a h a m’s symmetric tensor. In § 10 we shall show that
A b r a h a m’s tensor leads to an equivalent formalism and that from the
point of view of our theory Wff)ap is to be preferred over Wy)ap.

§ 8. The first and second laws of thermodynamics. We shall now discuss
the first and second laws of thermodynamics. For that purpose we intro
duce the quantity <p defined by

<P = ~  (c2 -  v2)* 2<=1 ua k{P)a. (8.1)

Inserting (1.2.11) into this equation gives

<p = (c/i)k(P)4 (vk(pj). (8.2)
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Using (3.4) and (8.1) we can write for the first law of thermodynamics
given by (IV.7.3)

e W  +  P 'W )  =  -  2*=1' (dlf/dxp +  c~l I f  Dup) +
+  c Pafi(dufi/dxa)+  2£=I 2*=1 i f  {ew Up) -\r<p( 1 —v2/ ^ ) (8.3)

From this equation it follows that we can interpret q> as that part of the
work done by the electromagnetic field on the medium per unit volume
and per unit time which is used to change the internal energy e' of the
matter. We can draw this conclusion also from (8.2), because, as we have
seen at the end of § 6, we can interpret (c/i)k{P)4 as the work done by the
electromagnetic field on the medium due to the polarization and magnet
ization of the matter. Hence, we can also say that <p is the work done by the
electromagnetic field to change the state of polarization and magnetization
of the matter. With the help of (1.2.3), (1.2.25), (1.2.30), (IV.8.2) and (8.1)
we can write the second law of thermodynamics, given by (IV.4.19), in
the form

T'Ds' =  De'.+ fi'Dv' — <pv'{\ — v2/c2)~i — £ “=1 Dc'w. (8.4)

We shall now give an explicit expression for <p. For that purpose we first
substitute (3.2) and (3.3) into (IV.8.2). We then obtain with the help
of (1.2.3)

k(P)a —  fö f i ,y =  1 (8 B p yld X a) -|- £>'2 ^ ,  0 p  —

-  SAy,C=l Uf> (BPy Myt ~  Mfiy Byt) , (a =  I, . . .  4) (8.5)

Substitution of (8.5) into (8.1) gives with the help of (1.2.25) and (1.2.30)

< p = -  *0 -  vV)* K?=x M ap DBap +
+  (1 -  2 ^ - 1  «a (BayM .p- M ayB yp) DU p .  (8.6)

Inserting this equation into (8.3) gives for the first law of thermodynamics

e W  +  P’Vv') =  -  2j_, (dlf/dXp +  c - 'lfD u p )  +
+  Pap (dUp/dxa) +  s - . ,  2*=1 I f  [ef 2j_, up) -
-  *2*,., Map DBap +  2 ^ >y_, ua (B^ Myp -  Byp) Dup. (8.7)

For the second law of thermodynamics we obtain by substituting (8.6)
into (8.4)

T'Ds' =  De' +  p'Dv' +  M'pÜB.p -
-  V 2„Ay=1 ufBay M yp -  May Byp) Dup -  2 ”=1 Dc'W. (8.8)

To be able to compare our results with those of non-relativistic theories,
we shall still formulate the second law of thermodynamics in another way.

78



Inserting (1.2.11), (2.7), (2.11), (6.7) and (6.8) into (8.6) gives with the
help of (1.2.25) and (II.3.10)

<p o* — P-(dE/d*) -  M-(dB/d/) +
+  (c2 — v2)- * {v(B a P ) -  v (E ^  M)} {(d/d t) (1 — v^c2)- *} +
+  (c2 — v2)- * [{v a (B a M)} +  (v a (E a P)) — c(B a P) +
-1- c(E /s M)]-[(d/di) {v(c* — v2) '*}]. (8.9)

Substituting (8.9) into (8.4) gives with the aid of (1.2.11), (1.2.25) and
(II.3.10) .

T'(ds'/dt) -  (de'/dt) +  p'(dv'/dt) -  E,"=1 p'® (dc'^/dt) +
+  v'P-(dE/d*) +  v'M-{dB/dt) -

-  v'(<?- v2)-* {v(B a P ) -  v (E ^  M)} {(d/dt) (1 -  v2/^)-*} -
-  ^'(c2 -  v2) "* [(v /A. (B M)} +  {v /S (E ^  P)} -  c(B A  P) +

+  c(E^M)]-[(d/d<) {v(c* — v2)- *}]. (8.10)

The first three terms on the right hand side of this equation are analogous
to terms which also occur in the non-relativistic second law of thermo
dynamics. Instead of the fourth and fifth terms several authors give different
forms. By introducing, for example, a different definition for the specific
energy of the matter measured by an observer moving with the barycentric
velocity, other forms may be obtained.

For instance we may define the Lorentz invariant quantity ê' by

^ =  ^ ~t" i v  M^Bap. (8-11)
Using (2.7) and (2.11) we can write for this equation

I' =  e' +  w'(M-B) +  r»'(P*E). (8.12)

Hence, with the help of (1.2.3) and (8.11) we can also write for (8.7)

Q'(Dê’ +  p'Dv’) =  -  t y ^ d l f f d x p  +  c - 1 I f  Dup) +
+  c s a%=1 P^dUpIdxa) +  s ;_ ,  I f  (ew ufi) +

+  £ Q' Bap D ^'M ^) +  ua{Bay M yp — Byp) T)Up. (8.13)

Inserting (8.12) into (8.10) gives for the second law of thermodynamics

r'(ds7<B) =  (dê'/dt) +  p'{dv'jdt) -  S;_, {dc'V/dt) -

-  E{d(i/P)/d/} -  B-{d(j/M)/d/} -
-  «'(c2 — vV ^ v^B.a P) — v (E  -a M)} {(d/d^) (1 — v2/^)"*} —
-  «'(c2 — v2) [ { v a ( B a M)} +  ( v ( E x s P ) }  — c (B ^ P )  +
+  c(E ^  M)]-[(d/cB) { v ^  -  v2)-*}]. (8.14)
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The first five terms on the right hand side of this equation are analogous
to terms which occur in the non-relativistic second law of thermodynamics
used by M a z u r  and P r i g o g i n e 2). The other terms are of a special
relativistic nature.

By introducing still other definitions, analogous to (8.11), for the spe
cific internal energy of the matter, we may obtain other forms for the
fourth and fifth terms occurring in (8.10). It is seen, however, that all these
forms for the second law of thermodynamics are equivalent. In the following
section we shall discuss this question from a more general point of view.

§ 9. On the indefiniteness of the energy-momentum tensors of the matter
and of the field. By means of two examples we shall show that there remains
a certain indefiniteness in the energy-momentum tensors of the field and
of the matter.

We introduce a new energy-momentum tensor of the matter, W^(a, p =
=  1, . . ,  4), defined by

w% ** Waf -  fA " , (a, P = .1, . . ,4) (9.1)

where p is a Lorentz invariant quantity having the dimension of a pressure.
We also introduce a new energy-momentum tensor, W^)afl{a, p =  1, . . ,  4),
for the electromagnetic field which is defined by

W. Wvw + pA^. (a, P =  1, . . ,  4) (9.2)

Further, we introduce a new hydrostatic pressure p'* defined by
p'* =/>'  — ?, (9.3)

and a new stress tensor, w*p(a, P =  1, . . ,  4), defined by
W*ap =Xe>at> — pAop- («, P — 1, . .. 4) (9.4)

Finally, we introduce a new four-vector, k*(a=  1, . . ,  4), representing the
total force exerted on the matter by the electromagnetic field, defined by
ka =  ^ = i  dWy^fdXp — ka d^pA^fdXp, (a =  1, . . ,  4) (9.5)

where the last form has been obtained with the help of (3.1) and (9.2), and
a new four-vector, h*P)a(a — 1, . .,4), representing the ponderomotive force,
defined by

k(P)a =  £(ƒ>)„ dtfpA^fdXp. (a =  1, . . ,  4) (9-6)

We shall now deduce some relations which are useful for the following
considerations. From (9.1) and (9.2) we have with the help of (1.2.29),
(IV.5.1) and (4.6)

[a, P = 1 ,  ., 4) (9.7)
and

( a , p=  1, . . ,4) (9.8)

80



Using (1.2.29), (1.2.30), (1.3.10) and (1.3.11) we get from (9.4)

w% =  Wpa, (a, p =  1, . . ,  4) (9.9)
and

1 UP WPa ~  Wap Up — 0. (a — 1, . . ,  4) (9.10)

With the help of (1.2.3), (1.2.29) and (1.5.7) we deduce from (9.3) and (9.6)

p'*Dv' +  v'c l £ =1 ua k*P)a =  p'Dv' +  v'c S*_, ua k{P)a. (9.11)

Using (1.3.12) and (9.4) we find from (9.1)

W*„p =  ua Up e'(v) +  c~l(up I (°] +  ua I f )  +  wlp. (a, fi =  1, . . , 4) (9.12)

It follows from (1.3.14), (9.3) and (9.4) that

Pafi =  -  +  £ '* V  . (a, fi =  1, . ..4 )  (9.13)

We have from (4.1), (9.1) and (9.2)

W(t)ap ~  Wop Wyjap. (a, fi =  1, . .,4 ) (9.14)

If we consider W*p and W*/)ap as the energy-momentum tensors of the
matter and of the electromagnetic field respectively, we see from the
preceding equation that the energy-momentum tensor of the system
remains unchanged. Hence, also the laws of conservation of momentum
and energy, given by (4.2), and the law of conservation of angular momentum,
given by (4.13), remain unchanged. Since, according to (9.7) and (9.8), the
new energy-momentum tensors of the matter and of the field are symmetric,
we also have relations which are analogous to (4.11) and (4.12).

We shall now discuss the first law of thermodynamics. For that purpose
we remark that according to (IV.5.2), (9.1) and (9.5) we can write for the
balahce equations for energy and momentum of the matter

Zp-1 SW*ldXp =  C  (a =  1, . . ,  4) (9.15)

We now multiply (9.15) by ua and we sum over a. Analogous to (IV.7.1)
we then get

s a,0=i uJdWlpIdXp) =  ujt*. (9.16)

For the derivation of (1.5.9) we used, among other things, the relations
(1.3.11), (1.3.12) and (1.3.14). These relations correspond with (9.10),
(9.12) and (9.13) respectively and it may be easily seen that, analogous
to (1.5.9), one obtains

2 ^  ua(dW*j8xp) =  -  c - 1 e'De' -  c” 1 ^ { d l f j d X p  +  r 1 7<°>DM/)) -

— 6 "‘ q'P'*Bv' +  S ^ =1 Pap(dup/dxa). (9.17)
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From (IV.7.2), (3.4), (9.5) and (9.6) we find

u«k« =  -  s t i  S j .i  /« (c - ' *<*> £ „  «„) +  ua k*P)a. (9.18)

Inserting the two preceding equations into (9.16) gives for the first law of
thermodynamics

e-(Dc' +  r W )_  -  SJ„(8I»V9% +  C - '  D m,) +  c +

+  Sft = 1 Sa=1 Ia\eW S4_, Baft up) — c uak*P)a. (9.19)

We immediately see from (1.2.3), (8.1) and (9.11) that (8.3) and the above
equation are identical.

Using (8.1) and (9.11) we can write for the second law of thermodynamics
given by (8.4)

T'Ds' =  De' +  p’*Dv' +  cv' 2.4_, ua k*P)a -  S;=1 Do'®. (9.20)

Substituting (IV.6.4) and (9.19) into (9.20) leads to the entropy balance
(IV.8.8). Thus, we obtain the same phenomenological equations among
the same fluxes and forces (affinities). Hence, we see that with respect
to thermodynamics it does not make any difference if we consider W^
and W{j)afs or W$, and W*)afi as the energy-momentum tensors of the matter
and the electromagnetic field respectively.

It should be remarked that the equivalence of the points of view of
K e l v i n  and H e l m h o l t z  concerning the ponderomotive force in
polarized media may be shown 2) with the help of considerations which are
analogous to those which we have given above.

We shall now give a second example. Analogous to (9.1) and (9.2) we
now introduce

Ill 1
■S

.* s 0 (a, p = 1, . •,4) (9.21)

" W  =  ^ W a p  +  2 * )  U a  U p  > («, P =  1. • -.4) (9.22)

where e(* is a Lorentz invariant quantity having the dimension of an
energy per unit volume. Further, we introduce

^(») =  e(v) —  e ( *  (9.23)

as the new energy per unit volume of the matter measured by an observer
in the barycentric Lorentz frame at position r' and at time t' and

7' =  v\e[v) -  7*) -  a (9.24)

as the new specific energy of the matter measured by an observer in the
barycentric Lorentz frame at position' r' and at time V. Analogous to
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(9.5) and (9.6) we have

ka =  2^=i dW^ap/dxp =  ka d{e(* ua ufi)föxfi> (a — 1. • •, 4) (9.25)
and

k(P)a =  (̂P)a ?/J=l d{e(v)UaUp)ldXp- [a ~  U • ■» 4) (9.26)

Using (IV.5.1) and (4.6) we get from (9.21) and (9.22)

f r * -  fr* . (a, p =  i1; . ' . ,  4) (9.27)

^(/JaiS" (̂/)0a- (a> ft — 1» ••»4) (9.28)

With the help of (1.2.10), (1.2.12), (1.2.13), (1.2.15), (1.2.25), (1.3.13),
(IV.6.3), (9.24) and (9.26) we derive

D«' +  i/'c 2„=1 m0 k{P)a =  De' +  v'c Zi=1 £(P)<r (9.29)

From (1.3.12) and (9.21) we have with the help of (9.23)

=  ?(»)«aMjS +  C-* (w„/i0) +  Ma4 0)) -f  »,*• (a, /9 =  1, . . ,  4) (9.30)

From (4.1), (9.21) and (9.22) we have

Wy)afi — (a> fi — 1> • 4) (9.31)

It follows from the preceding equation that the laws of conservation of
energy, momentum and angular momentum remain unchanged. On account
of (9.27) and (9.28) we also have equations analogous to (4.11) and (4.12).

Using (9.21) and (9.25) we can also write for the balance equations for
energy and momentum of the matter given by (IV.5.2)

Z ^  dWJdxp =  ka. (a =  1, . . ,  4) (9.32)

Starting from the preceding equation it is easily seen that, analogous to
(9.19), one obtains for the first law of thermodynamics

q ' (D 7 ' +  p 'Dt>') =  —S£=1 ( d l f ' / d x p + c - '  I ^ D u p )  +  c 2*>(3=1 (8upl8xa) +

+  s:_ i S i - 1  /? ’ (ew SJ-, Up) -  c S i . ,  ua k{P)a. (9.33)

With the help of (1.2.3), (8.1) and (9.29) it is immediately-seen that (8.3)
and the preceding equation are identical.

Using (8.1) and (9.29) we can write for the second law of thermodynamics
given by (8.4)

T'Ds' =  De' +  p 'W  +  cv' S i_, ua k{P)a -  SJL, ii’U)Dc,<j). (9.34)

Inserting (IV.6.4) and (9.33) into the preceding equation leads to the
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entropy balance (IV.8.8). Hence, we see that no changes enter into the
thermodynamical results if we consider Wafi and W(f)afl as the energy-
momentum tensors of the matter and of the field respectively. It is easily
seen that by taking e(v) =  — one obtains the expressions
(8.13) and (8.14) for the first and second laws of thermodynamics respectively.

It should also be remarked that the form (3.14) for the energy-momentum
tensor of the electromagnetic field does not follow uniquely from (3.1)
and (3.13). For example, if the tensor satisfies the relation

s 2-i 8W**apl8xfi = 0 ,  (a =  1, . ., 4) (9.35)

we have from this equation and (3.1)

ka— dW*£p, (a =  1, ..  , 4) (9.36)
where

WVW =  WU)afi +  (a, p =  1, . 4 )  (9.37)

If the tensor W vanishes if E =  D =  0 and B =  H =  0 we may.con
sider just as well as the energy-momentum tensor of the electro
magnetic field.

§ 10. Further discussion of the tensors of A b r a h a m  and M i n k o w 
s k i .  We shall first discuss the tensor of A b r a h a m.'Using (2.13) we
have from (7.12) and (7.13)

=  Wtfja/s +  i  ByCMyC, {a,p =  1, ..,4 ) (10.1)

or, with the help of (1.2.28),

W Ü)<*P =  B y t M yC —i  Ua U p  MyC. (10.2)

(« ,/?=  1, .. ,4 )

Since ByC Myl is a Lorentz invariant quantity it is seen from the
considerations in § 9 (Cf. (9.2), (9.22) and (10.2)) that we obtain an equivalent
formalism by taking A b r a h a m’s tensor as energy-momentum tensor of
the electromagnetic field.

As may also be seen from the preceding section, the formalism with
Wy)aP involves new definitions for the hydrostatic pressure and for the
internal energy of the matter measured by an observer moving with the
barycentric velocity. Comparing (9.2), (9.22) and (10.2) we find from (9.3)
and (9.23)

P'A = p' -  iS £ {=1 By(My( (10.3)
for the new hydrostatic pressure and

e(4 — e(v) +  i^v,f=l Byi My{ (10.4)
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for the new energy of the matter per unit volume measured by an observer
moving with the barycentric velocity. Analogous to (9.24) (Cf. also (9.23)
and (10.4)) the new specific energy of the matter measured by an observer
moving with the barycentric velocity is given by

e'A =  V'(e(v) +  i^J.c-1 Bye — a, (10.5)
or, using (1.3.13),

e'A = e' +  t  v 'S*(=1ByiMyt. (10.6)

From the considerations in § 9 it can be seen that the new form for the
second law of thermodynamics is obtained by inserting (10.3) and (10.6)
into (8.8). This gives

T'Ds' =  Be'A +  p ,ADv' — Z'A, p!® Dc'0) +

+  M +D B" +  tv 'K e .y -i ua(MaYByfl -  B^M yJDup -

- \ v '  D M ^ - | v’ 1 «. (B^ My„-M^  ByP) D (10.7)

Comparison of (IV.2.5) and (IV.4.19) shows that one can also write for
(10.7)

T'Ds' =  De,A +  p'ADv' -  S*., p'® Dc'w +

+  t »' (M ' a f t -  B'^ DM ;). (10.8)

With the help of (2.7) and (2.11) we get for the preceding equation the
form

T'Ds' =  Be'A +  p'A Bv' — E*_, Dc,(/) +

+  |V(P'-DE' — E'-DP' +  M'-DB' — B'-DM'). (10.9)

By dropping the primes and replacing D by d/dt in (10.9) we get the
corresponding non-relativistic second law of thermodynamics (Cf. § 2 of
chapter IV). It is seen that this form for the non-relativistic second law
is rather unusual.

The four-vector representing the total force per unit volume exerted by
the electromagnetic field on the matter if we use the formalism with
A b r a h a m’s tensor will be denoted by kA. We have

ki  =  — 8 Wfiw/dxp. (a =  1, . . ,  4) (10.10)

Using (IV.5.3), (3.1) and (10.1) we find from this equation

kAa =  s ;=1 4> K% +  k(P)a -  i(8ldxa) (S^_, Bfr Mfy). (10.11)

(« =  1, . . .4)
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We now define the new ponderomotive force per unit volume by

k fp )a  —  k(P )a  4 (8 l 8 x a) B Py ^ fty) • ( 10. 12)

(« =  l; . . .4)

It is easily seen that this definition is in agreement with (9.6) and (9.26).
From (8.5) and (10.12) we have

kfP)a =  Mpy{8BPrl8xa) -  iS * y=1 B» (8MJ8xa) +

+  ^,y,c=i ufi (Mpy By{ — BpyMyf-) (8u(l8xa) +

+  <>'S*=1 d*, tfy ( « = 1 ,  . . ,4) (10.13)

We define the four-vectors k*p)a and k**£ (a =  1, .. ,  4) by

k %  -  <?'{! V' M* (dBj8xa) +  da,  0 , +

+  K  2P,y.:=1 uf> (M Pv BVC — Bl>r M vt) (8u:ldxa)}> ( 10.14)

(« =  1. ...4 )

^(P)a =  — p '{ i  v' (8Mpyl8Xa) +

+  ^,y.t=i up(BpyMy( MpyBpy) (8uj8xa)}. (10.15)

( a =  1, . . .4)

Using (1.2.3) we have from the three preceding equations

kfp)a =  A& +  *S5f. ( « = ! . -  4) (10.16)

Comparison of (IV.8.2) with (10.14) and (10.15) shows that each of the
two four-vectors k ? p )a and k ? * £  has the required form. This corresponds
to the fact that on the right hand side of (10.8) two terms occur having
the form 2* . whereas on the right hand side of (IV.2.5) only
one term occurs of this form.

We now consider the tensor of M i n k o w s k i .  We first remark that
we cannot obtain a formalism with this tensor by means of a procedure
analogous to those given in the preceding section. In passing to other
formalisms by means of the procedures given in § 9 the energy-momentum
tensor of the system, W(t)at3, remains unchanged. Hence, if we should try
to pass to a formalism with M i n k o w s k i ’s tensor by means of such
a procedure the energy-momentum tensor of the matter would become
asymmetric since WWafi is symmetric and M i n k o w s k i’s tensor is
asymmetric. This, however, would give rise to difficulties because the
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symmetry of the energy-momentum tensor of the matter has been a basic
assumption in our thermodynamical considerations.

Also if we should assume that the energy-momentum tensor of the matter
is symmetric we get into difficulties, since Wy)ap would become asymmetric
and hence, (Cf. § 4), the macroscopic angular momentum of the system
would not be conserved.

Moreover, we get a different thermodynamical formalism with M i n-
k o w s k i’s tensor. To show this, we first remark that we have from M i n-
k o w s k i’s tensor for the four-vector, k%, representing the total force per
unit volume exerted by the electromagnetic field on the matter

ka ~  — dWw<*l8Xf (a =  1, . . ,  4) (10.17)
With the help of (2.8), (2.10) and (2.15) we find the relation

1 föBay/dXf) Hyf =  è 2^y=1 Hpy( d B . (10.18)

(a — 1, . . ,  4)

Using (2.14), (3.8), (7.14) and (10.18) we derive from (10.17)

=  X?-, Q%K?+ B^{ëH,yj8xa) -
— I  HfriBBJdx a) .  (a =  1, . . ,  4) (10.19)

Hence, the four-vector, k̂ P)a, representing the ponderomotive force per
unit volume, is given by (Cf. also (IV.5.3))

Kp)a =  i  Sjy-i B^dH JdxJ) -  \  Hft, {dBJdxa), (10.20)

or, with the help of (2.13),
( a =  1, . . .4)

Kp)° —  i  SAv=i m Py  idBJ 8*a) — i Bfr (8MJdxa). (10.21)

( a =  1. . . ,4)

From the considerations in chapter IV it is seen that one obtains from
(10.21) for the form of the special terms occurring in the relativistic second
law and connected with polarization and magnetization

(Cf. (1.2.25), (8.1) and (8.4)). This expression for the special terms has not
the required form 2 ^ =1G'  ̂DZ^, neither is it a sum of such forms (Cf. § 2 of
chapter IV). From a pure mathematical point of view it would be possible
to determine a set of tensors Ĝ  and Z'ap, given by expressions analogous to
(IV.3.23). and (IV.3.24), such that

<̂.,0=1 G^ DZj, =  \  v’ T>B„p — \v ' B ^  DM ^.
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It appears that this equation can only be satisfied if the quantities X',k)
occurring in (IV.3.23) and (IV.3.24) depend on the acceleration of the
matter. This, however, is rather unsatisfactory since these quantities
occur in the relativistic second law of thermodynamics.

Hence, we conclude that from the point of view of the developed theory
A b r a h a m’s tensor is preferable to M i n k o w s k i ’s tensor.
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LIST OF SYMBOLS

Roman superscripts between parentheses indicate chemical components.
Greek subscripts without parentheses indicate tensor components. The
meaning of a primed quantity is explained in § 2 of chapter I. The meaning
of the symbols // and J_ used as subscripts is explained in § 2 of chapter II
for unprimed quantities and in § 4 of chapter II for primed quantities.
Three-dimensional vectors are denoted in bold face type. In the following
list one finds the symbols used in the text, their meaning and the sections
where they have first been introduced.

ROMAN SYMBOLS

arbitrary Lorentz frame (IV. 1)
affinity of De Donder (1.6)
transformation matrix (II.9)
transformation matrix (II.9)
constant fixing the zero point of the specific energy of the matter
(1.3)
coefficients of a pure Lorentz transformation (II.4)
barycentric Lorentz frame assigned to the position r at the time t
(IV. 1)
four-dimensional tensor describing the electromagnetic field
(III.2)
auxiliary four-dimensional tensor (IV.3)
auxiliary four-vector (IV.3)
magnetic field vector (III.2)
components of B (III.2)
velocity of light (1.2)
concentration of the chemical component ƒ (1.2)
electric field vector (III.2)
components of D (V.2)
electric field vector (III.2)
components of E (III.2)
specific energy of the matter derived from W * (1.3)

A
A
A W*)
^ 4 - 1  (>')(*)

a

a a0

Br,( ;

3 *

B%
K
B
Ba
c
c0)
D
Da
E
Ea
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density of the energy of the matter derived from W ^  (1.3)
specific energy of the matter (related to e by (V.8.11)) (V.8)
specific energy of the matter derived from W ^  (V.9)
density of the energy of the matter derived from (V.9)
specific energy of the matter using A b r a h a m ' s  tensor (V. 10)
density of the energy of the matter using A b r a h a m’s tensor
(V.10)
density of the energy of the electromagnetic field (V.5)
auxiliary Lorentz invariant quantity having the dimension of
an energy per unit volume (V.9)
charge per unit of rest mass of the chemical component j  (III.2)
four-dimensional tensor representing the “local” electric and
magnetic fields to which the ions of the chemical component j  are
subjected (IV.5)
force per unit of rest mass acting on the chemical component j  (1.4)
components of F(,) (1.4)
four-dimensional tensor occurring in the second law as intensive
variable (IV.2)
auxiliary four-dimensional tensor (IV.3)
auxiliary four-vector. (IV.3)
auxiliary four-dimensional tensors (V.10)
density of momentum of the matter (1.3)
components of g (1.3)
density of momentum of the electromagnetic field (V.4)
components of g(/) (V.4)
density of momentum of the system (III.3)
four-dimensional tensor describing the electromagnetic field (V.2)
auxiliary four-dimensional tensor (V.2)
auxiliary four-vector (V.2)
magnetic field vector (III.2)
components of H (V.2)
partial specific enthalpy of the chemical component j  (II.7)
four-vector representing the density of heat flow (1.3)
four-vector representing the density of the relative flow of matter
of the chemical component j  (1.2)
four-vector representing the density of the conductive flow of
entropy (II.5)
vector with components l f  \  /^0) and (II.2)
vector with components P / 1, and /§* (II.2)
unit vector in the direction of the positive a-axis in ordinary
space (II.2)
imaginary unit (1.2)
density of the energy flow of the matter (1.3)



J Ma components of J w (1.3)
J (s) density of the conductive flow of entropy (II.5)
/ (J)a components of J (s) (II.5)
J(P) Poynting vector (V.5)
J {P)a components of J (P) (V.5)
J (0) density of the heat flow (related to I(0) by (II.2.14)) (II.2)
/ i 0) components of J <0) (II.2)
J u) relative flow of matter of the chemical component j (related to

Iw by (II.2.6)) (II.2)
components of J (,) (II.2)

J*(0) density of the heat flow (identical with J (0)) (II.9)
/* <0) components of J*(0) (II.9)
J  * density of the relative flow of matter of the chemical component

ƒ using v* as reference velocity (II.9)
/* (,) components of J*(,) (II.9)
J (?) density of the heat flow (related to J (0) by (II.2.16)) (II.2)
/(c) chemical reaction rate in mass per unit volume and per unit time

(1.4)
j density of the electric current (III.2)
ja components of j (III.2)

four-vector representing the force per unit mass on component j
and the work done by this force per unit time (1.4)

ka four-vector representing the force per unit volume exerted by
the electromagnetic field on the matter and the work done by the
electromagnetic field on the matter per unit volume and per unit
time (IV.5)
four-vector representing the force per unit volume exerted by the
electromagnetic field on the matter and the work done by the
electromagnetic field on the matter per unit volume and per unit
time (related to kn by (V.9.5)) (V.9)

k„ four-vector representing the force per unit volume exerted by
the electromagnetic field on the matter and the work done by
the electromagnetic field on the matter per unit volume and per
unit time (related to ka by (V.9.25)) (V.9)

k£ four-vector representing the force per unit volume exerted by
the electromagnetic field on the matter and the work done by
the electromagnetic field on the matter per unit volume and per
unit time (related to ka by (IV.5.3) and (V. 10.11)) (V.10)

ka four-vector representing the force per unit volume exerted by
the electromagnetic field on the matter and the work done by
the electromagnetic field on the matter per unit volume and per
unit time (related to ka by (IV.5.3), (V.3.9) and (V.10.19)) (V.10)

(̂i>)a four-vector representing the ponderomotive force per unit volume
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k*«(P )a

and the  work done on the  m a tte r  by the  ponderom otive forces
per u n it volume and  per u n it tim e (IV.5)
four-vector representing the  ponderom otive force per un it

«(P )o

volume and  th e  work done on the  m a tte r  by  the  ponderom otive
forces per u n it volume and  per u n it tim e (related to  k{P)a by
(V.9.6)) (V.9)
four-vector representing the  ponderom otive force per u n it volum e

*(P)a

and the  work done on th e  m a tte r  b y  the  ponderom otive forces per
u n it volum e and  per u n it tim e  (related to  k {P)a b y  (V.9.26)) (V.9)
four-vector representing th e  ponderom otive force per u n it volume

h M*(P )a

and the  work done on the  m a tte r  by  th e  ponderom otive forces
per u n it volume and  per u n it tim e (related to  k(P)a b y  (V.10.12))
(V.10)
four-vector representing the  ponderom otive force per u n it

k*AK (P)a

volum e and  the  w ork done on the  m a tte r  b y  th e  ponderom otive
forces per u n it volume and  per u n it tim e (related to  A(P)a by
(V.3.9) and  (V. 10.21)) (V.10)
auxiliary  four-vector (V.10)

l ,+ + A
K (P)a auxiliary  four-vector (V.10)
k vector w ith  com ponents k\, k2 and  k3 (V.6)
^ (P ) vector w ith  com ponents k (P)1, £ (P)2 and £ (P)3 (V.6)
k(E P ) force per u n it volum e exerted  by  the  electric field on the  m atte r

^ (B M )

in  consequence of th e  polarization of the  m edium  (V.6)
force per u n it volume exerted  by  the m agnetic field on th e  m atte r

k(EM )

in consequence of th e  m agnetization of th e  m edium  (V.6)
force per u n it volum e exerted  b y  the  electric field on the  m atte r

^ (B P )

in consequence of th e  m agnetization of th e  m edium  (V.6)
force per u n it volum e exerted  by  th e  m agnetic field on the  m a tte r

L
in consequence of th e  polarization of the  m edium  (V.6)
Lorentz invarian t phenomenological coefficient for the  chemical

L m p )

reaction  (1.7)
Lorentz invarian t phenomenological coefficient for visco-chemical

L(P)(c)

effects (1.7)
Lorentz invarian t phenomenological coefficient for visco-chemical

£<>)<*)
effects (1.7)
Lorentz invarian t phenomenological coefficients for vectorial

j u m
fluxes (1.7)
four-dim ensional phenomenological tensors for the  vectorial

2,*&)(*)
fluxes J (a ,  using Yjf* as affin ity  (1.7)
four-dim ensional phenomenological tensors for the  vectorial

£(ƒ)(*)
fluxes using Y ^  as affin ity  (IV.9)
four-dim ensional phenomenological tensors for the  vectorial
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L lfk) three-dimensional phenomenological tensors for the vectorial
fluxes J tf> (ƒ =  0, 1, . . . , « )  (II.7)

L * three-dimensional phenomenological tensors for the vectorial
fluxes J*tf) (ƒ =  0, (II.9)

Lapyc four-dimensional phenomenological tensor for viscous flow using
(duy/dx() as affinity (1.7)

L*py( four-dimensional phenomenological tensor for viscous flow using
Y yt as affinity (IV. 10)

Z.̂ 3*c four-dimensional phenomenological tensor for viscous flow using
Yyj as affinity (related to L*pyC by (IV. 10.11)) (IV. 10)
four-dimensional phenomenological tensor for viscous flow using
Y yt as affinity (related to by (IV. 10.9)) (IV. 10)

M ap four-dimensional tensor representing the polarization and mag
netization of the matter (IV.2)

M*p auxiliary four-dimensional tensor (IV.3)
M * auxihary four-vector (IV.3)

rest mass of particle k of the chemical component j  (1.2)
M polarization vector (IV.2)
M a components of M (IV.2)
m auxihary Lorentz invariant quantity (1.2)
%  „ four-vector representing the density of the total flow of rest mass

and the total density of rest mass (1.2)
mjP four-vector representing the density of the flow of rest mass of

the chemical component j  and the density of rest mass of the
chemical component j  (1.2)

N® number of atomic particles of the chemical component j  per
unit volume (1.2)

n number of the chemical components (1.2)
P  auxiliary quantity having the dimension of a pressure (II.2)

four-dimensional tensor representing the viscous stresses (1.3)
P,0 ' t . four-dimensional tensor representing the ordinary viscous

stresses (1.6)
P polarization vector (IV.2)
Pa components of P (IV.2)
p hydrostatic pressure following from WaP (1.3)
p* hydrostatic pressure following from W*° (V.9)
pA hydrostatic pressure following from W f ^  (V.10)
p auxiliary quantity having the dimension of a pressure (V.9)
Q® heat of transfer of the chemical component j  using the flows

(j =  1, . . ., n) (II.6)
Q*0) heat of transfer of the chemical component j  using the fluxes

4 tf)( / =  1, . . . , n - \ )  (II.6)
Q® heat of transfer of the chemical component ƒ using the flows

e0)v (i) (ƒ =  l, . . . , » )  (II.6)
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I

r  position vector (II.5)
Sa four-vector representing the density of the flow of entropy and

the density of entropy (II.5)
s specific entropy (1.4)
s(v) density of entropy (II.5)

partial specific entropy of the chemical component j (II.7)
T  temperature (1.4)
t time (1.2)
tap three-dimensional stress tensor (1.3)
ua four-vector representing the barycentric velocity (1.2)
V volume (II.5)
v barycentric velocity (1.2)
va components of v (1.2)
v0) velocity of the chemical component ƒ (1.2)
v® components of vt!> (1.2)
v(r) relative velocity of two Lorentz frames (II.4)
v(r)a components of v(f) (II.4)
v linear combination of the velocities of the chemical components

(H.9)
v** hnear combination of the velocities of the chemical components

(H.9)
v specific volume (1.2)
v(,) partial specific volume of the chemical component ƒ (II.7)
W^  energy-momentum tensor of the matter (1.3)

energy-momentum tensor of the matter (related to by
(V.9.1)) (V.9)

TV,# energy-momentum tensor of the matter (related to by
(V.9.21)) (V.9)

W{f)aff energy-momentum tensor of the electromagnetic field (III.3)
W*)af> energy-momentum tensor of the electromagnetic field (related

to by (V.9.2)) (V.9)
W(i)ap energy-momentum tensor of the electromagnetic field (related

to W{f)ae by (V.9.22)) (V.9)
Wy)afi energy-momentum tensor of A b r a h a m  (V.7)
W^ap energy-momentum tensor of M i n k o w s k i  (V.7)

auxiliary four-dimensional tensor (V.9)
W*™ energy-momentum tensor of the electromagnetic field (related to

WW  by (V.9.37)) (V.9))
WWap energy-momentum tensor of the system (III.3)
w„p four-dimensional tensor representing the stresses, derived from

W„p (1.3)
w*3 four-dimensional tensor representing the stresses, derived from

#  (V.9)
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x<°> affinity conjugate to J(0) (II.3)
components of X<0) (II.3)

X()) affinity conjugate to J0) (II.3)
X f  components of X(,) (II.3)
X(0) affinity conjugate to J (0) (related to X<0) by (II.5.20)) (II.5)
Xf^ components of X(0) (II.7)
X(,) affinity conjugate to the relative flow of matter Jw (related to

Xw by (II.5.20)) (II.5)
X® components of X0' (II.7)
X*<°> identical with X(0) (II.9)
X*(0> components of X*(0) (II.9)
X*(,) affinity conjugate to J*ü) (II.9)
X*(i) components of X*w (II.9)
xa four-vector representing position and time in the four-dimen

sional space-time continuum (1.2)
Y f ’ four-vector conjugate as affinity to I f ] (1.6)
Y f  four-vector conjugate as affinity to I f  (1.6)
y i0) four-vector conjugate as affinity to I f 1 (related to Y<,0)by (IV.9.2))

(IV .9)
Y f four-vector conjugate as affinity to I f  (related to Y f  by (IV.9.2))

(IV.9)
Yap four-dimensional tensor conjugate as affinity to the ordinary

viscous pressure tensor (IV. 10)
Zap four-dimensional tensor occurring in the second law of ther

modynamics as extensive variable (IV.2)
Z*p auxiliary four-dimensional tensor (IV.3)
Z* auxiliary four-vector (IV.3)
Z'„p auxiliary four-dimensional tensors (V.10)

GREEK SYMBOLS

r  auxiliary Lorentz invariant quantity (IV.3)
d „ff auxihary four-dimensional tensor (1.2)
dap Kronecker tensor (three-dimensional and four-dimensional) (1.2)
<S(a; fi) Kronecker symbol (1.2)
e dielectric constant (IV.3)

auxiliary quantity belonging to the chemical component j  (II.9)
r) ordinary viscosity (1.7)
»7(„) - volume viscosity (1.7)
#'(,) angle between v'w and v measured by an observer in the bary-

centric Lorentz frame (II.8)
x auxiliary quantity (II.4)
2 coefficient of heat conduction in the stationary state (II.6)
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A(>) auxiliary quantities (IV.3)
Â 1) auxiliary quantities (IV.5)
H magnetic permeability (IV.3)
fi® partial specific Gibbs function of the chemical component j (1.4)
v® Lorentz invariant quantity proportional to the stoechiometric

number of component ƒ in the chemical reaction (1.4)
3  arbitrary quantity (II.5)
| (;) auxiliary quantity occurring in the expression for v* (II.9)
II Lorentz invariant viscous pressure (1.6)
q total density of rest mass (1.2)
q® density of rest mass of the chemical component j  (1.2)

density of rest mass of the chemical component ƒ measured by an
observer moving with this component (1.2)

g(</) density of electric charge (III.2)
a entropy production per unit volume and per unit time (II.5)
<r(B) contribution of the viscous flow to a (IV. 10)
a(h)w contribution of heat conduction and diffusion to a (II.5)
cr(C)(r) contribution of the chemical reaction and the volume viscosity

to a (II.5)
0 a four-vector occurring in the expression for &(P)a (IV.8)
(f that part of the work done by the electromagnetic field on the

medium per unit volume and per unit time which is used to
change the internal energy e' of the matter (V.8)

% electric conductivity (III.8)
Wa four-vector of M i n k o w s k i  (“Ruhstrahlvector”) (V.7)
W* auxiliary four-vector (V.7)
Q auxiliary Lorentz invariant quantity (IV.3)
a»w auxiliary Lorentz invariant quantity belonging to the chemical

component j  (1.5)

VECTOR NOTATION AND OPERATORS
a .b  =  S„=1 aaba
a ^ b  =  {a2b3 — a3 b2)\̂  +  (a3 bx — a, b3) i2 +  (a, b2 — a2 &,)i3
I a | =  (SLi «̂ )*
grad 3  =  S^=1 (dS/dxJ ia
div a =  So=i (dajdxa)
rot a =  {(da3/dx2) — (da2/dx3)} ix +  {(dajdx3) — (da^dx^} i2

+  {(8#2 / ^ 1) — (3fl, ldx2)} i3
(Grad a).b is defined by (V.6.10)
D substantial derivative with respect to time defined by (1.2.25)
d/dt substantial derivative with respect to time defined by (II.3.10)

(except in the formulae (III.3.10), (V.4.11), (V.4.12) and (V.4.13)
where (d/dt) is the ordinary derivative with respect to time)
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SOMMAIRE

Nous nous proposons dans cette thèse de développer en premier lieu la
thermodynamique relativiste des phénomènes irréversibles dans un mélange
continu d’un nombre arbitraire de constituants chimiques. De plus nous
étudions le tenseur d’impulsion et d’énergie du champ électromagnétique
macroscopique.

Nous nous limitons a la théorie de la relativité restreinte et nous supposons
qu’il y a ni creation ni annihilation de particules atomaires. La validité de la
théorie est limitée par la condition que, pour un observateur se déplagant
avec la vitesse barycentrique, les variations en température, pression etc.
doivent être petites sur des distances comparables au libre parcours moyen
des molécules.

Dans le premier chapitre nous donnons la théorie de systèmes qui sont
soumis a Taction de forces ne dépendant pas des vitesses des constituants
chimiques. La théorie est présentée en forme tensorielle quadridimension-
nelle. En premier lieu nous introduisons quelques notions servant de point
de départ pour le développement de la théorie. Les quadrivecteurs qui
représentent les flux relatifs de la matière et le flux calorifique sont définis
de telle fagon qu’ils sont perpendiculaires au quadrivecteur représentant la
vitesse barycentrique. Les tenseurs quadridimensionnels qui représentent
les tensions mécaniques possèdent des propriétés d’orthogonalité semblables.
Le bilan d’entropie est déduit des lois relativistes fondamentales de la
physique: macroscopique. Nous montrons que dans des systèmes isotropes
les relations d’Onsager sont invariantes pour des transformations de Lorentz.
De plus nous trouvons un effet croisé nouveau entre la diffusion et la con
duction thermique. II apparait que, par suite de eet effet, le phénomène de
diffusion est influencé par le mouvement barycentrique.

Les résultats obtenus dans le chapitre premier sont discutés en plus grand
détail dans le second chapitre. En outre ce chapitre contient des considéra-
tions sur les chaleurs de transport et sur quelques quantités qui sont presque
invariantes pour des transformations de Lorentz. Les résultats de la théorie
concernant la conduction thermique et la diffusion sont reformulés en forme
de tenseurs tridimensionnels a 1’aide de quantités qui sont utilisées aussi dans
la théorie non-relativiste. Dans la théorie présentée ici la densité d’entropie
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est la quatrième composante d’un quadrivecteur et il apparait qu’en général
1’entropie dans un élément de volume n’est pas invariante pour des trans
formations de Lorentz. Nous discutons aussi la relation entre les différentes
chaleurs de transport qui figurent dans la littérature. Une formulation de la
théorie a 1’aide de flux relatifs de la matière, qui sont définis par rapport a
une vitesse différente de la vitesse barycentrique, est déduite du formalisme
développé.

Dans le troisième chapitre nous considérons des systèmes sans polarisation
ou magnétisation dans un champ électromagnétique. Nous arrivons au
bilan d’entropie par une méthode qui diffère un peu de celle utilisée dans
le premier chapitre. Les relations phénoménologiques pour des milieux
isotropes sont données en forme des tenseurs tridimensionnels et quadridi-
mensionnels. La loi relativiste d’Ohm est un cas spécial des équations
générales obtenues pour les phénomènes de diffusion. II apparait que le
courant électrique ne dépend pas seulement des vecteurs des champs élec-
triques et magnétiques ainsi que des gradients de la température et des
potentiels chimiques des constituants, mais aussi des dérivées partielles par
rapport au temps des deux demières quantités et de 1’accélération barycen
trique.

La théorie thermodynamique des systèmes polarisés et magnétisés est
donnée dans le quatrième chapitre. Nous ne discutons que les systèmes qui
sont isotropes quant a leur polarisation et leur magnétisation. Au cas oü le
milieu est polarisé et magnétisé, des termes supplémentaires s’ajoutent a la
formule non-relativiste de Gibbs. Nous donnons en premier lieu la formule
relativiste de Gibbs pour le cas considéré. Si 1’on veut déduire une forme
satisfaisante pour le bilan d’entropie il apparait que 1’expression explicite
des forces pondéromotrices doit avoir un rapport étroit avec 1’expression de
la formule de Gibbs. Les relations phénoménologiques et les relations
d’Onsager sont données pour des systèmes anisotropes quant aux phéno
mènes irréversibles.

Dans le cinquième chapitre nous considérons le tenseur d’impulsion et
d’énergie du champ électromagnétique macroscopique. Nous continuons
aussi la discussion des deux principes de la thermodynamique et des forces
macroscopiques que le champ électromagnétique exerce sur la matière.
Comme dans le quatrième chapitre nous nous bomons aux systèmes qui
sont isotropes quant k la polarisation et la magnétisation. Nous montrons
qu’il est possible de trouver un tenseur symétrique d’impulsion et d’énergie
pour le champ électromagnétique macroscopique. Les éléments non-diago-
naux de ce tenseur sont égaux aux éléments correspondants du tenseur
d’A b r a h a m .  Nous montrons ensuite que le tenseur d’A b r a h a m
correspond è. un formalisme en tous points équivalent. Enfin nous montrons
que le tenseur d’A b r a h a m est préférable a celui-ci de M i n k o w s k i
du point de vue de notre théorie.
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SAMENVATTING

Het hoofddoel van dit proefschrift is de relativistische thermodynamica
te ontwikkelen van de irreversibele processen in een continu mengsel, dat
bestaat uit een willekeurig aantal chemische componenten. Het nevendoel
is de energie-impulstensor te onderzoeken van het macroscopische electro-
magnetische veld.

We hebben ons beperkt tot de speciale relativiteitstheorie. Verder hebben
we aangenomen, dat er geen atomistische deeltjes gecreëerd worden of ver
dwijnen. De geldigheid van de thermodynamische theorie wordt begrensd
door de voorwaarde, dat, voor een waarnemer, die met de barycentrische
snelheid meebeweegt, de verschillen in druk, temperatuur enz. klein moeten
zijn over een afstand, die vergelijkbaar is met de gemiddelde vrije weglengte
van de moleculen.

In hoofdstuk I ontwikkelen we de theorie voor systemen, die beïnvloed
worden door krachten, die niet afhangen van de snelheden van de chemische
componenten. De theorie wordt geformuleerd met behulp van vierdimen
sionale tensorrekening. De vierdimensionale vectoren, die de" relatieve
materiestromen en de warmtestroom representeren, worden zo gedefinieerd,
dat ze loodrecht staan op de vierdimensionale vector, die de barycentri
sche snelheid voorstelt. De tensoren, die de druk representeren, bezitten
eveneens dergelijke orthogonaliteitseigenschappen. -Uit de relativistische
macroscopische fundamentele wetten (te weten: de tweede hoofdwet van
de thermodynamica en de balansvergelijkingen voor rustmassa, impuls
en energie) wordt de entropiebalans afgeleid. De fenomenologische verge
lijkingen worden gegeven voor isotrope media en er wordt aangetoond, dat
de Onsager-relaties Lorentz-invariant zijn. Een nieuw kruiseffect wordt
gevonden, dat voortkomt uit een relativistische term in de affiniteit gecon
jugeerd aan de warmtestroom. Het blijkt, dat door dit kruiseffect de dif
fusieverschijnselen beïnvloed worden door de barycentrische beweging.

Voor zover het de warmtegeleiding, de diffusie en de entropie betreft, wor
den de resultaten van de in hoofdstuk I gegeven theorie verder uitgewerkt
in hoofdstuk II. Bovendien bevat dit hoofdstuk beschouwingen over de trans-
portwarmten en enkele grootheden, die bijna Lorentz-invariant zijn. De resul
taten van de in hoofdstuk I gegeven theorie betreffende warmtegeleiding en
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diffusie worden geformuleerd in driedimensionale tensorvorm met behulp
van grootheden, die in de niet-relativistische theorie gebruikt worden. Er
worden formules afgeleid waaruit het verschil tussen de resultaten van de
relativistische en de niet-relativistische theorie gemakkelijk kan worden
overzien. Uit de ontwikkelde theorie volgt, dat de entropie in een klein
volume-element in het algemeen niet een Lorentz-invariante grootheid is.
Dit resultaat verschilt van dat van P l a n c k  en E i n s t e i n  volgens
hetwelk de entropie in een klein volume-element wel Lorentz-invariant is.
Het verband tussen de verschillende in de literatuur voorkomende definities
van de transportwarmten wordt afgeleid. Enkele grootheden, die in het
formalisme voorkomen, blijken bijna Lorentz-invariant te zijn. Een formu
lering van de theorie, die gebruik maakt van relatieve materiestromen, die
gedefinieerd zijn ten opzichte van een andere referentiesnelheid dan de
barycentrische snelheid, wordt afgeleid uit het ontwikkelde formalisme.

Hoofdstuk III handelt over systemen, zonder polarisatie en magnetisatie,
die beïnvloed worden door een electromagnetisch veld. De entropiebalans
moet voor dit geval uit de fundamentele relativistische vergelijkingen wor
den afgeleid door middel van een methode, die in sommige opzichten ver
schilt van die welke in hoofdstuk I gebruikt werd. De fenomenologische
vergelijkingen worden gegeven in vierdimensionale en driedimensionale
tensorvorm. Ook de Onsager-relaties worden weer besproken. De relativis
tische wet van Ohm blijkt een speciaal geval te zijn van de algemene ver
gelijkingen, die verkregen zijn voor de diffusieverschijnselen. Het blijkt,
dat de electrische stroom niet alleen afhangt van de electrische en magne
tische veldvectoren en van de gradiënten van de temperatuur en van de
partiële specifieke Gibbs-potentialen van de chemische componenten, maar,
dat hij ook afhangt van de locale afgeleiden naar de tijd van de beide laatst
genoemde grootheden en van de barycentrische versnelling.

De thermodynamische theorie voor systemen met polarisatie en mag
netisatie wordt ontwikkeld in hoofdstuk IV. We hebben ons beperkt tot
systemen, die isotroop zijn voor zover het polarisatie en magnetisatie be
treft. In het geval, dat het systeem gepolariseerd en gemagnetiseerd is,
treden er in de niet-relativistische tweede hoofdwet van de thermodynamica
termen op, die een gevolg zijn van de polarisatie en dé magnetisatie van de
materie. In dit hoofdstuk leiden we nu eerst de relativistische tweede hoofd
wet -af voor het beschouwde geval. Het blijkt, dat er een nauw verband
moet bestaan tussen de expliciete uitdrukking voor de ponderomotorische
kracht en de gedaante van de relativistische tweede hoofdwet van de ther
modynamica indien men een bevredigende vorm wil verkrijgen voor de
entropiebalans. De fenomenologische vergelijkingen en de Onsager-relaties
worden gegeven voor media, die anisotroop zijn voor zo ver het de irrever
sibele processen betreft.

In hoofdstuk V zijn de resultaten gegeven van het onderzoek, dat be-
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trekking heeft op de energie-impulstensor van het macroscopische electro-
magnetische veld. Bovendien bevat dit hoofdstuk verdere discussies over
de eerste en tweede hoofdwet van de thermodynamica. Als in hoofdstuk IV
hebben we ons beperkt tot systemen, die isotroop zijn voor zover het pola
risatie en magnetisatie betreft. Om onze beschouwingen zo algemeen moge
lijk te houden voerden we in hoofdstuk IV verschillende grootheden in, die
we niet nader specificeerden. Het blijkt nu, dat het mogelijk is om zodanige
keuzen te maken voor de bovenbedoelde grootheden, dat een explicite uit
drukking kan worden afgeleid voor een symmetrische energie-impulstensor
van het macroscopische electromagnetische veld. De niet-diagonaalele-
menten van de op deze wijze gevonden tensor zijn gelijk aan de correspon
derende elementen van de energie-impulstensor, die A b r a h a m  aan
het electromagnetische veld toekent. Er wordt verder aangetoond, dat
A b r a h a m ’s tensor tot een gelijkwaardig formalisme leidt. Het blijkt
echter, dat de vorm voor de relativistische tweede hoofdwet, die volgt uit
het formalisme met A b r a h a m’s tensor, correspondeert met een tamelijk
ongebruikelijke gedaante voor de niet-relativistische tweede hoofdwet
van de thermodynamica. Tenslotte wordt er aangetoond, dat, vanuit het
gezichtspunt van de ontwikkelde theorie, A b r a h a m ’s tensor te pre
fereren is boven de energie-impulstensor, die M i n k o w s k i  aan het
macroscopische electromagnetische veld toekent.
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