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NOTATIONS

Greek characters denote known constants and unknown para
meters.

Latin characters denote quantities subject to a probability distri
bution, frequently estimates of the parameters denoted by
the corresponding Greek characters.

The subscripts k, I . . . .  can assume all values 1 , 2 . . . .  K,
» » k , I . . . .  „ „ „ „ 2 , 3 . . . .  K,
» >. t, s . . . .  „ „ „ „ 1,2-----T, etc.

A Greek subscript occurring at least twice in the same product
should be summed over all values assumed by the corre
sponding Latin subscript.

It need not cause confusion that the same character may be used
at once as a subscript and as denoting a quantity.

ckc,
H
K
ck
dk
X, X,
cX
m > I K z||
lml> K  i
m-1, || mkl
cmc
5

regression coefficients

regression vector, set of regression coefficients
orthogonal
elementary
weighted
diagonal
point, values assumed by a set of variables
cy?^y.
matrix with elements mkl

,M  the determinant value of m
the matrix inverse to m
cA x cx
unit matrix: 1 if k =  /

0 if k ^ l

>
<
E
exp z
sgn r
est a
(5)

(3.32)
( 16)

is by definition equal to
is large compared with
„ small
mathematical expectation of

sign of r
estimate of a
formula (5) of the section in which it is quoted
formula (32) of section 3
number 16 in the list of references
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form, the object of statistical methods is the reduction of
data. A quantity of data, which usually by its mere bulk is
incapable of entering the mind, is to be replaced by relatively
few quantities which shall adequately represent the whole, or
which, in other words, shall contain as much as possible,
ideally the whole, of the relevant information contained in
the original data.

This object is accomplished by constructing a hypothetical
infinite population, of which the actual data are regarded
as constituting a random sample. The law of distribution of
this hypothetical population is specified by relatively few
parameters, which are sufficient to describe it exhaustively
in respect of all qualities under discussion. Any information
given by the sample, which is of use in estimating the values
of these parameters, is relevant information. Since the
number of independent facts supplied in the data is usually
far greater than the number of facts sought, much of the
information supplied by any actual sample is irrelevant. It is
the object of the statistical processes employed in the re
duction of data to exclude this irrelevant information, and
to isolate the whole of the relevant information contained in
the data.”

Thus there is constructed a “hypothetical infinite population”
or “parent distribution” or “universe”, that is, a probability
distribution of the observational variable (s) of given mathe
matical form, however containing one or more unknown para
meters. The data are considered as a random sample drawn from
this distribution. The problems which arise in reduction of data
are divided by F i s h e r  (5, p. 313, see also 10, p. 8) into the
following three types:

"(1) Problems of specification. These arise in the choice
of the mathematical form of the population.

(2) Problems of estimation. These involve the choice of
methods of calculating from a sample statistical derivatives, or
as we shall call them statistics, which are designed to estimate
the values of the parameters of the hypothetical population.

(3) Problems of distribution. These include discussions of
the distribution of statistics derived from samples, or in
general any functions of quantities whose distribution is
known.
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It will be clear that when we know (1) what parameters
are required to specify the population from which the
sample is drawn, (2) how best to calculate from the sample
estimates of these parameters, and (3) the exact form of the
distribution, in different samples, of our derived statistics,
then the theoretical aspect of the treatment of any particular
body of data has been completely elucidated.”

These concepts are adopted as the theoretical basis of the
developments in this paper. The reliability of the statistics as
estimates of the parameters of the parent distribution will be
judged from a theoretical study of the distribution of these
statistics “in repeated samples” . Nevertheless, the special re
quirements of the present field of application will necessitate a
treatment deviating in important features from existing regres
sion theory based on these same concepts.

This theory has been widely applied to data obtained from
agricultural experiment or from measurements in biological
populations. There are some essential differences between data
of this kind and those usually encountered in economic problems.
In agricultural experiment some of the determining variables
can be completely controlled by the experimenter (for instance
manurial treatment). In the design of his experiment he can
secure as much independent variation of each of these variables
as is needed for a reliable estimate of the corresponding regression
coefficients. Other determining variables less under his control
(rainfall, temperature, etc.) are usually by their nature subject
to adequate independent variation. In that respect they bear a
resemblance to the variables representing measurable charac
teristics of individuals of a biological population, which are
usually conceived as random drawings from a stable probability
distribution, eventually the multivariate normal distribution.
In investigations of this latter type regression coefficients are
sometimes not used as quantitative measures of a causal re
lationship between one “dependent” variable and its "determin
ing” variables, but rather as quantities descriptive of a joint
distribution of a set of variables without specifying one-way
causal connections between them. In both cases the data are
considered as manifestations of some underlying stable natural
law. If they are not sufficiently numerous to yield the desired
information, more observations can be obtained.
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In economic analysis variables at the control of an ex
perimenting institution are exceptional. Further only a few types
of variables, mainly those directly connected with crop yields,
are so erratic in nature, that they could reasonably be regarded
as drawings from any stable distribution. In a great deal of the
problems variables are developing in time in cyclical oscillations,
apparently to a large extent governed by some internal causal
mechanism, and only besides that influenced, more or less,
according to the nature of the variable, by erratic shocks due to
technical inventions, variations in crop yields, etc. J). At any
rate, they are far from being random drawings from any distri
bution whatever. It is for that reason that a great deal of the
extensive work now available on sampling from a multivariate
normal distribution, as reviewed by R i d e r  (24), may find only
very limited application in the analysis of economic time series.

Further the relations between the variables studied in this
type of analysis are themselves subject to gradual or abrupt
changes, according to institutional or technical changes in
society (and the same holds for the causal mechanism referred
to above). Therefore the number T  of observations from
which the regression coefficients have to be estimated is limited
by the very nature of the problem.

These considerations have led some authors to doubt the
possibility of fruitfully applying "sampling theory” to the
interpretation of economic time series. In the sections 4 and 6
statements made by F r i s c h ,  E. J. W o r k i n g  and
B a r t l e t t ,  which more or less explicitly express such doubts
will be quoted and discussed. In my opinion, there can be assigned
a well defined task to sampling theory in economic regression
analysis. The point is that, mathematically, we can advance even
if we assume a probability distribution only for the accidental
errors in the variables, which prevent the regression equation
from being exactly satisfied by the observations. Following
F r i s c h  (16, p. 51), each of the variables may be conceived
as the sum of two components, a “systematic component” or
"true value” and an “erratic component” or “disturbance” or
“accidental error”. The systematic components are assumed to
satisfy the regression equation exactly. In the determining

l) F o r th is  concept of econom ic variab les see for in stance
F r i s c h  (15) and  T i n b e r g e n  (32).
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variables the erratic component is taken as an error in the literal
sense of the word. It can be due to inadequate weighting of an
index number, or to inaccuracy in the statistical recording
procedure; it can arise if, for lack of statistical data, a determin
ing variable is represented by the values of some other variable
that is known to be highly correlated with the former (for instance
an index of industrial or total production as a representative
for total real income). In the dependent variable, however, the
erratic component will, besides this “technical” error, contain
an additional component representing the influence exerted on
Xx by determining variables of minor importance, not included
in the set X2 . . . .  X K. These distinctions enable us to give a
more clear-cut sense to the notion of a complete set of determining
variables introduced above. The set X2 . . . .  X K will be called
complete if the combined influence on X1 of all other variables,
not included in the set, may be represented by a relatively
“small” summand in X1 of accidental nature. If, in any concrete
situation, a standard is established for what should be understood
by a “small summand of accidental nature”, the notion of a
complete set of determining variables is fixed by that standard.

Above the distinction has been drawn between a regression
coefficient conceived as a quantitative measure of a causal
relationship and a regression coefficient conceived as a quantity
descriptive for a multivariate distribution. It will be clear from
the last paragraph that here the former sense is adopted (see
also F r i s c h  13, p. 95). It is assumed that there is a “true
regression equation” which would be exactly satisfied by the
“true values” of the variables. This should not be taken as a
matter of principle. In fact, in numerous applications in which at
least some of the variables are index numbers it would be rather
difficult, if not impossible, to maintain this simplified picture
with all its consequences. Nevertheless, this simplification may
prove useful, as in many cases the "errors” in the empirical
regression coefficients which are studied in this investigation
using this simplification will be of dominant quantitative im
portance compared with eventual corrections that may be
obtained by a refinement of the conceptions taking into account
the fact that in reality index numbers are only some kind of
mean values of distributions.

This conceptual scheme of the structure of the variables being
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accepted, it is clear that the expression “repeated sampling”
requires an interpretation somewhat different from that prevail
ing in applications of sampling theory in the agricultural and
biological field. In the latter domains in many cases repeated
samples may in principle be obtained in any number. The
distribution of a statistic “in repeated samples” is therefore
something which, if only sufficiently extensive efforts are applied,
may be found or controlled by experience. But in the conditions
under which sampling theory is used here such a distribution is
much more hypothetical in nature. The observations (1) con
stituting one sample, a repeated sample consists of a set of values
which the variables would have assumed if in these years the
systematic components had been the same and the erratic com
ponents had been other independent random drawings from the
distribution they are supposed to have.

The meaning of the sampling distribution of a statistic is
closely bound up with the plausibility of the hypotheses specifying
the parent distribution from which samples are imagined to be
drawn. In this paper these hypotheses are embodied in the de
composition of the variables into systematic and erratic com
ponents, in the supposed existence of a linear relation between
the systematic components, and in the distribution assumed for
the erratic components. These hypotheses are in concrete econo
mic applications much less liable to empirical verification than
are the hypotheses underlying the use of sampling theory in those
domains of science in which this theory has by now found
widespread recognition and application. It is only the urgent need
— brought about by the recent development of econometrics —
for a basis for appreciation of the reliability of empirical
regression equations fitted to economic time series, which might
supply the justification for a procedure based to such an extent
on hypothetical foundations. Therefore, any measure of the
reliability of regression coefficients, reached by this procedure,
will hardly have the precision attachable to the results of sampling
theory in many other situations. In view of the need for such a
measure, however, it may be better to have some point of support,
obtained by the use of a set of simplifying assumptions, than
none at all.

Designing a set of assumptions for this purpose requires
thorough consideration. Part II deals with some lines of approach
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followed by three different authors on regression theory. The
sets of assumptions underlying these lines of thought will be
discussed with regard to their adequacy to the special require
ments of the analysis of economic time series. Some general
remarks on the choice of basic assumptions may be made here.

If the methods of the sampling theory are applied, this choice
takes the form of a specification of the parent distribution of
which the observations are considered as a sample. Though
parameters of various nature may be introduced in this parent
distribution, attention is often concentrated upon the estimation
of parameters of a special kind — in our case the regression
coefficients. For brevity such parameters will be referred to as
the “required parameters”, though, properly speaking, reliable
estimates of these parameters are required.

I am aware of the following rules by which the choice of a
specification of the parent distribution which is adequate to the
special nature of the problem dealt with should be guided. They
are of a different nature, and even in part conflicting.

I. In the specification should be implied all a priori knowledge
on the nature of the data which is relevant to the estimation of the
required parameters.

For instance, in sufficiently high dilutions of a fluid containing
micro-organisms the number of these organisms in samples of a
given volume may on a priori grounds be assumed to be dis
tributed according to P o i s s o n’s law. Further in many cases
the process by which observations are obtained warrants inde
pendence between successive values of variables.

II. In specifying the parent distribution such a posteriori in
formation as to its form should be worked up as may be extracted
from the sample itself with a reasonable degree of reliability and is
relevant to the estimation of the required parameters.

Thus, in estimating the mean of a univariate parent distri
bution, evidence as to the normality may be obtained from a
sufficiently large sample. And in general, as F i s h e r  remarks
(5, p. 314), K. P e a r s o n ’s x2~test of goodness of fit (21)
may supply a powerful tool to check from a sufficiently large
sample the adequacy of any assumed specification.

The restriction that only information relevant to the required
estimation procedure should be implied deserves particular
attention in connection with the next rule:
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III. Extension of the specification by the introduction of ad
ditional assumptions not imposed by the rules I and II should be
avoided as much as possible.

For any extension of this kind necessarily implies a limitation
of the range of applicability of the results deduced by means of
the specification. An example is B a r 11 e t t ’s remark (2, p.
542) that the sampling distribution of the coefficient of correla
tion between two normal variables, independent mutually as
well as in successive drawings, which serves as the basis for a
test of significance of correlation, may also be derived if only one
of the variables is assumed to be so distributed, the other having
any distribution, possibly showing serial correlation, but in
dependent of that of the first variable.

The qualification "as much as possible” has been added
to rule III because it is often difficult to bring this rule into
accordance with the exigencies of the following rule which is of
very practical nature.

IV. The specified form of the parent distribution should be
neither so general nor so complicated as to make mathematical
treatment of the problems of estimation and distribution too cumber
some and intricate or even impossible.

In cases of apparent conflict between the two last rules there
may be several ways out. One of them is that the development
of mathematical tools may open the way for a treatment of
problems which had hitherto seemed insoluble. In estimating the
mean of a normal univariate distribution from a large sample, the
variance of this distribution may according to rule II be taken as
estimated from the sample. In small samples, where the reliability
of this procedure is very low, the way out was opened by the
introduction of S t u d e n t ’s ratio (28) and the "i-test” (8)
based on the sampling distribution of this ratio.

If no such improvement of mathematical tools seems possible,
a line of compromise may be followed:

V. In so far as the specification extends beyond the elements
supplied by the rules I, II and III, the accuracy of estimation of the
required parameters should not be very sensitive to an inexact
fulfilment of the additional assumptions.

Thus, a series of sampling experiments by E. S. P e a r s o n
and others ( 19)  has shown that the distribution of S t u d e n t ’s
ratio in samples of moderate size is not much affected by con-



10

siderable departures from normality in the parent distribution.
By similar experiments (20) the above mentioned test of absence
of correlation was found to be approximately valid for samples
from a wider range of non-normal distributions.

These rules will be referred to as the specification rules. Perhaps,
in some applications of sampling theory, more or other require
ments have to be imposed on a specification of the parent distri
bution, adequate to the problem under consideration. The set of
rules given here will serve as a basis for discussing the specifica
tion problem with regard to the application of sampling theory
to regression analysis of economic time series.

2. Mathematical tools.

Frequent use will be made in this investigation of the ele
mentary theory of determinants and of their relations to systems
of linear equations. Further we shall need the first elements of the
theory of matrices, linear and quadratic forms, and their behaviour
under orthogonal and other linear transformations.

No more is supposed to be known than may be found in
nearly every elementary textbook on these subjects. A useful
résumé of the elements of matrix theory in so far as it is related
with statistical applications can be found in an extremely
instructive paper of F r i s c h  (13).

An appeal to geometric imagination is made by the extensive
use of the presentation of the variables (1.1) in A-dimensional
space, one rectangular coordinate corresponding to each of the
variables. The word vector and the notation c are sometimes
used for the set of coefficients ck in a linear regression equation x)
(1) V ,  — c =  0
between these variables. In that case the set of coefficients ck is
thought to be represented by a vector connecting the origin 0
with the point with coordinates cv c2 . . . .  cK, thus having a
direction perpendicular to the plane (1). This perpendicularity
is by definition not affected by a change

*) Sum m ation  should everyw here be m ade over an y  Greek index
occurring a t  least tw ice in  th e  sam e product.
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in the units of measurement of the variables because in such a
change the ck must transform according to

c k  —  ®kCk

if (1), written in the asterisk quantities, is again to represent the
same relation. This almost trivial remark is only made in order
to prevent confusion with another kind of perpendicularity,
to be considered in section 4, which is in general not preserved
under a change in the units.

A central place is taken by the moment matrix
(2) mkl =  mlk = (X<T) -  X k) (X™ -  X,) =  (X™ -  X k) X?'
of the variables (1.1) (where

(3) X k =  — ST -XfcT)

is the mean of the /i-th variable). It is positive definite, that is,
it satisfies
(4) yO,cx ^  0
whatever the direction of the non vanishing vector c, since this
quadratic form can, in consequence of (2), be written as the sum
of T  squares
(5) M X ^ - X * ) ] 2, * =  1,2 . . . .  r .

If T  exceeds K, (as will be supposed in what follows), for every
non vanishing vector c at least one of these squares will be positive,
and the inequality sign in (4) will hold throughout, whence m
will have the rank K —  unless the points (1.1) happen to lie in
some hyperplane of K  — 1 or less dimensions.

Quadratic forms as that in (4) will sometimes be written in the
abbreviate notation cmc. Similarly cx will stand for cx*x. A
more complete suppression of subscripts would have the dis
advantage of suggesting a homogeneity between the several
variables which does not exist. In particular, the abbreviate
notation will never be used for expressions which are not in
variant for the above mentioned change in the units of measure
ment.

For a positive definite matrix m there exists a number of
inequalities between the determinant

(6) M s | m | s | % |
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and its principal minors of any order. Of these we only mention
the inequalities
(̂ ) M  <, mkkMkk
(where Mkk represents the cofactor of mkk in | m |) and the
corresponding inequalities for the principal minors. As a con
sequence of these inequalities
(8) M  <1 ^11^22 • • • • ^KK
where the equality sign can be shown to hold only if m has the
diagonal form, that is, if

mkl — 0 for k ^  I.
On several occasions the argument will deal with the relations

between the different degrees of approximate linear dependence
in the swarm of points (1.1) and the relative magnitudes of M
and its principal minors. For a full discussion of this point we may
refer to F r i s c h  (13, 14, 16). Here we shall only indicate a
geometric picture which may help the reader in grasping the
essentials of the situation and which gives a geometric meaning
to the inequalities (7) and (8).

In the space representation used throughout in this in
vestigation, the variables (1.1) are represented by a swarm of T
points in a space of K  dimensions. They can, however, also be
taken as representing K  points or vectors in a space of T
dimensions, one coordinate corresponding to every year, one
vector to every variable. Taking for simplicity
(9) =  0,
the square moment mkk of the /e-th variable then equals the
squared length of the k-th vector, the cross moment rnkl
equals the inner product of the /f-th and the I-th vector, and
the determinant (6) measures the square of the volume (in units
of A-dimensional space) of the generalized parallelepiped con
structed on these vectors as edges, while similar relations hold
for the principal minors.

This picture suggests that, if
(  1 0 )  M  <S^ . . . .  ,

that is, if the volume of the above parallelepiped is small com
pared with that of a completely rectangular parallelepiped with
edges of the same lengths, the K  vectors will be nearly linearly



dependent, or the variables (1.1) will approximately satisfy at
least one linear relation. An indication as to whether only one or
even two or more linear relations (with considerably diverging
coefficients!) are approximately satisfied by the variables (1.1)
is given by the principal minors Mkk of order K  — 1. If at
least one of these minors decidedly does not satisfy a relation
similar to (10), the approximate linear dependence disappears
if the corresponding variable is omitted from the set of variables,
whence only one linear relation can be approximately satisfied
by the complete set of variables. In the opposite case, the
swarm of scatter points in the A-dimensional representation is
flattened in at least two directions, and so on.

A considerable part of the subsequent sections is based on the
classical solution of the problem of the extrema of the quadratic
form (with symmetric matrix)
(11) ama =
for vectors a restricted by

In general there are K  such extrema mlt m2 ---- mK, the
characteristic values of m, which are obtained as roots of the
algebraic equation of degree K

6 representing the unit matrix

To every sin g le  root mn corresponds one characteristic vector
a(M) satisfying (12), uniquely defined by the K  equations

and for which (11) assumes its extremum mn. Any two such
characteristic vectors are mutually perpendicular.

To a />-fold root of (13) corresponds a ^-dimensional subspace
of characteristic vectors, in which an arbitrary set of p mutually
perpendicular vectors a(B> can be chosen. Thus, whether mul-

( 12) « A  =  1-

(13) |m  — mh\ =

mn  — m m12

m K K  —  m

(15) K x  — m J kX) a =  0,
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tiple roots are present or not, there is a t least one set of charac
teristic vectors satisfying

(16) =  8(mn).

By the orthogonal transformation which makes the new
coordinate axes coincide with these vectors, m  assumes the
diagonal form :

0 0

(17) 0 0

0 0 • • m K

As a consequence of this, mkl can be written

(18) mkl =  a{k )m^a(i ).

If the characteristic values are numbered in order of increasing
size, m1 is the absolute minimum of (11) under the restriction
(12), mK the absolute maximum. The remaining extremes have
a saddle point character. If m1 ^  0, the form (11) is positive
definite.

If m 1 =  11 mkl 11 is the inverse matrix of m, its characteristic
vectors coincide or may be chosen coincident with those of m,
while its characteristic values are inverse to those of m :
(19) mkl =  .

The form of the swarm of scatter points (1.1) is roughly in
dicated by its ellipsoid of inertia
(20) x m - 'x  =  xym'^-xx — 1

the axes of which fall alongside the characteristic vectors of m
and have lengths m \ . This picture, though, may be misleading
because it is not independent of the units of measurement of the
variables.

The above theorems are easily extended to the case in which
(12) is replaced by the condition

(21) aea =  1,
where e is a non singular positive definite matrix. Instead of
(13) and (15), then, the equations

(22) | m — U | =  0,

(23) lnskl) —  0,



PART I

Introduction

1. The problem.

This publication is an attempt to deal with some of the
difficulties encountered in the statistical procedure of fitting
a linear regression equation to a set of time series representing
the values assumed by some related variables.

In general and, therefore, vague terms the problem may be
formulated like this. For each of K  variables

Xi. x t . . . .  X K,
there is given a series of T  observations
(1) X f ,  k — I, 2 . . . .  K,  t =  1 ,2 . . . .  T,
relating to T  successive time periods of equal length. For
brevity these periods will be called “years”, though, of course,
they may as well be months, weeks, or any other period. On
“a priori” grounds it is expected that in the period of years
considered the values of one of these variables, say X x, are
determined, but for small discrepancies of accidental nature,
by the values of the remaining variables. For that reason, X x
may be referred to as the dependent variable, X 2 . . . .  X K
as a complete set of determining variables1) of X r. Moreover, the
“regression equation” expressing X x by means of its determining
variables is assumed to be linear. This restriction is only in
troduced since it may be convenient first to treat the simpler
problems before the more complicated ones are raised. The “a
priori” grounds mentioned above may be supplied by general
experience or deductive reasoning from such experience or by

') T he expression “independen t variab les” has been avoided
because th e  discussion of th e  problem  in th e  subsequen t pages is
ju s t  to  a  large e x ten t concerned w ith  th e  difficulties th a t  arise in
cases w here th e  variables X 2. . . . X K  fail to  be independent.

1
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any other source of information in the domain of science to
which the variables belong; the expectation th a t a significant
relation exists between the variables . . . .  X K should, how
ever, not be exclusively derived from the observations (1). The
reasons for, and the importance of, this reserve will become clear in
the discussions in sections 3 and 6. Now our problem is to find from
the observations (1) estimates of the coefficients of the expected
relation and to obtain an idea of the reliability of these estimates.

Only applications to economic data are discussed. If the results
of this paper would prove to have some value in other fields I
should consider th a t as an unexpected gain. For even within the
field of economic applications of regression analysis nearly every
situation imposes its own requirements on the method of trea t
ment. The idea of a technique which, “like a stone of the wise,
solves all the problems of testing “significance” with which the
economic statistician is confronted” is rejected by F r i s c h
(16, p. 192) in the significant words:

“No statistical technique, however refined, will ever
be able to do such a thing. The ultimate test of significance
must consist in a network of conclusions and cross checks
where theoretical economic considerations, intimate and
realistic knowledge of the data and a refined statistical
technique concur.”

In view of this statem ent any discussion which focusses
attention on the statistical procedure as such is bound to suffer
from an inevitable degree of abstraction and schematism. As
an attem pt to compensate for this remoteness from concrete
situations, illustrations of the results in some practical examples
will be given.

The method applied in this work may be characterized as
an application of the theoretical concepts of the English School
of m athematical statistics to the special situation prevailing in
economic analysis. R. A. F i s h e r ,  who contributed most to
the clarification of the theoretical basis and tools on which the
impressive and comprehensive results of this school of statistical
thought rely, formulated the purpose of statistical methods in the
following words (5, p. 311):

“In order to arrive a t a distinct formulation of statistical
problems, it is necessary to define the task which the
statistician sets himself: briefly, and in its most concrete

2
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determine the solution, while (16) is replaced by
(24) c(m)e c(n) =  §<mw)

From the theory of probability we shall use the proposition
that two linear combinations
(25) yx =  y2 =
of a set of normally distributed variables z(t) with means 0 and
variances and covariances (square and cross moments)
(26) Ez(t)z(s) =  iéts)
are again jointly normally distributed with variances and
covariance given by
(27) Eykyi =  r ^ ^ r t \  k , l =  1,2.
Here the symbol E followed by a quantity subject to a proba
bility distribution denotes the mathematical expectation or mean
value of that quantity. If Z1 and Z2 are such quantities, the
simple rules of the calculus of mathematical expectations are

[ E foZj +  £2Z2) =  X1EZ1 +  l 2EZ2,
I EZXZ2 =  EZ1.EZ2 if Zx and Z2 are mutually independent.

By the first of these rules (27) follows from (25) and (26).
If in (26) 11 n(ls) 11 is a multiple of the unit matrix,

(29) n(ts) =  a2 S(ts\
the variables z(t> are independent and of equal variance a2.
Their distribution will be called the spherical normal distribution
with variance a2, the zw themselves spherically normal variables
of that variance.

It follows from (27) that spherically normal variables are by
orthogonal transformation transformed into new spherically
normal variables of the same variance.

On several occasions the following proposition will be used:
A quadratic form
(30) 5 s
in T spherically normal variables with a symmetric matrix
|| 'Cfts'> ||, can, by orthogonal transformation, be written as a sum of
squares of such variables if and only if
(31) n (Ts) =  £(s>,



while the number of such squares in S is given by the trace
(32) T' — £(TT)
of the matrix ||tfto,||. The proof runs as follows. If S is to be
such a sum, the characteristic values Zft) of ||£(is)|| must con
sist of zero’s and ones only. Exactly this condition is expressed
by the relations (31), which, by an orthogonal transformation
which brings ||£<is>|| to the diagonal form || ||, assume
the form

(33) # t)2 =  S(<).
The number of ones among the £(<) is given by (32), which
transforms into
(34) T' =  ZT £ T>.

Further, two symmetric forms

Sp S ^ « >  p =  1,2,
which both satisfy (31) are mutually independent sums of squares
of spherically normal variables, if and only if
(35) ^ T)̂ TS) =  0 .
For, if 11 Xffs) 11 is by orthogonal transformation brought to the
diagonal form with ones only in the J\  first places in the diagonal,
the new values for 11 11 must satisfy

$ s) =  0, t — 1,2 . . . .  Tv s = l , 2 . . . . T ,
that is, S2 has become a form in the last T  — variables only,
and, by another orthogonal transformation only of these
variables, it can be made a sum of squares of variables which are
independent of the first 1 x new variables appearing in Sx.

In section 3 we shall deal with the distribution (3.48) of the
sum (30), the so-called ^-distribution, and with the distribution
(3.53) of the ratio of one of a set of spherically normal variables
to the square root of the mean of the squares of the remaining
ones — the well-known ^-distribution. A very useful collection of
proofs for the mathematical forms of these and other distri
butions can be found in a recent paper of F i s h e r  (12), and
also in D e r k s e n  (4).



PART II

Three lines of approach in  ex istin g  work

3. R. A. Fisher — the elementary regression.
In this section, we shall consider the theory of linear regression

given by R. A. F i s h e r (6, 8). In the specification used by him
the determining variables X % . . . .  X K are supposed to be measured
without errors. The dependent variable X 1 is taken as differing
from a linear combination of the determining variables by an
“error” which is normally distributed, independently in different
years, and with the same mean 0 and variance <j2 for every
year. The observations (1.1) are considered as one sample. In
repeated samples — which are, for the class of applications
studied in this paper, imaginary in nature — the values

remain the same. In order to express that explicitly in the
notations used, these assumptions may be written somewhat
pleonastically in the following form:

where the z(1) . . . .  z{T\  having the distribution function

are spherically normal variables with variance a2.
The duplicity in the notation of the X k, is adopted — and

maintained later on for means and moments of these variables —
firstly in order to hold to the convention that observations
and functions of observations are denoted by latin characters,
whereas unknown parameters as well as known constants of the

(1) X $ , U = 2,2, . . . . K ,  < = 1 , 2 . . . .  T,

x w = £(<> +  zm

(3) — P =  0. Px^O,

(4) (2m72) iT exp — — St2(t)2 ,
2 <r

2
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parent distribution are expressed by greek symbols, and secondly
to facilitate comparison with the formulae to be derived in
Part III.

The regression equation (3) is given in homogeneous form.
Explicitly, it is x)

S i =  -
Px' P

P i
Therefore, the (3,. are related to the usual regression coefficients
in Y u 1 e’s notation (39) by

k ' . 2 3 . . . . k ' - l k '  + l  ... K
P k '

P i
For the present, it is convenient to adopt as the rule which
normalizes the “vector” (3 the equation

(6) Pi =  1.

In that case a, $k, and (3 constitute the unknown parameters
of the parent distribution. The “true” values Zjf1 of the first
variable are by means of the unknowns $k, and (3 expressed in
terms of the known constants .

The method of estimation, followed by F i s h e r ,  is the
method of maximum likelihood. If in the joint distribution
function of all observational values, which depends on the
unknown parameters, the actual observations are inserted,
there remains a function of the parameters only, which is called
by F i s h e r  (5) the likelihood function. Those values of the
parameters for which this function is a maximum are taken as
the maximum likelihood estimates of the unknown real values of
these parameters.

In consequence of (4) and (2), the have the distribution
function

(7) (2Tza*yiT exp -  —  ST(X™ -  ^ ) 2
Z g

As, by (2), (5) and (6),

(8)
*) A repeated  Greek index  w ith  a dash  should be sum m ed over all

values from  2 to  K.
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the logarithm of the likelihood function (7) is, apart from an
additional constant, equal to

The maximum likelihood estimates s', bk,, b of the para
meters a, [jk,: (3 derived from the sample are those values of

CV, P for which L as defined by (9) reaches its maximum.

the sum of squares of deviations of the first variable from the corres
ponding values in the right hand member of the explicit regression
equation (5), is a minimum — the well known principle of least
squares.

Completed by

the bk as determined from this principle have been called by
F r i s c h  ( 13) the coefficients of the elementary regression
equation corresponding to the variable X v

The estimates s', bk., b are found by equating to zero the
derivatives of L with respect to a, [ik,: (3:

Introducing the sample means (2.3) and square and product
moments (2.2), this leads to

If M kl denotes the cofactor of mkl in the determinant | m |,
and if, as will be assumed,

(9) I  s  _  T  log a -  —  ST(PX X ?  - P ) 2 .

This means, particularly, that bk, and b are determined as those
values of (3fc,, (3 for which

(io) s  =  s T(x r  -  =  s T(px *<7> -  p)2,

(ii)

— 7's'2 +  ^ (b yx y  — by =  0,

( 12) XJ? (bx X ? - b )  =  0,

bx J^X^ — Tb =  0 .

(13)

where the bk, are determined by

(14) m k '\ K  =  o .

(15) M n  #  0 ,
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the solution of the bk from (11) and (14) is

(16)

Finally,

(17) Y^Kxy-b)\
As a counterpart of (5) we may define the sample regression

to be an estimate of a2 based on the deviations of the first
variable from its sample regression values. On the other hand,
we m ay derive from (17) two other forms for s '2 which will prove
to be special cases of corresponding formulae in part III. By
(2.2) and (13), (17) assumes the form

and further, by (11), (14) and (16),

T M ii T M U ■

How are s '2, bk,, b distributed ? The only elements of m  sub
ject to variation from one sample to the other are the mlk ,
occurring in the first row and column only. But for mn , which
does not occur in any of the M lk , these moments are linear
functions of the spherically normal variables z(t). Therefore the
bk,t again depending linearly on the M lk , are normally distri
buted themselves, their joint distribution being entirely charac
terized by their means, variances, and covariances.

In order to compute these quantities it is convenient first to
derive from (3) some relations which are the counterparts to the
formulae (14) and (16) in terms of the “true” variables and re-

0 8) 4 j) -  -  bK, X {$  +  b,

and find

(19) s '2 =  - s t( ^ t) - 4 t))2

(20)
s ' 2 =  Y by- m y X  b ‘x  m vX UX
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gression coefficients. The square and product moments x) of the \k

(22) V-ui =  ~  l k ) 4T).
are, in consequence of (2), related to the sample moments mkl by

(23)
Wu =  \hx +  2 ( ^ - l i )  a™ +  (/*» — S) *<T),

W * 'l  =  P fc 'l T  ( £ / ?  ? * ')  2 < t),

m lcT  =  Ibfc'Z' •

Any corresponding minors of | m | and | p | not including
elements of the first row or column are, therefore, equal. In
particular2), remembering (15)
(24) dT/j j =  M n  0.

From (3) and (22) we find

(25) Px =  & T) -  l k )  ?(xT) Px =  P S T( ^  -  l k )  =  0 ,
which is possible only if

(26) c2kf =  | p | =  0.

According to (24), p must therefore have the rank K — 1, so
that as normalized by (6) may be solved from (25):

(27) P*
g g t *
J V I ,i  ’

Thus prepared, we may proceed to the computation of the
parameters of the joint normal distribution of the bK. Ap~

*) I t  should be no ted  th a t  m  does not, as m ight be suggested by  th e
no ta tion , s ta n d  to  p in th e  sam e re la tion  w hich x v  s '2, bk, and  b
bear to  E,v  a 2, $k, and  (3. In  th e  la t te r  case th e  “la tin ” q u an titie s
are m axim um  likelihood estim ates of th e  corresponding “g reek”
ones. The analogy betw een m  and  p is only  th a t  th e  elem ents of
th e  form er are th e  sam e functions of th e  X k as those of th e  la t te r
are of th e  To w rite M in stead  of m , however, would have
com plicated  th e  n o ta tio n  of th e  m inors now denoted  by  M kl.

M oreover it  should be k ep t in  m ind th a t  p, th e  singular (see (26))
m om ent m a trix  of th e  “tru e ” variab les \ k> is d ifferent from
||£(2rj(T) — | A) ( X ^ — ?;) ||, th e  non-singular m om ent m a trix  of th e
p a re n t d istribu tion .

2) The sym bol <7\4 replaces th e  Greek cap ita l M .
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plication of the calculus of mathematical expectation to (23)
yields

(28)
E m k 'l  —  V-k'\<

{ E (mk'i —  Pk'i) (mrl — Mri) = V-k'v >
according to (22). Further we need the development of M Xk
as a linear function of the mk,x .

m ,, m
If M ll k,v =  M nrk , denotes the

cofactor of
Mi

n r
m k'V

M

in | m  I, this development is

■ m.A,x M n y_,k, .(29)
The minors in the right hand member are all constant and equal
to the corresponding minors of |p | .  As the same formula (29)
may be written in terms of minors and elements of p., it follows
from (28) tha t

(30)

as
(31)

EM-I k ’ JV1-,I k '

k. — J\4Xk)  (Mxl. *-Mxl) — c2 <-Mxl EMxlk,v ,

ĉ l l .X T EA4XX 8fcT.

Finally, we deduce from (16), (24) and (27)

(32)

where

(33)

E { ^ k '  Pfc') [ b y  P;>) =  <y2 (J-Jn) ,

,.kTe-di)
^ U . k ' V

are the elements of the inverse of the non-singular matrix
11 [Hr 11 of order K — 1.

We have now reached the result tha t, in sampling from the
parent distribution as specified by (2), (3) and (4), the elementary
regression coefficients bk. of the sample are jointly normally distri
buted about the corresponding coefficients [ik. of the parent distri
bution with variances and covariances given by the elements of the
inverse of the matrix of square and product moments of the determin
ing variables. Their distribution function is therefore

(34) (2ttct2)~*(K~1) c7Vlfx exp ■ ( V  ~ ~  Px') f V v  ( h -  ~ ~  Pv)
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The remaining problem of the distribution of s '2 and b may
be treated  in connection with the ‘‘analysis of variance” of the
problem. The deviations X x — \ x, the sum of squares of which
constitutes the total variance S (see (10)) in the problem, may
be broken up into three parts

(35) X x — \ x =  (Xx -  xx) +  (*i -  5x -  % +  lx) +  (% -  !i).

The first part is by (11), (13) and (18) equal to

Both of these differences having mean 0, their cross terms with
the th ird  difference in the square of (35) vanish when summed
over all values of t. The same holds for the remaining cross
terms, in consequence of (2.2) and (14). Thus we are left with the
square sums:

=  **»«>«,A .

s2 = 2 t (4 t> -  W  -  *1 + h ) 2 =  (K' -  M  fVv (h- -  P v ) .

% in S3 being replaced by X v

Each of these sums is a quadratic form in the spherically
normal variables z(t). Writing

Further, from (16), (27), (29) and the corresponding formula for

(36) =  K (X,
and the second part is, by (5), (6) and (18),

x i x i  "h =  (^x' Px') { X *  X y i )  ■

S — Sx +  S2 +  S3, where

S3 =  T ( X 1- l 1) \

(38)

we find, firstly,

(39)

a  *(T> ^  z « \  p =  1,2,3,

$ 8) =  y  s(fs).

w>

(40) Pfc' — j y j  (w x 'l I’-x'l)»
ll.x'fc'

whence, according to (23) and (33),

(41) bk, -  =  -  tfu*)' ( $ » - W  *(T)-
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Consequently,

(« ) g »  =  ( © -  y  i ®  -  y .
The following relations are easily verified:

$t)# s) = a*», ^  =  k — \,
• Q t t )  £(rs) _  £ < .) £(rr) _  ]

$ T) ^ T8) =  0.

(43)

Therefore, as
s x *(T)2,

it must, according to a proposition proved in section 2, be
possible to find, by orthogonal transformation of the z{t), new
spherically normal variables z'(t) of variance a2 such that

(44) S , -  S2 =  V  z'™ \ S3 =  z ' ^ \
1 T — K + 1

According to (19),
S1 =  Ts'2,

and hence

(45) Es'2 =  T ~  K  a2.
T

An unbiased estimate of a2 is therefore

(46) s2 =  s'2 =  S T (X™ -  X?)2.

According to (21), it may be computed from

(47)
(T — K)M

Being the mean of T  — K  squares of spherically normal
variables z'{t) of variance a2, s2 contains N  =  T  — K  “degrees
of freedom”, and y2 =  Ns2/o2 is distributedx) according to the well
known “y2-distribution”

(48) 1
r ( m

Ns2\ i(JV- 2)
2 ? j

e-ur*i*n d

1

m

’) F or th e  proof see F i s h e r  (8), or  (12), or  D e r k s e n  (4).
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independently of the bk, and X lt which depend only on the
z'(t) with t >  T  — K. As to X 1 this follows from

(49) X 1 —  l 1 =  T~* z'{T\

resulting from a comparison of S3 in (37) and in (44). That it
holds, not only for the form S2, but also for every individual
bK, may be seen by the following argument. Every bk----{ik. is
a linear combination of the z(t) and hence of the z'(l):

V -  fV -  ^  *'<*>,
so that, according to (37)

A comparison with (44) yields

V-yev =  0 for t , s = \ , 2 ---- T  — K, T.
Putting t =  s, this equation is, as 11 \±k.v 11 is positive definite
and non-singular, only possible if

7$? =  0 for t =  1, 2 ---- T  — K, T,

which proves the point.
Finally, it may be concluded from (49), that X 1 is normally

distributed, independently of bk,, and s2, and with mean and
variance

(50)

According to (13), b is a linear function of X 1 and the bK, and,
therefore, also normally distributed. In some cases it may be
useful to make it identical with X v  and, for that reason,
independent of the bK, by shifting the zero-points on the scales
of the variables so as to make =  0.

Readers who are acquainted with the simple and concise form
(6, 8) in which these results were originally published, will
doubtless find the presentation in this section somewhat lengthy
and complicated. This form has been deliberately chosen because
we shall in later parts frequently draw on the present stock
of formulae for comparison with new results.

The application of (32) requires the knowledge of a2. When,
as in most of the practical cases, u2 is unknown, it can safely be
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replaced by its estimate (47) if the number of observations is
large, since, in consequence of (48),

If T  is small, more accurate results are obtained by following a
precept of S t u d e n t  (28), which, as F i s h e r  has shown
(6, 8), can also be applied in the present situation. It consists
in the use of the sampling distribution of the ratio

of the normally distributed difference between estimated and
true regression coefficient to the square root of the estimate of
its sampling variance (32). This estimate being the mean of
N  =  T  — K  squares of spherically normal variables with the
same variance as bk---- {ik, , of which it is independent, tk. is
distributed according to the function

as was anticipated by S t  u d e n t (28) and shown by F  i s h e r (8).
A table, constructed by F i s h e r  ( 10) ,  gives percentiles of

this distribution for values of N  up to 30, while for larger values
the difference between (53) and the normal distribution with
variance 1 is negligible. Then, in testing according to a given
level of significance 0 the hypothesis th a t $k, has some speci
fied value p).9) — for instance 0 — the hypothesis is accepted if

where — pQ and p$ are the percentiles between which t falls
with a probability 1 — 0. In general, if the statem ent is made
that lies within the range given by the inequality (54), it
cannot be said th a t this statem ent has, in the individual case
considered, a probability 1 — 0 to be true. For a definite measure
of probability cannot be attached, in the individual case, to any

(51) [£(s2 — a2)2]

(53)

N  +  1
( N +1)12
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statement of this kind concerning unless an a priori probabili
ty distribution of is known. The relevant fact about the above
statement is, however, that, if it is repeated again and again in a
large number of cases in each of which the specification of this
section applies, there will be a risk of error 0 inherent in that
procedure. For the considerations leading to this subtle distinc
tion we may refer to F i s h e r  (7, 9, 11) and N e y m a n
(18, App. I).

The property which makes the ratio (52) particularly suited
for the purpose it is used for is that its distribution function (53)
is independent of a and (i. It enables us to draw inferences
about the pfc, without actually knowing a. Furthermore, owing
to that property, the validity of (53) is not confined to cases
where the £$ remain the same in repeated samples. This is an
important point. Evidently, the restriction to cases where
the values of the determining variables remain the same in
repeated samples, made at the beginning of this section, is super
fluous if use is made of the distribution (53) in judging the re
liability of estimated regression coefficients.

As an example of the use of (53) we shall consider a relation,
studied by T i n b e r g e n  (33), between the total sum of divi
dends of all corporations in the United States as dependent
variable (A\) and the reserves (Xz) and net profits (Xa) of
these corporations as determining variables. The data for X l
and X 3 have been compiled by the United States Treasury
Department (Statistics of income for 1933, p. 234: Corporation
income and excess profits tax return) from the profit and loss
accounts of all corporations, and can, therefore, be expected to
be practically without errors in the technical sense of the word.
The same holds for the values for X 2, which have been computed
from those for Xx and X 3 in this way that

X f  — A'1’ =  St (A(3T) — A<T))
l

the initial value A™ at the year 1920 being arbitrary and ir
relevant. Of course, appreciable differences may arise between
net profits as appearing in the profit and loss accounts and real
net profits, since any attempt to define the latter entails the
difficulty of the valuation of capital stock. However, if we are
interested only in the relation between the above mentioned



Table 3.1 Table 3.2

t X, \ X, I
1 2 1 A mkl

m illiards of dollars
I =  1 2 3

1920 2.90 4.3 4.28 k = 1 17.54 82.61 33.45
1921 2.69 5.7 — 0.05 2 470.3 66.31
1922 2.63 3.0 4.38 3 248.09
1923 3.30 4.7 5.83
1924 3.42 7.2 5.00
1925 4.01 8.8 6.97
1926 4.44 11.8 6 77 T a b le  3 3
1927 4.76 14.1 5.88
1928 5.16 15.2 7.64
1929 5.76 17.7 8.08 k 1 2 3
1930 5.63 20.0 1 38
1931 4.18 15.7 —  3.14
1932 2.63 8.4 —  5.37 —  bk —  1.000 0.162 0.091
1933 2.20 0.4 —  2.36 % 0.015 0.020

quantities as they appear in the profit and loss accounts, it is
legitimate to ascribe all erratic variation in the data to the in
fluence on X 1 of neglected determining variables, taking X 3
and X 3 as being accurately known. Table 3 . 1. gives the values
of the three variables for the years 1920—1933 inclusive and
table 3.2 their moments mkl (these figures have been taken
from J. T i n b e r g e n ,  34, p. 126). Finally, table 3.3 contains
the coefficients —bk, of the elementary regression corresponding
to X y as the dependent variable, and the estimated sampling
standard deviations

(55) v ^ t £ ( V - M 2]*

of these coefficients, as given by (32) with a replaced by s.
The influence of X 3 on X lt though much smaller than that of
X 2, is doubtless significant. For T  — K  =  11 we find for the
significance level 0 =  0.05 the percentile p(j — 2.20 in F i s-
h e r ’s table of t. This leads to the acceptance of any values of
P*' satisfying

0.129 <  — (32 <0.195 for (i2,

0.047 <  — p3 <  0.135 for p3.

Even if a significance level als low as 0' =  0.01 is adopted, the
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influence of X 3 is found to be significant, the corresponding
percentile in the table of t being p§. =  3.11.

Figure 3.1 shows X 1 — X 1 together with the linear combi
nation

x1 — X 1 = 0.162 {X2 - ï 2)+0.091 (Xa — X 3)

by which it is approximated to, and, separately, each of the two
terms in this combination.

•6jó(X2"X2 )

F igure 3. 1. The re la tion  betw een dividends
(2^), reserves ( X2) an d  n e t p ro fits (X3) of
U nited  S ta tes  corporations, 1920— 1933.
T aken  from  T i n b e r g e n ,  34, Ip. 126.

It is possible now to turn towards a discussion of the usefulness
and applicability of the specification of the parent distribution as
given by (2), (3) and (4) — for brevity, let us call it “F i s h e r’s
specification” — for the special kind of data studied here.

A conspicuous advantage is that this specification does not
imply any assumption as to the distribution of X 2 . . . .  X K.
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If only the distribution (53) is used in interpreting the data,
these observational variables need not be a random sample
drawn from any probability distribution, but may as well be the
values assumed by variables which develop in time by an, possibly
unknown, causal mechanism; or they may be, as an intermediate
case between these extremes, drawings from a series of distri
butions ordered in time, the next of which depends on the values
drawn in the preceding ones, as were studied by D a r m o i s
(3). This generality of F i s h e r’s specification is a point
strongly in favour of its use in economic regression analysis.
It constitutes a case where the principle, formulated in the
specification rule III of section 1, the elimination from the parent
distribution of assumptions irrelevant to the estimation of the re
quired parameters, has been successfully realised.

A restriction of possible applications in the economic field is
doubtless imposed by the assumption of independence of
successive “errors” in the dependent variable. This is, however,
not a serious point inasmuch as in most cases it will, according
to the specification rule V, be possible to check by means of the
deviations X {{ } — xf1 whether this assumption is justified.

The really weak point in the application of F i s h e r ’s
specification to regression analysis of economic data has been
brought to attention by F r i s c h  (13, 16). It is the more serious
as, for a long time, it was generally unrecognized.

F r i s c h  does not argue along the lines of the sampling theory
which are followed here. It is the conviction of the author that the
essentials of F r i s c h’s criticism of the use of F i s h e r’s
specification in economic analysis may also be formulated and
illustrated from the conceptual scheme and in the terminology
of the sampling theory, and the present investigation is an
attempt to do so. The loss in generality imposed by the as
sumptions involved in the construction of a parent distribution
is then to some extent compensated by a gain in mathematical
rigour in this respect, that by the sampling approach to the prob
lem it is possible to attach definite risks of error to the test
criteria reached, though of course on the hypothesis that the
parent distribution was rightly specified.

Therefore, I venture to formulate and interpret F r i s c h’s
ideas in terms of the concepts of sampling theory. Thus trans
formed, his argument runs somewhat as follows.
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The assumption that errors are present only in the dependent
variate does not hold in most of the economic applications. If
nevertheless we apply a specification which implies this as
sumption, we should, according to the fifth specification rule,
make sure that slight deviations from this assumption could not
vitiate the results obtained by the specification under con
sideration. There is, however, an important class of cases in
which the significance of formula (32) for the sampling variances
of the elementary regression coefficients as indicating the relia
bility of these coefficients is very closely linked to a rigorous
fulfilment of the assumption that no errors are present in the
independent variables. These are all cases in which, by chance or
by some underlying causal relationship, a second linear relation
between some or all of the determining variables is approximately
satisfied by the data. Or, in more concrete terms, if M n  is
small compared with its principal diagonal term m22 ma3 . . .  mKK
(see section 2 and 16, section 1).

In biological problems and in agricultural experiments, in
which F i s h e r ’s specification has found frequent application,
such a situation is not likely to occur. It has been pointed out
already in the introduction that in these fields as a rule adequate
independent variation of determining variables is present or
may be obtained by the nature of the problem. However, in
economic problems, where variables are generally outside
the sphere of influence of the investigator, they are often so
closely interrelated that the difficulties due to high single or
multiple correlations between some or all of the determining
variables are by no means exceptional. As in many cases the
number T  of observations is relatively small, such a situation
may in the first place arise “by chance” if at least one of the
determining variables is influenced by irregular impulses of at
least in part accidental character(crop yields, technical inventions
etc.). More frequent are high correlations between determining
variables as an effect of economic causation. For instance, in
attempts to determine the coefficients of the regression equation
of the demand for a commodity on the prices of that and com
peting commodities, these prices are frequently, and as a con
sequence just of the competing nature of these commodities,
found to be highly correlated. Examples of this situation are
found in S c h u 11 z’s investigations into the demand functions
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of beef, pork and mutton (27) and of corn, barley, oats and hay
(26). In these examples there are moreover common factors on
the supply side which exert an influence towards high correlations
between the different prices.

Let us consider the beef-pork-mutton case somewhat more
closely. As a reasonably complete set of determining variables
for the demand db for beef S c h u l t z  assumes real prices
(Pb> P v ’ P m ) of beef, pork and mutton, and real income i;
if the relation can be taken as a linear one, we may write

(55) ^b YbbPb TbpPj) Tbm Pm  ~f~ Y bP  A" %b >

the variables being measured as deviations from equilibrium
values. Here zb is a small residual, containing the influence of
neglected factors, and expected to be of accidental nature. In
the current theory of price formation pb is taken to be determin
ed as the solution of the market equation

(57) db =  sb

where sb, the supply function of beef, is conceived as a function
of pb and other factors influencing the supply of beef, which we
shall summarize by the symbol fb; again assuming this supply
function to be approximately linear, it may be written

(55) sb =  YbPb +  T'bfb +  z 'b ■

So pb appears as a linear function of pv, pm, i, fb and small
accidental influences zb and z’b, and it is only in virtue of the
latter and of the influence of fb that the moment matrix of
Pb< Pp> P m  an<l i  fails to vanish. An additional tendency to
approximate linear dependence between these variables is given
by the circumstance that fv and fm, the summarized remaining
factors affecting the supply of pork and mutton, entering into
the corresponding expressions for pp and pm, will have im
portant determining variables in common with fb.

Finally, if equations are wanted estimating relations between
the principal variables of the business cycle (see T i n b e r g e n ,
31, 32, 35) as a tool of business cycle analysis or as a base for
economic policy, it is a serious drawback that a great deal of these
variables show cyclical oscillations, lagging, if at all, only a
small fraction of their period, and are for that reason to a large
extent intercorrelated.
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F r i s c h  illustrated his point by a sampling experiment
in four normal variables

(59) X f  =  i f  +  4°  -

k = 1, 2, 3, 4, t =  1, 2 ___100, where every ^  and ^  is
an independent drawing from a normal distributioni) 2) with
mean 0 and variance 1, and where l 3 and are by

(60)
=  5! +  52
=

made linearly dependent on h  and £2. The I f  are to be consider
ed as “systematic components” or “true values”, the z f  as
small errors. The latter are similar drawings divided by 10.

Now if, in fact, two linear relations exist between the “true
values” of K  variables, any attempt to fit one single regression
equation to the observations is senseless. For every linear
combination of these two relations would give a perfect fit to
the scatter diagram of the I f ,  and it would depend largely on
the accidental errors as well as on the fitting procedure which
of these linear combinations would be approximated by a single
regression equation fitted to the X f .  Such a regression equation
has no meaning because only a set of two equations can be
descriptive of the systematic variation in the data. It will appear
that this situation manifests itself by enormous discrepancies
between the four elementary regressions more than by excessively
large sampling variation of any of these.

The coefficients bf  of each of the four elementary regressions
(/ =  1, 2, 3, 4) of the observations (59) are recorded by F r i s c h
( 16, p. 190) in standard units, (that is, in units such that

i) A nother num erical exam ple contain ing  a high m ultip le co r
re la tion  betw een determ in ing  variables is given by  R i c h a r d s
(24). In  th is  paper th e  po in ts to  th e  large effect of sm all errors of
com pu tation  —  due to  th e  necessary lim ita tion  of th e  num ber of
decim al places used —- on th e  regression coefficients in  cases of
nearly  linearly  dependen t determ in ing  variables. The conclusion th a t
th en  even tua l errors in th e  determ in ing  variables them selves m ust have
a still larger effect is n o t draw n.

a) One independen t draw ing was ob ta ined  as th e  average of end
digits in  100 consecutive draw ings in  th e  Norw egian S ta te  L o tte ry .
The d istribu tion  of these averages did n o t show any  significant
skewness or curtosis.

3



mn  — — •••• =  mKK~  1), together with their "standard errors”
ŝ jjz), the square roots of the expressions for their sampling varian
ces derived in this section. Table 3.4 shows these quantities

Table 3.4

k i 2 3 4

411 1.00 0.11 —  0.54 —  0.44
0.10 0.05 0.05

42) 0.11 1.00 —  0.56 0.44
0.10 0.05 0.05

bW —  0.98 —  1.02 1.00 —  0.02
0.09 0.09 0.09

44) —  1.00 1.00 —  0.02 1.00
0.12 0.12 0.12

in the units underlying (60). In formula (32) it was unessential
whether the moments of the X k, were written mkT or and
for formal reasons the [ik,v have been used. In discussing even
tual applications of (32) to situations where the scheme (59)
is a better approximation to reality, we must keep in mind tha t
mKV and \xkT, computed respectively from X k, and
now differ, and th a t the sampling variance formula under
discussion must be written

(61) est E{bk, — (3fc,)2 =  s2m
M M l l k .k,

(T-— K) Mfi

Here, in addition, a2 has been replaced by its unbiased estimate
s2 as given by (47), which is for the number of observations (T =
100) here considered quite legitimate, as the result of this pro
cedure will not be appreciably different from th a t of the use
of the ratio t given by (52).

F r i s c h  gives the following comment on the figures in table
3.4 ( 16, p. 191):

“ If the standard errors should be reliable warning signals,
they ought to tell us to keep away from any of these regres
sion equations.. . .  No statistician who is used to working
with standard errors would hesitate to conclude tha t the
last two regression coefficients (b^ and tt^) are significant.



At least he would conclude that it is practically certain
that both these coefficients are -positive. From the way in
which the example was constructed we know that this is
sheer nonsense; a regression equation in the set X x X 2 X 3 X 4
has indeed no meaning at all.”

It need hardly be stressed that these remarks do not imply
a criticism of the logical consistency of the theory which led to
the formula (32) for the sampling variance of regression coeffi
cients. Strictly speaking, the set-up of F r i s c h’s sampling
experiment is not in conformity with the assumptions underlying
F i s h e r ’s specification. The moment matrix (of rank 2) of
the parent distribution from which the systematic components
Zk were drawn is

1 0 1 1
0 1 1 — 1
1 1 2 0
1 — 1 0 2

Consequently, since the zk are independent of the the
variables X k are 100 random drawings from the multivariate
normal distribution with moment matrix

(63)

1.01 0 1 1

0 1.01 1 —  1

1 1 2 .0 1 0

1 — 1 0 2 .0 1

rather than a sample from the parent distribution assumed in
F i s h e r ’s specification. Thus, it might be thought that larger
values than those for the in table 3.1 would be obtained for
the estimated sampling variances of the coefficients of the ele
mentary regressions in sampling from the normal distribution
given by (63). This is not the case. According to B a r t l e t t
(1, p. 269, form. (2 0 )), the distribution function of b(}}] in sampling
from the normal distribution given by (63) is proportional to

(64) 1 +
J\4 \l

PF -  P£>)2
-i(T—K+i)
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For T  — K  =  96, this distribution is not appreciably different
from the normal distribution with variance

(65) 34/ 'k,k,
(:T — K  +  l)c7kf*2’

and the determinants in this expression are estimated with a
moderate sampling error by the corresponding determinants in
(61). Thus, the estimated sampling variances of the elementary
regression coefficients are virtually the same whether they are
computed from (61) or, more closely in accordance with the type
of sampling in F r i s c h’s experiment, from an analogous
expression estimating (65); and F r i s c h’s experiment does not
show anything which could not have been predicted from the
results of sampling theory.

How can, then, the strikingly small values for sb(i) in table
3.4 be in accordance with the fact that there is no sense in
determining one single regression equation from the variables
(59) ? Evidently, in cases with highly interrelated determining
variables which are themselves subject to error, there is no more
a close connection between the sampling variances of the ele
mentary regression coefficients and the reliability of these
coefficients as indicating a systematic relationship. There is
nothing disturbing in this situation. In fact, to attach significance
to the coefficients of the first elementary regression, or to consider
their estimated sampling variances (61) as a measure of their
reliability, implies, that, according to F i s h e r ’s specification,
variation in all directions perpendicular to that of the first
coordinate axis is taken as systematic variation. It is not amazing
that (61) loses the meaning it has on that assumption if in one
or more of these directions the erratic variation is comparable
in size with the systematic variation.

The point is clearly perceived if we consider the almost trivial
case

(66) I f  =  0, * = 1 , 2 ,  3, 4, t =  1, 2 . . . .  100,

where all systematic variation in the variables (59) has dis
appeared. If the z f  are the same as before, the moment matrix
of the spherically normal distribution of the X k is now one
hundredth of the unit matrix 8. The four elementary regression
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vectors of this distribution coincide with the four coordinate
axes. The three last ones of the coefficients

(67) 1, 0, 0, 0,

of the first elementary regression are, according to (64), unbiased-
ly estimated by the corresponding coefficients of the sample
with a standard deviation which, owing to (65), equals

1
— ■ =  =  0 .1 0 ________

a/97

though, as we know from (66), any set of regression coefficients
"fits” to the systematic components. The elementary regression
fitting procedure, therefore, picks out one particular set of all
possible sets of regression coefficients that fit to the systematic
components, namely (67), and estimates that one with remarkable
stability in repeated samples.

Similarly, in the other case, the adjoint of (63) being approxi
mately ( F r i s c h ,  16, p. 82, table 13.9)

0.061 0.000 — 0.030 — 0.030
0.000 0.061 — 0.030 0.030

— 0.030 — 0.030 0.030 0.000
— 0.030 0.030 0.000 0.030

sets of coefficients proportional to those in the rows of (68) are
unbiasedly estimated by the elementary sample regressions with
sampling variances which are easily computed from (63) and (65).
F r i s c h's experiment simply consists in the actual compu
tation, for one sample x) of 100, of these regressions and of the
expressions (61) which, for that number of observations, closely
estimate their sampling variances (65). It exemplifies that in
cases of highly linearly interrelated determining variables the
sampling variance formula (61) loses its meaning as a measure of
the reliability of an empirical regression as an indicator of a system-

' )  P roperly  speaking, F  r  i s c h 's  sam ple was n o t a random  one,
b u t was restric ted  by  th e  iden tities ST $jT>2 =  ST £(J)2 =  10D ST z j,T)2,
k  —  1; 2, 3, 4. F or sim plicity , th is  restric tion  has been ignored in  the
above fo rm u lations, since it  will m odify th e  resu lting  coefficients only
w ith in  th e  range of th e ir  sam pling varia tion .
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atic relation, if one of the assumptions underlying Fisher ' s
specification — absence of errors in the determining variables — is
not rigorously fulfilled.

It could be argued that the economist should avoid the
regression analysis of any set of variables in which more than
one economically significant relation may be expected to exist.
However, the deficiency of the sampling variance formula
(61) in cases where some or all of the determining factors are
subject to error is not confined to the extreme situation, present
in F r i s c h’s sampling experiment, in which two linear relations
between the "true values” of the variables are exactly satisfied.

In Parts III and IV this point will be considered more in detail.
There will appear to be at least three causes at work which make
(61) the more deficient as an indicator of the reliability of
estimated regression coefficients the more the “true values” of
the variables are interrelated.

4. R. Frisch — the diagonal regression.

A third line of attack on the problem has been chosen by
F r i s c h  (16). His starting point is the deficiency of the standard
error formula (3.61) — or, in small samples, of the use of the
*-test with t given by (3.52) — as found by means of F i s-
h e r ’s specification, in cases of approximate linear dependence
between the determining variables where these are themselves
subject to error. He therefore considers the whole set of elementa
ry regressions of the sample, that is, the set of regression equa
tions containing besides (3.18) K —-1 analogous equations
obtained by interchanging in (3.2) the subscript 1 with any of the
remaining subscripts 2, 3 ---- A. In terms of the scatter diagram
in //-dimensional cartesian space, the n-th elementary regression
is the equation of the hyperplane having minimum sum of squares
of deviations from scatter points measured parallel to the n-th
coordinate axis.

The main tool in F r i s c h’s analysis is a comprehensive
and detailed study of the spread in the K  values

(!) KV =  — ~ . n = l , 2 . . . . K ,
^ n k

obtained for the “net” regression coefficient of the k-th. on the
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Tth variable in each of the A elementary regressions. The
whole of the argument is concerned with quantities computed
from the sample; as to the specification of a probability distri
bution as a drawing from which the sample could be considered,
F r i s c h  says ( 16,  p. 88):

“It is on purpose that I have not attempted to give any
formal and rigorous definition of the “probability” for a
specified result obtained by the different minimalisations.
Such a formal definition may indeed be obtained by starting
from many different types of abstract schemes. Each scheme
will lead to a particular definition of the probability in
question. By focussing too much attention on the exact
definiton of the probability there is some risk that one
will forget the very relative and limited meaning which
must always attach to such a numerical computation of a
“probability” . It is indeed only in a very special meaning
that any such probability can be said to measure the
“significance” of the results. At least, to start with, I believe
it will be a better application of time and energy to work
experimentally with the method and rely on one’s intuitive
judgement of whether a given spread in the various deter
minations of a given regression coefficient is reasonable or
not.”

The first problem to be studied by means of the coefficients
(1) is the selection of the set of variables to which a regression
equation will be fitted. Usually this problem presents itself in
the form of the question whether some new variable, which is
thought to take part in the relation under study, can safely and
effectively be added to an already accepted set.

If between A variables a linear regression is approximately
satisfied, the scatter diagram (in standard units!) in A-dimen-
sional space SK will consist of a swarm of points concentrated
in the neighbourhood of a hyperplane of A — 1 dimensions.
However, it will be possible to determine approximately the
coefficients of the equation of SK_ 1 only if there is no second
linear relation, defining another hyperplane S^—1 considerably
different from SK_ 1, for whatever reason approximately satisfied
by the variables. For in that case, as was pointed out already
on p. 33, the scatter points would be concentrated around the
intersection SK_ 2 of SK_ 1 and and it would depend largely
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on the random errors in the data and on the fitting procedure
which linear combination of the equations of SK_ 1 and
would result from any attempt to determine one single regression
equation.

Therefore, it should be found out whether the scatter diagram
of a given set of K  variables is approximately singly — as
opposed to multiply — linearly dependent. Thus, in trying to
improve the fit in a set of variables by tentatively adding a new
variable, two questions must be considered :

1. Is the fit of a linear regression equation improved by inclusion
of the new variable? If this is the case the data do not contradict
the assumption that the new variable is systematically connected
with the other ones — or, in the terminology of the introduction,
that it ranks among the relevant determining variables of the
dependent variable. However, it still depends on the answer to
the second question whether the inclusion of the new variable is
really a step forward.

2. Is the advantage of an improved fit not annihilated by a
simultaneous introduction of approximate multiple linear depen
dence in the set?

In order to find answers to these questions with regard to each
of the variables the coefficients (1) are determined not only in the
complete set of K  variables which are expected to be involved
in the relation under consideration, but also in every subset of
every smaller number of variables selected from the complete
set.

Numerical work is effected in “standard units” . The moment
matrix m then equals the matrix r of single correlation coef
ficients rkl, and (1) assumes the form

The necessary computations are performed by the ''tilling
technique”, a thoroughly rationalised method of computing in
a well chosen succession the adjoints of all principal minors of
r of every order. The corresponding coefficients are then graphic
ally exhibited in the “bunch map”, containing one graph for
every intercoefficient bkl in every subset of every number —
say K 1 — out of the K  variables. Each graph contains a
„bunch” of K 1 “beams” connecting the origin with one of the
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K 1 points with rectangular coordinates Rnk and — Rnl (or — Rnk
and Rnl, if Rnk <  0), the index n successively indicating
all of the K 1 variables in the subset. This representation has
the advantage of showing, together with the coefficients (1) as
indicated by the slope of the beams, the absolute sizes of the
principal minors (Rkk etc.) of the correlation matrix, called the
scalterances.

F r i s c h’s answer to both questions mentioned above is
guided by the study of the “bunch map”, especially by the com
parison of the bunches related to the same intercoefficient before
and after the introduction of a new variable. An improved fit
without approaching multiple linear dependence will be indicated
by a diminished spread of the values (2) for bkl corresponding to
the different directions of deviation square sum minimalization.
In the map this manifests itself by a tightening of the bunches
after adding the new variable. An additional though not obliga
tory indication is a decided change in the general slopes of the
bunches. However, if by addition of the new variable multiple
linear dependence is introduced, at least some of the bunches
will “explode”, that is, show beams scattered in all directions,
according to the circumstance that the K  different fitting
procedures will approximate widely different linear combinations
of the equations of the above mentioned SK_ 1 and

A set of variables in which a good fit to a linear relation exists,
but to which no additional variable, related to the problem
studied, can be added without introducing multiple linear depen
dence, is called by F r i s c h  a closed set. If, by means of criteria
of which the principal ones are indicated, a closed set has been
reached, the second problem remains: how to choose the fitting
procedure and how to judge the precision of the result.

The starting point of this part of F r i s c h’s analysis forms a
discussion of the two-variable problem in which very simplifying
assumptions are made. Considering the variables X f , k = \, 2
as the sums of a systematic and an erratic component

(3) X f  =  I f  +  z f  ,

the moments of the variables are connected to those of the
systematic components by

(4) = H i  + 4TMT) + 4T)̂ T> + 4TMT)
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(For simplicity the means X k , l k , zk are taken equal to zero).
As a base for the argument, the following assumptions are made
(16, p. 52):

(5)

4TMT)= o  if k * l ,

4 TMT) =  o if k * i ,

2 4 T)4T) +  4 T)4T)^ o .

This means that there is supposed in the sample rigorous absence
of correlation between (a) any two different erratic components
and (b) any systematic component and the erratic components of
other variables. Finally, it is assumed that the systematic and
erratic components of the same variable are not so highly
negatively correlated that the square moment of any variable
should be exceeded by that of its systematic component.

On these assumptions we have

(6)
f m kl — V-kl if k  I ,

I m kk ̂  P k k  ■

Now, as the c1-  ̂ exactly satisfy a linear relation,

(7)
Hui 1*12

M-21 F-22

=  o,

and the relation may be written
(8)

Introducing the “disturbing intensities” (16, p. 52)

(9) H
T O ;kk V~kk

}

V-kk

we find from (6) and (7)

wi i ( l— h) mi2

^ 2 1  ^ 2 2  2̂)
whence ix and i2 must satisfy

( 10)

( 11)

(1 i 1) (1 i2) TOT

TO,, TO,

0,

4 2.

h ^ o ,
i2 0 .
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The only thing which by (5) is assumed about the disturbing
intensities ik is that they are restricted by these relations. This
implies, however, that the “true” regression coefficient

(12) = ----- - 21—  ■ =  "n u i ~
fJ-22 m22̂ } h) ml_

of \ x on £2 in (8) is, by

f bi2 ^  Yi2 ^  bn  if mi2 >  0,
1 — bi2 ^  — Y i2  ^  — bi2 if m12 < 0 ,

included between the two elementary regression coefficients

mn  (1 —  *i)

(13)

(14) m„
m9

m.
m.

of the sample. Therefore, F r i s c h  proposes to adopt the geome
tric mean of b(X2 and bx2, the diagonal regression coefficient
( 13, p. 74)

\1
(15) d. (sgn mx m.

m0

as an estimate of Y12 and to supply it with a “significance factor’

(16) fv.
m.

I r 12

indicating the factor by which dX2 should be respectively
multiplied and divided in order to obtain the limits (14).

The results of this argument are heuristically extended to the
general case of K  variables. As probable boundaries for ykl, the
“true” regression coefficient of the /e-th on the /-th variable,
are adopted the values

(17)
1V± k k  1V± Ik

and as an estimate of the “true” regression equation the diagonal
regression
(18) d ^  =  0,
where
(19) dl =  Mkk)
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if the signs in the rows of Mkl are compatible the same set of
signs should be given to the dk, and if one or more rows show
divergencies in the signs, an investigation of the bunch map
can hardly leave any doubt as to the right signs for a set of
variables which, by satisfying all the above criteria, was recogniz
ed as a closed set. The estimated regression coefficient of Xk
on X lt

is, again, the geometric mean of the boundary values (17). Its
reliability is — on the condition that the set of variables was
found to be a closed set in the above sense — indicated by a
"significance factor”

which "happens” to equal the absolute value of the partial
correlation coefficient between Xk and X t .

Having resulted from the criticism of the use of F i s h e r’s
specification in the analysis of linear relations between economic
variables, set out in section 3, F r i s c h’s approach to the
problem has the apparent advantage that the dangers due to
high intercorrelations between determining variables are re
cognized and avoided, and that the variables are dealt with in
a symmetrical way: all of them are allowed to contain an erratic
component. As a result of this symmetrical treatment it is clearly
shown that the estimation of the “true regression” from data
in which all of the variables are subject to error involves an
error which arises from absence of knowledge on the relative
sizes of the variances of the erratic components. This error is,
indeed, the relevant point which must be considered in any
attempt at a theory of regression which admits errors in each of
the variables. Limits for this error are derived.

On the other hand, F r i s c h’s method shows some deficien-
ces, not present in F i s h e r ’s specification, which are due to the
oversimplified set of assumptions on which the argument is based.
Full light may be thrown on these points only by the develop
ments of Parts III and IV. If, therefore, some of these results

(20)

(21)
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are anticipated, in the remarks that follow here, their foundation
and elucidation must be postponed.

W ithout assuming a probability distribution of the errors as a
tool guiding the analysis, it is rather difficult to get at an ade
quate appreciation of the elaborate system of checks and cross
checks which should be passed by a set of variables in order to
be accepted as a “closed set”. Certainly, a small spread in the
elementary regression hyperplanes is an indication that the swarm
of scatter points is both highly concentrated in the neighbourhood
of some hyperplane and highly scattered in all directions parallel
to that hyperplane. Nevertheless, it is difficult to get an idea
as to how much weight should, in cases of doubt or even of
contradiction, be given to the various elements of the extensive
body of criteria — the more where these criteria, for lack of
significance limits, are formulated in rather vague terms. There
is no warrant that this vagueness of the tests, conditioned by the
very method of approach, may be compensated for by increasing
their number; one is left with the feeling that the various parts of
the system of tests are to a large extent interdependent.

Still more the need for a probability distribution of the errors
in the variables is felt in the argument concerning the precision
of the estimated regression equation. It will appear in section 10
that, if all variables contain an erratic component, an estimated
regression equation is subject to two quite different kinds of
error, which are, under the conditions of that section, in first
approximation superposed. Only one of them is considered by
F r i s c h ,  and is due to absence of knowledge on the ratio’s of
the variances of the errors in the individual variables. The other
one is the usual sampling error, and is, in cases of sufficient in
dependent variation of all of the determining variables, approxi
mately given by an expression which bears close resemblance to
the formula (3.32), found by means of F i s h e r’s specification.
It arises from the fact that the errors in the variables, even if
being uncorrelated, mutually and to the systematic components,
in the parent distribution, will in general fail to be so in a sample.
Therefore, the assumptions (5) are tantamount to the complete
neglect of this sampling error. It depends largely on the circum
stances of the problem which of these two different errors in
the regression coefficients is quantitatively the most important
one. In general the sampling error is relatively the more im-
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portant the smaller the number of observations and the closer
the fit. In fact, in a two-variable problem with correlation
r 12 =  0.95 some 37 observations are needed in order to obtain,
according to (3.61), a sampling standard error of not ex
ceeding one half of the difference | — b$  | between the
limits assumed by F r i s c h .

It is beyond doubt that any concrete specification of a parent
distribution of errors considerably restricts the number of cases
in which the results deduced from that specification may, with
some approximation to reality, be applied. However, in my
opinion, a far more one-sided and severe restriction of possible
applications is imposed by the plain neglect of all errors of
sampling.

In another respect (21) may induce an unfounded underesti
mation of the precision of an estimated regression equation.
Such a situation may be met with if a close fit has been obtained
in a set of variables by a regression equation in which the re
gression coefficient (s) of the dependent variable on one or more of
the determining variables, measured in standard units, is small
compared with unity, though perhaps significantly different
from zero — a case which cannot occur if, as is supposed in the
argument leading to (16), only two variables are present. In
connection with a definition of “close fit” which seems to be
reasonable, it will be shown in section 12 that in such cases the
elementary regression hyperplanes corresponding to the deter
mining variables of small influence on the dependent variable
fail to show anything which might be called a close fit to the
scatter. Consequently, the diagonal regression coefficients cor
responding to these variables of small influence, obtained as
geometric averages partly based on these divergent elementary
regression coefficients, are biased in a direction so as to exaggerate
the influence of the variables concerned on the dependent
variable. In particular, the use of the diagonal regression might
suggest a significant influence exerted on the dependent variable
by other variables, which is not warranted by the data. On the
other hand, the divergent elementary regression coefficients
also enter into the expressions (21), and would lead one to admit,
as possible, regression hyperplanes which do not at all fit to the
scatter.
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5. M. J. van Uven — the weighted regression.

The argument given in section 3 suggests that, in cases where
all variables are subject to error, a fitting procedure is needed
which deals with all of the variables on an equal footing. A
procedure having this property was introduced by K. P e a r 
s o n  (22). He defines the orthogonal regression hyperplane by the
requirement that the sum of squares of deviations of scatter points
from the hyperplane, measured in a direction perpendicular to the
hyperplane itself, should be a minimum.

Let
(1) ax — a =  — a =  0

be the equation of any hyperplane, the coefficients of which
may be normalized by
(2) axax =  1 .

The sum of squared distances of scatter points from this hyper
plane is
(3) S(a, a) =  ST (a X(T) — oc)2 .

According to their definition, the coefficients of the orthogonal
regression equation

(4) — a =  0

as normalized by
(5) ay_ax =  1

are found as those values of ak, a, satisfying (2), for which
S(a, a) is minimal. By differentiating (3) with respect to a
it is easily seen that, for given values of the ak , 5 (a, a) is
minimal if a assumes the value

(6) a =  aX .

Consequently,

(7) a =  aX,

where the ak are found, according to (2.2), as those values of
the oq., restricted by (2), for which

(8) S (a) — a m i
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is a minimum. The solution of this classical problem has been
mentioned in section (2). a is the characteristic vector of m
corresponding to the smallest characteristic value mlt and is
uniquely determined unless the two smallest characteristic
values m1 and m2 coincide. In geometrical language: the vector
a indicates the direction of the shortest principal axis of the
ellipsoid of inertia of the scatter points. Equation (7) shows that
the orthogonal regression hyperplane passes through the “centre
of gravity”, with coordinates X 1 ---- X K, of the scatter points.

In the set of variables X 1 . . . .  X K quantities of different
nature may be present: prices, quantities of goods, ratio’s of
prices or quantities, etc. In making use of a presentation of the
variables in A-dimensional space we should take care not to be
influenced by the suggestion (not: assumption!) of homogeneity
of the variables, inherent in that manner of presentation. Indeed,
the implications of the postulate which served as a definition of
the orthogonal regression are not immediately obvious. Distance,
perpendicularity, the principal axes of an ellipsoid, are all con
cepts which derive their geometric meaning from invariance for
orthogonal transformations. Such transformations have no sense
when qualitatively different variables are involved. For that
reason, it may be useful to deprive the definition of the orthogonal
regression of its seeming simplicity by formulating it in terms of
differences between variables measured in the same units. This
can be done by introducing the foot points x)
(9) 4°(«) . . . .  *<!(«)- i =  1 , 2 ---- T,

of the perpendiculars to the hyperplane (1), passing through the
corresponding scatter points X f .  After v a n  U v e n (36)
they will be called points obtained by adjustment of the scatter
points to the plane, or, briefly, adjusted scatter points. The
coordinates of the t-th adjusted point may be defined as those
values of x1 . . . .  xK, restricted by (1), for which
(10) S® =  2* (X®-* * )* ,

the squared distance between scatter point and foot point,
assumes its minimum value S(t>(a). It is easily seen that the
solution x(l\(t] satisfies

*) Though the  foot points, of course, depend also on a, for b rev ity
only  a has been en tered  in to  th e  no ta tion .
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(11) X$> — 4 »  =  a* (aX<‘» — a)

if the common sign factor (+  1 or — 1) in a and a, not deter
mined by (2), is adequately chosen. The second factor in (11)
indicates the length of the Tth perpendicular. The first one
represents, for k =  1, 2 . . .  .K, the set of direction cosines,
common to all perpendiculars.

As an illustration fig. 4.1 shows the foot points of perpendicu
lars to the plane

F igure 4. 1. A construc ted  exam ple of
orthogonal ad ju s tm e n t of sc a tte r  points

to  th e  p lane 2xx —  x 2 —  x 3 — 0.

( 12) 2xx — x2 — x3 =  0

passing through the scatter points of the series

(13)

—4 —2 9 —7 —4 6 8 —7 1,
5 8 —2 —7 —7 —8 4 8 —1,

—7 0 8 —7 11 2 12 —10 —9.

These series have been deliberately chosen so that the cor
responding scatter points lie close to some plane without being
concentrated in the neighbourhood of any line within that
plane. The deviations (11) are

4
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-2 —4 4 0 —4 6 0 —4 4,
1 2 —2 0 2 —3 0 2 —2,
1 2 —2 0 2 —3 0 2 —2,

the sum of their squares is 180.
The plane (12) is not the orthogonal regression hyperplane.

We can imagine “foot point series” x%\a) computed for a number
of sets of values given to oq, ot2, a3 in (1) (a may be taken 0
as in (13) X x — X 2 — X 3 =  0). The orthogonal regression plane
is indicated by that set of values for which

(14) S(«) = 2 t S<t >(«)

is minimal. It is, approximately,

2 x1 — 0.26 x2 — 1.24 x3 — 0,

with a minimum of S(a) slightly exceeding 150.
It will be clear that the orthogonal regression equation depends

on the units of measurement in which the individual variables
X k are expressed1). For the expressions (10), entering into
(14) , are sums of squared differences of variables each measured
in its own unit. Indeed, the choice of such units may in a sense be
considered as the equivalent to the choice of weights given to
each of the variables X k in the definition (10) of "distance” by
means of which the foot points were obtained.

This idea leads to a generalization of the postulate defining
the orthogonal regression in which such weights are explicitly
introduced. This generalization was given by R h o d e s
(23) .  His fitting procedure may be formulated like this. In
defining the "adjusted points” (9) we now require that, instead
of (10), the weighted sum of squared differences

(15) S<« e z ^ i X V - x J

should be minimal for values of xk restricted by a linear equation

(16) Yx y =  0.

The solution x%\y) are foot points of perpendiculars to the

*) A system atic  s tu d y  of th e  behav iour of d ifferen t regressions under
some types of linear transfo rm ations of th e  variab les w as given by
F r i s c h  ( 13 ) .
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hyperplane (16) drawn through scatter points only if the scatter
diagram is constructed after changing the units of measurement
of the variables X k in the ratio’s 1 : V ekk. Or, as an alternative
interpretation, they are intersections of the hyperplane and
straight lines drawn through the scatter points in a direction
conjugate to that of the hyperplane with respect to the quadratic
form

(17) Y x ^x -
Let S™(y) be the minimum value assumed by (15) when the
solutions xffii) are inserted. The postulate is, again, that

(18) S8w(y) =  £TS<£(y)

should be minimal for variation of y, Y- (In this formulation no
normalization rule of y and y has been introduced; above, the
rule (2) served only for simplicity). The resulting regression
equation might be called the weighted regression.

Still more general is the postulate introduced by v a n
U v e n (36), which is equivalent to that obtained by replacing
the weighted sum of squares (15) by a quadratic form

(19) S% ^ ( X y - Xy)

with non singular positive definite matrix ||ew|| =  £-1.
The counterpart of (11) for this "skew” definition of the adjust

ed points is found as follows. The values xf{y) of xk, restricted
by (16), for which (19) is minimal, may be found as the values
minimizing
(20) U == Ŝ > 2cp (yx xx y),

where the L a g r a n g e  multiplier <p is determined so that
these values satisfy (16). This leads to the equations

—  =  2s‘l ( Z f - x x) - 2 9Tl =  0,

which are solved by forming the linear combinations

dU ...
=  — xk —  9 Zkx Yx =  0

by means of the inverse matrix ||ew|| = e  of e 1. Combined
with (16) this leads to
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yX(<) — y
cp =

yey

whence the adjusted points x^\y)  satisfy

( 21) X k — 4°(ï) =  s*v Tv •

and the minimum of (19) is
(YX(« - y )

(22) S<»(y) =  [X(» - x ( y ) ] e - 1[X»

Equation (21) shows that the adjusted points are intersections
of the hyperplane (16) with straight lines drawn through scatter
points in the direction indicated by the direction numbers efcvyv,
k =  1 . . . .  K,  and therefore conjugate to the direction of the
hyperplane with regard to the quadratic form ye-1y. Again,
the coefficients c, c of the regression equation fitted according
to v a n U v e n’s principle are found as the values of y, y for
which

assumes its minimum value. The resulting equation will also be
called the weighted regression. If necessary it may be distin
guished from R h o d e s’s regression by calling it the general,
as distinct from the special, weighted regression.

As (22) is homogeneous of degree zero in the yfc, y, the so-
lutional values ck , c are determined but for a common factor,
and are proportional to the values of yk , y minimizing

As y does not occur in (25), differentiation of (24) with respect to
y shows that in the minimum

Inserting this into (24) we find, owing to (2.2), that c is propor
tional to that vector y, restricted by (25), which minimizes

(27)

(23) SJy) = S TS£>(y)

(24)

subject to the restriction
(25)

ST(yX(T)- y ) 2

yey =  1.

(26) y =  yX.

ymy.
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So we are led to the minimum problem of section 2 in its general
formulation. The weighted regression coefficients ck satisfy

(28) (,m k X  £̂fcx) cx == 0>
where I is the smallest root of

(29) |m — Ze| =  0,

and indicates the minimum of (23). They are uniquely determined
{but for normalization) if I is a single root, which will be assumed
in what follows. The “level coefficient” c is, according to (26),
determined by

(30) c =  cX.

V a n  U v e n’s principle was put forward in connection with
the hypothesis that the errors in the variables X k are normally
correlated with a moment matrix proportional to e. In addition
he derived expressions for the standard errors of the regression
coefficients of the general weighted regression for different
normalization rules of these coefficients. In this part of his work,
however, the value of his results is reduced by errors arising
from neglect of a careful distinction between the parameters of
the parent distribution and the statistics computed from the
observations in order to estimate these parameters.

More detailed consideration of these points is reserved for
part III. The weighted regression will be the main tool in the
developments in these sections. After a study of v a n  U v e n ’s
problem of the sampling variance of the weighted regression
coefficients on the hypothesis that the matrix e is known a
priori, an attempt will be made to remove the limitations to
possible applications imposed by that hypothesis by investigating
how the weighted regression coefficients and the expressions ap
proximating their sampling variances depend upon assumed values
of the elements of e.



PART III

Synthesis — deductive part

6. Comment on some comments.

Many writers have called attention to the difficulties for an
error theory of regression analysis of economic time series which
are caused by the cyclical nature of these series as opposed to the
random series assumed in many applications of sampling theory.

E. J. W o r k i n g  (37, p. 148), speaking of the cyclical
character of demand series, states:

“It is largely because of this fact that it seemed necessary
to point out earlier in this paper that care should be used in
selecting an index which might be expected to move in
accord with changes in the demand of a commodity. In
dexes of industrial production, employment, payrolls,
and consumer income, as well as various price indexes, are
of a cyclical nature, and they all have moved fairly closely
together in the past fifteen years. The fact that a given
one of these indexes seems to be closely related to fluctua
tions of demand during the past fifteen years is of itself of
little value in indicating how that index will be related to
the cyclical shifts in demand for a particular commodity
during future years. The close relation between two series
of data through one complete cycle cannot be considered to
be of much significance as empirical evidence. Even though
the data may cover a period of a dozen years, this does not
mean that we have that many independent observations.
There may, indeed, be question whether data which cover
one cycle should be considered the equivalent of as many
as two independent observations”.

An interesting illustration of these difficulties is given by
B a r t l e t t  (2, p. 543):

“ I may mention an examination of the correlation

a
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obtained by Thomas between a business index and the
death-rate in her very interesting book Social Aspects of
the Business Cycle (29) . In her investigation of the relationship
between the pre-war trade cycle and the death-rate lagging
one year, she was puzzled to find an apparently significant
positive correlation of .31 between prosperity and mortality.
I found on examining her figures that the correlation for
the period 1890—1900, which I had reason to select owing
to the death-rate showing strong cyclical fluctuations at this
time due to the influx of influenza, was .71; and . 11 for the
remainder of the period 1863—1893. The most important
contribution to the correlation was due, when the death-
rate was lagging one year, to the coincidence of the large
influenza fluctuations with one of the unemployment cycles.
The correlation is thus probably spurious; and at least in
view of its dependence on this particular coincidence loses
any statistical significance it appeared to possess.”

This and many other examples show that high correlations
between series of cyclical-nature need not be an indication of
causal relationship. With regard to the problem of testing signifi
cance of correlation between time series from statistical evidence
B a r t l e t t  (2, p. 542) concludes:

“If neither series is random, no valid test can be recom
mended, for it is not likely that the dependence of the
observations can be specified in any satisfactory statistical
way. (In practice the hypothesis of serial correlations J)
considered earlier in this note is certainly not in itself an
adequate modification). These conditions occur when the
series contain short-term cyclical fluctuations that are the
source of any correlation. The usual test of significance
will then admit, as significant, correlations that should not
be, — all the more if lagged correlations are also to be con
sidered. In some problems it may not be possible to regard
the observed correlation as more than a summary of the
relationship, real or otherwise, that actually existed for the
period examined. This might be said, for example, of the
correlation of —.36 between unemployment and fluctuations
in the level of real wages from 1860 to 1914 * 2), (it may be

*) As in troduced  by  Y u l e  (40).
2) M. S. B a r t l e t t ,  unpub lished  essay.
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noted that this correlation is negative in spite of a natural
negative correlation between unemployment and prices).
If any attempt of assessing significance with such cycles
is made, it may be noted that it is the number of cycles
rather than the number of observations which is the more
relevant factor.”

Such criticism might induce serious doubt as to the value
and reliability of regression equations fitted to economic time
series. At any rate it points to the necessity of adapting the as
sumptions on which an error theoiy of regression is based to the
special situation present in economic applications. Considering
the problem of trend fitting, which may formally be taken as a
problem of regression of a variable on time, H. W o r k i n g
and H o t e l l i n g  (38) proposed to evade the difficulty of in
terdependence of successive observations by grouping the data,
each group containing a constant number of years large enough
to leave only insignificantly small serial correlations in the series
of group means. To this procedure the objection could be made
that a series devoid of serial correlation is not for that reason a
random series 1). Further, if one should take up the idea (not
proposed by W o r k i n g  and H o t e l l i n g )  of applying
this precept in fitting a regression equation on variables other
than time, one would in many cases find a great deal of relevant
variation in the data eliminated by the replacement of groups
of observations by group means.

In my opinion the way out of the difficulties set out in the
above quotations is as indicated by E. J. W o r k i n g  in the
remarks immediately following the passage cited before:

“This brings us again to the point which has often been
stressed before; the need for the analysis of demand in
terms of causation. This is especially important where we are
studying changes in demand which are primarily of a cy
clical nature, and for which we have only one or two cycles
of evidence. Closest attention must in such cases be given to
a priori reasoning concerning the causal relations which
may be involved, and to the many scattered bits of inductive
evidence which may bear upon the problem. Even where

q The series . . . . —• 1, + 1 ,  + 1 ,  —  1, —  1, + 1 . . . . ,  having
zero serial correlation , is, in stead  of being random , construc ted  by
a  defin ite m athem atica l law.
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data are not of a cyclical nature, statistical methods alone
are incapable of yielding definite evidence of causation.
It is only when we combine statistical evidence in a closely
knit reasoning process that we can hope to arrive at causal,
and hence permanent, relationships between factors.”

To use a concrete picture, the problem should be treated by the
economist and the student of mathematical statistics in colla
boration, each dealing with his own part of the problem; or,
alternatively, one investigator should play both roles as distinct
parts of his activity. The economist — or, in general, the expert
in the field to which the dependent variable belongs — should by
economic reasoning and general economic experience — or by his
knowledge of the special branch of science concerned — devise a
set of determining variables which he expects to be a complete
set in the sense indicated on p. 6. The statistician cannot test the
correctness of this expectation. Causation, determination are
concepts outside the domain of statistics. However good the fit
of a regression equation to the data combining the dependent
variable with the supposed complete set of determining variables,
the possibility remains that the supposed complete set, though
differing from the real one in at least one variable, figures in the
regression equation as a representative of it, and is able to do so
because of close interrelations, “by chance” or otherwise condi
tioned, between variables of the two sets.

Nevertheless it is clear that a regression equation fitted by
means of an erroneously supposed complete set of determining
variables should not necessarily be devoid of meaning, if only
the relations enabling the supposed complete set to represent the
real one were themselves of a stable and economically significant
nature. The regression equation could then be considered as an
estimate of a relation obtained as the result of the elimination
of one or more variables from two or more economically signifi
cant relations. Stability, and, with that, prognostic value, may
be assigned to such a relation only if we may expect that the
circumstances conditioning any of the relations from which it
has been obtained by an elimination process will remain the
same. The safest way to ascertain whether such a situation
prevails is, indeed, to break up the intricate system of causal
relations into elements, each consisting of one relation expressing
one of the variables in terms of its complete set of immediately
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determining variables. If the analysis has to serve as a base for
discussing economic policy, such a decomposition into elementary
causal links is indispensable. For then, it is required to study the
effect of measures affecting only one or a few of these elementary
link relations (see for instance T i n b e r g e n , 31, 32, 35).

Returning to the division of labour between our two colla
borators, it may be stated that to ask the statistician for a test
affirming the validity of the economist’s supposed complete
set of determining variables on purely statistical evidence would
mean, indeed, to turn the matter upside down. For, in order to
be able to tell what may occur "by chance”, he must know
the laws, causal or in terms of probability, governing the de
velopment in time of the variables concerned. Stable frequency
distributions, as in biology, do not exist in economic variables.
His task would, in fact, require knowledge of the causal relation
ships determining the variables which he is asked to test.

The statistician, though unable to confirm the validity of the
economist’s contribution, may in some cases tell that he is
wrong; namely in those cases in which a regression equation
expressing the dependent variable in terms of the determining
variables of the supposed complete set, fitted to the data, leaves
large residuals, especially if these are of cyclical nature. In the
opposite case, that is, if the residuals are small and do not
exhibit systematic variation, the task of the statistician is confined
to a study of the reliability of the empirical regression coefficients on
the hypothesis that the economist indicated the right set of determining
variables, or, at least, that he did not omit important determining
variables from his list. Such a study is, indeed, possible. Since
F i s h e r ’s specification does not imply any hypothesis as to the
distribution of the systematic components, this study may be
performed by means of the formulae of section 3 if the under
lying assumptions of that specification are satisfied. In the
present work, a generalization which admits errors in all of the
variables will be considered.

The second, more inclusive, version of the above hypothesis
which necessarily underlies the statistician’s work has been added
in order to cover another case in which it may be possible for
the statistician to correct the economist’s indications. If the
latter performed his task so conscientiously as to include in his
list, besides all relevant determining variables, one or more other



59

variables, the statistician may be able to tell him that the data
do not warrant a significant influence of these superfluous varia
bles on the dependent one. It will appear, however, that such a
correction will only be possible if these superfluous variables are
not highly intercorrelated with the relevant determining variables.

These considerations may be illustrated by the two examples
reported by B a r t l e t t .  A medical expert studying the factors
affecting mortality would not think of the business cycle as the
most important, and by no means as the only determining varia
ble of the death-rate.

He should therefore not be disturbed in finding the sign of the
single regression coefficient of the death-rate on employment
opposite to that expected for the corresponding partial regres
sion coefficient computed by means of a complete set of determin
ing variables of the death-rate. From such a result he should
conclude that the business cycle, itself being a factor of minor
importance, must in the period under study have been correlated
to a considerable extent, for whatever reason, with one or more
of the more important determining variables of mortality; and,
indeed, such a situation was detected by B a r t l e t t .

Things are different in the other example. Not only the econo
mic expert, but every worker knows by experience the signifi
cance of the influence of unemployment on the rate of change of
wages. Even if the single correlation between these variables
in some cases proved to be zero instead of —0.36, it would be quite
legimate to try to estimate the net influence of unemployment
on the rate of change in wages by looking for other determining
variables forming together with unemployment a complete
set. Such an attempt has certainly failed so long as cyclical
oscillation is left in the residuals from the fitted regression
equation. If residuals are small and random, the reliability of the
result is bound up with the validity of the supposed complete set
of determining variables in the light of economic analysis and
experience of factors affecting wage changes.

7. Specification.

The elements of the specification of the parent distribution
which is put forward in this section are already present in the
work reviewed in part II. They are, however, spread over the
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contributions of different investigators. Our procedure will be
to retain from each of these contributions just those elements
which appear adequate to the requirements of the present field
of applications, and to drop other features which have turned
out to lead, under some circumstances, to erroneous conclusions.

To start with, the quotations in the preceding section strongly
advocate the advantage of F i s h e r ’s specification, in which
no assumption is made about the distribution of the systematic
components of the variables. Since it is known a priori, by
general experience, that a stable distribution exists only in very
rare cases, an infringement against our third specification rule
would be committed by the introduction of a specified pro
bability distribution for the systematic components.

On the other hand, F r is c h ’s criticism of the arbitrary use of
the results of that specification in the analysis of economic
time series clearly shows that we should try to avoid asymmetry
in the treatment of the several variables. For that reason,
F r i s c h’s decomposition of each of the variables into systema
tic and erratic components will be adopted as an essential feature
of the specification. The interpretation of the erratic components
may then be taken as indicated on p. 6.

Thus, writing
(1) =  W  +  z f

with

(2) Tx —  T =  °> Ti 0,
we introduce, besides the required parameters y, y a large
number, precisely T ( K —  1), of other unknown parameters

(3) $>, k' =  2,3 . . . . K ,  t — 1 ,2 ---- T,

representing all values, assumed in the different years by the
systematic components of the determining variables. By (2)
the corresponding values for the dependent variable may
be expressed in terms of y, y and the parameters (3).

Finally, it will be assumed that the erratic components
may be considered, for every value of t, as independent drawings
from a multivariate normal distribution, with a non singular
matrix of variances and covariances given by

(4) ll*2%ll,
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where € is normalized by some rule, for instance

(5) Exx =  L
So far, as many as T (K — 1) +  K  +  |  K(K  +  1) indepen

dent unknown parameters have been ihtroduced (y and y also
being normalized by some conventional rule), against only TK
observational values as source of information concerning these
parameters. This is a situation somewhat unusual in sampling
theory, and at first sight it might be doubted whether this
set up leads to any result. By what follows it will be seen, how
ever, that the present specification is well suited to the attainment
of what is our only aim, viz. the accurate estimation of the “re
quired parameters” y, y.

It will appear in the subsequent developments that the para
meters fall into three groups:

I. The quantities skl, indicating the ratio’s of the variances
and covariances of the erratic components in the individual variables.
Attempts to estimate them from the data are opposed by difficulties
of a fundamental nature. On the other hand, unbiased estimation
of the "required parameters’’ y is only possible if e is given a
priori. In this situation, we shall start with the (unrealistic)
assumption that e is a priori given. By means of the results
obtained by that assumption we shall proceed to a study of
the bias introduced in the estimation of y in cases where the
values, tentatively adopted for the elements of e, differ from
the true ones.

II. The values Zffj) assumed by the systematic components of the
determining variables. Even if e is known, estimation of the tyf) is
possible only with a very low accuracy. In fact, the sampling error
in estimating the point l*(t) is of the same order of magnitude as
is the corresponding erratic displacement z(t). Therefore, the esti
mation of the £$ lacks a property which is typical for the usual
estimation processes of sampling theory, viz., that the accuracy
of estimation may be raised up to any level by a sufficient
increase of the number T  of observations.

III. The required parameters y, y and the common factor g2

in the variances and covariances of the erratic components. Under
favourable conditions, these parameters can be estimated with an
accuracy considerably exceeding that of the individual observations.
Indeed, the sampling variances of the estimates of these para-
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meters tend to zero if the number T  of observations is increased
beyond any limit, provided that in the infinite series of additional
observations so much independent variation of the systematic
components £jj.9 of the determining variables occurs, that the
matrix T~* \ \ |xfeT \ | of their variances and covariances tends
to some non singular limit.

It may be useful to illustrate the situation by means of a
geometrical picture of the case where the number of variables is
K  =  3. The regression equation (2) of the parent distribution
then represents a plane II not parallel to the ^-axis. The syste
matic components £$ are indicated by a swarm of points within
n , one point for every year. No assumption is made about the
distribution of these points over the surface of n. As a represen
tation of the probability distribution of the observations we may
imagine small “normal” clouds of probability density, each cen
tered at one of the T  points £(l) in II. All the clouds show the
same ellipsoidal shape, of which the relative dimensions are
indicated by e, the absolute extension by a. The integral of the
density over anyone of the clouds is equal to unity. The obser
vations are conceived as a series of T  drawings, one from every
cloud of probability density.

This picture already suggests the validity of what has been
said above about the estimation of y a-nd y. If the points
are both sufficiently numerous and sufficiently scattered in all
directions within their plane, the deviations X(<) —-£<*> will
approximately balance even within groups of years corresponding
to points £(<> localized only in parts of the region on the surface
of II which is covered by the scatter points. Hence an adequate
fitting procedure using the assumed a priori knowledge of e may
be expected to yield a rather accurate estimation of y and y.

The specification of the parent distribution, as given by (1),
(2), (4), may now be considered in the light of the remarks and
conclusions contained in the preceding section. As in F i s-
h e r ’s specification, the systematic components of the variables
may be interdependent in successive observations in an arbitrary
way without affecting the validity of the conclusions drawn from
the data. The hypothesis of independence in successive years is

also as in F i s h e r’s specification — maintained only
with regard to the erratic components in the variables. To some
extent the validity of this hypothesis may be tested from the



data themselves. If it holds, no degree of interdependence in
successive values of systematic components should prevent us
from considering the observational values of every year as yiel
ding an independent contribution to the estimation procedure of
Y and y. (This does not mean, of course, that observations
of different years give equal contributions to the accuracy of
estimation of y. The importance of the observational values of
one particular year in increasing the accuracy of estimation of
any of the yk largely depends on the position of the correspond
ing point £(t) relative to the swarm of the other similar points in
II — a well known feature also of F i s h e r ’s specification).
With regard to the problem of judging the accuracy of estimation
of y and y , or, in particular, in testing the significance of the
deviations from zero of one or more of the yfc, there is no
reason to consider the number of cycles as the relevant factor
instead of calculating the joint effect of all individual observations.

As in all applications of sampling theory, results reached in the
study of these problems have a conditional validity. They can
be trusted in so much as the specification of the parent distri
bution can be deemed to represent adequately the essential
features of the object of inquiry. In our problem this does not
only mean that the decomposition (1) and the assumed normal
distribution of the errors zk\  independent and stable for different
years, should yield a reasonable approximation to reality, but
also that a linear relation (2) should connect the systematic
components.

So the specification (1), (2), (4) — like that of section 3 —
already implies the hypothesis, indicated in the preceding
section as the basis for the statistician’s work: that no relevant
determining variable was omitted from the set of variables. If this
hypothesis is open to doubt, the formulae deduced from either
of these specifications may lose their meaning, even if they hap
pen to suggest a very accurate estimation of the regression
coefficients.

8. Estimation.

Considering the matrix e as given a priori, we shall derive
maximum likelihood estimates for the parameters y, y, a2, Ejf) .

The superio rity  of th is  m ethod  of es tim atio n  over o th e r possible
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m ethods in  cases w here th e  p a re n t d is trib u tio n  is know n to  have  some
specified m a th em atica l form  has been estab lished  for large sam ples
by  F i s h e r  (7) in  p roving  th a t ,  if n is th e  num ber of observa tions
in a sam ple, th e  lim it for n —y  oo of n tim es th e  sam pling variance
of th e  m axim um  likelihood es tim a te  is equal to  o r sm aller th a n  the
corresponding  lim it of an y  o th e r consisten t e s tim a te  of th e  sam e
param ete r. The reciprocal value of th is  lim it w as called by  F i s h e r
th e  amount of information p rese n t in  one single observa tion  an d  can
be expressed by an  in teg ra l w hich is, b u t for its  sign, equal to  th e  m ean
value of th e  second deriva tive , w ith  respect to  th e  p a ra m e te r  to  be
estim ated , of th e  logarithm  of th e  d is trib u tio n  function  of one in 
d ep en d en t observation .

In  th is  theo ry , th e  sam ple (1.1) is to  be considered as one single
"o b se rv a tio n ” , every  "rep ea ted  sam p le” c o n s titu tin g  an  ad d itio n a l
“o b se rv a tio n ” , and, as was po in ted  o u t in  section 1, in  tim e series
analysis only  one such "o b serv a tio n ” can  be ob ta ined  for a given tim e
period. In  th e  th e o ry  of sm all sam ples, in to  w hich we are th u s  forced,
resu lts  of g rea t fo rm al b ea u ty  have been ob ta ined  by  F i s h e r  (7)
by  an  ex tension  of th e  defin ition  of th e  am o u n t of in fo rm ation  to  a
nu m b er of obse rva tions and  to  s ta tis tic s  derived  from  such obser
vations. The in fo rm ation  in teg ra l for n in d ep en d en t observations
proved  to  be n tim es th a t  for a single observation , while th e  in fo r
m ation  in teg ra l for a s ta tis tic  or a se t of s ta tis tic s  ca n n o t exceed th a t
for th e  observa tions i t  is com puted  from . If  a s ta tis tic  ex ists which
con ta in s all th e  in fo rm ation  p resen t in  th e  observations, i t  can  be
ob ta in ed  by  th e  m ethod  of m axim um  likelihood. In  connection  w ith
these  p roperties, F i s h e r  considers as th e  aim  of th e  th e o ry  of
es tim atio n  th e  es tab lish m en t of such s ta tis tic s  w hich to g e th er con
ta in  all in fo rm ation  p resen t in th e  d a ta , and  are chosen in  such a w ay
as to  ad m it s ta te m en ts  in  te rm s of fiducial probability  (7, 9, 11)
concerning th e  unknow n param eter(s), while he declines (see th e  d is
cussion of N  e y  m a n ’s paper, 18 , p. 618) to  assign unique v a lid ity
to  such s ta te m en ts  from  sta tis tic s  conveying only  a  p a r t  of th e  in 
fo rm ation  in  th e  sam ple.

This view is n o t shared  by  N e y m a n  (18) who in tro d u ced  s ta te 
m en ts of th is  k ind  in  te rm s of confidence intervals irrespective  of the
am o u n t of in fo rm ation  in th e  s ta tis tic  on w hich th e  s ta te m e n t is
based. Since th e  v a lid ity  of these la t te r  s ta te m en ts  can  form ally  be
proved , th e  p o in t a t  issue can  only  concern th e ir  logical m eaning.

As I see it, th e  adequacy  of th e  above m entioned  conception  of th e
aim  of s ta tis tica l es tim atio n  in  cases w here th e  nu m b er of observations
is sm all owing to  th e  very  n a tu re  of th e  problem , w ould be considerab ly
cleared  up if some p roposition  could be proved  estab lish ing  som e con
nection  betw een th e  am o u n t of in fo rm ation  in a s ta tis tic  o r a se t of
s ta tis tic s  an d  th e  s ta te m en ts  in  te rm s of confidence in te rvals, to  be
m ade ab o u t th e  param eter(s) from  these s ta tis tic s  —  in such a w ay
th a t  th e  s ta tis tic s  con tain ing  m ore of th e  in fo rm ation  w ould adm it, in
th e  average, m ore "a c c u ra te ” s ta te m en ts  on th e  param ete r(s). Such
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a p roposition  could no t, as one m ight th in k , be fo rm u la ted  in  te rm s of
th e  average leng th  of confidence in te rv a ls  in  rep ea ted  sam ples, since
th is  le n g th  is changed if th e  concerned p a ra m e te r  is rep laced  b y  a
m onotonie function  of i t  —  a su b s titu tio n  w hich m u st be irre lev an t
to  th e  problem . Y et, I m ust confess th a t ,  in  th e  absence of such a
p roposition  in  a m ore ad e q u a te  form ulation , I have som e difficu lty
n u n d erstan d in g  th e  im plications of th e  endeavour to  derive also from

sm all sam ples s ta tis tic s  hav ing  an  in fo rm ation  in teg ra l as large as
possible.

In  view of these  difficulties, th e re  will n o t be a tte m p te d  a discussion
of th e  in fo rm ation  in teg ra ls  regard ing  th e  several pa ram ete rs  un d er
consideration . Such an  a t te m p t w ould, m oreover, involve a techn ical
m a th em atica l p roblem  for its e lf ; a  generalization  w ould be requ ired  of
th e  concep t of in fo rm ation  to  th e  sim ultaneous es tim atio n  of m ore
th a n  one p a ra m e te r  if, in  add ition , a num ber of o ther, irre levan t, u n 
know n param ete rs  occur in  th e  p a re n t d is trib u tio n  function . Thus,
m ax im um  likelihood es tim atio n  is here ad o p ted  sim ply  because i t
seem s to  lead to  useful s ta tis tics .

Owing to (7.4), the distribution function of the erratic compo
nents relating to one particular year is

~ ( < )  M )

(1) /«> -  ( W ) - * *  | % I* exp -  ,

whence the logarithm

2Tlo g /^

of the likelihood function differs only by a constant term from

(2) L =  — TK  log cr — —  (X(T> — £ T)) (X(T) — £ T)).
2cr

We must find such values s'2, c, c, x(<) for a2, y, y, sa
tisfying (7.2) for which L assumes its maximum value L.
This maximalization will be performed in two steps. First arbi
trary values y, y will be imposed for a determination of those
values s'2(y), x(<)(y) of a2, l-(0, restricted by (7.2) with the
imposed values of y, y inserted, for which L reaches its restricted
maximum L(y). Then c and c will be found as those values of
y, y for which L(y) is maximal.

Now, both steps have already been performed in section 5,
the only complication being the occurrence of a2 in (2). The
second term in the right hand member of (2) consists of a factor

5
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1/2(tI 2 multiplied into the opposite of a sum of T  terms of the form
(5.19) each depending on the i f  for one value of t only. Conse
quently, the first step requires tha t each of these terms is
separately made a minimum by adequate choice of the corres
ponding point xw(Y). These latter quantities are, therefore,
identical with the adjusted points according to v a n  U v e n ’s
definition, as given by (5.21). Further, by differentiation of
L with respect to a, according to (5.22),

It ensues that, as to the second step, we may, instead of
maximizing L(y), as well minimize s '2(y), which bears a con
stan t ratio to (5.23). This problem has also been treated in sec
tion 5. The results m ay be recapitulated as follows. Maximum
likelihood estimation of the parameters of the parent distribution as
specified by (7.1), (7.2), (7.4) with an a priori given matrix e
yields as estimates c, c of y, y the coefficients of the general
weighted regression, defined by (5.28), (5.29), (5.30); cr2 is estimated
by

I being defined as the smallest root of (5.29), and, owing to
(5.28), equalling

the systematic components I f  are estimated by the coordinates
x f  of the points obtained by adjustment of the scatter points to the
general weighted regression hyperplane according to v a n  U v e n’s
principle of adjustment, which are given by

W ith regard to the estimation of cr2 the situation is somewhat

S'2(Y) =  Y k  [X<T)~ x(t)(y)] €-1 [X(T)— x (T)(y)] = (yX(T>— y)2
T K  yey ’

whence

(4) L(y) =  — \  T K  [log s '2(y) -  1],

I  =
cm c
C€C

c(X<f) — X)
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peculiar. It may best be understood by a comparison with the
cases in which all or some of the other parameters are given a
priori. If — besides e — all the points and hence also y and
y, were known a priori, the observations X(<) would define T
drawings z(<) from the distribution (1) in which a2 is the only
unknown parameter. Its maximum likelihood estimate would be

while x2 == TKs2(%) has the distribution function (3.48) with N
replaced by TK  (this follows from the fact that ze-1z is the sum
of squares of K  spherically normal variables, as may be seen by
a skew linear transformation of the zk which brings both e-1
and e to the form of the unit matrix 8).

Next, the case may be considered where, besides e, only y
and y are known a priori. The maximum likelihood estimate of
cr2 is now given by (3), which may, on account of (7.2), also be
written

having the mathematical expectation

is distributed according to (3.48) with N = T, since the T
variables yz(<) are spherically normal with variance c72yey.

Evidently s'2(y) is a consistent estimate of g2/K  instead of cr2,

(8) s2©  -  Y K  (X<T> “  ?(T>) £^ X<T) -  ?(T)),

with the mathematical expectation

(9)

( 1 1 ) ^ ' 2 ( Y )  =  ~ ,

while
X2 =  TKs’2( y)

which is unbiasedly estimated by

( 12) s2(y) =  Ks'2{ y),

only, however, with the accuracy of an estimate of the x2“type
based on T  degrees of freedom, as compared with TK  degrees
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in the case of s2(|). While every year contributes K  independent
squares (viz. of the K  above mentioned skew combinations of
the zk) to s2® , only one squared linear combination per year
enters into s2(y). The remaining degrees of freedom are consumed
in the estimation of the

This all follows from the analysis of variance of the problem.
The total variance

(13) 5 =  (X(T> — §W) e“1(X(T) — =  z(T) e-1 z(T>

consists of T  independent sums

(14) S® =  z® «r1 z®,

each of which is the sum of squares of K  spherically normal
variables with variance a2. When

Z =  X — |  =  [X — x(y)] +  [x(y) — §]

is inserted into (14), the cross term vanishes on account of (5.21),
as both points x(y) and \  lie within the hyperplane (7.2).
Consequently S splits up into the T  +  1 sums

(15)
5 = S 7 +  2tS£>,

5 , =  [X(T) — x(t)(y)] c-1 ( X « - xW(y)],

=  [x<«(Y) -  (̂<))] e 1 x « > (Y )- f] .

The first one is, according to (3), (10), (12) equal to

5/ =  7V(Y)
S t (Yzw )2

the sum of squares of T  spherically normal variables

yz®

(ycy)*
of variance a2 . STS $  therefore equals a remaining sum of
T {K — 1) such squares, which can be taken in such a way
that every S{j) contains (K  — 1) squared linear combinations
of the corresponding z f  only.

Without explicitly writing down the distribution of the x f  (y)
it will be clear that they are scarcely better “estimates” of the
%k than the observations X f  themselves, only a fraction 1 jK
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of the total variance being eliminated if the latter are replaced
by the x f  (y), or “adjusted” to the hyperplane. The process of
adjustment only eliminates the component X — x(y) of the
erratic displacement z in the direction indicated by the direction
numbers skx f\, leaving K  — 1 other independent components
within the hyperplane.

That a maximum likelihood estimate of an unknown variance
is biased and must be corrected for loss of degrees of freedom
in the estimation procedure is by no means new. In section 3, for
instance, this correction was made in (3.46). The present situation
is unusual only in so far that, owing to the large number of
unknown parameters, for every degree of freedom retained in the
estimation of a2, K  — 1 other ones are lost. Because of that,
the “bias” amounts to K  —- 1 times the estimate itself, and the
"correction” consists of a multiplication by K.

Finally, the case where also y and y are unknown. The ex
pression (5) is no more a sum of squares of spherically normal
variables. Nevertheless, it will appear in the next sections that,
under some conditions, it can be approximated to by such a
sum. Similarly the ck can be approximated to by linear com
binations of normal variables. It is then possible to consider the
analysis of variance for these comparison "estimates” (which,
in fact, depend on the unknown parameters), to which the real
maximum likelihood estimates are approximately equal. Here
a situation analogous to that encountered in section 3 arises.
K  further degrees of freedom are used in the estimation of y and
y, so that

(16)

is approximated to by an "estimate” of the y_2-type based on
T  — K  degrees of freedom and having mathematical expec
tation <r2.

The question arises whether it would be possible to derive
from the data estimates also of the zkl, by pushing the maxi
malization procedure still one step further. This would require
the determination of values ekl for zkl which, restricted by some
normalization rule, make I as defined by (5.29) a minimum. Yet,
such a procedure would hardly make sense. All solutions of
equations of maximum likelihood, derived in the preceding pages,
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show the property of not depending on the units of measurement
of the individual variables. This feature of the formulae has been
obtained just by the assumption of a priori given values of zkl,
which enabled us to build quadratic forms (of the type of the
last term in (2)) invariant for a change in the units of measure
ment, or which — in geometrical terminology — introduced a
metric in the space of the variables X. Now, on closer inspection,
it turns out to be impossible to choose a useful normalization
rule of e such that also e is independent of the units of measure
ment. Thus, at least in small samples, the sampling distribution
of any such values ekl cannot be expected to have a systematic
connection with the unknown parameters zkl.

More light is thrown upon the question by considering another
parent distribution than that used here, which is obtained if the

instead of remaining the same in repeated samples, are sup
posed to be random drawings from a normal distribution with
a singular matrix

r -V
of variances and covariances. In that case the X m are random
drawings from a normal distribution with a matrix of variances
and covariances

tc =  T** 1 p -f- e.

From this matrix — and only this one can be estimated from
the sample — e cannot be reconstructed by the sole condition
that p should be singular.

This analogy leads one to expect accurate estimation of e to
be impossible, if the points in the specification of section 7,
however numerous, are scattered in their plane in such a way
that they could have constituted a not improbable sample from
a normal distribution. There are, however, indications that in
other cases1), if c is known to be a diagonal matrix, estimation
of the zkk must be possible from a sufficiently large number T
of observations.

Though, therefore, much is left unsettled as to the possibility
of estimating e, this problem may be expected to become im-

‘) Consider for instance the case w ith K  =  2 where one half of the
points coincide with ^ x\  the other half w ith and where

I W  ~  Si2) I >  o 2 »*».
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portant only if T  is considerably larger than it is in most of the
applications for which this study is intended. For that reason, it
seems better to deal with e by the procedure indicated on p. 61.

Though v a n  U v e n did not maintain in his formulae the
distinction between parameters and statistics, he was apparently
guided by a conceptual scheme of the nature of the variables
similar to that exposed in section 7. The expression (16) for the
estimation of cr2 is given by v a n  U v e n  (36) in formula (46),
p. 154. An inconsistency in his set-up is that, on the one side, the
adjusted points x (t) are defined (36, p. 145) by a principle equi
valent to that applied in section 7, leading to mutually parallel
adjusting displacements, or to values of

(17) X f - x f ,  k — 1, 2,........ K,

proportional for all values of t — and, on the other, probability
is introduced into the problem by the assumption that the
displacement components (17) are subject to a joint normal
distribution with a matrix of variances and covariances pro
portional to e. Evidently, v a n  U v e n’s symbol for the
displacements (17) is used in two different senses.

The way in which the expressions for the maximum likelihood
estimates are derived in this section presupposes that e is non
singular. It is easily ascertained that these expressions preserve
their meaning if some of the variables X k are supposed to be
accurately known — that is, if some rows of e are supposed to
consist of zero’s only, while a non singular positive definite ma
trix is left after omitting these rows and the corresponding
columns — provided only that

(18) yey >  0.

In particular, the present specification of the parent distribu
tion becomes identical with F i s h e r ’s specification in the
special limiting case

(19) I ' U = 1 '
( ekl =  0 unless k =  I =  1,

and corresponding formulae become identical if (19) holds. Firstly
(7.1) changes into (3.2). Then, the last K — 1 equations in
(5.28) pass into (3.14), whence c, if normalized by cx == 1,
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will be the same as b. Further, a comparison of (16), I being
derived from (6), and (3.46), with s'2 as given by (3.20), shows
the identity of the estimates s2 of a2 in both cases (though
the expressions for s'2 are different !). Finally, (7) shows that
the adjusting displacements become parallel to the Xj-axis,
while the adjusted points come to lie on the sample regression
hyperplane (3.18), since the first equation in (7) passes into (3.36).

9. Distribution.

It would probably be a hard task to find the exact sampling
distribution of the coefficients c and c of the weighted regres
sion equation in sampling from the parent distribution specified
by (7-l), (7.2), (7.4). Complications would doubtless arise in
consequence of the definition of c and c as constituting a
solution of

(1) (mk\ ^k\)cX ~  0 »

(2) cX — c =  0,

if for I the smallest root lx of

(3) | m — le | =  0

is inserted. For even if Ta2 were a very small fraction of the
smallest positive 1) root X2 of

(4) | — Xe | =  0 ,

the circumstance that the normal distribution of the extends
to infinity would make for a finite, though small, probability for
samples to be drawn, in which the two smallest roots lx and
K of (3) are nearly equal. In such samples a slight variation of
only one of the z^  may suffice to produce a large discontinuous
jump in c, if only lx and l2 coincide at some intermediate
point during that variation.

In the face of these difficulties approximation seems to be the
most efficient tool. According to (7.1) we may generalize (3.23) to

(5) m =  [x +  m' -f m",

J) The absolutely sm allest root is Xj =  0, owing to (3.26).
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where

(6) K i  =  (4T) -  lc)z?] +  4 T)(^T) - 1*).

(7) Ki = W - z M T)-
Writing, again, lx =  I, analogous developments

(8) I == 0 +  I' +  I" +  . . . .

(9) c =  y +  c' +  c" + -----

of I and c may be defined by the requirement that, in the
equations

0 3) [f^x +  K \  ~t~ mk\ 0 +   ̂ +  ■••■) exx] (ïx +  +  c'\ +••■•) =  0,

obtained by inserting these developments into (1), sums of terms
of equal order of magnitude (that is : terms bearing the same total
number of dashes) are separately equal to zero:

0 1) (J-*xïx =  ° .

0 2) !bcX6X +  Kx'fl =  '̂SfcXÏX >

0 3) (r*x4 +  Kxci  +  mk\Tx =  l’sk\ci  +  l\x'(x > etc-

Since equation (11) holds on account of (7.2) (compare (3.25)),
it supplies the justification for the first terms (0 and y) in the
developments of I and c assumed in (8) and (9) respectively.
For the corresponding development of c,

(14) C =  y +  c' +  C” +  . . . .

we find from (5.30)

(15) c' =  yz +  c '1 ,

(16) c" =  c'z +  c'%  etc.

The question of the conditions for a rapid decrease in the value
of successive terms in the developments deserves some con
sideration. In (5) every next term is one degree higher in the
z!<), and one degree lower in the £(<) — % than the preceding
one. This suggests that a rapid convergence in the developments
may be expected if the dimensions of the “clouds of probability
density” from which the points X(<) are drawn, as given by the
matrix
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<72e

amount to only a small fraction of the dimensions of the swarm
of points 1-® within the hyperplane (7.2), in broad outline
described by the matrix

r -V
of the variances and covariances of the In this form, the
statement is rather unsatisfactory, for the same reason which
led us in section 5 to comment on the orthogonal regression.
There is not much sense in the notion of the dimensions of a
swarm of points, indicating by cartesian representation variables
measured in incomparable units. So, choosing a formulation which
implies only comparison of quantities measured in the same
unit, we will consider, provisionally, as a condition *) for rapid
convergence in the developments, that

(17) T °% k
\Xkk

<  1

for every value of k. This means that, if our method of approach
is not to be meaningless, the variances of the erratic components
should be relatively small fractions of the variances of the cor
responding systematic components.

The condition does not impose an important restriction on
the applicability of the method. If in any series an erratic
component occurs which is about as variable as the systematic
component, this series will not even permit, by whatever method,
a rough estimation of the regression coefficient which attaches to
the systematic component in a relation with other variables,
however accurately the latter may be known. In general, if
accurate estimation of regression coefficients is possible, it may
be performed by a few terms in the developments. The more the
accuracy of estimation is diminished by the presence of large
erratic components, the more terms will be needed to evaluate
that amount of accuracy which is left. In this study we shall in
clude in the analysis only terms up to the second order.

According to (7.2) and (6)

('8) Ym,Y =  0 .

') As we are dealing with positive definite matrices, it is sufficient
to form ulate the condition in terms of the diagonal elem ents.
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Consequently, by multiplying both members of (12) by yfc
and summing over k,
(19) l ' = 0 ,
in virtue of (8.18). The same operation, applied to (13), yields
(20) C'yey =  ym'c' +  ym"y .

The rank of p being K  — 1, c' is determined but for an
arbitrary additive vector rpy by the K  equations (12). The
factor cp must then be determined by a conventional rule
normalizing the first approximation y +  c' to c. The solution
of c' from (12) and from the normalization rule may conveniently
be performed by means of a matrix p^} =  11 p“  11 which might
be called the -partial inverse of p and is defined by the equation

This definition is equivalent to the following one: ph* is that
matrix which, by the orthogonal transformation which brings p
into the form

0 0 .. .. 0 0 0 . . . 0

(22)
0 p2 • • . 0

, itself assumes the form
0 l/pa. . .0

0 0 .. • V-K 0 0 . .

For y, being the characteristic vector belonging to the charac
teristic value Pj =  0 of p, passes by that transformation into
a vector with components
(23) (YxYx)*> 0, ............ 0,
whence the two matrices whose product consitutes the left hand
side in (21) assume forms differing from those in (22) only in
that the 1-1-elements are 1 instead of 0. Evidently, p^1 is
also symmetrical, and of rank K  — 1. Moreover, it can be
seen from (23) and (22) that, besides (11), also
(24) f$Yx =  0-
Consequently, we find from (21)

(25) Pp) pyi =  8/d — ,
Yx Yx
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whence, in particular,

(2 6 ) fJ-fi) }i.pfj =  pjjf) .

Now, by premultiplying (12) by p.^ and using (25),

Yx cx . .  _  ..)£)£ ...
cfc “  ï k — (̂1) my.\ Yx •

YX Yx
The left hand member in this equation is not changed by ad
dition of an arbitrary vector cpy to c'. Hence, as

c'k =  — ^fi)«xX Yx
is the particular solution satisfying yxcx =  0 (according to (24)),
the general solution is

(27) c'k =  — Hw m'*Ck Yx +  9Yfc •
Only the first term of the expression (6) for m'kl enters into

(27) , the second one vanishing when summed over X:

(28) ^ =  +
where the

(29) =  yz(<)

are spherically normal variables satisfying

(30) E uu)u(s) =  a2 . yey . §(<s).

Let
(31) 0c' =  0, where 0y ^  0,

be the general rule indicating the normalization of y +  c' if
that of y is given; 0 may, again, be normalized by

(32) 0y =  1.

Then, (28) inserted into (31) yields

(33) ? =  ©i**5( r ) - i K r).

Consequently, the c'k are linear combinations of the normal
variables u(t\  and the joint distribution of any independent
group of them is also normal. In particular,

(34) Eck, =  0.
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The variances and covariances of the c'k will now be deter
mined for two different special normalization rules for y and
y +  c'. The first one

is somewhat arbitrary. It may be derived from the requirement
that, in first approximation, also y +  c' is normalized by

(neglecting the squares of the c'k), and is, therefore, associated
with the special units in which the X k happen to be measured.
Yet, the rule will be considered here since there can be attached
to this type of normalization an instructive geometrical illustra
tion which may help in grasping the essentials of the situation.
According to (24), (33) and (35), cp =  0, and we find from (28)
by means of (30), (2.2), (26)

As the rank of is K  — 1, only one linear relation — the
normalization rule — exists between the cj, in all samples.

Let K  — 3, and consider a linear transformation £ !•*
consisting of the above mentioned orthogonal transformation
which makes

the “true” regression plane II is now =  0, and the shape of
the swarm of scatter points within that plane is roughly
indicated by the ellipse

(35) YxYx =  1. Yxcx =  °. so 6 =  y,

(Yx +  Cx)(Yx +  <*) =  1

(36) E  c k c i =  -̂yey-Mw-

0 0 0

(37) p.* =  0 p2 0

0 0 p3
followed by a translation owing to which

I* =  0.

Since the components of y* are given by

(38) y* =  (1. o, 0)

(37)

(39)
, - i  ï *2
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whose axes have lengths g|, and coincide with the £*-

and -axis respectively. The direction of the perpendicular to
the sample regression hyperplane P is approximated to by the
direction of the radius vector connecting the new origin O*
with the point C' having new coordinates 1 , c2*, c3 * and lying
within the plane (II £* =  1. The normal sampling distribution
of the coordinates c2*, 4 * of this point is indicated by the ellipse

F igure  9.1. The large ellipse ind icates th e  second degree m om ents
of th e  sc a tte r  po in ts IE® in  th e  p lane II, corresponding  to  th e
“tru e  va lues” of th e  variab les ; th e  sm all ellipse ind icates th e  second
degree m om ents of th e  ap p ro x im ate  sam pling d is trib u tio n  of th e
com ponents of th e  w eighted  regression vec to r 0 * 0 ' para lle l to  II.

consisting of points of equal probability density, and having axes
parallel in direction but inversely proportional in length to those
of (39). Fig. 9.1 represents the situation of the planes If and in
the original lj-space. Fig. 9.2 is drawn in IT and shows the ellipse

(40)
c'*2 +  g3 4 * 2 =  a2, ycy

1
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(39) together with the orthogonal projection of the ellipse (40) on I I .
The absolute size of the ellipse (40) is governed by the factor

cAyey which, according to (38), equals

(41) a2.yey =  E(yz ) 2 =  Ezff2 .

Figure 9.2. The ellipses of fig. 9.1, projected on II.

Thus, as could be expected, the only quantity in the distribution
(8.1) of the errors zk that matters for the first approximation terms
to the sampling variances and covariances of the ck is the variance
of the component of the vector z in  the direction of y. Quite natural
is also the inverse proportionality of the axes of the two ellipses.
An erratic displacement z® given to a point 2-® located in A
(fig. 9.2) will, by its larger distance from 0*, have in the average
a smaller influence on Cg than a similar displacement to a point
?® located in B could exert upon c'2*. So, if the points 2;® are
more widely scattered in the direction of the ^ -a x is  than in tha t
of the E*-axis, the sampling variance of c2* will exceed tha t of cl*.

Another normalization rule,

(42) Yi +  c[ =  Yr =  1, so c' =  0, 0 =  ( 1 , O -----0),

facilitates comparison with the results of section 3. The remaining
coefficients yk, +  c'k, now approximate the ck, if these are
also normalized *) by
__________ Ci =  1 •

J) In fig. 9.1 the point (1, Y2 +  c2 > Y3 +  C3) is now represented by
the intersection of the plane lq =  1 and a line drawn through O
parallel to 0*C'. Therefore, the use of this rule presupposes that
Yi/(YkYk)* is so large that samples in which this line passes the plane (or,
in general, the hyperplane) iq =  0 occur only with a negligible
probability. X l being the dependent variable, this condition will be
satisfied in m ost of the applications.
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If (42) holds, (33) becomes

? = röeT)-y^T
and (28) passes into

- t ö - w O  &T,- U « (T)-
According to (7.2) and (42),

whence (43) may be written

(/4) <4 , =  — (pfif — y*ng ' — trfnTx' +  Y*l*ö>Yx')(3? —  ? x > (T> •

It is easily proved by means of (42), (25), (11) that the matrix of
order K  — 1 in the right hand member of (44) is inverse to
11 \j.k,v 11 and therefore equals

In the special case

(48) £ n  =  1, skl =  0 unless k —  I =  1, so =  0,

u(l) becomes, according to (29), identical with the error z{t) in
the dependent variable, introduced in section 3. Then, (46) passes
into (3.41), (47) into (3.32). In this case, therefore, the first ap
proximations yk +  c'k are exactly equal to the coefficients ck;
their distribution was already found in section 3.

In the general case, (47) as compared with (3.32) shows that
the variances and covariances of the normally distributed first ap
proximations c'k to the sampling errors in the weighted regression
coefficients ck in sampling from the parent distribution as specified
in section 7 are proportional to those of the elementary regression

(45) o'fx) Yk'^fl) v 4- Yfc,fJ-(i)Yr — 8(U)

as defined by (3.33). Thus,

(46) =

and hence

(47) Ec'k.c[. =  a2 . yey . fx* .
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coefficients in sampling from the parent distribution according to
F i s h e r’s specification, with a proportionality factor

if y normalized by yx =  1. (In order to distinguish between
the two quantities a introduced in sections 3 and 7 the subscripts
F  and U respectively have been added).

There remains the problem of the distribution of the expres
sion (20) for I". According to (6), (7), (28), (29), this expression
may be written

(50) ry e y =  m(t)w(t) — Tü2 —  w<T)(£T) — %) n ^ (cr) — l)uw

and is mdependent of the normalization rule for c' since the
terms with cp from (28) drop out on account of (24). The sum

differs only by the constant factor yeY from the sum ST in
(8.15). This part of the total variance, entering there into the
estimation of a2, now splits up into three parts

which may be treated in exactly the same way as the sums in
(3.37). Consequently,

is an unbiased “estimate” of a2, distributed according to (3.48)
with N  =  T  — K, independently of c' and c. It can be appro
ximated to by the estimate

(49)

(51)

S1 +  S2 -f- S3, where
M(T)u(ra)M(o)) p =  1 , 2 , 3 ,

I
(53) S2 he

T  — K

which may be computed from the data.
6
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Since s"2 is th e  m ean of T  —  K  squares of spherically  norm al
variab les of variance a2,

2ry^
(54) E  (s"2 -  a2)2 =  .

H ere, in s tead  of 2, v a n  U v e n *) (36) ob ta ins (form. (55)) 4 for
th e  num erical fac to r in  th e  r ig h t h and  m em ber. The w ay in  w hich th is
difference com es in  is n o t sim ple. V a n  U v e n com putes variances
an d  covariances of th e  errors in  th e  various estim ates , these  errors
being deno ted  by  w riting  A before th e  sym bol denoting  th e  estim ate .
As v a n  U v e n  uses th e  sam e sym bols for p a ram ete rs  an d  for th e
corresponding  sta tis tics , a  com parison of his form ulae w ith  those  of
th is  section is only  possible up  to  th a t  o rder of m agn itude w hich th e
form er are in ten d ed  to  cover. If  I have n o t m isunderstood  his argum ent,
th e  com parison runs as follows. The s ta rtin g  p o in t is th e  fo rm ula a t
th e  to p  of p. 151, which, in our n o ta tio n , runs

(55) A m  =  m ' ,

m "  being neglected  as a  second o rder q u a n tity . This neglect of m "
should  lead to

AI =  V =  y m 'y  =  0 ,

show ing th a t  second o rder q u an titie s  need to  be considered for a
s tu d y  of th e  sam pling variance of I. This does, how ever, n o t appear
from  v a n  U v e n ’s form ula (48), w hich, owing to  (33 ), m ay be
w ritten

(56) cec . AI — c m 'c  ,

because y  has been rep laced by  c. B y th a t ,  as (56) can  be developed
in to

c e c . Af =  0 +  2 y m 'c '  +  . . . . .

AI is again  m ade to  differ from  zero by  an  am o u n t w hich has no
re la tion  to  th e  sam pling erro r in  I, and  w hich is of th e  sam e o rder of
m agn itude as th e  expression (20) for I" which, for neglect of m "
in  (55), could n o t ap p ear in  v a n  U v  e n ’s form ulae.

F rom  (55) one w ould n o t expect th e  final resu lt to  differ only by  a
fac to r 2 from  (53). This is caused by  an o th er erro r of th e  sam e k ind :
in  (4g) th e  m issing te rm s con tain ing  m "  have been in tro d u ced  by
rep lacing  p by m  in  expressions of th e  ty p e  .

The form ulae (31) and  (55) being erroneous, th e  resu lting  exp res
sions for th e  sam pling  variances of th e  ck do n o t app ly . I t  should  be
stressed  th a t  th e  app ro x im ate  com p u ta tio n  of sam pling  variances by
m eans of sim ple v a ria tio n a l calculus is bound  to  fail if app lied  to
sta tis tic s  w hich have th e  p ro p e rty  th a t ,  in  th e ir  developm ent in to
pow ers of th e  elem en ta ry  observa tional errors zk , th e  te rm s of firs t
degree are m issing —  as is th e  case w ith  I. Such a  s itu a tio n  can n o t

*) F orm ulae from  v a n  U v e n ’s pap e r will be qu o ted  in  ita lics.
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p a ss  u n n o tic e d  w h en  th e  d is tin c tio n  b e tw e e n  p a ra m e te r s  a n d  s t a 
t is t ic s  is e x p lic it ly  in tro d u c e d  in to  th e  fo rm u lae .

A reconsideration of the conditions for a rapid convergence in
the developments of c and I is now due. If the same method of
solution by which c' was found is also applied to terms of higher
orders, the components of the p-th order term c(p) become,
indeed, as was foreseen on p. 73, homogeneous functions, on
the one hand, of the differences E® — \ k, with a degree — p,
on the other, of the z f ,  with a degree p] a similar situation
prevails with regard to the higher terms in I. The condition (17)
is, therefore, certainly necessary for a rapid convergence (though,
apparently, only with k > 1 if the normalization rule (42) is
applied to terms of every order). Owing to the special way in
which the E® — \ k occur in cf  K however, this condition is not
sufficient. In fact, some terms in c(k } are of degree p in the ele
ments of 11 11 (or of ||pfi)||, according to the normalization
rule), the balance being restored by a factor of the same degree
in the E® — themselves. Because of that, a rapid convergence
in the series can be expected only unless, for any value of k ' ,

\Lk ’k ‘ I1 (11) ^  1 •

According to (3.33), this inequality can also be written

(5?) tl k ’k '  c' ^ l l .k ’k ’ ^  c^ l l  •

This means that our method of approach breaks down in cases in
which the systematic components of the determining variables them
selves are nearly linearly dependent. The more such a situation is ap
proached, the larger the number of terms that must be considered.
And, in order to get an idea of the rapidity of convergence of the
developments, it is better, instead of relying on (17), to see
whether

(58) To2 ., [kjc'k’i^aï))2 1

is satisfied for every value of k'.
This modification being accepted, a remark made on p. 74

regarding the influence of large erratic components on the
adequacy of the present method can be supplemented by a
similar remark concerning the influence of mutual linear de
pendence of determining variables: the less the sampling varian-
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ces of the c'K, as given by (47), are increased by intercorrelation
of determining variables, the better these quantities approximate
to the total sampling variances of the c'k .

We are now in a position to indicate two of the three causes,
mentioned at the end of section 3, by which the use of formula
(3.61), criticized by F r i s c h ,  leads to an underestimation of
the real sampling variance of the regression coefficients in cases
where the present specification of the parent distribution is a
better approximation to reality. The first cause relates to the
factor of proportionality (49). ct|, is in (3.61) unbiasedly estimated
by Sp, which, in virtue of (3.20) and (3.46), equals

(59)

According to (53),

(60)
is estimated by

(61)

or, owing to (1), by

(62)

s2 —
bmb

T  —■ K '

^/YeY

cec ,

cmc
T  — K  '

The first term in the development
I . cec =  I". yey - f -___

of the numerator in (61) yields, if divided by T — K, an un
biased "estimate” of (60). Neither is a bias introduced by the
terms of one order higher, which, being of degree 3 in the z%\
have mean values equal to zero, and, therefore, only affect —
probably enlarge — the sampling variance of (61). Thus, the bias
in (61) as an estimate of (60), to which the first contribution
can be expected only from the fourth order terms, will, if (58)
holds, be small compared with the estimate itself, the latter
being a quantity of the second order.

Therefore, a comparison of (59) and (62) may give an idea of
the proportionality factor (49). To that end, we observe that the
minimum of the quadratic form

pmp =  pymx}J>x ,



where =  1, is reached for

Therefore, as soon as c differs from b, (59) falls short of (62);
at present, we may content ourselves with the statement that,
accordingly, the factor s2 in (3.61) makes for a tendency to
underestimate the sampling variances of the ck, . The quan
titative importance of this tendency, as indicated by the ratio

(63) cmc
bmb ’

depends on e, and will be studied in section 13 when more is
known about the range of variation of c when € is allowed to
assume different values. It will turn out to be the more important,
the larger the spread in the elementary regressions.

A second cause ‘) which makes (3.61) unreliable under the pre
sent conditions is the use of

(64) = M u.k'k'
M 1X

as an estimate of

(65) (An)
^ U . k ' k ’

«3*11

Like the first cause, its influence is especially large when the
determining variables are highly intercorrelated. If (57) holds
for some value of k', the first term in the development

(66) M n  =  <nTn -f- (m x,x, g.^,) dT/xi.x'X' +  • • • •

need not to be much larger than the terms of one order higher.
is in such cases considerably influenced by the errors z f ,

which in itself constitutes a reason to suspect (3.61), because the
denominator M n  of (64) will then be subject to considerable
variation from one sample to another. No less serious is the fact
that, owing to these influences, Mn  is biased as an estimate
of c7kfu . Unless, for any value of k',

( ^ )  ™ k 'k ' ^ l l . k ' k ’ ^  ^ 2 2 ^ 3 3  • • • • M J £ K  ’

’ )  R eaders acq u ain ted  w ith  F r i s c h ’s w ork ( 13 , 1 4 , 16 ) will
recognize his a rg u m en t in w h a t follows.



that is, if there is only one linear relation approximately satisfied
by the determining variables but not by any subset of these
variables, the remaining terms in (66) can be neglected under
the condition (17). The mean value of Mxl then exceeds c71TU
approximately by the amount

^H.X'V E (mx'r —  ivv) = (T —  O ^ ^ W v S x 'v
(owing to (5), (6), (7)), which must be positive as it is at the same
time the mean value of the positive definite form

— f ~  4 t') ĉ i i .x'X'2v ;

on the other hand M llk,k. approximately equals cM 11-Ie.k,. So (64)
is biased as an estimate of (65), approximately underestimating it
in the average in the ratio

1

 ̂  ̂ 1 +  ( T —  O ff2lt(ii)ex'X'

If, however, (67) holds for at least one value of k ' , the situation
is still worse. Then, for such a value of k ' , both numerator and
denominator of (64) are biased and are determined by the errors
2® more than by the quantities they should estimate. Conse
quently (3.61) has lost all value as a source of information re
garding the reliability of the ck .

Both of these effects of the errors in the determining variables
on the sampling variances of the weighted regression coefficients
gain in importance the more the determining variables approach
mutual linear dependence. The same holds for a third unfavour
able effect of errors in the determining variables on the reliability
of estimated regression coefficients, which will be studied in the
next section. Each of these effects would have been sufficient
to justify F r i s c h ’s criticism of the arbitrary use of (3.61)
in economic analysis.

It has already been pointed out, however, that the approxima
tions, by means of which these effects are found, are the more
inaccurate, the more the same critical limiting case is approached.
For that reason, it should be emphasized that the results, derived
in this investigation, constitute only a first step in the correction
of (3.61) for cases in which the present specification applies.
The more important this correction becomes owing to interrelated
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determining variables, the more desirable is a completion of the
present results by an actual study of the terms of higher order.
Such a study would, moreover, supply a welcome substitute for
the rather provisional and superficial discussion of the conditions
for a rapid convergence in the developments given in this section.

A final remark may be made on the circumstance that, if the
method of solution of this section is also used to express in terms
of the z f  higher degree terms c(p>, Tp) in the developments of c
and /, only the second degree moments \ikl of the systematic com
ponents occur. It would be erroneous to conclude from this
fact that the sampling distributions of these higher terms — or
even those of c and / themselves — depend only on the \ikl.
It is, for instance, easily seen that, in general, in the mathematical
expectations of terms ö v) and / of even degree in the z{k ,
moments of the same degree in the Qk — Ë,. will occur.

10. The error of weighting.

Hitherto we have assumed that the matrix e was known a
priori. We are now confronted with the difficulty that, on the
one hand, this assumption is not satisfied in most of the ap
plications, and, on the other, we did not find means to estimate
c from the data.

In the Inductive Part, in section 13, this problem will be
considered more in detail. At present, it is already possible to
detect one of the features which are relevant to this problem,
by means of the method of approximation introduced in the
preceding section. Besides (9.1), (9.2), (9.3), which define the
correctly weighted regression coefficients c, we consider similar
equations obtained by replacing the unknown matrix e by an
assumed matrix e which also satisfies

( 1 )  y e y  #  o .

These equations are

(2) | m — /(e). e | = 0 ,

(3) [mk\  — 1(e) ■ eky] c*(e) =  0,
(4) cx(e)Ax — c(e) =  0.
/(e) is again the smallest root of (2), and is supposed to be single,
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whence c(e) is uniquely defined but for normalization. Then
(5) /(e) =  /, c(e) =  c,
if the latter quantities are normalized by the same rule. The
ck(e) will be called the tentatively weighted regression coef
ficients. Still considering them as estimates of the yfc we may
study how their distribution depends on the unknown matrix e
and on the assumed matrix e. In particular, we are interested in
the size of the bias in c(e) due to the more or less arbitrary
choice of e. This bias will be called the error of weighting.

The distribution of /(e) and c(e) can be studied by the same
procedure as was applied in the preceding section. Indeed, the
equations (9.8) to (9.16), (9.19), (9.20), (9.27), (9.28), (9.34),
can be repeated for /(e) and c(e) with only e replaced by e.
Changed in this way, these equations will be quoted as (9.8e)
etc. So, in particular, according to (9.27e), the first order term
c'(e) in the error of sampling in c(e) is independent of the assumed
matrix e by means of which c(e) is computed. According to the
equation
(6) Ac'(e)c)(e) =  a2. yey .
corresponding to (9.36), the sampling variances of the ck(e)
depend only, in first approximation, on the unknown matrix e.
Further, by a comparison of (9.20) and (9.20e).
(7) /"(e). yey =  I", yey.

Evidently, terms of higher order in the developments must be
considered in order to find the above mentioned bias. In the same
way in which (9.27) was obtained from (9.12) we may get from
(9. \2e)
(8) 4 ( e ) =  y-m [—  m 'yX cx(e ) —  < X  ÏX +  *'(e) • e*X Txl +  -
or, expressed in terms of the zff* by means of (9.6), (9.7), (9.27),

(9)

C"(e) =  ngf [(£ >  -  ~  lx)l •
-. [ ^ ( ^  -  -  cpTx] -  y y ?  -  ij^ V x  +

+  /'(e). eKXyx -F ^yfc,
where /"(e) can also be written, by means of (7) and (9.50),
remembering (9.29), as a quadratic expression in the zf). In
order to avoid unessential complications, we shall take

<p =  <]> =  o ,
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that is, we shall adopt the normalization rules

( 10) Y*cx(e) =  °> Y*cx(e) =  0.

simply because they are most suited to our present purpose.
Then, the mean value of c'f(e) can easily be found from (9) by
some calculations, using (2.2), (9.25) and (9.26). The result is

The first term vanishes if e =  e. The second term, then
remaining, equals Ec'f. If the conditions for a rapid convergence
in the series (9.9) are satisfied, it must, consequently, be a small
bias *), negligible compared with the standard deviation

of ^(e), as given by (6). With regard to a and the
the first term is of the same order of magnitude as the second
one. Hence, it would have been equally negligible if the factor
T  — K  had not been present. Compared with (12), the right
hand member of (11) is one order higher in the quantities 2)

In any applications, therefore, the relative importance of the
error of weighting compared with the error of sampling depends on
the circumstances of the problem. It follows from (11) and (6) that
the error of weighting is, both absolutely and relatively to the error

i) In  fact, th e  second te rm  is due to  th e  a rb itra ry  norm aliza tion
ru les (10), an d  w ould n o t have appeared  if, in s tead  of (10), th e  ru les

had  been adop ted .
2) T he difference betw een  (13) an d  th e  square  ro o t of th e  le ft h an d

m em ber in  (9.58) is due to  th e  fac t th a t  (9.58) has been w ritte n  dow n
in connection  w ith  (9) (for e =  e), w hereas, in  th e  deriv a tio n  of (11)
from  (9), one degree in  th e  has cancelled aga in st th e  on ac
co u n t of (9.25).

(11) Ec"(e) =  ( T - K ) ^ .y e y M-mCcxYx
Ye Y — <̂ f f e x Y x -

^d)sxxYx

(12) [£K (e)}* 2]*

(13) ( T V ^  p * * )* ,

but one order lower in

t~E

Yec'(e) =  0, Ycc"(e) =  0,
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of sampling, the smaller, the less the systematic components of the
determining variables are inter correlated, and the smaller the part of
the variances of the variables X k due to the erratic components. On
the other hand, a large number of observations reduces the error of
sampling, absolutely, and relatively to the error of weighting. If
the number of observations could be increased beyond limit
in such a way that the matrix fifT  would tend to a limit matrix
of rank K  — 1, the error of sampling would tend to zero, while
the error of weighting would approach a finite limit, depending
on € and e.

Owing to (9.34e), the mean value Ec(e) of the tentatively
weighted regression vector is approximated to by

up to second order terms in the quantities (13). Neglecting the
second term in (11), we shall study the range of variation of the
vector (14) if e is allowed to equal any positive definite diagonal
matrix

If e satisfies a similar condition, that is, if in the parent distri
bution the erratic components of different variables are indepen
dently distributed, the approximated mean value

of the correctly weighted regression vector c must be included
within this range.

Let Yk ^  0 for k =  1, 2 . . .  K  and let, if necessary, the signs
of the variables X k be changed in such a way that

(14) Y +  E c"(e)

(15) 11 ekl 11 — II ek %kl II - ek ^  0-

Y +  Ec"

(16) Yk >  0-

The vector r\ with components

(17)

then satisfies both

(18) Y4 =

and
(19) 4ft ^  0,
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and, therefore, connects the origin O with a point H lying in
that part of the hyperplane (18) which lies within or on the bor
ders of the angle of if-dimensional space indicated by (19) —
one of the 2K similar angles into which the entire space is divided
by the coordinate hyperplanes. For K  =  3 (fig. 10.1), H lies
within or on the border of the triangle HjH2H3, in general H

F igure 10.1. L im its for th e  m ean value of th e  w eighted  regression
v ec to r if errors in  d iffe ren t variab les are unco rre la ted  in  th e  p a re n t

d istribu tion .

lies within or on the border of a multiplex extending into K  — 1
dimensions and having edge points ---- HK, one on every
positive coordinate axis. Because of that, the vector (14) whose
components are linear functions of the t]k connects O with a
point C within or on the border of a multiplex BXB2---- BK into
which HXH2 ___Hk passes by a linear transformation. Owing to
(10), this second multiplex is also a part of the hyperplane (18) if

(20) YxTx =  1 ■
The n-th edge point H„ is obtained from (17) by putting

(21) en = \ ,  ek =  0 ior k ^  n.
Consequently, the coordinates of Bn approximate to

Eck{en)
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if en represents the matrix e in the special case defined by
(14) and (21). Now it is easily seen from (2) that

c(ej =  b(n)
equals the n-th elementary regression vector of the sample.
Thus, we reach the result that, in sampling from the parent
distribution (7.1), (7.2), (7.4) with yk ^  0, eB =  ek8kl, the ap
proximated mean values of the correctly weighted regression coef
ficients indicate, whatever the zk , a vector included in, or on the
border of, that space angle, constructed with the approximated mean
values of the elementary regression vectors as edges, which contains
the orthogonal regression vector OA.

This proposition is a counterpart (in K  dimensions) of
F r i s c h’s theorem (4.13). The difference x) is, that (4.13) states
limits for the "true regression” on some assumptions regarding
the actual sample, whereas here limits are indicated for the
(approximate) mean of the correctly weighted regression in
repeated samples on some assumptions regarding the parent
distribution from which the samples are drawn.

The error of weighting is a third cause which makes (3.61)
overrate the reliability of regression coefficients if all of the
variables are subject to error. Evidently, only this type of error
was covered by F r i s c h’s analysis, reported in section 4,
the error of sampling being eliminated ab initio by the assumption
that the erratic components are uncorrelated in the actual
sample. Thus, if a close fit is reached by means of not considerably
intercorrelated determining variables, where the number of
observations is small, the significance factors (4.21), proposed by
F r i s c h ,  will yield too favourable an impression of the relia
bility of the regression coefficients, the sampling error dominating
the error of weighting. On the other hand, if T  is large, the error
of weighting may be the most important feature in assessing the
precision of the results.

) The ex tension  to  K  d im ensions leads to  a sligh t correction  on
th e  an tic ip a tio n  of F r i s c h  in  (4.17), th a t  only  b $  =  _
a n d d e t e r m i n e  th e  range of v a ria tio n  of th e  in tercoefficien t
Ckl =  cllck > in  fact, th is  range ex tends betw een th e  la rgest and
sm allest of all &fe> for n  =  1, 2 . . . .  K .  The p rac tica l im portance of
th is  m odification  is sm all, as, in  m ost cases, of all b'fff ju s t  bjS will
be largest, b f j  sm allest in  abso lu te  value.



PART IV

Synthesis — inductive part

11. Reasoning from the sample.

The parent distribution once given or adopted, the reasoning
processes of sampling theory may, following F i s h e r  (11, p.
40), be split up into two successive parts which are, though
closely connected, logically of a different nature. The first,
deductive, part consists in the choice of statistics adequate to
estimate the required unknown parameters or to test hypotheses
concerning these parameters, and in the study of the distributions
of these statistics in repeated samples. The second, inductive,
part consists in the actual formulation of the conclusions which
can be drawn about the required parameters from one given
sample. It needs the results reached in the first stage of the theory
as its foundations. If, besides the required parameters, other —
irrelevant — parameters figure in the parent distribution, the
inductive inference can, if possible, best be based on those results
of deductive theory which concern “studentized” statistics,
that is, statistics, which, together with their distribution function,
depend on the sample and on the required parameters only. As
an example, the formulation of the i-test (3.54), used in section
3 in testing assumed values of unknown regression coefficients,
rests upon the distribution (3.53) of the “studentized” statistic
(3.52).

The logical problems involved in the inductive reasoning have
only been touched upon in this study in sections 3 and 8. Nor
will they be considered more in detail in this Part. Still the dis
tinction between deductive and inductive theory has been
adopted as a principle for arranging the sections 6—14 in two
Parts, mainly so since the argument concerning the error of
weighting must be thrown into a new form if it is to involve
only quantities computed from the sample.



Owing to the presence of the parameters € which are not
estimated, the inductive argument is, similarly to the Deductive
Part, developed in two steps. In section 12 there is indicated,
on the assumption of an a priori given matrix e, a generalization
of the /-test of section 3 which is shown to have approximate
validity. This section, therefore, merely contains considerations
pertaining to that part of deductive theory on which the induc
tive inference can be based so long as e is known. Section 13,
finally, rigorously considers the sample as only source of in
formation concerning the parameters. It will then be seen
that, though we decided in section 8 not to attempt an estimation
of c, there will, nevertheless, be frequently occasion to draw
inferences regarding e from the sample, and that from a perhaps
unexpected consideration.

The specification of the parent distribution, given in section 7,
was preceded by a discussion of the special exigencies of the field
of application aimed at in this study. Later sections have only
been concerned with the mathematical consequences of that
specification. The inference regarding c, to be drawn from the
sample will, however, be derived not as a consequence of the
mathematical form of the parent distribution but from a con
sideration recalling the discussion of the general setting of the
problem of regression analysis of economic time series, on which
that specification was also based.

Two restrictions will in that section be introduced in order
to facilitate mathematical treatment. In the first place, we shall
assume, as in section 10, that the errors zk in different variables
are uncorrelated in the parent distribution. It appears that, in
most cases, this restricting assumption will not seriously affect
the trustworthiness of the results to which it leads. We must be
prepared, however, to meet with exception, as for instance in
cases where different variables have been obtained by a division
of different time series by the same price index number. Secondly,
we shall only consider cases where the signs of the coefficients in
each of the K  elementary regressions are compatible, which will
hold in most cases where a close fit has been obtained by means
of a set of determining variables which all have a decidedly
significant influence on the dependent variable.
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12. The t-test as an approximation.

To apply formula (9.47) for the approximated sampling
variance of the weighted regression coefficients one should know,
besides e, also p, a and, strictly speaking, even the yfe them
selves. There now arises the problem: what conclusions about y
can be drawn from the data if none of the above mentioned
quantities is known?

In this section we shall still assume that e is known. In the
next section, even this assumption will be dropped.

Only cases where

need to be considered. For in the trivial case (which will, more
over, hardly ever occur in practice) that m is singular (of
rank K  — 1) the sample regression plane gives a perfect fit to
the scatter, while, since then 1 = 0, the estimated sampling
variances of its coefficients are zero. And, if the rank of m is
still lower, our problem entirely loses its meaning.

The condition (9.58) for the application of the present method
must now be written in terms of estimates of the quantities oc
curring in (9.58):

The adequacy of m1̂  as an estimate of p ^ ' will be considered
below. Like mk.k. as an estimate of \Lk,k, , its sampling variance
and its bias are small just if (2) holds.

In that case, a fairly good estimate of (9.47) is given by

if T  — K  is sufficiently large. If, however, T  — K  is small, it
is more accurate to account for the sampling variance of I by
considering the correspondingly approximated distribution of
the ratio

( 1 ) | m | >  0

(2) K in )2 <  1I zk'k' ml

(3 ) est Ec'k
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obtained, in the same way as (3.52), by dividing the differences
ck' — T b y  the square roots of the estimates (3) of their sampling
variances.

The first term in the development of (4) in powers of the z(k) is

It follows from (9.47) and from the analysis of variance based on
(9.50) that t'k, is distributed according to the ^-distribution (3.53)
with N  =  T  — K. Now, if (2) is satisfied, an approximate test
of supposed values of yk, is obtained by treating tk. , which
only depends on the sample and on the value of yfe, to be tested,
as if it were itself a quantity distributed according to (3.53), entering
the table of t (as explained in section 3) with the value of tk,
given by (4).

Some provisional remarks may be made on the accuracy of
that procedure. Owing to (10.11) (with e =  e), only a small bias
in ck. as an estimate of yk, is due to the term cf,, which is
of an order of magnitude 1 /(T  — K) relative to the error of weight
ing. Apart from that, the terms c"k and c'k in the development
of the numerator in (4) can only make for a minor addition to
the sampling variance of tk, as compared with that of t’r . The
same will be the effect of the terms of third and fourth degree in
the zfff in the development of the denominator in (4), where
the fourth degree terms may be as important as those of third
degree, since the fourth degree terms are likely to yield a bias in
the denominator in (4) as an estimate of that in (5), to which a
negative contribution can be expected from the second degree
terms in mk̂ y

A complete discussion of these effects would require the
evaluation of I'" and lIV, and the computation of mean values
of a number of polynomials in the 4°- At present, I have no
such results to offer. The situation may, however, be illustrated
by a study of the first terms in the development of

(5)

(7)
ATl i . * ' * '



97

alone. The denominator expands into

Mn  — J\4X1 +  (mx.r  — ĉ ii.>c'V +

m v.’\ ’ y-y.'X' m y.'Tz‘ fVrc'+ l l .X 'X '.V 'T C ' + ■

w v 'X ' f V X '  ^ V w '  I V n '

where <^TU ,k-v.n'p’ =  0 as soon as k! =  ri or /' =  f t , and a
similar development can be written for the numerator. Putting
for simplicity k! =  2, it follows from (9.5) and (9.6) that, if the
ensuing development of mfxi) is written

( 9 )  m ( i i >  —  M-fii) +  +  (m a i ) )  +  • • • • .

the term  of first degree in the z£  equals

00) K id ) =  pfu) wjt'X' (H-an22) M-(ii)).
where

(11) ^1.22) -  C-̂ - 22-fcT (=  o if k' =  2 or V =  2).
c / W 11.22

The mean value of (10) being zero, its variance is found from
the formula

(12) K  ® -j- \J-jCp £jn -f~ T  fhp £&»)>

which follows from (9.6). Since, according to (11)

(10) fbt'n.' (̂11.22) =  n̂T ^  n’ 7  ̂ 2,
the result is

(14) E[m(U)) 2 — 4<72(gfi1))2 Sx-X'( 1̂ (11) ft(11.22))-

By similar computations it can be found tha t the main term
in the mean value

(15) £ « > ) "

of the second degree term  in (9) is

f ^ai) E  —  ̂ (ii)) —

1  ”  ( ^  P - f l l )  £ x 'X ' ( ^ ( l l )  l t d u 2 2 ) ) <

the remaining terms in (15) being of equal order in the \Lk and
g2zh but not containing the factor T — 1.

7



The negative contribution (16) to the bias in the denominator
of (4) as an estimate of that in (5) constitutes the second cause,
indicated ') on p. 85, by which the use of the classical formula
(3.61) may be misleading if the present specification applies.
In cases where this bias becomes important, it might be more
accurate to allow for it by dividing tk. in (4) by the factor

(17) qk. =  [1 j ,  g  I VX' (mfnj w(iiT'&'))] i

before comparing it with the percentiles in the table of t. Wheth
er such a correction is a relevant improvement can hardly be
decided without the actual study of all of the third and fourth
degree terms in the development of (4).

It might be thought that, where the distribution of tk. is only
approximately that of S t u d e n t ’s ratio, there is hardly any
gain in substituting the use of the table of t for the simple com
putation from (3) of the “standard error” of c'k, . In fact, it depends
on the problem whether or not there is reason to consider the
ratio’s tk, , since the error avoided by the use of the table of t
depends on T  — K  only, while the degree of approximation
of (4) by (5) is governed by the ratio’s in (9.58) or (10.13).

13. Limits for the weighted regression.

Finally, we shall even drop the assumption that e is given
a priori. As in section 10, we shall, however, restrict the gener
ality of the parent distribution by assuming that e is diagonal:

(0 zk l ~  zk &kl ’ zk ^  0-
Given a significance level 0, and hence the corresponding

percentiles ±  Pq in the ^-distribution, we consider the interval
on the y^-axis defined by

(2) \^k'\ <  Pq ’

with tk. as given by (12.4), possibly corrected by means of (12.17).
This interval, called by N e y m a n  (18, App. I) the region

0 In  th e  discussion on p. 85, th e  te rm s w ith  w ere supposed
to  be sm all com pared  w ith  those w ith  an d  w ere therefo re
neglected .
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of acceptance for the parameter yk. , consists of those values
of -{k, which are not rejected from the sample in applying the
f-test. It is completely defined by two quantities, its mid point
ck, and the denominator

(3) V  =  (mW  Y ^ K  C6C) '
in (12.4).

Now, replacing the unknown quantities (1) by assumed values

(4) ekl — ek &kl > ek ^  0,
our first problem is to study the range of variation of c(e)
as defined by (10.3), if the ek are allowed to assume all possible
non negative values. This problem will be considered for the
important case in which, possibly after changing the signs of
some of the variables X k ,

(5) mkl>  0, k, 1 =  1, 2 ___K,

that is, the case in which the signs of the coefficients in the
different elementary regressions are compatible.

It follows from (4) and (10.3) that, for values of the ek for
which the two smallest roots of (10.2) differ,

(6) l^e) <  l2(e),

and for which c(e) is, therefore, uniquely defined but for
normalization, the vector g with components

(7) gk *  m ux cx(e)
satisfies
(8) mkX — /^ (e ) . SkX)gx =  0

where Zj1(e) is the largest of the roots of

(9) \ek mkl- r 1( e ) . h i \ = 0 .
which are inverse to those of (10.2).

It will first be supposed that the ek are positive:

(10) >  0 .

Let h(1) be an arbitrary vector satisfying

(11) *£> >  0,
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and consider the infinite series of transformations x)

h(1) -> h(2) h(p> defined by

(12) • hfjj? +1) =  y(v)ek mkX with <p(p) such tha t

h(p+1)e~1h(3,+1) =  h(p)e-1h(p) >  0,

where the normalizing factor <p(p) serves only to prevent h(p)
from vanishing or becoming infinite for p -> oo. We shall
prove that, whether or not (6) holds, the sequence h(p) con
verges, for p  >• oo, towards a solution g of (8), unless h(1>
happens to satisfy

of a set of K  vectors of which the n -th one is a solution of

As was mentioned in section 2, it is always possible to choose
the g<M) such that

Then, it follows from (12), with (14) inserted, tha t

whence, as soon as (6) holds, for p -> oo only ĥ vr> remains

*) The use of th is  series of transfo rm ations is a generalization  to
th e  “skew ” case of a princip le used by  H o t e l l i n g  ( 17 )  for
successive num erical com p u ta tio n  of th e  charac teris tic  vectors
corresponding to  th e  la rgest charac teris tic  value, th e  n ex t largest,
an d  so on, of a  m om ent m atrix . This m ethod  can also be ad a p te d
to  com pute th e  orthogonal, th e  special, and  even th e  general w eighted
regression. Then, th e  rap id ity  of convergence in  th e  sequence, and
w ith  th a t  th e  usefulness of th is  app lica tion  of H  o t  e 11 i n g ’s
m ethod, varies considerab ly  from  one case to  th e  o ther.

(13) h(1)e-1g =  0

for every such solution g.
Let h(p) be written as a linear combination

(14) fo to )  _  ^ (p V )g (v )

(15) ( ^ ^ X- ^ ( e ) S a ) d n) =  0,

the f^x(e) being the roots of (9) in order of decreasing size.

(16) g(«*)e-lg(«) _  §(m»)

(17)

with 9(p> such that

(18) 2 V (/

h(v+l ’“> =  <p

2 V (h(v+1’ 'J)j2 =  2 V (A<pv))2 >  0;
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finite, the remaining h<pn) vanishing in approximately geometric
progression — unless, according to (13), /i<u) =  0, in which
case h(pl) =  0 and, if hiVi) ^  0 and Z~x(e) is single, only
A(?,2) remains finite for p oo, and so on.

Thus, if (6) holds, h(p) converges to a solution g(1) of (8).
If, however, /^(e) is an %-fold multiple root of (9), only
the h(1>n) with n <, n1 may remain finite for p -> oo, in which
case h(p) converges to a linear combination of the first n1
vectors g(n) which all satisfy (8).

Since, owing to (5), (10), (11), (12),

h f  >  0,

it follows that

(19) gk ^ 0 ,  ge“xg >  0,
or, from (7),

(20) m k \c\  (e ) ^  °-

Moreover, since

(21) ck{e) = mkXgx ,

it follows from (5), as at least one of the gk is positive,

(22) ck(e) >  0.

According to (19) the vector g is limited to one of the
2k space angles bounded by the coordinate hyperplanes, which
will be called the positive coordinate space angle. The K  vectors
of unit length along the coordinate axes which form the edges
of this space angle are transformed by the linear transformation
(21) into the vectors in the columns of j | mu  11 which, but
for normalization, indicate the K  elementary regressions.
Consequently, the conditions (20) mean that, if (4), (5) and
(10) hold, the special weighted sample regression vector is, whatever
the ek, confined to that space angle, constructed on the elementary
regression vectors as edges, which contains the orthogonal regression
vector; this angle is itself entirely contained within the positive
coordinate space angle — owing to (22). This angle will be called
the elementary regressions space angle, or, short, the angle B.
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In the above formulation, the restriction to values of ek
for which (6) holds has been omitted on purpose, because it
can now be proved that (6) is a consequence of (5). Suppose
that
(23) Ix(e) =  f2(e)

for some set of positive values ek . Then, there is a plane or
hyperplane G of at least two dimensions through the origin
0 ,  consisting entirely of vectors g which are not affected by
the transformations in (12), each of them being a solution of
(8). As now for nearly every initial vector h(1> the trans
formation series (12) must lead to a limiting vector g within
G, at least one non vanishing vector in G must satisfy (19),
that is, must lie within or on the border of the positive coordinate
space angle. If G contains a vector within that space angle,
it must also have two non vanishing vectors in common with
the border, since a plane through the summit of a rectangular
space angle cannot be entirely contained within it. So, at any
rate, G contains at least one non vanishing vector g on the
border, or satisfying

gk ^  0, gko =  0, gki >  0,

for some pair of values k0, kx of k. Being a vector of G, g
should be invariant for the transformation (12). On the other
hand, it follows from (5) and (10) that

9 ek„ Sx >  0,
which shows that (5), (10) and (23) are incompatible.

These results are easily extended to the case where some of
the ek are zero. It follows from (8), in connection with (21)
and (22), that the equality sign in (19) can hold only for values
of k for which ek =  0. Now if

(24) |  eK >  0. for £ i=  1, 2 . . . .  K v

( ek, = °, for k2 =  K x + 1--- K, say,

the K  — K 1 smallest roots of (9) coincide and are equal to
zero, while the remaining ones are roots of the equation of
degree K 1,

(25) | eki mk'1' — I-i(e) 8Wi | =  0.
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Since the above argument can now be repeated for the space
of the first K 1 variables only, (19) holds also in the case (24)
and can, then, be specialized to

(26) ft* >  0. fife =  o.
showing that c(e) lies on the border of the angle B, being
a linear combination (with positive coefficients) of the first
K y elementary regression vectors only.

Owing to (6), only one normalized vector corresponds to a
given set of non negative values ek; on the other hand, it
follows from (10.3), with (4) inserted, that

(27) (̂e) ek
m kXcx ( e )

ck(e)
by which relation, together with their normalization rule, the
ek are defined as single valued functions of the ck(e).

It appears from (27) and (22) that the ek are non negative
so long as the vector c(e) satisfies the conditions (20). Thus,
any regression vector not outside the angle B represents a
special weighted regression vector for some set of weights
(proportional to \/ek), and the conditions (20) may be called
the conditions for positive weights.

The property, shown in section 10 for the mean values of
the special weighted regression coefficients, appears to hold
in every individual sample for which (5) is satisfied. It is in
the form of this proposition that the uncertainty in the weighted
regression coefficients, due to the error of weighting, occurs in
the inductive reasoning from the sample to the parent distri
bution parameters.

There is, however, a new feature with regard to the error of
weighting in the present inductive position which can be best
understood by considering some extreme cases are to the spread
in the elementary regressions.

Suppose first (case I) that, in standard units, all of the
orthogonal regression coefficients afk\  defined by
(28) (mkX — mx 8a ) a£> =  0,
mx being the smallest root of
(29) | m — mx 8| =  0,
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are about of equal magnitude, while

(30)

if m2 is the next smallest root of (29). In this case, the spread
in the elementary regression vectors is small. For, if the charac
teristic values of m  are denoted by « „ ,  in order of increasing
size,

and if the corresponding characteristic vectors are denoted by
a(n) and normalized according to

Since the elements in the Z-th column of | j mkl 11 are pro
portional to the components h f  of the Z-th elementary
regression vector, the latter, if normalized by

The «£> being about equal, each of them  is, according to (32),
about K - \  Thus, owing to (30), the first term  in the right
hand member of (35) is large compared with the remaining sum,
whatever k, whence the elementary regression vectors cannot
differ by much from the orthogonal regression vector

Next we consider case I I  where only one, say a $ ,  of the
orthogonal regression coefficients, is small compared with the
others, which are again of about equal magnitude. If (30)
holds, the above argument can be repeated for the first
K  — 1 elementary regression vectors. I t  breaks down, however,
for the last one, because of the small factor afg in the
denominators in the K  — 1 last terms for b(kK) in (35). These
terms can now make for large discrepancies between
and a^K In  particular, since

(31) %  < m 2 <.mz ----- ^  mK ,

(32) a™ =  8(mn),

we have (see section 2)

- j -  a%'] m~}a^'\4  «v a!

(34)

are, according to (32), equal to

(35) mx ay
W =  4 1} +  W mv  ay
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is a sum of positive terms, there will be a large positive difference

(36) b(P  —

in the last components.
The situation is illustrated, for K =  3, in figure 13.1 on

p. Il l ,  which is drawn within the plane

(37) a£> cx =  0.

The large triangles represent the intersection of that plane
with the coordinate planes (compare fig. 10.1), the small circles
indicate the orthogonal regression vector. The edge points of
the full-drawn inner triangles represent the elementary regression
vectors.

Case II gives rise to a dilemma. One would expect the
condition (30) (in standard units!) to be sufficient for an
accurate estimation of the yk (if these are also measured in
standard units), whatever their sizes — provided that m has
been obtained from a sufficiently large number of obser
vations. However, if the conditions for positive weights con
stituted the only relevant limitation to the error of weighting,
the estimation of small regression coefficients would in general
be subject to a large error of weighting.

Since the cfc(e) are continuous functions of the ek, the
discrepancies

c x ( e ) —  a K

can be expected to be especially large if eK considerably exceeds
the remaining ek , because then the weighted regression will
come close to the K -th elementary regression.

On the other hand, the geometric picture presented on p. 62
suggests that zK will have the less influence on the sampling
distribution of estimated regression coefficients the smaller
Yk compared with the remaining components y;.. For, if
yK is small, the last components X (§  — of the erratic
displacements X(0 — £(() will nearly fall within the "true”
regression hyperplane II, and little influence can be exerted
by the variance a2 zK of these components. This is confirmed
by the fact that, in the expressions (9.47) approximating the
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sampling variances of the weighted regression coefficients,
the zk enter only by the factor

yey

on which zK has only a small influence if vK is small.
At first sight one might, therefore, be astonished to find,

by the above argument, a large error of weighting due to zK
being unknown, the point can be cleared up by considering
the expression (10.11) for the bias in the tentatively weighted
regression coefficients, which shows that, if yK is small, the
influence of eK on the right hand member of (10.11) is small
only so long as eK itself is not large compared with the
remaining ek. Now, just this latter possibility is excluded by a
second limitation on the error of weighting, which is set by the nature
of the problem rather than by the mathematics of the last sections.

In making use of the parent distribution (7.1) (7.2), (7.4)
for the interpretation of data, we do not assume only, and
this not even in the first place, that the data are governed
by a distribution of this mathematical form. We also assume
that the variances of the erratic components are small compared
with those of the systematic components. This has been re
cognized in (9.17) as a necessary condition for the adequacy
of our approximations. But it is more than that. On p. 6, the
erratic components in the determining variables were identified
with the “technical” errors in the statistical source from which
the data were obtained. No investigator would use a series
of values of a variable in regression analysis if he did not expect
the variance of this technical error to be a relatively small
fraction of the variance of the series itself. Furthermore, the
requirement that the set of determining variables is a complete
set involves (see p. 6) that the erratic component in the
dependent variable, which also contains the combined influence
of neglected determining variables, should satisfy the same
condition; and, the discussion in section 6 just led us to con
sider the completeness of the set of determining variables as
an essential condition for the reaching of significant results
by regression analysis of economic time series. We are, therefore,
'justified in considering (9.17) as an intrinsic part of the specifi
cation of the parent distribution given in section 7.

As we are in these sections engaged in inductive reasoning
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from the sample, the condition (9.17) must be considered in
terms of estimates instead of the corresponding parameters:

The left hand member still depends on the assumed values
ek , since, as was stated already in section 8, the variances

of the individual erratic components can only be estimated if
values for their ratio’s are assumed.

Now there are different possible cases. Firstly, if (38) is not
satisfied for any set of non negative values ek , the set of
determining variables should, on statistical evidence, be con
sidered as incomplete, and should for that reason be rejected,
as was pointed out on p. 58. In the opposite case, where (38)
is satisfied for every set of non negative values ek , the angle
B sets the only limitation on the error of weighting if nothing
is known a priori about the ek .

Practically most important is the third, intermediate, case
in which (38) is satisfied for some values of the ek but not for
others. This is just what happens in case II above. Now, if
there is no reason outside the actual data to suspect the com
pleteness of the set of determining variables, it is quite legitimate
to use (38) as a limitation on possible values of ek. This means
that we reject a posteriori such ratio’s of the ek which lead to
estimates of the variance(s) of one or more of the erratic components
exceeding reasonable limits.

Before putting this rule into effect, it is interesting to study
the range of variation of the left hand member in (38) for all
non negative values of ek in both cases I and II. For that
purpose it is useful to take the ck(e) instead of the ek as
independent variables.

By (7) and (21), (27) can also be written

(39) <4 = <?2 h

if gk > 0
mkk +  S m)

X ¥=k &jc
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where the gt are limited by (19). Consequently, owing to (5),
/(e) ek is largest if

gj =  0 for / #  k,
that is, according to (40), if

which is a consequence of (32). In case I, therefore, /(e) ek
is, owing to (30), small compared with mkk and (38) is satisfied
for every value of k, whatever the ek , if T  exceeds K
sufficiently. In case II, however, the left hand member in

need not be small compared with that in

(47) Wt-KK ^  m K  ’

as appears from the right hand members in these inequalities.
In cases where the situation II is approached it may, therefore,

be useful to state a set of limits that should not be exceeded
by the estimated variances of the erratic components; or,
to impose a system of inequalities,

(41) et — 0 for / ^  k,

and then reaches the value

I max

in accordance with (3.47).
In virtue of (33) this upper limit satisfies

(43) We) ek\max ^

On the other hand, mkk satisfies

(44) mkk =  4 V) ^  4 V) m2 a%"> =  m2(l — a[1)2)

on account of (31) and
(45) ,(v ) „(V )

(48) /(e) ek <, Pk mkk say,
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on the ek . For the determining variables, the pk, must be
chosen in accordance with the expected reliability of the sources
from which the variables are obtained. If one or more of the
variables are index numbers, some information may also be
derived from the degree of agreement between the various
series of which the index number constitutes an average. For
the choice of px there can also be used such information
regarding the importance of the influence of neglected de
termining variables as is furnished by the data.

In order to show the implications of (48) it is useful to choose
new units of measurement which make the limits in (48)
numerically equal:
(49) 1(e) ek ^  p say.
Such units will be called adapted units. In these units, of course,
characteristic values and vectors of m are different from
those computed in standard units. In fact, standard units have
been adopted only provisionally, in order to give a well defined
meaning to the characteristic values mn. Henceforth we shall
consider all of the formulae in this section as being written in
adapted units. Then, in particular, the definitions of cases I
and II may have a somewhat altered meaning; the less, however,
the closer lie together the factors pk in (48), which do not
depend on the units of measurement.

According to (27) and (22), (49) is equivalent to
(50) % xcx(e) £ 0 ,
if
(51) n =  m —  p 8 .

From (50) it can be seen what condition the data impose
on the choice of p!, if that of the pk, has already been made.
If pj is chosen so small that

p <  m1,

n is positive definite and non singular, all of its characteristic
values
(52) nk =  mk —  p

still being positive. Since in that case

(53) c(e) n c(e) >  0,
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whatever the non-vanishing vector c(e), (50) is excluded by
(22). Thus, the limits to the variances of erratic components
have been set so low that no tentatively fitted regression plane
leads to estimates of these variances which are inside the
limits. If further

(54) P = % ,

the only vector for which (53) does not hold is the orthogonal
regression vector a(1), leading to estimated variances which
just equal their prescribed limits. Evidently, if the pk, have
been rightly chosen, px must be taken so large that

(55) p >  mx

in order to allow for the influence of neglected determining
variables. In general, it will be safe to choose p2 considerably
above the value which leads to (54). Another point of support
is supplied by the value (w11)-1, assumed by /(e) e1, according
to (42), if the determining variables are given without any errors.

The effect of (50) will be illustrated by again considering the
extreme cases I and II. In that, we shall assume m2 to be so
large that, besides (30), also

(56) m1 <  p <^m2.

n then being non singular, (50) is transformed by the linear
transformation

(57) C;(e) = m'k/2x , so hk =  nkXcx(e),

into the inequalities defining the negative coordinate space
angle

(58) hk £  0.

Since, owing to (51),

nk-kax =  —  (p — <  0,
a(1) is one of the vectors satisfying both (20) and (50). Therefore,
as a consequence of the imposition of the limits (48), the special
weighted sample regression vector is confined to that space angle,
constructed on the K  vectors with components — nkl, I =  1,
2 . . . .  K, as edges, which contains the orthogonal regression
vector.
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According to (51),
(59) — nkl =  o£> (p — — a£'> (mv —  p) a(/ \
The vector jw proportional to that in the Z-th column of
— nkl but normalized analogously to (34) has, therefore, the
components

(60) iV 7<v') P —  %  o f 0

Owing to their normalization, the end points of these vectors
lie in the plane (37) in which fig. 13.1 has been drawn. Their
positions are, according to (56), only slightly affected if in the
denominators in the last K  — 1 terms in (60) mn. — p is
simply replaced by mn, . Then, a comparison with (35) shows,
that the points (60) are approximately obtained from the
points (35) by a multiplication out of the centre a(1) with
a factor

(61)

In figure 13.1, the approximated points (60) are the edge points
of the dotted triangles, drawn in accordance with p =  3mx.

It is seen that, in case I, the limitations (48) are unimportant.
If p is sufficiently larger than m1 they are even, as in fig.

3

I I I
F i g u r e  13.1. L im i ts  im p o s e d  o n  th e  w e ig h te d  re g re s s io n  b y  th e
c o n d i t io n s  fo r  p o s i t iv e  w e ig h ts  (fu ll d r a w n  t r ia n g le s )  a n d  t h e  c o n 
d i t io n s  o f c lo se  f i t  ( d o t te d  t r ia n g le s ) ,  in  t h r e e  e x tr e m e  c a s e s . T h e
s m a ll  r o u n d s  in d ic a te  t h e  o r th o g o n a l  re g re s s io n , t h e  c ro sse s  t h e

d ia g o n a l  re g re s s io n .

13.1 ineffective. In case II, however, the inequality (48) for
k =  3 is significantly effective, excluding ratio’s of the e]c
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in which eK is large compared with the remaining ek . That
this must occur can also be seen in connection with the remarks
made on p. 105. Suppose that, in adapted units, all of the ek
are approximately equal. If the ratio’s of the ek happen to
be chosen close to the corresponding ratio’s of the sk, they
will, under the conditions of section 9, yield good estimates
of y and of the variances g\  in (39). And, if yK is small,
the estimation of y and of the first K  — 1 variances a\
will not be appreciably affected, if only the chosen value of
eK , say, considerably falls short of the corresponding zK,
according to our remark on p. 106. Just because of this small
influence of eK, however, the estimation of y and of the
g\  is spoiled if the ek are chosen such that eK considerably
exceeds the remaining ek . For, in that case, the estimate of
/(e) is based on adjusting displacements which are nearly
parallel to the X K axis, and hence, as yK is small, also nearly
parallel to the true regression plane II. Thus the errors in the
data are forced on to that variable which is least capable of
absorbing them, the result being a far too large estimate of
Gg, which may even come close to mKK, and a biased estimation
of y, particularly of yK .

A tentatively weighted regression plane will be said to give
a close fit to the scatter points X(<) if and only if, besides the
conditions (20) for positive weights, also the inequalities (48)
are satisfied. The latter will, accordingly, be called the conditions
of close fit. Then, we have reached the result, announced in
section (4): If (56) holds, the elementary regression planes corre
sponding to variables whose orthogonal regression coefficients
('computed in adapted units) are small compared with those of the
remaining variables fail to show a close fit to the scatter points.

Let us now consider the diagonal regression (4.18) in case
II. From (33) we derive the expansion

(62) y/vnymkk =  aW -)- \  —i- —-----. . . .
«V 4

For k — K, the convergence of this series is not certain. If,
however, aSff is still large enough to make it convergent, the
first term suggests that the diagonal regression vector d need
not satisfy (48), but can show a considerable positive bias in its
last component dK, or, in general, in its components cones-
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ponding to small values of yk . I found this confirmed in a
number of practical examples, with one of which this section
is concluded.

Similarly, in case II, the “significance factor” f1K in (4.21)
overestimates the real error of weighting, since it allows

ci g ( e )
cg(e)

c i ( e )

to assume any value between bfy and b(£f, whereas the
latter intercoefficient does not permit a close fit to the scatter.

The third part of fig. 13.1 shows the case III in which both
Yk and Yg-i. are small. If K =  3 and if (56) holds, it cannot
occur in standard units, but may occur in adapted units in the
common case in which the pk, are chosen considerably smaller
than px, according to a situation where the influence of
neglected determining variables considerably outweighs in
importance the errors in the determining variables. Then,
two of the conditions (50) of close fit become effective, together
confining the tentatively weighted regression vector to the
neighbourhood of the first elementary regression vector.

A few words may be devoted to the remaining problem of
the uncertainty in the estimated sampling standard deviations
(3) of the weighted regression coefficients, which determine
the widths of the regions of acceptance for the y;. . Putting
e for e, we find from (10.3)

(63) s2
ck

,(e) =  mk 'k ’
( i i )  •

c(e) mc(e)
T — K  '

This being a positive definite quadratic form in the clc(e),
the maximum of (63) if the normalized vector c(e) is confined
to a part of its space which is defined by linear inequalities,
or bordered by hyperplanes, will be reached in one of the “edge
points” of this part of the space. If once the limiting vectors
(35) and (60) — in so far as they are relevant — have been
found, it will not be difficult (seep. 85) to ascertain the range
of variation of (63) for vectors c(e) satisfying both (20) and
(48) by computing the values assumed by c(e)mc(e) in some
of these “edge points” . Thus we may correct for the first one
of the causes, mentioned in section 9, by which the errors in
the determining variables unfavourable affect the reliability

8



of the classical formula (3.61) in judging the precision of
estimated regression coefficients.

In practical applications, it will not always be possible to
have full confidence in the validity of the assumption of un
correlated errors in the variables. If there is an assignable cause
of correlation between the errors in different variables — as
may be the case where different variables are quotients with
the same index number in the denominators — it may perhaps
be possible to replace the set of variables Xk by K  inde
pendent linear combinations for which the assumption of
uncorrelated errors is more likely to hold. If, however, correlation
between the errors is only suspected but cannot be quantitatively
predicted, there must be left to the weighted regression vector
a somewhat larger range of variation than is given by the
two limitations (20) and (48). Nevertheless, the inspection of
the spread in the elementary regression vectors and in the
vectors (60) will in such cases give a point of support in guessing
that range of variation. The discussion in this section is to be
considered as an example showing how any information or
conjecture about the matrix e can be “translated” in terms
of limitations to the weighted regression vector. In cases where
the problem imposes less rigorous conditions on € than those
considered here, it will not be difficult to find, along similar
lines, the adequate expression of these requirements in terms
of the weighted regression coefficients.

It may be expected that the second restricting assumption
— the condition (5) of sign compatibility in the elementary
regressions — also does not constitute a serious limitation to
useful application of the present results. If (30) holds (in
adapted units), the condition (5) can, nevertheless, fail to be
satisfied, and that in two different ways.

In the first place, the border of the positive coordinate space
angle might be passed by one or more of the elementary re
gression vectors of which none show a close fit to the scatter.
(This would be the case if, in fig. 13.1, II or III, the third
elementary regression passed across the coordinate plane 1—3).
It appears that, in cases of this type, the conclusions remain
the same, since the deviating elementary regressions are far
and away excluded by the conditions of close fit.

Secondly, one or more of the elementary regressions of close
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fit may have signs deviating from, say, those of the orthogonal
regression. (For instance, in fig. 13.1, II, the elementary regression
vector b(2) may pass through the coordinate plane 1—2).
In that case, the part of the space filled by regression vectors
c(e) satisfying both the conditions for positive weights and the
conditions of close fit extends to the border of the positive
coordinate space angle. The sampling error being superposed
on the error of weighting, there is in such cases no significant
indication that the true regression coefficients yfc of variables
X k corresponding to the deviating elementary regressions differ
from zero. By leaving out the variables concerned, there can,
then, be produced a situation where the condition (5) holds,
or where only deviations of the first type occur.

14. An application to the ship freight market.

We shall illustrate the preceding results by means of the
figures contained in a study made by T i n b e r g e n  (30) of
the world ship freight market in the period 1880-1911.

The dependent variable X lt the freight rate, is statistically
expressed by the “Fairplay” index of homeward freights (41),
for the years previous to 1885 completed by means of figures
given by H o b s o n  (43).

According to market theory, the relation between X 1 and its
determining variables is obtained by equating two expressions
for the actual transport X 2, one, the demand equation

(1) X2 =  fX , +  D,

expressing X 2 in terms of the freight rate X t and demand
factors, here summarized by the symbol D, and another, the
supply equation
(2) X 2 =  gXj +  S,

expressing X 2 in terms of X 1 and the summarized supply
factors S. The result is

(3)

A further analysis suggests that D depends, in the simplest
case by a linear relation, on the differences in the prices — of the

I
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goods to be transported — between the countries of origin and
those of destination. Owing to the large number of goods and
of countries, however, it is difficult to find an adequate statistical
expression for D. For that reason, T i n b e r g e n  argued as
follows. The freight rate being of much more importance to the
persons on the supply side of the market than to those on the
demand side, ƒ can be expected to be small compared with g.
Putting / =  0, D becomes, according to (1), equal to X 2, and
(3) takes the form

(4) * i  =  — (X2- S ) .
g

Mathematically, this equation is identical with the supply
equation (2). It is, however, considered as an approximation to
equation (3), which has a logically different meaning in that
it expresses X x in terms of its determining variables. Thus
X 2 is in (4) to be taken as an index of demand factors, replacing
the logically more correct but statistically inaccessible index D.
Then, in particular, the ratio of the coefficients of X 2 and S
in (4) is the same as that of the coefficients of D and S in (3).

Statistically, X 2 is obtained by adding the transport, measured
in milliards of tons X miles, of the most important goods,
namely grains, coal, oil, Chilean nitrates, and wood, between the
principal countries involved x).

For S two main supply factors are introduced, the total
tonnage X 3 and the coal price X 4. A series representative of X 3
is found by adding the tonnage of the trade fleets of England, the
United States, Germany and Norway, counting a ton of a steamer
as 3 times a ton of a sailing ship. For X 4 is taken the export
price of coal from England.

T i n b e r g e n’s computations have been performed by means
of three years moving averages of percentual augmentations over
three years, a method which eliminates a great deal of the in
fluence of rapidly fluctuating determining variables not included
in the above set, which influence appears to be considerable in
the data. This procedure does not admit an application of the
present theory, because it introduces considerable serial correla
tion in the errors in the variables. Therefore, regression coefficients

l )  F o r p articu la rs , see T i n b e r g e n  (30, 1934).
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have heen recomputed for percentual deviations from trend. For W4
a linear trend, fitted by the “least squares” principle, appeared
to be sufficient; for the remaining series, which show cyclical
oscillation superposed on a somewhat irregular trend, great care
has been given to the fitting of smooth trends by moving averages
of a variable number of years. Such a procedure cannot fail to
introduce some serial correlation in the errors in the trend de
viations, which might affect the applicability of the formulae
derived in this study on the assumption of independent errors
in the successive years. The following reasoning suggests, how
ever, that it may be possible to allow for this circumstance
by a simple correction.

It has been proved by F r i s c h  and W a u g h  (42) that if,
in a set of variables, an elementary regression equation is fitted to
the absolute deviations from linear trends fitted by the “least
squares” procedure, the regression coefficients are the same as
those of the corresponding elementary regression in another set of
variables combining the original variables with the time t. If
in that larger set of variables the conditions of F i s h e r ’s
specification apply, the sampling variances of these regression
coefficients may be unbiasedly estimated by means of formula
(3.61) computed from moments of trend deviations, if only T  — K
is replaced by T  — K  —- 1.

These results are easily extended to trends of the same degree
P  in i for each of the variables and to the weighted regression
if the additional variables, the first P  powers of t, are taken
as variables without errors. If in the larger set of variables the
conditions of the present specification are satisfied, with

(5) «x+p =  0, p — 1,2 . . . .  P,

the errors of sampling can be studied by means of the formulae
derived in this investigation, computed from trend deviations, if
only P  is substracted from the number T  — K  of degrees of
freedom entering into the estimation of a2.

In the present problem, the situation is different in two re
spects. Firstly, a linear relation is fitted to relative instead of
absolute trend deviations; then, a trend of moving averages has
been adopted for three out of the four variables. Nevertheless,
it is considered as a good approximation to the correction for
serial correlation due to trend fitting if the present formulae are



applied with 5 substracted from the number of observations, the
trends of moving averages having the general aspect of about
fifth degree polynomial trends.

In table 14.1 the original variables are listed. Table 14.2 in
dicates the standard units in which the computations have been
effected. But for their signs, which are chosen so as to make
positive all coefficients of the first elementary regression, they

Table 14.1

Y e a r
F r e ig h t
in d e x

100 in 1900

T r a n s p o r t

milliards of
tons x miles

T o n n a g e

millions
of tons

C o a l p r ic e

shillings
per ton

1880 154 101 16.59 8 .9
1881 138 100 17.25 9 .0
1882 135 109 18.16 9.1
1883 133 114 19.39 9 .3
1884 120 118 2 0 .3 9 9 .3
1885 106 120 2 0 .8 0 8 .9
1886 97 114 2 0 .5 9 8 .4
1887 95 120 2 0 .5 5 8.3
1888 106 136 20.91 8 .4
1889 125 143 2 2 .1 5 10.2
1890 103 142 2 3 .4 7 12.6
1891 104 159 2 4 .7 8 12.2
1892 85 140 2 5 .7 9 1 1.0
1893 86 154 2 6 .4 9 9 .9
1894 82 173 2 7 .1 2 10.5
1895 80 173 2 7 .5 9 9 .3
1896 76 178 2 7 .9 7 8 .8
1897 78 191 2 8 .2 7 8 .8
1898 94 195 2 8 .9 0 9 .8
1899 85 211 30 .11 10.5
1900 100 223 3 1 .2 9 16.5
1901 74 210 3 2 .9 2 13.7
1902 66 219 3 4 .6 3 12.2
1903 71 231 3 6 .2 0 11.6
1904 72 253 3 7 .4 4 11.0
1905 69 264 3 8 .7 7 10.5
1906 68 2 7 7 4 0 .5 4 10.8
1907 70 286 42 .51 12.6
1908 58 2 7 2 4 3 .7 7 12.6
1909 64 299 4 4 .1 7 11.2
1910 65 3 1 6 4 4 .4 6 11.6
1911 75 3 1 4 4 5 .4 7 11.3
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Table 14.2 T  =  32

k 1 2  3 4

S tan d a rd  units , in percen ts of
t r e n d ..................................... — 53.6 9.87 — 12.27 76.1

Table 14.3 M  =  0.341

»*« 1 =  1 2 3 4

ft =  1 1.000 — 0.666 — 0.167 — 0.451

2 1.000 0.018 0.150

3 1.000 — 0.223

4 1.000

Table 14.4 r1234 =  0-795

Mkl 1= 1 2 3 4

k= 1 0.927 0.559 0.231 0.392

2 0.685 0.1 19 0.174

3 0.422 0.180

4 0.532

Table 14. 7 ?1 =  1.00

ft 2 3 4

A " 0.66 0.29 0.46

A 2) 0.50 0.30 0.49

A 3) 0.68 0.10 0.36

?i4) 0.70 0.22 0.21

Table 14.5

k 2 3 4

MU.hk 0.950 0.978 1.000

Table 14.6 =  1.00 etc.

ft 2 3 4 row

4!) 0.60 0.25 0.42 ( i )0.13 0.13 0.13

4 2) 1.23 0.21 0.31 (2)

b[3) 0.52 1.83 0.78 (3)

4 4) 0.44 0.46 1.36 (4)

0.86 0.68 0.76 (5)
*5^1) 0.76 0.31 0.53 (6)

0.31 0.37 0.57 (7)

M1’ 0.52 0.20 0.45 (8)

Z%1) 0.72 0.43 0.43 (9)



equal the square roots of the square moments of the percentual
deviations from trend of the variables given in table 14.1. The
moment matrix m, in these units equal]) to the correlation
matrix r, is given in table 14.3, together with its determinantal
value M. Its adjoint j | Mkl \ | is shown in table 14.4, together
with the total correlation coefficient

It appears that the signs in the rows of 11 Mkl \ | are compat
ible. Furthermore, M n  is only slightly below its maximum
m2 2 m3 3 mn  =  1, whence there is no possibility of important linear
dependence between the determining variables diminishing the
rapidity of convergence of the expansions given in sections
9-12. Table 14.5 supplies the principal minors in |m| of order
2 not containing the element mn .

Table 14.6 contains the coefficients of a number of different
regressions which are discussed in what follows. All of them are
normalized by equating to unity the first coefficient. The first
four are the elementary regressions, having coefficients propor
tional to the elements in the rows of table 14.4. There exists a
considerable spread in the four values for each of the three
coefficients bk, , and that the more, the smaller the coefficient
bk }. The conditions of positive weights leave, in fact, a range of
variation to the weighted regression coefficients which is large
compared with the classical “standard errors” in the first
elementary regression coefficients, attached in row (1) of table
14.6 to the corresponding coefficients and computed from (3.61)
with 5 substracted from the number of observations. It is,
therefore, of primary importance to see whether the error of
weighting is further limited by the conditions of close fit.

If only the k-tb variable is supposed to be subject to error the
estimated variance of that error bears to the actual variance
of the variable in which it occurs the ratio

q  I t  seem s su p e r f lu ou s  to  b r e a k  th e  c o n t in u i ty  in  th e  fo rm u la e  b y
w r i t in g  r fo r  m.

m„M

( 7) f _ K _ p  (mkkmkk) 1. with P = 5,
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in consequence of (3.47). Owing to (13.42) this is at once the max
imum of that ratio for all positive weights ekx. The values,
assumed by [mkkmkk)~x for k — 1, 2, 3, 4 are

(8) 0.37, 0.50, 0.83, 0.64.

There is no doubt that the ratio’s (7) to which they lead for
k =  2, 3, or 4 must be excluded by the conditions of close fit.
Accepting the second elementary regression as a possibility
would mean to admit in the series for the actual transport an
error whose standard deviation exceeds 0.8 of that of the series
itself; and still more preposterous assumptions would be implied
in the acceptance of the third and fourth elementary regression.

To make a good guess at the maximum possible error variances
in the series for the determining variables would require more
knowledge of the statistics concerned than the present author
disposes of. To be cautious, we shall take

(9) Pa =  P3 =  P4 =  0.10
in the three last of the conditions (13.48) of close fit, that is, we
shall assume the estimated standard deviations of the errors in
the determining variables not to exceed V (32/23) X 0.10 =  0.37
of the actual standard deviations of these variables in the period
concerned. For X 3 and X4 these limits are doubtless taken
generously large, because X 3 is rather accurately known and
A4, if measured in percentual trend deviations, has a relatively
large variance (see table 14.2), of which more than one third is
due to the single year 1900. Yet, the limits (9) will appear suf
ficient for an enormous reduction of the range of variation per
mitted to the special weighted regression.

The value 0.37 for (wqpn11)-1, though the smallest of the four
values in (8), suggests that the freight index X x is subject to
considerable influence from other determining variables than
those already considered. In fact, the first elementary regression
“explains” only 1—(32/23) XO.37 =  0.49 of its variance by the
influence of X a, X 3 and X t , and the set of determining variables
cannot be considered as complete in the sense that it leaves only
small “unexplained” residuals in the dependent variable. There
fore, the estimated regression coefficients and the valuation
of their reliability to be presented here can only be trusted in so
far as the hypothesis is justified that the remaining determining



variables are so numerous and so erratic in nature that their
combined influence, though being large, still has the character
assumed in the present specification for the erratic components,
viz., independence, from the variables, from the erratic compo
nents in other variables, and from each other in successive
observations; and an approximately normal distribution (though
this latter condition is probably less imperative).

Without venturing a definite judgement about this hypothesis,
we shall for purposes of illustration assume that it holds. Then,
it will be safe not to impose an effective limitation on the estimat
ed variance of the “error” in X 1. To visualize the effect of the
remaining conditions in (13.48) we shall, however, complete them
by a condition for k =  1 with

(10) Pl =  0.40,

which is ineffective since p1 exceeds the maximum value 0.37
of l(é)ejmiv The standard units are, then, at once adapted units
only for the last three variables, and the matrix (13.51) now has
the elements

(11) nk l— mkl ?k ^kl ■
The vectors j(0 with components

( 12) so ff* =  1,

are given in table 14.7. They constitute the edges of the space
angle to which, according to the conditions of close fit, the
weighted regression must be confined. This angle and the ele
mentary regressions space angle each intersect the three-di
mensional hyperplane
(13) c1 = l

in a tetrahedron, which have both been drawn in fig. 14.1 in three
orthogonal projections on the three coordinate planes.

It appears most strikingly from this figure that the conditions
of close fit exclude nearly the whole of the region permitted by the
conditions of positive weights, admitting only regression vectors
which lie in a small part of that region close to the first elementary
regression. In fact, the error of weighting for each of the three
coefficients is reduced by the conditions of close fit to a small
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fraction of the standard deviation of the classical error of
sampling, shown in row (1) of table 14.6.

The diagonal regression d, computed from the diagonal
elements in table 14.4 and shown in the fifth row of table 14.6,
is indicated in fig. 14.1 by the point D. It turns out to contain
a positive bias considerably exceeding the classical standard

Figure 14.1. L im its im posed on th e  w eighted  regression coef
ficien ts ck (cj =  1) of th e  fre igh t index  X { on th e  ac tu a l tra n sp o r t
X 2 , th e  to ta l tonnage X 3, and  th e  coal price X A (percen tual tren d
deviations, measured in  standard units, all signs being m ade positive).
The p o in t (c2 , c3 , cA) satisfies th e  conditions of positive weights by
ly ing  w ith in  th e  large te tra h e d ro n  (draw n in th ree  o rthogonal p ro 
jections) and  is in  add ition  by th e  conditions of close ji t  confined to  the

sm all te trah ed ro n . D ind icates th e  d iagonal regression.

error, especially in the coefficient d3 corresponding to the
determining variable X s of smallest influence. It would lead
to estimates of the variances of the erratic components which
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bear to the actual variances of the variables in which they occur
the ratio’s
(14) —0.04, 0.52, 0.73, 0.52,

for k — 1, 2, 3, 4 respectively, all of which are unacceptable.
The negative sign of the first of these ratio’s shows that, in the
present case, the diagonal regression does not even satisfy the
first of the conditions for positive weights.

A considerably smaller bias is present in a type of mean re
gression vector *b(1), used by T i n b e r g e n  (32, p. 385),
having coefficients defined by

(15) *6<» =  J(«=  1, *$> =  (
^ 1.234

the factor by which the are multiplied being chosen such
that the variance of X 1 equals that of the linear combination

- * b $ X x. + b

by which it is approximated to. The coefficients (15) are given
in row (6) of table 14.6. They are still excluded by the con
ditions of close fit.

There remains the question in how far the error of sampling
of the weighted regressions of close fit, in sampling from the
parent distribution of section 7 with the same weights inserted,
still exceeds that of the first elementary regression in sampling
from the parent distribution according to F i s h e r ’s specifica
tion.

In the first place, the condition (12.2) for rapid convergence of
the expansions is satisfied just as a consequence of the last three
of the conditions (13.48) of close fit, which, owing to (9), can
now be written

(16)
T  — K  — P mk,k,

while the factors (mk.k, mffij')2 are only

(17) 1.05, 1.12, 1.16,

for k' =  2, 3, 4 respectively, owing to the complete absence of
linear dependence between determining variables. This is, of
course, a particular case of a general feature of the present meth-



125

od: In  so far as the rapidity of convergence in the developments is
not unfavourably affected by inter con elation of determining varia
bles, it is ensured by the conditions of close fit in all cases where
the errors in the statistical series are known to be not particularly
large.

Thus, we may study the question at issue by a comparison of
the expressions (13.63) and (3.61) for the estimated sampling vari
ances according to the two specifications, of which the ratio has
been indicated in (9.63). We shall simply compute this ratio for
the vector j(1>, which equals the weighted regression vector
c(e) for weights corresponding to the maximum values of the
/(e) ek, compatible with the conditions of close fit. In the present
case, this will doubtless lead to the maximum value of that ratio
for weights admitted by the two sets of conditions. The result is

(18)
j(1) m j(1) 0.379
b(1> m b(1) =  0.368

showing that the first cause, mentioned on p. 84, affecting the
validity of (3.61) is in the present case of no importance.

Further, we shall compute the correction divisors (12.17) for
values of sk corresponding to the point j(1). The elements m*'fx.vk')
all exceeding 1 by relatively small amounts, these correction
divisors equal
(19) qk. =  1.09, 1.09, 1.08, for £' =  2,3,4,

whence, the second cause by which, according to section 9,
formula (3.61) falls short of indicating the real sampling error if
£k, >  0, is of only slightly greater importance than the first one.

Finally, the standard deviation of neglected terms of first de
gree in the development (12.9) of of which the square is
given in (12.14), is in the point j(1) estimated by a quantity which
bears to a ratio, up to the second decimal place equal to

(20) 0.14,

for k' =  2, 3, 4 respectively. Thus, even for errors so small
as those admitted here in nearly not intercorrelated determining
variables, the width of the region of acceptance (13.2), though
corrected by means of (12.17) for the bias due to second degree
terms in the expansion (12.9) of mfffi, falls in repeated samples
irregularly above and below the right value with considerable
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instability in consequence of the neglect of first degree terms
in that expansion.

Apart from this uncertainty, the approximations in the pre
ceding sections lead to a correction of the regions of acceptance
(3.54), derived by means of F i s h e r ’s specification, owing to
which the width of this region is multiplied by a factor, at most
equal to 1.12, the product of the factors in (18) and (19), in the
point j(1) of largest admitted departure from the first elementary
regression. In addition, allowance must be made for the error
of weighting by admitting the mid-points of the regions of ac
ceptance to assume any values corresponding to points which are
in fig. 14.1 inside both of the tetrahedra.

Table 14.8 T — K  — P = 23

Low er and  u pper lim its of th e
regions of accep tance for C 2 C3 C4

I. according to  F isher's  specification, 0.33 — 0.02 0.15
6 =  0.05 0.87 0.52 0.69

I I .  according to  its  generalization 0.33 — 0.02 0.15
given in  section 7, 0 =  0.05 0.96 0.59 0.76

I I I .  F risch ’s lim its 0.60 0.25 0.42

1.23 1.83 1.36

Table 14.8 shows the regions of acceptance (3.54) compared
with those obtained by the above corrections, both for the signi
ficance level 0 =  0.05, and with those corresponding to
F r i s c h’s limits (4.17).

The coefficient c3 for the influence of total tonnage is just in
a position of doubtful significance on purely statistical evidence.
Since the economic significance is beyond suspicion, our con
clusion must be that the present data admit only the indication
of a wide range within which c3 is likely to be included.

It appears that the present example is particularly suited to
illustrate the criticism of some elements in F r i s c h’s ap
proach to the regression problem, to which this study gave rise.
On the other hand, it can hardly serve as an illustration of the
primary importance of F r i s c h’s criticism of the arbitrary use
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of F i s h e r ’s specification, a criticism which is arduously
supported in these pages.

1880 19 0 5

Figure 14.2. The fre igh t index  X t ap p ro x im ated  to  by  th e  firs t
elem en ta ry  regression x x =  3.3 X 2 —  1.1 X 3 +  0.30 X i  +  b on the
ac tu a l tra n sp o r t X 2> th e  to ta l tonnage  X 3 and  th e  coal price X 4. The

units  are percents of trend.

This situation is due to two features of our present example:
the complete absence of approximate linear dependence between
determining variables, and the large influence exerted on X 1 by
determining variables other than X 2, X 3, X 4. There is, however,
no doubt that in other cases the possible dangerous effects of an
abuse of F i s h e r’s specification would become manifest by
application of the results of this investigation.



The results derived by F i s h e r ’s specification being reha
bilitated for the present example as a good approximation, some
points that remain may be discussed by means of the first ele
mentary regression. The first three graphs in fig. 14.2 show the
three terms in the right hand side of that regression equation,
written in the explicit form (3.18). The scales and regression
coefficients in the figure refer to percents of trend.

The fourth graph combines X 1 with the approximating linear
combination xv The large difference — x1 for the year 1898
may perhaps find its explanation in the large shipments of Span
ish troops to Cuba in that year, though no corresponding de
viation is found in the initial year 1900 of the Boer war.

It might be questioned whether in so long a period the regres
sion coefficients may be supposed to have remained the same.
No statistical evidence to the contrary is found in comparing
the two elementary regressions for the partial periods 1880-1895
and 1896-1911, which are given in table 14.6 in the rows (8) and
(9) respectively. These coefficients are entirely within the regions
of acceptance in table 14.8, constructed from the data of the
whole period, whence, a fortiori, no significant difference can be
expected to appear from an application of the more adequate
test based on the data of the two periods separately.

A comparison must further be made with the regression coef
ficients in row (7) of table 14.6, found by T i n b e r g e n  (30)

from moving averages of three years percentual augmentations.
These coefficients must be compared with those in row (6),
since they have also been computed by the prescription given in
(15). The only important difference is the reduction of the coef
ficient estimating the influence of X 2, a variable which is much
more subject to rapid and irregular fluctuations than X 3 and X i
Without further inquiry, it is difficult to decide whether this dis
crepancy is due to a bias, introduced in the estimation of regres
sion coefficients corresponding to variables of irregular short term
variation by the averaging procedure in cases where the present
(or F i s h e r ’s) specification applies — or whether it is an in
dication that the hypothesis of a simple linear relation between
simultaneous values of the variables constitutes an oversimpli
fication, where perhaps in reality either less or more influence is
exerted by a value of a determining variable that has persisted
during some years than by a value which itself differs considerably



from preceding values. To answer questions of this kind, there
is need for a test capable of discerning the more complicated
hypotheses from the simple “linear” hypothesis. If hardly any
errors occur in the determining variables, much can be done by
means of the test of significance of regression coefficients, given
by (3.54). For cases where errors must be admitted in all of the
variables, several problems of the indicated type still await their
solution.

Finally, we shall compute the serial correlation of the residuals
X 1 — xx, exhibited in the last graph in fig. 14.2, in order to in
quire whether the data possibly contradict the assumption of
independence in successive values of erratic components. This
correlation is

(21) rser =  —0.17 or —0.14,

according to the year 1898 being included or not. According
to a formula derived by B a r t l e t t  (2, p. 537), the mean
value of the square of the serial correlation in a series of T
spherically normal variables approximately equals

(22) E rler = ■

The corresponding standard deviation is, therefore, in a series
of 32,

(£>U * = ~4= =0.18.
V31

Thus, even if ignoring the fact that a small negative serial cor
relation must have been introduced in the residuals by the trend
fitting procedure, no significant deviation from independence
is found by this test.
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STELLINGEN



I

Indien van twee reële hyperellipsoïden in de w-dimensionale
Euclidische ruimte (twee reële (n— 1)-dimensionale quadra-
tische variëteiten die de oneigenlijke ruimte volgens een imagi
naire figuur snijden) met gemeenschappelijk middelpunt de
eerste (A) binnen (resp. niet buiten) de tweede (B) ligt, dan geldt,
als alt a2. . . .  an en b1, b,z . . . . bn de lengten der assen van A
en B voorstellen in volgorde van niet afnemende grootte,

ak < bk (resp. ak <> bk), k = \ , 2 . . . . n .

II

Zijn A en B twee reële symmetrische matrices, en zijn de wor
tels der karakteristieke vergelijking van B alle positief (resp.
niet negatief), dan zijn de wortels der karakteristieke verge
lijking A -f XB monotoon stijgende (resp. niet dalende) functies
van de reële parameter X.

III

Er is geen grond om bij de studie van de atoombouw aan
een nauwkeurige numerieke oplossing van de integro-differen-
tiaalvergelijkingen van F o c k groot gewicht toe te kennen.

IV

De wijze waarop de waarschijnlijkheidsrekening in de quan-
tummechanica wordt gebruikt bij de interpretatie van waar
nemingen vertoont overeenkomst met het statistisch vraagstuk
om conclusies te trekken aangaande een niet of onvolledig be
kende waarschijnlijkheidsverdeling als uit deze verdeling in
principe slechts één steekproef kan worden verkregen.

V

De interpretatie, door D e m i n g  en B i r g e  gegeven van
de schattingsmethode volgens „maximum likelihood”, is onjuist.

W. E.  D e m i n g  and  R.  T.  B i r g e ,  On
t he s ta tis tica l th eo ry  of errors, Rev. of Mod.
Physics, Yol. 6, 1934, p. 145.



VI

Het bezwaar, door D r i o n aangevoerd tegen de toepassing
van „S t u d e n t ’s” /-test bij de studie van biologische pro
blemen, is niet ernstig.

E. F . D r i o n, On the  in te rp re ta tio n  of
frequency curves in biology, Ree. des T rav.
B otan . Néerl., Vol. 33, 1936, p. 101.

VII

Tegen de berekeningswijze der regressievergelijkingen, door
D o n n e r bepaald ter verklaring van de loop der aandelen
koersen in Duitschland van 1870—1913, zijn bezwaren aan te
voeren die de juistheid van zijn uitkomsten twijfelachtig doen
zijn.

O. D o n n e r, Die K ursb ildung  am  A ktien-
m ark t, Sonderh. 36, V iertel]ahrsh . zur Kon-
ju n k tu rf ., 1934, p. 21.

VIII

Het zou in vele opzichten een besparing betekenen indien de
getallen in statistische publicaties slechts in zoveel cijfers wer
den aangegeven als door de nauwkeurigheid van de meetmethode
der betreffende grootheid gewaarborgd zijn.

IX

Onder de verschillende methoden tot beïnvloeding der in
komensverdeling onderscheidt een heffing op de bedrijfswinsten
zich hierdoor, dat met de toepassing van dit middel geen on
middellijke terugwerking op de beslissingen der ondernemers
ten aanzien van de omvang van productie en werkgelegenheid
verbonden is.

X

Het derde postulaat, door B o w 1 e y gesteld aan een
„utility function”, is onverenigbaar met de eveneens door hem
gestelde onmeetbaarheid der bevrediging.

A. L. B o w 1 e y, The m athem atica l g round 
w ork of economics, p. 2.



XI

De bewering van M o o r e  dat, als y(x) voorstelt de kosten
van een bedrijf als functie der geproduceerde hoeveelheid x,
een bedrijf, dat verkeert in een der drie gevallen

door hem genoemd resp. diminishing, constant, increasing relative
return, dientengevolge ook verkeert in het overeenkomstige der
drie gevallen

door hem genoemd diminishing, constant, increasing return, is
onjuist.

De voorstelling van M o o r e  dat wel door het vervuld zijn

x — 1 zou bepalen, is logisch foutief.
H.  L.  M o o r e ,  l.c. p. 82.

XIII

Het werkt verwarrend dat in de economische litteratuur
voor beide onderscheidingen

de benamingen verminderende resp. vermeerderende meer
opbrengst worden gebruikt.

H. L. M o o r e ,  S y n th e tic  economics, p. 80.

XII

van een der relaties x ^  1 zou zijn vastgelegd, welke der relaties
v" <  0 geldt, maar niet omgekeerd het teken van 9" dat van










