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the gas i (eq. 14.1V).
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intermolecular force (eq. 23.II1I).
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natural gas.
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C, molar concentration of the gas A. If the
gas consists of two isotopes of the
kinds 1 and 2, then C)p = Cy + Cy.

S

¢; =n;/n molar concentration % ¢, = 1.

k=1

c{l; ci molar concentrations at absolute temper-
atures T!! and T!.

cgb) molar concentration of the gas i in a
binary mixture (i, k).

(ci/ci)ll: (ci/ci)1 molar concentration ratios at absolute

' temperatures T!! and TI.
Dij Meyer’s coefficient of concentration
' diffusion in a binary mixture.

Dii coefficient of self-diffusion.

[D”]1 first approximation for D,.

[D“]l first approximation for D, .

Fii force acting between molecules of kinds

y i and j.
k Boltzmann’s constant.
- '
iy kij force constants.
Kpi general notation for the pressure diffus-

ion ratio of the gas i.
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K, (Chap); [Kpi(Chap)]1 Chapman-Enskog’s pressure diffusion
ratio.
Kpi(elem); [Km(e]em)]l elementary pressure diffusion factor.
Only used for comparison with Chapman-
Enskog’'s theory.
KTi general notation for the thermal diffus-
ion ratio of the gas i.
Ky (Chap); [KTi(ChaD)]l thermal diffusion ratio of the gas i
given by Chapman-Enskog’s theory.
KTi(elem); [K,H(elem)]I thermal diffusion ratio, as given by our
treatment, for comparison with Chapman-
Enskog’s theory only.
mean free path for number density trans-
fer,
mean free path related tothermal diffus-
ion. In our treatment it is called mean
free path for ‘mean thermal speed’ trans-
fer.
mean free path for momentum transfer.
Maxwell’s mean free path.
Maxwell’s mean free path for number dens-
ity transfer corrected for ‘persistence
of velocities’.
first approximation for P11. eq. (28,
30.11I).
Maxwell’s mean free path for momentum
transfer corrected for ‘persistence of
velocities’. (Eq.17.III), given by Jeans
and Whalley and Winter.
molecular mass.
= m;/(m; + mj).

number density of the gas i (molecular
density).
pressure.

separation factor achieved by thermal
diffusion for the gases i and j, in this
succession.

see equations (17.IV) for our elementary
theory.
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1] [aij(res)]l

theoretical thermal separation ratio
defined by elementary thermal diffusion
factors.

0y ¢ (BXD) s -
Rij(exp) e 7 i 2 experimental thermal separation ratio,
[aij(res)]x always referred to our elementary first
approximation to the thermal diffusion
factor for ‘rigid elastic spheres’.

[Rtj]k limiting value for RIJ as ¢, = 1. Mostly
used in multicomponent mixtures.
Rf?) thermal separation ratio of gases i and

j in a binary mixture (i,j). Only used
in the theory of multicomponent mix-
tures.

[R{?)]x limiting value of R{?) as cib) = -1,
Mostly used in multicomponent mixtures.

Nt QII(EXD)

T experimental separation ratio of gases

[“1J(Chap)]1 i and j, always referred to Chapman-
Cowling’s first approximation for the
thermal diffusion factor forrigidelastic
spheres.

[ai'(elem)]x
RT(elem) = ———L—————T—- theoretical thermal separation ratio of
%y (Chap) )y Gur elementary treatment referred to
Chapman-Cowling’s first approximation.

Rkjl see equation (53.V).

Slz Sj see equation (18.1V) for our elementary
theory.

S‘ = cil - c{ separation achieved by thermal diffus-
ion for the gas i.

T absolute temperature.

T andg 1! absolute temperatures at respectively

the hot and the cold part of a thermal
diffusion apparatus.

uy thermal speed.

ﬁi mean thermal speed.

Ei thermal velocity.

Uy " flux velocity.

U - Uj velocity of mutual diffusion for gases
i and j in this succession.

vy = 1.086 ﬁi root-mean square of thermal velocities

(square root of the mean square of thermal
velocities).
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Chapman-Cowling’s first approximation
to the thermal diffusion factor for
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elementary thermal diffusion factor for
‘rigid elastic spheres’. Only used for
comparison with Chapman-Enskog’s theory.
experimental thermal diffusion factor.
elementary thermal diffusion factor for
‘rigid elastic spheres’.

theoretical thermal diffusion factor
for ‘soft’ molecular interactions. Only
used for our elementary treatment.
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CHAPTER I

INTRODUCTORY SURVEY ON THERMAL DIFFUSION

§ 1. Introduction

From the exact theory of transport phenomena in gases, diffusion
should arise because of non-homogeneity of composition, temperature
and pressure. For example, in a binary mixture with uniform
temperature and pressure but non-uniform concentration, the com-
ponents move in opposite directions, each down its concentration
gradient. Diffusion originated in this way is called ordinary or
concentration diffusion.

If in a mixture, initially with uniform concentrations and
pressure, a temperature gradient is set up, a relative motion of
the components may occur leading to the development of concentrat-
ion gradients. This type of diffusionis called thermal diffusion.

Since the concentration gradients originated by thermal diffus-
ion in turn cause concentration diffusion, a steady state may
exist which balances these two processes. Thermal diffusion thus
gives rise to a partial separation of the components of the
initially uniform mixture.

According to Chapman (C1) the general equation of diffusion
in a binary mixture contains a term representing diffusion due
to a pressure gradient. Diffusion arising from this way is called
pressure diffusion. Pressure diffusion, however, has been studied
little because of the difficulties which experimental work gives
rise to.

Thermal diffusion was first discovered experimentally in liquids
by Ludwig and more fully investigated by Soret (1879-81). Soret
filled a straight vertical tube with various salt solutions and
set up a temperature gradient in it by heating the upper part and
cooling the lower. After about fifty days the solute was more
concentrated in the lower, cooler part than in the other.

In contrast, thermal diffusion in gases was first discovered
theoretically by Enskog (E1,E2,E3) and independently by Chapman
(C2,C3,C4,C5). Experimental confirmation was first given by
Chapman and Dootson (C6). In their experiments two bulbs were
connected by a tube and the system was filled with a mixture of
Hydrogen and Carbon Dioxide or Hydrogen and Sulfur Dioxide.



One bulb was heated to about 200° C. and the other was at room
temperature. After some hours the Hydrogen content of the mixture
in the hot bulb was enriched by two or three per cent. relative-
ly to the cold bulb.

In 1939 Clusius and Dickel (C7) proposed their famous thermal
diffusion column and showed how the small elementary effect could
be increased by tremendous factors in a very easy way. In short,
the column was a vertical glass tube along the axis of which
there was a nichrome wire which was heated electrically. The
horizontal temperature gradient set up in the mixture produces
an elementary thermal diffusion separation, at any instant, in
the gases within the glass wall and the hot wire; a continuous
convective flow of the gases, up the hotter surface and down the
cooler, changes, at any instant, the concentration gradients
established by the former process. Such a convective flow tends,
therefore, to reduce the concentration gradients first formed.
For this reason another elementary thermal diffusion separation
will follow between the components of the mixture; and so forth.

As a consequence of those two processes the column provides a
strong separation between the components of the mixture, one
concentrating at the upper part and the other at the lower end
of the column.

By this way Clusius and Dickel could separate, almost complete-
ly, first the isotopes of Chlorine and subsequently those of
several other elements, showing the practical interest of thermal
diffusion.

S 2. Thermal diffusion and molecular interactions

One important feature of the exact theory of thermal diffusion
is that this transport phenomenon should be strongly dependent
on the forces acting between the molecules in collision, provid-
ing one of the best means for investigating these forces. The
most important molecular models which have been treated so far
are the following:

1 - Rigid elastic sphere model (C1,G3).This is the simplest
model. The molecules are regarded as ‘billiard-balls’ with
diameters o. The forces acting between like and unlike molecules
in collision are equal to zero except at the instant of collision
when they become infinitely large.




The practical interest of this model is rather small because

numerical predictions are well far from experimental data of
thermal diffusion.

2 - The inverse power repulsion model. In this model the mol-

ecules are regarded as centers of repulsive forces, Fij, which
vary as the =V bower of the mutual distance, r:
-V
- ij ;
F‘U = kij r (1.1)

where kij and vy are the force constants.

According to the theory, the coefficient of viscosity should
vary with temperature as

1 2
T 2 Vi-1

(2.1)

which provides a way to determine the force index vy of a pure
gas relative to collisions of like molecules. Usually a gas is
called ‘hard’ if v; is large and ‘soft’ if v, is small.

The coefficient of diffusion should vary with temperature as

2
Vif=1

+

3
T 2 (3.1)
where Vi is the force index for collisions of unlike molecules.

Thermal diffusion effect is dependent on the forces acting be-
tween like and unlike molecules but its magnitude is mostly

determined by collisions of the type (i,j) being roughly pro-
portional to

Vyy=5 (4.1)
Vigol

Therefore the magnitude of the thermal diffusion effect is
strongly dependent on the ‘hardness’ of molecular interactions.
If molecules repel each other as the fifth power of the distance
no thermal diffusion separation occurs. This is the well known
case of ‘Maxwellian’ gases to which the coefficient of viscosity
should vary with temperature as T and the coefficient of con=-
centration diffusion as TZ2.




The rigid elastic sphere model may be considered as a particular
case of the inverse power repulsion model assuming that the
force indices Vi Yy and Vyg for collisions of the types (i,i),
(j,j) and (i,j) are all equal to infinity. Therefore, the co-
efficients of viscosity of gases i and j theoretically vary with
temperature as T'/2 and the coefficient of concentration diffus-
ion as T%/2. The ratio of the coefficient of thermal diffusion,
as given by the inverse power repuls}on model, to the correspond-
ing value of the rigid elastic sphere model is roughly equal to
(4.I). For most natural gases the force index Vi is of the
order of 5 to 15. Therefore marked differences occur between
theoretical predictions of thermal diffusion according to both
models.

Though giving a better agreement with experiments, the inverse
power repulsion model is not adequate to explain thermal diffus-
ion data, particularly the variation usually observed with temper-
ature, which according to this model should be mostly expressed
by the factor (4.I) which theoretically should be regarded as
a constant. However, rough predictions may be obtained consider-
ing that the force indices change with temperature., Usually the
values of vy and vy at any temperature are estimated from the
variation of the coefficients of viscosity of the gases with
temperature and a mean value for vy is chosen. Conversely, if
experimental thermal diffusion data are available, an ‘averaged
force index’ vy is obtained assuming that temperature variation
is mostly expressed by the factor (4.I).

3 = The Lennard-Jones model (C1,G3,H8). In this model the inter-
molecular forces are assumed to be simultaneously repulsive and
attractive:

1
i e *VE)
7 T ki, (5.1)

F.. =k

where k ., and v,, refer to the repulsive force, and k;j and v{j
to the attractive force.

Sutherland’s model which represents a molecule as a rigid
sphere of diameter o surrounded by an attractive force field, can
be regarded as a special case of Lennard-Jones model.

Rather few specialisations to particular values of the force
constants appearing into equation (5.I) have been done. This
part of theoretical development presents, however, many mathemat-
ical difficulties. The best studied case is the so-called 13-7




model for the force indices Vij and v;J respectively. It provides
rather good agreement with experiments even in such a sensitive
process as thermal diffusion, in magnitude as well as temperature
dependence, for a large number of observations which have been
reported.

Unfortunately the Lennard-Jones model involves high mathematical
complexity and it has not yet sufficiently been worked out. A few
other specialisations have been proposed, viz. the 9-6 model,
but they do not cover experimental results so well.

4 = As we have already referred, thermal diffusion was first
theoretically discovered by Enskog and independently by Chapman.
The works of these authors were based on classical mechanics.
They have been treated so far in binary mixtures according to the
models given above. In 1939 Hellund and Uehling (H1) extended
Chapman-Enskog’ s theory taking into account quantum corrections.
Modifications required by quantum theory are, however, mainly
important at low temperatures in gases consisting of light
molecules.

Exact theories of transport phenomena in complex mixtures have
been presented by Hellund (H2) and Curtiss and Hirschfelder (C8),
the former taking into account quantum corrections and the latter
as an extension of Chapman’s theory. Both involve high mathemat-
ical complexity.

Only a few observations have been reported for complex mix-
tures.

S 3. Elementary theories of thermal diffusion

Several attempts have been made to give an explanation of
thermal diffusion by means of elementary considerations as,
for example, similar to those of a free path treatment of con-
centration diffusion, viscosity or conduction of heat.

In 1939 Gillespie (G9) showed that the heavier component of
a binary mixture should diffuse down the temperature gradient.
It is usually in accordance with Chapman-Enskog's exact theory.
However, the author assumes a very restrictive hypothesis con-
sidering that all kinds of molecules of the mixture have the
same free path.

By means of an interesting explanation Frankel (F1) could
show, in agreement with the exact theory, that thermal diffus-
ion should not occur between maxwellian molecules, i.e. molecules



which repel each other inversely as the fifth power of their
mutual distances. Following the way applied by Frankel, Furry
(F2) presented in 1948 another approximate theory sacrifying,
however, the elementary character of the treatment to a large
extent.

The most satisfactory of the proposed elementary theories is
that of Fiirth (F3). Indeed, it can explain, at least qualitative-
ly, all the essential features of thermal diffusion and just
follows the general lines of a free path treatment of diffusion.

A general equation of diffusion should have three terms: one
related to concentration diffusion which has been known since
long ago, another related to thermal diffusion and another one
to pressure diffusion. Fiirth’s theory only took into account
concentration and thermal diffusion. Nevertheless aneasy general-
isation can also explain pressure diffusion,

In short, Filirth considered two kinds of mean free paths: one,
11, being the mean distance over which the molecules of kind i
should carry the attribute of the number density (molecular

density), ng: and another one, 1;. being the mean distance to

carry the attribute of the root-mean square of the thermal
velocities, v, (square root of the mean square of thermal
velocities). The root-mean square of thermal velocities was

identified to the mean thermal speed, Gi. which must be regarded

as an approach, for we have, in general, v, = 1.086 ﬁi. It is
assumed that Maxwell’s distribution law of thermal velocities
is appropriated to the local temperature and density. Both n; and
v, were supposed to be developed in power series in the vicinity
of any point P inside the gas mixture.

The ‘hardness’ of molecular interactions was expressed by the
ratios of mean free paths, 1i/1; and 1{/1, which Fiirth assumed
to be equal.

In 1949 Whalley and Winter (W1) worked out Fiirth’s theory extend=-
ing it to complex mixtures of molecules behaving as rigid elastic
spheres. Their general equation of diffusion contains already a
term referring to pressure diffusion.

At least for binary mixtures, theoretical values agree rather
well with those of the exact rigid elastic sphere model. However,
the practical interest of Whalley and Winter’s theory is small,
indeed, because numerical computations are generally just as
laborious as those of the exact Chapman-Enskog theory. Also, no
reference is made to ‘softer’ molecular interactions. This is an
important lack of Whalley and Winter’s treatment because it is
a well established feature that thermal diffusion is strong-




ly dependent on the force fields surrounding the molecules.

The theory now proposed in this paper is similar to those of
Fiirth, and Whalley and Winter. It is, however, more general and
it has been sufficiently worked out in binary as well as in
complex mixtures, for thermal and pressure diffusion.

Two kinds of mean free paths have been considered: one, 1;, for
number density transfer, and another one, 1;, for ‘mean thermal
speed transfer’, which are related by

1; = (1+ay) 1, (6.1)

where ag certainly depends on the force laws acting between
colliding molecules: For the sake of simplicity, probably not
reflecting the real situation, we assumed that ay mostly depends
on the force field surrounding the molecules of kind i.

We also use approximate formulae to the mean free path, 1“
obtained through the known mean free path for number density
transfer corrected for ‘persistence of velocities’. The result-
ing equations for thermal and pressure diffusion are then very
simple to handle in binary as well as in multicomponent mixtures.
This should be a characteristic of any elementary treatment.
Our theory shows several unknown characteristics of thermal and
pressure diffusion, namely that the inverse of the thermal diffus-
ion factor - a quantity frequently used in experiments - should
be linearly dependent on concentrations, at a first approximat-
ion, at least if molecular masses and diameters increase simultaneous-
ly, or if the mass ratio is not too close to unity when m, > my
but o; < o;. This conclusion agrees closely with experience and
Chapman-Enskog's theory.






CHAPTER II

A GENERAL EQUATION OF DIFFUSION BY A FREE PATH THEORY

§ 1. Remarks on free path theories (J1)

It is well known that the essential hypotheses of free path
theories are the following: (1) Maxwell’s law is locally applied
to the distribution of velocities, at a first approximation;
(2) the molecules may be regarded as transporters of their at-
tributes of quality (transfer of molecules themselves), momentum
and energy over small distances, the free paths.

Transfer of quality is related to diffusion; transfer of
momentum is related to viscosity, and of energy to conduction
of heat.

It is also considered that each attribute only slightly changes
within a distance of a free path and it may thus be developed
into a power series.

The simplest treatment assumes that the mean free paths for
transfer of number density, mean momentum and mean energy are
all equal toMaxwell’s mean free path. For more elaborate theories
different mean free paths are considered for each attribute
transfer, due to several corrections which have been proposed,
leading indeed to better agreement with exact Chapman-Enskog’ s
theory and experiments. For instance: the transformation of
Maxwell into Tait’s mean free path by multiplying the first one
by a factor nearly equal to 1.051; the use of Stefan-Maxwell’s
mean free path which only considers collisions of unlike molecules
when treating concentrationdiffusion; corrections due to ‘persist-
ence of velocities’ when studying concentration diffusion and
viscosity.

In free path theories we are dealing, of course, with a
mathematically inexact treatment, for a gas or a mixture in which
transport phenomena occur is not in a steady state and therefore
it does not obey Maxwell’s law of distribution of velocities.
Nevertheless, free path theories have been rather successful
to predict the magnitude of the effects.

One important lack by which such theories have been faced was
due to inability to explain thermal diffusion which is an import-
ant phenomenon after the theoretical work of Chapman and Enskog
and after them has also been applied successfully by Clusius

9



and others for separating isotopes. Now we may say that such
inability was only apparent and actually due to the implicit
assumption of ordinary theories that temperature was kept constant
through the gas mixture. If not only temperature but also pressure
is non-uniform, then a general equation of diffusion should have
three terms related to concentration, temperature and pressure
diffusion due to non-uniformity of composition, temperature and
pressure, respectively.

e ; ; : : :
Y 2. General equation of diffusion in gaseous multicomponent
mixtures

2.1. Let there be a mixture of s gases of kinds 1,2,...,s each
consisting of identical molecules of masses MyyMyy e, M. Suppose
ng the local average number of molecules of kind i per unit
volume (number density) and ﬁi the local mean thermal speed.

We assume that absolute temperature, T, and pressure, p, are
not uniform, but Maxwell’s lawof distributionof thermal velocities
is locally valid. Therefore we have, if no external forces act
between the molecules of the gas mixture,

P

vt 8k )
U, =
i—(
’,7'CI'I1i

where k is the Boltzmann’s constant.

If we consider relatively to the gas mixture a fixed frame
(0X,Y,Z), then the number densities, LT (RPN th temperature
and pressure, and therefore the mean thermal speeds, u ,u,,...,Ug,
will be functions of the co-ordinates of the point P inside the
gas they refer to. Making the hypothesis that in the vicinity of
any point Q, the number density and the mean thermal speed only
slightly change within a distance PQ, we may admit the following
power series for (n,), and (ﬁi)P:




D < ;
(e = g + x(2d) + 93, + o)

(3.1I)
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azQ
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where x,y,z are the components of the vector (P=Q).

The first equation of (3.II) is a consequence of non-uniform-
ity of composition of the gas mixture. It is the only one which
is considered by an ordinary free path theory of diffusion
(concentration diffusion). The second one is now proposed in
order to take into account thermal diffusion. Pressure diffusion
does not need an additional hypothesis besides the known equat-
ion (2.II).

Let us consider an element of area, dS, around the point Q,
on the plane ZQ perpendicular to 0Z (fig.1.II), Positive side
of dS is directed to 0Z increasing.

Fig. 1.11



The flow of molecules is assumed to be positive when they cross
dS from the negative to the positive side. Regarding the para-
meters © and o of fig.1, the total flow of molecules coming to
dS and just crossing it, will be determined by integration over
all the values of o from 0 to 2m, and over all the values of @
from 0 to m. The flow is positive for values of O between 0 and
n/2 and negative between /2 and .

2.2. We will now determine the number of molecules of kind i
which cross dS in a small range of time t, dt.

Assuming the Maxwellian symmetrical distribution of thermal
velocities, the probability that molecules come to Q, from an
element of volume around P, within the angle ranges 6,d® and
o,doe is given by

sin 8 de do
T (4.1I)

4 T

On the other hand, the probability that a molecule of kind i
has a thermal speed, in any direction of space, within a range
ui,dui is (J1)

2

m. ui

1

4 m 3/2 - e
£(d,) du, = ( ‘) ul e 2kT du, (5.11)

V7 \2KT
Hence, by using (4,5.11), the number of molecules per unit
volume at P which obey the above ranges of 8,« and u; is given by

P sin 8 6.11
(ng)p £lUy) ';—;A-de da duy (6.1I)

We must, of course, have
[e4

i T 27 0 .
=y "d8 jfdu-/-(ni)Pf(ui) sin @ du; = (n;), (7.1I)
47

0 0 0

The molecules of kind i which cross dS within the ranges 6,de;
o, da and ui,dui, and now within the time range t,dt, must occupy
the element of volume

(Wy + u; cos 6) dS dt (8.11)




where W, is the 0Z component of the common stream velocity, W

relative to which the thermal velocities are supposed to be of
spherical symmetry.

Now, the number of molecules per unit volume, (P ) ds dt,
coming from an element of volume around P within the time range
t,dt is therefore equal to the product of expressions (6.II)
and (8.II). The total flow, (Plz)Q' per unit area at Q, per unit
time, in the direction of 0Z increasing is thus,

1 T 21 @© L
(Cip)q = G{de {da{ (ny)p [W, + u, cos 8], £(§,) sin 0 du,
(9.11)

2.3. Let us now evaluate the integral equation (9.II). In
accordance with the principles of ordinary free path theory we
consider that the molecules coming to Q have suffered their last
collisions at P. Therefore the molecules of kind i which transfer
their attributes of number density and thermal speed through the
elementary surface, dS, will come from a distance of a free path.

If we assume that the attributes of number density and thermal
speed only slightly change within a distance of a free path, the
power series (3.I1I) will be written as

(mdp = (Mg = 2 @

(10.1I)
(Uy)p = mt)q 3 )‘{ Yi
where
(5 sim 0 s ce (1), wtn 0 con o () con
= sin sin —— sin cos + |— cos
s S e G o 1 ** \&la
(11.1II)
= sin sin sSin cos g cos
Wl - “*(ayq 7 el

In equations (10,II) A; and X; are two kinds of free paths for
number density transfer and for ‘thermal speed transfer’, respect-
ively, in the ‘direction PQ. In general, we do not identify k
with l since they refer to different processes.

By uslng (10.II) in (9.II) and considering that
(1) the terms including products of derivatives may be neglected;
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(2) »; and k; may be regarded as independent of 8 and « since
the attributes of the molecules change only slightly within
a distance of a free path;
(3) the common stream velocity, as used in ordinary free path
theories, is not a function of position,
the general equation of flow of molecules per unit area and
time, in the direction of O0Z increasing is thus,

on o
1 = o X g i g i '
(Typ)q = Mg W, - 2 @) (51 1, - L g (_az)q 1] (12.10)

where 1i is the mean value of li averaged over all the values of
thermal speeds from 0 to infinity, namely

[+
{xi ug £(u;) du
1, = (13.1I)

i = -
jo'ui £(u;) du,

Following Tait and Boltzmann, Jeans (J1) gives 1i as 1.051
times Maxwell’s mean free path. We call 1, the mean free path
for number density transfer.

The mean free path, 1;, should accordingly be defined. We call
it the ‘mean free path for thermal speed transfer’.

Since li and l; refer to different processes of attribute trans-
fer they may bedifferent in general. In our treatment we further-
more assume that the ratio 1;/11 = 1+a, may express the ‘hard-
ness’ of the force fields surrounding the molecules of kind i.

Equation (12.II) without the third term on the right hand
side is the well known flux equation as given by the ordinary
free path theory (J1). The new term

5.
1 2 AL 14.1I)
. (ni>q(az )Q : (

is just a consequence of non-uniformity of temperature being
therefore related with thermal diffusion.

Since point Q and direction OZ were arbitrarily chosen, the
flux equation (12.II) can be presented into a vectorial form. By
using equations (1,2.II) and introducing the molar concentration,

S
¢y = ni/ E n, = ni/n (15.1I)




we obtain

' =nW-21 nl'ﬁi[l1 grad lnc1 + 11 grad lnp -(11-1;/2) grad InT)
3

i i
(16.1I)

2.4, General equation of diffusion in multicomponent mix-
tures, By means of equation (16.II) we can define a flux velocity
of molecules of kind i in a mixture of s gases as

-

U, = Fl/n

(17.11)

i

We say that two gases, i and j, are mutually diffusing when 61
and Uj are not equal. The rate of mutual diffusion is given by

-

U, - Uj. By using (16,17.II) we obtain

Pie it s Aulh -1 ’ -
Ux Uj 3,(u11i grad In c, ujlj grad 1ln cj)
(18.1I)

- - 1r= ! - '
(8,1, =T,1,) grad Inp +§[ui(1i -1;/2) =%, (1, -1{/2)]grad InT

= 1
3
This equation shows that the velocity of diffusion has three
terms due to non-uniformity of composition, pressure and temper-
ature. If temperature and pressure are kept constant through the
gas mixture, then (18.I1I) reduces to the ordinary free path
equation of concentration diffusion.

Introducing (1.II) into (18.I1I) we obtain the following equi-
valent equation of diffusion:

5. 8kT\%
= Uj = -(:;?) L(X; grad In cy - Xj grad 1n cj) +
(19.11)
+ 2, grad In p « 2 Z;j grad 1n T]
. 2
where, in a general form,
2 % . = L - -% o -%
Xk = lk m, 2 ZiJ Xi XJ llmi 1ij
(20.11)
_1_ ' x| ' -a ' -%
2 25 = (1 = 1i/2) m"% = (1, = 1,/2) m,

Notice that the quantity Z;j which determines the magnitude of
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thermal diffusion velocity, is strongly dependent on the differ-
ences (1, -1;/2) and A, - 1;/2). For example, if 1 = 2 1, and
also 1; = 2 lj, then no thermal diffusion occurs between gases
of kinds i and j. This immediately suggests that the difference
of the mean free path for ‘mean thermal speed transfer’ from the
corresponding mean free path for number density transfer may
somehow express the ‘hardness’ of the force fields surrounding
the molecules.

For a mixture of s gases we have s-1 independent equations
similar to (19.II). The thermal diffusion velocity may be zero
for the gases i and j and, a priori, not zero for the gases i
and k. Therefore the simplest assumption, probably not reflect-
ing the real situation, is to consider that the difference
(1, - 1;/2) mostly depends on the ‘hardness’ of the gas i. This
hypothesis will be taken in the following chapter. It seems to
be rather satisfactory to explain experimental thermal diffusion
data.

2.5, Formal comparison with Furth’s, and Whalley and Winter’s

theories (F3,W1). Following Fiirth’s treatment of thermal diffus-
ion in binary mixtures, Whalley and Winter could obtain a general
equation of diffusion which differs from our equation (19.II)
only in the numerical factor which is given by the authors as
(k T/3)"%. This is a result of the identification of the mean
thermal speed to the root-mean square of thermal velocities which
has been made by Fiirth through all of his theory. From the fore-
going paragraphs we may conclude that the error resulting from
such an identification may easily be avoided without any increas-
ing complexity in the mathematical treatment of free path theory.

Whalley and Winter worked out their theory according to a rigid
elastic sphere model. 1i is identified to the mean free path
for number density transfer corrected for ‘persistence of
velocities’; 1; was identified to the mean free path for momentum
transfer to which an approximate formula is proposed, also
corrected for ‘persistence of velocities’.

Fiirth’s equation of diffusion does not take into account press-
ure diffusion, and it has been given for binary mixtures only.
It can be obtained assuming into (19,II) Cy +Cy = 1 and chang-
ing the numerical factor into (KT/3)%.




§ 3. General equation of diffusion for binary mixtures. Formal
comparison with exact Chapman-Enskog theory

In the particular case of binary mixtures (i, j), molar con-
centrations are such that Gy B i 8 1. Hence, by means of (18,
19.11), the equation of diffusion is written as

- = D, ;
U -y = - - :’ (grad ¢; - K;, grad In T + K,y grad In p)(21.II)
i%j
where
s g
Dij = 3_(uilici + ujljci) (22.11)
KTi = C4Cy (a.r)ij < Kpi = cyCy (ap)iJ (23.11)
U, (21; = 1) = 21; = 1
e mp iy SE20A Ll 1 (24.11)
T71§ 2 u,l.c, + u;l.c
133 =371
i e~ 1
(o) =—22 i J (25.11)
Ull cy + Tijljci

e, Y t K%
e . (‘.’,1i - li)mj - (21j - lj)mi Gt
SarpRly; Tt : 4
2 licjm? + ljcim%
% %
limj - ljm1
(0)yy = : ; (27.11)
licjmi + ljcimi

Equation of diffusion (21.1II) shows the existence of three
terms relating respectively to concentration diffusion, thermal
and pressure diffusion due to non-uniformity of composition,
temperature and pressure. It is formally identical to that given,
by the exact Chapman-Enskog theory (C1). Dij as given by equation
(22.1I) is the well known coefficient of concentration diffusion
for a binary mixture (i,j), usually called Meyer’s coefficient
of diffusion.

The gquantities KTi and (91)1j are respectively the thermal
diffusion ratio of the gas of kind i and the thermal diffusion
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factor of gases i and j, in this succession, usually indicated in
binary mixtures as KT and o respectively. Notice that the sign
of the thermal diffusion factor must be fixed by convention. In
practice it is usual to consider that the thermal diffusion
factor is positive when the lighter molecules diffuse into hotter
regions. When a steady state is reached, Bx - ﬁj = 0 and then,

grad ¢y = KTi grad In T - Kpi grad 1ln p (28.11)

According to the above practical convention, if subscript i
refers to the lighter gas, KTi and thus also (“T)ij would be
positive when only the masses of the molecules determine the
magnitude of thermal diffusion. As we shall see, this occurs with
our equation (24.II) for (“T)ij' Since the thermal diffusion
factor has been given into a certain succession of the gases i
and j, we have,

Kpg = = Kgy & (@pdyy = = (oq)yy (29, 11)

The quantities Kpi and ()44 are similarly called the press-
ure diffusion ratio of the gas i and the pressure diffusion
factor of the gases i and j, in this succession. If subscript i
refers to the lighter molecules, these quantities are usually
positive. Therefore the molecules of kind i would diffuse down
the pressure gradient.

In connection with experiments, it is convenient to express
(28.11) in the concentration ratio, (ci/cj). We can easily obtain

grad 1n (ci/cj) = (o) grad In T - (ap)ij grad ln p (30.II)

By integration of equation (28.I11) giving grad c; we obtain

the so-called separation, S,

S, = ¢t - ef (31.1I)
well known when dealing with experimental thermal diffusion.
Then c!! and c] are the molar concentrations of the gas of kind
i in the regions at absolute temperatures TIT and T! respectively.

By integration of grad 1n (ci/cj) we obtain the separation
factor, Q4

(ci/cj)ll
d;; = ————
1 (ci/cj)l

(32.11)




where (c; /c )1 and (e /c )! refer to the concentration ratio of
gases 1 and 3. at absolute temperatures T!! and TI respectively.
Experimental observations of thermal diffusion are frequently
carried out by means of the separation factor.
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CHAPTER III

APPROXIMATE FORMULAE TO MAXWELL'S MEAN FREE PATH AND TO
THE COEFFICIENTS OF DIFFUSION AND VISCOSITY CORRECTED
FOR PERSISTENCE OF VELOCITIES

$1. Approximate equation to Maxwell’s mean free path for number
density transfer

It is well known that if one uses the common Maxwell’s mean
free path

1/

5
yli =7n Z

s
% 2, (1 +1) (1.11T)
m

& K

into Meyer’s formula (22.II), the coefficient of concentration
diffusion, Dij. is strongly dependent on the proportion of the
components. This is in disagreement with experiments as well as
with Chapman-Enskog’s theory (J1, C1).

Better results are obtained if Maxwell’s mean free path is
corrected for ‘persistence of velocities’ regarding to number
density transfer, namely (J1,C1),

s
1/,1, = n 2 ¢, o

2
P el gl 43 (2,111)
where
( )/2 3 M 1-M o (3.11I)
(0} = o, + - = - = .
ik § " O ik i ) =
i k
=(1-8 -% III
Vi = (1= 85) My§ (3 118)
o 1 g2 u-% -%
8y =, My + ) ME WE . In| M, + D %] (5.11ID)

8, 1s the mean persistence ratio. It increases from zero to
unity as the mass ratio, mi/mk. increases from zero to infinity;
its value for collisions of like molecules is approximately
equal to 0.406.

Unfortunately, equation (2.III) is too complex for a reason-
able use in practice. Therefore we have tried to search a satis-
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factory approach. We found that the following equations can be
used with reasonable accuracy:

By ; My, (1+ M) (6.11I1)

Yip = 1.16 M2, (7.111)

In Table 1.III we give approximate and exact values of 8, and
Wi, Over the mass ratio from 0 to infinity. According to our
approximate equations, le changes from 0 to unity with increas-
ing valuesofnh/mk; for collisions of like molecules 911 = 0,427.
Approximate values of Vi k change from 1.160 to 0.000 and for
like molecules y,;; = 0.820 whereas the correct values are respect-
ively 1.000; 0,000 and 0,840.

Table 1.III
Correct and approximate values for 6,, andy,,

mass ratio Ok Yik

M
ml/mk ik

(exact) (approx. ) (exact) (approx. )

0
0.1
0.2
0.4
0.6
0.8

.000
. 091
167
286
.375
.444
.500
.667
. 750
.800
. 900
. 952
. 000

o

. 000 .000 . 000 .160
. 054 .059 . 993 .106
.107 « 117 . 978 .059
.203 219 . 943 . 981
.283 . 302 . 907 .912
350 .370 .872 . 864
.406 427 .840 . 820
.588 . 606 .14 .670
. 683 .699 . 634 .580
.36 .758 .590 519
. 869 877 .414 . 367
. 940 . 941 .291 .255
.000 . 000 . 000 . 000

o
—
—

’-‘OOOOOOPOOOO
OO 0000 OoOO0OO0O 00O
OO0.0000000"""-‘

By using our approximate equation (7.III) into (2.III), the
approximate formula to Maxwell's mean free path corrected for
‘persistence of velocities’ is thus given as

M2

e (8.1II)

s
= 2
1/,1, = 1.16 m n k§1 ¢ 0%




$ 2. Approximate formula to Meyer’s coefficient of diffusion

Introducing (8.III) into (22.II).and using Tait's mean free
path 1i (see eq.13.I1) which is 1.051 times Maxwell’s mean free
path, we obtain for the coefficient of concentration diffusion
of a binary mixture the following equation:

0.385 ¥ T (my +mg)| %
Dyy == . f (9.111)
ij 27T m j

i m

where

2 2 2 2 B %
cimij(qi/oij) + chji(G}/O‘j) - 2cich”Mji

fij =

% T 4
103 ¥1343, [1 + (ofoi/oy)

2 2 2 2
%MU(%/GU) - %M“}%/qj) +cy

(10. IIT)

When either gy = 1O cy = 1, then fij = 1, In general, whatever
the mass ratio may be, fU is only slightly dependent on con-
centrations and always close or equal to unity. Indeed, we may
assume for gases

oyy = Loy op)* (11.II1)

since molecular diameter only slightly changes with molecular
mass. Furthermore, products M?j M?i approach to zero with in-
creasing mass ratio.

Therefore we may assume, at a first approximation for real
gases,

0,385

Tl

ij 27T m

kT (mi + mj) %
[D R (12. I11)

St

As a conclusion: the coefficient of concentration diffustion
should be nearly independent on concentrations of the gases in
a binary mixture, if we use into Meyer's formula our approximate
equation for mean free path for number density transfer correct-
ed for ‘persistence of velocities’.

This is an even better result than that obtained by using the
equation for the mean free path (3.III). Indeed, then the cor-
responding equation for the coefficient of diffusion still
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exhibits a strong dependence on the proportion of the gases.
The ratio of the limiting values as By = 1 and e, = 1 is thus
equal to

(D”)cj=l my (1= 854)
- (13.I1II)

(D“)ci=l m; (1 - eij)

To take an example, for mj/mi = 10 (Argon-Helium) the ratio
(13.II1) is equal to 1.324. Such concentration dependence shows
a clear disagreement with experimental data after Schmidt and
Lonius (C1, p.248) as well as with the second approximation to
the coefficient of diffusion by'Chapman-Enskog’s exact theory
which gives the above ratio as 1.072. Chapman-Enskog’s first
approximation is independent of concentrations and equal to our
value, [Dij]l, equation (12.III), except for the numerical factor
which is then equal to 0.375 when molecules behave as rigid
elastic spheres.

The foregoing analyses show that the approachwe have introduced
into Maxwell’s mean free path is satisfactory and may be used
with advantage in practical cases.

§ 3. The coefficients of self-diffusion and viscosity

In the special case of self-diffusion all the molecules, i and
j, are equal. Meyer’s formula thus becomes,

(14.11I)

According to the approximate equation (8.III) for the mean free
path Pli, we have then

a im .

1

0.385 |k T|%
H (15111

2
108

This result could also be obtained by making mg = m, into
(9,12.111).

The coefficient of viscosity, Nys of a gas i is given by the
free path theory (J1) as




"

n = ; py 1§ T, (16.11I)

py 1is the density of the gas, and

lg is the mean free path for momentum transfer.

If ‘persistence of velocities’ is considered, Jeans suggested
(J1) that the corrections which have to be introduced into Maxwell’s
mean free path regarding to number density transfer and to
momentum transfer should be different. He proposed an equation
of the form,

- Vos (17.111)

S
L
= )
11 T n z Cy 0?

Wi = (1= F 0, WA (18.11I)

9ik is the mean persistence ratio as given by (5.III) and Fik
is a quantity which is probably a function of the masses of the
colliding molecules. For collisions of like molecules Jeans
assumed Fii = %. In their theory of thermal diffusion Whalley
and Winter had also considered this question and proposed the
relationship

Fik = = Mik (19.111)
Assuming Jeans’ hypothesis, the mean free path for momentum
transfer between like molecules is thus

pli =v2mno} (1-28,) (20.111)

For the sake of consistency of our theory, we use into (20.III)
the approximate value 611 = 0.427 as given by our equation
(6.III). The approximate equation for the coefficient of viscosity
is accordingly,

Tlx= 02

0.284
i T

[k A m‘] 5 (21.111)




By means of this equation and (14.III) we obtain the following
relationship:

1
Dy = 1.356 1 (22.111)
Pi

Common mean free path theory corrected for ‘persistence of
velocities’ gives the numerical factor of this equation as 1.342.
The result we have obtained shows again, in addition to that of
the preceding paragraph, that all the approaches which we have
proposed either for the mean persistence ratio, 8,,, or y,, are
satisfactory for treating diffusion and viscosity and they give
rise to relative simple equations for mean free paths.

It is of interest to consider now the exact Chapman-Enskog
theory. According to it the above relationship is given, at a
first approximation, as

[n,]
;. =88 222 (23.11I)
P1

where A is a numerical factor depending on the molecular forces.
For example, when the molecules repel each other with a force

inversely proportional to the vith power of the distance, theor-
etical values of 3A are as follows:

Table 2.I1II
Values of 3A for the inverse power repulsion model
(after Chapman and Cowling (Cl1))

3A
1.551 (Maxwellian gas)
1.434
1.395
1.350
1.200 (Rigid elastic spheres)

<

p—
G = © O

8

In Table 3.III (see p.27) we report experimental values of
the ratio p,D, /n; = 3A for several gases. D,, has been identified,
at a first approximation, with the coefficient of diffusion of
isotopes of the same gas.

As we have already pointed out, the inverse power repulsion
model may hardly explain experimental data. For examplé, the
values of the force index, Vi» obtained for each gas by compar=-
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Table 3.III
Experimental values of 3A (from ref. (Cl1))

gas PsD;4/n; = 3A |Reference forD,,
H2 1.37 (H3)
N2 1.48 (W2)
CH4 1.33 (W3)
CIH 1.33 (B1)
Ne 1.28 (G1)
A 1.34 (H4)
Kr 1.30 (G2)
Xe 1.24 (G2)

ison of Tables 2 and 3.III are frequently in disagreement with
those deduced from the variation of viscosity with temperature.
To take a definite example, viscosity data show that Neon should
be markedly ‘harder’ than Xenon. This is also confirmed by thermal
diffusion. From Table 3.III it would be just the contrary.

For our purposes it is, however, enough to show that the ratio
pyDy4/n; is dependent on the forces acting upon molecules in
collision and that the numerical factor which we have determined
by mean free path considerations must be regarded as being a
satisfactory approximation. On the other hand, we may consider
the equations (14.III) and (16,.III) for the coefficients of self-
diffusion and viscosity respectively, independent of any formulae
for the mean free paths 1, and 1j. We have then,

Ly n4

Dyy =

(24.111)
n
1 Py

If a formal comparison is established with Chapman-Enskog’s
theory, then

3A = 1,/1{ (25.11T)

For rigid elastic spheres we have 3A = 1,200 and for maxwellian
gases 3A = 1.551. Accordingly, we may say that the ratio of the
mean free path for number density transfer to the mean free path
for momentum transfer would be related to the ‘hardness’ of
molecular interactions. This may be taken into account incase of
generalisation. Also, the ratio 11/1: should be larger than
unity, usually increasing with decreasing ‘hardness’ of the
molecules. For real gases rather small variations are observed.
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$ 4. Another approximate formula to Maxwell’s mean free path
for number density transfer

When dealing with thermal and pressure diffusions we will
introduce another equation for the mean free path for number
density transfer which can be obtained from equation (8.III)
by making into it further approaches.

For gases we may usually assume the mutual collision diameter
as given by

oy = (op o) (26. I11)

because molecular diameter only slightly changes with mass. For
Xenon and Hydrogen whose mass ratio is about 65, the ratio of
molecular diameters is only about 2., Equation (26.III) then gives
the mutual collision diameter 6% smaller than the correct value
oy = (0} + 6 )/2

Introducing (26,1II1) into (8.III) and after some developments,
we have:

/5 uk i
e V2 MY, Mg, (27.11I)

Now, if the mass ratios, mi/mk, are not far from unity, the
quantities v2 M?k Mbi may be assumed, at a first approximation,
as equal to unity. To take definite examples, for mass ratios
equal to 1, 2, 4 and 9 (or equivalently equal to 1, 0.5, 0.25
and 0.111) those quantities are respectively equal to 1, 0.971,
0.894 and 0.775. Therefore, with the above restriction, we may
consider, at a first approximation,

1/[p1,]1; = K oy m}% (28.11I)

where K is a constant for each gas mixture, namely,

mé (29.I1I)

Introducing into (27.III) the coefficient of viscosity as given
by (21.III) we obtain an equivalent equation, namely,

[pl]y = K'nf (30. I1I)

where K’ is another constant for each gas mixture.
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As we shall see in Chapter IV the above approximate equations
for the mean free path, Pli, give rise to very simple formulae
for the thermal and pressure diffusion factors. A priori, the
resulting equations would only be valid for a rather narrow
range of mass ratios. However, in Chapter IV we will show that
they can fortunately be used for any mass ratio, except for
mi/mk very close to unity if simultaneously m, > m; but O < Oy
(when a change of sign of the thermal diffusion factor may occur
for a particular value of the concentration ratio).

When m, = m,  and also 0y = 0, no error is committed relative
to our equation (8.III). Therefore the coefficients of self-
diffusion and viscosity are given by equations (15,21.III) as
well. Meyer’s coefficient of diffusion is accordingly obtained as

J)“z

0.385 (k T (mg +m

D ~

WO
i . V2 MY MY, (31.11I)

nrri()‘ 2 7Tm, m,

|
J L

which can be compared with (9,12.III) only if mi/mJ is not far
from unity. Concentration dependence was practically not affected
by the approaches which we have proposed in the foregoing analysis.

The errors which are introduced when the above equations are
used for thermal and pressure diffusions will be studied after-
wards.







CHAPTER IV

THERMAL DIFFUSION AND PRESSURE DIFFUSION
IN BINARY MIXTURES

$ 1. Definitions

In this paragraph we will define several quantities which are
used in theoretical and experimental investigations of thermal
diffusion. Similar quantities could also be considered for press-
ure diffusion but they will be disregarded here since no observ-
ations have been found in literature because of the difficulties
which experiments involve.

1.1. Measurements of thermal diffusion. The most simple system
for experimental determinations of the thermal diffusion effect
is the so-called ‘two bulb apparatus’ which consists of two
containers joined by a tube of small diameter. These two bulbs,
vI and VII, are kept at constant absolute temperatures, T! and
TIT respectively, and pressure is equal everywhere.

The temperature gradient set up, in a binary mixture for
example, tends to separate out the components and in time a
steady state may be reached which balances the opposing effects
of thermal and concentration diffusion. Then, by means of equation
(28.11),

grad cy = Koy grad In T (1.1IV)

where K., is the thermal diffusion ratio of the gas of kind i,
usually indicated in literature by K; for binary mixtures. For
the sake of generalisation which becomes necessary in complex
mixtures, we have added the subscript i referring to the gas e

Koy isasmall quantity, usually less than 0.1, and is generally
treated as a constant into the equation (1.IV). If c} and c}l
represent the molar concentrations of the gas i in the bulbs
vI and VI! at the temperatures T! and T!! respectively, we obtain

by integration of (1.1IV),
8, = o} = of =Ky, 10 (@/T) (2.1V)

The difference, S,, of molar concentrations, is termed separation

i

31




and it is usually represented in binary mixtures by S only.
The subscript i has been added for the sake of generalisation,

Equation (2.1V) is frequently used for experimental determin-
ations of the thermal diffusion ratio, KTi, introducing in it
experimental data of separation and temperatures.

Instead of equation (1.IV) we may consider equation (30.I1I)
which takes the following form when only thermal diffusion is
regarded:

grad 1n <Ci/cj) = (“T)ij grad In T (3.1IV)

where (oq);; is the thermal diffusion factor of gases i and j,
in this succession, usually represented in literature by o only.
It has first been introduced by Furry, Jones and Onsager (F4),
usually being regarded as a constant for integration of equation
(3.1V). This is theoretically to be preferred to considering KTi
as a constant into (1.IV) because (a.r)U is indeed less depend-
ent on concentrations and it remains finite as ¢y or c, approach
to zero. For binary mixtures we have the relationship (23.11),
namely,

KTi = (cx.r)ij C4Cy (4.1V)

As we shall see in Chapter V, this equation is not valid for
multicomponent mixtures. Nevertheless, equations (1.IV) and
(3.1V) which define, respectively, the thermal diffusion ratio
and the thermal diffusion factor are formally identical.

By integration of (3.IV) we obtain

1n q

g3 = (og)ys In (T /71y

(ci/cj)ll ‘
Qg = e (6.1IV)
(Ci/ri)

(ci/cj)ll and (ci/ci)I are the concentration ratios in the bulbs
at temperatures TII and T! respectively.

The quantity a4 is called the separation factor of gases i
and j in this succession (notice that Q= l/qji).

Equation (5.IV) is frequently used to determine experimental
values for the thermal diffusion factor.
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1.2, The thermal separation ratio. In the discussion of ex-
perimental results there has been introduced a quantity denoted
by R, which is named thermal separation ratio. It is determined
by the ratio of the experimental value of the thermal diffusion
ratio, KTi(exp), or of the thermal diffusion factor, (aT)ij(exp),
to the corresponding theoretical value of Chapman-Enskog’s first
approximation for the rigid elastic sphere model,

i.e.,

- Kpj(exp)  (%q)y,(exp) (7.1IV)
T [KTi(Ch“D)]l L(a_r)”(ChaD)]l

Ry is therefore a measure of the approach to the ideal rigid
elastic sphere interaction or, as usually said, a measure of
the ‘hardness’ of molecular interaction. Molecular interaction
is called ‘hard’ when R, approaches to unity and ‘soft’ when it
is small or even negative.

Sometimes the separation ratio is applied to theoretical values
as well given by any particular model in comparison to the cor-
responding r.e.s. first approximation. Ry is then represented by
Ry (th), and K;, and (ap)y g by K;, (th) and (“T)ij(th)'

In this paper a comparison is made between our elementary
thermal diffusion factor and the corresponding value given by
the r.e.s. Chapman-Enskog's first approximation. The separation
ratio is then represented by RT(elem) defined by

(UT)ij(elem) ¥
Rp(elem) = — 111 (8.1V)
[(op) 4 (Chapy],

For the sake of the simplicity in the notation, the subscript T
which refers to temperature, will usually be omitted if no confus-
ion arises with pressure diffusion.

In our theory we also assume a ‘rigid elastic sphere model’
for which a first approximation for the thermal diffusion factor
was obtained. The thermal separation ratio corresponding to our
elementary first approximation is represented by Rij(exp) and
is defined as

o ; (exp)
Rii(exp) gl (9.1IV)

O.H(res)]1



This definition is assumed for binary mixtures as well as for
multicomponent mixtures.

Our theory also provides equations for ‘soft’ molecular inter-
actions. The corresponding thermal diffusion factors will be re=-
presented by

a;y(sm) and for the first approximation by [au(sm)]l
The corresponding thermal separation ratios are termed as

o, .(sm)
TR § Lot IR R | ]

oy  (sm)]
13 [aij(res)]l

141 = (10.1V)

o yeresy]

1.3, Limiting values of quantities. In the following chapters
we frequently use asymptotic values of the thermal diffusion
factor and of the thermal separation ratio if the molar con-
centration of one of the components of the mixture approaches
unity. This will be represented by adding to the normal notation
the letter (or number) of the kind of gas for which the molar
concentration has to be taken as equal to unity. For example:

lim R,
¢ =1 1]

(in multicomponent mixtures only)

lim iaii(res)]l (11.1IV)

c‘=1

o
o

> 2. The mean free paths for number density transfer and for
mean thermal speed transfer

Two kinds of mean free paths appear into the general equation
of diffusion, equation (18.II), namely:

1) 1, which is the mean free path for number density transfer.
It is the only one which has been considered in Meyer’s equation
of concentration diffusion, equation (22.II) being known since
long ago. In the following theory we use for it the approximate
equations which have been deduced in Chapter III, namely,

(12.1V)

1/,1, = 1.16 = n 3 &; o2, M2
1

pty y ik VK




which is nearly equivalent to Maxwell’s mean free path corrected
for ‘persistence of velocities’. According to this equation,
Meyer’s coefficient of diffusion is practically independent on
concentrations which is in satisfactory agreement with experience
and Chapman-Enskog's theory.

For mass ratios not far from unity, the above equation may be
written as (see equations 28 and 30.III)

1/[p1y]; = Koymi® ; [p1,], =K' o} (13.1V)

which give rise to very simple equations for the thermal diffus-
ion factor.

2) l; was called the mean free path for mean thermal speed trans-
fer. It is a result of the power series (3,10.II) assumed for
thermal speeds. It might be a matter of discussion whether this
mean free path would have to be identified with any other mean
free path already known. However, this will be disregarded here.

As shown by equation (26.II) for the thermal diffusion factor
in a binary mixture, the magnitude of 0 5 will be strongly depend-
ent on the relationship assumed for the mean free paths, 11’ l;
and 1, 1;. If 1; = 21, and 1; = 21; then o, = 0 and no thermal
diffusion should occur. By comparison with Chapman-Enskog’s
theory this case should be equivalent to a mixture of Maxwellian
gases (Cl). If we assume a relationship of the form

1; = (1+a;) 1 (14.1V)

the quantity a; might be a ‘measure’ of the molecular interact-
ions, which should be equal to unity for Maxwellian molecules.

Let us now consider the case of rigid elastic sphere molecules.
The simplest hypothesis is to assume that the transfer of quality
(molecules themselves) and of thermal speed just occurs at the
points where the molecules collide. Even then the mean free
paths, 1, and 11. will probably not be equal. Indeed,

1) for the mean free path, 1;. for mean thermal speed transfer
all kinds of collisions of the types (i,i), (i,3), (i,K),...,(i,8)
would be of interest because they would somehow change the local
distribution of thermal velocities of molecules of kind i;

2) for the mean free path, 11, for number density transfer, it
is physically doubtful that collisions (i,i) of like molecules
can hinder the process of diffusion of molecules of kind i.
Stefan and Maxwell have accordingly suggested that only collisions
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between unlike molecules of the types (i,j), (i,k),...,(i,s)
should be regarded for 1.

Since the number of collisions which should then be considered
for 1i is smaller than that considered for 1;. the mean free path
for number density transfer, 11' should accordingly be larger
than the corresponding one for mean thermal speed transfer, 1;.
Therefore, the quantity a; of equation (14.IV) should thus be
negative. A negative value for a, for rigid elastic spheres is
confirmed by experimental data for the thermal diffusion factor
of Neon isotopes at higher temperatures as we shall see in the
next paragraph.

As is well known, Neon is indeed one of the ‘hardest’ gases,
therefore approaching to the ideal rigid elastic sphere inter-
action.

For the sake of simplicity of the corresponding equations, we
assume a; = 0 for ‘rigid elastic spheres’. This assumption is not
too bad in practice because only for a few exceptions, the ex-
experimental thermal diffusion factor brings about small, negative
values for ag.

In our treatment we further assume that the quantity ay mostly
depends on the force field surrounding the molecules of kind i.

This assumption might also be regarded as a physical approach
because a; would probably be considered as dependent on the
‘hardness’ of molecular interactions (i,i), (i,j), (i,K),...,(1,8)
and similarly a; as dependent on molecular interactions (j,Jj),
(3 sdidana€di )y lssarii(ds 8k

§_3. The thermal diffusion factor for isotopic mixtures

As usually done for these mixtures, we consider that the mass
ratio, mj/mi, is close tounity and furthermore all the quantities
relating to the molecules will be nearly equal. Hence we may
assume 1, = 1 1; = 1; and a mean value, a;,, may be chosen for
the quantities ag and ay. Therefore, by using equations (26.1II)
and (14.IV), the thermal diffusion factor for isotopes i and j
is given by

l-aij

[a“(sm)]1 =

2




For ‘rigid elastic spheres’ we assume in equation (15.IV) that
a;; = 0.

If the thermal diffusion factor is experimentally available,
then the quantity ay which may be regarded as a measure of the
‘hardness’ of the gas consisting of two isotopes, i and j, can
be determined.

In Table 4.1V we report experimental data of thermal diffusion
factors for several isotopic mixtures. The corresponding values
for a;, are usually positive numbers, smaller than unity.

Table 1.1V
Variation of experimental thermal diffusion factor for 2°Ne-22Ne
and 14NH3-15NH3withtemperature

Mean temp. “20,2z(exp) azo.zz Mean temp. a17.18(exp) al7_18
T, (°K) T, (°K)
129 + 0.0162 + 0,34 239 - 0.0100 + 1.69
238 + 0.0233 + 0.049 268 - 0.0039 + 127
298 + 0. 0254 - 0.037 366 + 0.0105 + 0.28
712 + 0.0346 - 0.412

In Table 1.IV we report the variation of the experimental
thermal diffusion factor with temperature for 20Ne-22Ne and
14NH3-15NH3 mixtures which have been observed by Stier (S1)
and Watson and Woernley (W4) respectively. The corresponding
values for the quantities 850,22 and 87,18 from our equation
(15.1IV) are also given in the ‘Table. The mean temperature, T
reported by the authors, is given by equation (61.1IV).

For 20Ne-zzNe, the experimental thermal diffusion factor,
corresponds to negative values for 850,22 at higher temperatures,
at which the behaviour of Neon molecules approaches to that of
rigid elastic spheres. Negative values for 250, 22 therefore show
that our ‘rigid elastic sphere model’ (alj = () is only a kind
of mathematical assumption, even then not too bad in practice
because the most frequent range observed for isotopic mixtures
is 0< a

For 1é 15NH which is known as having ‘soft’ molecular
interactlons a change of sign of the thermal diffusion factor
has been observed at lower temperatures. At these temperatures
we have 317 vg > L i.e., the gas is even ‘softer’ than a
Maxwellian one (aij = 1).

T’




§ 4. The thermal diffusion factor for non-isotopic mixtures

4.1. General equation for the thermal diffusion factor. Intro-
ducing (12,14.1IV) in (26.11) we obtain the following equation for
the thermal diffusion factor:

l'ajj chj - ciSi
oy s (sm) = " (16.1V)
2 C%Qi + c?Qj + cichij

Mij = mi/(mi + mj); a;; = (a; + aj)/2 (17.1V)

V2
. s T
Q == (0y/04y)" Mi; 5 Qyy = 2 Myy My,

1-81 -8y
- — (Q4;/2) (18.1V)

1-a

l1-a 13

ij
and analogous equations for Qi and Sj by interchanging the sub-
scripts i and j in (17,18.1V).

All the essential features of thermal diffusion can be explained
by our elementary equation (16.IV) which is formally identical
with the first approximation of the thermal diffusion factor as
given by the rigorous Chapman-Enskog theory (C1).

When molecules behave as ‘rigid elastic spheres’ (a;=a;=a, ;=0)
and assuming that the subscript i refers to the lighter gas
(mJ > m;), the thermal diffusion factor, aij(res), is positive
for oy > 03 (Sj > 0 and S; < 0) over all the concentration ratio.
If.cj < o0y, then three cases have to be considered, namely:

1) SJ > 0 and S§; < 0. Then aij(res) > 0. This is the most
frequent case, at least if the mass ratio, mj/mi, is not too
small.

2) Sj < 0 and Sy > 0. Then aij(res) < 0. Usually for small mass
ratios only.

3) S, and S; are both of the same sign. Then the thermal diffus-
ion factor changes sign with concentration. This may occur for

mass ratios nearly equal to unity.

The ‘hardness’ of gases is mainly expressed into (16.IV) by
the factor (1'811)- According to the hypotheses of S 2.1V, the
usual range of (l-aij) should be in between 0 (Maxwellian case)
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and 1 (our ‘r.e.s.’ model). This conclusion has been confirmed
for a large number of binary mixtures (see Table 4.1V).

For a few mixtures, (l-aij) is larger than unity (see in Table
4.1V the following mixtures: HZ-D2 (ref. H5), Hy-Ne (T2), He-Ne
(Al), 2°Ne-22Ne). The corresponding values for a;, are then
negative ones.

A change of sign of the thermal diffusion factor with temper-
ature has been observed by several authors (T1,W4) at lower
temperatures. This feature of thermal diffusion can be explained
by our equation (16.IV) assuming in it that agy < 1 above the
temperature at which the reversal of sign occurs, and a;; > 1
below that temperature.

4.2. First approximation for the thermal diffusion factor.
Although the general formula (16.IV) given above is most wonder-
ful, for practical applications it is just too complicated. We
will therefore now give a deduction of a first approximation to
& ;(sm), named [a‘j(sm)]y

By using in (26.11) the first approximation (13.1V) for the
mean free path for number density transfer, the thermal diffusion
factor is given, at a first approximation, as

t-a,, ™ 0§ - mf o]
oy (sm)], = —==. (19.1V)
2 (‘.il'l'lli4 ()'i + ijl? O
or equivalently,
1-a, A; : A;
(o W] sor—atte (20.1V)
2
ciAi + cl j
where
ayy = (ai+aj)/2
s (21.1V)
n; = J o, and similarly for n;
l-aij
SR Ly R A % v
{ = o g ¢ Ag = (mi/ni) (22, 1V)

and analogous equations for Aj and A; by interchanging subscripts
i and j in the above equations.
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Let us now examine how far the above first approximation for
the thermal diffusion factor may be compared with equation (16.1IV).

As a first remark we notice that a reversal of sign with con-
centration cannot be explained by equations (19,20.1V). For
practical cases this is, however, not too bad because such a
change of sign may only occur for very unusual mass and diameter
ratios and frequently for ‘soft’ gases only. As we shall see this
is the most important disadvantage of the above first approx-
imation.

quation (19.1IV) can be written into the following form, though
without interest in practice:

%

z 8. (Y %
(1-a;)Q5-(1-a,)QF

f 1
J‘”(sm).1 =

where (23.1V)

; L @Qg,/2) (24.1V)
l=-a, 1-a, ;
L ij

and analogous equation for S! by interchanging the subscripts;
j

!

Qf; = 2Q% Q¥ = (0,0,/0%,) &4, (25.1V)

Qi, Qj and Q‘j are given by equations (l?.IV).

According to (16.1IV) and (23.1V), luii(sm)]l can be compared
with aii(sm) as far as Q;j can be identified with Qii. When
m]./mi and “i/”i increase simultaneously from unity to infinity
both quantities Qi) and Q;1 change {rom unity to zero. In both
limiting cases we have then log s(sm) )y = oy (sm).

Let us now show that if S, and S; are opposite in sign, asingle
concentration ratio exists such that

og g (sm) = [og (sm)] ) (26.1V)

For the sake of simplicity we only consider here the case that
molecules are regarded as ‘rigid elastic spheres’ (aj=ai=aij=p)
and also m; > my; oy > 0j. Therefore uii(res) and ;'_xii(res)_[l
are positive over all the concentration ratios.

By means of (16,17,18.1V) and of (23,24.1V) we obtain,




P

lim oy;(res) = =
= j
c =1

(27.1V)

(28.1V)

fe sy fi =
'J’j](reb)Jl

The corresponding asymptotic values given above only differ on
the quantities (Qij/Q) and (Q;i/Z). Now, since molecular diameters
vary slightly with molecular masses we may assume in equation
(25.1V) o;0; = of;. Then, Qj; = Q};. On the other hand, Q, =
= 2 M;j M?i, equation (17.1IV), is always smaller than unity ifmi
is different from my . Therefore Q?i > Qii. Then, by using equat-
ion (25.1V),

= Q’;j > Qg4 (29.1V)

Accordingly, we obtain from equations (27.IV) and (28.1IV),

lim o, (res) < liﬁ [aij(res)ll (30.1V)
Ci:l - c.=

lim a;;(res) > lim [oy(res)] (31.1V)
L'j:l Cj=1 :

Since the directions of (30.IV) and (31.1IV) are opposite, then
a concentration ratio exists such that aij(res) = [uii(res)]l.
The general equation (26,1V), namely 1ij(sm) = Laij(sm),l, could
be obtained following a similar discussion.

From the analysis given above we conclude that the first approx-
tmat ion, [ui.(sm)]l, may be used for any mass ratio as well as
% ¢(sm), though with somewhat different concentration depend-
ence, except for the unusual cases to which a change of sign of
the thermal diffusion factor with concentration may occur, i.e.,
when m)/mj is nearly equal to unity and at the same time m; > my
but o; < 04,




As far as general cases are concerned, equation (19.IV) shows
that the thermal diffusion factor of gases i and j, in this
succession, will usually be positive if my > my, at least if the
mass ratio is not too small and ayy < 1. Therefore, by means of
equations (1,4.1IV), the gas consisting of lighter molecules tends
usually to diffuse into the hotter regions.

We also obtain for general cases that 1lim [o.ij(sm)]l >
> lim [aij(sm)]l. ¢3=1

c.=1

Tierefore the thermal diffusion factor usually tends to in-
crease with increasing concentration of the lighter gas.

The above conclusions are well known features of thermal diffus-
ion observations.

An interesting conclusion of equations (19,20.IV) is that the
inverse of the thermal diffusion factor should be linearly depend-
ent on concentrations, at a first approximation, at least if
molecular masses and diameters increase simultaneously (m; > my;
oy > 0y) or if the mass ratio is not too close to unity when
m; > mg but oy < 0y,

This conclusion which may be very useful in practice, does
appear to be confirmed by experiments. It also agrees closely
with exact Chapman-Enskog’s first approximation for the thermal
Qiffusion factor as we shall see for a few binary mixtures in
3 6. 1V.

Equation (20.IV) is so easily applied to ‘rigid elastic spheres’
(ai=aj=aij=0) that it will be of value to determine the magnitude
of the thermal diffusion factor in binary mixtures.

$ 5. General comparison with Chapman-Enskog’s theory

In the preceding paragraph we have shown that our elementary
treatment accounts for most characteristics of thermal diffus-
ion in a qualitative form. The order of numerical agreement with
Chapman-Enskog’s theory may be established by means of the
following limiting cases, when molecules behave as ‘rigid elastic
spheres’.

5.1. Lorentzian mixtures. In the limiting case of these mix-
tures we have:

m,/mi ~ o and either ¢; =0 or UJ/“i - ® (32.1V)




When molecules behave as rigid elastic spheres Chapman and
Cowling (C1) give the first approximation for the thermal diffus-
ion ratio as

[Ky, (Chap)], = % c, = 0.385 c, (33.1V)

For these kinds of mixtures the true value of the thermal
diffusion ratio can be determined (C1) being equal to

Kp; (Chap) = C4 (34.1V)

2
2

By means of both elementary equations (16.IV) and (19.1IV) we
also obtain,

Kpg (elem) = [Ky, (elem)], = %cx (35.1V)

Therefore, in the limiting case of Lorentzian mixtures the
elementary and Chapman’s theories agree quantitatively.

Regarding Chapman-Cowling’s first approximation our treatment
gives the thermal separation ratio as

Rp(elem) = % = 1.30 (36.1V)
0.385

5.2. Isotopic mixtures. It was first shown by Furry, Jones
and Onsager (F4) that Chapman-Cowling’s first approximation for
the thermal diffusion factor can approximately be given for
rigid elastic spheres as

m - m m, m.
oy (chap)y) w298, 1= gp9-d "1  (97.4%)
) 118 u, +my my + my

However, a small concentration dependence is not incompatible
with further approaches of the theory (C1).

Multiplying both terms of the fraction on the right hand side
of our equation (15.IV) by (m? - m?), the elementary first approx-
imation for the thermal diffusion factor for isotopic mixtures,
may be written for ‘rigid elastic spheres’ as
%

[ouu(elem)]l = é..

f 1
AR AN (38.1V)

% 2

i

clm
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Therefore, by means of (37,38.IV) the thermal separation ratio
of our treatment for isotopic mixtures is approximately,

Ryp(elem) = _%_ = 0,56 (39.1V)
0.89

5.3. Mizture of gases consisting of molecules of equal masses
and different size. Considering my = my and also Oyy = (oicj)yz
we can show that Chapman-Cowling’s first approximation for the
thermal diffusion factor can be given as

10 o; = O
[o;(Chap)]y =—. —3 1 (40.1V)
58 e, O0; +c, O,

i i i i
By using our equations (16.IV) and (19.1IV) the numerical factor
of the equation corresponding to (40.IV) is obtained as %. The
elementary thermal separation is thus,

Rp(elem) = 2.95 (41.1v)

5.4. Conclusion. From the foregoing paragraphs we can conclude:

1) For intermediate and large mass ratios, the magnitude of
the thermal diffusion factor is mainly determined by mass ratio
because the variation of molecular diameters with mass is usually
small. Hence, by means of (36,39.IV), the thermal separation
ratio of our elementary theory should usually increase from 0.56
(isotopic mixtures) to 1.30 (Lorentzian mixtures) with increas-
ing mass ratio.

This conclusion can be inferred from Table 4.IV where cor-
responding values for [o.“(elem)]l and [a“(Chap)]1 are given
for a large number of binary mixtures. Except for very large mass
ratio, the thermal separation ratio of our elementary theory is
smaller than unity.

2) For small mass ratios, the magnitude of the thermal diffus-
ion factor can be markedly determined by molecular diameters.
As we have shown, equations (39,41.1V), RT(elem) = 0.56 for
isotopic mixtures and RT(elem) = 2,95 if mg = m. We therefore
see that such so different values may bring about quite different
values for the thermal diffusion factors [ai_i(elem)}1 and
[aiJ(Chap)]l.




1f m; > m; and also o; > oy, then [onij(elem)]1 and [aij(Chap)]1
are both positive and the range for the thermal separation ratio
is (isot. mix.) 0.56 < Ry(elem) < 2.95 (m; = mj).

If m; > my but oy < 0y three cases may occur, namely:

(a) predominance of the mass effect in both theories. Then,
[a“(elcm)]l > 0; [3”(Chap)]1 > 0 and then Rp(elem) > 0,

(b) predominance of diameter effect in both theories. Then,
[ (elem)]; < 0; [ay (Chap)], < 0 and then Ry(elem) > 0.

(¢) predominance of mass effect in Chapman-Cowling’s first
approximation, and predominance of diameter effect in the element-
ary first approximation because diameter effect is of higher
influence in our treatment for small mass ratios. Then,

[og (elem)]; < 0 but [agy(Chap)]; > 0. Then Ry(elem) < 0.

The discussion given above for small mass ratios can be confirmed
by Table 2.1V.

Table 2.1V
First approximations for the thermal diffusion factor for mixtures
of equal proportions of H,-D,, C H =Ny, NH, -Ne and H,-He.

Gas mixture| m,/m, a;/0y [au(elem)]l [a‘j(Chap)]1 Ry (elem)
H, D, | 2.00 | 1.01 | +#0.172 | +0.276 | +0.623
N, -CH, | 1.0005 | 1.32 | +0.137 +0.046 | +2.95
NHS-NG 1.186 0.56 - 0,0230 - 0.0146 + 1.58
H2 -He 2.00 0.80 - 0.0268 + 0,241 - 0.111

The mixtures reported in Table 2.IV have been observed ex-
perimentally except N2'02H4' We give the general features below:

Hy-D, and H,-He. The thermal diffusion factor is positive for
higher temperatures but it changes sign at lower temperatures
(ref.T1. Temperature range T'! = 293 °K; T! from 90 to 20 °K).

NH3-Ne. The thermal diffusion factor changes sign with con-
centration at about 75% Neon (G4). By our elementary o LR
model as well as by Chapman-Cowling’s r.e.s. first approximat -
ion, the thermal diffusion factor would be negative over all
the concentration ratios.




% 6. Inert gas mixtures. Comparison between elementary and
Chapman-Cowling’s first approximation for thermal diffus-

ton factor

The following mixtures will be considered:

Neon-Argon mA/mNe

Helium-Neon mNe/mHe
Helium-Argon mA/mHe
Helium-Krypton mKr/mHe

Helium-Xenon me/mHe

1.979;
5. 045;
9.984; 'TA/GHe
20.92; ”Kr/”ue

32.56; Oyo/0y,

(TA '/UN e

e/ %e

Notice that diameter ratio increases with increasing mass ratio,

except

for Helium-Neon mixtures.
Equations (19,20.1IV) show that the

inverse of the thermal

diffusion factor should have a linear dependence on concentrat-
ions, at a first approximation. The corresponding equations to
[ai‘.(res)]l for the above mixtures are the following. The notat-
ion [a.”(elem)]l has been used for the sake of comparison with

Chapman-Cowling’s equations.

1/[ogg 5 (elem)], =
1/loye ne(elem)],
1/[oge 5 (elem)],
1/[ogq, xr (lem)],
1/[aHe'xQ(elem)]l

.250cNe

.593 Cy

. 454 Che

.250 ¢, (42.1V)

(43.1V)

e

. 035 Che

.648 ¢, 3 4 5.1V)

e

454 cy, L1IV)

The corresponding Chapman-Cowling’s first approximations (Al),

are the following:

0.593 ¢

Naat 0.603 c,

(47.1V)

[anNe'A(Chap)]1 = 2

1.214 CNe

0,783 ¢

2

+ 2.368 cy *3.616 CneCA

e t0.638 ¢

H Ne

[uHe,Ne(Chap)]l *

2

1,048 CHe

+ 1.713 ¢

(48.1V)
2
HecNe

Ne T 3.062 ¢




0.603 ¢ + 0.718 ¢
He A
[0 o (Chap)], = (49.1V)
e 2 2
0.444 cy . + 1.879 cy + 2,139 ¢y cy

0.361 ¢ - +0.602 ¢

H Kr

(50.1V)

Luﬂe,Kr(Chap)ll 2 P
0,207 ¢ Kr

He * 1.570 ¢

+ 1.296 Che®Kr

0.248 CHe + 0.550 Cxe

(51.1IV)

[aﬂe.Xc(Chap)]l 2
He

+ 1.433 cg, + 0,899 ¢

0.113 ¢ e He®Xe

The inverse of the above Chapman~Cowling’s equations can be
written as

0.053 CNeCA

+

n

1/[oye, 4 (Chap)]; = 2.047 cy, + 3.927 c,

0,603 ¢, + 0.593 ¢

A Ne

(52.1V)
HecNe
+ 0,783 ¢

0.008 ¢

+

1/logq, no(Chap)], = 1.336 cy, + 2.685 cy,

0.638 CNne

He
(53.1V)

0.033 CaACHe

+ 0,718 c,
(54.1V)

1/loye, 4 (Chap)], = 0.736 c,, + 2,617 ¢, +

0.603 Cle

0.010 CHeCKr

+ 0.602 ¢

1/1

+

Oye. kr(Chap)], = 0.573 cy, + 2.608 cy, it

He Kr

(55.1IV)
0.0002 CheCXe

1/[oqq, o (Chap)]

+

0.456 ¢, *+ 2.605 cy
He Xe " 0.248 c,_ + 0.550 cy,

(56.1V)

He

All the fractions on the right hand side of the above equations
are comparatively small and may be disregarded within an error
less than 1 per cent. In practice we may assume the inverse of
Chapman-Cowling’s first approximation for the thermal diffusion
factor as linear on concentrations.

This feature of Chapman-Cowling's first approximation has also
been verified in a large number of binary mixtures, namely in
all the combinations of inert gases examined by Atkins, Bastick
and Ibbs (Al). Experimental observations also seem to show such
linear dependence as we shall see in $1.2.
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Let us now compare the concentration dependence of the element-
ary approximation, [aij(elem)]l, to that corresponding to Chapman
and Cowling's formula for the rigid elastic sphere model. Table
3.1V reports theoretical values of the thermal separation ratio,

[o; . (elem)]
Rp(elem) =————1 (57.1V)

for the inert gas mixtures given above, over the concentration
range of the lighter gas from 0 to 1.

Table 3.1V
Theoretical separation ratios, Rp(elem), of the elementary first
approximation for Ne-A, He-Ne, He-Kr and He-Xe mixtures

Concentr.of Ne-A He-Ne He-A He-Kr He-Xe
the lighter ga

0. 000 745 . 086 0. 861 . 987 . 062
0.100 ; .085 0. 859 .983 . 060
0.300 0 .578 0.847 . 976 . 057
0.500 ! .570 0. 830 . 968 . 054
0.700 . 68¢ .554 0.802 . 952 . 045
0.900 : .932 0.752 + 919 . 027
1.000 g .515 0.711 . 885 . 004

This table shows that the separation ratio of the elementary
first approximation decreases with increasing concentration of the
lighter gas of the mixture., On the other hand, Chapman and
Cowling’s first approximation always increases with increasing
concentration of the lighter component. Hence, the elementary
first approximation, [aij(elem)]l, is less dependent on the
concentration ratio than the corresponding first approximation
of the exact Chapman-Enskog theory. The variation of the element-
ary thermal separation ratio is, however, rather satisfactory,
being of the order of 6-20 per cent. (He-Xe and He-A, respect-
ively) in the above mixtures of inert gases.

Table 3.1V shows that the thermal separation ratio of the
elementary first approximation increases with increasing mass
ratio, except for He-Ne mixtures. In mixtures of equal pro-
portions, RT(elem) is equal to 0.708, 0.830, 0.968 and 1.054,
respectively for Ne-A, He-A, He-Kr and He-Xe mixtures. For He-Ne,
RT(elem) is only 0.570. Increasing values of the thermal separat-
ion ratio with increasing mass ratio is a usual feature of the
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elementary theory, as we have shown in § 5.IV. It is common
either to the thermal diffusion factor, o J(elem) or its cor-
responding first approximation, [aij(elem)ﬁl, when in a series
of binary mixtures both the mass and the diameter ratios in-
crease in the same direction.

In the above series of inert gas mixtures, the ratio cNe/oHe
is even smaller than OA/GNe which explains the lower value of
RT(elem) for He-Ne mixtures.

S 7. Comparison with experimental data

For the sake of comparison with experimental results of thermal
diffusion we shall use the ‘r.e.s.’ elementary first approximat-
ion only, namely

non-isotopic mixtures

A, =~ A
[k, re YT -=FAmls InE 51 (58. V)
2 clAi + chJ
where A; = (mi/nl)% and Ay im (mj/nj)”.
For isotopic mixtures, we use equation (15.IV), namely

l-aij

oy g (sm)] | = (59.1V)

Theoretically, we may obtain in this case the value for ay =

x a; = ay by identifying [aij(sm)]luwith the corresponding

experimental value for the thermal diffusion factor.
When molecules behave as ‘rigid elastic spheres’, equation
(59.1V) reduces to

[oy  (res)] | = (60.1V)

¥
2

7.1. Binary mixtures of equal proportions. In Table 4.IV we
present experimental values for the thermal diffusion factor
for several mixtures of equal proportions. Comparison is made
to the first approximations according to our elementary treatment
and the exact Chapman-Enskog theory when molecules behave as
rigid elastic spheres.

49



When a temperature range is reported in the Table, the ex-
perimental thermal diffusion factor is a mean value in this
range; when a single temperature is given the thermal diffusion
factor corresponds to a mean temperature assumed by the authors.
Usually, T is determined by the following equations:

TITII

T=1T = RTERL it I b R 3 (61.1V)

This equation has been deduced by Harrison Brown (B3) assuming
that the thermal diffusion factor varies with temperature accord-
ing to the relation

oy j(exp) = (af{)y - (1 +A/T)) (62.1V)
where A is a constant and (cx“.)0 is the limiting value of the
thermal diffusion factor at higher temperatures. Eguation (61.1IV)
holds fairly well at higher temperatures (D2).

Another equation for the mean temperature towhich the experiment-
al thermal diffusion factor should be referred, has been proposed

by Holleran (H7), namely,

T =T = (irt)k (63.1V)

which has been found assuming that
aij(exp) =A+BInT, (64.1V)

where A and B are constants.
Equation (64.IV) is usually satisfactory at lower temper-
atures (D2).

Quasi-theoretical values for the ‘r.e.s.’ elementary first
approximation have been determined by using in (58.1IV) experiment-
al coefficients of viscosity taken from ‘Handbook of Chemistry
and Physics’, 36th edition (H6). They refer to the highest
quoted values of temperatures, because the behaviour of molecules
at these temperatures tends to come close to that of rigid
elastic spheres. Quasi-theoretical values for Chapman-Cowling’s
first approximation for the thermal diffusion factor are mainly
taken from ref. (G3).




Table 4.1V

Calculated and experimental values

of the thermal diffusion factor, % gs

in binary mixtures of egual proportions

Mixture

Chapman

r.e.s.

o U3 - 13-

Exp.

Temp.
Range
i1 (%)

Reference

Hy-D,
H2-Ne

Hy-Nyp
Hy-A
H,-CO
28
3He-%He
He-Ne

He-N,
He-A

He-Kr

Ne -Kr
Ne-Xe
N2-CO2
Ny=N,O
16, 16
0,-
.16,185
2
36440,

A-Kr
A-Xe

o o

o o

o [= 2 = I = =]

o

ocoococoo

. 276
.495

568

.5T1
.609
127
.488

ST
.592

627
.652
. 0254
. 0424

.332

.514
. 584
. 236
.240

. 0270
. 0468

.313
.452

(= =

o oo o

[=]

172
L2617

.455
.467
.536
. 0670
.295

. 486
.491

.607
.688
. 0145
. 0245

.224

.39%4
.468
.108
. 0839

. 0148
. 0257

.158
. 264

o000 ©

cooooooo00L0ee

.173
.280
.254

340
28

298
059
388
275
36

.39

376
448
434

. 0105

0254
0275

.191
. 144

32
37

. 051

048

. 0145

. 0250
. 0145
.149
.176

288-3173
290~ 90
284-671
288-373
288-456
288-373
273-613
288-373
284-660
287-373
369
289-663
465
465

366

195-490
289-660
465
288-665
465
465
372
288-400

443

638-835
287-660
465
465

H5

T2
This paper

11

12

11

N1

Al
This paper

G7

G8
This paper

G8

G8

W4

S1
This paper
G8
This paper
G8
G8
W5
B4

W6

S1
This paper
G8
G8




Table (4.1IV) shows that our elementary first approximation for
the thermal diffusion factor is usually closer to experimental
data than Chapman-Cowling’s value. For higher mass ratios, the
value predicted by the elementary theory comes close to that of
Chapman and Cowling, in accordance tothe analysis made in§ 5. 1.1V.
This can be observed for H,-C0, and He-Kr mixtures to which the
mass ratios are respect1velv 71 8 and 20.92. For He-Xe (m /m =
= 32.56) the elementary thermal diffusion factor is alreadv
somewhat larger than the one corresponding to Chapman- -Cowling’s
first approximation.

For He-Ne, the experimental value after Atkins, Bastick and
Ibbs (A1) is larger than [(aij(elem)]l, whereas our observ-
ation is smaller though corresponding to higher mean temperature
than that of Atkins’ observation. (Our experimental results are
given and discussed in Chapter VI.)

For the isotopic mixture 20Ne-22Ne with natural Neon the
elementary theoretical value is also somewhat smaller than that
observed by Stier (S1) in the range T' = 195 °k, T!T = 490 °k.
Our value is even higher for it corresponds to higher mean
temperature.

Smaller theoretical values are also obtained by the element -
ary theory in Hy=D, and H,-Ne.

Table 4.1V is only a short survey on experimental observations
at normal temperatures. For more detailed data see, for example,
ref. (G3).

The order of magnitude of (1 - aij) (and therefore of ay and
aj) may be determined assuming that 0y (exp) VE(]1 =gy ])

[aii(res)]l. From Table 4.1V it follows that the most prohable
range for a, (and therefore for a; and a, ) is in between 0.10
and 0.40. In a few cases only, we have a < 0. According to
equation (14.1IV), the most probable range for the ratio, 1;/11,
of the mean free path for mean thermal speed transfer to the
mean free path for number density transfer should be in between
1.10 and 1.40.

7.2. Inert gas mixtures. Concentration dependence of thermal
diffusion factor. Tables 5, 6, 7, 8 and 9.1V, and figures 1, 2,
3, 4 and 5.1V report experimental thermal diffusion factors in
Ne-A, He-Ne, He-A, He-Kr and He-Xe mixtures obtained by Atkins,
Bastick and Ibbs (A1) who determined the separation as a function
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of composition, for constant temperatures ! = 288 °k and T!! =
= 373 °K. The katharometer method of analysis has been used.
Experimental errors are about 5 per cent.

We have also made several measurements with Ne-A and He-A
mixtures over large ranges of composition. Analysis has been
carried out by mass spectrometry using the isotopic peaks of
20Ne (90.51% in natural Neon), %°A (99.633%) and *He (~ 100%).
The range of temperature was about 286-667 °k. Experimental
errors are about 3 per cent. Our results which will be mainly
discussed in Chapter VI of this paper, are also given in the
above Tables and figures.

Elementary first approximations for the ‘r.e.s.’ thermal diffus-
ion factor are given by quasi-theoretical equations: (42,...,
46.1V).

Equations (52,..., 56.IV) corresponding to the inverse of
r.e.s. Chapman and Cowling’s first approximation are also drawn
in the figures. As we have already pointed out in § 6, these
equations are closely linear in concentrations.

According to the theory given in § 4.2.1IV we should have:

Even when molecules do not behave as ‘rigid elastic spheres’
the inverse of thermal diffusion factors should be, usually,
linear on concentrations, at a first approximation.

1
A [ * i
Ne, A 7 s
0.
~
~
7 > Su
_______.1’\. "Hf*"t)::\: _
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v o N
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Fig. 1l.IV.
The inverse of the thermal diffusion factor for Neon-Argon
mixtures.,
[0} Experimental data after Atkins et al. (Al)
(o} our experiments.

Chap. Chapman-Cowling's r.e.,s, first approximation
elem, Elementary ‘r.e.s.' first approximation.
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0 20 40 60 80 100
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Fig. 2.1IV.
The inverse of the thermal diffusion factor for Helium~Neon
mixtures.
(C] Experimental data after Atkins et al. (Al)
Chap. Chapman~Cowling’s r.e.s. first approximation
elem. Elementary ‘r.e.s.’ first approximation

1
q
He,A
3
2
1

Fig. 3.1V.
The inverse of the thermal diffusion factor for Helium=Argon
mixtures,
(0] Experimental data after Atkins et al. (Al)
(o} OQur experiments
Chap. Chapman-Cowling's r.e.s. first approximation
elem, Elementary ‘r.e.s.’ first approximation.




Fig. 4.1V,
The inverse of the thermal diffusion factor for Helium-
Krypton mixtures.

® Experimental data after Atkins et al. (Al)

Chap., Chapman-Cowling’s r.e.s. first approximation

elem. Elementary ‘r.e.s.” first approximation.

1

Ee.le
4

1

0 20 40 60 80 100
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Fig. 5.1IV.
The inverse of the thermal diffusion factor in Helium-Xenon
mixtures,
(0] Experimental data after Atkins et al., (Al)
Chap. Chapman-Cowling’s r.e.s. first approximation
elem. Elementary °‘r.e.s.’' first approximation,




As shown by figures 1, 2, 3, 4 and 5.1V, the itnverse of ex-
perimental thermal diffusion factors does appear to have a
linear dependence on concentration of the lighter gas of the
mixtures. Experimental thermal diffusion factors have been
treated by the method of the least squares. The following mean
equations have been obtained:

l/aNe'A(exp) =3.39 ¢y, + 7.58 c, (65.1V)
Observed concentration range: - 0.600,
1/046. e (€XD) X .36 cy,
Observed concentration range: v 0.600.
I/IHP.A(GXD) .82 ¢,
Concentration range observed: = 0.500.
1/ r (€XD) Che * 3.96 cp,

Observed concentration range: Che = 0.300 - 0.700.

1/040, xe(€XD) = 0.290 ¢, + 4,71 ¢y,

Observed concentration range: Che = 0.100 - 0.500.

From our experimental results:
1/0e, a(€XD) = 4.65 cy, + 9.28 c,

Observed concentration range: c¢ = 0.100 0. 900.

Ne

1/oye a(exp) = 1.47 ¢y, + 3.82 ¢,
Observed concentration range: Che = 0.300 - 0.900.

For Helium-Xenon mixtures, equation (69.1V), long extra-
polation will become inaccurate for Cye = 1. Also, such extra-
polation might be very unfavourable because the thermal diffusion
factor can be expected to be markedly dependent on concentration
regarding the large mass ratio, mXQ/mHe = 32.56. According to
(69.1V) the limiting value for the thermal diffusion factor at

Cye = 1 should be 1.57 times the r.e.s. Chapman-Cowling’s first
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Table 5.1V
Thermal diffusion inArgon-Neon mixtures

approximation. This is a quite improbable result, because Chap-
man-Cowling’s formula gives rise to numerical values which are
always larger than those corresponding to experiments.

|
|

Therm. Diff. Fact. Oy 4 Sep.RatioRij(exp)
Concentr.
of Neon Theor. Experimental ref.Al This paper
(elem) ref.Al This paper
0. 000 0:190. | =mmm= | meees || essas | secss
0.100 0.198 | <e==-=- 0,114 | e===- 0.576
0.200 0.206 0.146. " | |1 =e=e= 0.709 | ===--
0. 300 0.215 0.161 0.125 0.749 0.581
0. 400 0.225 0.170 |  i===== 0.766 | =====
0.500 0.235 0.183 0.145 0.779 0.617
0.600 0.247 0.195 | ‘===== 0.789 | =====
0. 700 0.260 | <e==-- 0.166 | ===-- 0.638
0. 800 0,274 | ===== || wsese | esess | meca-
0. 900 0:290 | @ w=mee 0.195 | ===-=- 0.672
1.000 0.308 | ===e= | esme= | ececces | =ecce-
Table 6.1V
Thermal diffusion in Helium-Neon mixtures
Thermal Diffusion Factor o, Separation
Concentration 13
Theoretical Experimental Ratio
of Helium
(elem) ref.Al Rij(exp)
0. 000 Q248108 F 107 keswse =L hE L leeees
0.200 0.238 0.332 1.395
0.300 0. 251 0.345 1.375
0.400 0. 264 0.360 1.364
0.500 0.278 0.388 1.396
0.600 0.295 0.418 1.417
1.000 0,386 @ | mese=s | ecess




Table 7.1V
Thermal diffusion inHelium-Argon mixtures

Therm. Diff. Fact. 0 4 Sep.RatioRii(exp)
Theor. Experimental

(elem) This paper

329
353
.379
411
. 447
491
612
.810
966

Concentr.

of Helium This paper

el ]
o O
o o

'—‘OPOOOOOO
copceooeoee

Table 8.1V
Thermal diffusion inHelium-Krypton mixtures

Thermal diffusion factor O 4 Separation
Theoretical Experimental
(elem)

. 000 0.378
.300 .488
.400 . 941
.500 .607
.600 .691
.700 . 802
. 000 . 544

Concentration
of Helium

Table 9.1V
Thermal diffusion inHelium-Xenon mixtures

Thermal diffusion factor O 4 Separation
Theoretical Experimental

(elem)

Concentration
of Helium

. 000 0.407
.100 444
.200 .487
.300 .939
.400 . 605
.500 .688
. 000 2.203




Let us now compare the concentration dependence of the thermal
diffusion factor as given by (1) the ‘r.e.s.’ elementary first
approximation, (2) the r.e.s. Chapman-Cowling’s formula and (3) by
experimental data, for Ne-A, He-Ne, He-A and He-Kr mixtures.
For this purpose Table 10.IV reports the ratios of the thermal
diffusion factors in the limiting case as C; = 1 to the cor-
responding values as c¢; = 1, namely [o xi] / Lo 1j]j

Table 10.IV shows that the experimental ratio, [ (exp)] /
[« (exp)] , is closer to that given by our theory for He-A
and He -Kr mlxtures, whereas it is closer to Chapman- -Cowling's
value for A-Ne mixtures. The experimental ratio is in between
the theoretical ones for He-Ne mixtures.

Table 10. IV
Theoretical and experimental ratios [aii]i/taij]j.
) Chapman and Elementary Experimental
Mixture
Cowling (res) (*r.e:8.%) ref.Al This paper

A-Ne 1.918 1.615 2.23 1.99
He-Ne 2.010 1.771 1.88 ———-
He-A 3. 556 2.932 2487 2.60
He-Kr 4,551 4,086 3.67 ———
Experimental thermal separatlon ratios, (cxp), referred to

our elementary ‘r.e.s.’ first approx1mat1ons for the thermal
diffusion factors of A-Ne, He-Ne, He-A, He-Kr and He-Xe mixtures
are also given in Tables 5, 6, 7, 8 and 9.1V. For mixtures of
equal proportions of A-Ne, He- -A, He-Kr and He-Xe, Rii(exp) is
equal to 0. 779 0.858, 0.659 and 0.586.

For He-Ne, _(exp) = 1.396 which seems to be an abnormal
value when compaxed with those of the above series of inert gas
mixtures. As we have shown in paragraph 6 (see Table 3.1V), the
elementary first approximation for ‘r.e.s. thermal diffusion
factor for He-Ne mixtures, [¢He Vo(res)]l. is rather small when
compared to the corresponding first approximations for A-Ne,
He-A, He-Kr and He-Xe because the diameter ratio Oy,/Oye is too
small in the above series of mixtures (even smaller than ”A’“Ne)
This may explain so high a result for Rij(exp) for He-Ne mix-
tures.



§ 8. Pressure diffusion in binary mixtures

Only a short reference will be made since pressure diffusion
has been a non-important phenomenon up to now, because of the
difficulties of experiments.

According to the elementary theory, the pressure diffusion
ratio is given by equation (23.11), namely,

%
j

= %
lim ljmi

Kpi(elem) = cyc

d (72.1IV)
%
i

i
+ chimﬁ

lic.m i

i

It follows than that pressure diffusion ratio would probably be
independent of the model for the intermolecular interactions.
This is in agreement with the exact theory, to which Chapman and

Cowling (C1) give the first approximation, [Kpi(chap)]l, as

[k, (Chap)] | = c;c (73.1V)

J " Ciﬂli + ijj
Equation (73.1V) is, however, also independent on molecular
diameters what does not usually occur in (72.1V).
The elementary first approximation, [(ap)“(elem)]l for the
pressure diffusion factor obtained by using (13.II) into (72.1V)

will be given hy

[(1p)ij(elem)]l = Ao P A o= (mi/”i)% (74.1V)

i > gk
Hence the pressure diffusion factor should be twice the ‘r.e.s.’
thermal diffusion factor.

The clearest disagreement between the elementary and the exact
Chapman-Enskog theory is shown by the concentration dependence
of the pressure diffusion factor. The variation of this factor
with concentration is usually very much larger in Chapman-Enskog’s
theory. Whereas the ratio [(ap)ijli/[(ap)”]j is equal to the
mass ratio, mj/mi. in the exact Chapman-Enskog theory, our
elementary treatment gives it as

[(up)ij(elem)]i

= g i (73.1V)
L(ap)ij(elem)]j




which is indeed markedly different from mJ/mi for large mass
ratios.

In Table 11.IV we give the theoretical values of the pressure
diffusion factor for mixtures of equal proportions of A-Ne,
Ne-He, A-He and Kr-He mixtures. Values of the ratios [(ap)ij]i/
/[(ap)ij]‘, and (a,);/(aq);, for mixtures of equal proportions
are also given by the exact Chapman-Enskog and the elementary
theories. For the elementary treatment we always have (Lp)ii/
/(@T)&,(res) = 2.00 as we have pointed out before.

Table 11.1IV
Pressure diffusion by the exact Chapman-Enskog and the
elementary theories

Press.Diff. 4
: - S i =7 ) (C‘p)ij/(“’r)ii
Mixture Factors (@) 45 LLﬁQiJJi/.(ap)ij;] S
(c4=¢=0.500) (¢;=c;=0.500)
Chapman~ Chapman- Chapman-
Enskog Elem. Enskog Elem. Enskog Elem
A-Ne 0.668 0.470 1.979 1.62 2.01 2.00
Ne-He 1.340 0.556 5. 045 bt 2.74 2.00
A-He 1.635 0.982 9. 984 2.93 2.76 2.00
Kr-He 1.813 1.214 20.92 4.09 2.89 2.00
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CHAPTER V

THERMAL AND PRESSURE DIFFUSION IN MULTICOMPONENT MIXTURES

§ 1. General theory

In Chapter II (equation (19.II)), we have shown that the
velocity of mutual diffusion for gases i and j was given by

[BRT %

Us. = Uj = - [QQA L(X4 grad 1n c; - xj grad ln cj) +
(1.V)
+Z;, erad In p - l_Z:, grad In T)
2
where, in a general form,
_ _l’ e "t - -l e _l.’2
X, = 1, m™; 244 = X; = Xy =1m 2 1,mj
(2.V)
1 ' _ - ' -1 P ¥ ! - =
= Zij = (1 11/2) my (1j 1./2) my

In a mixture of s gases in which molar concentrations, temper-
ature and pressure are not uniform, we will have s-1 independent
equations analogous to (1.V).

When the steady state is reached, all of these equations will
be equal to zero. Also,

nae

s
grad R kgl Cy grad 1ln Cy = 0 (3.V)

k=1

Hence, at equilibrium we obtain the following system of s equations:

!

Xy grad 1n c; - X, grad In ¢y = A Zil grad In T - Z,, grad In p
2
X4 grad In ¢; - X, grad Inc; = 17! grad InT - Z,. grad 1n p
j J 2 ij ij

1 !
X grad In ¢; - Xg grad 1n c 3 Z

grad In T - Z, grad 1In p

is
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¢; grad In Cj + ceue + cjgrad 1n €y + .v.. # g grad In Cy =

(4.V)

In connection with experiments, it is convenient to solve the
system (4.V) in order to obtain grad c; and grad ln (cy /c ). By
integration of the equation 1nvolv1ng grad c; we obtaxn the

separation, 8, = ¢!! - ¢!, well known when dealing with thermal

i i i’
diffusion. Then c{l and c§ refer to the molar concentration of
the gas of kind i in the regions at absolute temperature TI! and
7l respectively.

By integration cf grad 1ln (c, /cJ) we can obtain the separation
factor, Qg = (c; /c )II/(c /c I where (¢ /c )II and (¢ /c )1
refer to the concentrat1on ratlo of gases i and j at temperatures
™! and TI, respectively.

By using the system (4.V) we can obtain

grad c; = Kgy grad In T - Kpl grad 1n p

grad 1n (ci/cj) - (“T)xj grad In T - (x )lj grad 1In p

where

i ¥k

(8 ¢
1 Kk’ 7k




The quantities Z;k. 2k and X, are given in general by (2.V).
The quantity K;; and (a.r)U are respectively the thermal diffus-
ton ratio of the gas i and the thermal diffusion factor of gases
i and j, in this succession.

In the same way we indicate K , as the pressure diffusion
ratio of the gas i in a complex mixture of s gases and (ap)ij
as the pressure diffusion factor of the gases i and j, in this
succession.

The thermal diffusion ratio K;; is related to thermal diffusion
factors, as

5
Kps kfl CiCy (op)gy (11.V)

Also,

K

S
E C4Cy (ap)‘k (12.V)

Pl poy

By means of equation (6.V), we can easily obtain,

(a'l‘)ij i (O‘T)jl ’ (ap)"] A (O'p)jl (13-V)
(Gpd s ¥ (omduy, =, Odag 3 Opdae b, Pp iy ® (Fpdyy | 11410

All the equations given above will be valid, whatever formulae
are applied for the mean free paths, 1, and 1.

In Whalley and Winter’s theory (W1) for complex mixtures, Ko
is given in a rather complex form, though equivalent to our
equation (7.V). The pressure diffusion ratio, Kpi, is only given
for binary mixtures. Thermal and pressure diffusion factors,
(:x..r)1j and (up)ij, were not determined for complex mixtures.

Whalley and Winter worked out their theory assuming a rigid
elastic sphere model. 1, was identified with Maxwell’s mean free
path corrected for persistence of velocities, equation (2,.III).
l; was indicated as a mean free path for momentum transfer to
which the authors proposed an approximate formula (see equat-
ions 17, 18, 19.II1I).

If we assume for the mean free paths 1l and l; a relationship
of the form

Ij= (F +8) 1



the thermal diffusion factor for gases i and J, inthis succession,
is given by

¢ = cpa,) % %
key KK mj/lj - mi/1

(op)yy =
2

S
2 e m%/l
"ol AEE

which is a general equation independent of any specification
for the quantities a.

Q v » . P .
2 2. First approximation for the thermal diffusion factor

Though formally simple, the above equation (15.V) for the
thermal diffusion factor will become very laborious in practical
cases of multicomponent mixtures if in it we use the common
equations for the mean free path, lk. for number density trans-
fer. The equation will be even more complicated if the quantities
a, are not equal to zero,

Following the lines used in Chapter IV, we consider in our
treatment that the quantities ay depend predominantly on the
‘hardness’ of the force field surrounding the molecules of kind
k. For ‘rigid elastic spheres’ we assume that all the quantities
a, are equal to zero. This assumption is only a kind of mathemat-
ical approach and even then not too bad for practical cases.
The thermal diffusion factor will be given in this Chapter at a
first approximation only, by using our equation (30.III) for the
mean free path for number density transfer, namely,

o 0 G by (16. V)
where K’ is a constant for each gas mixture.

As we have shown, equation (16.V) can be satisfactorily applied
to thermal diffusion in binary mixtures, provided that the mass
ratio is not too close to unity when my > my and oy < 0y (when
a change of sign of the thermal diffusion factor with concentrat-
ion may occur).

By using (16.V) in (15.V) we obtain the following equation for
the first approximation to the thermal diffusion factor of gases
i and j, in this succession. The subscript 1, referring to the
first approximation, will always be omitted in this Chapter for
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the sake of simplicity in notation. Subscript T referring to
thermal is omitted as well, when no confusion arises with press-
ure diffusion.

aij(sm) =

3
Y Cph
k=1 XK
where, in general,
A, = (m/n)% (18.V)
k k/ 'k .
When molecules are regarded as ‘rigid elastic spheres’ we
assume in (17.V) a; = 8y = ... = g, * 0.
For Maxwellian mixtures we have a; =a; = ... = ag = 1.

For a binary mixture (i,j), equation (17.V) reduces to (20.1V),
namely,

(1'ai)Aj - (l-aj)Ai
aff(sm) = 1. (19.V)
2 (b) (b)
¢y Ai + C Ai

The notation (b) has been added because the thermal diffusion
factor of the binary mixture (i,j) will afterwards be compared
with the corresponding one of a multicomponent mixture.

If (19.V) is compared to the corresponding value of our ‘r.e.s.’
model, the binary thermal separation ratio, Rﬁ?), is given by

a(?)(sm) (1-a,)A, = (1l=a.)A,
(b) ij B | 3:laiit
Rij = = (20.V)
a(b)(res) A, = A,

m j i

This equation will be used in the next dicussion.

According to equation (20.V), the binary separation ratio,
Rg?), would be independent of concentration, at a first approx-
imation. As we have seen in § 7.2.1V, a small variation is
usually observed in experiments.

If the gases i and j are isotopes, equation (17.V) should bring
about equation (15.1IV) for binary isotopic mixtures:




Yo aij
P (sm) = . (21.V)
; : T
i

=a; =aj. This equation has been obtained by making
the particular assumption that 1; = 11 and also 1i = 1; for
isotopic mixtures.

In order to reduce (17.V) to (21.V) in the limiting case of a
binary isotopic mixture (i,j), a kind of approach has to be
considered: we assume that the coefficients of viscosity of
isotopes, 1; and N4, are both equal to the coefficient of viscos-
Ly, N of the gas with natural isotopic composition. As a
result of that approximation, quasi-theoretical values for A
and A) for isotopes i and j are the one increased and the other
decreased, relative to the actual value which should be taken,
depending on the concentration of each isotope in the natural
gas A. Therefore, the difference between the guasi-theoretical
values o, jg(res) and o, k(res), as well as the difference between

(b)(reb) and (b), has been increased somewhat artificially.
Even then, the error which is committed, is, indeed, rather small.

S 3. Effect of addition of gases to a binary mixture

In this paragraph we will compare the thermal diffusion factor
in a multicomponent mixture (i, j,...,s) to that of a binary
mixture (i,j). In particular we consider in what way the thermal
diffusion factor of gases i and j would be changed by addition
of a gas k to the initial mixture (i,j).

Let us suppose that gases k, ..., s are added to the binary
mixture of gases i and j, with concentrations c‘“) and cgb’
respectively. Consider, Cis Cjs Cys eses Cg the resultlng con=-
centrations in the multicomponent mixture. Since the proportion
of the gases i and j has not been changed, we have

(b (b)) =
ci/ci = cj/cj =€y * Cy (23.V)

We first determine the thermal separation ratio, R1|' of gases
i and j in the multicomponent mixture. By means of (17.V) we have

aij(sm)

Cc. A

KA (23.V)

xij(reS)




S
Since 2 Cy = 1, the above equation can be written as

k=1

b L4 ] 2 2 Ay (1-a )A, = (1-8;)A, : (1-a,)A; = (l-a;)A,

ij PR § TR TN GRAAT S T gd g

k=1 Ay Ay 2 Ay 2 A,
(24.V)

Now, by using (19.V), we have,
A, - A A, - A A, A

N R : Lrkng [a{?)(res)]k - La{?’(res))k (25.V)

2 A 2 A 2 A,

(1-a, YA, - (1-a,)A (1-a, )A, - (1-a_)A
| G| S Bdiis 3 s | BRI [“é?)(sm)]k L ﬂ (?)(Sm)]k

2 A 2 Ak

(26.V)

Subscript k, which has been added, is the notation used for
the asymptotic values of binary thermal diffusion factors when
c&b’ =1 (see $ 1.3.IV - Limiting values of quantities).

Introducing (25,26.V) in (24.V), we obtain

¢

WIc.7 R IR v ¢
e § (sm)f, L*ki (bm)]

—

s “k
By i@ oyl (27.V)
k=l [x&?)(res)]k - [ué?)(res)]k
Then,
- [p(b) [p(b)] 5 (sm) (res)
Ryy = ¢y R3SV + ey [RETV)S 4 % AT /AT (28.V)
k#1, j
where
(sm) _ [.(b) Y vl o
AL = [*kj (sm)], - [og} (sm)] (29.V)

and an analogous equation for Aﬁ??S) changing (sm) by (res) into
(29.V).

Since the proportion of gases i and j is not changed by the
addition of gases k, ..., s, equation (22.V) is valid. Then

[p(b) +
¢y RiP1, e

R(b)] . { (b)) [p(b)] (b) [p(b)] 3
: " g REP)y = ey e et RV, + ¢§¥ [RE] 1.}

i i 3
(30.V)
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As shown by equation (20.V), the binary thermal separation
ratio, R(j), should be theoretically regarded as a constant, at
a first approximation. Even then equation (30.V) also holds for
a linearvariation of R(?) with concentration. Then c(b)[R(b)]1 +
+ c(b)[R{?)]j is the value of the thermal separation ratio for
the binary mixture (i,j) with molar concentrations c(b) and c‘b)
to which the gases k, ..., s have been added.

Introducing (30.V) in (28.V), the thermal separation ratio of
gases 1 and j in a multlcomponent mixture is given by

(b) S (sm) s, (res)
Rx = (cl + ¢y ) R + kE Cy Akjl /Akji (31.V)
k#i,

This equation theoretically predicts a linear variation of the
thermal separation ratio with molar concentrations, C,, of the
gases which have been ‘added’ to the initial binary mixture (i,j).
If binary thermal diffusion factors are experimentally available,
equation (31.V) provides a very simple way to study thermal
diffusion in multicomponent mixtures. Elementary ‘r.e.s.’ thermal
diffusion factors which have to be used in (31.V) can be obtained
by means of (19,21.V).

The variation of the thermal diffusion factor of gases i and
j with addition of gases k, ..., s is better discussed by using
the quantity Aii(sm) which is defined as

a.j(sm)
A, (sm) =
1 (b)

(sm)

where u(?)(sm) refers to the concentrations c{"’ and cjb’
According to (32.V) the thermal diffusion factor of gases 1 and
j should increase by addition of a gas k if Alj(bm) > 1. Con-
versely, it should decrease if A, j(sm) < 1.
Since (32.V) can be written as

(b)
aij(res) aij(sm) &y 5 (res)
\1j(sm) = % § (33.V)
(b)(sm)

c;.f?)(res) aij(res)

we obtain, by using (31.V) and (17.V)
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)

c alsnm
s k kji
Aij(sm) = Aij(res) (cy + C;) ¥ ¥ e (34.V)
J k=1 p(b) ,(res)
' 5 e e kji

where Alj(res) is the value of Aij(sm) for ‘r.e.s.’ molecules

(ay =8y = ... =85 = 0), namely,

of}) (res) s Cx Ak
1/4;(res) = e Q) T e ol a (35.V)
o, ;(res) ka1 c{Plp 4 c(b)A
ij kfi, 3 1 i J |

Let us now discuss the above equations (34,35.V)

1) If molecules are regarded as ‘rigid elastic spheres’ or if
(b) _ (b) 5 (b) : (sm) (b) (res) .
iy = [RkJ Iy = R{Y], it canbeshown that Ayyy /REY. AL =
1. Hence, Aij(sm) = Aij(res). We have then

=

Ayy(res) 2 1if

S

(b) (b) (b)
k§ Cy Ay S ¢y Ay +e; AJ. Then o4 § (sm) §<xij(sm)
k¥i

] (36.V)

On the other hand, the quantities A, = (mk/nk)% are proportion-
al to mtok. Therefore we can withdraw the following conclusion:
If molecules are regarded as ‘rigid elastic spheres’ or if all
the binary thermal separation ratios are equal, the thermal
diffusion factor of gases i and j should increase by addition
of gases consisting of lighter or smaller molecules (A, < Ay,Ay).

Conversely, the thermal diffusion factor should decrease by
addition of heavier or larger molecules (A, > Ay, Ay).

2) In general cases the variation of the thermal diffusion
factor with addition of gases to the binary mixture (i,j) may
be quite different from that predicted by the ‘r.e.s.’ model,
as it can be inferred by means of equation (34.V), if the binary
separation ratios R{?’. [Rﬁ?)]k. [R{?)]k are markedly different.
Indeed, we have,

gD = [ om)y - (o om)y
(37.V)
A3 = D ren)y - P o),

If the ratio A{ST)/A{1$®) > R{}’, then by means of (34.V)
Aij(sm) > Aij(res). and the thermal diffusion factor increases

more than if molecules are regarded as ‘rigid elastic spheres’,

1



provided that the added gas k consists of lighter or smaller
molecules (A, .(res) > 1).
(sm) o5 . (res) Ay
If AT’ and Agjy ° are opposite in sign, then the thermal
diffusion factor changes sign with concentration of the added
gas, as shown by (34.V).

Y 4. Addition of a third gas to a binary isotopic mixture

4.1. Introduction. This particular system of the general case
studied in the preceding paragraph is one of interest because
thermal diffusion is extensively used for separating isotopes.

Addition of a gas to isotopic mixtures has been reported by
several authors, inorder to achieve better experimental conditions
for isotopic enrichment (C10,C11,C12,V1). Usually, the added
gas, B, is chosen so that it concentrates between isotopes 1
and 2, and can be separated afterwards by chemical or physical
methods. In the thermal diffusion column, each of the isotopes
concentrate at either side of the region mostly occupied by the
gas B. Schematically, we get the sequence

1~ 18- B =~ B2 -2

which shows that the addition of B reduces the loss of isotopic
material in the hold-up of the column, i.e., in the transition
portion between the regions mostly enriched on isotopes 1 and 2
respectively. This is of great importance when the amount of the
isotopic mixture to be separated is very small.

As a generalisation of the same principle, separation of more
than two isotopes may be performed by addition of a convenient
gas consisting of several isotopic molecules. Clusius and Schu-
macher (C12) could almost completely separate the isotopes of
natural Argon, 36A, 385 and %02 by using hydrogen chloride. In
the column the following sequence is schematically established:

36y - 35¢c1 - p3%c1 - 383 - 3701 - D370y - 404

Transition regions between isotopes of Argon are enlarged and
382 could be withdrawn with appreciable enrichment. 0.6 cm®
were obtained with a concentration higher than 90%. With Argon
alone, in which natural abundance of 3%A is 0.060% only, the
separation of this isotope would be nearly impossible.




In the preceding cases the molecular mass of the added gas is
close to that of the isotopes to be separated. A.E.de Vries (V1)
refers to another method, used by R.H.Davies at Harwell, for
separation of SHe and *He. Hydrogen is added to natural Helium,
in which the abundance of the desired isotope,BHe,is 1.3 x 107y
only. The top reservoir of the thermal diffusion column is kept
filled with Hydrogen in order to reduce the effective top volume
occupied by Helium enriched in 3He. As a result, the time to
reach stationary conditions is appreciably shortened.

In the examples given above, the addition of a gas tends to
decrease the concentration of the desired isotope in transition
regions, or to shorten the relaxation time of the column. Vari-
ations of the thermal diffusion factors, as a consequence of
interactions of the added gas upon the molecules of the initial
mixture, are not considered or only mass and diameter effects
are considered. However, it would be very important if the
thermal diffusion factors themselves could be increased or, at
least, not markedly decreased. Therefore, the following discuss-
ion may be of value to choose the gas which should be added to
the isotopic mixture, in order to get better experimental con-
ditions for separation.

4,2, Variation of the isotopic thermal diffusion factor and
separation ratio with addition of a third gas. Let us take a gas
A consisting of two isotopes, 1 and 2, with molar concentrations
c;b) and cé“), respectively.

If a third gas, of kind B, is added to the initial isotopic
mixture, concentrations Cys Cy and ¢, in the resulting ternary
mixtures must be such that

B

Cl/C(b) - Cz/c;b) =c, +Cy=c

1 (38.V)

and also
G, v, = 1 (39.V)
By using equations (17.V), the thermal diffusion factor,

% o(sm), for isotopes 1 and 2 in a ternary mixture (1,2,B)
consisting of ‘soft gases’, is given by

1 = CABA * CBEB 2 Sy

alz(sm) = - az)/2(40.V)




= ¢(b) (b)
ay =C; 'a; +cy 'a,

&% i (41.V)
AA =c; Al tcy Az

A priori the quantities a,, a, and a, as well as Al, A2 and Ay
would be closely equal since they refer to isotopes of the same
gas A.

If a; =a, = a,, i.,e. if all the force fields are equal, then
the inverse of the isotopic thermal diffusion factor should be
linear on concentration, cgs of the gas added to the isotopic
binary mixture (1,2). In practical cases it may be convenient
to look for such eventual linear dependence because (40.V) is
only given at a first approximation.

Let us now consider the isotopic separation ratio, Rlz- for a
ternary mixture (1,2,B). By using (31.V) we obtain,

Olypl(sm)
L = cARgg) + cBA
alz(reS)

(sm)/A(res)

12 B21 B21

where, by means of (29.V)

Aé;T) c [“ég)(sm)]a : [QQT)(sm)]B

AEE) = (oD (rem], - o) rem],

or equivalently

(sm)

B21 A=A

1 B
- (b) Pt (b)
= . [st ]B . [RlB ]B (44.V)

(res) & o
Ag21 A = 4 Aoy

A

The separation ratio R{;’ is a constant; the ratio A{37’/A{}S®

is also a constant. Therefore equation (42.V) shows that the
tsotopic thermal separation ratio, R;,, for ternary mixtures
(1,2,B) should be linear on molar concentration of the gas added
to the isotopic mixture (1,2), at a first approximation.

Equation (42.V) also shows an important feature of thermal
diffusion in ternary mixtures. If experimental data of the
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thermal diffusion factor o,,(sm) are available over a sufficient-
ly large concentration range of the gas B, indirect values for
the binary separation ratio, Rgg), might be obtained by extra-
polation of the above equation to the limiting case as Cc, =
=c, + ¢, = 1. Also, a relationship between [Rgg’]B and [Rége]g
might be obtained without any measurement of non-isotopic thermal
diffusion factors, which might be of practical interest.

The variation of the isotopic thermal diffusion factor with
addition of B is better discussed by using the quantity Alz(sm),

equation (34.V), which can in this case be written as

(sm)
%y g(sm) Ag21
Alz(sm) = T = Alz(res) CA + CB . -—m (45.\/)
&g (5M) Ria * 4821

where Alz(res) gives the variation of the thermal diffusion factor
for ‘r.e.s.' molecules, namely, equations (35,41.V),

1/8,,(res) = ¢, + cB.AB/AA (46.V)

According to equation (45.V), the variation of the thermal
diffusion factor with addition of a third gas should depend on
the following effects:

1) Mass and diameter effects. They are mainly determined by
the quantity A ,(res). We assume then Rig) - [Rig’]u = [R;g)]s.
Therefore, by means of (46.V), the isotopic thermal diffusion
factor tends to increase by addition of a gas consisting of
lighter or smaller molecules (Ag < Ayp). Conversely, it tends to
decrease when the gas added to the isotopic mixture (1,2) consists
of heavier or larger molecules (Ag > Ap).

This conclusion has also been obtained by Whalley and Winter
(W1) in the limiting case, as the concentration of the added
gas was equal to unity and molecules are regarded as rigid
elastic spheres.

The variation of the quantity AB with molecular mass, mg, is
usually rather small, hardly increasing or decreasing the thermal
diffusion factor by a factor of two.

9) Hardness effect. This effect is expressed in (45.V) by the
ratio AégT)/[Rig).Aé;?S)] (see also eq. 44.V).

one would say that we could assume in (44.V) that [Rgg)]s =
= [Rég)]s because both thermal separation ratios refer to iso-
topes. This is not true for our elementary theory. As we have
pointed out in 5 2.V, we have indeed to consider, as an approx-
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imation necessary for our treatment, that the coefficients of
viscosity for isotopes 1 and 2 are both equal to that for the
gas A with natural isotopic composition. Therefore, the differ-
ence between the quantities A, and A, and therefore the differ-
ence between aig)(res) and aég)(res) has been increased art-
ificially. Since in practical applications the separation ratios,

R{g’ and Rég), are defined by aig)(eXD)/aig)(res) and aég)(exp)/
/aég)(res), the difference between the experimental values of

Rig) and Rég) has been increased artificially.
To take a definite example obtained from our experiments with
ternary mixtures (4He; 36A, 40A), we report the following values:

[RE36)4(exp) = 0.737 £ 0.008; [R{®)(], = 0.707 + 0.005

(b) - 4 . [R(®) ;
[Rq_ss]ss(exD) 0.833 + 0.006; [R4'40]40 = 0.796 * 0.006

The percentage difference between Ribgs and Rgbio is a constant

within the magnitude of experimental errors (from 4.2 % 1.5 to
4.5 = 1.5%).

As we may expect from the above example, the difference between
[Rig’la and [R;g)]s would usually be a small one for most pairs
of isotopes. Even then it cannot be disregarded in equation (44.V)

except when R{g) is markedly different from [Rig)]B and [Rég)]e'

For the latter case a qualitative conclusion may be drawn by
assuming [R(b)] = [R;g)]B. We have then, by using equations

1B
Alsm)
(44,45.V), 221 = [R{D)]
alres)
B21

B

B and then,

(b)
[ris’1s

Alz(sm) = Alz(res) Cy *+ Cg '___?;T_— (47.V)
Rig

Now, by means of (21.V) and assuming a, =a, = a;,, we have
Rig) = (1-a,). Then, by using (20.V), we obtain

A.(a.=a,)
R(bIT - pi(b) - “1'%17%8
[Rig’)s - R{3 e (48.V)
1 B
If Al > Ag, i.e. if the gas which has been added to the iso-
topic mixture consists of lighter and smaller molecules, then

Rig’ > Rig) if a, > a,, which means, in accordance with the

1 B*
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discussion made in $ 2.1V, that the gas B is ‘harder’ than iso-
topes 1 and 2.

Therefore, by using (46,47.V), we may conclude: If the binary
isotopic separation ratio, Rgg), is appreciably different from
R;g) and R;g), the thermal diffusion factor of isotopes tends
to increase by addition of a gas B consisting of lighter, smaller
(AB < A,) and ‘harder’ molecules (Rig’, Rég) > R{Z))

Conversely, it tends to decrease by addition of heavier,
* molecules.

3) Concentration effect. According toequation (45.V)a possibil-
ity exists that the thermal diffusion factor changes sign with
concentration of the added gas if AéZT’ and A{5$%) are opposite
in sign. Such a change of sign will probably be unusual as can
be inferred from equations (43.V).

larger and ‘softer

4,3, Non-isotopic thermal diffusion factors., By means of (17.V),
the ‘s.m.’ thermal diffusion factor, qlB(sm), of the isotope 1
and the added gas B is given, at a first approximation, by

o, g (SM) - (a, - ag)/2 (49.V)

The quantities a, and AA are given by (41.V). For ‘r.e.s,
molecules we assume in (49.V) a, = a, = a, = 0.

A similar equation is obtained for uzn(sm), changing the sub-
script 1 into 2 in (49.V).

For most ternary mixtures (1,2,B) the inverse of non-isotopic
thermal diffusion factors, o q(sm) and 1y (SM), can practically
be assumed as linear on concentration of the gas B which has
been added to the binary isotopic mixture (1,2). This conclusion
will be very useful in treating experimental results. The error
which is usually made is small indeed, as can be seen by the
following discussion.

Let us consider the quantity ulB(sm) defined as

(1-a,)A, - (1=-a_ )A
ajg(sm) = = . foai® ! (50.V)

0o | -

CAAA + CBAB

The inverse of this equation is linear on concentrations of
the gases.,

Also, by comparison of (50.V) with (19.V) it follows that

(b’(sm) since A, and A, (eq. 41.V) are

! .
aln(sm) is close to %ig

isotopic quantities.

1



The ratio a;B(sm)/alB(res) is just equal to the binary separat-
ton ratio Rig) (see equation 20.V) which should be regarded as a
constant, at a first approximation.

By means of (49,50.V), we have then

ayg(sm) = ajo(sm) . [Rp/R{D)] (51.V)

Introducing now equation (31.V) for the separation ratio RIB,
we can obtain, after some developments,

ag(sm) = ayg(sm) {[cf® +ef® . Ryp] cp + ¢} (52.V)

where cgb) and céb) are the molar concentrations of isotopes in
the initial binary mixture (1,2) and R281 is a quantity theor-
etically independent of concentrations, at a first approximation,
given hy

(b) 1 (b)
RoB Ri2

(53.V)

(b) (b)
It Ay Rin

Equation (53.V) shows that the quantity R281 will usually be
close to unity. Indeed, the first term on the right hand side
of this equation will usually be close to unity and is, further-
more, the predominant one.

Therefore, equation (52.V) shows that “15‘Sm) will usually be
close to aiB(sm) and the linear dependence may usually be assumed
for I/axB(sm). This conclusion can be seen better in Chapter VI
(experiments).

In connection with experiments further considerations have to
be made in respect to the quantity stx (eq. 53.V). At a first
approximation the binary separation ratios R{p’ and R{}’ are
constants and stl is a constant as well. In practice both Rig)
and Rég) will usually vary somewhat with different concentrations.
For consistency of this theory we assume that both binary separat-
ton ratios are referred to the same concentration of the gas B
which has been added to the binary isotopic mixture (1,2). With
this assumption the ratio Rég)/Rig), which has to be used in
(53.V), will very probably be a constant and then only a small
variation of R281 with concentration may occur due to the second
term on the right hand side of (53.V).




By dividing both terms of equation (52.V) by alB(res), we have
the following relationship for ternary and binary separation
ratios

Ry = RN tlePh e Phras b, 76} (54.V)
For consistency with equation (52.V), both thermal separation
ratios should be referred to the same concentration of the gas B.

If only ternary thermal diffusion data are available, the
binary thermal separation ratio Rgg) can be obtained by a method
of successive approximations.

From the general equations (13,14.V) we obtain the following
relationship for the isotopic and non-isotopic thermal diffusion
factors of a ternary mixture (1,2,B):

%y o (sm) = xyg(SM) = oyp(SM) (55.V)

This equation brings about a kind of final test for all of the
theory given in § 4.2 and 4.3.V, when it is applied to the most
probable experimental equations for alB(exp), aza(exp) and
alz(exp).

a ; . v bk :
3 5. Mixture of two gases each consisting of a pair of isotopes

This case can be regarded as a generalisation of that of the
preceding paragraph. Therefore we present only the most important
conclusions and equations.

Let us consider two gases, A and B, each consisting of a pair
of isotopes, (1,2) and (3,4), respectively, with concentrations
c, and cg. The proportions of each pair of isotopes do not change
with the ratio cA/c8 and then

(b)) = (b)
cl/cl = 02/02

"
(2]
—
+
o
o8
"
Q
=

(56.V)
Ca/c;b) = cq/cib’ - Oy WGy - Ty

where ¢ céb) are the molar concentrations of isotopes 1 and
2 in the gas A, and cy and c, the corresponding molar concentrat-
ions in the mixture (A,B). Similarly for the isotopes 3 and 4
of the gas B.

(b)
1

79




5.1, Isotopic thermal diffusion factor and separation ratio.
They are given by the following equations:

1 - Cply = cBaB

(112(Sm) = 1 (al - 8.2)/2 (57V)

+ CBAB
where a,,a; and A,,Ag are given by equations similar to (41.V)
for each pair of isotopes.

For r.e.s.’” molecules we assume in (57.V) 8y =8, =a, =a; = 0.

A similar equation is obtained for g 4 (SW).

If the force fields are all equal, the inverse of isotopic
thermal diffusion factors will be linear on concentrations Cy
and Cg. In practice it might be convenient to look for such
eventual linear dependence because isotopic thermal diffusion
factors are only given at a first approximation.

The isotopic separation ratio is given by

(sm) (sm)
%yg(sm) 321 421
=c R 4 e [P CIT ) s g B8 TN
Av12 B 28 < PTG -
(res) A(res) A(res)
Dy ren 321 421

where the quantities Aﬁ??’/Aé?T) are analogous to (43,44.V).

According to (58.V), the isotopic separation ratios, Rlz and
R34, should be linear on concentrations (I and Cg of gases A
and B, respectively.

The variation of the isotopic thermal diffusion factor can
be studied by means of the quantity A ,(sm) = ulz(sm)/aig’(sm)
where aig) is the thermal diffusion factor of isotopes 1 and 2
for the gas A alone. We have,

(sm) (sm)
by 321 (b) Ha21
C _ +C

4
(b) (res) (b) (res)
Ria"+432; Ria"+ 842y

(59.V)
where Alz(res) represents the variation of the thermal diffus-

ion factor for ‘r.e.s.’ molecules, namely,

Alz(sm) = Ajp,(res)q c, + Cy

l/Alz(res) =c, + cBAB/AA (60.V)

If binary separation ratios Rég), Ré?), R;g). Ri?) are not

too close to Rig) we can conclude: the thermal diffusion factor
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of isotopes 1 and 2 of the gas A usually tends to increase with
increasing concentration of the gas B consisting of lighter,
smaller and ‘harder’ molecules. Conversely, the thermal diffus-
ion factor for isotopes 3 and 4 of the gas B will decrease then
with increasing concentration of the gas A.

5.2. Non-isotopic thermal diffusion factors and separation
ratios. The thermal diffusion factor of isotope 1 of the gas A
and the isotope 3 of the gas B is given by,

1 - cyay = cpgdy Ag = Ay

Oy a(SM) = —— - (a, - a,)/2 (61.V)
13 I 1 3
A%A B8
If we define a quantity 113(sm) as
(1-a,)A, - (1-a)A
ala(sm) sl 153 A (62.V)
2 ("AAA B ("BAB
then,
S e B BN (b) . (b) (b) 1 \
o a(sm) = o (sm) {[e]® + c) RZSI] eyt [c3 +ice? Rya ) egd

(63.V)

where the quantities R231 and R431 are usually close to unity.
They are given by equations analogous to (53.V). The ratios
Rég)/ ;g’ and R{Z’/Rgg) are assumed constants referring to the
same concentrations, ¢, and Cg:

The inverse of non-iSotopic thermal diffusion factors a«,,(sm),
xlq(sm), xzs(sm) and a24(sm) may usually be assumed as linear on
concentrations Cy and Cq-

We also have,

'
Ky ql(sSm)
i - p(b) (64.V)
'Lla(res) 13
and
Big =:RI2 {[of® 4ol ] epmales®ha ciPRaqd o5t (85

The following equations connect isotopic and non-isotopic
thermal diffusion factors:
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alz(sm) = ala(sm) - azs(sm) = alq(sm) - a24(sm)

(66.V)
aaq(sm) = u14(sm) - ala(sm) = a24(sm) - a23(sm)
$ 6. Mixture of isotopes
For a mixture of s isotopes we assume
1l = 12 T B B, = ), =8 =§ (67.V)
Equation (15.V) thus reduces to
] %
1 -2 o Pl
.]](sm) e TN ———— (68.V)
B 8 %
2. 50 et
kzlkk

If we consider a binary mixture of any pair of isotopes (m,n),

X ' 78 1
we will usually have c;“’ me + c;b’ m: closely equal to the sum-
8 Kz 4 !
mation ¥ ¢, m? of the above equation (68.V). Therefore the thermal
K=y Kk

diffusion factor of isotopes i and j would be almost the same
for binary and multicomponent mixtures.

7. Pressure diffusion

Only a small reference will he made here. According to our
elementary theory, pressure diffusion can be studied readily
because it is related to thermal diffusion by the following
simple equations.

When molecules are regarded as ‘rigid elastic spheres’' we
assume a, = 0. Then, by means of (14.1V), we have lk = 1;,
introduced into (2,V), gives Z;]/z = Z’j. Hence, by using (9,
10.V), we obtain

which,

() = 2(«

S ‘GO V
p)1 4 .T)ii(ltb) (69.V)

Therefore pressure diffusion should be independent of molecular
forces. This feature suggests immediately that if a cascade method
could easily be realized in practice, pressure diffusion would be
a comparatively better process for separating isotopes.
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CHAPTER VI

EXPERIMENTAL THERMAL DIFFUSION IN COMPLEX MIXTURES

Introduction

In this chapter we present experimental thermal diffusion data
for mixtures of natural Argon-Helium, Neon-Helium and Neon-
Hydrogen regarded as ternary mixtures (SGA, 40;’«\: 4He), (LONe,
22Ne; Hy) respectively.

The main subject of our experiments was to observe the influence
of the ‘added’ gas - Helium and Hydrogen =~ upon isotopic separat-
ions of 20ne-22Ne and of 385.40)  1gotopic thermal diffusion
factors have been determined by means of mass spectrometric
analyses over a large concentration range of the added gases.

According to our elementary theory we may roughly say that
the isotopic thermal diffusion factor would increase with add-
ition of a gas consisting of lighter and ‘harder’ molecules.
Conversely, it would decrease by addition of heavier and ‘softer’
molecules.

Experimental results show that isotopic thermal diffusion
factors increase with concentration of Helium in (36A. 94
4He) mixtures and decrease in (ZONe. 22Ne; 4He) and even more
in (%°Ne, 22Ne; Hy) mixtures.

To heighten the accuracy of determinations of the isotopic
thermal diffusion factor, we have always chosen the best set of
conditions of the mass spectrometer for carrying out the analyses
for each pair of isotopes, namely 20ne-2286 and 36,.404 aAsa
consequence, our machine could not simultaneously provide accurate
analyses for 4He and Hy. For that reason only a few non-isotopic
thermal diffusion factors have even then been determined compar-
atively with somewhat large experimental errors.

Experiments have also been made with natural Neon-Argon mix-
tures. Isotopic analyses of 20ne-22N6 and of 364.404 could be
carried out satisfactorily by mass spectrometry over large con-
centration ranges of Neon and Argon, Since we were interested
mostly in the influence of each gas upon the isotopic separat-
ion of the other, Neon-Argon mixtures have heen regarded roughly
as ‘quaternary’ mixtures (%ONe, 22Ne; 36y, 404y,

Experimental data show that the thermal diffusion factor of
Neon isotopes decreases markedly with increasing concentration
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of Argon. Conversely, the thermal diffusion factor of Argon
isotopes increases with increasing concentration of Neon. This
is qualitatively in accordance with our theory because Argon
molecules are heavier and ‘softer’ than those of Neon.

Non-isotopic thermal diffusion factors could be determined over
a large concentration range of the added gas in (He-A) and (Ne-A)
mixtures. It was observed that the inverse of non-isotopic
thermal diffusion factors was linear on concentrations of Neon
and Argon, which is in accordance with our theory.

2.1, The measurement of the thermal diffusion factor.For measur-
ing the thermal diffusion factors we have used the ‘swinging
separator’ (Trennschaukel) described by Clusius (C13). A block
diagram is given in fig.1.VI. It consists essentially of 9 stain-
less steel tubes connected in series, the upper part of each
tube with the lower part of the following one, viaa stainless
steel capillary tube.

The upper part of the tubes is forced into a copper block
which is heated by a 200 W. heating element. The mains voltage
supplied to this element could be varied by means of a trans-
former in order to obtain any desired ‘hot’ temperature, TII, in
between 373 and 750° Kelvin.

The lower part of the tubes is cooled by a water stream. The
‘cold’ temperature T! was practically independent of T!I,

HOT

-

d

Z

PUMP

Fig.1.VI
Block diagram of the ‘Trennschaukel’




About 1 em® of the gas mixture was pumped to and fro period-
ically by means of a glass U tube, partially filled with mercury,
which was swung by an electromotor and an eccentric wheel. There-
fore, concentrations of the gases in the hot and cold regions of
two consecutive tubes should be equalized. If a separation factor,
Qs of gases of kinds i and j, namely,

11
(ci/cj)

Q4 = (1.VI)

(cl/cj)I

is obtained by an elementary thermal diffusion process in each
tube, the total separation factor achieved with a ‘Trennschaukel’
of n tubes should be

Qy = aj; (2.VI)

Experimental values of the thermal diffusion factor of the
gases i and j can thus be obtained by means of equation (18.1V),
namely,

In @ = n ay,(sm) 1o (T''/10) (3.VD)

2.2. Temperature stability of the Trennschaukel. Stabilisation
of temperature of the hot and cold regions of the ‘Trennschaukel’
should be good enough in order to obtain experimental values of
the thermal diffusion factors with reasonable accuracy.

Figure 2.VI (see p.86) shows the approach to the steady state
of temperature for 187 V. set up on the transformer, with the
system filled with natural Neon at a pressure of about 1 atm.
Stability is reached after about 2 hours and maintained dur-
ing 48 hours within a variation of 2° for a mean temperature
of 666° Kelvin in the hot region, and within 0.5° for a mean
temperature in the cold region of 286,5° Kelvin. Experimental
values of thermal diffusion factors were practically not affect-
ed by these temperature variations during the observations which
had been carried out for about 24 hours. The most important
errors arise from the concentration measurements.

The variation of the temperature, TII, with voltage supplied
to the heating element is shown in figure 3.VI. The slope of
this curve at increased temperatures is about 2° per volt.
Since the voltage scale of the transformer was rather narrow,
it was somewhat difficult to preselect a given temperature [ L
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The approach to temperature stabilisation in the *Trenn-
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Fig.3.VI

Variation of the temperature, T I, with voltage supplied
to the heating elemént.
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accurately. For that reason the temperatures at which experiments
have been carried out sometimes differ from one to another.

2.3. The approach to the steady state. The theory of the
‘Trennschaukel’ has been given by van der Waerden (W7). The
approach to the steady state should be an exponential one and
the ‘half-life’ was given by

v n + 172
S =ilbps ——ah o ibp) [ ] In 2

2a T

| ¢y =1%/m, (5.VI)

}
“ V = volume of each tube (in our case V = 23 cms). 2a = volume
‘ which is pumped to and fro (1.5 cm® to 1 cm?®), t, = period of
‘ the pump (5 seconds), 1 = length of each connecting capillary
(10.4 cm), Dij = coefficient of diffusion, n = number of tubes
of the ‘Trennschaukel” (9).
For values of the coefficient of diffusion in between 0.1 and
0.8 cm%/sec the ‘half-life’ to the exponential approach changes
‘ between 8 and 45 minutes for our ‘Trennschaukel’.
Our experiments have been carried out over 24 hours at least
and are therefore safe enough for our purposes.
A rough experimental determination of the approach to the
steady state with Neon alone has been made. After stabilis-
ation of temperature, the ‘Trennschaukel’ was filled with a
sample of pure Neon at a small over-pressure. At any time tl.
ta'ts"" a sample of about 1 cm® N.T.P. from the cold region
(the lower end of the 9th tube) was brought into the mass spectro-
meter through a capillary tube for analyses of Neon isotopes.
The ratio, (020/022)1. of concentrations of 2°Ne and 22Ne was
then determined in arbitrary units which only depended on the
characteristics of our mass spectrometer. At any time, tz,tq,
tgrieor @ sample from the hot region (the upper end of the first
tube) was also analysed and the ratio (czo/czz)ll, was determined
to the same arbitrary units.
, The values of (czo/czz)I and (czo/czz)II were plotted versus
| time and smooth curves were obtained. A mean total separation
factor as a function of time was then determined:




II
(cg9/C33)
(czo/czz)

Values of Qyp 22(t) are plotted on a logarithmic scale in
fig.4.VI. They do appear to obey an equation of the form

Q20.22(t) 3 on_zz(m) (s e-Xt) (7.VI)

where on 22(m) represents the total experimental separation
factor achieved after 24-48 hours, and )\ is a constant. Since
the ‘half-life’ of this exponential approach is

t, = (1n2) /A (8.VI)
and the corresponding relaxation time is

t, = 1/A (9.VI)
we obtain, from fig.4.VI, t, = 90 minutes. The theoretical value
according to equation (4.VI) should be 10 minutes approximately.
Such a marked difference between experimental and theoretical
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Exporlmental approach to the steady state with Neon iso=
opes.
(¢} Experimental values of log on 22(&»
0 Values of log Q20,22(m) - log 020'22(t). Half-life

about 90 minutes.




values is probably due to the disturbances which have been intro-
duced by successive withdrawals of gas from the ‘Trennschaukel’
during the beginning of the thermal diffusion enr1chment Indeed,
each analysis needs a volume of about 1 cm®, and 10 em® in total
have been withdrawn during the initial two and a half hours to
follow the isotopic separation. Nevertheless, the 24 hours that
have been taken for each approach to a steady state are compared
long enough with the observed ‘half-life’.

§ 3. Mixtures Helium-Argon regarded as ternary mixtures (*He;
36A 40A)

3.1, Experimental data. Natural isotopic abundances of Argon
and Helium are the following:

36y 0.307 % 34e 1.3x 107 %
384 0.060 % ‘He 99.9999 %

404 99,633 %

Therefore it is reasonable to consider A-He mixtures as ternary
mixtures (36A, 404. 4He) in which the initial ratio of molar
concentrations, 036/040, is the same in each of the Helium-
Argon mixtures.

Three thermal diffusion factors have to be considered, namely

and o Experimental values are given in Table

%36,40" *4,36 4,40"
Yo VI,
Table 1.VI
Experimental thermal diffusion factors for (4He; 36A, 4OA)
Concentr.| Absolute
of Argon feﬂ%' %38, 40 %4, 36 %4, 40
T =T
1.000 | 287-655 | 0.014, * 0 001,
1.000 | 286-666 | 0.0142 i 0.0008 ala's
1.000 | 286-667 | 0.0149 + 0,0008 ba
0.900 | 286-667 | 0.0144 0.001, i W
0.700 | 288-660 | 0.015, ¢+ 0.001, 0.308 + 0.004 | 0.323 + 0.004
0.500 | 289-663 | 0.017; * 0.001, 0.358 + 0,003 | 0.376 *+ 0.003
0.300 | 288-660 | 0.020, * 0.001, 0.433 + 0.005 | 0.454 £ 0.005
0.100 | 288-660 | 0.022, + 0.001, 0.572 + 0.006 | 0.594 + 0. 006




The system was filled to about 2-2,5 cm Hg over-pressure to
prevent eventual inleakage. Anyway, the peak at mass 28 cor-
responding to sz was always measured so as to have a check on
the experimental technique. Experiments in which the peak height
of N, exceeds the normal background of the mass spectrometer by
two or three times were dropped.

Each peak, 4He, 367 and 4°A, was measured 6 times. Mean values
were then obtained and the standard errors computed.

We can see in the Table that the absolute errors of the non-
isotopic thermal diffusion factors are larger than those cor-
responding to isotopic ones, the consequence of which will be
discussed in 3.3.2.

3.2. Comparison of the isotopic thermal diffustion factor for
Argon alone and the thermal diffusion factor for %He and 404 with
earlier results, Table 2.VI and fig.5.VI report the values of

aég)40 given by Stier (S1). In tHe Table our values are also

given for comparison. In the figyre only the mean of the three
values is represented. The mean temperatures, Tm. to which the
thermal diffusion factors would be referred, are the algebraic
mean value of absolute temperatures T! and TIL.

Table 2.VI
The variation of the thermal diffusion factor for Argon
isotopes with temperature

Absolute Mean Temperature 25
Temperatures T = (Tlpil% O ag Reference

plopll m

90 - 195 132 0.0031
90 - 296 163 0.0071
195 296 240 0.0116
195 - 495 310 0.0146
273 - 623 412 0.0182
455 635 537 0.0218
638 - 835 729 0. 0250 S

287 - 655 433 0.0147 This paper
286 666 437 0.0142 This paper
287 - 667 437 0.0149 This paper

Figure 5.VI shows that our mean value is somewhat lower than
that corresponding to Stier’s mean curve which gives the isotopic
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thermal diffusion factor as 0.0190 for T,k = 437° K whereas our
mean value is 0.0146 * 0.0009. Errors of Stier’s observations are
about 5%.

Table 3.VI gives the thermal diffusion factor for a mixture of
equal concentrations of natural Helium and Argon at different
temperatures, after Atkins, Bastick and Ibbs (Al); Puschner (P1);
Grew (G8); and van Itterbeek and de Troyer (I3). We compare
these values with our observations for 4He and %%A°). Mean
temperature, T, is defined as before.

Table 3.VI
Thermal diffusion factor for Helium-Argon
mixtures of equal proportions

Mean
Temperature Oye, A Reference

T, (°K)
157 0.31 I3
185 0.36 G 8
293 0.38 G 8
328 0.372 Al
346 0.42 Pl
369 0.39 G 8
438 0. 376 This paper

Tabulated values are plotted in figure 6.VI, which shows that
our result agrees well with earlier data, as far as a mean curve
is concerned. Puschner’s value is clearly too high.

3.3, Interpretation of experimental data by the elementary

theory.

3.3.1., Isotopic thermal diffusion factor. According to the
theory given in § 4.2.v experimental values for the thermal
diffusion factor of Argon isotopes, 367 and 4OA, in ternary
mixtures (36A, 4OA; 44e), will be worked out considering:

a) The inverse of the isotopic thermal diffusion factor may
eventually be linear on concentration of the added gas, Helium.

*) We have measured the concentrations of 404 and 4He. whereas the
other authors have made measurements of Argon and Helium con-
centrations. The differences, however, of both procedures canbe
disregarded since the concentration of 364 is so small,
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instead.

‘ Experimental values of R36.40

b) Isotopic separation ratio, R36'40
ent on the concentration of the added gas (Helium) at a first
approximation (see equations 42,44.V).

\ In Chapter V we usually worked with the indication (sm) for

\ ‘soft molecules’ meaning to indicate real molecules. In this

experimental Chapter we will mostly use the indication (exp)

This is theoretically acceptable, at a first approximation, if
the force fields are not too different.

, would be linearly depend-

are determined by the ratio of

| the observed isotopic thermal diffusion factor to the cor-
‘rigid elastic sphere model’, given by

responding value of the
the general equation,

(b)

. (b)
36 A36

where Ayr e * Cap

1o

= (m /My )",

A, =
A =

A, 40 (TES)

Aso

(

b)

3.
2 ¢

A40
:4A4 o 1 >

Cag’ = 0.0031
o(b) = 0.9969
40

The quantities Ay Aze and A

0.
0

0.
0.

40

Helium have been taken from ref.
temperature T = 437° K. The corresponding quasi-theoretical
values for the quantities A,, Aas' Aso and A,, which have been
used in equation (11.VI), are the following:

09119
2528
2665
2664,

- A

36

AA

(11.VI)

The concentrations cég) and cgg) of 367 and %%A are the follow-
ing, assuming natural Argon as consisting of those isotopes only,
since natural concentration of %A has been neglected:

are given in»general by A, =

For the reason already explained in |
that the coefficients of viscosity of Argon
equal to that of natural Argon.

The values for the coefficients of viscosity of Argon and

S 2.V, we consider

isotopes are both

(H6). They refer to the mean

L poise”

1




The subscript 4 will always be referred to Helium and the sub-
script A to Argon.

The ‘r.e.s.’ isotopic thermal diffusion factor is then given
by the equation,

1/a35.40(res) = 38.90 c, + 13.31 Cy (12.VI)

This equation is used for computations of experimental isotopic
thermal separation ratios, R36 40(exp), corresponding to observed
values for isotopic thermal diffusion factors, Ogg 40(exp).

Equation (12.VI) brings about the following limiting values
for the ‘r.e.s.’ isotopic thermal diffusion factor:
for ¢, = 1t

[ogg, 40 (res)], = ofp) o (res) = 0.0257

6,40 36

(13.VI)

(o, ..(res)], ='0.075
H36.4”,1L>) 4 0. 0751

The ‘r.e.s.’ thermal diffusion factor of Argon isotopes there-
fore increases with increasing concentrations of Helium., In the
4 1, the quantity \36'40(res) which shows
the influence of the addition of Helium upon the ‘r.e.s.
diffusion factor of Argon isotopes, is given by

limiting case as ¢

thermal

. (o (res)] 0.0751
V. qo(Tes)], = =280 2 - —__ =392 (14.V)
b () b)), L 0.0257

es)

(
*36,40'"

Let us now consider the experimental values for Qgg 40(0xp)

and Rye 4o(exp). In figures 7.VI and 8.VI we report experimental
ats 01 X o ) £ [ exD res setively Sy
data for 1 ﬂﬁﬂ'qo(\xp; and Raﬁ'4“(<xp) respectively. They both

appear to satisfy a linear dependence on molar concentrations,
within the magnitude of experimental errors. The most probable
equations determined by least squares are respectively:

a) 1/ ,L::‘h...§()'_"xl)) = 1,69..1 ¥ 3 (O (42.4 + 2.0) c (15.VI)

5) A 4

b) Rjﬁ'4”<vxp) = (0.564 * 0.02;) c, + (0.34, £ 0.02,) c, (16.VI)
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The corresponding limiting values to the thermal diffusion
factor as ¢, = 1 (binary isotopic mixture of 364 and 4OA) are
respectively, from (15,16.VI)

0.0144 + 0.0007;

(b)
a) Ogg, 40(eXP)

(17.VI)

b) a§2340(exp)

0.0145 ¢+ 0.0007

which are just comparable with the mean value as 0.0146 + 0.0009
obtained by direct observations with Argon alone.

In the limiting case as Cy =1 we have, respectively.

a) loge 4o(exp)], = 0.023; + 0.001;
- (18.VI)
b) [ogq 4o(exp)], = 0.025; ¢ 0.001,

The agreement is not so good as before but may be considered
rather satisfactory within the magnitude of the errors. Theor-
etically, the second value would be preferred.

By means of (17,18.VI) the isotopic thermal diffusion factor
thus increases with increasing concentration of Helium. This
would be expected since Helium consists of lighter, smaller and
‘harder’ molecules. In the limiting caseasc, = 1, the experiment-
al value for the quantity \36.40 showing the influence of Helium

upon separation of Argon isotopes is then,

a) [Agg sotexp)], = 1.6, £ 0.1;
(19.VI)

b) l.xzs.w(exp)]4 3. T 1053

8
whereas the increasing factor should be 2.92, equation (14.VI),
if molecules were regarded as ‘rigid elastic spheres’.

3.3.2. Non-isotopic thermal diffusion factors. From the theory
given in 3 4.V we have, for non-isotopic thermal diffusion factors,
¢4'36(sm) and 44'40(sm), when ‘soft’ molecular interactions are
considered,

L AL (b) (b) 1 o
%, 40(5M) = &g 4q(SM) [(040 t C36 +Rag,4,40) Ca * C¢) (20.VI)

R ! (b) (b)
Oy, gg(SM) = 0y 5g(sm) [(cfe’ *+ c4o Ryo,4,36) Ca * Cq} (21.VI)
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where R36 4,40 and R40 4,36 are given by (53.V). The quantities
R36 4, 40 and R40 4,36 should theoretically, be rather close to
the unity as in (53.V) (Ag-A,)/(Ag-A;) ~ 1 and the second term
of this equation is comparatlvely small

The inverse of the quantities a;'36(sm) and a;'4o(sm) of
equations (20,21.VI) is linear on molar concentrations, c, and

c4, of Argon and Helium, respectively.

Another feature of the quantities a4 36 (sm) and a4 40(sm) is
that they define binary separation ratios, Rg 8 and R(bio,
according to the equations

!
o (sm)
e TR L S R (22.VI)
v14'40(res) e
&, op(Sm)
TS s (23.V1)
'14.36(1"8!4) < :

The values for ‘r.e.s.’ non-isotopic thermal diffusion factors,
(res) and 6(1Ls). which have to be used in equations

%4, 40 oy
(2-,33 VI) are uhtalned by introducing in equation (49.V) the
values of A, = (m4/H4 v Aggr Ayo and A, given in ¥ 3.3.1. We
obtain,
1f¢4'36(res) = 1.128 Cy * 3.298 Ca (24.VI)
1/x4_40(res) =1.040 c, # 3.040 c, (25.V1)

The values for the quantities 1;'36(sm) and u;.40(sm) of
equations (22,23.VI) can be obtained from experimental non-
isotopic thermal diffusion factors, % 36 (exp) and Sy 4O(exp)

respectively, as we shall see further on. Therefore equations
(22,23.V1) provide the way to determine binary non-isotopic
separation ratios, Rghéf qnd R‘b’ 0 by means of experimental
data for ternary mixtures (*He; 43GA Y

Let us now determine the most probable equations for a4.36(exp)
and 14'40(exp) (see Table 1.VI). ]

Following the discussion given in > 4,3.V we might assume a
priori that 1/14 40 (€XxP) and 1/A4 36 (€XD) were linearly depend-
ent on concentrations of Helium and Argon, By means of (20.VI),
such linear dependence can easily be inferred for 1/14 4O(pr)
because the concentration of 3®A in Argon alone is only C(h) = 0.0031,
(therefore the brackets on the right hand side of (20.VI) are
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always very close to unity) and 1,/a 4 40(Sm) is theoretically
linearly dependent on concentrations.

On the other hand, the linear dependence of 1/a4'36(exp) with
concentrations is not so evident a priori because the term
ng)'n4o.4.3e = 0.9969 R40 i 361sthe predominant one in equation
(21.VI) whereas c(b) is practlcally of no influence. In order
to show that the error which is committed, assuming l/a4_36(exp)
linearly dependent on concentrations, is even then negligible
within the magnitude of experimental errors, we use the following
method of successive approximations which is only based on the
theoretical assumption that the inverses of the quantities
a;'as(sm) and a;'qo(sm) are linear on concentrations.

As a PIRST APPROXIMATION we consider a4 36(sm) = 36(exp)
and also a4 40(sm) =0y 40(exp) Since l/a4 36(sm) and l/a4 40(sm)
are theoretlcally linear on concentrations we obtaln from
experimental data given in Table 1.VI,

! = = +
1/0, 4o(exp) = 1/a, ,,(exp) = (1.47 £ 0.01) ¢, + (3.82 £ 0.03) ¢,
(26.VI)
1/ag gg(exp) = 1/x, go(exp) = (1.53 # 0.01) c, + (4.02 £ 0.03) c,
(27.VI)

By means of (22,25,26.VI), we obtain an equation for the binary

non-isotopic separation ratio, Rib;0' Similarly, by means of

(23,24,27.VI) we obtain a first approx1mation for Ri?%e‘ We only

give here the limiting values for these quantities, namely,

[R{")o(exp)], = 0.707  0.005; [R{®),(exp)] o = 0.796 + 0.006
(28.VI)
and
[R{®) 4 (exp)], = 0.738 + 0.006; (R{P);(exp)] ¢ = 0.821 # 0.006
(29.VI)

Equations for R33,4.40 and R40,4.36 which appear in (20, 21.VI)
can now be determined, at a first approximation, by using in
(53.V) the values for R;°;6 and Ribio already obtained. We also
need a value for the biﬁary isotopic separation ratio R§2)40

We have, from the results of $ 3.3:1; Rée 40(exp) = 0,566.
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We only give here the limiting values for R40'4.36 and R36.4'40.

(R 1, = 0,975 + 0.015 [Ryo  56), = 0.98, £ 0.015 (30.VD)

40,4,367° 4

(R = 1.025 * 0.015; [Rgq 4 40)p = 1.014 £ 0.015 (31.VI)

36.4.40]4

As we can see, they are not far from the unity which is in
accordance with the theory.

SECOND APPROXIMATION. We now have approximate equations for
the quantities R36 4,40 and R4o 4,36 Hence, by using equations
(20,21.VI), we obtaln, from experlmental data for non-isotopic
thermal diffusion factors, a second approximation for a;'36(exp)
and a4 s0(exp). The natural abundance of 367 peing c‘b’ = 0.0031,
the correction considered here is only of interest for a;.36(exp).
The most probable equation is then,

l/a;.se(exp) = (1.53 £ 0.01) ¢, + (3.95 + 0.03) c, (32.VI)

At a THIRD APPROXIMATION we obtain:

1/a4.36(exp) = (1.53 £ 0.01) ¢, + (3.96 + 0.03) c, (33.VI)

which just confirms the preceding equation. Accordingly,

[R{®)g(exp)], = 0.737 £ 0.006; [R{P}q(exp)] g = 0.833 ¢ 0.006
(34.VI)

By means of (28,34.VI) we obtain, at a third approximation,

(b) (b)
[R S(exD)] 1.04 0.01 [R4'36(exp)]36 1.04 0.01
ST 1T ST T S R - 5311 % Y | — A + 0.
[R(b) (exp)] : ? [R(b) (exp)] < :
4,40 4 40 40

(35.VI)

These results are just in accordance with the hypothesis
assumed in theory that the quotient of non-isotopic binary
separation ratios, both referred to the same concentration
ratio, would be regarded as a constant.

Also, we obtain, at a third approximation, an equation for

R40,4,3s‘ Limiting values are the following:




LReo 4, 56lq = 0-97, £ 0.015:[Ryg, 4, 36)4 = 0-98, + 0.015 (36.VI)

Finally, the most probable equations which according to the
elementary theory satisfy experimental values of non-isotopic
thermal diffusion factors in (4He, 36A, 4°A) mixtures are the
following:

1/o4 40(exp) = (1.47 £ 0.01) c, + (3.82 # 0.03) ¢, (37.VI)

and

(1.563+0.01) Gy ¥ (3.96: £ 0,03) ¢

€a + (0.0031 + 0,9969 R

A

1/a4'36(exp) (38.VI)

40,4,36’ °a

which for practical purposes is very closely equivalent to
1/a4_36(exp) = (1.53 % 0.01) Cyq * (4.03 = 0.03) c, (39.VI)

Equation (39.VI) is experimentally equivalent to (27.VI) which
shows that the error which is committed, assuming apriori that
l/aé'ss(exp)was linearly dependent on concentrations, is negligible.

Therefore, the inverses of‘non-isotopic thermal diffusion

factors of ternary mixtures (*He, 3%A, *%4) are considered to be
linear on concentrations of Argon and Helium within the magnitude

of experimental errors.

Experimental most probable equations (37,39.VI) and the
observed values of 1/u4'40(exp) and 1/c (exp) are represented
in figures 9.VI and 10.VI, respectively.

According to the theory, the equations determined for 1/14.36(0xp)
and 1/14.4U(exp) should explain the observed experimental data
for the isotopic thermal diffusion factor. Indeed, we have, for
each concentration ratio, CA/C4» the general relationship,

4,36

(40.VI)

= - &

%38, 40 "4, 40 4,36

The error of this difference is, of course, very large compared
to the corresponding value of g6 40°
By means of (37, 39,40.VI) we obtain, approximately,

1/036 40(€XpP) = (38 * 13) ¢, + (73  27) ¢, (41.VI)
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Fig.9.VI

The inverse of the thermal diffusion factor of 4He-qu in
ternary mixtures (4He; BGA. 4OA)-
(€] Experimental data.
Elementary ‘r.e.s.' first approximation.
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The inverse of the thermal diffusion factor of “He-""A in
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(C] Experimental data.
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From the terms which have been disregarded, the most important
one is + 0.5 Cy Cpe practically meaningless. Accordingly, we
have, for ¢y = 1 and cy =1 respectively:

afe) 4o (exp) = 0.014 + 0.005; [y, ,o(exp)], = 0.026 + 0.009
(42.V1)

which can be compared satisfactorily with those of $ 3.3.1
determined from the isotopic experimental thermal diffusion
factor.

3.3.3. Conclusion. In Table 4.VI we summarise the comparison
between the experimental and the most probable values of thermal
diffusion factors for ternary mixtures (4He; 36A, 40A) according
to the elementary theory proposed. The agreement is satisfactory
and all the essential features of thermal diffusion are correct-
ly explained by the theory, namely,

a) 1/a36.40 is linear on concentration of the ‘added’ gas,
Helium. This is theoretically explained as the binary thermal
separation ratios R§2340; R;?gs and Ri?;o are not too different;

b) the isotopic separation ratio, R36.40(exp), is also linear
as stated by the theory;

Table 4.VI
Experimental and most probable values to the thermal diffusion
factors of ternary mixtures (4He: 36A, 4°A)

Concent . %4, 40 %4, 36 %,40” %36, 40
of ‘He %, 36"
Exp. |[M.P.V.| Exp. [M.P.V. =036 40 Exp. a) b)

0, 000 0. 262 0.248| 0.014 |[0.0146 | 0.0144 | 0. 0145
0.100 N 0.279 AN 0.264 | 0.015 | 0.0149 | 0.0150 | 0. 0149
0.300 | 0.323 ] 0.321 | 0.308| 0.305| 0.016 | 0.0153 | 0.0163 | 0.0160
0.500 |0.376 | 0.378 | 0.358 | 0.360( 0.018 | 0.0176 | 0.0179 | 0.0174
0.700 | 0.454 | 0.460 | 0.433 | 0.440| 0.020 | 0.0207 | 0.0198 | 0.0195
0.900 | 0.594 | 0.586 | 0.572| 0.562| 0.024 |0.0222 | 0.0221 | 0.0231
1.000 0.679 0.653| 0.026 SO 0.0236 | 0.0258

M.P.V. most probable values.

a) Assuming 1/« 0(exp) linear on Helium concentration.

36, 4

b) Assuming R 0(exp) linear on Helium concentration.

36,4
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c) the isotopic thermal diffusion factor, aas'qo(exp), increases
with increasing concentration of the ‘added’ gas, because
Helium consists of lighter, smaller and ‘harder’ molecules.
molecules;

d) the inverse of non-isotopic thermal diffusion factors is
linear or at least very closely linear on concentrations of
Argon and Helium as stated by the theory and the corresponding
most probable equations explain satisfactorily the variation of
isotopic thermal diffusion data with concentration of Helium.

S 4. Thermal diffusion with Helium-Neon regarded as ternary
mixtures (4He. 20Ne, 22Ne).

4.1, Experimental data. Natural isotopic abundance of Neon
and Helium is the following:

20ne  90.51 % d4e  99.9999 %
2lne  0.28% SHe 1.3 x107% %
22Ne 9.21 %

Therefore we may consider Helium-Neon mixtures as ternary
mixtures (%He; 20Ne, 22Ne) in which the concentration ratio
of Neon isotopes is maintained constant throughout all the
proportions of Neon and Helium.

Table 5.VI
Experimental thermal diffusion factors for (4He; 2oNe, 22Ne)

Concentr Absolute

of Neon TITG_‘"D_I"“ %20, 22 %4, 20 Og, 22
1.000 |284 - 658 | 0.027, + 0.001,
1.000 |284 - 658 | 0.0267 + 0.0004
0.900 | 284 - 650 | 0.0242 *+ 0.0005
0.800 | 284 - 648 | 0.0230 + 0.0008
0.800 |284 - 673 | 0.024, ¢ 0.0011
0.600 |284 - 658 | 0.0209 + 0.0009 s s
0.400 |284 - 667 | 0 0177 + 0.0010 0.267 + 0.005 | 0.285 + 0.005
0.200 |285 - 661 | 0.0164 + 0.0009 N e
0.100 | 285 - 670 0.0158 t 0.0013 0.332 + 0.004 | 0.348 + 0.005

103



In Table 5.VI (see p. 103) we report experimental thermal
diffusion factors, namely, %90, 22 % 20 and %y 22 As for Argon-
Helium mixtures, non-isotopic observations are given with low
accuracy because of the difficulties of Helium measurements in
our mass spectrometer. Only two values for %4 20 and Uy gp BTE
given which have been obtained by paying careful attention to
Helium measurements.

Notice, as a first remark, that the isotopic thermal diffus-
ion factor decreases with increasing concentration of Helium.

4.2, Comparison of the thermal diffusion factor for Neon
alone and of the thermal diffusion factor for ‘He and 20Ne
with earlier results. Table 6.VI and fig. 11.VI report the
values of aégzzz given by Stier (S1) in studying the temperature
dependence of the thermal diffusion factor of Neon isotopes.
Our values are also given for comparison. The mean temperature,
T,, is defined, as in §‘3.2. by the algebraic mean value of
the absolute temperatures T' and T!!,

From fig. 11.VI it follows that our experimental values are
somewhat smaller, but within reasonable agreement with Stier’s

observations.,

Table 6.VI
The variation of the thermal diffusion factor for
Neon isotopes with temperature

Absolute Mean

Temp. Temp. “53)22 Reference
, LI 12 T, '

90 - 195 132 0.0162 S1

90 - 296 163 0.0187 S1
195 - 296 240 0.0233 S1
195 - 490 309 0. 0254 S1
302 - 645 441 0. 0302 S1
460 - 638 542 0.0318 S1
691 - 819 752 0. 0346 S1
284 - 658 430 0.0277 This paper
284 - 658 430 0.0267 This paper

In Table 7.VI we report experimental data of the thermal diffus-
ion factor for Helium-Neon mixtures of equal concentrations, after
de Troyer, van Itterbeek and van den Berg (T2, 1950); Grew (G8,
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1947); Puschner (P1, 1937); Atkins, Bastick and Ibbs (A1, 1939)
and our value, Oy 200 obtained by extrapolation of experimental
data of Table 5.VI. The earlier results refer to global analyses
of natural Helium and Neon, therefore they would not be exactly
equivalent to our value of %4 20 since the concentration of the
isotope 22Ne is not negligible. Their thermal diffusion factor,
e, Ne* would be in between % 20 and %4 22 and even then
closer to %4 20 our extrapolated value for %y, 22 is also given
in Table 7.VI.

Table 7.VI
Thermal diffusion factor for Helium-Neon mixtures of equal
proportions
Absolute Mean
Temp. Temp. %e. Ne Reference
s 4 T
20 - 293 58 0.242 T2
90 - 293 154 0.330 T2
200 - 600 330 0.316 G8
300 - 400 343 0. 364 P1
288 - 373 325 0.388 Al
284 - 660 420 % 20 = 0. 280 This paper
284 - 660 420 % 93 = 0.299 This paper

The experimental data available seem to confirm an equation
of the form

O4e, Ne ~ (ane.Ne)o (1.4 A/Tr) (43.VI)

where T, is a mean temperature defined by

I I1
L 1 I
Tr = 1 In (T5=T) (44.VI)
R (see equations 61,62.1IV)

In figure 12.VI we give experimental values of aHP'Ne.Tr which
according to (43.V) should be linearly dependent on the mean
temperature, T . Most recent values of the thermal diffusion
factor (de Troyer and Grew) give rise to the equation:
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4,57

= 0.331 - (45.VI)

%He, Ne

Ty

Accordingly, our value of oy, no 8t T, = 430° K should be 0.320
whereas we have obtained

a4.20(exp) = 0. 280; u4.22(exp) = 0,299

4.3. Interpretation of experimental data by the elementary

theory

4.3.1. Isotopic thermal diffusion factor. The treatment of
experimental data is just analogous to that of § 3.3.1. The
values which have been used in elementary equations are the
following:

cfP) = 0.9076

%0 (Assuming natural Neon as consisting
20 22
ng) = 0.0924 of ““Ne and ““Ne only)
Ay = 0.09119 p poise™!
A,y = 0.1665
Ay, = 0.1747
Ay = 0.1673

When molecules are regarded as ‘rigid elastic spheres’ we have:

1/@20'22(res) = 40,80 cy, + 22.24 c, (46.VI)

This equation will be used to determine experimental thermal
separation ratios, Rzo,zz(exp) = “20,22(exp)/“20,22(res)'
Limiting values for the ‘r.e.s.’ isotopic thermal diffusion
factor are the following:
for cy, = 1:

[a20,22(res)]Ne = a;gfzz(res) = 0.0245
(47.VI)

for c = 1:

[oy9. 55(res)], = 0.0450




The limiting value of the quantity 320 22(res) when Ca = 1
is then

[ogg, gp(res)],

(8,4, 55(res)], = = 1.83 (48.VI)

4 (b)

120 22(res)

According to (48.VI), the ‘r.e.s.’ isotopic thermal diffusion
factor, Ggq 99(TES), tncreases with increasing concentration of
Helium.

Let us now consider experimental isotopic data given in Table
5.VI. As a first remark we notice that the isotopic thermal
diffusion factors, %s0, 22 (€XD), decrease in reality with increas-
ing concentration of Helium. As we shall see, such surprising
results can beexplained by the values of R(O 5o and R;béo. R“’)2

In figures 13 and 14.VI we report experlmental values of
1/a 20lzz(exp) and Rzo,zz(exp) versus Helium concentration.

Most probable linear equations are the following:

c

a) l/a20 22(exp) = (8T.5 % 1.4) Cyp + (66.4 * 2. (49.VI)

5) 4

b) R (exp) = (1.07 % 0.05) Cye * (0.25, % 0.04,) C,

20, 22 0

The corresponding limiting values to the thermal diffusion
factor are given by

for ¢y, =1
a) ago’,,(exp) = 0.0270 * 0.0007
(50.VI)
b) oo’ ,,(exp) = 0.026, * 0.001,
forc, =1
a) [oy, ,,(exp)], = 0.0149 + 0.0006
(51.VI)

b) loyy ,p(exp)], = 0.011; £ 0.001,
Notice that the standard errors corresponding to the isotopic
separation ratio, Rzo,zz(exD)' equations (49,50,51b.VI), are
larger than those of the experimental observations given in
Table 5.VI. This result probably means that the linear depend-
ence of Rzo,zz(exp) is not correct.
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As shown by fig.14.VI, the distribution of experimental values,
Rzo,zz(exp)- relative to equation (49b.VI) also seems not to be
a satisfactory one.

The extrapolated value of (50a.VI) for azo'zz(exp), assuming a
linear dependence of 1/a20.22(exp) with concentrations, agrees
well with the direct determinations, namely, a;gfzz(exp) =
= 0.027, + 0.001, and 0.0267 *+ 0.0004.

The binary separation ratio, which corresponds to (50a.VI) is
R;8322 = 1.10 + 0.03, therefore showing that our ‘r.e.s.’ model
is by no means of physical significance but a kind of mathematical
approach which has been assumed in order to give simple ‘r.e.s.’
equations, as we have already pointed out in § 2.1v.

The limiting value, if = ofA20 22(exp), which shows the
influence of addition of Helium to Neon isotopes, is, by means
of (50,51.VI),

a) (4,5 55(exp)], = 0.55  0.04
(52.VI)
b) (454, 55(exp)], = 0.44 £ 0.09

The value b) is probably not correct because the linear depend-
ence of Rzo.zz(exp) seems to be doubtful.

When molecules are regarded as, ‘rigid elastic spheres’, we
have, equation (48.VI), [Azo'zz(res)]4 = 1.83 which has to be
compared with the experimental values (52.VI). The effect of
addition of Helium upon the thermal diffusion factor of Neon
isotopes is therefore quite different from the ‘r.e.s.’ pre-
dictions and the pronounced decrease of “20,22(exp) with in-
creasing Helium concentration, as experimentally observed, could
not be expected a priori.

4.3.2, Non-isotopic thermal diffusion factors. A full treat-
ment similar to that of & 3.3.2 for (*He; 3%a, %%A) cannot be
given because we only have two pairs of observations for non-
isotopic thermal diffusion factors a4'20(exp) and a4'22(exp)
(¢, = 0.600 and Cy = 0.900).

By introducing in (54.V) the values of R4 20(exp) and R4_22(exp)
which correspond to the values of oy 20(exp) and a4'22(exp)
given in Table 5.VI, the values of the binary separation ratios,

Rgbéo and R;béz can be determined by a method of successive
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approximations similar to that described in § 3.3.2. We only
present here the final results.
for ¢, = 0.600:

4

Rq'zo(exp) = 0.862 - 0.015 Rébéo(exp) = 0.86; % 0.016

(53.VI)
Ry gp(exp) = 0.83, + 0.015; RE"),(exp) = 0.79,  0.014
= 0.92 + 0.04 (54.VI)
;b;o<exp)
For c, = 0.900:
¥ i . pib) o
Ry g0(€xp) = 0.87, # 0.01,; R;?),= 0.87, + 0.01,
(55.VI)
, (b) .
R4.22(exp) = 0.825 t 0.01,4; R4 59~ 0.81g ¢ 0. 014
Ry 3 g (exp)
= 0.94 * 0.03 (56.VI)
R{®)o (exp)

As shown by equations (54,56.VI) the ratio R(b’ (eXD)/R(b)O(exp)
may be assumed constant, as we have stated in § 4.3. V, within
the magnitude of experimental errors.

Since the extrapolation for c, = 1 of binary separation ratios
R(°10 and Ribiz is a short one and, furthermore, it may appear,
by means of (53, ..., 56.VI), that the experimental values at
concentrations c, = 0.600 and Cy = 0.900 are consistent together,

we obtain by a linear extrapolation,

R{®)o(exp)], = 0.8T [R{P),(exp)], = 0.82 (57.VI)

within an error of about 2%.

Introducing (57.VI) into (42.V) we can obtain the limiting
value for R,y ,,(exp), when ¢, = 1, as IRzo 20(exp)] = 0,34,
of course given with very large error (about 40%) . Multiplying
this value by [azo‘zz(res)}4, equation (47.VI) we get

[y, atexm)], = 0.015 (58.VI)
which is just equivalent to the value of (5la.VI), obtained from

111




extrapolation of the experimental isotopic thermal diffusion
factor, when Cy = 1, assuming a linear dependence of l/azo.zz(exp)
with concentration. We may then conclude that the observed de-
creasing of “20,22(exp) with increasing Helium concentration is
explained from the non-isotopic behaviour of the thermal diffus-
ion factors, a4.20(exp) and a4’22(exp).

S 5. Mixtures of Hydrogen-Neon regarded as ternary mixtures (H,;
20Ne, 22Ne),

5.1, Experimental data. Isotopic abundance of Deuterium in
natural Hydrogen is 0.0156% only. We may therefore consider
Hydrogen-Neon mixtures as ternary mixtures (Hz; 20Ne. 22Ne).

Our experimental data for thermal diffusion factors are given
in Table 8.VI.

Table 8.VI
Experimental thermal diffusion factors of ternary mixtures
(Hy; 2°Ne, %2Ne)

Concent.| Absolute
Temp. %20, 22 %, 20 %5, 22
of Hy | T' - T!! ' '
0.000 | 286 - 658 | 0.027, + 0.001,
0.000 | 284 - 658 | 0.0267 + 0.0004
0. 250 284 - 657 | 0.0192 = 0,0009
0.400 | 284 - 668 0.0167 - 0.001l s s
0.500 284 - 671 | 0.0160 + 0.0005 | 0.254 + 0.003 |[0.270 £ 0,003
0.500 284 - 668 0.0156 + 0.0014
0.600 284 - 658 | 0.0128 + 0.0009
0.700 | 284 - 661 | 0.0126 + 0.0006
0.800 284 - 653 0.0111 t 0.0012 oo a5t
0. 900 284 - 653 | 0.0105 + 0.0008 |[0.314 + 0.003 |0.324 + 0.003

5.2. Comparison of the thermal diffusion factor for H, and

20Ne with earlier data. Only a few observations have been found
in literature for the thermal diffusion factor oy They are

2
V4

. Ne’

given in Table 9.VI as well as our values for (exp) and

%2, 20
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Table 9.VI

Neon of equal concentrations

Oy 22(exp).Tpmperaturedependencecannotbestudiedsatisfactorily.
Even then our experimental values seem to be rather low.

Experimental thermal diffusion factors for Hydrogen-

Absolute
Temp. O Ne References
- pll 2
20 - 290 0.174
90 - 290 0.280
128 - 288 0. 36
284 - 671 %y 99 = 0.254 This paper
284 - 671 %y 99 = 0.270 This paper

by the elementary theory

(b) . (b).
of Cy5° C35"5 Mg

A
isotopic thermal diffusion factor, %o 22(res),
l/azo'zz(res) = 40.80 c,, + 23.61 c,

which brings about the following limiting values:

for Cre = i §<

lagg, 22 (res)]y, = a58322<res) = 0.0245

forec, = 1
[oyg 55(res)], = 0.0424

and by means of (60,61.VI),

[ogg, 3p(re) ]
(a9 gq(res)]y = ———— =1.78

%30) g3(res)

5.3. Interpretation of experimental data for (H2; 2°Ne, 22Ne)

5.3.1. Isotopic thermal diffusion factor. By using the values
220 Ayes Biven in §4.3.1 and A,
7 poise'l, we obtain the following equation for the

0.09679
‘r.e.s.’

(59.VI)

(60.VI)

(61.VI)

(62.VI)
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Fig. 15.VI

Variation of the inverse of the thermal diffusion factor

for 2oNe-zzNe with addition of Hydrogen,
[0} Experimental data.
Elementary ‘r.e.s.” first approximation.

which shows that the ‘r.e.s.’ thermal diffusion factor, a20'22(res)
tncreases with increasing concentration of Hydrogen.

On the other hand, the experimental thermal diffusion factor
“20,22(ex9) decreases markedly with increasing concentration of
Hydrogen. Infig.15.VIwegive experimental values for 1/a20.22(exp)
versus Hydrogen concentration. The linear dependence appears to
be satisfactory and the most probable equation is

1/090 5(eXP) = (35., # 1.5) cy, + (100 ¢ 7) ¢,  (63.VI)

Limiting values for “20,22(exp) when Cye = 1 and ¢y, = 1 are
respectively,

a$y) 5 (€xp) = 0.0284 + 0.0008 (64.VI)

whereas direct observations give it as 0.0277 - 0.0010 and
0.0267 + 0.0004;
for Co = 1%

[0“20'22(9)(9)]2 = (0.0100 £ 0.0007 (65.VI)
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By means of (64,65.VI) we obtain

[(120. 22(exD)] 2

[Azo.zz(exp)]z = '————?;;—————— = 0.35 £ 0.09 (66.VI)
%20, 22

which shows the pronounced decrease of azo.zz(exp) with increas-
ing concentration of Hydrogen.

A linear dependence of the isotopic separationratio,Rzo'zz(expL
on the concentration of Hydrogen was not observed. Contrary it
was bent.

Considering the decrease of the thermal diffusion factor of
Neon isotopes which has been observed with addition of Helium
(\ 4.3.1), we might also expect a decrease of o, 22(exp) with
increasing concentration of Hydrogen. Indeed, Hydrogen molecules
are appreciably larger than those of Hellum, which brings about
that LAz, 20(res)] = 1.73 whereas for (‘He; 2%Ne, 22Ne) we have
[Azz 2o(res)] = 1.83. Also Hydrogen molecules are ‘softer’ than
those of Helium. Therefore both diameter and ‘softness’ of the
Hydrogen molecule try to decrease the thermal diffusion factor
of Neon isotopes even more than in the case of addition of Helium.

5.3.2. Non-isotopic thermal diffusion factors. Experimental
values of %y 20 (exp) and %y, 22(exp) which are given in Table
8.VI give rise to the follow1ng binary separation ratios:
for ¢, = 0.500:

= .« pid) _
Rz,zo = 0.96, + 0.01,; Rz,zo = 0.965 # 0.01,
(67.VI)
= o on(DY o
R2.22 = 0.91, ¢+ 0.01,; Rz.22 = 0.86, + 0.01,
for ¢ 0.900
£ . pi(b) _
Rz,zo = 0.936 + 0.009; R2_20 = 0.93, % 0.01,
(68.VI)
2 . m(b)
Ry g5 = 0.864 £ 0.009; Ry’5, = 0.855 ¢+ 0.01,
By means of (67,68.VI) we obtain,
(b)
R2, 20
for ¢, = 0.500: =1.12 £ 0.02
(D)

2,22




()

2, 20
for Cy = 0.900: ——— =1.10  0.02
(b)
Rs, 22

Equations (69.VI) show that Ré?;o/Ré?;z can be regarded as a
constant, within the magnitude of experimental errors, as stated
in our theory.

By extrapolation of the above values for Ré?;o and R{P),_ when

5 3, 22
c, =1, we obtain

(R§P)o), = 0.93 and [R{®))], = 0.85 (70.VI)
which give rise to the following limiting value of the isotopic
thermal diffusion factor when ¢, = 1, using a procedure similar
to that given in § 4.3.2:

loyg, 55(exp)], = 0.008 (71.VI)

This value is thus in accordance with that obtained by observ-
ations of the isotopic thermal diffusion factor, equation (55.VI),
namely [o,, 5,(exp)], = 0.0100 + 0.0007.

> 6. Mixtures Argon-Neon regarded as multicomponent mixtures

Analyses of the Argon isotopes 364 and %A as well as of Neon
isotopes 20Ne and 22Ne could be carried out simultaneously in
our mass spectrometer. On the other hand, measurements of 21ne
were obtained with low accuracy, being therefore disregarded.

Neon-Argon mixtures cannot be assumed as quaternary mixtures
(2°Ne. 22Ne; 36A. 4044 because the isotopic abundance of 21Ne
in natural Neon is of the same order of 365 (see $ 3.1 and
S 4.1). For that reason we do not give in this paragraph a full
treatment of experimental data, pointing out only the most
important features experimentally observed.

6.1. Experimental data. Observed values for thermal diffusion
factors are given in Table 10.VI. Notice, as a first remark, that
136'40(exp) increases markedly with increasing Neon concentration
as would be expected, because Argon consists of heavier, larger
and ‘softer’ molecules. Conversely, azo.zz(exp) decreases with
increasing Argon concentration and even changes sign at about
c, = 0.600.
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Fig. 16.VI
Variation of the inverse of the thermal diffusion factor

for 38A-40A with addition of Neon.
(C] Experimental data.
Elementary ‘r.e.s.' first approximation,

By6,40
0.80 N

0.70 ®

0.60 //

0 20 40 60 80 100
% Ne

Fig. 17.VI
Variation of the thermal separation ratio foraeA-qu with
addition of Neon.
X Experimental data.




6.2.1. Isotopic thermal diffusion factors. For ‘rigid elastic
spheres’ we have respectively

/0y gp(res) = 40.80 cy, + 64.99 c,
of0) 55 (res) = 0.0245; [oy, ,,(res)], = 0.0154  (72.VI)

(859, 55(res)], = 0.628

1/a36.40(res) = 38.80 c, + 24.42 ¢y,

a§2340(res) = 0.0257; [a36'40(res)]Ne = 0.0410

(855 4q(Tes)]y, = 1.59

Experimental values of l/azo'zz(exp) and Rzo,zz(exp) are not
linearly dependent on Cne and Cue On the other hand, such linear
dependence is well satisfied for 1/a36.40(exp) and R36'40(exp)
as shown in fig. 16 and 17. Most probable equations are the
following

1/ (exp) = (69., +2..) ¢, + (27., £ 1.5) ¢y, (74.VI)

%36, 40

Ryg. 40(€xp) = (0.55, + 0.02;) ¢, + (0.81 + 0.04) ¢y, (75.VI)

The agreement between these two equations and the experimental
values of e 40(exp), is shown in Table 11.VI.

6.2.2. Non-isotopic thermal diffusion factors. AS shown in fig.
18 ... 21.VI, all the inverses of non-isotopic thermal diffusion
factors do appear to be linearly dependent on Neon and Argon
concentrations. Most probable equations are the following:

l/a20.40(exp) = (4.65 + 0.01) cy, + (9.30 £ 0.07) c,

1/“20,3ﬁ(exp) = (5.59 £ 0.04) ¢y, + (10.7 £ 0.1) c,

1/0y, 36(eXp) = (6.48 + 0.06) cy, + (10.2 £ 0.1) ¢,
1/u22'40(exp) = (5.27 £ 0,04) cy, *+ (8.9; £ 0.1,) ¢,

The agreement between isotopic and non-isotopic thermal diffus-
ion factors is shown in Table 11.VI.
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Table 10.VI
Experimental thermal diffusion factors in natural Neon-Argon mixtures

Concent.| Absolute

of Neon

e

0.0014 0.1139 £ 0, 0009
0.0014 0.1245 # 0.001,
0.0013 0.143, % 0.001,
0.001, 0.1663 £ 0.0008

oo 22 922 22

0.
0.
0.
0.
0.
0.
0.
0.

+ 0.001, 0.1953 t 0.0010
. ¥ 0.001,

+ 0.0004




gl

Table 11.VI
Experimental and most probable values for isotopic thermal diffusion factors,

s P ) I s - Y| i I
435.40(‘ xp) and ;zu.gz(exp), in Neon-Argon mixtures

e g aotexpy | =PV W:ENs *20,407%20, 36 |%22,407%22,367 | oy po(exp) | %20,407%22,40% %20, 36" %2, 36
a) b) = 36,40 = %6, 40 = %0, 22 =\%20naz
0,000 0.0147 0,0145 0.0142 0,0142 0, 0140 - 0.0042 - 0.0045
0.000 0.0142 idem idem idem idem idem idem
0,000 0.0149 idem idem idem idem F idem idem
0. 100 0.0148 ‘ 0.0154 0.149 0.0152 0. 0150 - 0.0019 - 0.0034 - 0.0036
|
| |
0. 300 0.0185 0.0177 | 0.0183 0.0176 0.0176 - 0.0043 - 0.0010 - 0.0010
|
0.500 0.0199 0.0207 0.0216 0.0208 0.0210 + 0,0048 + 0,0027 + 0,0029
0.700 0.0257 0.0251 0.0256 0. 0252 0. 0254 + 0.0075 + 0.0086 + 0.0088
0. 900 0.0315 0.0317 0. 0304 0,0318 0.0316 + 0.0192 + 0.0183 + 0.0184
1. 000 < 0.0365 0.0333 0.0364 0.0356 + 0.0277 + 0.0255 + 0.0257
1.000 idem idem idem idem + 0.0267 idem idem
M.P.V. Most probable value
a) assuming lvf").m 40(€%D) linearly dependent on concentrations of Neon and Argon
b) ;

assuming R35 40(exp) linearly dependent on concentrations of Neon and Argon
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5} Experimental data.
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The inverse of the thermal diffusion factor for 22Ne-40A
in Neon-Argon mixtures.

(0] Experimental data,

~—— Elementary ‘r.e.s.' first approximation.




Fig., 20.VI

The inverse of the thermal diffusion factor for 22Ne— 36A
in Neon~Argon mixtures.
® Experimental data.
Elementary ‘r.e.s.,’ first approximation.
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The inverse of the thermal diffusion factor for Ne=""A
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© Experimental data.
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6.3. Comparison of the thermal diffusion factor for 2°Ne and
40A with earlier results. In Table 12.VI we give experimental
values of the thermal diffusion factor, aNe.A(exp), after Grew,
for mixtures of equal concentrations of Neon and Argon. Our value
for o 40(exp), which is also given in the Table, is compar-

20,
atively smaller than Grew’s observations.

Table 12.VI
Variation with temperature of the thermal
diffusion factor for Neon-Argon mixtures of
equal concentrations

Mean Temp. One. A Reference
T L]
r
185 0.148 G8
293 0.174 G8
369 0.19 G8
465 0.191 G8
420 %90 40 = 0. 144 This paper

GENERAL CONCLUSIONS

In spite of the elementary character of our treatment and the
approximations which have been introduced in order to obtain
simple equations, the most important features of thermal and
pressure diffusion are satisfactorily explained and the agree-
ment with experiments is reasonable.

One of the most important assumptions which has been considered
for the development of the theory, is expressed by the relation-
ship 1; = (1 + ai)li (ﬁ 2.IV) where a; was regarded: 1) as a
constant, 2) as predominantly dependent on the ‘hardness’ of
molecular interaction (i,i) which is, indeed, a physical approach
only, because the quantities a; will probably depend on all the
molecular interactions of the types (i,i), (i,j), ..., (i,s).

The constancy of a; may be considered a satisfactory approach
since the linear dependence of the inverse of the thermal diffus-
ion factor appears to be confirmed by experiments and, further-
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more, the ratio of limiting values, (b)(exp)] /[cxi (exp)]’, is
usually close to the correspondlng one given by our ‘r.e.s.
mod el (a .2 and Table 10.1IV).

The assumption that a; depends predominantly on the ‘hardness’
of interactions of kind (i,i), cannot readily be confirmed by
experiments because it would first be necessary to obtain a
satisfactory equation for the r.e.s. thermal diffusion factor.
Qur ‘r.e.s.’ model (a; = 0) is not sufficient for this purpose
as can be inferred from the discussion of § 5. Iv. Indeed, our ‘r.e.s’
model is correct only for Lorentzian mixtures (R;(elem) = 1,

.1.IV). For isotopic mixtures (§ 5.2.1V) ay is definitely a
negatlve value of the order of - 0.8 for r.e.s. molecules. Also
it depends on diameter ratio as shown by $ 5.3.IV. As a general
conclusion we may say that a, will usually depend on mass and
diameter ratios, in case of the r.e.s. model, in such a way that
a, = 0 for Lorentzian mixtures.

For the reasons given above we do not present any value for a;
and only qualitative discussions have been given for this quantity.

The increase of the isotopic thermal diffusion factor,|136.40(exp).
which has been observed with increasing concentration of Helium
and Neon in Argon-Helium and Argon-Neon mixtures respectively,
was expected a priori, since Helium and Neon consist of lighter,
smaller and ‘harder’ molecules. For the same reason, decreasing
values of %50, 22(Pxp) with increasing concentration of Argon
could be foreseen as well.

On the other hand, the decrease observed for the thermal diffus-
ion factor of Neon isotopes with increasing concentration of
Helium and Hydrogen was quite a surprise. In addition to our
experiments, it would be very interesting to carry out measure-
ments for H, D and for 3He-%*He with addition of Neon. The
isotopic thermal diffusion factors for H,-D, and ®He-%*He should
increase with increasing concentration of Neon

Mixtures of two isotopes and an added gas realize the simplest
ternary non-isotopic mixtures. They provide quite a new field of
thermal diffusion observations which, indeed, do not involve
any additional experimental difficulties and may be of great
theoretical importance. The variation of the isotopic thermal
diffusion factor with addition of a third gas is by no means
negligible and seems to be strongly dependent on the molecular
interactions (1,B) and (2,B).
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SUMMARY

Following the lines of a free path treatment of diffusion a
general equation is presented which takes into account con-
centration, thermal and pressure diffusion. Two kinds of mean
free path have been considered: 1) one, 11' is the mean free path
for number density transfer which is the only one appearing in
Meyer’s equation of concentration diffusion; 2) another one, 1;,
is related to transfer of thermal speed, only appearing in the
equations for thermal diffusion. We assume that 1; = (1 + ai)li,
where a; is regarded as a constant predominantly depending on
the ‘hardness’ of molecular interactions (i,i). For the sake of
simplicity of equations for the thermal diffusion factor, we have
considered for ‘rigid elastic spheres’ thata, = 0. For Maxwellian
molecules a; = 1.

We propose an approximate equation for 1i corrected for persist-
ence of velocities. The inverse of the corresponding thermal
diffusion factor of a binary mixture is at a first approximation
linearly dependent on concentrations (except when a change of
sign of the thermal diffusion factor with concentrations may
occur). Such linear dependence has been confirmed by experiments
and is also observed in general cases for Chapman's first ap-
proximation to the thermal diffusion factor for rigid elastic
sphere model.

Multicomponent mixtures have also been considered in our treat-
ment. Our equations can easily be handled in practice. In partic-
ular, we have studied ternary mixtures of two isotopes (1 and 2)
with fixed concentration ratio, to which a third gas, B, has
been.added. It is shown that the isotopic thermal diffusion factor
%o should usually increase by addition of a gas consisting of
lighter, smaller and ‘harder’ molecules. The isotopic thermal
separation ratio, R,,, (defined according to our ‘r.e.s.’ model)
and the inverses of non-isotopic thermal diffusion factors (&,
and Ogp) are linearly dependent on concentration Cy» at a first
approximation. The inverse of the isotopic thermal diffusion
factor (oy,) is linearly dependent on c, as well, if the force
fields are not too different.

Observations have been carried out with the mixtures (4He;
364, 404y, (%He; 2ONe, 22Ne), (H,; 2°Ne, ??Ne) and also with
Neon-Argon regarded as amulticomponent mixture. Experimental data
are given in the Tables of pages 89, 103, 112 and 120 respectively.
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The linear dependence predicted by the theory was observed for
all the inverses of non-isotopic thermal diffusion factors and
for the inverse of the isotopic thermal diffusion factor as well,
except for 2Ne-22Ne in Neon-Argon mixtures. The linear depend-
ence of the isotopic thermal separation ratio, R was not so
well confirmed by experiments.

The thermal diffusion factor of Argon isotopes 40y increases
in Helium-Argon and Neon-Argon mixtures, with increasing con-
centration of Helium and Neon, as was expected., Marked decrease
was observed for the thermal diffusion factor of 2°Ne-22Ne with
increasing concentrations of Helium, Hydrogen and Argon, and
moreover a change of sign was observed for azo'zz(exp) in Neon-
Argon mixtures.

12’

36,

SAMENVATTING

Met behulp van een vrije-weglengte-methode is een algemene
diffusievergelijking opgesteld, die rekening houdt met diffusie
tengevolge van een concentratie-, een temperatuur- en een druk-
gradient. Hierbij zijn twee verschillende vrije weglengten in-
gevoerd, nl.: 1) 11' de gemiddelde vrije weglengte voor ‘number
density transfer’, welke de enige is die voorkomt in de verge-
lijking voor concentratiediffusie volgens Meyer; 2) 1;, de ge-
middelde vrije weglengte voor ‘thermal speed transfer’, welke
alleen voorkomt in de vergelijking voor thermodiffusie. Aange-
nomen is dat 1; = (1 * ai)li, waarin a; beschouwd wordt als een
constante, die afhangt van het krachtenveld om de moleculen i.
om de vergelijkingen voor de thermodiffusiefactor te vereenvou-
digen is voor harde elastische bollen a; = 0 gesteld; voor
‘Maxwellse’ moleculen is a; = 1.

Een benaderde uitdrukking voor li is opgesteld, die ‘persist-
ence of velocities’ in aanmerking neemt. Deze uitdrukking is
eenvoudiger hanteerbaar dan de gebruikelijke en wijkt minder dan
15% van deze af tussen een massaverhouding gelijk aan 0 en on-
eindig. Het omgekeerde van de thermodiffusiefactor o van een
binair mengsel die met behulp van deze 11 wordt afgeleid is in
eerste benadering recht evenredig met de concentratie (behalve
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in gevallen waarin o over het concentratiegebied van teken om-
keert). Dit lineaire verband is bevestigd door de experimenten
en blijkt ook een eigenschap te zijn van Chapman’s vergelijking
voor de eerste benadering van de thermodiffusiefactor van harde
elastische bollen.

Meercomponentensystemen zijn eveneens beschouwd en wel in het
bijzonder mengsels van twee isotopen (Al en A2) in een vaste
concentratieverhouding, waaraan een derde gas (B) wordt toege-
voegd. De afgeleide vergelijking voor de thermodif fusiefactor is
eenvoudig van vorm en kan gemakkelijk toegepast worden voor bere-
keningen. Het blijkt dat de thermodiffusiefactor a,, voor de
isotopen in het algemeen toeneemt bij toevoeging van een gas dat
bestaat uit lichtere, kleinere of ‘hardere’ moleculen. De thermo-
diffusiescheidingsfactor R,, voor de isotopen en de reciproken
van de niet-isotope-thermodiffusiefactoren (o, en aza) zijn in
eerste benadering recht evenredig met de concentratie cy van
het toegevoegde gas.

Het omgekeerde van de thermodiffusiefactor o,, van de isotopen
is eveneens recht evenredig met cg als de krachtenvelden om de
twee soorten moleculen ongeveer gelijk zijn.

Thermodiffusiefactoren zijn gemeten van de mengsels (4He;
404y, (%He; *Ne, %2Ne), (H,: 20Ne, 22Ne) en (2ONe, %%Ne;
404y als functie van de concentratie, tussen 10 en 400° C. De
experimentele uitkomsten zijn ondergebracht in de tabellen op
pag. 89, 103, 112 en 120.

De lineaire afhankelijkheid van 1/c van de concentratie, die
de theorie voorspelt, werd gevonden voor alle niet-isotope- en
voor de isotope thermodiffusiefactoren met uitzondering vandie
voor 2%Ne-22Ne in neon-argon mengsels.

Het lineaire verband tussen R,, en Cg bleek niet in alle geval-
len te bestaan.

Het blijkt dat de thermodiffusiefactor van 365-404 jn helium-
argon en neon-argon mengsels toeneemt met toenemende concentra-
tie van He resp. Ne, zoals theoretisch verwacht werd. De experi-
mentele thermodiffusiefactor van 20Ne-22Ne peemt sterk af met
toenemende concentratie van argon doch ook met die van helium
en waterstof. In neon-argon mengsels keert %50, 22 zelfs van teken
om bij 60% A.
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SUMARIO

Baseando-nos no conceito do livre precurso médio das moléculas,
apresentamos uma equag¢do generalizada da difus3o gasosa em que
se interpretam as diffusOes de concentracio, de pressao e termo-
difus#o. Dois tipos de livres precursos médios sdo considerados:
1) um, 1,, é o livre precurso médio para transferéncia da den-
sidade molecular, que aparece na conhecida férmula de Meyer para
a difusfo de concentragdo; 2) outro, 1;, estd relacionado com a
transferéncia dos mddulos das velocidades térmicas e aparece nas
férmulas para a termodifusao agora propostas. Os dois livres
precursosmedlosforam equac ionados pela exprassao 1 = (1 +a )1
onde ay ¢ considerado como uma constante, dependente dos campos
de forgas moleculares. Quando as moléculas sio consideradas como
‘esferas rigidas e perfeitamente eldsticas’ assumimos a; = 0.
Para gases maxwellianos o fendmeno da termodifusio nio se veri-
fica e ai = 1.

PropOe-se uma equac¢fo aproximada para 1 corrigida para o
fendémeno da persiténcia das velocidades termlcas As equacgdes
correspondentes mostram que o inverso do factor de termodifusfo
para misturas bindrias é usualmente linear nas concentragoes
molares dos componentes (excepto quando possa teoricamente ocor-
rer uma varia¢do de sinal com as concentragcdes para o factor de
termodifus8o). Esta dependéncia linear foi experimentalmente con-
firmada e igualmenta se observa, em casos gerais, para a primeira
aproxima¢do do factor de termodifusfo segundo Chapman e Cowling.

Misturas complexas foram também estudadas, com especial enfase
para misturas constituidas por dois isdtopos, 1 e 2, (com razio
de concentragdo fixa) e um terceiro gas B. 0 factor de termo-
difusfo isotopica (e;,) usualmenta aumenta com a adigdo dum
terceiro gas constituido por moléculas mais leves, menores e
rodeadas de campos de forga menos intensos. A razio de separagfo
térmica isotépica, R,, (definida da acordo com o modelo de
‘esferas rigidas’' proposto) e os inversos dos factores nfio iso-
topicos de termodifusfo (x5 © aZB) sao linearmente dependentes
na concentragdio, c,, do gas adicionado & mistura isotdpica (1,2),
em primeira aproxima¢fo. O inverso do factor de termodifusio
isotdpica (0y5) é igualmente linear em . Se os campos de forcas
moleculares dos tipos (1,2), (1,B) e (2,B) nfo forem marcadamente
diferentes.

Realizaram-se experiéncias com as seguintes misturas:
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(*He; %A, %0a), (*He; *ONe, %2Ne), (H, 2°Ne, 2%Ne) e igualmente
com misturas Neon-Argon consideradas como complexas. Os resultados
experimentais sfo dados nas paginas 89, 103, 112 e 120, respec-
tivamente.

A dependéncia linear com a concentragio, teoricamente prevista
para os factores isotépicos e nfio isotdpicos de termodifus?o,
foi experimentalmente observada, exceptopara2°Ne-22Neemuusturas
de Neon e Argon. A dependéncia linear da razfio de separagio
isotépica, R,,, apresenta maior nimero de excepgoes.

0 factor de termodifus3o dos isétopos de Argon, 3%a e %04,
aumenta nas misturas Helio-Argon e Neon-Argon, com a concentragao
de Hélio e Neon, como era previsivel. Acentuada diminui¢#Zo com
crescentes concentragtes de Hélio, Hidrogénio e Argon, foi obser-
vada para o factor de termodifus8o dos isétopos de Neon e uma
inversfo de sinal foi notada para este factor em misturas Neon-

Argon.




PROPOSITIONS

Stier’s experiments on the temperature variation of thermal
diffusion factors of Argon and Neon isotopes can be represented
satisfactorily by using the correct mean temperature in the
equations Ry (exp) = a ln (T/b).
Stier, L.G.; Phys.Rev., 62, 548 (1942).
Davenport, A.N. and Winter, E.R.S.; Trans.Faraday Soc.,
47, 1160 (1951)

The method for determining the range of B-particles as proposed
by Harley and Hallden may only be applied to particular geometric
counting conditions.

Harley, J.H. and Hallden, W.; Nucleonics, 13, 1, 32 (1955).

Furry’s criticismof mean free path theory of diffusion is contra-
dictory in itself.
Furry, W.H.; Amer.J.Phys., 16, 63 (1948).

The result of Cacciapuoti’s theory of thermal diffusion can be
applied to isotopic mixtures only, although he treats this
subject in a general way.

Cacciapuoti, B.N.; Nuovo Cimento, (IX), 1, 126 (1943).

w

The use of soft glass instead of pyrex-glass should be preferred
for the storage and maintenance of radon at least for activities
higher than 0.5 Curie.
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6

It is doubtful whether Whalley and Winter’s assumption about 1;

being the mean free path for momentum transfer is correct.

This thesis Chapters II and III.

Whalley, E. and Winter, E.R.S.; Trans.Faraday Soc., 46,
517 (1950).

It is of theoretical interest to identify, in our general equat-
ions (26.1I) and (9.V), the mean free path 11 with Stefan-Maxwell’s
one and 1; with the common Maxwell mean free path.

This thesis Chapters II and V.

The discrepancy between the charge exchange cross-sections,
determined by Keene and by Stedeford can be explained from an
incorrect interaction path length.

It is advisable to use stabilised stainless steel for ultra high
vacuum systems.

10

There are indications that impulse transfer in crystals results
in focussing of impulse momentum inside the crystal in closed
packed directions.

11

The geographic situation of the Netherlands and Portugal may
somehow give a partial understanding of the interesting para-
llelism which we find between several Dutch and Portuguese
characters.












