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K ] l B) - f c f i W *  -

quantity related to the ‘hardness’ of
the gas i (eq. 14.IV).

numerical factor which depends on the
intermolecular force (eq. 23.III),
for a gas A consisting of two isotopes,
1 and 2.
if the gas consists of several isotopes
the coefficient of viscosity for each
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KP1

molar concentration of the gas A. If the
gas consists of two isotopes of the
kinds 1 and 2, then cA = Cj + c,.

s
molar concentration 2 c. = 1.

k=i K
molar concentrations at absolute temper­
atures T11 and T*.
molar concentration of the gas i in a
binary mixture (i,k).
molar concentration ratios at absolute
temperatures T 11 and T1.
Meyer’s coefficient of concentration
diffusion in a binary mixture,
coefficient of self-diffusion.
first approximation for Di:(.
first approximation for Dj,.
force acting between molecules of kinds
i and j.
Boltzmann’s constant,
force constants.
general notation for the pressure diffus­
ion ratio of the gas i.
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Kpi(Chap); [Kpi(Chap)]1 Chapman-Enskog’ s pressure diffusion
ratio.

Kpi(elem); [Kpi(elem)]1 elementary pressure diffusion factor.
Only used for comparison with Chapman-
Enskog’s theory.

KTi general notation for the thermal diffus­
ion ratio of the gas i.

KTi(Chap); [K^CChap)^ thermal diffusion ratio of the gas i
given by Chapman-Enskog’s theory.

KTi(elem); LKTi(elem)]1 thermal diffusion ratio, as given by our
treatment, for comparison with Chapman-
Enskog’s theory only.

1.i mean free path for number density trans­
fer.

n mean free path related to thermal diffus­
ion. In our treatment it is called mean
free path for 'mean thermal speed’ trans­
fer.
mean free path for momentum transfer.

M 1 ! Maxwell’s mean free path.
Maxwell’s mean free path for number dens­
ity transfer corrected for ‘persistence
of velocities’.

plj 1 first approximation for pli( eq. (28 ,
30.III).

1P A i Maxwell’s mean free path for momentum
transfer corrected for ‘persistence of
velocities’. (Eq. 17.Ill), given by Jeans
and Whalley and Winter.

m i molecular mass.
Mu = mi/(mi + m,);; Mj.t = + mp.

n = a nk.
k =  1 K

n i number density of the gas i (molecular
density).

p

(cl/cj)I1
pressure.

separation factor achieved by thermalq ij
( C j / C j ) X diffusion for the gases i and j, in this

succession.
Q t ; QJ: Qij see equations (17.IV) for our elementary

theory.
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T
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theoretical thermal separation ratio
defined by elementary thermal diffusion
factors.

experimental thermal separation ratio,
always referred to our elementary first
approximation to the thermal diffusion
factor for 'rigid elastic spheres’.
limiting value for Rj, as ck = 1 . Mostly
used in multicomponent mixtures,
thermal separation ratio of gases i and
j in a binary mixture (i,j). Only used
in the theory of multicomponent mix­
tures.
limiting value of RjJ* as c{b) = 1.
Mostly used in multicomponent mixtures.

experimental separation ratio of gases
i and j, always referred to Chapman-
Cowling's first approximation for the
thermal diffusion factor for rigid elastic
spheres.

theoretical thermal separation ratio of
our elementary treatment referred to
Chapman-Cowling’s first approximation,
see equation (53.V).
see equation (18.IV) for our elementary
theory.
separation achieved by thermal diffus­
ion for the gas i.
absolute temperature,
absolute temperatures at respectively
the hot and the cold part of a thermal
diffusion apparatus,
thermal speed,
mean thermal speed,
thermal velocity,
flux velocity.
velocity of mutual diffusion for gases
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root-mean square of thermal velocities
(square root of the mean square of thermal
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CHAPTER I

INTRODUCTORY SURVEY ON THERMAL DIFFUSION

§ 1. Introduction

From the exact theory of transport phenomena in gases, diffusion
should arise because of non-homogeneity of composition, temperature
and pressure. For example, in a binary mixture with uniform
temperature and pressure but non-uniform concentration, the com­
ponents move in opposite directions, each down its concentration
gradient. Diffusion originated in this way is called ordinary or
concentratidn diffusion.

If in a mixture, initially with uniform concentrations and
pressure, a temperature gradient is set up, a relative motion of
the components may occur leading to the development of concentrat­
ion gradients. This type of diffusion is called thermal diffusion.
Since the concentration gradients originated by thermal diffus­

ion in turn cause concentration diffusion, a steady state may
exist which balances these two processes. Thermal diffusion thus
gives rise to a partial separation of the components of the
initially uniform mixture.
According to Chapman (Cl) the general equation of diffusion

in a binary mixture contains a term representing diffusion due
to a pressure gradient. Diffusion arising from this way is called
pressure diffusion. Pressure diffusion, however, has been studied
little because of the difficulties which experimental work gives
rise to.

Thermal diffusion was first discovered experimentally in liquids
by Ludwig and more fully investigated by Soret (1879-81). Soret
filled a straight vertical tube with various salt solutions and
set up a temperature gradient in it by heating the upper part and
cooling the lower. After about fifty days the solute was more
concentrated in the lower, cooler part than in the other.

In contrast, thermal diffusion in gases was first discovered
theoretically by Enskog (E1.E2.E3) and independently by Chapman
(C2,C3,C4,C5). Experimental confirmation was first given by
Chapman and Dootson (C6). In their experiments two bulbs were
connected by a tube and the system was filled with a mixture of
Hydrogen and Carbon Dioxide or Hydrogen and Sulfur Dioxide.
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ftie bulb was heated to about 200° C. and the other was at room
temperature. After some hours the Hydrogen content of the mixture
in the hot bulb was enriched by two or three per cent, relative­
ly to the cold bulb.

In 1939 Clusius and Dickel (C7) proposed th e ir famous thermal
diffusion column and showed how the small elementary effect could
be increased by tremendous factors in a very easy way. In short,
the column was a v e rtica l glass tube along the axis of which
there was a nichrome wire which was heated e le c tr ic a lly . The
horizontal temperature gradient set up in the mixture produces
an elementary thermal diffusion separation, a t any instant, in
the gases within the glass wall and the hot wire; a continuous
convective flow of the gases, up the hotter surface and down the
cooler, changes, a t any instan t, the concentration gradients
established by the former process. Such a convective flow tends,
therefore, to reduce the concentration gradients f i r s t  formed.
For th is reason another elementary thermal diffusion separation
will follow between the components of the mixture; and so forth.

As a consequence of those two processes the column provides a
strong separation between the components of the mixture, one
concentrating a t the upper part and the other at the lower end
of the column.

By this way Clusius and Dickel could separate, almost complete­
ly, f i r s t  the isotopes of Chlorine and subsequently those of
several other elements, showing the practical interest of thermal
diffusion.

§ 2. Thermal d iffu s ion  and molecular in terac tions

One important feature of the exact theory of thermal diffusion
is that th is  transport phenomenon should be strongly dependent
on the forces acting between the molecules in collision, provid­
ing one of the best means for investigating these forces. The
most important molecular models which have been treated so far
are the following:

1 - R i g i d  e l a s t i c  s phe r e  model  (Cl,G3).This is  the simplest
model. The molecules are regarded as ‘b i l l ia r d - b a l l s ’ with
diameters a. The forces acting between like and unlike molecules
in collision are equal to zero except at the instant of collision
when they become infinitely  large.

2



The p ra c t ic a l  in te r e s t  of th is  model i s  ra th e r  sm all because
num erical p re d ic tio n s  are w ell f a r  from experim ental d a ta  of
thermal d iffu sio n .

2 - The in v e rs e  pover  r e p u l s i o n  mo de l .  In th is  model the mol­
ecules are regarded as cen ters  of rep u ls iv e  fo rces , p. which
vary as the -v ^  power of the mutual d istan ce , r:

where kiJ and j are the force constants.
According to  the theory, the c o e ff ic ie n t  of v isc o s ity  should

vary with temperature as

l  2

which provides a way to  determine the fo rce index v. of a pure
gas r e la t iv e  to  c o ll is io n s  of lik e  m olecules. Usually a gas is
ca lled  'hard* i f  is  large and 's o f t ’ i f  vt i s  small.

The c o e f f ic ie n t  of d iffu sio n  should vary w ith tem perature as

3 + 2

t J  VW*1 (3.1)

where vt j  is  the force index fo r c o ll is io n s  of unlike molecules.
Thermal d iffu sio n  e ffe c t is  dependent on the forces acting be­

tween l ik e  and u n lik e  m olecules but i t s  magnitude is  mostly
determined by c o l l is io n s  of the type ( i , j )  being roughly pro­
portional to

vij-5  (4.1)

T herefore  the  magnitude of the  therm al d i f fu s io n  e f f e c t  is
strong ly  dependent on the ‘hardness’ of m olecular in te rac tio n s .
I f  molecules repel each other as the f i f t h  power of the distance
no therm al d iffu s io n  separation  occurs. This is  the well known
case of ‘Maxwellian’ gases to which the c o e ff ic ie n t of v iscosity
should vary w ith tem perature as T and the  c o e f f ic ie n t  of con­
cen tra tion  d iffu s io n  as T2.

3



The rigid elastic sphere model may be considered as a particular
case of the inverse power repulsion model assuming that the
force indices vt, Vj and vtJ for collisions of the types (i,i),
(j.j) and (i-,j) are all equal to infinity. Therefore, the co­
efficients of viscosity of gases i and j theoretically vary with
temperature as T 1/2 and the coefficient of concentration diffus­
ion as t 3/2. The ratio of the coefficient of thermal diffusion,

\ '
as given by the inverse power repulsion model, to the correspond­
ing value of the rigid elastic sphere model is roughly equal to
(4.1). For most natural gases the force index viJ is of the
order of 5 to 15. Therefore marked differences occur between
theoretical predictions of thermal diffusion according to both
models.

Though giving a better agreement with experiments, the inverse
power repulsion model is not adequate to explain thermal diffus­
ion data, particularly the variation usually observed with temper­
ature, which according to this model should be mostly expressed
by the factor (4.1) which theoretically should be regarded as
a constant. However, rough predictions may be obtained consider­
ing that the force indices change with temperature. Usually the
values of and Vj at any temperature are estimated from the
variation of the coefficients of viscosity of the gases with
temperature and a mean value for is chosen. Conversely, if
experimental thermal diffusion data are available, an ‘averaged
force index’ v1:) is obtained assuming that temperature variation
is mostly expressed by the factor (4.1).

3 - The Lennard-Jones model (C1,G3,H8). In this model t"he inter-
molecular forces are assumed to be simultaneously repulsive and
attractive:

where and refer to the repulsive force, and kjj and vfj
to the attractive force.

Sutherland’s model which represents a molecule as a rigid
sphere of diameter a surrounded by an attractive force field, can
be regarded as a special case of Lennard-Jones model.

Rather few specialisations to particular values of the force
constants appearing into equation (5.1) have been done. This
part of theoretical development presents, however, many mathemat­
ical difficulties. The best studied case is the so-called 13*7

4



model for the force indices vi;) and v'j respectively. It provides
rather good agreement with experiments even in such a sensitive
process as thermal diffusion, in magnitude as well as temperature
dependence, for a large number of observations which have been
reported.
Unfortunately the Lennard-Jones model involves high mathematical

complexity and it has not yet sufficiently been worked out. A few
other specialisations have been proposed, viz. the 9-6 model,
but they do not cover experimental results so well.

4 * As we have already referred, thermal diffusion was first
theoretically discovered by Enskog and independently by Chapman.
The works of these authors were based on classical mechanics.
They have been treated so far in binary mixtures according to the
models given above. In 1939 Hellund and Uehling (HI) extended
Chapman-Enskog’s theory taking into account quantum corrections.
Modifications required by quantum theory are, however, mainly
important at low temperatures in gases consisting of light
molecules.

Exact theories of transport phenomena in complex mixtures have
been presented by Hellund (H2) and Curtiss and Hirschfelder (C8),
the former taking into account quantum corrections and the latter
as an extension of Chapman’s theory. Both involve high mathemat­
ical complexity.

Only a few observations have been reported for complex mix­
tures.

§ 3. Elementary theories of thermal diffusion

Several attempts have been made to give an explanation of
thermal diffusion by means of elementary considerations as,
for example, similar to those of a free path treatment of con­
centration diffusion, viscosity or conduction of heat.

In 1939 Gillespie (G9) showed that the heavier component of
a binary mixture should diffuse down the temperature gradient.
It is usually in accordance with Chapman-Enskog's exact theory.
However, the author assumes a very restrictive hypothesis con­
sidering that all kinds of molecules of the mixture have the
same free path.

By means of an interesting explanation Frankel (FI) could
show, in agreement with the exact theory, that thermal diffus­
ion should not occur between maxwellian molecules, i.e. molecules

5



which repel each other inversely as the fifth power of their
mutual distances. Following the way applied by Frankel, Furry
(F2) presented in 1948 another approximate theory sacrifying,
however, the elementary character of the treatment to a large
extent.

The most satisfactory of the proposed elementary theories is
that of Fürth (F3). Indeed, it can explain, at least qualitative­
ly, all the essential features of thermal diffusion and just
follows the general lines of a free path treatment of diffusion.
A general equation of diffusion should have three terms: one

related to concentration diffusion which has been known since
long ago, another related to thermal diffusion and another one
to pressure diffusion. Fürth's theory only took into account
concentration and thermal diffusion. Nevertheless an easy general­
isation can also explain pressure diffusion.

In short, Fürth considered two kinds of mean free paths: one,
lj, being the mean distance over which the molecules of kind i
should carry the attribute of the number density (molecular
density), n.; and another one, 1^, being the mean distance to
carry the attribute of the root-mean square of the thermal
velocities, v t (square root of the mean square of thermal
velocities). The root-mean square of thermal velocities was
identified to the mean thermal speed, uif which must be regarded
as an approach, for we have, in general, v i = 1.086 ui. It is
assumed that Maxwell’s distribution law of thermal velocities
is appropriated to the local temperature and density. Both n^ and
vt were supposed to be developed in power series in the vicinity
of any point P inside the gas mixture.

The ‘hardness* of molecular interactions was expressed by the
ratios of mean free paths, lj/l1 and lj/1., which Fürth assumed
to be equal.

In 1949 Whalley and Winter (Wl) worked out Fürth’s theory extend­
ing it to complex mixtures of molecules behaving as rigid elastic
spheres. Their general equation of diffusion contains already a
term referring to pressure diffusion.

At least for binary mixtures, theoretical values agree rather
well with those of the exact rigid elastic sphere model. However,
the practical interest of Whalley and Winter’s theory is small,
indeed, because numerical computations are generally just as
laborious as those of the exact Chapman-Enskog theory. Also, no
reference is made to ‘softer’ molecular interactions. This is an
important lack of Whalley and Winter’s treatment because it is
a well established feature that thermal diffusion is strong-

6



ly dependent on the force fie ld s  surrounding the molecules.
The theory now proposed in th is paper is  sim ilar to those of

Fiirth, and Whalley and Winter. I t  is, however, more general and
i t  has been su ffic ie n tly  worked out in binary as well as in
complex mixtures, for thermal and pressure diffusion.

Two kinds of mean free paths have been considered: one, 1,, for
number density transfer, and another one, l ! ,  for ‘mean thernjal
speed transfer’ , which are related by

1[ * ( l+at ) (6.1)

where aA ce rta in ly  depends on the force laws acting between
collid ing molecules: For the sake of sim plicity , probably not
reflecting the real situation, we assumed that a, mostly depends
on the force fie ld  surrounding the molecules of kind i.

We also use approximate formulae to the mean free path, 1,,
obtained through the known mean free path for number density
transfer corrected for ‘persistence of ve locities’ . The resu lt­
ing equations for thermal and pressure diffusion are then very
simple to handle in binary as well as in multicomponent mixtures.
This should be a ch arac te ris tic  of any elementary treatment.
Our theory shows several unknown characteristics of thermal and
pressure diffusion, namely that the inverse of the thermal diffus­
ion factor - a quantity frequently used in experiments - should
be linearly  dependent on concentrations, at a f i r s t  approximat­
ion, at least i f  molecular masses and diameters increase simultaneous­
ly, or i f  the mass ra tio  is not too close to unity when nij > mt
but a, < a t . This conclusion agrees closely with experience and
Chapman-Enskog’ s theory.
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CHAPTER II

A GENERAL EQUATION OF DIFFUSION BY A FREE PATH THEORY

§ 1. Remarks on free path theories (Jl)

It is well known that the essential hypotheses of free path
theories are the following: (l) Maxwell’s law is locally applied
to the distribution of velocities, at a first approximation;
(2) the molecules may be regarded as transporters of their at­
tributes of quality (transfer of molecules themselves), momentum
and energy over small distances, the free paths.

Transfer of quality is related to diffusion; transfer of
momentum is related to viscosity, and of energy to conduction
of heat.

It is also considered that each attribute only slightly changes
within a distance of a free path and it may thus be developed
into a power series.
The simplest treatment assumes that the mean free paths for

transfer of number density, mean momentum and mean energy are
all equal to Maxwell’s mean free path. For more elaborate theories
different mean free paths are considered for each attribute
transfer, due to several corrections which have been proposed,
leading indeed to better agreement with exact Chapman-Enskog’s
theory and experiments. For instance: the transformation of
Maxwell into Tait’s mean free path by multiplying the first one
by a factor nearly equal to 1.051; the use of Stefan-Maxwell's
mean free path which only considers collisions of unlike molecules
when treating concentration diffusion; corrections due to 'persist­
ence of velocities’ when studying concentration diffusion and
viscosity.

In free path theories we are dealing, of course, with a
mathematically inexact treatment, for a gas or a mixture in which
transport phenomena occur is not in a steady state and therefore
it does not obey Maxwell’s law of distribution of velocities.
Nevertheless, free path theories have been rather successful
to predict the magnitude of the effects.

One important lack by which such theories have been faced was
due to inability to explain thermal diffusion which is an import­
ant phenomenon after the theoretical work of Chapman and Enskog
and after them has also been applied successfully by Clusius
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and others for separating isotopes. Now we may say that such
inability was only apparent and actually due to the implicit
assumption of ordinary theories that temperature was kept constant
through the gas mixture. If not only temperature but also pressure
is non-uniform, then a general equation of diffusion should have
three terms related to concentration, temperature and pressure
diffusion due to non-uniformity of composition, temperature and
pressure, respectively.

§ 2. General equation of diffusion in gaseous multicomponent
mixtures

2.1. Let there be a mixture of s gases of kinds l,2,...,s each
consisting of identical molecules of masses m^nig.... mg. Suppose
n. the local average number of molecules of kind i per unit
volume (number density) and Ü. the local mean thermal speed.

We assume that absolute temperature, T, and pressure, p, are
not uniform, but Maxwell’s law of distribution of thermal velocities
is locally valid. Therefore we have, if no external forces act
between the molecules of the gas mixture,

and

k T I n. = p (2.II)
i=l 1

where k is the Boltzmann's constant.
If we consider relatively to the gas mixture a fixed frame

(OX.Y.Z), then the number densities, n 1,n2,...,ng, the temperature
and pressure, and therefore the mean thermal speeds, Uj ,u2,... ,ug,
will be functions of the co-ordinates of the point P inside the
gas they refer to. Making the hypothesis that in the vicinity of
any point Q, the number density and the mean thermal speed only
slightly change within a distance PQ, we may admit the following
power series for (n,)p and (u^pi

10



(3. II)

(“i)P <si>« * *(-5r)a * yÈr)/Bïïj
'By 'Q Q

where x,y,z are the components of the vector (P-Q).
The first equation of (3.II) is a consequence of non-uniform­

ity of composition of the gas mixture. It is the only one which
is considered by an ordinary free path theory of diffusion
(concentration diffusion). The second one is now proposed in
order to take into account thermal diffusion. Pressure diffusion
does not need an additional hypothesis besides the known equat­
ion (2.II).

Let us consider an element of area, dS, around the point Q,
on the plane Z q perpendicular to QZ (fig.1.II). Positive side
of dS is directed to OZ increasing.

Pig. l.II
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The flow of molecules is  assumed to be positive when they cross
dS from the negative to the positive side. Regarding the para­
meters 0 and a of f i g . 1, the to ta l flow of molecules coming to
dS and ju s t crossing i t ,  w ill be determined by in tegration  over
a l l  the values of a from 0 to  2n, and over a l l  the values of 0
from 0 to  7i. The flow is  positive for values of 0 between 0 and
7t/2 and negative between n/2 and tc.

2.2. We w ill now determine the number of molecules of kind i
which cross dS in a small range of time t ,  d t.

Assuming the Maxwellian symmetrical d is tr ib u tio n  of thermal
v e lo c itie s , the p robab ility  that molecules come to Q, from an
element of volume around P, within the angle ranges 0,d0 and
a,da is given by

sin 8 de da
---------------- (4 .II)

4  71

On the other hand, the probability  tha t a molecule of kind i
has a thermal speed, in any d irection  of space, within a range
ui ,dui is  (J l)

f(fl.) du. = 4  (— ) 3 2 u2 e 1 2kT du, (5 .II)
/7CV2kT/ 1

Hence, by using (4 ,5 .11 ), the number of molecules per unit
volume a t P which obey the above ranges of 0 ,a and u, is  given by

sin 8
(n ,)p f(u .) —---- d0 da du, (6 .II)

4  71

We must, of course, have

j 7 t 271

—  f  d0 f  do.J ( n ^ p f^ ,)  sin  0 duA = (njlp (7 .II)
471 o o o

The molecules of kind i which cross dS within the ranges 0 ,d0;
a,da and u1,dui , and now within the time range t ,d t ,  must occupy
the element of volume

(Wz + Uj cos 0) dS dt (8 .II)
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where W2 is  the  OZ component of the common stream  v e lo c ity , W.
re la tiv e  to  which the thermal v e lo c itie s  are  supposed to  be of
spherica l symmetry.

Now, the number of molecules per u n it  volume, ( r i z )(j dS d t,
coming from an element of volume around P w ithin the time range
t , d t  i s  th e re fo re  equal to  the product o f ex p re ss io n s  ( 6 . I I )
and (8. I I ) .  The to ta l  flow, (Tlz ),j, per u n it area a t Q, per unit
time, in  the d ire c tio n  of OZ increasing is  thus.

j  71 271 ®

( r iz> «  = f de Ïd(Xf <ni>p C wz + ui
n 0 0 0

cos 0 ] p f (u 4) s in  0 dut

(9 .I I )

2. 3. Let us now e v a lu a te  the in te g r a l  e q u a tio n  ( 9 . I I ) .  In
accordance with the p rin c ip le s  of ordinary  fre e  path theory we
consider th a t  the molecules coming to  Q have suffered  th e ir  la s t
co llis io n s  a t  P. Therefore the molecules of kind i  which tran sfe r
th e ir  a t t r ib u te s  of number density and therm al speed through the
elementary surface, dS, w ill come from a d istance of a free path.

I f  we assume th a t the a ttr ib u te s  of number density  and thermal
speed only s l ig h t ly  change within a d istance of a free path, the
power se rie s  (3 .I I )  w ill be w ritten  as

where

( n ^ p  -  ( n ^  -  cpi

(üi>p " " xi

(10.II)

'Pi "

Yi *

sin  0 s in  a  +

sin  6 s in  a  +

s in  0 cos a  +

sin  0 cos a  +

cos 0

(11.I I)

cos 0

In equations (10 .I I )  and X| are two kinds of free  paths for
number density  tra n s fe r  and for 'thermal speed tra n sfe r* , respect­
iv e ly , in  the d ire c tio n  PQ. In general, we do not id e n tify  Xt
with Xj since they re fe r  to  d iffe re n t processes.

By using (10 .I I )  in  (9 .I I )  and considering th a t
(1) the terms including products of de riva tives  may be neglected;
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(2) and X' may be regarded as independent of 9 and a since
the a ttribu tes  of the molecules change only s ligh tly  within
a distance of a free path;

(3) the common stream velocity, as used in ordinary free path
theories, is  not a function of position,

the general equation o r flow of molecules per unit area and
time, in the direction of OZ increasing is thus.

(Tiẑ C (ni>9 "z - - (it ), **' r <"*’« hr)
I ou j

~dz' q
1 ' ( 12. 11)

where l t is the mean value of X, averaged over a l l  the values of
thermal speeds from 0 to infinity, namely

CO
ƒ  X, u, f (ÏÏ,) du,
0

1, ■=-----------------------  (13.11)
00

ƒ  f ( u t )  d U j

Following Tait and Boltzmann, Jeans (J l) gives l t as 1.051
times Maxwell’ s mean free path. We ca ll 1, the mean free  path
for number density  transfer.

The mean free path, 1 ', should accordingly be defined. We call
i t  the ‘mean free path for thermal speed tra n s fer ' .

Since l i and l! refer to different processes of attribute trans­
fer they may be different in general. In our treatment we further­
more assume that the ra tio  l J / l j  ” l+at may express the ‘hard­
ness’ of the force fie lds surrounding the molecules of kind i.

Equation (12.11) without the th ird  term on the rig h t hand
side is  the well known flux equation as given by the ordinary
free path theory (J l). The new term

l
1

(14.11)

is  ju s t a consequence of non-uniformity of temperature being
therefore related with thermal diffusion.

Since point Q and direction OZ were a rb itra r i ly  chosen, the
flux equation (12.11) can be presented into a vectorial form. By
using equations (1,2.11) and introducing the molar concentration,

ct = nt/  S nk = nt /n (15.11)k = 1
14



we obtain

fi = nji? - i.niïïi[l1 grad In ct + lt grad In p -(lj-lJ/2) grad Int]
(16.11)

2.4. General equation of diffusion in uulticomponent mix­
tures. By means of equation (16.11) we can define a flux velocity
of molecules of kind i in a mixture of s gases as

\  - i y n j  (17.11)

We say that two gases, i and j, are mutually diffusing when Ui
and Uj are not equal. The rate of mutual diffusion is given by

Ut - Uj. By using (16,17.11) we obtain

U. - U, ■ - — (ILL. grad In ct - 3,1, grad In Cj) -
3 (18.11)

- (3,1, - Uj lj) grad In p + — [3,(1, - lj/2) - 3j (1^ - lj/2)]grad InT
3 3

This equation shows that the velocity of diffusion has three
terms due to non-uniformity of composition, pressure and temper­
ature. If temperature and pressure are kept constant through the
gas mixture, then (18.11) reduces to the ordinary free path
equation of concentration diffusion.

Introducing (l.II) into (18.11) we obtain the following equi­
valent equation of diffusion:

ui
8kT\K ,
--- J L(X, grad In c,
971 /

Xj grad In Cj) +
(19.11)

+ Zij grad In p --i Z[, grad In T]

where, in a general form,

xk - h V *  : zij * xi - XJ a W *  ■ W *
(20.11)

T zu ■  Ui • tyv mi* *  - ( 1 j  - 1j/2) "j'’1
Notice that the quantity zjj which determines the magnitude of
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thermal diffusion velocity, is strongly dependent on the differ­
ences (lt -lj/2) and (lj - lj/2). For example, if 1' = 2 lj and
also lj =2  lj, then no thermal diffusion occurs between gases
of kinds i and j. This immediately suggests that the difference
of the mean free path for ‘mean thermal speed transfer* from the
corresponding mean free path for number density transfer may
somehow express the ‘hardness* of the force fields surrounding
the molecules.

For a mixture of s gases we have s-1 independent equations
similar to (19.11). The thermal diffusion velocity may be zero
for the gases i and j and, a priori, not zero for the gases i
and k. Therefore the simplest assumption, probably not reflect­
ing the real situation, is to consider that the difference
(1A * lJ/2) mostly depends on the ‘hardness’ of the gas i. This
hypothesis will be taken in the following chapter. It seems to
be rather satisfactory to explain experimental thermal diffusion
data.

2.5. Formal comparison with Fürth’s, and Whalley and Winter’s
theories (F3.W1). Following Fürth’s treatment of thermal diffus­
ion in binary mixtures, Whalley and Winter could obtain a general
equation of diffusion which differs from our equation (19.11)
only in the numerical factor which is given by the authors as
(k T/3)^. This is a result of the identification of the mean
thermal speed to the root-mean square of thermal velocities which
has been made by Fürth through all of his theory. From the fore­
going paragraphs we may conclude that the error resulting from
such an identification may easily be avoided without any increas­
ing complexity in the mathematical treatment of free path theory.
Whalley and Winter worked out their theory according to a rigid

elastic sphere model. 1A is identified to the mean free path
for number density transfer corrected for ‘persistence of
velocities’; l! was identified to the mean free path for momentum
transfer to which an approximate formula is proposed, also
corrected for ‘persistence of velocities’.
Fürth’s equation of diffusion does not take into account press­

ure diffusion, and it has been given for binary mixtures only.
It can be obtained assuming into (19.11) ct + c, = 1 and chang­
ing the numerical factor into (kT/3) .
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§ 3. General equation of diffusion for binary mixtures. Formal
comparison with exact Chapman-Enskog theory

In the p a r tic u la r  case of binary mixtures ( i , j ) ,  molar con­
centrations are such tha t Cj + c, = 1 . Hence, by means of (18,
19.11), the equation of diffusion is w ritten as

where

D.,
—_  (grad c t - Kp. grad In T + K . grad In p)(21.II)
ci cJ

K™.. = c .c .

(aT)iJ " j *

V j + V j V (22.11)

* KP1 “ c i c j < v * u (23.11)

- }I> - Sj(21j - l])
(24.11)

V i cj + «jljCj

V i  * V i (25.11)
‘I 1!1-! r

or equivalently,

^ V iJ  * ~
( 2 1 ± -  l {)m*  - ( 2 1 j  -  l j ) m *

1 i c j in j +
(26.11)

‘ i ’ j  -  v ï

w t  — ;------ r  <2,-n>
1 j  ®j  +

Equation of d i f fus ion  (21.11) shows the existence of  three
terms relating respectively to concentration diffusion,  thermal
and pressure d if fus ion due to non-uniformity of composition,
temperature and pressure. I t  is formally iden tica l to that given,
by the exact Chapman-Enskog theory (Cl). D1j as given by equation
(22.11) is  the well known coefficient of concentration diffusion
for a binary mixture ( i , j ) ,  usually called  Meyer's coeff icient
of  diffusion.

The q u a n tit ie s  KT1 and (o-r) ^j are re sp ec tiv e ly  the thermal
diffusion ratio of the gas of kind i and the thermal diffusion
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factor of gases i and j, in this succession, usually indicated in
binary mixtures as KT and a respectively. Notice that the sign
of the thermal diffusion factor must be fixed by convention. In
practice i t  is  usual to consider that the thermal diffusion
factor is positive when the lighter molecules diffuse into hotter
regions. When a steady state is reached, Uj - U, = 0 and then,

grad cx = KTi grad In T - Kpi grad In p (28.11)

According to the above practical convention, i f  subscript i
refers to the lighter gas, KTi and thus also (0 4 )^  would be
positive when only the masses of the molecules determine the
magnitude of thermal diffusion. As we shall see, this occurs with
our equation (24.11) for (0 4 ) ^ . Since the thermal diffusion
factor has been given into a certain succession of the gases i
and j, we have,

Kri * -  Ktj • ) j i (29.11)

The quantities Kpi and (cx )̂  ̂ are similarly called the press­
ure d i f f u s io n  ra t io  of the gas i and the pressure d i f fu s io n
factor of the gases i and j, in this succession. If subscript i
refers to the lighter molecules, these quantities are usually
positive. Therefore the molecules of kind i would diffuse down
the pressure gradient.

In connection with experiments, it  is  convenient to express
(28.II) in the concentration ratio, (cx/ c . ). We can easily obtain

grad In ( C j / c . )  = ( 0 4 ) ^  grad In T - (c l ) j j  grad In p (30.11)

By integration of equation (28.11) giving grad ct we obtain
the so-called separation, Slt

= cj1 - c | (31. II)

well known when dealing with experimental thermal diffusion.
Then c j1 and cj are the molar concentrations of the gas of kind
i in the regions at absolute temperatures T11  and T1 respectively.

By integration of grad In (cl / c j ) we obtain the separation
factor,  qtj,

qiJ
( C i / c . ) (32.11)

18
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where (c1/c J ) 11 and (Cj/c , ) 1 refer to the concentration ratio  of
gases i and j at absolute temperatures T11 and T1 respectively.
Experimental observations of thermal d iffusion  are frequently
carried out by means of the separation factor.
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CHAPTER I I I

APPROXIMATE FORMULAE TO MAXWELL'S MEAN FREE PATH AND TO
THE COEFFICIENTS OF DIFFUSION AND VISCOSITY CORRECTED

FOR PERSISTENCE OF VELOCITIES

§ 1. Approximate equation to Maxwell’s mean free path for number
density transfer

I t  i s  w ell known th a t  i f  one uses the common Maxwell’ s mean
free path

1/M1i * n  n 2 ck °ik O + — > (1. I l l )
k=1 n k

in to  Meyer's formula (22.11), the c o e ff ic ie n t of concen tra tion
d iffusion , Dl j (  is  s trong ly  dependent on the proportion of the
components. This is  in  disagreement with experiments as well as
with Chapman-Enskog’ s theory ( J l , Cl).

B e tte r  r e s u l t s  a re  obtained i f  Maxwell’ s mean fre e  path  is
correc ted  fo r ‘p e rs is te n c e  o f v e lo c i t ie s ’ regard ing  to  number
density tra n sfe r , namely (J1,C1),

1 /p l, = «  n ck o*k Vlk

where

( 2 . I l l )

CTik  = (^ i  + CTk>/ 2  '• Mik  ■ 1 '  Mk i  ■ -----—
" i + mk

Vik -  <1 * 0 ik> Mü ï

9 ik -  I Mik  + I  Mik  « Ï?  • l n [ ( < + 1)  Mt f ]

(3 .111)

(4. I l l )

(5 .111)

9ik mean persistence ra tio . I t  increases from zero to
unity  as the mass r a t io ,  m^/n^, increases from zero to  in fin ity ;
i t s  value fo r  c o l l i s i o n s  of l ik e  m olecules i s  approx im ately
equal to  0.406.

U nfortunately, equation (2. I l l )  is  too complex fo r  a reason­
able use in p rac tice . Therefore we have tr ie d  to  search a s a t is -

21



factory approach. We found that the following equations can be
used with reasonable accuracy:

eik ~ I Mik + <6-HI)

fik - 1.16 M̂ i (7.Ill)
In Table l.III we give approximate and exact values of 9lk and

^lk over tlle mass ratio from 0 to infinity. According to our
approximate equations, 6ik changes from 0 to unity with increas­
ing values of m1/mk; for collisions of like molecules S.j ■ 0.427.
Approximate values of v|>ik change from 1.160 to 0.000 and for
like molecules \|/., » 0.820 whereas the correct values are respect­
ively 1.000; 0.000 and 0.840.

Table l.III
Correct and approximate values for 0^^ and vj>ik

mass ratio
ml/"k Mik

0ik Yik
(exact) (approx.) (exact) (approx.)

0 0.000 0.000 0.000 1.000 1.160
0.1 0.091 0.054 0.059 0.993 1.106
0.2 0.167 0.107 0.117 0.978 1.059
0.4 0.286 0.203 0.219 0.943 0.981
0.6 0.375 0.283 0.302 0.907 0.912
0.8 0.444 0.350 0.370 0.872 0.864
1 0.500 0.406 0.427 0.840 0.820
2 0.667 0.588 0.606 0.714 0.670
3 0.750 0.683 0.699 0.634 0.580
4 0.800 0.736 0.758 0.590 0.519
9 0.900 0.869 0.877 0.414 0.367
20 0.952 0. 940 0.941 0.291 0.255
CO 1.000 1.000 1.000 0. 000 0.000

By using our approximate equation (7.Ill) into (2.Ill), the
approximate formula to Maxwell's mean free path corrected for
‘persistence of velocities’ is thus given as

1/pli ■'1.16 it n S ck crjk mJ^ (8. Ill)
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§ 2. Approximate formula to Meyer's coefficient of diffusion

Introducing (8.Ill) into (22.II). and using Tait’s mean free
path 1. (see eq.13.11) which is 1.051 times Maxwell’s mean free
path, we obtain for the coefficient of concentration diffusion
of a binary mixture the following equation:

where

0. 385

n °1J

k T (m^ + mj)

2 it m. mj
• f, (9.Ill)

clMij(CTi/CTiJ)2 + cjMJi(CTJ/CTij)2 + 2oicjMljMji
f j j = ----------------------------------- ----------- 1 ’

ciMij<CTi/CTij)2 + CJMJ i )2 + cicjMijM^i[l + (ofoj/Ojj]
(10.Ill)

When either c( « 1 or Cj » 1, then fj, * 1. In general, whatever
the mass ratio may be, f ^  is only slightly dependent on. con­
centrations and always close or equal to unity. Indeed, we may
assume for gases

CTij * (11. Ill)

since molecular diameter only slightly changes with molecular
mass. Furthermore, products Mjj approach to zero with in­
creasing mass ratio.

Therefore we may assume, at a first approximation for real
gases,

toij'i
0. 385 k T (nij + mj )

2 7t hk m j
(12.Ill)

As a conclusion: the coefficient of concentration diffusion
should be nearly independent on concentrations of the gases in
a binary mixture, if we use into Meyer's formula our approximate
equation for' mean free path for number density transfer correct­
ed for ‘persistence of velocities'.

This is an even better result than that obtained by using the
equation for the mean free path (3.III). Indeed, then the cor­
responding equation for the coefficient of diffusion still
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exhibits a strong dependence on the proportion of the gases.
The ratio of the limiting values as c, = 1 and ct * 1 is thus
equal to

<Dij>c.=l “j - 9ji>
------—  = ------------ (13.Ill)
(DiJ>Cl=l "i - 9iJ>

To take an example, for mj/m1 = 10 (Argon-Helium) the ratio
(13.Ill) is equal to 1.324. Such concentration dependence shows
a clear disagreement with experimental data after Schmidt and
Lonius (Cl, p.248) as well as with the second approximation to
the coefficient of diffusion byChapman-Enskog's exact theory
which gives the above ratio as 1.072. Chapman-Enskog’s first
approximation is independent of concentrations and equal to our
value, [Dj.Jj, equation (12.Ill), except for the numerical factor
which is then equal to 0.375 when molecules behave as rigid
elastic spheres.

The foregoing analyses show that the approach we have introduced
into Maxwell’s mean free path is satisfactory and may be used
with advantage in practical cases.

§ 3. The coefficients of self-diffusion and viscosity

In the special case of self-diffusion all the molecules, i and
j, are equal. Meyer’s formula thus becomes,

Dii - i h % (14-HI)
■According to the approximate equation (8.Ill) for the mean free

path „Ij, we have then

0.385 k T

"i CT? TOn j
(15.Ill)

This result could also be obtained by making = nij into
(9,12.III).
The coefficient of viscosity, r)i, of a gas i is given by the

free path theory (Jl) as
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where

1 i ff ™
\  |  Pi Xi ui (16.Ill)

is the density of the gas, and

If is the mean free path for momentum transfer.

If ‘persistence of velocities’ is considered, Jeans suggested
(Jl) that the corrections which have to be introduced into Maxwell’s
mean free path regarding to number density transfer and to
momentum transfer should be different. He proposed an equation
of the form,

1/p i; * 71 n Ck ¥Jk (17. Ill)

where

V ( 1  - Pik 8ik) M-? (18. Ill)

8lk is the mean persistence ratio as given by (5.Ill) and F ik
is a quantity which is probably a function of the masses of the
colliding molecules. For collisions of like molecules Jeans
assumed Fti = )£. In their theory of thermal diffusion Whalley
and Winter had also considered this question and proposed the
relationship

Pik - ----- - Mlk (19. Ill)
"i + mk

Assuming Jeans’ hypothesis, the mean free path for momentum
transfer between like molecules is thus

i/pij = /27tnof (1-1 eu ) (20.Ill)

For the sake of consistency of our theory, we use into (20.Ill)
the approximate value 0 ^  = 0.427 as given by our equation
(6.III). The approximate equation for the coefficient of viscosity
is accordingly,

0. 284 k T m.
71

ft
(21.Ill)
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By means of th is  equation and (14.I l l )  we obtain  the following
rela tionsh ip :

D u  =  1 . 3 5 6  ^

Pi
(22. I l l )

Common mean fre e  path theo ry  co rrec ted  fo r  ‘p e rs is te n c e  of
v e lo c itie s ’ gives the numerical fac to r of th is  equation as 1.342.
The re s u lt  we have obtained shows again, in add ition  to  th a t of
the preceding paragraph, th a t  a l l  the approaches which we have
proposed e ith e r  fo r the mean persistence  ra t io , 6ik , or v|/ik are
sa tis fa c to ry  fo r t re a t in g  d iffu sion  and v isc o s ity  and they give
r is e  to  r e la tiv e  simple equations fo r mean free  paths.

I t  is  of in te r e s t  to  conside r now the exact Chapman-Enskog
theory. According to  i t  the above re la tio n sh ip  is  given, a t  a
f i r s t  approximation, as

fo 1
[D11] 1 = 3A -'Ll (23. I l l )

Pi

where A is  a numerical fac to r depending on the molecular forces.
For example, when the m olecules repel each o ther w ith a force
inversely proportional to  the Vjth power of the d istance , theor­
e tic a l  values of 3A are as follows:

Table 2 .I l l
Values of 3A for the inverse power repulsion model

(a f te r  Chapman and Cowling (Cl))

V . 3A
5 1.551 (Maxwellian gas)
9 1.434

11 1.395
15 1.350
GO 1.200 (Rigid e la s tic  spheres)

In Table 3 . I l l  (see  p .27) we rep o rt experim ental va lues of
the ra tio  P iD /i/n , = 3A for several gases. Dt l  has been id en tified ,
a t  a f i r s t  approxim ation, with the c o e ff ic ie n t  of d iffu s io n  of
isotopes of the same gas.

As we have a lread y  poin ted  out, the inverse power repu lsion
model may hard ly  e x p la in  experim ental da ta . For examplè, the
values of the force index, vif obtained fo r each gas by compar-
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Table 3 .I l l
Experimental values of 3A (from ref. (Cl))

gas PiOiiAli * 3A Reference for D4i

«2 1.37 (H3)
N2 1.48 (W2)
ch4 1.33 (W3)
C1H 1.33 (Bl)
Ne 1.28 (Gl)
A 1.34 (H4)
Kr 1.30 (G2)
Xe 1.24 (G2)

ison of Tables 2 and 3. I l l  are frequently in disagreement with
those deduced from the variation of viscosity with temperature.
To take a definite example, viscosity data show that Neon should
be markedly 'harder' than Xenon. This is also confirmed by thermal
diffusion. Prom Table 3 .I l l  i t  would be just the contrary.

For our purposes i t  is, however, enough to show that the ratio
PiDüAii is  dependent on the forces acting upon molecules in
collision and that the numerical factor which we have determined
by mean free path considerations must be regarded as being a
satisfactory approximation. On the other hand, we may consider
the equations (14.I l l )  and (16. I l l )  for the coefficients of se lf­
diffusion and viscosity respectively, independent of any formulae
for the mean free paths 14 and l j .  We have then,

1l
Du  * ------  (24. I l l ). n

*i Pi

If a formal comparison is  established with Chapman-Enskog’ s
theory, then

3A * l t /l"  (25. I l l )

For rigid elastic  spheres we have 3A = 1.200 and for maxwellian
gases 3A = 1.551. Accordingly, we may say that the ra tio  of the
mean free path for number density transfer to the mean free path
for momentum tran sfe r would be re lated  to the 'hardness' of
molecular interactions. This may be taken into account incase of
generalisation. A lso,the ra tio  14/l^  should be larger than
unity, usually increasing with decreasing 'hardness* of the
molecules. For real gases rather small variations are observed.
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§ 4. Another approximate formula to Maxwell's mean free path
for number density transfer

When dealing with thermal and pressure diffusions we will
introduce another equation for the mean free path for number
density transfer which can be obtained from equation (8.Ill)
by making into it further approaches.

For gases we may usually assume the mutual collision diameter
as given by

CTik = °k>* (26.Ill)

because molecular diameter only slightly changes with mass. For
Xenon and Hydrogen whose mass ratio is about 65, the ratio of
molecular diameters is only about 2. Equation (26.111) then gives
the mutual collision diameter 6% smaller than the correct value
aik = <°i + °k>/2*

Introducing (26.111) into (8.Ill) and after some developments,
we have:

^ P 1! = J4 r i " CTi A  C* °k <  * ^  M?k (27. Ill)

Now, if the mass ratios, m./m. , are not far from unity, the
quantities /2 M^k may be assumed, at a first approximation,
as equal to unity. To take definite examples, for mass ratios
equal to 1, 2, 4 and 9 (or equivalently equal to 1, 0.5, 0.25
and 0.111) those quantities are respectively equal to 1, 0.971,
0.894 and 0.775. Therefore, with the above restriction, we may
consider, at a first approximation,

l/[pli] f • K CTi I®!14 (28. Ill)

where K is a constant for each gas mixture, namely,

1. 16 7C s „
K = ------ n S ck mj (29. Ill)

/2 k = l K K K

Introducing into (27.Ill) the coefficient of viscosity as given
by (21.Ill) we obtain an equivalent equation, namely,

[pi J j - K ' l #  (30. Ill)

where K* is another constant for each gas mixture.

28



As we shall see in Chapter IV the above approximate equations
for the mean free path, pl lt give rise to very simple formulae
for the thermal and pressure diffusion factors. A p rio r i, the
resu lting  equations would only be valid for a ra th e r narrow
range of mass ra tio s . However, in Chapter IV we w ill show that
they can fo rtunately  be used for any mass ra tio , except for
mi/mk very close to unity if  simultaneously mk > mt but ak <
(when a change of sign of the thermal diffusion factor may occur
for a particular value of the concentration ra tio ).

When it̂  = mk and also = <jfe no error is committed re la tive
to our equation (8 .I I I ) .  Therefore the co effic ien ts  of s e l f ­
diffusion and v iscosity  are given by equations (15,21.111) as
well. Meyer’s coefficient of diffusion is accordingly obtained as

0. 385 f k T (m. + m.)
Dt . ~  -------  --------- 1 J

1 no^Oj  2 n  Uj mj

which can be compared with (9,12.111) only i f  m1/m. is  not far
from unity. Concentration dependence was practically not affected
by the approaches which we have proposed in the foregoing analysis.

The errors which are introduced when the above equations are
used for thermal and pressure diffusions will be studied a fte r­
wards.

. /2 M*, Mjt (31.I l l )
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CHAPTER JV

THERMAL DIFFUSION AND PRESSURE DIFFUSION
IN BINARY MIXTURES

§ 1. Definitions

In this paragraph we will define several quantities which are
used in theoretical and experimental investigations of thermal
diffusion. Similar quantities could also be considered for press­
ure diffusion but they will be disregarded here since no observ­
ations have been found in literature because of the difficulties
which experiments involve.

1.1. Measurement s of thermal diffusion• The most simple system
for experimental determinations of the thermal diffusion effect
is the so-called ‘two bulb apparatus’ which consists of two
containers joined by a tube of small diameter. These two bulbs,
V1 and V11, are kept at constant absolute temperatures, T 1 and
T11 respectively, and pressure is equal everywhere.

The temperature gradient set up, in a binary mixture for
example, tends to separate out the components and in time a
steady state may be reached which balances the opposing effects
of thermal and concentration diffusion. Then, by means of equation
(28.11),

grad Cj = grad In T (l.IV)

where Kj, is the thermal diffusion ratio of the gas of kind i,
usually indicated in literature by ICj. for binary mixtures. For
the sake of generalisation which becomes necessary in complex
mixtures, we have added the subscript i referring to the gas i.

Kj. is a small quantity, usually less than 0.1, and is generally
treated as a constant into the equation (l.IV). If cj and cj1
represent the molar concentrations of the gas i in the bulbs
V1 and V11 at the temperatures T1 and T11 respectively, we obtain
by integration of (l.IV),

si - CP  * cï ■ Kti ln ^ " / T 1) (2. IV)

The difference, S,, of molar concentrations, is termed separation
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and it is usually represented in binary mixtures by S only.
The subscript i has been added for the sake of generalisation.

Equation (2.IV) is frequently used for experimental determin­
ations of the thermal diffusion ratio, KTi, introducing in it
experimental data of separation and temperatures.

Instead of equation (l.IV) we may consider equation (30.11)
which takes the following form when only thermal diffusion is
regarded:

grad In (Cj/Cj ) = (aT )ij grad In T (3.IV)

where (aT )ij is the thermal diffusion factor of gases i and j,
in this succession, usually represented in literature by a only.
It has first been introduced by Furry, Jones and Onsager (F4),
usually being regarded as a constant for integration of equation
(3.IV). This is theoretically to be preferred to considering ic.
as a constant into (l.IV) because is indeed less depend­
ent on concentrations and it remains finite as ct or Cj approach
to zero. For binary mixtures we have the relationship (23.11),
namely,

^Ti - (4. IV)

As we shall see in Chapter V, this equation is not valid for
multicomponent mixtures. Nevertheless, equations (l.IV) and
(3.IV) which define, respectively, the thermal diffusion ratio
and the thermal diffusion factor are formally identical.

By integration of (3.IV) we obtain

ln qij ln (Tn /Tx) (5.IV)

whe're

(0,/Cj)11
Qij “ -----  (6. IV)

(Cj/Cj)r

(ci/Cj)11 and (c1/cJ )1 are the concentration ratios in the bulbs
at temperatures T11 and T1 respectively.

The quantity qi, is called the separation factor of gases i
and j in this succession (notice that q ^  = 1/qj^).

Equation (5.IV) is frequently used to determine experimental
values for the thermal diffusion factor.
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1 . 2 .  The t hermal  s e p a r a t i o n  r a t i o .  In the d iscu ss io n  of ex­
perimental re s u lts  there has been introduced a quan tity  denoted
by R„ which is named thermal separation  ra t io . I t  is  determined
by the ra t io  o f the experim ental value of the thermal d iffu s io n
ra tio , KpjCexp), or of the thermal d iffusion fac to r, (o^)i j (exp),
to  the corresponding th e o re tic a l value of Chapman-Enskog*s f i r s t
approximation for the r ig id  e la s t ic  sphere model, i . e . ,

KT i(exp) <cxt>ij  <exp> ^ jy
[fCT i ( C h a p ) ]  j  [(ot r ) l j ( C h a p ) ]  j

Rt is  therefore  a measure of the approach to  the id ea l r ig id
e la s t ic  sphere in te r a c t io n  o r, as u sua lly  sa id , a measure of
the ' hardness ' of molecular in te rac tio n . Molecular in te ra c tio n
is  ca lled  'hard' when RT approaches to  unity  and ' s o f t ' when i t
is  small or even negative.

Sometimes the separation  r a t io  is  applied to th e o re tic a l values
as well given by any p a r t ic u la r  model in comparison to  the co r­
responding r .e . s .  f i r s t  approximation. RT is  then represented by
RT(th ), and Ftp. and (04,)^ by KXi(th) and (oUpl^Cth).

In th is  paper a com parison is  made between our elem entary
thermal d iffu s io n  fa c to r  and the corresponding value given by
the r .e . s .  Chapman-Enskog*s f i r s t  approximation. The separa tion
ra t io  is  then represented by RT(elem) defined by

(OL,),, (elem)
RT(elem) = _ -------- _  (8. IV)

l(ocT) 1j (Chap)J p

For the sake of the s im p lic ity  in  the notation, the subscrip t T
which refers to  temperature, w ill usually be omitted i f  no confus­
ion a rises  with pressure d iffusion .

In our theory we a lso  assume a ‘r ig id  e la s t ic  sphere model*
for which a f i r s t  approximation for the thermal d iffu s io n  fac to r
was obtained. The thermal separa tion  ra t io  corresponding to  our
elementary f i r s t  approxim ation is  represented  by Rt j(ex p ) and
is  defined as

Rt j (exp)
0 4 , ( e x p )

[ a p j ( r e s ) ] j
(9. IV)
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This definition is assumed for binary mixtures as well as for
multicomponent mixtures.

Our theory also provides equations for ‘soft’ molecular inter­
actions. The corresponding thermal diffusion factors will be re­
presented by

(Xjj (sm) and for the first approximation by [aij(sm)]1

The corresponding thermal separation ratios are termed as

Rij
a  (sm)

[oij,  ( r e s ) ]  x
and [Rijlj

[ocj, (sm)] j

[(Xj. ( r e s ) ]  j
(10. IV)

1.3, Limiting values of quantities• In the following chapters
we frequently use asymptotic values of the thermal diffusion
factor and of the thermal separation ratio if the molar con­
centration of one of the components of the mixture approaches
unity. This will be represented by adding to thé normal notation
the letter (or number) of the kind of gas for which the molar
concentration has to be taken as equal to unity. For example:

[R. .]. = lim R.,

{[R..],}. = lim [R. .], (in multicomponent mixtures only)
J ck=1 J

{[cif j (res)] j}j = lim [alj(res)]1 (11.IV)cr1

§ 2. The mean free paths for number density transfer and for
mean thermal speed transfer

Two kinds of mean free paths appear into the general equation
of diffusion, equation (18.11), namely:

1) 1, which is the mean free path for number density transfer.
It is the only one which has been considered in Meyer’s equation
of concentration diffusion, equation (22.11) being known since
long ago. In the following theory we use for it the approximate
equations which have been deduced in Chapter III, namely,

1/pl, x l . i e u n  | ck ofkM»l (12. IV)
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which is nearly equivalent to Maxwell’s mean free path corrected
for ‘persistence of velocities'. According to this equation,
Meyer’s coefficient of diffusion is practically independent on
concentrations which is in satisfactory agreement with experience
and Chapman-Enskog’s theory.

For mass ratios not far from unity, the above equation may be
written as (see equations 28 and 30.Ill)

1/Cp11] 1 = K crim*!4 ; [pljj = K' T]̂  (13. IV)

which give rise to very simple equations for the thermal diffus­
ion factor.
2) lj was called the mean free path for mean thermal speed trans­

fer. It is a result of the power series (3,10.11) assumed for
thermal speeds. It might be a matter of discussion whether this
mean free path would have to be identified with any other mean
free path already known. However, this will be disregarded here.

As shown by equation (26.11) for the thermal diffusion factor
in a binary mixture, the magnitude of cx^ will be strongly depend­
ent on the relationship assumed for the mean free paths, 1,, lj
and lj, lj. If lj = 2lj and lj = 21 j then a.^ = 0 and no thermal
diffusion should occur. By comparison with Chapman-Enskog’s
theory this case should be equivalent to a mixture of Maxwellian
gases (Cl). If we assume a relationship of the form

lj = (l+ai) (14.IV)

the quantity at might be a ‘measure’ of the molecular interact­
ions, which should be equal to unity for Maxwellian molecules.

Let us now consider the case of rigid elastic sphere molecules.
The simplest hypothesis is to assume that the transfer of quality
(molecules themselves) and of thermal speed just occurs at the
points where the molecules collide. Even then the mean free
paths, lj and lj, will probably not be equal. Indeed,

1) for the mean free path, lj, for mean thermal speed transfer
all kinds of collisions of the types (i,i), (i,j), (i,k).... (i,s)
would be of interest because they would somehow change the local
distribution of thermal velocities of molecules of kind i;

2) for the mean free path, 1., for number density transfer.it
is physically doubtful that collisions (i.i) of like molecules
can hinder the process of diffusion of molecules of kind i.
Stefan and Maxwell have accordingly suggested that only collisions
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between unlike molecules of the types ( i , j ) ,  ( i ,k ) ........ ( i .s )
should be regarded for 1,.

Since the number of collisions which should then be considered
for 11 is smaller than that considered for l! ,  the mean free path
for number density transfer, 1 ., should accordingly be larger
than the corresponding one for mean thermal speed transfer, 1 '.
Therefore, the quantity at of equation (14.IV) should thus be
negative. A negative value for a, for rigid e las tic  spheres is
confirmed by experimental data for the thermal diffusion factor
of Neon isotopes at higher temperatures as we shall see in the
next paragraph.

As is well known, Neon is indeed one of the ‘hardest’ gases,
therefore approaching to  the ideal rig id  e lastic  sphere in te r­
action.

For the sake of sim plicity of the corresponding equations, we
assume a. = 0 for ‘rigid elast ic  spheres'. This assumption is not
too bad in practice because only for a few exceptions, the ex-
experimental thermal diffusion factor brings about small, negative
values for a..

In our treatment we further assume that the quantity at mostly
depends on the force fie ld  surrounding the molecules of kind i.

This assumption might also be regarded as a physical approach
because a1 would probably be considered as dependent on the
‘hardness’ of molecular interactions ( i , i ) ,  ( i , j ) ,  ( i ,k ) ........( i.s )
and sim ilarly Sj as dependent on molecular interactions ( j , j ) ,
( j, i) , ( j .k ) , . . . ,  ( j ,s ) .

§ 3. The thermal d i f fus ion factor for isotopic mixtures

As usually done for these mixtures, we consider that the mass
ratio, m./nij, is close to unity and furthermore a ll  the quantities
re la tin g  to the molecules w ill be nearly equal. Hence we may
assume l t •  1.; 1̂  = lj and a mean value, al j , may be chosen for
the quantities &i and a.,. Therefore, by using equations (26.11)
and (14.IV), the thermal diffusion factor for isotopes i and j
is  given by

[a4. (sm)]
1L IL

ci mi + cj j
(15.IV)
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Por ‘rigid e las tic  spheres’ we assume in equation (15.IV) that
aiJ = °*

If  the thermal diffusion factor is experimentally available,
then the quantity a ^  which may be regarded as a measure of the
‘hardness’ of the gas consisting of two isotopes, i and j ,  can
be determined.

In Table 4 .IV we report experimental data of thermal diffusion
factors for several isotopic mixtures. The corresponding values
for ajj are usually positive numbers, smaller than unity.

Table l.IV
Variation of experimental thermal diffusion factor for 20Ne-22Ne

and 14NH3- 15NH3 with temperature

Mean temp.
Tr (°K)

a20, 22^eXP̂ a20,22 Mean temp.
Tr (°K)

a17,18(eXP> a 17,18

129 + 0.0162 + 0.34 239 - 0.0100 + 1.69
238 + 0.0233 + 0.049 268 - 0.0039 + 1.27
298 + 0.0254 - 0.037 366 + 0.0105 + 0.28
712 + 0.0346 - 0.412 . . . . . . . . .

In Table l.IV  we report the varia tion  of the experimental
thermal diffusion facto r with temperature for 20Ne-22Ne and
14NHg-15NH3 mixtures which have been observed by S tie r  (SI)
and Watson and Woernley (W4) respectively. The corresponding
values for the quantities a2Q 22 and a 17 lg from our equation
(15.IV) are also given in the Table. The mean temperature, T ,
reported by the authors, is given by equation (61.IV).

For 20Ne-22Ne, the experimental thermal d iffusion fac to r,
corresponds to negative values for a20 22 at higher temperatures,
at which the behaviour of Neon molecules approaches to that of
rigid elastic spheres. Negative values for a20 22 therefore show
that our ‘rigid e las tic  sphere model’ (aiJ = 0) is  only a kind
of mathematical assumption, even then not too bad in practice
because the most frequent range observed for isotopic mixtures
is 0 < a, j < 1.

For 14NH3- 15NH3 which is known as having ‘s o f t’ molecular
interactions, a change of sign of the thermal diffusion factor
has been observed at lower temperatures. At these temperatures
we have a 17 18 > 1, i . e . ,  the gas is even ‘s o f te r ’ than a
Maxwellian one (a^  = 1).
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§ 4. The thermal diffusion factor for non-isotopic mixtures

4 . 1 .  Ge ne r a l  e q u a t i o n  f o r  t h e  t h e r ma l  d i f f u s i o n  f a c t o r • Intro­
ducing (12,14.1V) in (26.11) we obtain the following equation for
the thermal diffusion factor:

1 - a ,  , ° j SJ * c i S i
(Xj j (sm) = ---- LL------------------------------ (16. IV)

2 CN  + cj«j + ci cj« ij
where

Mij = mi / ( Ini + nij); a t j = (at + a j)/2  (17. IV)

✓ 2
Qi =—  ( V CTij>2 Mlj : Qij = 2 Mij

Si = Qi - (Qi,/2) (18. IV)
* - * u  ‘ - “ i j  J

and analogous equations for Qj and Sj by interchanging the sub­
scrip ts i and j in (17,18.1V).

All the essential features of thermal diffusion can be explained
by our elementary equation (16.IV) which is formally identical
with the f i r s t  approximation of the thermal diffusion factor as
given by the rigorous Chapman-Enskog theory (Cl).

When molecules behave as 'rigid e lastic  spheres' (ai=aj=aij=0)
and assuming tha t the subscrip t i re fers to the lig h te r  gas
(nij > mi), the thermal diffusion factor, o ch res), is  positive
for Oj > CTj (Sj > 0 and Sj < 0) over a ll the concentration ratio .
If. CTj < o’i , then three cases have to be considered, namely:

1) S, > 0 and Sj < 0. Then e x p re s )  > 0. This is  the most
frequent case, at least i f  the mass ra tio , is  not too
small.

2) Sj < 0 and Si > 0. Then a ^ r e s )  < 0. Usually for small mass
ratios only.

3) Sj and Si are both of the same sign. Then the thermal d iffus­
ion factor changes sign with concentration. This may occur for
mass ratios nearly equal to unity.

The 'hardness' of gases is  mainly expressed into (16.IV) by
the factor ( l - a ^ ) .  According to the hypotheses of § 2. IV, the
usual range of ( l - a ^ )  should be in between 0 (Maxwellian case)
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and 1 (our 'r . e . s . '  model). This conclusion has been confirmed
for a large number of binary mixtures (see Table 4 .IV).

For a few mixtures, (1-ajj) is larger than unity (see in Table
4 .IV the following mixtures: H2-D2 (ref. H5), H2-Ne (T2), He-Ne
(Al), 20Ne-22Ne). The corresponding values for a^. are then
negative ones.

A change of sign of the thermal diffusion factor with temper­
ature has been observed by several authors (T1,W4) a t lower
temperatures. This feature of thermal diffusion can be explained
by our equation (16.IV) assuming in i t  that a ^  < 1 above the
temperature at which the reversal of sign occurs, and a1. >. 1
below that temperature.

4 .2 .  F i r s t  a p p r o x i ma t i o n  f o r  the thermal  d i f f u s i o n  f a c t o r .
Although the general formula (16.IV) given above is most wonder­
fu l, for practical applications i t  is just too complicated. We
w ill therefore now give a deduction of a f ir s t  approximation to
ai j(sm), named [^.(sm )]^.

By using in (26.II) the f i r s t  approximation (13.IV) for the
mean free path for number density transfer, the thermal diffusion
factor is given, at a f i r s t  approximation, as

[a, .( sb)] . = ---- -----------------------------(19. IV)
1 2 14 K

c i mi ° i  * c i mj

or equivalently,

l - a  Aj • a|
[ai J (*B)]1 » - l i i ---------------- (20. IV)

Ci^ i  *** c j^ j

where

a i j  =

, I - a ,  , ( 2 1 . IV)
ct. = ___ L cr, and similarly for cr.

l - a i j  J

a ' = _ l ! i  At : Aj = ( m ^ ^ ) * 4 (22. IV)
1*a i  j

and analogous equations for A, and A.' by interchanging subscripts
i and j in the above equations.
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Let us now examine how far the above first approximation for
the thermal diffusion factor may be compared with equation (16.IV).

As a first remark we notice that a reversal of sign with con­
centration cannot be explained by equations (19,20.1V). For
practical cases this is, however, not too bad because such a
change of sign may only occur for very unusual mass and diameter
ratios and frequently for ‘soft’ gases only. As we shall see this
is the most important disadvantage of the above first approx­
imation.
Equation (19.IV) can be written into the following form, though

without interest in practice:

<l-a4>«J-<l-.J >q} i-a
Lcijj (sm)J x = _. — CJ sj * ci si

2 •. * *1 «Ï ci®i + CjQ. + cicjQjj

where (23. IV)

. l-a, l-a, ,S. - -- i- . Q < ---- - (QI./2) (24.IV)l-a. . l-a. . Ji j ij

and analogous equation for Sj by interchanging the subscripts;

" 2 «Ï <1? = <C7i0'j/0ij> ftij (25. IV)

Qj, dj and are given by equations (17. IV).
According to (16.IV) and (23.IV), [a1j(sm)]1 can be compared

with a^^sm) as far as Q jj can be identified with Qjj. When
m./n^ and cr./ĉ  increase simultaneously from unity to infinity
both quantities and q A  change from unity to zero. In both
limiting cases we have then [a.. (snOJj = aij(sm).
Let us now show that if S, and S 4 are opposite in sign, a single

concentration ratio exists such that

ai:!(sm) = [oijjfsnoJj (26. IV)

For the sake of simplicity we only consider here the case that
molecules are regarded as ‘rigid elastic spheres’ (a,=aj=a1,=0)
and also nij > m t; CTj > c^. Therefore a ij(res) and Laij(res)]1
are positive over all the concentration ratios.

By means of (16,17,18.IV) and of (23,24.1V) we obtain,
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lim a , , (res) -------
c . =  i  Q

s (ftij/2) - Q.

* (27. IV)

lim
c =1 [otj j (res)] > 0

lim a i J (res)
ci = 1

Q j  -  ( Q j j / 2 )

Q
(28.IV)

lim [a4,(re s)]* = 1 1 J
(fti i/2)

The corresponding asymptotic values given above only d if fe r  on
the quantities (Qt j/2 ) and (q!j /2). Now, since molecular diameters
vary s lig h tly  with molecular masses we may assume in equation
(25. IV) CTi CTj = u ^ y  Then, Q|j = Q^Jt On the other hand, =
= 2 Mjj M ĵ, equation (17.IV), is  always smaller than unity i f  m,
is  different from nij. Therefore Qjj > Q^j. Then, by using equat­
ion (25. IV),

Accordingly, we obtain from equations (27.IV) and (2 8 .IV),

Since the d irections of (30 .IV) and (31.IV) are opposite, then
a concentration ra tio  e x is ts  such that a 1J (res) = [04, (res)] r
The general equation (26. IV), namely ^ ( s m )  = [04 j (sm)J j, could
be obtained following a sim ilar discussion.

Prom the analysis given above we conclude that the f i r s t  approx­
imation, [ccjjfsnojj, may be used for any mass ratio  as well as
04j(sm), though with somewhat d i f fe ren t  concentration depend­
ence, except for the unusual cases to which a change o f sign of
the thermal diffusion factor with concentration may occur, i . e . ,
when mJ/mi is  nearly equal to unity and at the same time 114 > mi
but CTj < (Tj.

= 4 i  > «1J (29. IV)

lim ex p res) < lim [a. 4(res)]
C j = l  o . = i

(30.IV)

lim a. . (res) > lim [a4.(res)]
c j = i  J  c j = i  l j

(31.IV)

41



As far as general cases are concerned, equation (19.IV) shows
that the thermal diffusion factor of gases i and j, in this
succession, will usually be positive if > miP at least if the
mass ratio is not too small and a1J < 1. Therefore, by means of
equations (1,4.1V), the gas consisting of lighter molecules tends
usually to diffuse into the hotter regions.

We also obtain for general cases that lim [alj(sm)]1 >
> lim [a,.(si)].. °i-1

c = 1 1
JTherefore the thermal diffusion factor usually tends to in­

crease with increasing concentration of the lighter gas.
The above conclusions are well known features of thermal diffus­

ion observations.

An interesting conclusion of equations (19,20.1V) is that the
inverse of the thermal diffusion factor should be linearly depend­
ent on concentrations, at a first approximation, at least if
molecular masses and diameters increase simultaneously (nij > m^;
a. > ) or if the mass ratio is not too close to unity when
nij > m i but Oj < CTj.

This conclusion which may be very useful in practice, does
appear to be confirmed by experiments. It also agrees closely
with exact Chapman-Enskog’s first approximation for the thermal
diffusion factor as we shall see for a few binary mixtures in
§ 6. IV.

Equation (20.IV) is so easily applied to ‘rigid elastic spheres’
(ai=aj=aij=0) that it will be of value to determine the magnitude
of the thermal diffusion factor in binary mixtures.

§ 5. General comparison with Chapman-Enskog's theory

In the preceding paragraph we have shown that our elementary
treatment accounts for most characteristics of thermal diffus­
ion in a qualitative form. The order of numerical agreement with
Chapman-Enskog’s theory may be established by means of the
following limiting cases, when molecules behave as ‘rigid elastic
spheres’.

5.1. Lorentzian mixtures. In the limiting case of these mix­
tures we have:

nij/mj - ® and either ct - 0 or Gj/oj -• 00 (32.IV)
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When molecules behave as r ig id  e la s t ic  spheres Chapman and
Cowling (Cl) give the f ir s t  approximation for the thermal d iffu s­
ion ratio as

[KTi(Chap)] j = i c ,  = 0.385 Cj (33.IV)

For these kinds of m ixtures the true value of the thermal
diffusion ratio can be determined (Cl) being equal to

KT 1 (Chap) = JL c. (34. IV)
2 1

By means of both elementary equations (16 .IV) and (1 9 .IV) we
also obtain,

KTi(elem) = [KT1 (e lea )]j « .L c j  (35. IV)

Therefore, in the l im i t in g  case o f  Lorentzian m ixtures the
elementary and Chapman's theories agree qu a n t i ta tive ly .

Regarding Chapman- Cow1ing’ s f ir s t  approximation our treatment
gives the thermal separation ratio as

RT(elem) = _JL_= 1.30 (36.IV)
0 . 3 8 5

5 .2 . I s o t o p i c  m i x t u r e s . I t  was f ir s t  shown by Furry, Jones
and Onsager (F4) that Chapman-Cowling’ s f ir s t  approximation for
the thermal d iffu s io n  factor can approximately be given for
rigid  e la s t ic  spheres as

[0 4 , (Chap)] j -----Ü1 = 0.89 —-----(37. IV)
118 m j + nij nij +

However, a small concentration dependence is  not incompatible
with further approaches of the theory (Cl).

Multiplying both terms of the fraction on the right hand side
of our equation (15.IV) by (mj + mj), the elementary f ir s t  approx­
imation for the thermal d iffusion  factor for isotop ic mixtures,
may be written for ‘r ig id  e la s t ic  spheres’ as

J i . J4mj ui^ nij * mi[a., (elem)]. = — ------------------  -  I _________ (38. IV)
J 1 2 V. <4 2CjinJ + cjmj mj ♦
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Therefore, by means of (37,38.1V) the thermal separation ratio
of our treatment for isotopic mixtures is approximately,

RT (elem) = = 0.56 (39. IV)0.89

5.3. Mixture of gases consisting of molecules of equal masses
and different size. Considering fflj = m1 and also = (o^ ct.)^
we can show that Chapman-Cowling’s first approximation for the
thermal diffusion factor can be given as

[a,. (Chap)]. = ---.---- ^ ^ —  (40. IV)
59 ci °i + °j CTj

By using our equations (16.IV) and (19.IV) the numerical factor
of the equation corresponding to (40.IV) is obtained as &. The
elementary thermal separation is thus,

RT (elem) = 2.95 (41.IV)

5.4. Conclusion. Prom the foregoing paragraphs we can conclude:
1) For intermediate and large mass ratios, the magnitude of

the thermal diffusion factor is mainly determined by mass ratio
because the variation of molecular diameters with mass is usually
small. Hence, by means of (36,39.1V), the thermal separation
ratio of our elementary theory should usually increase from 0.56
(isotopic mixtures) to 1.30 (Lorentzian mixtures) with increas­
ing mass ratio.

This conclusion can be inferred from Table 4.IV where cor­
responding values for [abelen)'] t and [otj 1 (Chap)] j are given
for a large number of binary mixtures. Except for very large mass
ratio, the thermal separation ratio of our elementary theory is
smaller than unity.

2) For small mass ratios, the magnitude of the thermal diffus­
ion factor can be markedly determined by molecular diameters.
As we have shown, equations (39,41.1V), RT (elem) = 0.56 for
isotopic mixtures and RT (elem) = 2.95 if nij = m t. We therefore
see that such so different values may bring about quite different
values for the thermal diffusion factors [aij(elem)]1 and
[a1:) (Chap)] j.
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If njj > mi and also CTj > <4, then [oijj (elem)] x and [ajj (Chap)] j
are both positive and the range for the thermal separation ra tio
is (isot. mix.) 0.56 < RT(elem) <2.95 (114 = mj).

If m, > mt but (jj < oi three cases may occur, namely:
(a) predominance of the mass effect in both theories. Then,

[04, (elem)] 4 > 0: [04j (Chap)] j > 0 and then RT(elem) > 0,
(b) predominance of diameter effect in both theories. Then,

[04 , (elem )] 4 < 0; Ccij'j(Chap)] t < 0 and then RT(elem) > 0.
(c) predominance of mass e ffect in Chapman-Cowling s f i r s t

approximation, and predominance of diameter effect in the element­
ary f i r s t  approximation because diameter effect is  of higher
influence in our treatment for small mass ratios. Then,

[al j (elem)]1 < 0 but [04j (Chap)] t > 0. Then R^elem) < 0.

The discussion given above for small mass ratios can be confirmed
by Table 2 .IV.

Table 2 .IV
First approximations for the thermal diffusion factor for mixtures

of equal proportions of H2-D2. C2H4-N2, NH3~Ne and H2-He.

Gas mixture 3
u

. \ 5 < V CTi
[ 0 4 j  (elem)] 1 [ 0 4 . ,  (Chap)] 4 RT(elem)

H2 *°2 2 .0 0 1.01 + 0.172 + 0.276 + 0.623
n2 -c2h4 1.0005 1.32 + 0.137 + 0.046 + 2.95
NH,-Ne 1.186 0.56 - 0.0230 - 0.0146 + 1.58
H, -He 2.00 0.80 - 0.0268 + 0.241 - 0.111

The mixtures reported in Table 2 .IV have been observed ex­
perimentally except N2-C2H4. We give the general features below:

H2-D2 and H2-He. The thermal diffusion factor is positive for
higher temperatures but i t  changes sign at lower temperatures
(ref.T l. Temperature range T11 “ 293 °K; T1 from 90 to  20 K).

NH,-Ne. The thermal d iffusion  factor changes sign with con­
centration at about 75% Neon (G4). By our elementary * r .e .s .’
model as well as by Chapman-Cow1ing’s r .e .s .  f i r s t  approximat­
ion, the thermal d iffusion  factor would be negative over a ll
the concentration ra tio s .
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§ 6 . Inert gas mixtures. Comparison between elementary and
Chapman-Cowling’s f i r s t  approximation for thermal diffus­
ion factor

The follow ing m ixtures w ill  be considered:

Neon-Argon V 'V = 1 . 979; V wNe = 1 . 362
Helium-Neon mN e//mHe = 5. 045; ° N e / ° H e = 1 . 182
Helium-Argon mA /mHe = 9. 984; V CTHe = 1 .,649
Helium-Krypton mK r / mHe = 20 .92; CTK r / CTHe = 1 . 912
Helium-Xenon mXe'/nlHe = 32 .56; a \ e ^ a He = 2. 263

Notice th a t  diam eter r a t i o  in c reases  with in c reasin g  mass r a t io ,
except for Helium-Neon mixtures.

E q u atio n s (19 ,20 .1V ) show th a t  th e  in v e rse  of th e  th e rm a l
d if fu s io n  fa c to r  should have a l in e a r  dependence on c o n c e n tra t­
io n s, a t  a f i r s t  app rox im ation . The corresponding  eq u a tio n s  to
[o ijjC res jlj fo r the above m ixtures are the  fo llow ing. The n o ta t ­
ion [ctjj (elem)] j has been used fo r  th e  sake o f com parison w ith
Chapman-Cowling's e q u a tio n s .

l/ta jje .A  (e lem )]j = 3.250 cNe + 5.250 c A (42. IV)

1 / [<xH e ,N e(e le ln >] 1 = 2.593 c He + 4 - 593 c Ne (4 3 .IV)

1/ [ aHe,A (elem )] 1 = 1.035 cHe + 3.035 cA (4 4 .IV)

l / [ « He, Kr(e l em )]i = 0.648 cHe + 2.648 cRr (4 5 .IV)

l / [ a He>Xe(elem ) ] t  = 0.454 cHe + 2.454 cXe (4 6 .IV)

The corresponding Chapman-Cowling’ s f i r s t  approxim ations (Al),
a re  the following:

o . 593 c Ne + 0 . 6 0 3  c A
[o^e, A(Chap)] j -------------------------------------------------------- (47. IV)

1 . 2 1 4  C2 e + 2 . 3 6 8  c \  + 3 . 6 1 6  c „ e c A

0 . 7 8 3  c H e + 0 . 6 3 8  c Ne

K e ,N e (Chap>^l = --------------------------------------------------------(48. IV)
1 . 0 4 6  c j je + 1 .7 1 3  c j j ,  + 3 . 0 6 2  c Hec Ne
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[«H e . A (C h a p )] j

0 . 6 0 3  c
(49. IV)

He 4 ° - 718 c A

0 . 4 4 4  4 e + 1 . 8 7 9  c\ + 2 . 1 3 9  c Hec A

0 . 3 6 1  c „ e + 0 . 6 0 2  c „ r

^He, Ki (Chap)] i ----------------------------------------------------- (50. IV)
0 . 2 0 7  e g g  + 1 . 5 7 0  c * r  + 1 . 2 9 6  c Hec Kr

0 .  248 c „ e + 0 . 5 5 0  c Xe

[dj!, x.(Chap)} j ------------------------------ -----------------------  (51. IV)
0 . 1 1 3  c g e + 1 . 4 3 3  cj je + 0 . 8 9 9  c Hec Xe

The inverse of the above Chapman-Cowling*s equations can be
w ritten as

l/to^ e  A (Chap)]! = 2.047 c„e + 3.927 cA + — — ------ -
" e *A 1 nw 0 . 6 0 3  c . +

0 . 0 5 3  c Ngc A

0 . 5 9 3

l/tc^Hg, Ne(Chap)]! = 1.336 Cjje ♦ 2.685 c^g +

i/[°(jjet a (Chap)]! = 0.736 cHe + 2.617 cA +

(52.IV)
0 . 0 0 8  c Hec Ne

0 . 6 3 8  c „ e + 0 . 7 8 3  c He

(53. IV)
0 . 0 3 3  c Ac He

0 . 6 0 3  CHe + 0 . 7 1 8  c A

(54.IV)
O.OIO c Hec Kr

■ 0.573 cH.  ♦ 2.608 ♦ -  ,  „
rie Ivr

(55.IV)
_ 0 . 0 0 0 2  Cj. Cv»

l / k „  x (Chap)]. = 0.456 cHe + 2.605 cXe + ----------------- ------------
" e ' xe 1 He Ae 0 .2 4 8  Cjje + 0 .5 5 0  c Xe

(56.IV)

All the fractions on the right hand side of the above equations
are comparatively small and may be disregarded within an error
le ss  than 1 per cent. In  practice we may assume the inverse o f
Chapman-Cowling's f i r s t  approximation for the thermal d iffu s io n
factor as linear on concentrations.

This feature of Chapman-Cowling's f i r s t  approximation has also
been v erified  in a large number of binary mixtures, namely in
a l l  the combinations of in e rt gases examined by Atkins, Bastick
and Ibbs (Al). Experimental observations also seem to  show such
linear dependence as we shall see in § 7.2.
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Let us now compare the concentration dependence of the element­
ary approximation, [ai,(elem)]1( to that corresponding to Chapman
and Cowling's formula for the rigid elastic sphere model. Table
3.IV reports theoretical values of the thermal separation ratio,

[a. .(elem)],
RT (elem) = -— J----- r1  (57. IV)

Lalj(Chap)J1

for the inert gas mixtures given above, over the concentration
range of the lighter gas from 0 to 1.

Table 3.IV
Theoretical separation ratios, RT (elem), of the elementary first

approximation for Ne-A, He-Ne, He-Kr and He-Xe mixtures

Concentr. of
the lighter gas

Ne-A He-Ne He-A He-Kr He-Xe

0.000 0.745 0.586 0.861 0.987 1.062
0.100 0.742 0.585 0. 859 0.983 1.060
0.300 0.726 0.578 0. 847 0. 976 1.057
0.500 0.708 0.570 0. 830 0.968 1.054
0.700 0.684 0.554 0.802 0.952 1.045
0.900 0.651 0.532 0.752 0. 919 1.027
1.000 0.631 0.515 0.711 0. 885 1.004

This table shows that the separation ratio of the elementary
first approximation decreases with increasing concentration of the
lighter gas of the mixture. On the other hand. Chapman and
Cowling’s first approximation always increases with increasing
concentration of the lighter component. Hence, the elementary
fi-rst approximation, [cx^. (elem)J lt is less dependent on the
concentration ratio than the corresponding first approximation
of the exact Chapman-Enskog theory. The variation of the element­
ary thermal separation ratio is, however, rather satisfactory,
being of the order of 6-20 per cent. (He-Xe and He-A, respect­
ively) in the above mixtures of inert gases.

Table 3.IV shows that the thermal separation ratio of the
elementary first approximation increases with increasing mass
ratio, except for He-Ne mixtures. In mixtures of equal pro­
portions, RT (elem) is equal to 0.708, 0.830, 0.968 and 1.054,
respectively for Ne-A, He-A, He-Kr and He-Xe mixtures. For He-Ne,
RT (elem) is only 0.570. Increasing values of the thermal separat­
ion ratio with increasing mass ratio is a usual feature of the
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elementary theory, as we have shown in §  5.IV. It is common
either to the thermal diffusion factor, a.j(elem) or its cor­
responding first approximation, [o^j(elem)Jlt when in a series
of binary mixtures both the mass and the diameter ratios in­
crease in the same direction.

In the above series of inert gas mixtures, the ratio 0^ / 0^
is even smaller than ^A/<yJie which explains the lower value of
RT (elem) for He-Ne mixtures.

§ 7. Comparison with experimental data

For the sake of comparison with experimental results of thermal
diffusion we shall use the ‘r.e.s.' elementary first approximat­
ion only, namely
non-isotopic mixtures

A - A
[a, .(res)]. = J_ . ___ ]____ I__ (58. IV)

2 ciAl + c j Aj

where = (m1/t]i)^ and Aj = (mjAij)^.
For isotopic mixtures, we use equation (15.IV), namely

r i ‘*an  J 1[a,, (sm)]. = --- L L . ------------  (59. IV)
1 2  ii 1L+ c j m j

Theoretically, we may obtain in this case the value for aiJ -
- a i - aj by identifying [ai , (sm)] jvj»ith the corresponding
experimental value for the thermal diffusion factor.

When molecules behave as 'rigid elastic spheres', equation
(59.IV) reduces to

[“lj (res)] j ‘ 1
C^in^ + c jn^

(60. IV)

7.1. Binary mixtures of equal proportions. In Table 4.IV We
present experimental values for the thermal diffusion factor
for several mixtures of equal proportions. Comparison is made
to the first approximations according to our elementary treatment
and the exact Chapman-Enskog theory when molecules behave as
rigid elastic spheres.
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When a temperature range is reported in the Table, the ex­
perimental thermal diffusion factor is a mean value in this
range; when a single temperature is given the thermal diffusion
factor corresponds to a mean temperature assumed by the authors.
Usually, T is determined by the following equations:

T = Tr = ^  In (T11/^); (T11 > T1) (61. IV)

This equation has been deduced by Harrison Brown (B3) assuming
that the thermal diffusion factor varies with temperature accord­
ing to the relation

(Xjj (exp) * (a*j)0 . (1 + A/Tr) (62.IV)

where A is a constant and (°4j)0 is the limiting value of the
thermal diffusion factor at higher temperatures. Equation (61.IV)
holds fairly well at higher temperatures (D2).

Another equation for the mean temperature to which the experiment­
al thermal diffusion factor should be referred, has been proposed
by Holleran (H7), namely,

T = TB = (T1!11)* (63. IV)

which has been found assuming that

aij(exp) = A + B In Tm (64.IV)

where A and B are constants.
Equation (64.IV) is usually satisfactory at lower temper­

atures (D2).

Quasi-theoretical values for the ‘r.e.s.’ elementary first
approximation have been determined by using in (58.IV) experiment­
al coefficients of viscosity taken from 'Handbook of Chemistry
and Physics’ , 36th edition (H6). They refer to the highest
quoted values of temperatures, because the behaviour of molecules
at these temperatures tends to come close to that of rigid
elastic spheres. Quasi-theoretical values for Chapman-Cowling’s
first approximation for the thermal diffusion factor are mainly
taken from ref. (G3).
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Table 4. IV

Calculated and experimental values
of the thermal diffusion factor, a,,.
in binary mixtures of equal proportions

Temp.
Chapman Elem.

Mixture Exp. Range Reference
r.e.s. ‘r.e.s.'

TI-TII(°K)

H2-°2 0.276 0.172 0.173 288-373 H5
H2-Ne 0.495 0.267 0.280 290- 90 T2

0.254 284-671 This paper
h 2-n 2 0.568 0.455 0.340 288-373 11
h 2-a 0.571 0.467 0.28 288-456 12
h 2-c o 2 0.609 0.536 0.298 288-373 11
3He-4He 0.127 0.0670 0. 059 273-613 N1
He-Ne 0.488 0.295 0.388 288-373 A1

0.275 284-660 This paper
He-N2 0.577 0.486 0.36 287-373 G7
He-A 0.592 0.491 0.39 369 68

0.376 289-663 This paper
He-Kr 0.627 0.607 0.448 465 68
He-Xe 0.652 0.688 0.434 465 68
14n h,-
15n h 3 0. 0254 0.0145 0.0105 366 W4
20Ne-22Ne 0. 0424 0. 0245 0.0254 195-490 SI

0.0275 289-660 This paper
Ne-A 0.332 0.224 0.191 465 68

0.144 288-665 This paper
Ne-Kr 0.514 0.394 0.32 465 68
Ne-Xe 0.584 0.468 0.37 465 G8
n 2-c o 2 0.236 0.108 0.051 372 W5
n 2-n 2o 0.240 0.0839 0.048 288-400 B4
18.180
_l«.i82o 0.0270 0. 0148 0.0145 443 W6

4 38A .4°A 0.0468 0.0257 0.0250 638-835 SI
0. 0145 287-660 This paper

A-Kr 0.313 0.158 0.149 465 68
A-Xe 0.452 0.264 0.176 465 68
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Table (4.IV) shows that our elementary first approximation for
the thermal diffusion factor is usually closer to experimental
data than Chapman-Cowling’s value. For higher mass ratios, the
value predicted by the elementary theory comes close to that of
Chapman and Cowling, in accordance to the analysis made in § 5.1.IV.
This can be observed for H2-C02 and He-Kr mixtures to which the
mass ratios are respectively 21.8 and 20.92. For He-Xe (nij/mj =
~ 32.56) the elementary thermal diffusion factor is already
somewhat larger than the one corresponding to Chapman-Cowling's
first approximation.

For He-Ne, the experimental value after Atkins, Bastick and
Ibbs (Al) is larger than [(cx'j. (elem)] j, whereas our observ­
ation is smaller though corresponding to higher mean temperature
than that of Atkins’ observation. (Our experimental results are
given and discussed in Chapter VI.)

For the isotopic mixture 20Ne-22Ne with natural Neon the
elementary theoretical value is also somewhat smaller than that
observed by Stier (SI) in the range T1 = 195 °K, T 11 = 490 °K.
Our value is even higher for it corresponds to higher mean
temperature.

Smaller theoretical values are also obtained by the element­
ary theory in H2-D2 and H2-Ne.

Table 4.IV is only a short survey on experimental observations
at normal temperatures. For more detailed data see, for example,
ref. (G3).

The order of magnitude of (1 - a ^ )  (and therefore of a t and
aj) may be determined assuming that ot^ (exp) ~  (1 - a.^) .
• KMréö)],. From Table 4.IV it follows that the most probable
range for atj (and therefore for a4 and a.j) is in between 0.10
and 0.40. In a few cases only, we have a ^  < 0. According to
equation (14.IV), the most probable range for the ratio, lj/lv,
of the mean free path for mean thermal speed transfer to the
mean free path for number density transfér should be in between
1.10 and 1.40.

7.2* Inert gas mixtures. Concentration dependence of thermal
diffusion factor. Tables 5, 6, 7, 8 and 9.IV, and figures 1, 2,
3, 4 and 5.IV report experimental thermal diffusion factors in
Ne-A, He-Ne, He-A, He-Kr and He-Xe mixtures obtained by Atkins,
Bastick and ibbs (Al) who determined the separation as a function
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of composition, for constant temperatures T1 = 288 °K and T11 =
= 373 °K. The katharometer method of analysis has been used.
Experimental errors are about 5 per cent.

We have also made several measurements with Ne-A and He-A
mixtures over large ranges of composition. Analysis has been
carried out by mass spectrometry using the isotopic peaks of
20Ne (90.51% in natural Neon), 40A (99.633%) and 4He (~ 100%).
The range of temperature was about 286-667 °K. Experimental
errors are about 3 per cent. Our results which will be mainly
discussed in Chapter VI of this paper, are also given in the
above Tables and figures.
Elementary first approximations for the ‘r.e.s.’ thermal diffus­

ion factor are given by quasi-theoretical equations: (42,...,
46.IV).

Equations (52....  56.IV) corresponding to the inverse of
r.e.s. Chapman and Cowling’s first approximation are also drawn
in the figures. As we have already pointed out in § 6, these
equations are closely linear in concentrations.

According to the theory given in § 4.2.IV we should have:
Even when molecules do not behave as 'rigid elastic spheres'

the inverse of thermal diffusion factors should be, usually,
linear on concent rat ions, at a first approximation.

0 20 40 60 80 100
t Ha

Pig. 1. XV.
The inverse of the thermal diffusion factor for Neon-Argon
mixtures.
O Experimental data after Atkins et al. (Al)
O our experiments.
Chap. Chapman-Cowling’s r.e.s. first approximation
elem. Elementary ’r.e.s.’ first approximation.
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He,Ne

elem,

Pig. 2. IV.
The inverse of the thermal diffusion factor for Helium-Neon
mixtures.
0 Experimental data after Atkins et al. (Al)
Chap. Chapman-Cowling’s r.e.s. first approximation
elem. Elementary 'r.e.s.* first approximation.

He,A

elem

0 20 40 60 80 100
JÉ He

Pig. 3.IV.
The inverse of the thermal diffusion factor for Helium-Argon
mixtures.
© Experimental data after Atkins et al. (Al)
O Our experiments
Chap. Chapman-Cowling's r.e.s. first approximation
elem. Elementary ‘r.e.s.’ first approximation.



1

O 20 40 60 80 100
jC He

Pig. 4.IV.
The inverse of the thermal diffusion factor for Helium'
Krypton mixtures.
O Experimental data after Atkins et al. (Al)
Chap. Chapman-Cowling’s r.e. s. first approximation
elem. Elementary 'r.e.s.’' first approximation.

Pig. 5.IV.
The inverse of the thermal diffusion factor in Helium-Xenon
mixtures.
0 Experimental data after Atkins et al. (Al)
Chap. Chapman-Cowling’s r.e.s. first approximation
elem. Elementary ’r.e.s.’ first approximation.
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As shown hy figures 1, 2, 3, 4 and 5.IV, the inverse of ex­
perimental thermal diffusion factors does appear to have a
linear dependence on concentration of the lighter gas of the
mixtures. Experimental thermal diffusion factors have been
treated by the method of the least squares. The following mean
equations have been obtained:

1/aIle.Â exP> = 3-39 CNe + 7-58 ca (65.IV)
Observed concentration range: cNe = 0.200 - 0.600.

l/cxHe.Ne(exp> = I-79 cHe + 3*36 CNe (66. IV)
Observed concentration range: c„e = 0.200 - 0.600.

1/<xHe,A(exp> = 1-61 CHe + 3-82 °A (67. IV)
Concentration range observed: cHe = 0.100 - 0.500.

l/«He,Kr(exp) = Ï-08 cHe + 3.96 cKr (68.IV)
Observed concentration range: c„„ = 0.300 - 0.700.He

l/aHeiXe(exp) = 0.290 cHe + 4,71 cXe (69.IV)

Observed concentration range: c„e = 0.100 - 0.500.

Prom our experimental results:

1/«Ag> a (exp) = 4.65 cNe + 9.28 cA (70.IV)

Observed concentration range: c„e = 0.100 - 0.900.

1/aMe,A (exp) = 1-47 cHe + 3.82 cA (71.IV)

Observed concentration range: cHe = 0.300 - 0.900.

For Helium-Xenon mixtures, equation (69.IV), long extra­
polation will become inaccurate for cHe = 1. Also, such extra­
polation might be very unfavourable because the thermal diffusion
factor can be expected to be markedly dependent on concentration
regarding the large mass ratio, mXe/mHe = 32.56. According to
(69.IV) the limiting value for the thermal diffusion factor at
cHe = 1 should be 1.57 times the r.e.s. Chapman-Cowling’s first
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approximation. This is a quite improbable result, because Chap­
man-Cowling's formula gives rise to numerical values which are
always larger than those corresponding to experiments.

Table 5. IV
Thermal diffusion in Argon-Neon mixtures

Therm. Diff. Pact, cxj. Sep. Ratio Rt j (exp)
UUIll̂l/11 Lx •
of Neon Theor. Experimental ref.A1 This paper

(elem) ref.A1 This paper

0.000 0.190
0.114 0. 5760.100 0.198

0.146 0.7090.200 0.206
0. 300
0.400

0.215
0.225

0.161
0.170

0.125 0.749
0.756

0.581

0.500
0.600

0.235
0.247

0.183
0.195

0.145 0.779 0.617

0.166 0.6380. 700 0.260
0. 800 0.274

0.195 0.6720. 900 0.290
1.000 0. 308

Table 6.IV
Thermal diffusion in Helium-Neon mixtures

Concentration
of Helium

Thermal Diffusion Factor Separation
Ratio

R tJ (exp)
Theoretical

(elem)
Experimental

ref,A1

0. 000 0.218
0.200 0.238 0.332 1.395
0.300 0.251 0.345 1.375
0.400 0.264 0.360 1.364
0.500 0.278 0.388 1.396
0.600 0.295 0.418 1.417
1.000 0.386
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Table 7. IV
Thermal d if fu s io n  in  Helium-Argon m ixtures

Concentr.
o f Helium

Therm. D iff . Pact • a l i Sep. R atio  R, t (exp)
Theor.
(elem)

Experim ental re f .A l This paperref,A 1 This paper
0.000 0 329
0.100 0.353 0.278 0.788 m m t  mu

0.200 0.379 298
0.300 0.411 0.314 0.323 0.764 0.786
0.400 0.447 0 338
0.500 0.491 0.372 0.376 0.758 0.766
0.700 0.612 0.454 0.742
0. 900 0.810 0.594 0.733
1.000 0. 966

Table 8. IV
Thermal d if fu s io n  in  Helium-Krypton m ixtures

Concentration
of Helium

Thermal d iffu s io n  fac to r a 4 i Separation
R atio

Ra j(exp)
T h eo re tica l

(elem)
Experimental

re f.A l
0.000 0 378
0.300 0.488 0.322 0.660
0.400 0.541 0.355 0.656
0.500 0.607 0.400 0.659
0.600 0.691 0.450 0.651
0.700 0.802 0.509 0.635
1.000 1.544

Table 9. IV
Thermal d iffu s io n  in  Helium-Xenon m ixtures

Concentration
of Helium

Thermal d iffu s io n  fac to r a 41 S eparation
T h eo re tica l

(elem)
Experimental

ref.A l
R atio

Rt j(exp)
0.000 0.407
0.100 0.444 0.234 0.527
0.200 0.487 0.264 0.542
0.300 0.539 0.294 0.545
0.400 0.605 0.338 0.559
0.500
1.000

0.688
2.203

0.403 0.586
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Let us now compare the concentration dependence of the thermal
diffusion  factor as given by (1) the ‘r .e . s . '  elementary f ir s t
approximation, (2) the r .e .s .  Chapman-Cowling’s formula and (3) by
experimental data, for Ne-A, He-Ne, He-A and He-Kr m ixtures.
For th is  purpose Table 1 0 .IV reports the ra tios of the thermal
d iffu sion  factors in the lim itin g  case as Cj = 1 to  the cor­
responding values as Cj = 1 ,  namely [a^ ] i /  to-ij J j-

Table 10 .IV shows that the experimental ra tio , [aiJ (exp)Ji /
[a, (exp)] , i s  c lo ser  to  th at given by our theory for He-A
and He-Kr mixtures, whereas i t  i s  closer to Chapman-Cowling s
value for A-Ne mixtures. The experimental ra tio  i s  in between
the theoretical ones for He-Ne mixtures.

Table 10. IV
Theoretical and experimental ratios [ o ^ i / ^ ai j •

Mixture
Chapman and

Cowling (res)
Elementary
( ‘r .e . s . ’ )

Experimental
ref.A1 This paper

A-Ne 1.918 1.615 2.23 1.99
He-Ne 2.010 1.771 1.88 * “ “ “
He-A 3.556 2.932 2.37 2.60
He-Kr 4.551 4.086 3.67 . . . .

Experimental thermal separation ratios, RiJ (exp), referred to
our elementary ‘r . e . s . ’ f i r s t  approximations for the thermal
diffusion factors of A-Ne, He-Ne, He-A, He-Kr and He-Xe mixtures
are a lso  given in Tables 5. 6, 7, 8 and 9 .IV. For mixtures of
equal proportions of A-Ne, He-A, He-Kr and He-Xe, Ri;j(exp) is
equal to 0.779, 0.858, 0.659 and 0.586.

For He-Ne, R1J(exp) = 1.396 which seems to be an abnormal
value when compared with those of the above ser ies of inert gas
mixtures. As we have shown in paragraph 6 (see Table 3 .IV), the
elementary f ir s t  approximation for ‘r . e . s . ’ thermal d iffu s io n
factor for He-Ne mixtures, [«He.Ne^re s^ l ’ is  rather sma11 when
compared to  the corresponding f i r s t  approximations for A-Ne,
He-A, He-Kr and He-Xe because the diameter ratio  o,Ne/crHe i s  too
small in the above series of mixtures (even smaller than crA/a Ng).
This may explain so high a resu lt for Rl j (exp) for He-Ne mix­
tures.
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§ 8. Pressure d if fu s io n  in binary mixtures

Only a sho rt re fe rence  w ill  be made since p ressure  d iffu s io n
has been a non-im portant phenomenon up to  now, because of the
d i f f ic u l t i e s  of experim ents.

According to  the  elem entary  theo ry , the  p ressu re  d if fu s io n
ra t io  is  given by equation (23.11), namely,

V j  * l j" i
Kp i (elem) = CjCj -------------------------(72. IV)

V j " }  + 1J c i mi

I t  follows than th a t pressure d iffusion  r a t io  would probably be
independent of the model fo r the in term olecular in te r a c t io n s .
This is  in agreement with the exact theory, to  which Chapman and
Cowling (Cl) give the f i r s t  approximation, [kp l (Chap)] as

[Kp i (Chap)]x = C jC ,-------1-----—  (73. IV)
c^nij + c j in j

Equation (7 3 .IV) i s ,  however, a lso  independent on m olecular
diameters what does not usually  occur in (72.IV).

The elem entary f i r s t  approxim ation, [(ap ) t j (e le m )]x fo r  the
pressure d iffusion  fac to r  obtained by using (13.11) in to  (7 2 .IV)
w ill be given hy

[ (ap) i j ( e l e m ) ] j  = --- *--- *L_ ; A, = (m./n. )* (74. IV)
J  r  A + r  A 1 1 1c i Ai cj Aj

Hence the pressure d iffu s io n  fac to r should be twice the ‘r . e . s . ’
thermal d iffusion fac to r.

The c lea re s t disagreement between the elementary and the exact
Chapman-Enskog theory  is  shown by the concentration  dependence
of the pressure d iffu s io n  fa c to r . The v a ria tio n  of th i s  fac to r
with concentration is  usually  very much larger in Chapman-Enskog’ s
theory . Whereas the  r a t io  t(« p) xj l i / [ ( a p ) t j ] j  i s  equal to  the
mass r a t io ,  nij/mj, in  th e  exact Chapman-Enskog th e o ry , our
elementary treatm ent gives i t  as

[ (txp )  i  j  ( e l e m ) ]  j

L (cXp ) j j ( e l e m ) ] j
mj' % V

_mi
(73 .IV)

60



which i s  indeed markedly d i f f e r e n t  from m./raj fo r la rg e  mass
ra t io s .

In Table 11.IV we give the th e o re tic a l values of the  pressure
d if fu s io n  fa c to r  fo r  m ix tu res of equal p ro p o rtio n s  o f A-Ne ,
Ne-He, A-He and Kr-He m ixtures. Values of the ra t io s  [ ( a p ) * ^ /
/ [ (°tp) i j ] j i  and (ap) i j / (°4,) i j  for mixtures of equal proportions
are  a lso  given by the  exact Chapman-Enskog and the  elem entary
th e o r ie s . For the elem entary trea tm ent we always have (<*p ) i j /
/ ( o ^ i jd - e s )  = 2.00 as we have pointed out before.

Table 11. IV
Pressure d iffusion  by the exact Chapman-Enskog and the

elementary theories

Mixture
P ress .D iff.

Factors (ap) j j
( c i =Cj=0 .500 ) ( c ^ C j  = 0 .5 0 0 )

Chapman-
Enskog Elem.

Chapman-
Enskog Elem.

Chapman-
Enskog Elem.

A-Ne 0 .6 68 0 . 4 7 0 1 . 9 7 9 1 . 6 2 2 . 0 1 2 . 0 0
Ne-He 1 . 3 4 0 0 . 5 5 6 5 . 0 4 5 1 . 7 7 2 . 7 4 2 . 0 0
A-He 1 .6 35 0 . 9 8 2 9 .98 4 2 . 9 3 2 . 7 6 2 . 0 0
Kr-He 1 . 813 1 . 2 1 4 2 0 .9 2 4 . 0 9 2 . 8 9 2 . 0 0
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CHAPTER V

THERMAL AND PRESSURE DIFFUSION IN MULTICOMPONENT MIXTURES

§  1. General theory

in  C h ap te r I I  ( e q u a t io n  ( 1 9 .1 1 ) ) ,  we have shown t h a t  th e
v e lo c ity  o f mutual d if fu s io n  for gases i  and j  was given by

In a m ixture of s gases in  which molar co n cen tra tio n s , tem per­
a tu re  and pressure a re  not uniform , we w il l  have s-1  independent
equations analogous to  ( l .V ) .

When the  steady  s t a t e  is  reached, a l l  of th ese  eq u a tio n s  w il l
be equal to  zero . Also,

Hence, a t equilibrium  we o b ta in  the following system of s equations,

grad In c t -  Xt grad In Cj ■ I Z [ l grad In T -  Zt l  grad In p

Xt grad In c t - Xj grad In Cj = I Z jj grad In T - ZtJ  grad In p

Xt grad In c i - X8 grad In cs = i  Z^s grad In T - Zis  grad In p

0, -  U, = [(X4 grad In c x - Xj grad In Cj) +

+ Zi j

(l.V )

grad In p -  i .  Z y  grad In T]
2

where, in  a general form,

l.nT* - l.mT

l [ / 2 )  m;

(2. V)

S S
S grad ck = a  ck grad In ck = 0

k=1 k = l
(3. V)
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ci grad In ct t --  + Cjgrad In Cj + -- + cs grad In cs « 0
(4.V)

In connection with experiments, it is convenient to solve the
system (4.V) in order to obtain grqd ct and grad In (c1/cj). By
integration of the equation involving grad cA we obtain the
separation, St = c[* - c|, well known when dealing with thermal
diffusion. Then c“  and cj refer to the molar concentration of
the gas of kind i in the regions at absolute temperature T11 and
T1 respectively.
By integration cf grad In (Cj/cp-we can obtain the separation

factor, j = (c1/cj)II/(c1/cj)l where (Oj/Cj)”  and (Cj/c.,)1
refer to the concentration ratio of gases i and j at temperatures
T11 and T1, respectively.
By using the system (4.V) we can obtain

grad ct = KTi grad In T - Kpl grad In p (5.V)

grad In (Cj/Cj) = (aT)lj grad In T - (ap)lj grad In p (6.V)

where
8S

k=l ci°k Zik/XiXk

s
s
k = l Ck/Xk

KP1
k^x ci°k zik/xixk

sS
k=l Ck/Xk

(7.V)

(8. V)

s ck [z;"k/XiXk - z;k/Xjxk]
(“tiij

k= 1 (9. V)

k-l °k/Xk

< V i J
°k Ẑik^XiXk ' Zjk^XjXk̂  Zij^XiXj

S ck/xkk= 1 K K a ck/xk
k= 1 K K

(10. V)
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The q u a n titie s  z|k, Zlk and Xk are given in  general by (2.V).
The quantity  KT1 and (<xT) 1j are  respective ly  the thermal d i f f u s ­
ion rat io  of the gas i and the thermal di f fus ion fac tor  of gases
i  and j ,  in  th is  succession.

In the  same way we in d ic a te  K as the  pressure  d i f f u s i o n
ra t io  of the  gas i  in  a complex mixture of s gases and (a  ) tJ
as the pressure d i f f u s i o n  fa c to r  of the gases i  and j ,  in  th is
succession.

The thermal d iffusion  r a t io  KT1 is  re la ted  to  thermal d iffusion
fac to rs , as

KTi = k^j c i c k (“ r U k  ( 1 1 . V)

Also,

Kpi  “ J  c i c k « V i k  <12- V>

By means of equation (6.V), we can easily  obtain,

<«T>ij = ‘  ^ J i  • (ap>i j  = ‘  (ap>j i  (1 3- V)

ik + ^°T^kj = ' (ap) lk + (ap) kj = âp U j  d 4 .V )

All the equations given above w ill be va lid , whatever formulae
are applied fo r the mean free  paths, l k and l k.

In Whalley and W inter’ s theory (Wl) fo r complex m ixtures, KTi
i s  given in  a r a th e r  complex form ,though e q u iv a le n t to  our
equation (7.V). The pressure d iffu s io n  ra t io , K , ,  is  only given
fo r  b inary  m ixtures. Thermal and p ressu re  d if fu s io n  fa c to rs ,
( a ^ i j  and ( « p ) ^ .  were no t determ ined fo r complex m ix tu res.

Whalley and Winter worked out th e i r  theory  assuming a r ig id
e la s t ic  sphere model. l k was id en tif ied  with Maxwell’ s mean free
path corrected  fo r p e rs is ten ce  of v e lo c itie s , equation ( 2 .I I I ) ,
l '  was ind ica ted  as a mean fre e  path fo r momentum t r a n s f e r  to
which the  au thors proposed an approximate formula (see eq u a t­
ions 17, 18, 19.I I I ) .

I f  we assume for the mean free  paths 1. and l t a re la tio n s h ip
of the form

I j  -  (1 ♦ a t ) l t

65



the thermal diffusion factor for gases i and j, in this succession,
is given by

(or)ij (1 ‘ k = i Ck&k) -J/ij - ■?/!, aj

Ck"k/Xk

(15. V)

which is a general equation independent of any specification
for the quantities ak.

§ 2. First approximation for the thermal diffusion factor

Though formally simple, the above equation (15.V) for the
thermal diffusion factor will become very laborious in practical
cases of multicomponent mixtures if in it we use the common
equations for the mean free path, lk, for number density trans­
fer. The equation will be even more complicated if the quantities
ak are not equal to zero.

Following the lines used in Chapter IV, we consider in our
treatment that the quantities ak depend predominantly on the
‘hardness’ of the force field surrounding the molecules of kind
k. For ‘rigid elastic spheres’ we assume that all the quantities
ak are equal to zero. This assumption is only a kind of mathemat­
ical approach and even then not too bad for practical cases.
The thermal diffusion factor will be given in this Chapter at a
first approximation only, by using our equation (30.Ill) for the
mean free path for number density transfer, namely,

[pijl = K' (r̂ )*4 (16.V)

where K* is a constant for each gas mixture.
As we have shown, equation (16.V) can be satisfactorily applied

to thermal diffusion in binary mixtures, provided that the mass
ratio is not too close to unity when nij > nij and a. < cjj (when
a change of sign of the thermal diffusion factor with concentrat­
ion may occur).
By using (16.V) in (15.V) we obtain the following equation for

the first approximation to the thermal diffusion factor of gases
i and j, in this succession. The subscript 1, referring to the
first approximation, will always be omitted in this Chapter for
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the sake of simplicity in notation. Subscript T referring to
thermal is omitted as well, when no confusion arises with press­
ure diffusion.

o c ^ s m )  =

s
1 - 2

k = 1 ckak

2

Aj - At

it ̂
(17. V)

where, in general,

A k ** ( W *  (18-V)

When molecules are regarded as ‘rigid elastic spheres’ we
assume in (17.V) a 1 = aj = ... ■ as = 0.

For Maxwellian mixtures we have a i = a j =. . .  = a 8 = l .
For a binary mixture (i,j), equation (17.V) reduces to (20.IV),

namely,

(1"ai)Aj ' <l"aj)Ai
.(b) + c(b)

(19. V)

The notation (b) has been added because the thermal diffusion
factor of the binary mixture (i.j) will afterwards be compared
with the corresponding one of a multicomponent mixture.

If (19.V) is compared to the corresponding value of our ‘r.e.s.’
model, the binary thermal separation ratio, j>, is given by

ajj^(sm) (l-a.)A. - (l-a,)Ai
R (b> = ------ = -------I-----------  (20. V)

a ^ j ^ r e s )  Aj - A t

This equation will be used in the next dicussion.
According to equation (20.V), the binary separation ratio,

R ^ ,  would be independent of concentration, at a first approx­
imation. As we have seen in § 7.2. IV, a small' variation is
usually observed in experiments.

If the gases i and j are isotopes, equation (17.V) should bring
about equation (15.IV) for binary isotopic mixtures:
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1

2
(21.V)a(b)(sm) mï  - rai

c<b>m* ♦ c<b>m*

where a.ij = a.i = ar  This equation has been obtained by making
the particular assumption that lt = 1, and also l' = l' f0r
isotopic mixtures. ^

In order to reduce (17.V) to (21.V) in the limiting case of a
binary isotopic mixture (i,j), a kind of approach has to be
considered: we assume that the coefficients of viscosity of
isotopes, and rjj, are both equal to the coefficient of viscos-
ity> rl̂ > of the gas with natural isotopic composition. As a
result of that approximation, quasi-theoretical values for
and Aj for isotopes i and j are the one increased and the other
decreased, relative to the actual value which should be taken,
depending on the concentration of each isotope in the natural
gas A. Therefore, the difference between the quasi-theoretical
values ocik(res) and otjk(res), as well as the difference between
a.̂ k^(res) and ajb *, has been increased somewhat artificially.
Even then, the error which is committed, is, indeed, rather small.

§ 3. Effect of addition of gases to a binary mixture

In this paragraph we will compare the thermal diffusion factor
in a multicomponent mixture (i, j,...,s) to that of a binary
mixture (i,j). In particular we consider in what way the thermal
diffusion factor of gases i and j would be changed by addition
of a gas k to the initial mixture (i.j).

Let us suppose that gases k..... s are added to the binary
mixture of gases i and j, with concentrations c[b  ̂ and cjb\
respectively. Consider, clt cjp ck, .... cs, the resulting con­
centrations in the multicomponent mixture. Since the proportion
of the gases i and j has not been changed, we have

c1/c[b) = cj/c|b) = ct + Cj (23.V)

We first determine the thermal separation ratio, R.j, of gases
i and j in the multicomponent mixture. By means of (17.V) we have

Rij
ttj,(sm)
otjj (res)

= 1 k = l
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1, the above equation can be w ritten  asSince S cb =
k= i  K

( l - a k )Aj -  ( l - a j ) A k ( l - a k )Ai  -  ( l - a 1 )Ak

■

(24. V)

Now, by using (19.V), we have,

-J-----= -J---------- - - —------ -  = - [<x£b ) ( re s ) ]k (25.V)
2 A. 2 A. 2 A. “

( l " ak ) Aj - ( l - a j ) A k d * a k ) Ai  * ( l - a j l A j j

2 Ak
[cx^j) (sm)]k - [a£b ) (sm)]k

(26.V)

S ubscrip t k, which has been added, is  the n o ta tio n  used for
the  asymptotic values of b inary  therm al d iffu s io n  fa c to rs  when
c£b) = 1 (see § 1 .3 .IV - Lim iting values of q u a n ti tie s ) .

Introducing (25.26.V) in (24.V), we obtain

8 [<x£b ) <sm) ]k -  [oc<b ) ( s n . ) ] k
Rn  = S Ck . ---------------------------------------  (27.V)

k l [a |[b ) ( r e s ) ] k * ( r e s ) ] k

Then,

Rij = c i K V h  + cj K yh  + k5- ck <28-v>
kj^l, J

where

* [<x<J) (sm)}k - [oc<b )(sm)]k (29.V)

and an analogous equation fo r A^J|S) changing (sm) by (res) in to
(29. V).

Since the p roportion  of gases i  and j is  not changed by the
a d d itio n  of gases k ........... s ,  equa tion  (2 2 .V) i s  v a l id .  Then

c , [R<5>]t ♦ Cj = (c t + c j ) { c ( b)[R[b>]1 ♦ c<b>[R<b>]j}
(30. V)
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As shown by equation  (2 0 .V), th e  b inary  therm al s e p a ra tio n
ra t io ,  should be th e o re tic a lly  regarded as a constan t, at
a f i r s t  approximation. Even then equation (30.V) a lso  holds for
a lin ea r v a ria tio n  of R<b) with concentration. Then c j b>[R<*>] +
+ is  the value of the  thermal separa tion  r a t io  fo r
the binary mixture ( i , j )  with molar concentrations c^b  ̂ and c | b\
t o  which the gases k ........... s have been added.

Introducing (30.V) in  (28.V), the thermal separation ra t io  o f
gases i and j  in a multicomponent mixture is  given by

Mi,  j
RU ■ « 1  * V  * ! ï ' * c„ 4 i" > /A j” "’

This equation th e o re tic a l ly  p red ic ts  a linear variation o f  the
thermal separation r a t io  w ith  molar concentrations, c^, o f  the
gases which have been 'added’ to the in i t ia l  binary mixture ( i , j ) .
I f  binary thermal d iffu s io n  fac to rs  are experimentally availab le ,
equation  (3 1 .V) p ro v id es  a very sim ple way to  study therm al
d iffusion  in multicomponent mixtures. Elementary ‘r . e . s . ’ thermal
d iffusion  fac to rs which have to  be used in (31.V) can be obtained
by means of (19.21.V).

The v a ria tio n  of the  therm al d iffu s io n  fac to r  of gases i  and
j  with addition  of gases k, . . . ,  s is  b e tte r  discussed by using
the  quantity  Aj^sm) which is  defined as

a ,  . ( s i )
A. . (sm) m —Li------  (32. V)

otjb) (sm)

where a jb*(sm) re fe rs  to  the concentrations c j b* and c j b .̂
According to  (32.V) the thermal d iffusion  fac to r of gases i  and

j  should increase by a d d it io n  o f  a gas k i f  A. . (sm) > 1 . Con­
verse ly , i t  should decrease i f  Aj,(sm) < 1.

Since (32.V) can be w ritten  as

Ai j (sm)
j ( r e s )  a . ^ f s i )  a j j  ( r e s )

aj[b  ̂( r e s )  o i j j f r e s )

we obtain, by using (31. V) and (17. V)

a j b ) (sm)
(33.V)
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\  j (sm) A^res) cj>
s

(• 2
k= 1

k?<i. j R<*>ij

(sm)
Ak j i

A( r e s )
"kj 1

(34.V)

where AAj( r e s )  is  the value of A^jCsm) fo r ‘r . e . s . ’ m olecules
(a i = a, = . . .  = as = 0), namely,

a j  j * ( r e s )
1/Ajj (res) = —------------*

a 4 j ( r e s )
(Ci ♦  C j )

s
+  2

k i l
k^l, j + c

(35.V)

Let us now discuss the above equations (34.35.V)
1) I f  molecules are regarded as 'r ig id  e la s t ic  spheres or i f

Ri j ) = fefcj^k = K i ^ k  can be shown th a t A ^ f /R * ^ .  Ak j iS> =
= 1. Hence, Ai J (sm) = Ai;j( re s ) . We have then

A,, (res) * l i f  2 c fe Ak £ c<b)Ai + c \ b)Aj . Then a*}* (sm) (sm)
* J k  s  1

k f l .J  (36. V)

On the other hand, the  q u a n titie s  Ak -  (mk/ Tlj[)^ a re  proportion­
a l  to  m£crk. Therefore we can withdraw the following conclusion:
I f  molecules are regarded as ‘r ig id  e la s t ic  spheres ' or i f  a l l
the binary thermal se para tion  r a t io s  are equal, the thermal
d i f fu s io n  fac to r  o f  gases i and j  should increase by a d d it io n
o f  gases consisting o f  l igh ter or smaller molecules ( A k <  A1, A j ) .

Conversely, the thermal d i f f u s io n  fac tor  should decrease by
addition o f  heavier or larger molecules ( A k >  A i , A j ) .

2) In  general cases  th e  v a r ia t io n  of the therm al d if fu s io n
fa c to r  with ad d itio n  o f gases to  the binary m ixture ( i , j )  may
be q u ite  d if fe re n t from th a t  p red ic ted  by th e  ‘r . e . s . ’ model,
as i t  can be in fe rred  by means of equation (34.V), i f  the binary
separation ra tio s  R<b ) . [ R ^ ] * .  [Rk i>]k markedly d if f e re n t-
Indeed, we have,

(3T¥)

Ak j i2 * * S) * [o4b )(re s ) ] k - [<x<b )( re s ) ]k

I f  the r a t io  A< * f / A < J f s) > R { } \  then  by means o f (3 4 .V)
A (sm) > Ai1 ( re s ) ,  and th e  therm al d iffu s io n  fa c to r  increases
more than i f  molecules are  regarded as ‘r ig id  e la s t ic  spheres’ ,
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provided th a t  th e  added gas k c o n s is ts  of l ig h te r  or sm alle r
molecules (A1:j(re s )  > 1 ).

I f  and a re  oppos i te  in s ign,  then the thermal
d i f f u s i o n  fac tor  changes s ign  with concen tra tion  of the added
gas, as shown by (34,V).

§ 4. Addition o f  a th ird  gas to a binary isotopic mixture

4 . i .  I n t r o d u c t i o n .  This p a r t ic u la r  system of the general case
s tu d ied  in the preceding paragraph is  one of in te r e s t  because
therm al d iffu s io n  is  ex ten s iv e ly  used fo r separa ting  iso to p es .

Addition of a gas to  iso to p ic  m ixtures has been rep o rted  by
several authors, in order to  achieve b e tte r  experimental conditions
fo r  iso to p ic  enrichm ent (C10.C11.C12,VI). U sually , the  added
gas, B, is  chosen so th a t  i t  co n cen tra tes  between iso to p e s  1
and 2, and can be separated  afterw ards by chemical or physica l
methods. In the therm al d iffu s io n  column, each of the iso topes
concentrate a t e ith e r  side of the region mostly occupied by the
gas B. Schematically, we get the sequence

1 - 1 B - B - B 2 - 2

which shows th a t the add ition  of B reduces the loss of iso to p ic
m ateria l in the hold-up of the column, i . e . ,  in the t r a n s i t io n
portion between the regions mostly enriched on isotopes 1 and 2
respective ly . This is  of great importance when the amount of the
iso top ic  mixture to  be separated  is  very small.

As a g en era lisa tio n  of the  same p rin c ip le , separa tion  of more
than two isotopes may be performed by add ition  of a convenient
gas consisting  of sev era l iso to p ic  molecules. C lusius and Schu­
macher (C12) could alm ost com pletely separa te  the iso to p es  of
n a tu ra l Argon, 36A, 38A and 40A by using hydrogen ch lo rid e . In
the  column the follow ing sequence is  schem atically es tab lish ed :

36A - H35C1 - D35C1 - 38A - H37C1 - D37C1 - 40A

Transition  regions between isotopes of Argon are enlarged and
8A could be withdrawn w ith ap p rec iab le  enrichm ent. 0 .6  cm3

were obtained with a co n cen tra tio n  higher than 90%. With Argon
alone , in  which n a tu ra l  abundance of 38A is  0.060% on ly , the
separation  of th is  iso tope  would be nearly  im possible.
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In the preceding cases the molecular mass of the added gas is
close to that of the isotopes to be separated. A.E.de Vries (VI)
refers to another method, used by R.H.Davies at Harwell, for
separation of 3He and 4He. Hydrogen is added to natural Helium,
in which the abundance of the desired isotope, ^e, is 1.3 x 10‘4%
only. The top reservoir of the thermal diffusion column is kept
filled with Hydrogen in order to reduce the effective top volume
occupied by Helium enriched in 3He. As a result, the time to
reach stationary conditions is appreciably shortened.

In the examples given above, the addition of a gas tends to
decrease the concentration of the desired isotope in transition
regions, or to shorten the relaxation time of the column. Vari­
ations of the thermal diffusion factors, as a consequence of
interactions of the added gas upon the molecules of the initial
mixture, are not considered or only mass and diameter effects
are considered. However, it would be very important if the
thermal diffusion factors themselves could be increased or, at
least, not markedly decreased. Therefore, the following discuss­
ion may be of value to choose the gas which should be added to
the isotopic mixture, in order to get better experimental con­
ditions for separation.

4.2, Variation of the isotopic thermal diffusion factor and
separation ratio with addition of a third gas, Let US take a gas
A consisting of two isotopes, 1 and 2, with molar concentrations
c$b) and c£b\  respectively.

If a third gas, of kind B, is added to the initial isotopic
mixture, concentrations cj, c 2 and cB in the resulting ternary
mixtures must be such tliat

c1/cib) = c2/c<b) = cx + c2 >5 cA (38.V)

and also

cA + cB - 1 (39.V)

By using equations (17.V), the thermal diffusion factor,
a 12(sm), for isotopes 1 and 2 in a ternary mixture (1,2,B)
consisting of ‘soft gases’ , is given by

tx12(sm) s 1 * °AaA * °BaB
2

A2 *  A1
°AAA + CBAB

(&1 - a2)/2(40.V)
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where

aA ■ clb)a! + c2b>a2
(41.V)

AA ■- C{ >A1 ♦ c2b>A2

A priori the quantities a x, a2 and aA as well as A lt A 2 and Aa
would be closely equal since they refer to isotopes of the same
gas A.

If aj = a2 = a0t i.e. if all the force fields are equal, then
the inverse of the isotopic thermal diffusion factor should be
linear on concentration, c0 , of the gas added to the isotopic
binary mixture (1,2). In practical cases it may be convenient
to look for such eventual linear dependence because (40.V) is
only given at a first approximation.

Let us now consider the isotopic separation ratio, R 12, for a
ternary mixture (1,2,B). By using (31.V) we obtain,

a12(sm)
a12(res)

where, by means of (29.V)

°a*[¥ + cRA<-)/A<r,r>BrtB21 /ftB21 (42. V)

*il¥ = [°42)(Sm)]B • [°4?)(Sm>3B
AB21S> = [«Bb)(reS>^B ' [aBb>(reS>JB

(43. V)

or equivalently

. (s«)B21 A2 * AB

A^ 8) A2 - Al
^ S >]B • — ----“ • <44-V>

*2 - A1

The separation ratio is a constant; the ratio a b 21>/a b 21S)
is also a constant. Therefore equation (42.V) shows that the
isotopic thermal separation ratio, R 12> for ternary mixtures
(1,2,B) should be linear on molar concentration of the gas added
to the isotopic mixture (1,2), at a first approximation.

Equation (42.V) also shows an important feature of thermal
diffusion in ternary mixtures. If experimental data of the
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thermal diffusion factor a 12(sm) are available over a sufficient­
ly large concentration range of the gas B, indirect values for
the binary separation ratio, Rj!^, misht be obtained by extra-

B
might be obtained without any measurement of non-isotopic thermal
diffusion factors, which might be of practical interest.

The variation of the isotopic thermal diffusion factor with
addition of B is better discussed by using the quantity A 12(sm),
equation (34.V), which can in this case be written as

polation of the above equation to the limiting case as c.
= c. + c, = 1. Also, a relationship between [Rjjj*]B and [r 2b ]

a12(sm)
A12<Sm> * — ----aj2 (sm)

A 12(res) CA + cB .
A (sm)B21

.(b) A(res)B21
(45.V)

where A,2(res) gives the variation of the thermal diffusion factor
for ‘r.e.s.’ molecules, namely, equations (35.41.V),

1/A12(res) = cA + c b .Ab/Aa (46.V)

According to equation (45.V), the variation of the thermal
diffusion factor with addition of a third gas should depend on
the following effects:

1) Mass and diameter effects. They are mainly determined by
the quantity A 12(res). We assume then R j2* = [R[b ^ b = ^ 2 B  -}b ‘
Therefore, by means of (46.V), the isotopic thermal diffusion
factor tends to increase by addition of a gas consisting of
lighter or smaller molecules (AB < Aa). Conversely, it tends to
decrease when the gas added to the isotopic mixture (1,2) consists
of heavier or larger molecules (AB > Aa).

This conclusion has also been obtained by Whalley and Winter
(Wl) in the limiting case, as the concentration of the added
gas was equal to unity and molecules are regarded as rigid
elastic spheres.

The variation of the quantity AB with molecular mass, mB , is
usually rather small, hardly increasing or decreasing the thermal
diffusion factor by a factor of two.

2) Hardness effect. This effect is expressed in (45.V) by the

ratio .AB2i8)  ̂ (see also eQ‘ 44,V)' (b).
One would say that we could assume in (44.V) that [R^g Jg

= [r 2b }]b because both thermal separation ratios refer to iso­
topes? This is not true for our elementary theory. As we have
pointed out in § 2.V, we have indeed to consider, as an approx-

75



imation necessary for our treatment, that the coefficients of
viscosity for isotopes 1 and 2 are both equal to that for the
gas A with natural isotopic composition. Therefore, the differ­
ence between the quantities A x and A 2 and therefore the differ­
ence between ot<b)(res) and a]{j>(res) has been increased art-

S*nce 111 Poetical applications the separation ratios,
r ib and are defined by a|^(exp)/a<£>(res) and <x<b >(exp)/
/a2B*(res)> the difference between the experimental values of

R lB) and R^g* been increased artificially.
To take a definite example obtained from our experiments with

ternary mixtures (4He; 36A, 40A), we report the following values:

k ? ? « V eiIP> = °-737 ± °-006; tR4^40^4 = °-707 * 0.005

^4?3«^36<exp) = °-833 ± 0.006; [ R ^ 0]40 = 0.796 ± 0.006

The percentage difference between R<b’6 and R*b>0 is a constant
within the magnitude of experimental’errors (from 4.2 ± 1.5 to
4.5 ± 1.5%).

As we may expect from the above example, the difference between
fR ig^ B  and R̂ 2b ^ b wouid usually be a small one for most pairs
of isotopes. Even then it cannot be disregarded in equation (44.V)
except when R<b) is markedly different from [R<b)]B and [r ^*]
For the latter case a qualitative conclusion may be drawn by
assuming [R<b)]B = [R^b)3B . We have then* by using equations

(44.45.V),
* (sm)
B21

.(res)
B21

[Rib^ b and then,

A 12(sm) = A 12(res) * «B , (b)

Now, by means of (21.V) and assuming a.
Ri2* = <l-ax). Then, by using (20.V), we obtain

(47. V)

a2 = ai2’ We bave

W M .  - R < s >  ■  w v
Ai " ab

(48. V)

If Aj > A B, i.e. if the gas which has been added to the iso­
topic mixture consists of lighter and smaller molecules, then
R i b * > R i2* ff a i > a B* w b ich means, in accordance with the
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discussion made in § 2.IV, that the gas B is 'harder' than iso­
topes 1 and 2.

Therefore, by using (46.47.V), we may conclude: If the binary
isotopic separation ratio, R^2\ *s aPPreciably different from
Rjjj* and R2B ' thermal diffusion factor of isotopes tends
to increase by addition of a gas B consisting of lighter, smaller
(AB < Aa) and 'harder' molecules (RjB\ >

Conversely, it tends to decrease by addition of heavier,
larger and ‘softer’ molecules,

3) Concentration effect. According to equation (45. V) a possibil­
ity exists that the thermal diffusion factor changes sign with
concentration of the added gas if AB2“ * and AB2as  ̂ are opposite
in sign. Such a change of sign will probably be unusual as can
be inferred from equations (43.V).

4,3. Non-isotopic thermal diffusion factors• By means Of (17.V),
the ‘s.m.* thermal diffusion factor, a 1B(sm), of the isotope 1
and the added gas B is given, at a first approximation,by

a 1B(sm) 1 * cAaA ‘ cB aB a b * A i
2 c AAA + c BAB

(aj - aB)/2 (49.V)

The quantities aA and A a are given by (41.V). Por ‘r.e.s.’
molecules we assume in (49.V) a, = aA = aB = 0.

A similar equation is obtained for a.2B(sm), changing the sub­
script 1 into 2 in (49. V).

For most ternary mixtures (1,2,B) the inverse of non-isotopic
thermal diffusion factors, a 1B(sm) and a2B(sm), can practically
be assumed as linear on concentration of the gas B which has
been added to the binary isotopic mixture (1,2). This conclusion
will be very useful in treating experimental results. The error
which is usually made is small indeed, as can be seen by the
following discussion.

Let us consider the quantity cXjB(sm) defined as

<XjB(sm) 1  (1~al)AB - (1~aB)Al
2 °a a a + °b a b

(50. V)

The inverse of this equation is linear on concentrations of

the gases.
Also, by comparison of (50.V) with (19.V) it follows that

a'B (sm) is close to a j g ^ s m )  since Aj and A a (eq. 41.V) are
isotopic quantities.

77



The ratio ajB (sm)/a1B(res) is just equal to the binary separat­
ion ratio R{j>> (see equation 20.V) which should be regarded as a
constant, at a first approximation.

By means of (49.50.V), we have then

a IB(sm) = a[B (sm) . [R1b /R(b ^  (51.V)

Introducing now equation (31.V) for the separation ratio R 1B,
we can obtain, after some developments,

a 1B(sm) = «iB (sm) {[c<b) + c<b) . R2B1] cA + cB> (52.V)

where cjb) and c2b) are the molar concentrations of isotopes in
the initial binary mixture (1,2) and R 2B1 is a quantity theor­
etically independent of concentrations, at a first approximation,
given by

(53. V)

Equation (53.V) shows that the quantity R 2Bi will usually be
close to unity. Indeed, the first term on the right hand side
of this equation will usually be close to unity and is, further­
more, the predominant one.

Therefore, equation (52.V) shows that a 1B(sm) will usually be
close to a[B (sip) and the linear dependence may usually be assumed
for l/a1B(sm). This conclusion can be seen better in Chapter VI
(experiments).

In connection with experiments further considerations have to
be made in respect to the quantity R 2B1 (eq. 53.V). At a first
approximation the binary separation ratios Rjjp and R 2B are
constants and R2B, is a constant as well. In practice both R jB *
and R^b) will usually vary somewhat with different concentrations.
For consistency of this theory we assume that both binary separat­
ion ratios are referred to the same concentration of the gas B
which has been added to the binary isotopic mixture (1,2). With
this assumption the ratio wh*cl1 has to be used in
(53.V), will very probably be a constant and then only a small
variation of R2B1 with concentration may occur due to the second
term on the right hand side of (53.V).
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By dividing both terms of equation (52.V) by a 1B(res), we have
the following relationship for ternary and binary separation
ratios

^ ib = M b * <fejb) ♦ c<b> R2B1] c a + cB} (54.V)

For consistency with equation (52.V), both thermal separation
ratios should be referred to the same concentration of the gas B.

If only ternary thermal diffusion data are available, the
binary thermal separation ratio RjB * can be obtained by a method
of successive approximations.

From the general equations (13.14.V) we obtain the following
relationship for the isotopic and non-isotopic thermal diffusion
factors of a ternary mixture (1,2,B):

a12(sm) = a1B(sm) - a2B(sm) (55.V)

This equation brings about a kind of final test for all of the
theory given in § 4.2 and 4.3.V, when it is applied to the most
probable experimental equations for a 1B(exp), a2B(exp) and
a 12(exp).

§ 5. Mixture of two gases each consisting of a pair of isotopes

This case can be regarded as a generalisation of that of the
preceding paragraph. Therefore we present only the most important
conclusions and equations.

Let us consider two gases, A and B, each consisting of a pair
of isotopes, (1,2) and (3,4), respectively, with concentrations
cA and cB. The proportions of each pair of isotopes do not change
with the ratio cA/cB and then

c1/c(ib) = c2/c<b) = + c2 = cA
(56.V)

C3/(ijb) = C4/C4b> - C3 + C4 = CB

where c[b\  c^b) are the molar concentrations of isotopes 1 and
2 in the gas A, and c x and c2 the corresponding molar concentrat­
ions in the mixture (A,B). Similarly for the isotopes 3 and 4
of the gas B.
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5.1. Isotopic thermal diffusion factor and separation ratio.
They are given by the following equations:

a l2 (sm> * ----- — ----—  • — ----—  * (at - a2)/2 (57.V)
2 caaa + cbab

where aA,aB and A a ,Ab are given by equations similar to (41.V)
for each pair of isotopes.
Por ‘r.e.s.’ molecules we assume in (57.V) a t = a2 = aA = afi = 0.
A similar equation is obtained for cxg4(sm).
If the force fields are all equal, the inverse of isotopic

thermal diffusion factors will be linear on concentrations c.
and cB . in practice it might be convenient to look for such
eventual linear dependence because isotopic thermal diffusion
factors are only given at a first approximation.

The isotopic separation ratio is given by

a12(sm)

al2(re8)
CARl + C„ ,<b)

. (SB)
"321

A(res)
321

+ c(b)
| (SB)

.(res)
A421

(58. V)

where the quantities A j J J ^ / A ^ J a r e  analogous to (43.44.V).
According to (58.V), the isotopic separation ratios, R 12 and

R 34, should be linear on concentrations cA and cB of gases A
and B, respectively.

The variation of the isotopic thermal diffusion factor can
be studied by means of the quantity A 12(sm) = a 12(sm)/aj2)(sm)
where aj2 is the thermal diffusion factor of isotopes 1 and 2
for the gas A alone. We have,

"A + cb .(b)
. (sm)
"321

, (sn)
+ C(b)

o(b) .(res)
12 '  A3 21

o(b) .(res)
12 '* 4 2 1  J .

(59.V)
where A,2(res) represents the variation of the thermal diffus­
ion factor for ‘r.e.s.’ molecules, namely.

1/A12(res) = cA + c 0Ab/Aa (60. V)

If binary separation ratios R ^ * ,  R 3 ?)* R 4 2 )> R 4 1  ̂ are not
too close to r |2  ̂ we can conclude: the thermal diffusion factor
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of isotopes 1 and 2 of the gas A usually tends to increase with
increasing concentration of the gas B consisting of lighter,
smaller and ‘harder’ molecules. Conversely, the thermal diffus­
ion factor for isotopes 3 and 4 of the gas B will decrease then
with increasing concentration of the gas A.

5.2. Non-isotopic thermal diffusion factors and separation
ratios. The thermal diffusion factor of isotope 1 of the gas A
and the isotope 3 of the gas B is given hy,

a13(sm) 1 - cAaA • cBaB A3 • A1
2 °aaa + cbab

(aj - a3)/2 (61.V)

If we define a quantity ot!3(sm) as

j (l*a.)A - (l-a3)Aex' (sm) = ±  . --- L_?----- -— -

caaa + °bab
(62.V)

then,

<x13(sm) = a13(sm) {[cj  ̂ + c3 ^231^ CA + ĉ3 * + C4 R̂431̂  CB̂
(63. V)

where the quantities R 231 an(  ̂R43i are usuaH y  close to unity.
They are given by equations analogous to (53.V). The ratios
R23>/^13) an<* R i4>//Ri3) are assume^ constants referring to the
same concentrations, cA and c„.

The inverse of non-isotopic thermal diffusion factors a 13(sm),
a 14(sm), a23(sm) and a24(sm) may usually be assumed as linear on
concentrations cA and cB .

We also have,

0Cj3(sm)
------ - r 13)a13(res)

(64.V)

and

R13 * ^ c < b) + c<b)R231] cA + [c<b> ♦ c<b)R431] cB} (65.V)

The following equations connect isotopic and non-isotopic
thermal diffusion factors:
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(66. V)
a 12(sm) = a 13(sm) - a23(sm) = a 14(sm) - oc24(sm)

a34(sm) = a 14(sm) - a 13(sm) = a24(sm) - a23(sm)

§ 6. Mixture of isotopes

For a mixture of s isotopes we assume

ix = 12 = ... = is ; &1 = a2 = ... = &s = a (67.V)

Equation (15.V) thus reduces to

atj(sm)
1 - a

2 8.2
k=l

(68. V)

If we consider a binary mixture of any pair of isotopes (m,n),
we will usually have c^b) m^ + c*b) m^ closely equal to the sum­

mation 2 cknr of the above equation (68. V). Therefore the thermal
k=i K K

diffusion factor of isotopes i and j would be almost the same
for binary and multicomponent mixtures.

§ 7. Pressure diffusion

Only a small reference will he made here. According to our
elementary theory, pressure diffusion can be studied readily
because it is related to thermal diffusion by the following
simple equations.

When molecules are regarded as ‘rigid elastic spheres’ we
assume ak = 0. Then, by means of (14. IV), we have lk ■ lk, which,
introduced into (2,V), gives Z 4 ,/2 = Z i,. Hence, by using (9,
10. V), we obtain

(otp) t j = 2(aT )lj(res) (69.V)

Therefore pressure diffusion should be independent of molecular
forces. This feature suggests immediately that if a cascade method
could easily be realized in practice, pressure diffusion would be
a comparatively better process for separating isotopes.
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CHAPTER VI

EXPERIMENTAL THERMAL DIFFUSION IN COMPLEX MIXTURES

§ 1. Introduction

In this chapter we present experimental thermal diffusion data
for mixtures of natural Argon-Helium, Neon-Helium and Neon-
Hydrogen regarded as ternary mixtures (3®A, *®A; He), ( Ne,
22Ne; H,) respectively.
The m i n  subject of our experiments was to observe the influence

of the ‘added* gas - Helium and Hydrogen - upon isotopic separat­
ions of 20Ne-22Ne and of 36A-40A. Isotopic thermal diffusion
factors have been determined by means of mass spectrometric
analyses over a large concentration range of the added gases.

According to our elementary theory we may roughly say that
the isotopic thermal diffusion factor would increase with add­
ition of a gas consisting of lighter and ‘harder’ molecules.
Conversely, it would decrease by addition of heavier and ‘softer’
molecules.

Experimental results show that isotopic thermal diffusion
factors increase with concentration of Helium in ( A, A;
4He) mixtures and decrease in (20Ne, 22Ne; 4He) and even more
in (20Ne, 22Ne; H2) mixtures.

To heighten the accuracy of determinations of the isotopic
thermal diffusion factor, we have always chosen the best set of
conditions of the mass spectrometer for carrying out the analyses
for each pair of isotopes, namely 20Ne-22Ne and A- A. As a
consequence, our machine could hot simultaneously provide accurate
analyses for 4He and H2. For that reason only a few non-isotopic
thermal diffusion factors have even then been determined compar­
atively with somewhat large experimental errors.

Experiments have also been made with natural Neon-Argon mix­
tures. Isotopic analyses of 20Ne-22Ne and of 36A- A could be
carried out satisfactorily by mass spectrometry over large con­
centration ranges of Neon and Argon. Since we w?re interested
mostly in the influence of each gas upon the isotopic separat­
ion of the other, Neon-Argon mixtures have been regarded roughly
as ‘quaternary’ mixtures (20Ne, 22Ne; 36A, 4 A).

Experimental data show that the thermal diffusion factor of
Neon isotopes decreases markedly with increasing concentration
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of Argon. Conversely, the thermal diffusion factor of Argon
isotopes increases with increasing concentration of Neon. This
is Qualitatively in accordance with our theory because Argon
molecules are heavier and ‘softer' than those of Neon.

Non-isotopic thermal diffusion factors could be determined over
a large concentration range of the added gas in (He-A) and (Ne-A)
mixtures. It was observed that the inverse of non-isotopic
thermal diffusion factors was linear on concentrations of Neon
and Argon, which is in accordance with our theory.

2.1. The measurement of the thermal diffusion factor. For measur­
ing the thermal diffusion factors we have used the ‘swinging
separator’ (Trennschaukel) described by Clusius (C13). A block
diagram is given in fig.1.VI. It consists essentially of 9 stain­
less steel tubes connected in series, the upper part of each
tube with the lower part of the following one, via a stainless
steel capillary tube.

The upper part of the tubes is forced into a copper block
which is heated by a 200 W. heating element. The mains voltage
supplied to this element could be varied by means of a trans­
former in order to obtain any desired ‘hot’ temperature, T11, in
between 373 and 750° Kelvin.

The lower part of the tubes is cooled by a water stream. The
‘cold’ temperature T1 was practically independent of T11.

COLD

PUMP
Pig. l.VI

Block diagram of the Trennschaukel’
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About 1 cm3 of the gas mixture was pumped to and fro period­
ically by means of a glass U tube, partially filled with mercury,
which was swung by an electromotor and an eccentric wheel. There­
fore, concentrations of the gases in the hot and cold regions of
two consecutive tubes should be equalized. If a separation factor,

j, of gases of kinds i and j, namely,

(Oi/Cj)11
<*iJ <°i/,cj)I

(l.VI)

is obtained by an elementary thermal diffusion process in each
tube, the total separation factor achieved with a Trennschaukel'
of n tubes should be

Qu - a}, (2.VI)
Experimental values of the thermal diffusion factor of the

gases i and j can thus be obtained by means of equation (18.IV),
namely,

In Qtj = n j (sm) In (T11/!1) (3. VI)

2.2. Temperature stability of the Trennschaukel. Stabilisation
of temperature of the hot and cold regions of the “Trennschaukel
should be good enough in order to obtain experimental values of
the thermal diffusion factors with reasonable accuracy.

Figure 2.VI (see p.86) shows the approach to the steady state
of temperature for 187 V. set up on the transformer, with the
system filled with natural Neon at a pressure of about 1 atm.
Stability is reached after about 2 hours and maintained dur­
ing 48 hours within a variation of 2° for a mean temperature
of 666° Kelvin in the hot region, and within 0.5° for a mean
temperature in the cold region of 286,5 Kelvin. Experimental
values of thermal diffusion factors were practically not affect­
ed by these temperature variations during the observations which
had been carried out for about 24 hours. The most important
errors arise from the concentration measurements.

The variation of the temperature, T 11, with voltage supplied
to the heating element is shown in figure 3.VI. The slope of
this curve at increased temperatures is about 2 per volt.
Since the voltage scale of the transformer was rather narrow^
it was somewhat difficult to preselect a given temperature T
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accurately. Por that reason the temperatures at which experiments
have been carried out sometimes differ from one to another.

2.3• The approach to the steady state. The theory Of the
‘Trennschaukel’ has been given by van der Waerden (W7). The
approach to the steady state should be an exponential one and
the ‘half'-life’ was given by

*h = <tp ^  + V

where

tp - I2/Du (5.VI)

V = volume of each tube (in our case V - 23 cm3), 2a * volume
which is pumped to and fro (1.5 cm3 to 1 cm3), tp * period of
the pump (5 seconds), 1 = length of each connecting capillary
(10.4 cm), D1j = coefficient of diffusion, n * number of tubes
of the ‘Trennschaukel’ (9).

For values of the coefficient of diffusion in between 0.1 and
0.8 cm2/sec the ‘half-life' to the exponential approach changes
between 8 and 45 minutes for our ‘Trennschaukel’.

Our experiments have been carried out over 24 hours at least
and are therefore safe enough for our purposes.

A rough experimental determination of the approach to the
steady state with Neon alone has been made. After stabilis­
ation of temperature, the ‘Trennschaukel’ was filled with a
sample of pure Neon at a small over-pressure. At any time tj,
t 3,t.,... a sample of about 1 cm3 N.T.P. from the cold region
(the lower end of the 9th tube)' was brought into the mass spectro­
meter through a capillary tube for analyses of Neon isotopes.
The ratio, (c2o/c22)I‘ of concentrations of 20Ne and.22Ne was
then determined in arbitrary units which only depended on the
characteristics of our mass spectrometer. At any time, t2,t4,
t-,... a sample from the hot region (the upper end of the first
tube) was also analysed and the ratio (C2o/°22' ’ was determined
to the same arbitrary units.

The values of (Cjg/c’jj)1 and (<=20/c22)11 were plotted versus
time and smooth curves were obtained. A mean total separation
factor as a function of time was then determined:

n + 1
In 2 (4.VI)
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*C20^C22*
(6.VI)

II

^20. 22^  = “
^c20^c22^

Values of Q 20 22^ ^  are Plotted on a logarithmic scale in
fig.4.VI. They do appear to obey an equation of the form

2̂0,22̂ ) * ̂ 2 0 . 2 2 ^  <* ‘ e'Xt> (7.VI)
where Q 20 22(“ ) represents the total experimental separation
factor achieved after 24*48 hours, and X is a constant. Since
the ‘half-life’ of this exponential approach is

th = (ln2)A (8.VI)
and the corresponding relaxation time is

tr = 1 A  (9. VI)

we obtain, from fig.4.VI, th = 90 minutes. The theoretical value
according to equation (4.VI) should be 10 minutes approximately.
Such a marked difference between experimental and theoretical
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values is probably due to the disturbances which have been intro­
duced by successive withdrawals of gas from the ‘Trennschaukel’
during the beginning of the thermal diffusion enrichment. Indeed,
each analysis needs a volume of about 1 cm3, and 10 cm in total
have been withdrawn during the initial two and a half hours to
follow the isotopic separation. Nevertheless, the 24 hours that
have been taken for each approach to a steady state are compared
long enough with the observed ‘half-life’.

§ 3. Mixtures Helium-Argon regarded as ternary mixtures ( He,
36A, 40A)

3.1. Experimental data. Natural isotopic abundances of Argon
and Helium are the following:

36A 0.307 % 3He 1.3 x 10*4 %
38A 0.060 % 4He 99.9999 %
40A 99.633 %

Therefore it is reasonable to consider A-He mixtures as ternary
mixtures (36A, 40A; 4He) in which the initial ratio of molar
concentrations, c3e/c4o* same eac^ Helium-
Argon mixtures.

Three thermal diffusion factors have to be considered, namely
a36.40: a4.36 and a4.40* Experimental values are given in Table
l.VI.

Table l.VI
Experimental thermal diffusion factors for (4He; 36A, A)

Concentr.
of Argon

Absolute
Temp.

ipi.ipii a36,40 a4,36 a4,40

1 . 0 0 0 287-655 0.014, ± 0.0010 • • • • • .
1 . 0 0 0 286-666 0.0142 * 0.0008 ;.. ...
1 .0 0 0 286-667 0.0149 i 0.0008 ... ...
0.900 286-667 0.0149 ± 0.001o • • • ...
0.700 288-660 0.0153 ± 0.0013 0.308 ± 0.004 0.323 ± 0.004
0.500 289-663 0. 017g ± O.OOI3 0.358 ± 0.003 0.376 ± 0.003
0.300 288-660 0.020, ± 0.0 0 1o 0.433 ± 0.005 0.454 ± 0.005
0 .1 0 0 288-660 0. 0 222 ± 0. 0 0 1 4 0.572 ± 0.006 0.594 ± 0.006
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The system was f illed  to about 2-2,5 cm Hg over-pressure to
prevent eventual inleakage. Anyway, the peak at mass 28 cor­
responding to N2, was always measured so as to have a check on
the experimental technique. Experiments in which the peak height
of N2 exceeds the normal background of the mass spectrometer by
two or three times were dropped.

Each peak, 4He, 36A and 40A, was measured 6 times. Mean values
were then obtained and the standard errors computed.

We can see in the Table that the absolute errors of the non-
isotopic thermal diffusion factors are larger than those cor­
responding to isotopic ones, the consequence of which w ill be
discussed in 3.3.2.

3 . 2 .  Compar i son o f  t he  i s o t o p i c  t he r mal  d i f f u s i o n  f a c t o r  f o r
Argon al one  and the thermal  d i f f u s i o n  f a c t o r  f o r  **He and w i t h
e a r l i e r  r e s u l t s .  Table 2 .VI and f ig .5 .VI report the values of

given by S tier (SI). In tSe Table our values are also
given for comparison. In the figqre only the mean of the three
values is represented. The mean temperatures, T , to which thein
thermal diffusion factors would be referred, are the algebraic
mean value of absolute temperatures T1 and T11.

Table 2 .VI
The variation of the thermal diffusion factor for Argon

isotopes with temperature

A b so lu te
Temperatures

•pi —mI I

Mean Temperature
T = (TIT11)”m ' '

o<b>**36. 40 R eferen ce

90  -  195 132 0 .0 0 3 1 S 1
90  -  296 163 0. 0071 S 1

195 -  296 240 0 .0 1 1 6 S 1
195 -  495 310 0 .0 1 4 6 S 1
273 -  623 412 0 .0 1 8 2 S 1
455  -  635 537 0 .0 2 1 8 S 1
638  -  835 729 0. 0250 S 1
287  -  655 433 0 .0 1 4 7 This paper
286 -  666 437 0 . 0142 T his paper
28 7  -  667 437 0 .0 1 4 9 T his paper

Figure 5.VI shows that our mean value is somewhat lower than
that corresponding to S tier’s mean curve which gives the isotopic
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thermal diffusion factor as 0.0190 for TB = 437° K whereas our
mean value is 0.0146 ± 0.0009. Errors of Stier's observations are
about 5%.
Table 3.VI gives the thermal diffusion factor for a mixture of

equal concentrations of natural Helium and Argon at different
temperatures, after Atkins, Bastick and Ibbs (Al); Puschner (PI);
Grew (G8); and van Itterbeek and de Troyer (13). We compare
these values with our observations for 4He and 40A K Mean
temperature, Tn, is defined as before.

Table 3.VI
Thermal diffusion factor for Helium-Argon

mixtures of equal proportions

Mean
Temperature “He, A Reference

T_ (°K)m '
157 0.31 I 3
185 0.36 G 8
293 0.38 G 8
328 0.372 A 1
346 0.42 P 1
369 0.39 G 8
438 0.376 This paper

Tabulated values are plotted in figure 6.VI, which shows that
our result agrees well with earlier data, as far as a mean curve
is concerned. Puschner’s value is clearly too high.

3.3, Interpretation of experimental data by the elementary

theory,

3.3.1, Isotopic thermal diffusion factor. According to the
theory given in § 4.2.V experimental values for the thermal
diffusion factor of Argon isotopes, 36A and 40A, in ternary
mixtures (36A, 40A; 4He), will be worked out considering:

a) The inverse of the isotopic thermal diffusion factor may
eventually be linear on concentration of the added gas, Helium.

•) We have measured the concentrations of 4®A and 4He,' whereas the
other authors have made measurements of Argon and Helium con­
centrations. The differences, however, of both procedures can be
disregarded since the concentration of A is so small.
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This is  th e o r e t ic a l ly  accep tab le , a t a f i r s t  approxim ation, i f
the force f ie ld s  are not too d iffe re n t.

b) Isotopic separation  ra tio , R36 40, would be lin e a rly  depend­
ent on the c o n cen tra tio n  of the added gas (Helium) a t  a f i r s t
approximation (see equations 42.44.V).

In Chapter V we u su a lly  worked with the  in d ic a tio n  (sm) fo r
‘s o f t  m olecules’ meaning to  in d ic a te  r e a l  m olecules. In th is
experim ental Chapter we w il l  mostly use th e  in d ic a tio n  (exp)
instead.

Experimental values of R36 40 are determ ined by the  r a t io  of
th e  observed i s o to p ic  therm al d if fu s io n  f a c to r  to  th e  c o r ­
responding value of the ‘r ig id  e la s t ic  sphere model’ , given by
the general equation,

«3 6 . 4 0 <reS> ±  A40 '  A36
2 c 4 A4  + c a Aa

(11.VI)

where Aa = A36 + c<*> A4Q.
The concentrations c ^  and c j ^  of 36A and 40A are the follow­

ing, assuming natu ra l Argon as consisting of those isotopes only,
since natu ra l concentration of 38A has been neglected:

c<£> = 0.0031

_ (b) = 0.9969
c 40

The q u a n ti t ie s  A4, A36 and A40 a re  given in  general by Ak =
« (mk / \ ) ^ ‘ F°r  the reason already explained in § 2.V, we consider
th a t  the c o e f f ic ie n ts  of v isc o s ity  of Argon iso topes are both
equal to  th a t of na tu ra l Argon.

The values fo r  the  c o e f f ic ie n ts  of v i s c o s i ty  of Argon and
Helium have been taken from re f .  (H6). They r e f e r  to  the  mean
tem peratu re  T = 437° K. The corresponding  q u a s i- th e o r e t ic a l
values for the q u a n ti tie s  A4, A3g, A40 and Aa , which have been
used in equation (11.VI), are the following:

A4 = 0.09119 n poise-1
A36 = 0.2528
A40 = 0.2665

Aa = 0.2664g
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The subscript 4 will always be referred to Helium and the sub­
script A;to Argon.

The ‘r.e.s.’ isotopic thermal diffusion factor is then given
by the equation,

l/°<36j4o(res) ■ 38.90 cA + 13.31 c4 (12.VI)

This equation is used for computations of experimental isotopic
thermal separation ratios, R36 40(exp), corresponding to observed
values for isotopic thermal diffusion factors, ag6 40(exp).

Equation (12.VI) brings about the following limiting values
for the ‘r.e.s.’ isotopic thermal diffusion factor:
for c, = l:

[a36.40<re8>]A * a36.)40<reS> = °‘ 0257
for c4 * l:

Ca36.40<reS>]4 j 0.0751

(13. VI)

The ‘r.e.s.’ thermal diffusion factor of Argon isotopes there­
fore increases with increasing concentrations of Helium. In the
limiting case as c4 = 1, the quantity Ag6 40(res) which shows
the influence of the addition of Helium upon the ‘r.e.s.’ thermal
diffusion factor of Argon isotopes, is given by

tA36, 40<res>^4 = " 6j4°(re8)'14 i — - 2.92 (14.VI)
a36!40(res> 0<02#,T

Let us now consider the experimental values for a 36 40(exp)
and R36 4Q (exp). In figures 7.VI and 8.VI we report experimental
data for 1/033 40(exp) and R36 40(exp) respectively. They both
appear to satisfy a linear dependence on molar concentrations,
within the magnitude of experimental errors. The most probable
equations determined by least squares are respectively:

a) l/o36( 40(exp) = (69.4 ± 3.5) cA + (42.4 ± 2.„) c4 (15. VI)

b) R36,4o(exP> “ (°*566 * °*'<05) cA + (0.344 ± 0.02„) c4 (16. VI)
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Pig.7. VI
Variation of the inverse of the thermal diffusion factor
for 38A-40A with addition of Helium.
© Experimental data.
-----Elementary 'r.e.s.' first approximation.

jt He

Pig. 8. VI 36 40
Variation of the thermal separation ratio for A- A with
addition of Helium.
@ Experimental data.
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The corresponding limiting values to the thermal diffusion
factor as cA = 1 (binary isotopic mixture of 36A and 40A) are
respectively, from (15,16.VI)

a ) a36,)40*exp> = 0-0144 ± 0.0007;

b) a3<j)4o<exp> = 0-0145 ± 0.0007
(17. VI)

which are just comparable with the mean value as 0.0146 ± 0.0009
obtained by direct observations with Argon alone.

In the limiting case as c4 = 1 we have, respectively.

a) [a,6(40(axp)]4 3 0.0236 ± O.OOlj!

b) ta36t40(exp)]4 ■ 0.0258 ± 0.0015
(18.VI)

The agreement is not so good as before but may be considered
rather satisfactory within the magnitude of the errors. Theor­
etically, the second value would be preferred.

By means of (17,18.VI) the isotopic thermal diffusion factor
thus increases with increasing concentration of Helium. This
would be expected since Helium consists of lighter, smaller and
“harder’ molecules. In the limiting case as c4 = 1, the experiment­
al value for the quantity A3g 4Q showing the influence of Helium
upon separation of Argon isotopes is then,

a) tA36.40(eXP)]4 = *-*4 * °-15:
(19. VI)

^36,4()(eXp^  4 = ±

whereas the increasing factor should be 2.92, equation (14.VI),
if molecules were regarded as “rigid elastic spheres’.

3.3.2. Non-isotopic thermal diffusion factors. Prom the theory
given in § 4.V we have, for non-isotopic thermal diffusion factors,
a4 3g(sm) and a4 40(sm), when ‘soft’ molecular interactions are
considered,

<x4,40(sm) = a4>40(sm)

a4. 3 6 = a4,36^sm^

t<CV  + C36)*^36, 4, 40^ C A + C4̂  (20. VI)

^ C 3 6 > + C 4 0 )* ^ 4 0 , 4 , 3 6 ^  C A + C 4^ (21.VI)
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where R 3g>440 and R4 0 4 3 g  are given by (53.V). The quantities
R36 4 40 ®nd R40 4 36 ®h°uld> theoretically, be rather close to
the’unity as in ’(53.V) (AB-A2)/(AB-AX) ~  1 and the second term
of this equation is comparatively small.

The inverse of the quantities a' 3g(sm) and a ' 4 0 (sm) of
equations (20,21.VI) is linear on molar concentrations, cA and
c4, of Argon and Helium, respectively.

Another feature of the quantities a4 36(sm) and a4>4Q(sm) is
that they define binary separation ratios, R ^ 36 and R4^40.
according to the equations

a4,40(sm) _ D (b)
-----:---: " R4,40
a4,40<res)

a4,36(SB) . D (b)--8-------" K4 36
a4, 36 < res^

(22.VI)

(2 3. VI)

The values for ‘r.e.s.* non-isotopic thermal diffusion factors,
a4 4 0 (res) and a4 36 (res), which have to be used in equations
(22,23.VI) are obtained by introducing in equation (49.V) the
values of A4 = (m4/r)4)^, A 36, A 4Q and A a given in § 3.3.1. We
obtain,

l/a4 36(res) = 1.128 c4 + 3.298 cA (24.VI)

l/a4 4Q(res) = 1.040 c4 + 3.040 cA (25.VI)

The values for the quantities a4 3 6 (sm) and a ' 4 0 (sm) of
equations (22,23.VI) can be obtained from experimental non-
isotopic thermal diffusion factors, <x4 3g(exp) and a4(4Q(exp)
respectively, as we shall see further on. Therefore equations
(22,23.VI) provide the way to determine binary non-isotopic
separation ratios, R 4b3g and R4b4o> by means of experimental
data for ternary mixtures (4He; ^ 6A, 40A).

Let us now determine the most probable equations for a413g(exP)
and a4 40(exp) (see Table l.VI).

Following the discussion given in § 4.3.V we might assume a
priori that l/a4 40(exp) and l/a4 3 g (exp) were linearly depend­
ent on concentrations of Helium and Argon. By means of (20.VI),
such linear dependence can easily be inferred for l/a4>40(exp)
because the concentration of 36A in Argon alone is only c^g* = 0.0031,
(therefore the brackets on the right hand side of (20.VI) are
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always very close to unity) and l/oc4 40(sm) is theoretically
linearly dependent on concentrations!
On the other hand, the linear dependence of l/a4 3g(exp) with

concentrations is not so evident a priori because the term
C40),R40,4.36 = °*9969 R4o.4 36 is the Predominant one in equation
(21.VI) whereas c£g* is practically of no influence. In order
to show that the error which is committed, assuming l/a4 36(exp)
linearly dependent on concentrations, is even then negligible
within the magnitude of experimental errors, we use the following
method of successive approximations which is only based on the
theoretical assumption that the inverses of the quantities
a4 36(sm) and a! 40(sm) are linear on concentrations.

As a FIRST APPROXIMATION we consider a4 36(sm) = a4 _g (exp)
and also a' 40(sm) = a4 40(exp). Since l/a4 36(sm) and 1/a^4Q(sm)
are theoretically linear on concentrations we obtain, from
experimental data given in Table l.VI,

1/<x4,4o(exp) = 1/°t4,40(exp) = {1-47 * °-01> C4 + (3-82 ± 0.03) cA
(26.VI)

l/a4 3g(exp) = l/a4 3g(exp) = (1.53 ± 0.01) c4 + (4.02 ± 0.03) cA

(27. VI)

By means of (22,25,26.VI), we obtain an equation for the binary
non-isotopic separation ratio, R4 4 0 - Similarly, by means of
(23,24,27.VI) we obtain a first approximation for R4b36. We only
give here the limiting values for these quantities, namely,

[R < ^ 0(exp)]4 - 0.707 ± 0.005; [ R ^ 0(exp)]40 = 0.796 ± 0.006
(28. VI)

and

[R^>6(exp)]4 = 0.738 ± 0.006; [R^36(exp)]3g = 0.821 ± 0.006
(29. VI)

Equations for R36 4 40 and R40 4 3g which appear in (20,21.VI)
can now be determined, at a first approximation, by using in
(53.V) the values for R4b36 and R4b40 already obtained. We also
need a value for the binary isotopic separation ratio R 36>40*
We have, from the results of § 3.3.1, R3g^40(exp) = 0.566.
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We only give here the limiting values for R40>4>36 and R364>40.

k 4 0 .4 .3 6 ] 4 "  ° '  974 * 0> 0 1 5 : [R4 0 .4 .3 6 ] A = 9 8 2 * ° ' 015 <30 ' V I>

^36,4,40-^4 = 1 ' 925 ± ^ 3 6 , 4 , 4 0 ^  = ± (81.VI)

As we can see, they are not far from the unity which is in
accordance with the theory.

SECOND APPROXIMATION. We now have approximate equations for
the quantities R36f4f40 and R40>436. Hence* by using equations
(20,21.VI), we obtain, from experimental data for non-isotopic
thermal diffusion factors, a second approximation for a ' 36(exp)
and a! 40(exp). The natural abundance of 36A being c^JP ■ 0.0031,
the correction considered here is only of in terest for a4(36(exp).
The most probable equation is then,

l / a4 ,36(exP) = d-53 ± 0.01) c4 + (3.95 ± 0.03) cA (32.VI)

At a  THIRD APPROXIMATION we o b ta i n :

l/<x' 36(exp) = (1.53 i 0.01) c4 + (3.96 ± 0.03) cA (33.VI)

w hich  j u s t  c o n f i r m s  t h e  p r e c e d in g  e q u a t io n .  A c c o rd in g ly ,

[R4b36(eXp)-U = ° ' 737 * ° - 006: ^ 4 b36(eXP^ 3 6  = ° ' 833 * ° ' 006
(34.VI)

By means of (28,34.VI) we obtain, at a third approximation,

[R4!36(eïp)]4

[R4 ! i o < eXP )]4

1.042 ± o .o i5;
t R4 ! 3 6 ( e X p ) ] 36

K bl o (eXP) ]40

= 1.045 ± 0.015

(35.VI)

These re su lts  are ju s t in accordance with the hypothesis
assumed in theory th a t the quotient of non-iso topic binary
separation r a t io s ,  both referred  to the same concentration
ratio , would be regarded as a constant. •

Also, we obtain, at a th ird  approximation, an equation for
R40 4 3 6* Limiting values are the following:
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^ 4 0 ,4 ,3 6 ^4  " ° - 976 4 ° - 015: [R40.4,36^A = ° - 984 4 0.01g (36.VI)

F in a l ly ,  th e  most p ro b a b le  eq u a tio n s  which a c c o rd in g  t o  th e
elem entary th e o ry  s a t i s f y  experim ental v a lu es  of n o n - iso to p ic
therm al d i f f u s i o n  f a c to r s  in (4He, 36A, 40A) m ix tu res  a re  the
following:

1/ 0t4 f 4o (exP) = d - 4 7  ± 0.01) c4 + (3.82 ± 0.03) cA (37. VI)

and

( 1 . 5 3  ± 0 . 0 1 )  c .  + ( 3 . 9 6  ± 0 . 0 3 )  c .
(exp) = ---------------------- =-------------------------------^  (38. VI)

c 4 4 ( 0 . 0 0 3 1  4 0 . 9 9 6 9  R4 0 > 4 > 3 6 ) c A

which fo r  p r a c t i c a l  purposes is  very c lo se ly  equivalen t to

l / a 4(36(exp) = d - 5 3  ± 0.01) c 4 4 (4.03 ± 0.03) cA (39.VI)

Equation (39 .VI) is  experimentally equ iva len t  to  (27.VI) which
shows t h a t  th e  e r r o r  which is  committed, assuming a p r i o r i  th a t
l/oc4, 36(exp) was l in e a r ly  dependent on concen tra t ions ,  i s  neg lig ib le .

T h e re fo r e ,  th e  i n v e r s e s  o f ^ n o n - i s o to p ic  therm al d i f f u s i o n
fa c to rs  o f  ternary mixtures  (4He, 36A, 40A) are considered to be
linear on concentrations o f  Argon and Helium w ith in  the magnitude
o f  experimental errors.

E x p e r im e n ta l  most p r o b a b le  e q u a t io n s  ( 3 7 , 3 9 . VI) and th e
observed values of 1 / a .  4Q(exp) and l / a 4 36(exp) are  represented
in f ig u re s  9. VI and 10.VI, respec tive ly .

According to  th e  theory , the equations determined for l / a 4 3 (exp)
and l / a 4 4Q(exp) should  exp la in  th e  observed experim ental  data
fo r  th e  i s o to p ic  therm al d i f fu s io n  fa c to r .  Indeed, we have, for
each co n cen tra t io n  r a t i o ,  cA/ c 4, th e  general r e la t io n s h ip ,

= a 4.40 * a4 ,36 (40 .VI)

The e r ro r  o f  t h i s  d i f fe ren c e  i s ,  of course, very la rg e  compared
to  th e  corresponding  value of a 3g 4Q.

By means of (37 ,39 ,40 .VI) we obtain, approximately,

1/°3 6 ,4 0 (eXp> = ( 38 4 13> c 4 + (73 4 27) CA (41.VI)

'*4, 36
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Pig. 9.VI 4 40
The inverse of the thermal diffusion factor of He- A in

4 36 40ternary mixtures ('He; A, A).
O Experimental data.
_____ Elementary *r.e.s.’ first approximation.
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Pig. 10.VI 4 36
The inverse of the thermal diffusion factor of He- A in
ternary mixtures (*He; 3®A, 4®A).
e Experimental data.
----- Elementary ‘r.e.s.’ first approximation.
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Prom the terms which have been disregarded, the most important
one is  + 0 .5  c . c A, p ra c tica lly  meaningless. Accordingly, we
have, for c A = 1 and c 4 = 1 respectively:

ot3 6 ! 4 0 (exp) = ° - 014 ± 0-005; [ogg 40(exp)]4 = 0.026 ± 0.009
(42.VI)

which can be compared s a t is fa c t o r i ly  with those of § 3 .3 .1
determined from the iso to p ic  experimental thermal d iffu s io n
factor.

3 . 3 . 3 .  C o n c l u s i o n .  In Table 4 .VI we summarise the comparison
between the experimental and the most probable values of thermal
diffusion factors for ternary mixtures (4He; 36A, 40A) according
to the elementary theory proposed. The agreement is  satisfactory
and a ll  the essen tia l features of thermal d iffusion  are correct­
ly  explained by the theory, namely,

a) l / « 36 40 is  lin ear on concentration of the ‘added’ gas,
Helium. This is  th e o re tic a lly  explained as the binary thermal
separation ratios Rgg*40; R I^ r an<* are n0  ̂ too different;

b) the iso top ic  separation ratio, R3g 4Q(exp), is  also linear
as stated by the theory:

Table 4. VI
Experimental and most probable values to the thermal diffusion

factors of ternary mixtures (4He; 36A, 40A)

C o n c e n t ,
o f  4He

a 4 40 a 4 36 a 4 , 4 0 "
a 4 . 36

= (X3 6 ,  40

a 3 6 , 4 0

Exp. M. P.V. Exp. M. P.V. Exp. a) b )

0.000 0. 262 0.248 0.014 0.0146 0.0144 0. 0145
0.100 • • • 0.279 ' • • • 0.264 0. 015 0.0149 0.0150 0. 0149
0.300 0.323 0.321 0.308 0. 305 0. 016 0.0153 0.0163 0.0160
0.500 0.376 0. 378 0. 358 0. 360 0.018 0.0176 0. 0179 0. 0174
0.700 0.454 0.460 0.433 0.440 0.020 0.0207 0. 0198 0.0195
0.900 0.594 0.586 0.572 0.562 0.024 0. 0222 0.0221 0.0231
1.000 . . . 0.679 . . . 0.653 0. 026 0. 0236 0.0258

M.P. V. most probable values.

a) Assuming l/otgg 40(exp) linear on Helium concentration.
b) Assuming Rg6 4Q(exp) linear on Helium concentration.
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c) the isotopic thermal diffusion factor, a3 6i40(exP>> increases
with increasing concentration of the ‘added’ gas, because
Helium consists of ligh ter, smaller and ‘harder’ molecules,
molecules;

d) the inverse of non-isotopic thermal diffusion factors is
linear or at least very closely linear on concentrations of
Argon and Helium as stated by the theory and the corresponding
most probable equations explain satisfactorily the variation of
isotopic thermal diffusion data with concentration of Helium.

§ 4. Thermal d if fus ion with Helium-Neon regarded as ternary
mixtures (4He, 20Ne, 22Ne).

4.1. E x p e r i m e n t a l  data. Natural isotopic abundance of Neon
and Helium is the following:

20Ne 90.51 % 4He 99.9999 %
21Ne 0.28% 3 He 1 . 3 x l 0 ‘4 %
22Ne 9.21 %

Therefore we may consider Helium-Neon mixtures as ternary
mixtures (4He; 20Ne, 22Ne) in which the concentration ratio
of Neon isotopes is  maintained constant throughout a ll  the
proportions of Neon and Helium.

Table 5. VI
Experimental thermal diffusion factors for (4He; 20Ne, Ne)

Concentr
of Neon

Absolute
Temp.

m l  ^ i p  11
22 a 4, 20 a 4, 22

1 .0 0 0 284  -  658 0 . 027 ,  ± 0 . 001 Q . • • . . .

1 .0 0 0 284  -  658 0 .0 2 6 7  ± 0 .0 0 0 4

0 .9 0 0 284  -  650 0 .0 2 4 2  ± 0 .0 0 0 5 • * *

0 .8 0 0 284  -  648 0 .0 2 3 0  ± 0 .0 0 0 8

0 . 800 284  -  673 0 . 0242 ± 0 .0 0 1  j
• • .

0 .6 0 0 284  -  658 0 .0 2 0 9  ± 0 .0 0 0 9 • * «

0 .4 0 0 284  -  667 0 . 017 ,  ± 0 . 0 0 1 0 0 .2 6 7  ± 0 .0 0 5 0 .2 8 5  ± 0 .0 0 5

0 .2 0 0 285  -  661 0 .0 1 6 4  ± 0 .0 0 0 9 . . . * * '

0 .1 0 0 285  -  67 0 0 . 0158 ± 0 . 0 0 1 3 0 .3 3 2  ± 0 .0 0 4 0 .3 4 8  ± 0 .0 0 5
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In Table 5.VI (see p. 103) we report experimental thermal
diffusion factors, namely, a20 22, cc42 0  and a4 2 2 . As for Argon-
Helium mixtures, non-isotopic observations are given with low
accuracy because of the difficulties of Helium measurements in
our mass spectrometer. Only two values for a and a are
given which have been obtained by paying careful attention to
Helium measurements.

Notice, as a first remark, that the isotopic thermal diffus­
ion factor decreases with increasing concentration of Helium.

4.2. Comparison of the thermal diffusion factor for Neon
alone and of the thermal diffusion factor for 4He and 20Ne
with earlier results. Table 6.VI and fig. 11.VI report the
values of < x ^ 22 given by Stier (SI) in studying the temperature
dependence of the thermal diffusion factor of Neon isotopes.
Our values are also given for comparison. The mean temperature,
T m, is defined, as in § 3.2, by the algebraic mean value of
the absolute temperatures T1 and T11.

From fig. 11.VI it follows that our experimental values are
somewhat smaller, but within reasonable agreement with Stier’s
observations.

Table 6.VI
The variation of the thermal diffusion factor for

Neon isotopes with temperature

Absolute Mean
Temp. Temp.

T■
ot20,)22 Reference

90 - 195 132 0.0162 SI
90 - 296 163 0.0187 SI

195 - 296 240 0.0233 si
195 - 490 309 0. 0254 SI
302 - 645 441 0. 0302 SI
460 - 638 542 0. 0318 SI
691 - 819 752 0. 0346 SI
284 - 658 430 0.0277 This paper
284 - 658 430 0. 0267 This paper

In Table 7. VI we report experimental data of the thermal diffus­
ion factor for Helium-Neon mixtures of equal concentrations, after
de Troyer, van Itterbeek and van den Berg (T2, 1950); Grew (G8,
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1947); Puschner (PI, 1937); Atkins, Bastick and Ibbs (Al, 1939)
and our value, a4 2Q, obtained by extrapolation of experimental
data of Table 5.VI. The earlier results refer to global analyses
of natural Helium and Neon, therefore they would not be exactly
equivalent to our value of <x4 2o since the concentration of the
isotope 22Ne is not negligible. Their thermal diffusion factor,
aHe Ne' wou^  *>e between a4> 20 and <x4> 22 and even then
closer to a4 2Q. Our extrapolated value for a4>22 4s &lso giTOn
in Table 7. VI.

Table 7. VI
Thermal diffusion factor for Helium-Neon mixtures of equal

proportions

Absolute
Temp.

Mean
Temp.
Tr

^He.Ne Reference

20 - 293 58 0.242 T2
90 - 293 154 0.330 T2

200 - 600 330 0. 316 G8
300 - 400 343 0.364 PI
288 - 373 325 0.388 Al
284 - 660 420 «4.20 * °-280 This paper
284 - 660 420 a4 22 = 0*299 This paper

The experimental data available seem to confirm an equation
of the form

«He.Ne * <«He.Ne>o + A/Tr> <43‘VI>

where Tr is a mean temperature defined by

Tl  TH
Tf = — --- j In (TlI/T*) (44.VI)

T T (see equations 61,62.1V)

In figure 12.VI we give experimental values of a„e Ne.Tr which
according to (43.V) should be linearly dependent on the mean
temperature, T r. Most recent values of the thermal diffusion
factor (de Troyer and Grew) give rise to the equation:
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Variation of the thermal diffusion factor o f ‘ Ne and “ Ne
with temperature.
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O Our experiments.
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Pig. 12. VI K

Variation of the thermal diffusion factor of mixtures of
equal concentrations of Helium-Neon with temperature.

Experimental data for cx^ Ne*Tr:
A After de Troyer, van Itterbeek and van den Berg (T2,

1950).
U  After Grew (G8, 1947).V After Puschner (PI, 1937).
x After Atkins, Bastick and Ibbs (Al).
0 Prom our observation for cx̂  „„(exp).
O Prom our observation for a. .(exp),
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«He.Ne = 0-331 -  ^  ( « . V I )
1 r

A ccordingly, our value of c x ^ ^ g  a t  Tr = 430° K should be 0.320
whereas we have obtained

a 4 , 2 0 (e x p )  * ° - 280: a 4 . 2 2 ( e x p )  = 0 ,2 9 9

I f , 3,  I n t e r p r e t a t i o n  o f  e x p e r i m e n t a l  d a t a  by t h e  e l e m e n t a r y
t h e o r y

I f . 3 . 1 ,  I s o t o p i c  t h e r m a l  d i f f u s i o n  f a c t o r .  The tre a tm e n t Of
ex p e rim en ta l d a ta  i s  j u s t  analogous to  t h a t  o f  §  3 .3 .1 .  The
v a lu es  which have been used in  e lem en tary  e q u a tio n s  a re  th e
following:

c (b> = o. 9076
20 ' (Assuming n a tu ra l Neon as c o n s is tin g

c <b) = 0.0924 of 2°Ne 22we only)

A4 = 0.09119 y po ise* 1

A20 = 0.1665

A22 = 0.1747
ANe = 0.1673

When m olecules a re  regarded as ‘r ig id  e l a s t i c  sp h eres’ we have:

1 /a20,22<re s )  = 40-80 CNe + 22- 24 C4 (46.VI)

This equation  w i l l  be used to  determ ine ex p e rim en ta l therm al
sep a ra tio n  r a t io s ,  R2o , 2 2 (exp  ̂ = a 2 0 , 22 (exp^ a 2 0 . 2 2 (r e s ^‘

L im itin g  v a lu es  f o r ’th e  ‘r . e . s . ’ is o to p ic  th erm al d i f fu s io n
fa c to r  a re  the  follow ing:
fo r cNe = 1:

^ 0 , 2 2 ( r e S >] Ne = a 2S,) 22<re S > = ° - 0245 (47 .VI)
fo r c . = 1 :

ttX20. 22(r e S ) ] 4 = 0 -0450
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The limiting value of the quantity A„n „„(res) when c„ = 1. ,, 4 M  9 4 4  4is then

[A2o, 22(res)^4 = - 20, 22(reS^ 4= 1-83 (48.VI)
a2o!22(res)

According to (48.VI), the ‘r.e.s.’ isotopic thermal diffusion
factor, a20 22(res), increases with increasing concentration of
Helium.

Let us now consider experimental isotopic data given in Table
5.VI. As a first remark we notice that the isotopic thermal
diffusion factors, a2Q 22(exp), decrease in reality with increas­
ing concentration of Helium. As we shall see, such surprising
results can be explained by the values of and R4b20> R ^ L *

In figures 13 and 14.VI we report experimental values’ of
l/<x2o 2 2 and ^20 22^e x p ) versus Helium concentration.

Most probable linear equations are the following:

a) l/tx20. 22(exp) = (37-0 * 1-0> CNe + (66-9 * 2-5> C4 (49.VI)

b) R20, 22(exp) = H -07 * °-05> CNe + (°-25o 4 0.04o) c4

The corresponding limiting values to the thermal diffusion
factor are given by
for cNe = l

a ) tx20)22(exP) = 0.0270 ± 0.0007

b) a ^ )22(exp) = 0.026j ± 0.0012
(50. VI)

for c = 1

a) [a2Q 2g(exp) 1 4 = 0.0149 ± 0.0006

b) [a2Q 22(exp)]4 = 0.0113 ± 0.0018
(51.VI)

Notice that the standard errors corresponding to the isotopic
separation ratio, R 2Q 22(exp), equations (49,50,51b.VI), are
larger than those of the experimental observations given in
Table 5.VI. This result probably means that the linear depend­
ence of R20 22(exp) is not correct.
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Variation of the inverse of the thermal diffusion factor
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As shown by fig.14.VI, the distribution of experimental values,
R 20 22^exp)’ relative to equation (49b.VI) also seems not to be
a satisfactory one.

The extrapolated value of (50a.VI) for a20 „„(exp), assuming a
linear dependence of l/a2„ 22^exp  ̂ with concentrations, agrees
well with the direct determinations, namely, a ^ )22(exp) =
= 0. 0277 ± 0.001„ and 0.0267 ± 0.0004.
The binary separation ratio, which corresponds to (50a.VI) is

R 20^22 = 1-10 * 0.03, therefore showing that our ‘r.e.s.' model
is by no means of physical significance but a kind of mathematical
approach which has been assumed in order to give simple “r.e.s.’
equations, as we have already pointed out in § 2.IV.

The limiting value, if c4 = 1, of A20 22(exp), which shows the
influence of addition of Helium to Neon isotopes, is, by means
of (50,51.VI),

a) [A20. 22^exp^ 4  = 0,55 ± 0,04

b) tA20, 22^exp^ 4  = °’44 * °-09
(52.VI)

The value b) is probably not correct because the linear depend­
ence of R20 22(exp) seems to be doubtful.

When molecules are regarded as. ‘rigid elastic spheres' , we
have, equation (48.VI), [A20 22^res^ 4  = I*®9 which has to be
compared with the experimental values (52.VI). The effect of
addition of Helium upon the thermal diffusion factor of Neon
isotopes is therefore quite different from the ‘r.e.s.’ pre­
dictions and the pronounced decrease of a20 22(exp) with in­
creasing Helium concentration, as experimentally observed, could
not be expected a priori.

4.3.2, Non-i so top i c thermal diffusion factors• A full treat­
ment similar to that of § 3.3.2 for (4He; 36A, 40A) cannot be
given because we only have two pairs of observations for non-
isotopic thermal diffusion factors a4 20(exp) and a4>22(exp)
(c4 = 0.600 and c4 = 0.900).

By introducing in (54.V) the values of R4^2Q(exp) and R4^22(exp)
which correspond to the values of a4 20(exp) and a4 '22(exp)
given in Table 5.VI, the values of the binary separation ratios,
R<b>0 and r |b2g can be determined by a method of successive
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approximations similar to that described in § 3.3.2. We only
present here the final results,
for c4 = 0.600:

R. 20(exp) = 0.86, ± 0.015; R^b^0(exp) = 0.865 ± 0. 01g
' ' (53.VI)

R4.22(exp) = 0,830 * °-016: R4^22(exp) = °-797 * 0,018

R4b22(exp)
_J_______ = 0.92 ± 0.04 (54.VI)
R ^ ’̂ 0 (exp)

For c. = 0.900:

R4 20(exp) = 0.874 ± 0.012; R ^ > 0= 0.872 ± 0.012
* (55.VI)

R 4, 22<eXp) = °‘ 823 * °-°l3; R 4b 22= °*816 1 0,015

R 4b 22(exp)
— !------  = 0.94. ± 0.03 (56.VI)
R 4b 20<exp>

As shown by equations (54,56.VI) the ratio R4 *̂22 êxp^ R4b20 êxp^
may be assumed constant, as we have stated in § 4.3.V, within
the magnitude of experimental errors.
Since the extrapolation for c4 = 1 of binary separation ratios

R4b20 and R4b22 is a short one and* furthermore, it may appear,
by’means of ’(53, .... 56.VI), that the experimental values at
concentrations c4 = 0.600 and c4 = 0.900 are consistent together,
we obtain by a linear extrapolation,

fo<b>0(exp>]4 = °-87: klb22(®XP>]4 = 0,82 (57'VI)
within an error of about 2%.

Introducing (57.VI) into (42.V) we can obtain the limiting
value for R20 22(exp), when c4 = 1, as [R2o, 22 êxp^ 4 = °>34,
of course given with very large error (about 40%). Multiplying
this value by [«20, 22^res^  4’ etluatlon (47. VI) we get

[a20. 22(exp^4 = 0,015 (58. VI)

which is just equivalent to the value of (51a.VI), obtained from
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extrapolation of the experimental isotopic thermal diffusion
factor, when c4 = 1, assuming a linear dependence of l/tx20 22(exp)
with concentration. We may then conclude that the observed de­
creasing of a20 22(exp) with increasing Helium concentration is
explained from the non-isotopic behaviour of the thermal diffus­
ion factors, <x4 2Q(exp) and a4 22(exp).

§ 5. Mixtures of Hydrogen-Neon regarded as ternary mixtures (H2I
20Ne, 22Ne).

5.1. Experimental data. Isotopic abundance of Deuterium in
natural Hydrogen is 0.0156% only. We may therefore consider
Hydrogen-Neon mixtures as ternary mixtures (H2; 20Ne, 22Ne).

Our experimental data for thermal diffusion factors are given
in Table 8. VI.

Table 8. VI
Experimental thermal diffusion factors of ternary mixtures

(H2; 20Ne, 22Ne)

Concent,

of H2

Absolute
Temp.

I J 11 _  rji I I “20,22 a2, 20 a2. 22

0. 000 286 - 658 0.027, ± 0. 001 „ •  •  •

0.000 284 - 658 0.0267 ± 0.0004 . . . * t •
0.250 284 - 657 0.0192 ± 0.0009 •  •  . •  •  .

0.400 284 - 668 0.016, ± 0. 001 j .  .  .

0.500 284 - 671 0.0160 ± 0.0005 0.254 ± 0.003 0.270 ± 0.003
0.500 284 - 668 0. 015g ± 0. 0014 .  •  . •  .  .

0.600 284 - 658 0.0128 ± 0.0009 .  .  •

0.700 284 - 661 0.0126 ± 0.0006 . . . .  .  •

0.800 284 - 653 0. Ollj ± 0. 0012 •  •  • .  .  •

0.900 284 - 653 0.0105 ± 0.0008 0.314 ± 0.003 0.324 ± 0.003

5. 2« Comparison of the thermal diffusion factor for H« an®
20Ne with earlier data. Only a few observations have been found
in literature for the thermal diffusion factor Ne. They are
given in Table 9.VI as well as our values for a2 20(exp) and
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a2 22(exp). Temperature dependence cannot be studied satisfactorily.
Even then our experimental values seem to be rather low.

Table 9. VI
Experimental thermal diffusion factors for Hydrogen-

Neon of equal concentrations

Absolute
Temp.

ml _ mlI
aK2,Ne References

20 - 290 0.174 (T2)
90 - 290 0.280 (T2)
128 - 288 0.36 (G6)
284 - 671 a2, 20 = 0*254 This paper
284 - 671 a2, 22 = 0*270 This paper

- . «  20 225.3. Interpretation of experimental data for (Hjl Ne, Ne)
by the elementary theory

5.3.1. Isotopic thermal diffusion factora By Using the values
of c*^, c^ 1; A 20, A22, ANe; given in § 4.3.1 and A2 = 0.09679
(j. poise'1, we obtain the following equation for the ‘r.e.s.’
isotopic thermal diffusion factor, a20 22(res),

l/a2Q 22(res) = 40.80 cNe + 23.61 c2 (59.VI)

which brings about the following limiting values:
for cMe = l:

22̂ reŜ Ne = <x2o!22̂ reŜ  * ®* 0245 (60.VI)
for c2 = 1

â20, 22̂ re3̂  2 = 0.0424

and by means of (60,61. VI),

(61.VI)

2̂0. 22 r̂eŜ 2 22̂ reŜ  2

a2o!22<res)
1.73 (62.VI)
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Pig. 15. VI
Variation of the inverse of the thermal diffusion factor
for ^PNe-^Ne with addition of Hydrogen,
e Experimental data.
----- Elementary ‘r.e.s.’ first approximation.

which shows that the ‘r.e.s.' thermal diffusion factor, a2Q 22(res)
increases with increasing concentration of Hydrogen.

On the other hand, the experimental thermal diffusion factor
a20 22^exP) decreases markedly with increasing concentration of
Hydrogen. In fig. 15. VI we give experimental values for l/a20 22(exp)
versus Hydrogen concentration. The linear dependence appears to
be satisfactory and the most probable equation is

1/tx20, 22(exp) = <35-2 * 1*0^ CNe + (10° * 7> c 2 (63.VI)

Limiting values for <x20 22(exp) when cNe = 1 and c 2 = 1 are
respectively,

ot20,>22(exp) = °-0284 ± 0.0008 (64.VI)

whereas direct observations give it as 0.027- ± 0.001„ and
0.0267 ± 0.0004;
for c2 = l:

[0I20 22(exp)] 2 * 0.0100 ± 0.0007 (65. VI)
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By means of (64,65.VI) we obtain

^ 2 0 ,  22 ( e x P) ]  2
â 20 ,  2 2 * e x p ^  2

0.35 ± 0.09 (66.VI)
a 2 0 , 22

which shows the pronounced decrease of a20 22(exp) with increas­
ing concentration of Hydrogen.

A linear dependence of the isotopic separation ratio , R2o,22^exp ’̂
on the concentration of Hydrogen was not observed. Contrary i t
was bent.

Considering the decrease o f the thermal d iffu sion  factor of
Neon isotopes which has been observed with addition of Helium
(§ 4 .3 .1 ) , we might a lso  expect a decrease of a2o , 2 2 êxp  ̂ with
increasing concentration of Hydrogen. Indeed, Hydrogen molecules
are appreciably larger than those of Helium, which brings about
that [A22 2Q(r e s )]2 = 1.73 whereas for (4He; 20Ne, 22Ne) we have
[a .  20(res)]4 = 1.83. Also Hydrogen molecules are ‘so fte r ’ than
those of Helium. Therefore both diameter and ‘so ftn ess’ of the
Hydrogen molecule try to  decrease the thermal d iffu sion  factor
of Neon isotopes even more than in the case of addition of Helium.

5 . 3 . 2 .  N o n - i s o t o p i c  t h e r ma l  d i f f u s i o n  f a c t o r s .  Experimental
values of a2 20(exp) and a2 2 2 (exp) which are given in Table
8 .VI give r ise  to the following binary separation ratios:
for c2 = 0.500:

R 0. 96_ ± 0.010.96, ± 0.01
(67.VI)

0. 86,  ± 0.010. 91, ± 0.01

for c 2 = 0.900:

R2. 2o = 0.936 * 0.009; R<^0 = 0.93, ± 0.010
(68. VI)

0 . 85c ± 0.010.864 ± 0.009; R,

By means of (67,68.VI) we obtain,

1.12 ± 0.02for c 2 = 0.500:

(69. VI)
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0.900: 1.10 ± 0.02fo r c2 =
R (b)

2 , 20

R (b)
2 , 22

Equations (69 .VI) show th a t  R2b2 ( / R2b 22 can be as a
constant, w ithin the magnitude of experimental e rro rs , as s ta ted
in our theory.

By ex trapo la tion  of the  above values fo r R^b^0 and R ^jU  wben
c 2 = 1, we obtain

[ R ^ 0] 2 = ° - 93 and ^ 2 2 ^ 2  = ° - 85 (70.VI)

which give r i s e  to  the  following lim iting  value of the isotopic
thermal d iffu sion  fa c to r  when c 2 = 1, using a procedure sim ila r
to  th a t given in § 4 .3 .2 :

[a20,22(exp)^2 = ° -008 (71. VI)

This value is thus in accordance with th a t obtained by observ­
ations of the iso top ic  thermal d iffusion  fac to r, equation (55.VI),
namely [a2Q 22(exp)]2 = 0.0100 ± 0.0007.

§ 6. Mixtures Argon-Neon regarded as multicomponent mixtures

Analyses of the Argon isotopes 36A and 40A as w ell as of Neon
iso topes 20Ne and 22Ne could be ca rried  out sim ultaneously  in

21our mass spectrom eter. On the o ther hand, measurements of Ne
were obtained with low accuracy, being th e re fo re  d isregarded .

Neon-Argon m ixtures cannot be assumed as quaternary  m ixtures
( 20Ne, 22Ne; 36A, 40A) because the iso to p ic  abundance of 21Ne
in  n a tu ra l  Neon is  of th e  same o rd er of 36A (see § 3 . 1  and
§ 4 .1 ). For th a t  reason we do not give in th is  paragraph a f u l l
trea tm en t of ex p e rim en ta l d a ta , p o in tin g  out only th e  most
important fea tu res experim entally observed.

6 . 1 .  E x p e r i m e n t a l  d a t a .  Observed values fo r therm al d iffu sion
factors are given in  Table 10.VI. Notice, as a f i r s t  remark, tha t
otgg 40(exp) increases markedly with increasing Neon concentration
as would be expected, because Argon consists of heav ier, larger
and ‘s o f te r ’ m olecules. Conversely, a20 22(exp) decreases with
increasing Argon co n cen tra tio n  and even changes sign  a t about
c A = 0.600.
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Pig. 16.VI
Variation of the inverse of the thermal diffusion factor
for with addition of Neon.
O Experimental data.
----- Elementary ‘r.e.s.’ first approximation.

% Ne

Pig. 17. VI
Variation of the thermal separation ratio for 30A-4OA with
addition of Neon,
x Experimental data.
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6.2.1» Isotopic tkermal diffusion factors. For 'rigid elastic
spheres’ we have respectively

l/a20 22(re®) = 40.80 CNe + 64.99 cA

<x2p.>22(res) = 0. 0245; C«20.22(res^ A  = 0154 (72. VI)

tA20.22(reS>^A = °-628

1/°l36,40 r̂eS  ̂ = 38-90 CA + 24-42 cNe

“36,*40 r̂es  ̂ = 0.0257; t“3«t40<reB^ N e  = 0.0410

^36,40^res^Ne = 1‘89
Experimental values of l/a20 22(exp) and R 20 22(exp) are not

linearly dependent on cNe and cA. On the other hand, such linear
dependence is well satisfied for l/tx36 40(exp) and Rg6 40(exp)
as shown in fig. 16 and 17. Most probable equations are the
following

1/o,36.40(exp> V ( 69-0 * 2.5) CA + (27. 4 ± 1.,) C„e (74.VI)

R36,40(exp) = (°-554 * 0.02g) CA + (0.81 ± 0.04) cNe (75.VI)

The agreement between these two equations and the experimental
values of cxgg 40(exp), is shown in Table 11.VI.

6.2.2. Non-iso topic thermal diffusion factors. As shown in fig.
18 ... 21.VI, all the inverses of non-isotopic thermal diffusion
factors do appear to be linearly dependent on Neon and Argon
concentrations. Most probable equations are the following:

l/tX20.40(eXp) = (4-65 * °-01) CNe + (9-30 * °-07) cA

1/a20,3«(exp) = (5-59 * °-04) cNe + (10-7 ± °-1) CA

1/°t22,36 (exp) = (6-48 ± 0.06) cNe + (10.2 ± 0.1) CA

l/a22.40(exp) = (5-27 ± °-04) CNe + (8-95 * °*10) CA

The agreement between isotopic and non-isotopic thermal diffus­
ion factors is shown in Table 11.VI.
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Table 10. VI
Experim ental therm al d i f fu s io n  f a c to r s  in  n a tu ra l  Neon-Argon m ixtures

Concent,
o f Neon

A bsolute
Temp. “36,40 “20,22 “20.40 “22. 40 “20,36 “22,36

0.000 287 -  655 0.0147 ± O.OOlg . . . . . . . . . . . . . . .

0.000 286 -  676 0.0142 ± 0.0008 . . . . . . . . . . . . . . .

0.000 286 -  667 0.0149 1 0.0008 v  • . . . . . . . . . . . .

0 .100 286 -  667 0 .014g ± 0 .001Q -  O.OOlg ± O.OOlg 0.1139 ± 0.0009 0.115g 1 O.OOlg 0 .099j ± O.OOlg 0 . 101g ± 0 .0017

0.30C 288 -  667 0.0185 ± 0 .0012 -  0 .0 0 4 j ± O.OOlg 0 . 124a ± O.OOlg 0 .1 2 9 j  ± O.OOlg 0 . 106g ± 0.0014 O.llO g ± 0 .0017

0.500 288 -  665 0. 019g ± O.OOlg + 0 .004g ± O.OOlg 0 . 143g ± O.OOlj 0.139 j  ± 0.0014 0 . 124g ± 0. OOlg 0. H 9g ± 0 .0 0 1 ,

0.700 287 -  663 0.0257 ± 0 .002q + 0 .007g ± O.OOlg 0.1663 1 0.0008 0 . 158g ± 0 .0012 0 . 140g ± O.OOlg 0 . 133j ± 0 .0022

0.900 286 - 661 0 .0315 ± 0 . 002g + 0 .0 1 9 2 ± 0 .0 0 1 2 0 .1953 ± O.OOlg 0.176 j  ± 0 .0014 0 . 1638 ± 0 .0022 0 . 144g ± 0 .0026

1.000 286 -  658 + 0 .0277 ±  O.OOlg . . . . . . . . . . . .

1.000 284 - 658 + 0.0267 ± 0.0004 . . . . . . . . . . . •



120 Table 11. VI
Experimental and most probable values for isotopic thermal diffusion factors,

°<36> 40(exp) and Ojg 22(exp), in Neon-Argon mixtures

CNe “36.40(eXp)
M. P.V.
a)

M. P. V.
b)

“20,40*“20,36=
“ “36,40

“22,40"“22,36=
= “36,40

“20,22(e*P> “20,40‘“22,40“
= “20,22

“20,36"“22,36 =
= “20,22

0.000 0.0147 0.0145 0.0142 0.0142 0.0140 ... - 0.0042 - 0.0045

0.000 0.0142 idem idem idem idem ... idem idem

0.000 0.0149 idem idem idem idem ... idem idem

0.100 0.0148 0.0154 0.149 0.0152 0.0150 - 0.0019 - 0.0034 - 0.0036

0.300 0.0185 0.0177 0.0183 0.0176 0.0176 - 0.0043 - 0.0010 - 0.0010

0.500 0.0199 0.0207 0.0216 0.0208 0.0210 + 0.0048 + 0.0027 + 0.0029

0.700 0.0257 0.0251 0.0256 0.0252 0.0254 + 0.0075 + 0.0086 + 0.0088

0. 900 0.0315 0.0317 0.0304 0.0318 0.0316 + 0.0192 + 0.0183 + 0.0184

1.000 ... 0.0365 0.0333 0.0364 0.0356 + 0.0277 + 0.0255 + 0.0257

1.000 ... idem idem idem idem + 0.0267 idem idem

H.P.V. Most probable value
a) assuming l/a^g 4Q(exp) linearly dependent on concentrations of Neon and Argon
b) assuming R2g 40(exp) linearly dependent on concentrations of Neon and Argon
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20 j6.3. Comparison of the thermal diffusion factor for Ne and
40A with earlier results. In Table 12.VI we give experimental
values of the thermal diffusion factor, A(exp), after Grew,
for mixtures of equal concentrations of Neon and Argon. Our value
for a20 40(exp), which is also given in the Table, is compar­
atively smaller than Grew’s observations.

Table 12.VI
Variation with temperature of the thermal

diffusion factor for Neon-Argon mixtures of
equal concentrations

Mean Temp.
Tr

®Ne, A Reference

185 0.148 G8
293 0.174 G8
369 0.19 G8
465 0.191 G8

420 a20,40 = This paper

GENERAL CONCLUSIONS

In spite of the elementary character of our treatment and the
approximations which have been introduced in order to obtain
simple equations, the most important features of thermal and
pressure diffusion are satisfactorily explained and the agree­
ment with experiments is reasonable.

One of the most important assumptions which has been considered
for the development of the theory, is expressed by the relation­
ship lj = (1 + a i)li (§ 2.IV) where a A was regarded: 1) as a
constant, 2) as predominantly dependent on the “hardness’ of
molecular interaction (i,i) which is, indeed, a physical approach
only, because the quantities a£ will probably depend on all the
molecular interactions of the types (i,i), (i,j), .... (i.s).

The constancy of a. may be considered a satisfactory approach
since the linear dependence of the inverse of the thermal diffus­
ion factor appears to be confirmed by experiments and, further-
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more, the ratio of limiting values, [a[j)(exp)]1/[a{J)(exp)]i, is
usually close to the corresponding one given by our ‘r.e.s.'
model (§ 7.2 and Table 10. IV).

The assumption that aA depends predominantly on the ‘hardness’
of interactions of kind (i,i), cannot readily be confirmed by
experiments because it would first be necessary to obtain a
satisfactory equation for the r.e.s. thermal diffusion factor.
Our ‘r.e.s.’ model (ai = 0) is not sufficient for this purpose
as can be inferred from the discussion of § 5. IV. Indeed, our ‘r.e.s’.
model is correct only for Lorentzian mixtures (RT (elem) = 1 ,
§ 5.1.IV). For isotopic mixtures (§ 5.2.IV) a 1 is definitely a
negative value of the order of - 0.8 for r.e.s. molecules. Also
it depends on diameter ratio as shown by § 5.3.IV. As a general
conclusion we may say that a t will usually depend on mass and
diameter ratios, in case of the r.e.s. model, in such a way that
a i = 0 for Lorentzian mixtures.

For the reasons given above we do not present any value for a.
and only qualitative discussions have been given for this quantity.

The increase of the isotopic thermal diffusion factor, a,. 40(exp),
which has been observed with increasing concentration of Helium
and Neon in Argon-Helium and Argon-Neon mixtures respectively,
was expected a priori, since Helium and Neon consist of lighter,
smaller and ‘harder’ molecules. For the same reason, decreasing
values of a„0 22(exp) with increasing concentration of Argon
could be foreseen as well.

On the other hand, the decrease observed for the thermal diffus­
ion factor of Neon isotopes with increasing concentration of
Helium and Hydrogen was quite a surprise. In addition to our
experiments, it would be very interesting to carry out measure­
ments for H 2-D2 and for 3He-4He with addition of Neon. The
isotopic thermal diffusion factors for H 2-D2 and 3He-4He should
increase with increasing concentration of Neon.

Mixtures of two isotopes and an added gas realize the simplest
ternary non-isotopic mixtures. They provide quite a new field of
thermal diffusion observations which, indeed, do not involve
any additional experimental difficulties and may be of great
theoretical importance. The variation of the isotopic thermal
diffusion factor with addition of a third gas is by no means
negligible and seems to be strongly dependent on the molecular
interactions (1,B) and (2,B).
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SUMMARY

Follow ing th e  l in e s  of a f r e e  path  trea tm e n t o f d i f f u s io n  a
g e n e ra l eq u a tio n  i s  p re s e n te d  which ta k e s  in to  acco u n t con ­
c e n tr a t io n ,  therm al and p re s su re  d if fu s io n . Two k in d s o f mean
free  path have been considered: 1) one, l it  i s  th e  mean f r e e  path
fo r  number d en s ity  t r a n s f e r  which is  th e  only one ap p earin g  in
Meyer’ s equation of co n cen tra tio n  d iffu s io n ; 2) ano ther one, l j ,
i s  r e la te d  to  t r a n s f e r  o f therm al speed, only appearing  in  th e
equations fo r therm al d if fu s io n . We assume th a t  l |  = (1 + a 1) l 1,
where a t i s  reg ard ed  as a constan t p redom inantly  depending on
the  ‘hardness’ of m olecular in te ra c t io n s  ( i . i ) .  For th e  sake of
s im p lic ity  of equations fo r  the  thermal d iffu s io n  fa c to r ,  we have
considered fo r “r ig id  e l a s t i c  spheres’ t h a t a i = 0. For Maxwellian
molecules a i = 1.

We propose an approximate equation fo r 1A co rrec ted  fo r  p e r s i s t ­
ence of v e lo c i t i e s .  The in v e rse  o f th e  co rresp o n d in g  th e rm a l
d iffu s io n  fa c to r of a b in a ry  m ixture is  a t a f i r s t  approxim ation
l in e a r ly  dependent on c o n c e n tra tio n s  (except when a change of
s ig n  of th e  th erm a l d i f f u s io n  f a c to r  w ith  c o n c e n tra t io n s  may
occur). Such lin e a r  dependence has been confirmed by experim ents
and is  a ls o  observed in  g e n e ra l  ca se s  fo r  Chapman’ s f i r s t  ap ­
prox im ation  to  th e  therm al d i f fu s io n  fa c to r  fo r  r i g id  e l a s t i c
sphere model.

Multicomponent m ixtures have a lso  been considered in  our t r e a t ­
ment. Our equations can e a s ily  be handled in p ra c tic e . In p a r t ic ­
u la r , we have s tu d ied  te rn a ry  m ixtures of two iso to p es (1 and 2)
w ith  f ix e d  c o n c e n tra tio n  r a t i o ,  to  which a th i r d  gas, B, has
been added. I t  is  shown th a t the iso to p ic  therm al d if fu s io n  fa c to r
<x should u su a lly  in c re a s e  by ad d itio n  of a gas c o n s is t in g  of
l ig h te r ,  sm alle r and ‘h a rd e r ’ m olecules. The is o to p ic  therm al
sep a ra tio n  r a t io ,  R12, (defined  according to  our ‘r . e . s . ’ model)
and the inverses of n o n -iso to p ic  therm al d if fu s io n  f a c to rs  (cx.1B
and a 2B) are  l in e a r ly  dependent on con cen tra tio n  c B, a t  a f i r s t
approx im ation . The in v e rs e  o f  th e  i s o to p ic  therm al d i f f u s io n
fa c to r  (<x12) i s  l in e a r ly  dependent on cB as w e ll, i f  th e  fo rce
f ie ld s  are not too  d if fe re n t .

O bservations have been c a r r ie d  out w ith  th e  m ix tu res  ( He,
36A, 40A), (4He; 20Ne, 22Ne), (H2; 20Ne, 22Ne) and a ls o  w ith
Neon-Argon regarded as a multicomponent mixture. Experim ental d a ta
are  given in the Tables of pages 89, 103, 112 and 120 re sp e c tiv e ly .
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The linear dependence predicted by the theory was observed for
all the inverses of non-isotopic thermal diffusion factors and
for the inverse of the isotopic thermal diffusion factor as well,

20 2 2except for Ne- Ne in Neon-Argon mixtures. The linear depend­
ence of the isotopic thermal separation ratio, R,,, was not so
well confirmed by experiments.

The thermal diffusion factor of Argon isotopes 36A-40A increases
in Helium-Argon and Neon-Argon mixtures, with increasing con­
centration of Helium and Neon, as was expected. Marked decrease
was observed for the thermal diffusion factor of 20Ne-22Ne with
increasing concentrations of Helium, Hydrogen and Argon, and
moreover a change of sign was observed for cx20 22(exp) in Neon-
Argon mixtures.

SAMENVATTING

Met behulp van een vrije-weglengte-methode is een algemene
diffusievergelijking opgesteld, die rekening houdt met diffusie
tengevolge van een concentratie-, een temperatuur- en een druk-
gradient. Hierbij zijn twee verschillende vrije weglengten in­
gevoerd, nl.: 1) li( de gemiddelde vrije weglengte voor ‘number
density transfer', welke de enige is die voorkomt in de verge­
lijking voor concentratiediffusie volgens Meyer; 2) 1^, de ge­
middelde vrije weglengte voor ‘thermal speed transfer’, welke
alleen voorkomt in de vergelijking voor thermodiffusie. Aange­
nomen is dat 1^ = (1 + ai)li, waarin at beschouwd wordt als een
constante, die afhangt van het krachtenveld om de moleculen i.
Om de vergelijkingen voor de thermodiffusiefactor te vereenvou­
digen is voor harde elastische bollen a^ = O gesteld; voor
‘Maxwellse’ moleculen is ai * 1.
Een benaderde uitdrukking voor 1A is opgesteld, die ‘persist­

ence of velocities’ in aanmerking neemt. Deze uitdrukking is
eenvoudiger hanteerbaar dan de gebruikelijke en wijkt minder dan
15% van deze af tussen een massaverhouding gelijk aan O en on­
eindig. Het omgekeerde van de thermodiffusiefactor a van een
binair mengsel die met behulp van deze lt wordt afgeleid is in
eerste benadering recht evenredig met de concentratie (behalve
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in gevallen waarin a over het concentratiegebied van teken om­
keert). Dit lineaire verband is bevestigd door de experimenten
en b lijk t ook een eigenschap te zijn van Chapman’s vergelijking
voor de eerste benadering van de thermodiffusiefactor van harde
elastische bollen.

Meercomponentensystemen z ijn  eveneens beschouwd en wel in het
bijzonder mengsels van twee isotopen (Al en A2) in een vaste
concentratieverhouding, waaraan een derde gas (B) wordt toege­
voegd. De afgeleide vergelijking voor de thermodiffusiefactor is
eenvoudig van vorm en kan gemakkelijk toegepast worden voor bere­
keningen. Het b li jk t  dat de therm odiffusiefactor a 12 voor de
isotopen in het algemeen toeneemt bij toevoeging van een gas dat
bestaat uit lichtere, kleinere of *hardere’ moleculen. De thermo-
diffusiescheidingsfactor R12 voor de isotopen en de reciproken
van de niet-isotope-thermodiffusiefactoren (a1B en a2B) z ijn  in
eerste benadering recht evenredig met de concentratie cB van
het toegevoegde gas”.

Het omgekeerde van de thermodiffusiefactor a12 van de isotopen
is  eveneens recht evenredig met cB als de krachtenvelden om de
twee soorten moleculen ongeveer gelijk zijn.

Thermodiffusiefactoren z ijn  gemeten van de mengsels (4He; A,
40A). (4He; 20Ne, 22Ne), (H2; 20Ne, 22Ne) en (20Ne, 22Ne; 36A.
40A) als functie van de concentratie, tussen 10 en 400° C. De
experimentele uitkomsten z ijn  ondergebracht in de tabellen  op
pag. 89, 103, 112 en 120.

De lineaire afhankelijkheid van l/<x van de concentratie, die
de theorie voorspelt, werd gevonden voor a lle  n ie t-iso tope- en
voor de isotope thermodiffusiefactoren met uitzondering van die
voor 20Ne-22Ne in neon-argon mengsels.

Het lineaire verband tussen R12 en cB bleek niet in a lle  geval­
len te bestaan.

Het b lijk t dat de thermodiffusiefactor van 36A-4 A in helium-
argon en neon-argon mengsels toeneemt met toenemende concentra
tie  van He resp. Ne, zoals theoretisch verwacht werd. De experi­
mentele therm odiffusiefactor van 20Ne-22Ne neemt sterk af met
toenemende concentratie van argon doch ook met die van helium
en waterstof. In neon-argon mengsels keert a2Qi 22 zelfs van teken
om bij 60% A.
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SUMARIO

Baseando-nos no conceito do livre precurso medio das moléculas,
apresentamos uma equapao generalizada da difusao gasosa em que
se interpretam as diffusoes de concentrapao, de pressao e termo-
difus&o. Dois tipos de livres precursos médios sao considerados:
1) um, l j ,  é o liv re  precurso medio para transferência da den-
sidade molecular, que aparece na conhecida formula de Meyer para
a difusao de concentrapao; 2) outro, l j ,  esta relacionado com a
transferencia dos módulos das velocidades térmicas e aparece nas
formulas para a termodifusao agora propostas. Os dois liv res
precursos médios foram equacionados pela exprassao l j  = (1 + a i ) l 1,
onde ai I considerado como uma constante, dependente dos campos
de forpas moleculares. Quando as moléculas sao consideradas como
‘esferas rigidas e perfeitamente e las ticas ' assumimos a t = 0.

Para gases maxwellianos o fenómeno da termodifusao nao se veri­
fie s  e a, = 1.

Propoe-se uma equapao aproximada para l i( corrig ida para o
fenomeno da persitencia das velocidades térmicas. As equapSes
correspondentes mostram que o inverso do factor de termodifusSo
para misturas b inarias é usualmente linear nas concentrapSes
molares dos componentes (excepto quando possa teoricamente ocor-
rer uma variapSo de sinal com as concentrapoes para o factor de
termodifusao). Esta dependência linear foi experimentalmente con-
firmada e igualmenta se observa, em casos gerais, para a primeira
aproximapao do factor de termodifusao segundo Chapman e Cowling.

Misturas complexas foram também estudadas, com especial ênfase
para misturas constituidas por dois isótopos, 1 e 2, (com razao
de concentrapao fixa) e um terce iro  gas B. 0 factor de termo­
difusao isotopica (a 12) usualmenta aumenta com a adipao dum
terce iro  gas constituido por moléculas mais leves, menores e
rodeadas de campos de forpa menos intensos. A razao de separapao
térmica iso topica, R ,, (defin ida da acordo com o modelo de
'esferas rigidas’ proposto) e os inversos dos factores nao iso-

tópicos de termodifusSo (a1B e a2B) s£o linearmente dependentes
na concentrapao, cB, do gas adicionado a mistura isotopica (1,2),
em primeira aproximapao. 0 inverso do factor de termodifusao
isotopica (<*12) é igualmente linear em cB, se os campos de forpas
moleculares dos tipos (1,2), (1,B) e (2,B) n3,o forem marcadamente
diferentes.

Realizaram-se experiências com as seguintes misturas:
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(^e ; 36A, 40A), (4He; 20Ne, 22Ne), (H2; 20Ne, 22Ne) e igualmente
com misturas Neon-Argon consideradas como complexas. Os resultados
experimentais sSo dados nas paginas 89, 103, 112 e 120, respec-
tivamente.

A dependência linear com a concentrapao, teoricamente prevista
para os factores isotópicos e nao isotópicos de termodifusao,
foi experimentalmente observada, excepto para 20Ne-22Ne emmisturas
de Neon e Argon, A dependência lin ea r da razao de separap&o
isotópica, R12, apresenta maior numero de exceppoes.

0 factor de termodifusao dos isótopos de Argon, 36A e 40A,
aumenta nas misturas Helio-Argon e Neon-Argon, com a concentrapao
de HÓlio e Neon, como era previsivel. Acentuada diminuip&o com
crescentes concentrapSes de Hélio, Hidrogénio e Argon, foi obser­
vada para o factor de termodifusSo dos isótopos de Neon e uma
inversao de sinal foi notada para este factor em misturas Neon-
Argon.

133



PROPOSITIONS

1

Stier’s experiments on the temperature variation of thermal
diffusion factors of Argon and Neon isotopes can be represented
satisfactorily by using the correct mean temperature in the
equations RT (exp) = a In (T/b).

Stier, L. G.; Phys.Rev., 62, 548 (1942).
Davenport, A.N. and Winter, E.R.S.; Trans.Faraday Soc.,

47, 1160 (1951).

2

The method for determining the range of (3-particles as proposed
by Harley and Hallden may only be applied to particular geometric
counting conditions.

Harley, J.H. and Hallden, W.; Nucleonics, 13, 1, 32 (1955).

3

Furry’s criticism of mean free path theory of diffusion is contra­
dictory in itself.

Furry, W.H.; Amer. J.Phys., 16, 63 (1948).

4

The result of Cacciapuoti’s theory of thermal diffusion can be
applied to isotopic mixtures only, although he treats this
subject in a general way.

Cacciapuoti, B.N.; Nuovo Cimento, (IX), 1, 126 (1943).

5

The use of soft glass instead of pyrex-glass should be preferred
for the storage and maintenance of radon at least for activities
higher than 0.5 Curie.
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6

I t  is  doubtful whether Whalley and Winter’ s assumption about
being the mean fre e  path fo r momentum t ra n s fe r  is  c o rre c t.

This th e s is  Chapters I I  and I I I .
Whalley, E. and Winter, E .R .S.; Trans.Faraday Soc., 46,

517 (1950).

7

I t  is  of th e o re tic a l in te re s t  to  id en tify , in  our general equat­
ions (26.I I )  and (9 .V), the m eanfreepath l t with Stefan-Maxwell's
one and l j  with the common Maxwell mean free  path.

This th e s is  Chapters I I  and V.

8

The d iscrepancy  between th e  charge exchange c ro s s - s e c t io n s ,
determined by Keene and by S tedeford  can be explained  from an
incorrect in te ra c tio n  path length.

9

I t  is  advisable to  use s ta b ilis e d  s ta in le s s  s te e l  for u l t r a  high
vacuum systems.

10

There are in d ica tio n s  th a t impulse tra n s fe r  in  c ry s ta ls  re su lts
in focussing of impulse momentum inside  the  c r y s ta l  in closed
packed d ire c tio n s .

11

The geographic s i tu a t io n  of the N etherlands and P o rtuga l may
somehow give a p a r t i a l  understanding of the in te r e s t in g  p a ra ­
l le l is m  which we f in d  between se v e ra l Dutch and P ortuguese
characters.
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