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scattering matrix should be unitary, this forms the basis for disper-
sion relation theory. Within the context of this theory it is possible
to relate the strong interaction effects in our scattering amplitudes
to other processes where strong interactions play a role, and for which
sufficient experimental data are available, In this way we can then use
experimental information to compensate our lack of theoretical
knowledge about the strong interactions, Thus we can use pion-nucleon
scattering data in our electro- and neutrinoproduction calculations,
and data from pion photoproduction in the calculations for Compton
scattering., With this additional information it is then possible to
evaluate the desired amplitudes and cross-sections, The results can be
compared with the experimental data on these processes, as far as
available, or they can serve as predictions for the outcome of future
experiments, From a theoretical point of view an agreement between the
theoretical and experimental results gives support to the assmumptions
on which the dispersion relation theory is based. In the present work

he first three chapters deal with electro- and neutrinoproduction, and

1€
he last three with Compton scattering, The treatment of these two

t
t
ases is more or less parallel,

In Chapter I we give formal expressions for the cross-sections
for electro- and neutrinoproduction, and we treat the kinematics,
Several decompositions of the scattering matrix element in terms of
different sets of amplitudes are then given, the most important o
which are the Lorentz-invariant amplitudes and the multipole amplitudes
In Chapter I1 we first concentrate on the invariant amplitudes, and
exploit their assumed analytic properties to obtain dispersion
relations., These dispersion relations can then be transformed into a
coupled set of integral equations for the multipole amplitudes, In
Chapter I1I we show that in a limited energy region we can obtain the
phases of the multipole amplitudes from the corresponding partial wave
amplitudes for pion-nucleon scattering, which are well-known experi-
mentally. With these experimental values as input, the multipole dis-
persion relations can be solved (in the energy region considered), to
yield approximate numerical solutions for the multipole amplitudes.
These amplitudes further have to be multiplied by the appropriate pion
or nucleon formfactors. We have calculated amplitudes and cross-

sections for electroproduction, using the nucleon formfactors as
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obtained from elastic electron-nucleon scattering. The pion formfactor
is not well-known as yet, and should be obtained from a comparison
between theoretical and experimental results on pion electroproduction.
As can be seen in this chapter, the results are still too uncertain to
fix the values of this formfactor completely. For a complete neutrino-
production calculation also the axial vector formfactors of the
nucleons are needed, one of which is not known very well, while again
the pion formfactor must be taken from electroproduction. Moreover, the
experimental information about this process is still very scarce., For
these reasons we have calculated here for neutrinoproduction only the
multipole amplitudes (without inserting bthe formfactors) and no cross-
sections,

The chapters in which we treat Compton scattering are organized
in essentially the same way as those on pion production, Chapter IV
gives formal cross-section formulae and kinematics, while alsoc various
sets of amplitudes are introduced here, Chapter V often refers back to
Chapter II, since the analytic properties of the invariant amplitudes
are guite similar in both cases, In Chapter VI it is shown that in the
first resonance region we can solve the dispersion relations for the
Compton scattering amplitudes by using pion photoproduction amplitudes
as input, via the unitarity relation., These latter amplitudes are well-
known from analyses of experimental photoproduction data., We can thus
calculate amplitudes and cross-sections for Compton scattering, and
make a comparison with the experimental data on this process, Further-
more, by using only the unitarity relation and the usual invariance
agsumptions (C, P, T) for the S-matrix, the photoproduction amplitudes
provide a lower bound for the Compton scattering cross-sections. This
lower bound is violated by a few of the experimental points. To see if
this discrepancy can be removed by dropping the requirement of T-
invariance, we have generalized the formalism accordingly, and per-
formed some calculations in which a T-violating effect is introduced in
a simple way in the input photoproduction amplitudes. The results show
that this may indeed change the cross-sections somewhat in the desired
direction, but this change seems to be too small to remove the discre-
pancy.

Finally, we include some appendices, in which we summarize the
conventions we used, and where some of the details of the calculations

are collected,
11
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A NeAy Lo X P18 PARYD PoBEeRATIILESS FF'THE S CATTERING
AMPLITUDES FOR PION PRODUCTION
II.1 INTRODUCTION

)

In Chapter I we noted that the S-matrix elements or pion pro-

duction are partly determined by the strong teraction. Since there is

i
no straightforward method to calculate the effects of this interaction,

we have to rely on general properties of the S-matrix elements to obtain

information

), have certain analytic properties

structure of the amplitud

@

S

what is

II.2 ANALYTICITY

We have seen in Chapter I that for a scattering process XN—nN




(cf, fig. 2) we can express the scattering-matrix element in terms of a

set of invariant amplitudes, as defined in sec,I.4, which are functions

of the variables s, t and u. (Only two of these variables are inde-

pendent, due to the relation s«t+u=2 mf (17.11).) For such a process s

equals the square of the total energy in the ceéntre-of-mass frame.
Together with this process we consider two others, obtained from

the first one by replacing an incoming particle by an outgoing anti-

particle and vice versa, i.e. —nll. For these two pro-
cesses we can again define similar sets of amplitudes, depending on s,
t and u, (These variables are still defined by (1.10) where it is under
stood that the particles retain their labels in the "erossing". ) the

first of these two cases the square of the total centre-of-mass energy

is now given by the variasble t, while in the second it is given by u,

Using this as a distinction between the three processes these are often
called s-, t- and u-channel processes respectively. We note that for

the different channels the regiors in which the variables s, t and u
have physical values (the “"physical regions") are disjoint.
It is clear that in general a different set of amplitudes is

he analyticity postulate states that only one

needed for each channel, T
set of amplitudes is needed for a description of all three channels and

es

that these amplitudes are meromorphic functions of two variables (e.g.
s and t) with only those singularities that have to be present because
of other assumptions about the S-matrix, (The origin and nature of
these singularities will be discussed in sec.I1I.4.) This means that
given the set of amplitudes in one physical region, the amplitudes for
the two other processes can be obtained by analytic continuation from
this first set.

We will first consider the analytic propexrties of the
amplitudes as a function of complex s, for fixed real t; s0 we need to
know the singularities of the amplitudes in the complex s-plane, We will
find (sec.II.4) that these consist of branch cuts along the positive
and negative real axis (from -w to b and from a to +oo (see fig.3)), to-

< e 2 : 2 : Ly \
gether with two poles at s=m” and at u=m“ (s=c and s=4 in fig 3)

sec.Il.4 we also find that the amplitudes are real analytic functions,
i.e. (s*,t = Bg(s,t). We now take the contour C in fig. 3 and apply

auvhyé thvore . This leads to
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In deriving these results the argument was based on the
g

postulated analyticity properties of the amplitudes as functions of one

of
complex variable, while the other had a fixed real value, It is also

possible to consider the analytic structure of the amplitudes as
functions of two complex wvariables, This led Mandelstam [ Ma58] to
postulate the double spectral representation for the invariant ampli-
tudes, from which the simple (one-dimensional) dispersion relation can
again be derived. This double dispersion re or Mandelstam repre-
entation for the amplitudes EJ reads as
0

09 (s
Q pr(s )
R —

can be made plausible by taking (2.2) (including
and considering disc[l..> .. as an analytic function
dispersion relation for the discontinuity in that
we need several assun about convergenc

of the integrals 2.6 i out

single spectral functions for large s and

this section we have used only the

be obtained for

hat analytic properties could be postulated for them. In
vector amplitudes 1Ai however, a kinematical singularity appears
conservation relations (1.21). Except for

singularities the A,
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Thus eq.(2.14) i:

On the right-hand si
nucleon state in t
the nucleon }

.

to the form u(

can be shown
renormalized

culated wi
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(upper sign for s-channel, lower for u-channel residues ). For iso-

vector (4 or -) amplitudes B, the residues are obtained from (2.27) by

changing ki to Pi and, in the case of (-) amplitudes, adding an extra
- sign for the u-channel residves. For the (-) amplitudes only, we also
have residues

A
-

= LZR
on

(2.:7b)

+
isovector > amplitudes Aaj we have

g b, Jalg(}.

g

(uppexr or lower sign for (+) or (-) amplitudes). All other
ZEeTYO0,

Next we have to consider again the question of subtractions.
Therefore we first recall the two current conservation restrictions

(1.21) for the amplitudes B,
v

+ P.K B, + Q.K B,
2 3

c

K- B, + Q.K
{
Substituting here for the Bj only the pole contributions, we find that
for the isovector (-) amplitudes the left-hand side adds up to a non-
zero constant. To ensure compatibility between the dispersion relations
and the current conservation conditions, we have to include a sub-
traction constant in the dispersion relations for two of the amplitudes

BT { anc hese conste f This can be done conveniently by

J
adding a term C, 6 =5g to the dispersion relations for B,, and
&4

Cb:gFZ to the one fo “;. (This is allowed since BA and BS are even
under crossing (s 5 u).) Further subtractions in the fixed-t dispersion
relations might follow from the one-dimensional spectral functions pJ
in the Mandelstam representation (2.6). For the vector current however,
J

the compatibility with current conservation reguires all p“ to be zero.

We will assume that this is also the case for the axial vector current.
The fixed-t dispersion relations for the amplitudes Ai are now
obtained from those for the Bj by using egs.(1.23). With this step we

clearly introduce a kinematical singularity in A, and Ai' In principle
[
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—i:
(map)”

and & similar relation (without the t-channel
m
4

(J:']’-

variable

he matrix notation was introduced in se
and the matrix [£] were defined in
in sec,l

5
eddeJe

8

relations from sec¢.l.4 we transform this

rm

coupled integral equations
pole amplitudes. Formally ¢ least, it is straightforward

ra

ax{ D, (x)][¢™" (s

x'=(kagx+(

shorter

and the sum %llFtl'(ﬂ,W'

the ﬁ*:neiLA![,

can be calculated explicitly by performi

this definition
Ly i)

The results can be found in

We note that in last two equations we encounter an other
convergence problem since in the multipole expansion of ImA(s',t) under

the integral unphysical values of x' occur (

s'-range). It can be

x'|>1 in some parts of the
argued however t

hat for low energies W the
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ECTION BETWEEN PION PRODUCTION AND PION-NUCLEON SCATTERING

Making use of the postulated analyticity properties of the
invariant amplitudes we obtained in the second chapter an infinite set
of equations (2.33%) for the multipole amplitudes that describe pion
production, No essential approximations were involved until then,
except for the restriction +to lowest order in electromagnetic or weak
interactions, In the derivation we assumed however, that no sub-
tractions other than those mentioned in sec.IlIl.5 were needed to ensure
convergence, and that the multipole expansion was valid even under the

ispersion integral. For the energy range we will consider, i.e. from
threshold (1080 MeV) to about 1320 MeV (in the ~centre-of-mass
ystem), these assumptions may indeed be made., In this chapter we will
obtain numerical values for the pion production multipole amplitudes in
this energy region and v 1EE€ he: amplitudes in a calculation of the
differential
Equatio (2 as they and can t provide a complete

solution for the nlitudes an ill need additional information
concerning the strong interaction dynamics. This can be obtained from

experimental results on pion-nucleon scattering, since a link
between this pro s and pion production ce¢ 2 made via a theorem due
to Fermi and Watson ;WuSJJ. This tl re i : d on tl unitarity re-
lation (2.11), rewritten as

m ml
T | 7|

Im (f

o\ | = n *l N7
i) = 1 f1T ‘n/\n
1




For energies below the two-pion threshold (=1220 MeV) the intermediate

states n that give non-vanishing contributions to the s~ or u-ch

®

matrix elements can only be pion-nucleon states, if we consider only

For these states

lowest order in weak or electromag

we have on the right-hand side in of a pion pro-

duction matrix element {nIT]i) and th Jmp onjugate of a pion-

: < 3 / N\ s 1% ‘
nucleon scattering matrix element (n|T|f). By making an angular

8

omentum decomposition it can then be shown (as is sketched in Appendix

D), that a multipole plitude for pion production with definite values
of the angular momentum and isospin in the final nN-state has the same

phase as the nN-scattering partial wave amplitude with these same

quantum numbers., That is, writing for the latter amplitude (see e.g.

where I is the total isospin, ion angular momentum (the total

angular momentum being given y Q@ the absolute value of the
centre-of-mass 3-momentum and phaseshift, we finally obtain for
1

2

the multipole amplitudes with or 3 | or =3 of. s8ec.1.3,
<
_(;.I\\.1I,‘l‘
21 2 21 /
Me+ M< nawn (4 K™= r ) z)
m‘i' = 'mzi'| exp (1 Ope # in ) ’ \2:2)

where n is an integer, and the + or - sign occurs for i' odd or even,
respectively. For the isoscalar amplitudes, which are denoted by an
index 0, we have to use the EL phaseshift.

Although this theorem holds only for energies between the one-
pion and the two-pion threshold, it can be extended to somewhat higher
energies, as long as the inelasticity for the nN-scattering partial

i
waves is small. This means that for the inelasticity parameter 7, de-

et ok 1 e R
exp (21 3:57) - 1] (3.4)

(3.2)), we have 0.9 Xn=1. Inspection of the para-

meters for the lower mN-partial waves (table I)

elasticity becomes important only outside the

considering, with a possible exception for the P, -phaseshift., (We use

the notation L,. ,. where L indicates the spectroscopic notation

(s,P,D,..) for

angular momentum of the pion.) Due to this small

inelasticity we can apply the theorem even though part of the energy

S
w




lies above the two-pion threshold,

570

1600

expected to
evant energy interval

partial wave;

multipole Y M, . and the kernels | f"‘. )

Im M i[j.'.'} we obtain
L




of the P,

about 1600

contribution

W) tg

I
+

L

. 1320 MeV (the "low ener

o . PR, O )
large (passing through 90

). Assuming

gives a rough

3%
s S

in the P, .,

except those

neglect the whole term, wh

ically

This leaves us

-multipoles

,~multipoles

to

are ident

‘M).,(W) + =

\\;l (w I_.
.LPT 1 ( |J) L

the amplitude, we find
-multipole

somewhat higher energies the situation becomes more complicated,

able approximation (for

for
an
higher

connecting with

wd+}
witn

1
vO
J

m+id

.~phaseshift is

MeV), while

amplitudes,




S- and P-multipoles

N;‘.(, ,,’(W) ~ I-v:_‘?, (‘\'u' g e=p .l
ol [ 5 n

Dlr-muitipolcs
>

] w) = ry‘; w
A:)‘]}(ul) \1‘/(1) +

o
ne

~R
while for all other multipoles : =M, . | sed the notation
£

i .
oz 2 \ 17.,0,5
X + 14

y0)

Finally, we can make these equations more suitable for numerical

i
calculations by taking into account explicitly the behaviour of the

=
multipole amplitudes for small values of the momenta k and q.
hat this behaviour is the s¢ as for the Born rms, we find

xpli

while for k— 0 we obta

: ' L 4 :
other vector amplitudes < other axial vector

L

:Jefif‘.i.:t( n‘il'l(w) by the
iate choice for 2', we can rewrite egs.(’
. (W), When the various threshold factors
Born terms and the ke ] the form of
unchanged. The advantage of extracting the
amplitudes M;i do not have very
which is important for numerical calculatioz
context especially all g behaviour has to be taken into
since g=0 at threshold,whereas the point k=0 does not lie in
region and so has less influence,) In the following we

amplitudes Mi., but we will omit the prime from now on.




al methods have

for photoproduction in the static

nucleon mass). In this treatment

dominant one in the 8y T
3,58
= \ /U =
1 e o n
i S 7 et Gt )sin =
£ b 1+ 2m \ 2t / o+

|

390 5,58

Here ".i’ and f7 are the Born te

muitlpole amy llquu in pion photoproduction and for the I

momen
photoproduction (

pole amplitudes are then calculated from the

terms plus con-
tribution (vi amplitude,
Althoug y 8

relativistic treatment i ecessary : good 3SCY

experimental

production. g7
1+

am can not be neglected, while also other 1 ATre

important here, that are absent in the case of photo To t

a2 :

S wvhile for
a0 W

four, Ma

ions, We

tried to

«111(‘.“.
by using as an "Ansatz" a form for the multipoles

vistic generalization of the CGLN-f

=5 o ; N ‘3
mi+ amplitude satisfies a dispersion relation which




one for ff‘, and their solution gives a simple proportionality of the
amplitudes Mf+ and f$+, with as a factor the ratio between the "forces"
in the dispersion relations for the two amplitudes (i.e. in this case
only the ratio between the static model Born terms for the two ampli-
tudes ). Although in a relativistic treatment the simple correspondence
between the two dispersion relations is lost, one can try, as a first
FLPflhllﬁﬂtlon of the model, to use the full relativistic Born terms

for f;+ and M1 in the first part of (3.10).
Our solution for the Pxﬁ-multipoles is obtained by
7
further generalization of this model, where instead of the Born term
M8
T4+
(i.e. those terms on the rl(lt-“”nd side of
2

3 F t e g )
s we use the full "force" M/’ from the dispersion reletion (3.6)
t

he equation that dv not

contain Im M7 ), defined b)
1 ’
+

w
W

0

l [ W ¢ W wr) K ()
+ o b AW 1[h )J , ImE _(w )+l K (

- u0®

F
54F_
r'H» sy &

g o sl 1 ¥ e . 4 Lk e ;
or the forces J;’ 3 b?’ , etec., defined in a similar way. This form is
+ +

used (with an adjustable factor A ) in an iteration procedure in which
we find numerical solutions for the multipole amplitudes, that satisfy

the dispersion relations (3.6) to within reasonable errors,

Before we describe this procedure in detail, we consider the
form of the multipole Born terms as obtained in sec.II.5 (and given
more explicitly in Appendix F). These terms can be written as a

sum o1 hree terms

V' = Z/ L

y &1 n=1 “2ijn ?

B 2 - At : x - = ,2
where Mzi n 18 that part of Lii that contains the formfactor F L
‘n
3N

LF1 and F_, are the nucleon formfactors; F,=F is the pion 1vrmfh tor;
< > B
cf. sec.Il.5.) Since the dispersion relations are linear in the form-

factors, the multipole amplitudes can be split up in the same way, i.e.

M

\ 22 M
2isn n=1 ¥

Zisn

The Ansatz for the P _-multlpoles is then written

oy s . A:n S DN 2 3
= 67 ) sin d
MPji “% exp (i 1,) sin d2

+’

3 B f . '3 : \ 2 1 3
where f;;L is ti (relativistic) Born term in the P,, partial wave
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amplitude for nN-scattering. To start the iteration procedure a first

: . 1 .3 . 3 3 . 2 ;
approximation for — Re M7 and — Im M is calculated by using
= An T+3n Ar 1+3n
4 3
5 onl B b) fas : 5B i
(;.7;) for M; s With as force only the Born term M;; , (i.e. we start
+ -, ?
B a5 X =~ %48
s ‘ . 0/ vy z sa 1A
exp (id7 sin o f for n=1,2,3), The con-
+3n P( ‘1+) 1+/ g 19 1<32)

stants An are then determined by calculating from the dispersion

with calculating M;

relation (3.6) the values of Re Mi~-r (n=1,2,3) at the resonarnce energy
+3n
(W=1236 MeV), and requiring that these should be zero. (As input the

values for — Im M7
A = 1+3n
1

while E; and S;+ are set equal to zero for the moment.) In the second
+

are used,

obtained from the Ansatz (3.12),

part of the first iteration step essentially the same procedure is

)

repeated for the amplitude 534’ using in the Ansatz the force

aw 1[nﬂ(\./,.\",]55 In M7 + [K‘ﬂ("{"{'hs‘« In E7 |

- ~ )1 - s 1 : 2 1.2
with the values for M; as calculeted in the first part, while
- t+ -

., 18 kept zero,., In the third part E;+ is calculated, now using the

0

W8 5,8 1 E \ 5 r ; SO

Ok = R7? 4 14 1 ' W T [ & (w w s

L1+ b STl dﬂu aw \[k11(W,N )J1j Im MI, o+ Ly11\n,ﬂ )]15 Im )1+j,
(3.14)

with the values for Mf* and S§+ from the first and second part,
respectively, This completes the first iteration step. This scheme is
then repeated, now of course without setting E$+ and Si*

but using the results from the most recent iteration step. (Note that

equal to zero,

the coefficients An have to be calculated anew in each part of an
iteration step.) The iteration procedure is summarized in the "flow
chart" of fig. 5.

After each part of the iteration a check is made to see how

> 7

the dispersion relation (3.6) is satisfied by the nultipole ampli-

=

we
tudes obtained from the Ansatz, by compering Re ﬁu&: as calculated from
P33
the dispersion relation, to the values obtained diréctly from the
Ansatz. In normal cases the results are stable after four or five
iterations, and the dispersion reletion is satisfied to within 10%.
Exceptions occur only at a few values of Kz, and only for the ampli-
tudes Ef* and S?+. When the imaginary part of one of these amplitudes
changes sign in or near the integration region, this results in an
instability for that multipole, and no acceptable solution can be found

directly. A better result can be obtained in those cases by performing
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+ sign holds when neutrinos are used, the - sign for anti-

2
neutrinos, Apart from the factor G /2m, .m,, the non-zero matrix
L1 L2

elements of « = are given by

T v
J 3 4 conserved current,
H >

are contracted with

actors & that
o
6))« When the differ
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ijk "k ¢
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NUMERICAL CALCULATIONS AND RESULTS

Numerical values for the various parts of the multipole ampli-
tudes (without the formfactors) were calculated on a computer by the

; > = ; 2 .
method given in sec,IIl.3, at eleven different values of K between

&3 2 )
0.5 0= and 100 1° (4 = pion mars), i.e. between .01 and 2 (GeV/c)“, and

at 43 energy points (31 for the axial vector multipoles), in the range

between 7.722p and 9.46p (1080 to 1320 MeV)., The results were stored on

a magnetic tepe and used as input for the computer program that

formed the cross-section calculations, This program selects the

priate multipoles, inserts the formfactors and the isospin

and then applies the formulae from sec.III.4 to obtain the differential
total cross-sections,

We have performed several tests to investigate the influence of
the various approximations (made in sec.III.2) on our results, Varying
the value of the cut-off energy Wo was found to have little effect,
although it is of course difficult to predict the effect of a complete
integration without cut-off, since there is not much information about
the multipoles at those high energies. Also in that case the guestion
of convergence becomes more important, and related to this we might
need several subtraction constants

Including the imaginary parts of non—?ij-multipoles in the
integrals in (2.33) was found to be unnecessary, except possibly for

(

the S-wave multipoles, which can have some effect on the P-waves (other
than Pi«)' Numerical evaluation showed however, that even here we can
expect ; e effect to be less than 5%, so we have not included these
terms in our calculations (as indicated in (3.6)..(3.9)), since other
factors will cause greater uncertainties.

For electroproduction we pcrformed cross-section calculations

in order to make a comparison with three seis experiments, done at
Stanford [Lyé?], Harvard (CEA) [ 1h9] and Daresb {de71], [8171] For
the nucleon formfactors we use results from ref.[GoéY], where a fit to
experimental data for elastic el =T ox given in

Sachs formfactors [Sz‘»
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no production, of which a selection is presented together with our cal-
culations in figs. 11 and 12.

Together with the experimental data and our results, we give in
fig., 6, 7 and 9-also some results of calculations that were performed
by Adler [ Ad68], and by Zagury [ Zaé6], [ Za67] . The method of
Adler and that of Zagury is similar to ours, in that they also use

partial wave dispersion relations, an approach which has been very

succesful in photoproduction (for a review see e.g. [ Be67A], [J 2]
and is based on the work of Chew et al. (CGLN; [ Cch57])
electroproduction) by Fubini et al. [Fu55].

To obtain solutions for the dispersion relations, Zagury uses

the N/D-method, while Adler uses for part of the P, -multipoles an

33
approximate solution which is similar to ours; however, we ha aken
into account the P) ,~contributions to more multipole amplitudes than
these authors. (Adler calculates only the part of the multipole ampli-
tude that is multiplied by the magnetic form factor in & more sophisti-
cated way, and uses a very simple approximation far the other parts.)
Devenish and Lyth use resonance saturation of the dispersion relation;
(their work also includes effects of higher resonances). An other cal-
culation of the electroproduction multipoles has been done by Von
Gehlen [V069}, [Vo?O]; in his work the solution of Zagury is used as a
starting point for a variational procedure, No cross-section calcula-
tions have been published however by this author,

From the various results for the multipole amplitudes it seems
to be clear that the Mj amplitude is the dominant one as was expected,

1+
and here the numerical predictions do not differ wery much, The E

¢ +
amplitude is small in general, while S; t
+

amplitudes are predicted differently by various authors., (In comparison

is more impoxrtant, but both

our values for 5; seem somewhat large.) In most of the other multi-

poles the main contribution comes from the Born terms and from the

. & s
”; (although especially b7 can not be neglected), s
. S +

that there the results agree reasonably well, At the moment it is

influence of

yet possible to extract values for the ltipoles from experimental
data as in the case of photoproduction, although Siddle et al. [Sifl],
[ He71] give some results, based on their data combined with
assumptions,

From the cross-section values, as presented in figs. 6,..,12,

T0
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When C- (or T-) invariance holds, only the first six amplitudes will be
i

amplitudes introduced by

[N
e
o
s
—
o

. In the case that these invariances may be
violated we will need the complete set of eight amplitudes.
The amplitudes Ai are free of kinematical singul

re they have the important property that there are

in which all

W, since this can be easily eliminated by Dirac

: 2 \ 1 2 %
the polaz on conditions, ) bDenoting the
by £~  and the corresponding .9 we have ins
uv
(4.11)
\Gell)y
m « 1C p
Dy, et X, {
11l 2V i=1
where the matrices e given by
. o ,' I (iy . X
= - 4 { »
TRV TRY TRY pb Ty o A3 .

) T I (3
i = P +iy I ; 1y { | iy iy . K
uy v vV u uy = v'? vt %N |
(4.14)
by (4.13),

10t independ

needed, and even

is then to introduce gauge-invariant matrices

where I

projects out the gauge-invariant part of

the & It is given by




matrices
denominator

amplitudes

ilned in

preN©

case O ( I i ie again the

and B , will be

introduced by Hearn

the gauge-invariant matrices i
1 [TRY

su=m’, the following extra conditions have

ampli=-
tudes hi to ensure 1& Loy is regu £ )

ar, (of )€ of 1is section)




he simple forms of the matri

the connection with helicity amplitud

SUC.V.Q} is
XTTNE -~
wne

relations between these

These relations are

giver
given

helicities, writing in




) are defined

we for the spino the relation
(
\I":‘) (s)
u, = Z,. exp(Fi(r. -s))d* 07)"ug+", {
B, - N2 p 1 Pa
< )
The s} for a moving particle are
& m-iy . P, )
i W7 o i Rk 2 \
u | 6} ) = "i“ ° | 4. )
\P. : /
L (o2ml{Pam) )% Yz
(2m(E+m) ) 1
Using tk formulae and the explicit forms for the polari vec-

and will be omitted from

the helicity ampl

P £ 2 _
w , = 1 * _BES: 18 4

| i + 5 Rt & WL ¥
. P &
5 = 1 ; Dy g

¢ L Bt % LY B - 7 ” Sk - % AL B
¥ rs - o
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o
$p = 1 1 1
T =1,~-z:1,-3

The relations between the Py 8 i 1! 3, can
from eq.(4.26), and using the formulae from Appendix (

obtain the relations with the amplitudes Ai:

<

i((s-m“)a+th)A4-m(su-md)A5-((:-m

&N\ AW

)A,+2((s-m )55

ougv[th(A]

. ¢ 4
8ins0 (su-m

As we have remarked before, the amplitudec Zero

absence of C- or T-violation. We see from (4 ) na ve obtain

case ¢ =0 q Par leaving six
1 A8
The inverse relations are
snW r o, 2\ 7. L2 2
———————d 1+2t (s+m”)/(8-m")

mt coszt

(s-m~)(s+3m°)+m°
;
4

( 1 \.
(su-m")

A

in

that




~




amplitudes Ly'&i, and write

2 e 3
L ='\‘lyos‘ryulm

i 1!A1§P1v“1> = #(pa) "® 2 (23+1 )

. J
)
J
or in a shorter notation

= {u1T|A1yu1 3

< -3|
The helicity of the fina leon i = 20 tion process is
denoted with y3 the h icities c the injtial 10ton and nucleon
again h? and T and y =5 A he kinematics for this
in sec.I.2 (ef. fig. & h iz a minor change in notat
initial photon here has me ) K1, and is 2

. v R = 3
nucleon momentum is P ,(p, a).)
‘

IV.4 LOW-ENERGY BEHAVIOUR OF THE

It is well-known ([LOSA], Ge to first order in the
photon energy the Compton scatt g ampli ie depends only on the
mass, charge, and magnetic moment of the a T (4 the proton).
This result can be derived, using only gauge invariance and relati-
vistic invariance LO)AJ Denoting this first-ord 8 ximati at
low energies (in the limit p—0, 8 fixed) fo: he ing amplitude

we have in the centre-of-mass syste

where e is the charge and ui the magnetic moment of the protons “L
the anomalous part of the magnetic moment; X are the Puuli-spino.
the nucleon, By a straightforward calculation one can derive from
expression for Tl. the low-energy limits for the amplitudes Ai or

- 5 - A — 3 " / : 3
Denoting these llmltu by A; and B, we obtain (using now the proton
i

)
<

formfactors F?(O)=1 and F%(G)qi'/Zm, or briefly F1 and F_; cf,
1 P P
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in sec.ll.4, it from the
perator, follows

N=ZeT0

same TU)

ype

occur as

t first six amplitudes

he
vhe

analytic,

ersion relations for

making an expansion of

== Al = : )
£ 36 D 1 erms 3’(}1‘2‘85}0!‘1'1

| { N ) ’V

Hay VOT By
14, calculated with normal Feynman rules,
romagnetic formfactors at the vertices, We

Y4

to

14), (5.15), due to our normaliza
)

sec.l11.5).

tion




u-channel

t-channel

g6

- u(pi;)‘r,: u(p1) *———/——) £ €, K, K, (5.16)

—
o
H

= X . . \; ] )
The formfactors F, are the nucleon formfactors F F.(0), intro-
i i ’

duced in sec,Il.5 (p for protons; n for neutrons); g is again the pion-
| ~A11rl 3 e 4« an : he -O % i av o “atan
nucleon coupling constant, and G is the n — 2y decay constant

G =0G6(u®) = -8(n/run)A

0 "

where T is the (n — 2y )-lifetime. The sign of G is taken from ref.
\ / &

[ La62]; cf. also | }ie(;‘:‘] , [ Ko68].) In the rest of this work we will con-
sider only the case that the nucleon is a proton, and we omit the index

ormfactors Pll from now on,
The expansion of the Born terms is done most easily in terms of

ey

p on the

the invariants Muv’ using the method described in Appendix G. Via eq.

(4.21) we then obtain the pole termsfor the amplitudes Ai. We find in

t{;e_:s:chfnm»:'l: iy .(K1+P1)-m E
e” u(p,)e* F,y -F.0 K —_— & 9 F o K. le ; Ve
(P_k,l oy LEY =F 0, Ko i p )fm: [I‘TYH*PS Uﬁnlej W u(g“, -
¥ el :
80 Fy o W ol ks wris
= e- u(p,)e ;‘(\,(1W' K)Y +P, Y 4P, iv,l + 5= L2(n ~SJY Y, #
o " m -s

+ 2iy_ (dy.K)P, +2P, (iy.X)i vy (iy .K)y +2m(P. iy +P. iy )=2P_ P |
( ) (3v .K)dv +4my (iv .K)v +2m(P, iy +P, iy | ot - [l

v 1 2v [’ 1u v’ 2V
F‘i
< \ / \
eVl i, L5 wTE QY A L I
+ [ (m ) ( rv(lv.P.)YU+P2\)1YH+}mlrv+dm)vru) 4./_\)\11.}&)1’1“ +
+ 4m(iy, (iv.K)P, +P, (dv.K)iv. )+4m°y_ (iy K)Yy 1}e u(p,) =
\J m T 2v AT iy v g 1 y[7 b B
+ .
+

u(p,) (5.19)
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We note however, that for the amplitudes B, the low-energy
7 A :
limit of the pole terms does not agree with egs.(4.3%3 ). Thus, even

; . C . : - - ;
asguming lim B:=0, we still would have to introduce subtractions in the
p—0 .
dispersion relations for the amplitudes B, [He62] , [ K068] . This, and

the related fact [ Ba68] that for these amplitudes Bi we have to take
into account the constraint equations (4.19), (4.20), leads us to write
down the dispersion relations (6.1) for the A,, and to use the Bi only

i
as a gset of intermediate amplitudes to simplify several calculations,

VI.2 CONNECTION WITH PION PHOTOPRODUCTION

With the assumption that the unitarity relation (5.12) holds
even for unphysical values of s, the integrands in egs.(6.1) can be
found in principle from the results of sec.V.3., We will restrict our
calculations to the energy region from threshold (940 MeV) to about
1350 MeV in the centre-of-mass system (i.e. photon laboratory energies
below 500 MeV). In this region the process is dominated by the first
pion-nucleon resonance (1236 MeV). The dispersion integrals are cut off
at an energy WO=:18OO MeV (soc 52 GeVE), which will be a reasonable
approximation for low s, Further, we simplify the right-hand side of
eq.(5.12) by taking as intermediate states [n> only states, containing

one pion and one nucleon, thus reducing the expression to
' / \
i g (enfrt{n®)(nn| Ty,

i.e. essentially a product of two matrix elements for pion photopro-
duction, where the I denotes a sum over the two possible charge states,
Below the two-pion threshold this is correct, and for higher energies
we can expect it to be a good approximation, since inspection of photo-
production and pion-nucleon scattering data shows, that in the region
considered, the matrix elements involving two (or more) pions will be
small (<5%) compared to those for single pion photoproduction, (cf. the
discussion in sec.III.2). To express Im Aj(s',t) and Re Aj(s',t) in
terms of photoproduction amplitudes, both sides of eq.(5.12) are

1
expanded in terms of partial wave helicity amplitudes ¢; S und'?J W%
1" 2 ; G
which were introduced in eqs.(4.30) and (4.31). Due to orthogonality
> J x ; : > i -
of the dv 9 -functions, a very simple relation results, If T-invariance
§5e
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we obtain (for details about isc spin see sec,VI,3)

-

o \= /
g
the matrix elements of T~ can ir
S ¢ { s S
’ T terms of A, and A.. Fronm
[
(4.28) it is then t the helicity amplitudes ®. can
> i
written as a sum of a C-conserving amplitude (9.) and a C-non-conserving |
= J (&0 1
- {254
1\' - Yv v + YV v . (0.4
.1‘ - ) &< 1’ “
We then obtain from the unitarity ation a of eq.(6.3),
- : - > -
P = z (¢ TSR T TURSI Yt | €
V.,V “ y=t V.V Tv_v V.V W, v/ Zags

of pa wave amplitudes fc
relations (6.1) we then obtain A (j=1y.46) and Im A
) J

integrands nd the sa is true for 9. It can be

that ¢t! U that occur in eqgs.(4.29) can
the fac ¢ ), 80 that this does not
2 Vs
2
further complications the calculation,




duction),

photons

occur, Clearly

protons far more da

for photoproduction from neutx

alone,




combinations (M, 4
F o

useful to

relations hold for the various

To introduce T=violation in our cs 1lations,
should use T-violating photoproduction amplitudes.
analyses have been performed however, that include the possibility of
T-violation, but we will follow the arguments given by Berends and
Weaver [Be?ib] to obtain a phenomenological form for these amplitudes,
containing one par : We write the multipole amp

m, 4+, 5 (ete.), agai J: denotes the T-vio

is the isospin index. Using the unitarity re

[ Be71b] that the phases of the amplitudes m

|
= ![m

where & is

Defining x

We have assumed here the absolute value of the amplitude
remains the same, witl thout T-violation, Information
parameter x has to be obtained from a comparis between photopro-
duction and the inverse reaction (IN—YN) results

ref, LHeTib ].

CALCULATIONS AND RESULTS
xpressing the centre-of-mass cross-section for Compton
I g I
) g by . o : z < e
scatterir (4.4 ) (with unpolarized particles) in terms of the helicity
amplitudes ii, we obtain the simple expression

2
A




As we have shown in the previous sections, we can obtain numerical
solutions for the amplitudes Aj by using experimental data from pion
photoproduction, In these numerical calculations we used as our main
source of input a set of photoproduction multipole amplitudes (with
J= %) from an analysis by Berends and Weaver [be?1a], covering the
centre-of-mass energy range between 1100 and 1315 MeV (i.e. photon lab.
energies between 180 and 450 MeV). For the energies in the dispersion
integral that lie above this region (up to 1770 MeV in the
mass, i.e. 1200 MeV photon lab.energy) we used results from a multipole
analysis by Walker [Wué9], with J= %. (The effects of higher multipoles
are estimated to be small (£5%) in this energy region.,) In some cases
(see below) a T-violating part was introduced in the multipole ampli-
tudes via cu.\ A1)

By means of a computer we applied the method given
vious sections, to calculate from these multipole amplitudes
Compton scattering amplitudes and cross-sections, The steps
calculation can be summarized as follows,. From egs.(6.6) and (6.8) the
photoproduction helicity amplitudes are obtained (with or without a T-
violating part). The imaginary parts of the Compton scattering helicity

amplitudes Py and the real parts of $i are then found from eqs.(6.5)

1 \ /

and (4.30). Since it is clear that the amplitudes A. (with j=1,...6)
J

depend only on @i’ we can calculate via (4.29) ImAj for these six
amplitudes., Similarly, A7 and AB depend only on @i so that their real
parts can be found. Via the dispersion relations (6.1) we obtain the
corresponding real or imaginary parts., The cross-section is then calcu-
lated via eqs.(4.28) and (6.12). In figs. 15 through 18 the results of
these calculations are given, and compared with experimental data and
other theoretical work. In fig. 15 our "normal" calculation (no T-
violation; sign of t-channel pole as given in eqg.(5.22)) is compared to
the "unitary limit", i.e. & calculation with all Re ¢i set to zero.
From eq,(6.12) it is clear that this must give a lower limit for the
cross~-section, but we see in fig.,15 that some of the experimental
points at energies near the pion-nucleon resonance (especially at
angles é=900) lie very close to, or even below this limit, A similar
picture emerges from a recent calculation by Pfeil et al. [ A;/], who
used a Bonn multipole analysis ([No?i],[if72]) as input, The theoreti-

cal assumptions involved here, are essentially only




no

new experim

were made,

obtaining agreement by

duction of T-violatio

iple

an pbe veriilied

1
1

troauced

sgible

we
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taken
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near the resonance the effect is very small, so that the discrepancy
remains,

Fig. 17 gives our normal calculation compared to one ‘with an
opposite sign for the residue of the t-channel pole. For energies below
the resonance the normal calculation results in a somewhat larger value
for the cross-section than the one with the opposite sign, while near
and above the resonance there is a small difference in the other
direction, Although for a scattering ang l=1j>u the situation is not
very clear, we see that at @=90. the experiments favour the "normal"
sign of the residue, as given in (5.22), This result is in accordance
with earlier analyses ([ La62], [He62], [KOQBJ}.

In fig. 18 finally, we compare our sults to those of the Bonn

up (W.Pfeil et al, [Pf?ﬁ]) and K8berle [KOGB]. Both of these calcu-
tions use the set of amplitudes Bi (in our notation), introduced by
and Leader [Heé:], and based on work by Prange Lzrﬁﬁj. 1 ref,
the constraint equations between these amplitudes (egs.(4.19),
are taken fully into account, while this is not the case in
ref. [Koéﬁj. We do not need these constraints, since we use the ampli-
tudes Ai' where the conditions leading to the constraints are auto-
matically satisfied. The t-channel continuum contribution, which
involves the pion-pion interaction, has only been included by K&berle,
contributions only model calculations can be used, and
small effect, we have omitted them, although they can
be fitted into our formalism without much trouble. (They contribute an
extra term to the fixed-t dispersion relations (6.1).)
photoproduction is different for the three calculations,

theoretical predictions for pion photoproduction, the Bonn group used

a multipole analysi:c 71] , sz72]), and we used a different multi-
1

pole analysi Be71a] (For the high-energy data Pfeil et al. used
[M073], and we k [ Wa69] , but this different choice hardly
influences the results,) A special feature of the caleculations by Pfeil
et al, [}'{i] is, that they alsoc performed 'a simultaneous partial wave
fit to the experimental data for both Compton scattering and photopro-
duction. The photoproduction amplitudes agree more or less with normal
ar 3ldges, and they obtain phenomenclogical amplitudes for Compton scat-
tering, The results for the cross-section, calculated with these ampli-
tu is also shown in fig.18; they are clearly smaller that the dis-

persion calculations,
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. o v..(k)v. (k) = =(-m-iy .K), A.26)
j=T,2 "B° ) AN 2m ‘Bt /

Discre te t.ransformationas: P, C

of the transformations P, C and T on the is
given by
: Loy : =3
Praee 3 =&a _, 3 R e -
kj =kj kJj
= :
C a_ v s D
kj kj'
1 L . s
-l PROY | - TR, e | R £4 ‘e
g\l ¥p = (=1)Y a' 3 AN B = (=1)" b _ 5 (A.27)
kJ -kj! kKJ -kj!

with j#j'. In connection with these transformations it is convenient to

trices

propert

iation),

(denoted here with the same symbol as the corresponding

P =Y : ¥, u.(k) = u.(=k
v

S

vy v, () = v, (-F) (4.28)

«
L}
=<
~
=
—
=
)
l
«
<K
=
~

For the scalar field egs.(A.27) hold without the minus sign in

front of the operators a_ and b_, and without the indices j or j'.
k k

vector field we have

r
~

"
n

5 A
C = =b
-
k
A =1 A+ A -1 7
m . @ < o = A Z
O - X T M T L o__ T = Y - \Ae D<)
k =K K -K
nd for A.32) hold if b is replaced 1,










the summation over { L} in (B.Z), non-zero terms app

n

and £=J+%. Furthermore, <dLh ',JLLU)/ will vanish

ombinations of £/, J and L, other than thsc in table B.I, due

parity

character of the incoming X-particle, Thus we can writ

}"\.,z'I'F']dl)\) e 5o ((xﬁ)(lr:h:s‘|

: ,ILL. s)R, ¥
JL L £m, ) Lt

\ 'Llf
L (B.5)

g1 are projection operators that ¢ >t the appropriate value
)

for 2 given value J and L, depending on the type of pola-

given by [ Go64]

1 /s Pt ¢
= — (24140 .2 )
2L 41 q°

L4140 2843

can

we

way as in sec,I1,4.B, by substituting bu for € in

(1.28)).

becomes

be seen from
for A=E,L,S,

choice

(§.8) are Legendre polynomials,
vector amplitudes, current conservation can be imposed in th
H} (see e.g.

This will eliminate the terms with A=L in eqs(B.B). si

RLLD.Rsu.

We finally introduce multipole amplitudes by defining

(lad,b| Tt 244,641,B) = 4ni Ef v (£+1)(2+2)

%8| 71| 2-3,£-1,E) = -4ni E, VE(2-1

+\‘L(L+‘)

M, _ Ve (e+1)
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Appendix E

A different set of invariant amplitudes

In sec.1.4 we introduced two sets of invariant amplitudes,

N

denoted by iui} and 1Hi}, respectively, The set {hi} is free of
kinematical singularities i&aé1], but vector current conservation
imposes the two restrictions (1.21) on these amplitudes, so that they
are not independent, Two of them can be eliminated, which is done in
eqs{1.22) by introducing the set {nij, [ De61] . This elimination causes
the appearance of kinematical singularities in the amplitudes A, and

-

v . & 7 3 - ; \ .
A_; these have a pole at t=y" (outside the physical region), In the

scattering mastrix elements Tfi the amplitudes Ai always occur in the
combination %AiMi (eq.(1.22a)), where these singularities must be can-
celed, In fact, we have
AM, + A M, = NLUZ&Mt¢2JL *iyg-muKA,-K%(ws)f
22 559 p) 2 p) 2
2,

175(r.a)(t-u A, + 2iy555(g,g), (BE.1)

where in the first term the singular factor in Aé is canceled

2
t-u
explicitly, while the second term can be expressed in terms of the

amplitude B which is free of kinematical singularities.

57
As has been argued by Berends [ Be70] (ef. also [ Ad68] ), in

numerical work the cancellation in the second term of (E.1) can cause

problems, which are avoided by using instead of the amplitudes Ai, a

new set 1A£}, where
Al
i

g 2 aipre.
AL . g = BA = [ 4k

2B.+P.K B,+K°B
1 2

e

For these amplitudes the dispersion relations (2,%1) still hold, only

s ~
with residues I'' and Tt

which differ from eqs.(2.30), and are given by

(i£5)

(E.3)
It can be verified, that this new set of dispersion relations is the

same as the old one, except for an additional subtraction constant in

127




the relation for A_, since we can write

2 LB
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Combining these two equations,

lation for A_ with
5
IEAM(S',E) .

am

plitudes A;, corresponding changes must

¢ : [ 3 -1 g
in the matrices |B) and |B ] (see Ap

pendix C). These changes can be

summarized as

performed a series of
und the difference with the origin:

a few percent, i.e. within the

are the same,
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the invariants 3Qie (D19 ), je then need the
results from table G,I1II, where the
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In dit proefschrift komen twee verschillende soorten proce
aan de orde:
1) electro- en neutrinoproductie van n-mesonen, dat wil zeggen: inelas-
tische verstrooiing van electronen of neutrino's aan nucleonen,
arbij een pion geproduceerd wordt:
- e

- e

v N= u
i

De eerste reactie wordt veroorzaakt door de electromagnetische wis=-
selwerking; de twee andere door de zwakke wisselwerking.

Compton verstrooiing aan nucleonen, ofwel elastische verstrooiing
van fotonen aan nucleonen:

Wy A=t Vil s

welk proces weer van electromagnetische aard is.

Hoewel deze processen slechts kunnen verlopen door middel wvan
de electromagnetische of zwakke wisselwerking, geldt in beide gevallen
dat men rekening moet houden met een belangrijke invloed van de sterke
wisselwerking, aangezien er hadronen aanwezig zijn (in casu: pionen
en/of nucleonen). De invloed van de electromagnetische en zwakke wis-
selwerking kan goed beschreven worden door middel van storingstheorie
in laagste orde; voor de sterke wisselwerking is dit echter niet moge-
lijk, zodat deze in zijn geheel in rekening gebracht dient te worden.
Aangezien de theoretische kennis omtrent de sterke wisselwerking niet
voldoende is om de invloed ervan op bevredigende wijze te kunnen bere-
kenen, kunnen geen numerieke wasrden voor de botsingsdoorsneden van de
beschouwde processen verkregen worden, ales men alleen uitgaat van theo-
retische beginselen. Daarom is het nodig een andere methode te volgen

voor onze berekeningen, Dit is mogelijk door aan te nemen dat de




verstrooiingsamplitudes voor de beschouwde processen bepaalde analyti-
sche eigenschappen bezitten, als functies van geschikt gekozen kinema-
tische variabelen, Deze aanname leidt tot dispersierelaties voor de am-
plitudes, welke samen met de eis dat de verstrooiingsmatrix unitair
dient te 2zijn, de basis vormen voor de theorie der dispersierelaties.
In het kader van deze theorie kan de invloed van de sterke wisselwer-
king op de verstrooiingsamplitudes voor de beschouwde processen in ver-
band gebracht worden met andere processen, waarbij deze wisselwerking
een rol speelt. Op deze manier kan men experimentele gegevens omtrent
deze andere processen gebruiken om het gebrek aan theoretische kennis
aangaande de sterke interacties te compenseren. In ons geval houdt dit
in dat we gebruik maken van experimentele gegevens over pion-nucleon
verstrooiing bij de berekening van electro- en neutrinoproductie, en
van experimentele gegevens over pionfotoproductie bij de berekening van
Compton verstrooiing. De zo verkregen resultaten kunnen vergeleken wor-
den met experimentele gegevens over deze processen (i.e. over electro-
en neutrinoproductie, respectievelijk Compton verstrooiing), voorzover
deze al bekend zijn, of zij kunnen dienen als theoretische voorspellin-
gen van toekomstige experimenten, Bezien vanuit theoretisch standpunt
kan anderzijds overeenstemming tussen theoretische resultaten en expe-
rimentele gegevens beschouwd worden als ondersteuning van de veronder-
stellingen waarop de theorie der dispersierelesties is gebaseerd. In dit
proefschrift zijn de eerste drie hoofdstukken gewijd aan electro- en
neutrinoproductie, de laatste drie aan Compton verstrooiing, De behan-
deling van deze twee soorten processen verloopt grotendeels parallel,
In Hoofdstuk I worden formele uitdrukkingen voor de botsings-
doorsneden voor electro- en neutrinoproductie gegeven, alsmede de kine-
matica voor deze processen, Verschillende stelsels van amplitudes wor-

den beschreven, waarin de matrixelementen van de verstrooiingsoperator

kunnen worden ontbonden, (De belangrijkste hiervan zijn de Lorentz-

invariante amplitudes en de multipoolamplitudes,) In Hoofdstuk II wor-
den de dispersiereleties verkregen, uitgaande van de veronderstelde
analyticiteitseigenschappen van de invariante amplitudes, waarna een
transformatie volgt tot een stelsel gekoppelde integraalvergelijkingen
voor de multipoolamplitudes, In Hoofdstuk III gebruiken we experimente-
le gegevens over pion-nucleon verstrooiing, met behulp waarvan de fases

van de multipoolamplitudes wvoor electro- en neutrinoproductie gevonden
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kunnen worden, binnen een bepaald energiegebied. De multipocl-dispersie-
relaties zijn dan bij benadering oplosbaar, zodat we numerieke waarden
voor de multipoolamplitudes kunnen vinden., Deze amplitudes dienen ver-
volgens vermenigvuldigd te worden met de geschikte pion- of nucleon-
vormfactoren, die weer uit experimentele gegevens afgeleid zijn. Voor
electroproductie zijn de benodigde nucleon-vormfactoren bekend, terwijl
de pion-vormfactor verkregen zou moeten worden uit een vergelijking van
experiment en theorie voor electroproductie. Zoals in dit hoofdstuk
blijkt, zijn de resultaten nog te onzeker om deze vormfactor geheel
vast te leggen. Voor enkele verschillende keuzes van deze vormfactor
zijn hier botsingsdoorsneden voor electroproductie berekend., Voor een
volledige berekening van neutrinoproductie zijn dezelfde vormfactoren
nodig als bij electroproductie, vermeerderd met de twee axiale nucleon-
vormfactoren, waarvan er een slecht bekend is, Aangezien er bovendien
weinig experimentele informatie over dit proces beschikbaar is, zijn
hier alleen de amplitudes berekend, en niet de botsingsdoorsneden, Voor
deze laatste worden alleen formele uitdrukkingen gegeven.

De drie hoofdstukken over Compton verstrooiing volgen ongeveer
hetzelfde schema als de eerste drie., Hoofdstuk IV geeft formele uit-
drukkingen voor de botsingsdoorsnede, behandelt de kinematica en intro-
duceert diverse stelsels van amplitudes. In Hoofdstuk V worden de ana-
lyticiteitseigenschappen van de invariante amplitudes behandeld, waar-
bij vaeak terugverwezen wordt naar Hoofdstuk II, In Hoofdstuk VI wordt
aangetoond dat in het energiegebied van de eerste resonantie de disper-
sierelaties voor Compton verstrooiing opgelost kunnen worden met behulp
van amplitudes voor pion fotoproductie, welke goed bekend zijn uit ana-
lyses van experimentele gegevens, Amplitudes en botsingsdoorsneden voor
Compton verstrooiing kunnen dan berekend worden en vergeleken met ex-
perimentele waarden. Verder kan uit de fotoproductie-amplitudes een
ondergrens berekend worden voor de botsingsdoorsnede voor Compton ver-
strooiing, waarbij alleen gebruik gemaakt hoeft te worden van de unita-

riteitsrelatie en de gebruikelijke invariantie aannamen voor de S-matrix

(C, Py, T). Het blijkt nu dat deze ondergrens geschonden wordt docor en-

kele experimentele punten, Om na te gaan of deze discrepantie opgeheven
kan worden door de eis van T-invariantie te laten vallen, is het forma-
lisme dienovereenkomstig gegeneraliseerd, en hebben we enkele bereke-

ningen gedaan waarbij op eenvoudige manier een schending van deze
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