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S T E L L I N G E N

ï» In het geval van verstrooiing van een Diracelectron aan een
uitwendige potentiaal kan voor de asymptotische conditie behalve
de gebruikelijke zwakke convergentie, ook sterke convergentie en
zelfs norm-convergentie worden afgeleid.

S.S. Schweber, in "The Mathematics of
Physics and Chemistry", vol.II, sec.10.J;
edited by H. Margenau and G.M. Murphy.

. «.

|DI. Het verdient aanbeveling om bij het uitvoeren van hoge—
temperatuur ontwikkelingen in de statistische mechanica gebruik te
maken van algebraische computerprogramma's. Als voorbeeld van een
dergelijke ontwikkeling kan gedacht worden aan de berekeningen die
recentelijk door Capel et al. zijn uitgevoerd aan het XY-model.

H.W. Capel, E.J. van Dongen,
Th.J. Siskensj preprint Leiden, mei 1974.

UI» De bewering van Bardeen en Tung, dat Hearn en Leader een
verkeerd teken gebruiken bij één van de invariante amplitudes voor
Comptonverstrooiing, is onjuist. Dit misverstand is terug te voeren
op afwijkende definities van de bewuste amplitude bij de verschil
lende auteurs.

A.C.Hearn, E.Leader; Phys.Rev. 126(1962)
789.
W.A.Bardeen, Wu-Ki Tung; Phys.Rev. 175
(1968)1423.

DV. Het invoeren van een subtractie in één van de invariante
amplitudes (in casu Ag) voor electroproductie, teneinde het effect
van de axiale vector-vormfactor in rekening te brengen, geeft pro
blemen voor het gedrag van de botsingsdoorsnede bij hoge energieën.

N. Dombey, B.J. Read; Nucl.Phys.
M0(1973)65.



V. Bij de door Hite en Jacob voorgestelde "grens-dispersierela-
ties" kan in het geval van niet-elastische verstrooiing een kine-
matische singulariteit optreden,

G.E.Hite, R.Jacob; Phys.Rev, D5(1972)422.

he't uitvoeren van dispersierelatie-berekeningen voor
Comptonverstrooiing aan nucleonen verdient het de voorkeur om ge
bruik te maken van de door Bardeen en Tung geïntroduceerde ampli- i
tudes, aangezien deze het juiste gedrag vertonen bij lage energie-]
en; dit in tegenstelling tot de doorgaans gebruikte amplitudes van?
Hearn en Leader,

W, Pfeil, H. Rollnik, S. Stankowski;
preprint Bonn, 1975.

afleiding door Caplin et al, van een coherentielengte v
voor e1ectron-phonon verstrooiing, ter verklaring van de afwijking-*
van de regel van Mathiessen, wordt een onjuist gebruik gemaakt varii
de onzekerheidsrelatie van Heisenberg.

A.D.Caplin, F.Napoli, D.Sherrington;
J. Phys. P (Metal Phys.) 1(1975)L95.

VIII. Be wijze waarop het thermomagnetisch drukverschil afhangt
van de hoek tussen magneetveld en temperatuurgradient, kan uit
eenvoudige symmetriebeschouwingen worden gevonden.

H. Vestner; Z. Naturforsch. 28a(l975)869.

IX* Gezien de uitgangspunten voor de berekeningen door Gordon en&
Kim van intermoleculaire potentialen, is de uitstekende overeen
stemming tussen hun resultaten en de experimentele gegevens niet
geheel vanzelfsprekend.

R.G. Gordon, Y.S. Kim;
J. Chem. Phys. 56(1972)5122.

Leiden, 25 juni 1974
C.P. Louwerse
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I N T R O D U C T I O N

In this thesis we consider two types of processes:
1) electro- and neutrinoproduction of n-mesons, i.e. inelastic scatter

ing of electrons or neutrinos on nucleons, in which process a pion
is produced:

e N -* e N n
v N-» e N 7i
v N-* a N 7t.

d
The first of these reactions is due to electromagnetic interactions,
the other two proceed via weak interactions,

2) Compton scattering on nucleons, i.e, elastic scattering of photons
on nucleons:

Y N-*y N ,
which is again an electromagnetic process.

Although these processes are possible only through electro
magnetic or weak interactions, strohg interaction effects are important,
because of the presence of hadrons (in this case: pions and/or nucleons).
Whereas the effects of the eledtromagnetic and weak interactions can be
calculated adequately by applying perturbation theory in lowest order,
this is not the case for the strong interactions. Thus we have to take
into account the complete strong interaction effects. However, since
there exists no theoretical procedure to calculate the full effect of
these interactions, we are not able to obtain from "first principles"
numerical values for the cross-sections for pion production and Compton
scattering. For this reason we must base our treatment on an other
scheme. We assume that the scattering amplitudes for the processes
under consideration have certain analytic properties in suitably chosen
kinematical variables. This assumption gives rise to dispersion
relations for these amplitudes. Together with the condition that the
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scattering matrix should be unitary, this forms the basis for disper
sion relation theory. Within the context of this theory it is possible
to relate the strong interaction effects in our scattering amplitudes
to other processes where strong interactions play a role, and for which
sufficient experimental data are available. In this way we can then use
experimental information to compensate our lack of theoretical
knowledge about the strong interactions. Thus we can use pion-nucleon
scattering data in our electro- and neutrinoproduction calculations,
and data from pion photoproduction in the calculations for Comptoji
scattering. With this additional information it is then possible to
evaluate the desired amplitudes and cross-sections. The results can be
compared with the experimental data on these processes, as far as
available, or they can serve as predictions for the outcome of future
experiments. Prom a theoretical point of view an agreement between the
theoretical and experimental results gives support to the assmumptions
on which the dispersion relation theory is based. In the present work
the first three chapters deal with electro- and neutrinoproduction, and
the last three with Compton scattering. The treatment of these two
cases is more or less parallel.

In Chapter I we give formal expressions for the cross-sections
for electro- and neutrinoproduction, and we treat the kinematics.
Several decompositions of the scattering matrix element in terms of
different sets of amplitudes are then given, the most important of
which are the Lorentz-invariant amplitudes and the multipole amplitudes.
In Chapter II we first concentrate on the invariant amplitudes, and
exploit their assumed analytic properties to obtain dispersion
relations. These dispersion relations can then be transformed into a
coupled set of integral equations for the multipole amplitudes. In
Chapter III we show that in a limited energy region we can obtain the
phases of the multipole amplitudes from the corresponding partial wave
amplitudes for pion-nucleon scattering, which are well-known experi
mentally. With these experimental values as input, the multipole dis
persion relations can be solved (in the energy region considered), to
yield approximate numerical solutions for the multipole amplitudes.
These amplitudes further have to be multiplied by the appropriate pion
or nucleon formfactors. We have calculated amplitudes and cross-
sections for electroproduction, using the nucleon formfactors as
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obtained from elastic eleotron-nucleon scattering. The pion formfactor
is not well-known as yet, and should be obtained from a comparison
between theoretical and experimental results on pion electroproduction.
As can be seen in this chapter, the results are still too uncertain to
fix the values of this formfactor completely. For a complete neutrino-
production calculation also the axial vector formfactors of the
nucleons are needed, one of which is not known very well, while again
the pion formfactor must be taken from electroproduction. Moreover, the
experimental information about this process is still very scarce. For
these reasons we have calculated here for neutrinoproduction only the
multipole amplitudes (without inserting the formfactors) and no cross-
sections.

The chapters in which we treat Compton scattering are organized
in essentially the same way as those on pion production. Chapter IV
gives formal cross-section formulae and kinematics, while also various
sets of amplitudes are introduced here. Chapter V often refers back to
Chapter II, since the analytic properties of the invariant amplitudes
are quite similar in both cases. In Chapter VI it is shown that in the
first resonance region we can solve the dispersion relations for the
Compton scattering amplitudes by using pion photoproduction amplitudes
as input, via the unitarity relation. These latter amplitudes are well-
known from analyses of experimental photoproduction data. We can thus
calculate amplitudes and cross-sections for Compton scattering, and
make a comparison with the experimental data on this process. Further
more, by using only the unitarity relation and the usual invariance
assumptions (C, P, T) for the S-matrix, the photoproduction amplitudes
provide a lower bound for the Compton scattering cross-sections. This
lower bound is violated by a few of the experimental points. To see if
this discrepancy can be removed by dropping the requirement of T-
invariance, we have generalized the formalism accordingly, and per
formed some calculations in which a T-violating effect is introduced in
a simple way in the input photoproduction amplitudes. The results show
that this may indeed change the cross-sections somewhat in the desired
direction, but this change seems to be too small to remove the discre
pancy.

Finally, we include some appendices, in which we summarize the
conventions we used, and where some of the details of the calculations
are collected.
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C H A P T E R  I

G E N E R A L  F O R M A L I S M  F O R  E L E C T R O -
A N D  N E U T R I N O P R O D U C T I O N  O F  n - M E S O N S

1.1 S-MATRIX AND CROSS-SECTION

We consider the pion production processes
o oep -* ep n , en en n ,
+ _ ' (1»1)ep-* enn , en-* epn ,

called electroproduction, and

v ^ p - i  p u y  , vip - 4 p n ,

v , n - * i n n + , v ^ p - » i +n n ° ,  (1.2 )
— Q _ -j- —v . n - * i p n  , v^n -* i n n ,

called neutrinoproduction. The symbols e, |i, p, n, n denote re
spectively an electron, muon, proton, neutron, and a pi-meson (pion^
/ stands for either e or |i, and v . is the corresponding neutrino.

With the formalism that will be described here, several
other processes of the same general form, I N -* ig Nan , could be
described as well (in this case, N. stands for p or n, and I  ̂can
be any lepton). We will however restrict our attention to the pro
cesses mentioned above, because only for these sufficient experi
mental information is available.

Electroproduction is caused by electromagnetic interactions,
and neutrinoproduction by weak interactions, but due to the pre
sence of hadrons, the strong interactions will play an important
role in both processes. For the dynamical description of these
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con-processes we use an interaction Hamiltonian density Ĥ .(x),
sisting of a strong interaction part H„(x), and a weak or electro
magnetic interaction part H^(x) (=H^(x) or Hg(x)), i.e. H^(x) ='
= H_(x) + H_(x). Using perturbation theory, we formally write for& L
the time evolution operator in the interaction picture (cf.[Sc6l],
p.330 ff, and references given there), the well-known expression

OO t2
U(t2,ti) = n£0 dxr ..dxn T(HI(x1)...HI(xn )),

1=1 (l.3a)
and define the scattering operator in the usual way by

S = U-(+co ,~oo) • (l.3b)
Since perturbation theory does not give an adequate description of
the strong interactions, in eq. (1.3) we have to keep formally all
orders in Hg(x). For H^(x) it is sufficient to retain only the
lowest orders, so that we write, up to second order in HT(x),

S = Ss - I T  dx T(Hl (x )Ss ) - Jj-ZT dxdy T(H1(x)H1(y)Sg)),
(1.4)

where S_ is obtained from eqs.("l.3) by replacing HT by H„.D x O
Scattering-matrix elements are now obtained by taking the

matrix elements (p|s|a) of the operator S between states |a) and
|p). We note, that ^(tgjt..) satisfies the group property,

tig(%2*ti) “ tfs(t2»t)̂ s(t*ti) t

and recall the definitions of the asymptotic in- and out-states
[ Le55,Le57] (Heisenberg states for the, strong interactions)

Ug (0,-»)!«> =■ |*>.n

Us(0,+oe)|«> = |«>out .

Further we need the relation 0 (t) = UQ(0,t)0(t)U_(t,0) betweenO b
operators in the interaction picture and in the Heisenberg picture
for the strong interactions (H). Using these relations, we obtain

<PlSla> = out<pla>in - out^ I hl(x)H|a) in -

- I P S  dxdy out<PlT(HL(X)HHL(y)H)la>in 0-5)
13



where the Heisenberg operators are of the form

“b,WE • • w r  W H
v * ) H ■ f 2 •

Prom now on we will omit the index H, We use the summation convent
ion for greek indices; four-vectors are written as Q=(q,iq ), etc.,
and their scalar product is given by P.Q=P Q =p.q-p_qn. The electro-

—EM —W " H- O umagnetic and weak currents 3̂  and 3" both contain a lepton and a
hadron part. The electromagnetic interaction is of the form current
times electromagnetic field A (with a coupling constant e), where
as the weak interaction is taken to be here o.f the current-current
type (with a coupling constant — ). Because of this, we find that for

V 2
the weak processes (1.2) the second term in (1.5) contributes (i.e.
first order in G), while the electromagnetic processes (1.1) are
described by the third term (i.e.second order in e). The first term
in (1 • 5)» out^'a^in’ is zero in these cases. Using K., P. and Q for
the momenta’ of the leptons, the nucleons and the pion, respectively,
and mg , m and |i for their masses (i-1,2 for initial, final parti
cles), the final result for the matrix element can be written for
bolti processes as

•T/s= -(2b ) ', Z & (4)(PiH - V V Q ) (___ \*. _
\ 2k10k 20p 10p 20q0 /  f i ’

(1.6)
( 2p10P20q0^
\ 2 / ehin out<nN2l3> J l N1>in-

- e .(nN0| JL(0)| N„> ,|i out' 2 ' [ i v /l Y

where *)

e u(ïi}&

or 7^ 5(k2)Y|l(1 + Y5)u(ki)

(1.7)

(for electroproduction) (l.8a)

(for neutrinoproduction).(1.8 ;

for conventions on spinors and y-matrices, see Appendix A.
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The factor 1/K2 in (1.8*), with K-K.-Kg, is the propagator of the
virtual photon (of. see.I.2), and is due to the two factors A^ appear
ing in (1.5) when HEM(x) is substituted in the third term. The cross-
section is then given by

d^o (2n)-5 s (4)
(K1+P„ -k2-p2-q ) ml I m/  2m

-m/ l m

T iVSStdj.
fi »20 k20 *0 ‘

(1.9)

(Even in the case that I i is a neutrino the factor m^ . in (1.9) does
not give problems, because it cancels against an other factor m̂
that appears in the denominator when |Tf .| is calculated explicitly.)

Due to the approximation of taking only lowest order in H.,L 7
Tfi is spli,t UP a lepton part and a hadron part, so that the
strong interaction effects contained in the matrix element
out^"N 2̂  JU in’ can trea'te(i separately. In the following
chapters we will be concerned with obtaining sufficient information
about this hadron cürrent matrix element.

1.2 KINEMATICS

According to bhe lowest order perturbation theory our process
es can be represented in the conventional way by the diagram in fig.1,
which we will use to illustrate the kinematics. In electroproduction
the line with momentum label K indicates a virtual photon; in neutri-
noproduction it can be considered as representing the weak vector
boson. (Provided that the mass of this boson is large (e.g.> 2GeV),
in lowest order this description is equivalent to the local current-
current interaction that was implied by the weak interaction Hamil
tonian we used in sec.1.1.)

Pig. 1
The labels Q.K.K^P,
represent the momenta

15



The following relations hold
K = K1 - K2

K + P1 = Q + P2
Ki = - i 5 v \ m - m 2 , Q2 = - H2 (i=1,2)

and we define P = -J(P^+P2), L = ^(K^+Kg).
Since the theoretical problem lies in the strong interaction

matrix element {nNgl N 1̂  in’ iS convenien't to consider the
lower vertex in fig. 1 separately. We then have the process represent
ed in fig. 2, where X indicates the virtual incoming particle with
momentum K and "mass" \f(-K ).

fig. 2

For this process we introduce the Lorentz-invariant variables

■ - - ( *  +
t « -(K - Q)2 (1.10)
u = -(K - P2)2,

satisfying the relation
s + t + u «* 2m2 + 112 - K2 (1 • 11 )

Unless stated otherwise, in the following we will use the centre-of-
mass frame for this process (i.e. the pion-nucleon centre-of-mass
frame), where the momentum components are specified as

K = (k,ikQ)

* '  V (1 .12)
P1= (-k.i^)

p 2= C-q.» i E2 ^

We define

16



w = k0 + El = Q.Q + ^ 2  (total c.m.energy) ,

k = |k| , q - |q| ,

K “ k/k , § . q/q ,
x = cos 9 = ,£.$ ,

and find from (1.10)

s = W2

t = 2k.q - 2kQq0 * |»2 - K2 (1.13)
u = -2k.q - 2kQE2 -+ m 2 - K2 .

We use a coordinate frame such that the x ^ - p l a n e  is spanned by the
lepton 3-momehta (k^x k2 along the x2-axis) and k lies along the
x,-axis

Thus we have

q = (q sin0 cosqp, q sin9 sincp , q cos9)

k = (0,0,k) .

The angular momenta of the particles in the nN2~centre—of-mass system
are defined as follows (angular momentum quantum number and third com
ponent ),

(i»8 ) initial nucleon spin

(i)8 ') final nucleon spin,

(L,Ml ) angular momentum of X

(/,Mj) angular momentum of the pion

(j,Mj) total angular momentum.

In a few places we will need quantities in the laboratory system.

17



There we choose a coordinate frame with the same orientation of the
axes as for the nN2-centre-of-mass system. Quantities in this laborato
ry frame will be denoted by a superscript L. We will need especially

(kjl,0,k33’ikjo) (for j=1*2),

Since the laboratory system moves with a velocity v=k/E. along the pc
sitive x-axis of the centre-of-mass frame, we have in general for an
arbitrary vector a in the centre-of-mass frame

a3 = i(E1a3 + ka0}

ao - i(ka3+ Vo}-
1.3 ISOSPIN STRUCTURE OP THE SCATTERING-MATRIX ELEMENT

In this section we investigate the restrictions that are imposed,
on the matrix elements of the hadron current operator JE , by assumptions

about its behaviour under the SU(2)-group of isospin transforma'-
tions.

We first consider electroproduction, and note that the hadron
electromagnetic current may change the isospin of the hadron states by
one unit but leaves invariant its third component. We now assume for
jSM the most simple form with these characteristics, i.e. it will con-(i
sist only of an isoscalar part and a part that transforms as .the third
component of an isovector. (This form seems to be well-established for
pion photoproduction; cf. [Be7l6] ). Thus we can write in an obvious
notation

T,. =e .(jinJ  JEM| N.) .fi p out' 2' p 1 t in
We now use explicitly the isospinors x^(i=1»2) for the nucleons and the
isovector V for the pion (see Appendix A) and write the matrix

* 0 „ „3elements of J and as

e - *<*»,! » t> in = X.| *eM T« * 1
(1 . 1 4 )

and £.. „.+<*Nj J,?l ̂  in “ \  x | ( T ^  &a j ♦ T‘m  tft; ,T J  fct,V

'p out'

: ,(p out'

18



In eq.(1•14 ) the iaospin structure is given explicitly} the.functions
T contain the spin and momentum dependence which will be analyzed in
sec.1,4.

In the case of neütrinoproduction the current JW changes the
third component of the isospin of the hadron 3tates by one unit, and so

Wwe assume here that is an isovector operator. Depending on whether
we have incident neutrinos or anti-neutrinos we have to take the + or -

/ +  1 2component (J~=J^+iJ^), and we obtain for the matrix element

Tfi = %  o u t ^ ^ V  = Va X+2(£ r$ Ta ’T±J + ^ Ta .T±])x1
(1.14°)

From the relations (1.14) we find by explicit calculation (omitting the
indices EM and W) for electroproduction

<n+ n e“| t | p a") =\Z”2(T" + T°)

( n °  p e”| l| p e") = T+ + T°

<n p e~| T| n e*^ - \A2(-T- + T°) (1*15)

(n° n e“| t | n e") = -T® + T+

and for neutrinoproduction

<n+ p I "| t | v p) = \^2(T+ - T”)

(n° P 1 ”| Tj v n) = 2T“

<n+ n I “| t | v n) = \ f £(T+ + t ")

(n n /+| t | v n) = \ [2(T+ - T")

<n° n f+| T| v p) = 2T“

<n p /+|t |v p) = \ f2(T+ + T-) .

Instead of the functions T— used here, which are useful because
of their simple crossing relations (cf. sec.II.3), it is sometimes con
venient to use forms corresponding to final nN-states with definite
isospin. We denote these new functions by T1 and T3, corresponding to
final isospin - and respectively. They are related to the T± by

T+ = y(2T3 + T1) T1 = T+ + 2T~

T" = -1(T1 - T3) t 3 = T+ - T~ (1*17)
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1.4 SPACE-TIME STRUCTURE OF THE SCATTERING-MATRIX ELEMENT

To describe pion production in terms of Lorentz-invariant am-~
plitudes we have to make an expansion of the matrix element Tfi, using
a complete set of independent spinor matrices with the same Lorentz-
transformation character as T ^  itself. The coefficients in this ex
pansion will then be Lorentz-invariant functions of the momenta of the
particles - and will be called "invariant amplitudes". These amplitudes
are defined in part A of this section. Since a solution of the present
problem can best be obtained by using multipole amplitudes, we define
these in part C, while a useful set of amplitudes for the mNg—centre—
of-mass frame is defined in part B. The relations between these sets of
amplitudes are summarized in part D.

We recall here the isospin decomposition of sec.I.3, according
to which we can write the matrix element for a specific process as
T = 2 « Tn . with n = 0 ,-, and where the numbers g are the coeffi-fi n Bn ’ n
cients that appear in (1.15) and (1.16 ). A similar isospin decomposi
tion can be made for the various amplitudes that will be introduced in
this section, e.g. Ai = 2 gn A^ (with the same gn as above). From now
on we will explicitly indicate the isospin structure of the amplitudes
and the matrix elements only when this is necessary for clarity.

A. I n v a r i a n t  a m p l i t u d e s

In sec.1.1 we found that in our lowest order approximation

Tn - %
in which the matrix element of the hadron current J is still unknown.
We can write this last matrix element as ü(p2) r u(p.j), where u(pi)
are free nucleon spinors (see Appendix A) and is the most general
four-vector operator that can be formed from the y—matrices and the
momenta (Q,K,P.. ,Pg). One of these momentum variables is eliminated by
energy-momentum conservation, and we choose as the remaining ones K, Q,
and P ï M P 1+?2). We define then a set of matrices [Ba6l]

20



1 y 5 y h ŷ 'K^ y 5 y m

2 i Tr p5 l»

2 i Y, %

2 i Yj K5 V

r  5 (r  . k ) p^

YcCt .k)^
y 5(y .k )qu

(1.18)

and a corresponding set { N a ^ j , obtained from (1.18) by omitting the y .
These form a complete set of matrices, in the sense that all other
matrices constructed from the same variables, when appearing in the
form u TJ u, can be reduced to a linear combination of the N. and Na.m  ip
also taken between nucleon spinors.

We now consider first electroproduction,in which case the
EMcurrent is a proper Lorentz-vector since parity is conserved in

electromagnetic and strong interactions. We then need only the set
, . *)
^ip' and write, denoting the coefficients by B. and using N.-e N. ,

eH out' 2 JEM| N.)(i 1 V : ü(p2) S B± N± u^),
U

(1.19)

or with the isospin dependence indicated explicitly
„n2 T‘n ®n EM

and

fi

TEM = l Bi Ni

(n=0,+,-)

The coefficients B., the "invariant amplitudes", are Lorentz-invariant
. . .  . Ofunctions of scalar products of the momenta or (equivalently) of K and

the variables s, t and u which we defined in eq.(l.10). In the following
we will not explicitly indicate the K -dependence of the invariant
amplitudes.

Next we turn to neutrinoproduction where the current con-
• ,, v a t*sists of a vector and an axial vector part, and J , because the

weak interactions do not conserve parity, [Le56l, [Wu57]. The matrix
element can then be written as

.V .T = efi n out<nN2| (VVlVin - ü(p2)S[B^Ni+BaiNai]u(p1),
( 1 . 2 0 )

* 7 The fact that for the vector current matrices with
is due to the pseudoscalar character of the pion.

a Y , are needed,
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where again T_. = 2  g T_., etc.° fi n °n W
We have introduced until now three sets of eight amplitudes

(B?,Bt ') for electroproduction, and four sets (B^— ,Ba^) for neutrinopro-
duction. This situation is simplified by the so-called conserved vector
current theory (C.V.C.), [Ge5é], [Pe58], [ Su58"| , which gives a relation
between the isovector part of the electromagnetic current, J^, and that
part of the (isovector) weak current that also transforms as a four-
vector, i.e. J—^ (cf. sec.I.3). The C.V.C.-theory states that the
operators J^, J+P and j” form an isotriplet and thus have the same
space-time structure. This means in particular that for these currents
we have 6 J =0, since for the electïomagnetic current this relationP P ’
holds (due to charge conservation), and that the matrix elements of the
currents are equal, apart from isospin Clebsch-Gordan coefficients.
Consequently, the amplitudes B3? and B!̂  , introduced in (1.19) an<i (1.20),
are the same and will be denoted by B. from now on. (n=+,- or 1,3). The
relation 9 J^=0 leads to

K ,(nN„| J In ,). = 0out' 2' pi1 r in
for the vector currents, which imposes two restrictions on the
amplitudes B?’—

iK2B, + P.K B_ + Q.K B, + K2 B. = 0
1 2 3 4 (1.21)

B5 + P.K Bg + K2 By + Q.K Bg = 0 ,

as can be seen from (1.18) and (1.19 ). To find a set of independent
amplitudes we have to eliminate two of the B^, usually taken as B and
Bc. Following Dennery [De6l] we introduce therefore a new set of six5amplitudes A. via the relation

ü(p2) JS® B±Ni u^) = ü(p2)
where the M. are defined by

M1 "  *  1 y5 Yp y v Ppv

M2 = 2 i  r 5 P ^ (Q - iK )v F ^

M3 = y 5 yp % Fpv

.2 A.M. u(p1) ,1=1 1 1 / ’

m4 = 2 y5 YH Pv Ppv

m5 = 1 y 5 \  ^  P(iv

m6 = Y 5 Yv Ppv

( l . 2 2 a )

2m

(l.22b)

and Fpv e Kp v ev V From these definitions we can find

22



V

A1

A2

" B1.“
_ 2B2/

m B6 a4 = -i B6

A5 * ÖIk *25 (’-25)"G—

A3 B8 a6 " B7 *
A slightly different choice of amplitudes is discussed in Appendix E.

For the axial vector part of the weak current there is no such
relation to reduce the number of amplitudes , so we will need a set of
eight. We will use from now on a set of axial vector amplitudes { Aa^J
that is somewhat different from the set {Ba.} , but completely equivalent
to it. By using this other set [ Ad68l , several relations that we need
later on, will appear in a simpler form. We define the set fAa^J by

*(p2) iSi BaiNa± u ( ^ ) = ü(p2) .2® AaJlfcu u ^ )
where

Ma1 = M  (Y.Q)(r.e)-(y.e)(Y.Q)l Ma = -2(r.K)(P.e)
Ma2 “ 2i(P.e ) Mag « -(y.K)(Q.e)
Ma5 = i(Q.e). Ma? = i(K.e)
Ma4 = -»(Y.s) Ma8 = -(y.K)(K.e) .

Using these new amplitudes we write for neutrinoproduction

(i.24a)

0.24b)

Tfi - |s out<nN2l(Jp + < ) l N1>in

= n ®n ^^2^i=1 Ai(s j'*' >U »K M̂i+i£i Aai(s >u jk )Mai] u(p^ ) ,
. . (1.25)while for electroproduction we have a similar formula, without the
axial part. (Note that is different for electro— and neutrinopro
duction and consequently the same is true for the M.jcf. eq.(l.8)).

B. P i o n - n u c l e o n  c e n t r e - o f - m a s s
a m p l i t u d e s

In the centre-of-mass frame of the pion and the (final) nucleon
we can write

Tfi = [F + Fa] x., , (l.26a)
where the are 2-component Pauli spinors for the nucleons with the z-
axis (in the direction of k) as the axis of quantization, and F and Fa
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are 2x2-matrices, constructed from the momenta (in the c.m.frame) and
the Pauli matrices. We define two sets of matrices {A^} and (Aa^J

A 1 = io.b a 4 = i(o.5)($.b)
A g = (o.4)o.(Rxb) a 5 = _i(?.4)b0 (l.26b)
A j = i(o.R)(4.b) A 6 = -i(a.R)b0

e .Rwhere b = £ - —;—  K, , and|i h k h

Aa1 = i(o.(})(c.e)

Aa = o . (K x e )

Aa5 = i(?.4)(o.*)(4.t)
Aa4 = i(4*e )

Aa = i(a.4)(a.R)(R.'e)

Aa^ = i(R.e )

Aa? = -i e0

Aa8 = -i(a *4)(® *8) eo •

( 1 . 2 6 ° )

Centre-of-mass amplitudes are then introduced by writing

*2 * X 1 “ x2 i^1 Pi A i x 1 (1.27)
and x | Fa X 1 - x| jZ® Fa± Aa, x 1»

describing the vector and axial vector part of the matrix element. The
amplitudes P. and Pa. are functions of scalar products of the momenta
-» -» 1 1 2k and q, and of the parameter K . Their isospin decomposition is of the
form P^ = £ gn (similar for Fa^) and the amplitudes F^ (for n=+,-)
are again the same for electro- and neutrinoproduction.

Note that we have already incorporated current conservation for
the vector current by using the above definitions of P,. To see this,
consider the more general set of eight matrices {A'} for the vector
part, without current conservation. These can formally be obtained from
{Aa.} by multiplication from the left with (a.4). Define then the
corresponding amplitudes F! by

vl* p V = v1* 2 P * A . y •x2 X 1 x2 i=1 i i X 1
Two of these Fĵ  can now be eliminated since current conservation gives
the relations

F' + R.4 + F£ - (k0/k)Pg = 0
and R.$ F' + F£ - (kQ/k)P^ = 0 .
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This elimination is effected, here simply by replacing e in {A!} by b ,V H ■ i U
which is allowed since K J =0, so that the matrix element remains the
same. Now and A^ become identically zero, and a renumbering gives
our set (1.26 ).

This choice, where FI and F£ are eliminated, results in a
formalism for the calculation in which the virtual photon (or the
vector part of the weak boson) is described in terms of transverse and
scalar components. Alternatively, we could have chosen for transverse
and longitudinal components by eliminating F' and FI,which can be done

e
by using a = e - -—  K, instead of b . Our choice is motivated by the

fact that it results in a simpler relation between { F^} and the multi
pole amplitudes that are to be introduced in part C.

C. M u l t i p o l e  a m p l i t u d e s

We introduce an other way of describing the matrix element T„.
in the nN^-oentre-of-mass frame by using a decomposition with respect
to angular momentum. The multipole amplitudes needed here are defined
such that their properties are analogous to those of the familiar
electric and magnetic multipoles that can be used in processes with
real photons.

In Appendix B it is shown that this can be done by writing
o° c  Q

Tfi “ x2 £=0  ̂i=1 M/i Z/i + i-1 Maii Z&1 J  X 1 (1*28)

where the 2^. (Za^,) are 2x2-matrices that are defined in the same
appendix. Current conservation is ensured in the same way as in eq.
(1.26 ), by using b instead of e in the definitions of the Z... For

r (* * 1
the multipole amplitudes we use the notation (see Appendix B for
details)

Mfi = (EI + ,EI + -,Sl + ,Si » with
and i “ (®a/ >®a^ >Ma^ *^ai »^a/ ’®ai ) * with i=1,..&

For these amplitudes we have again an isospin decomposition of the form
11̂ , = 2  g^ with the same notation as before.

(1.29)
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D. R e l a t i o n s  b e t w e e n  t h e  v a r i o u s
a m p l i t u d e s

Using the amplitudes defined in this chapter we can write for
the matrix element for pion production

f '  = e .<nN0| (JV + JA)|n .>. -fi p out' 2' ' p p'1 1'in
= ü(p2) Ai 1/L + ^  k&i Ma± ]ü(ïy) =

= x+2 ti£i Fi A i + Fai Aaî  Xar =
O O  £  Q

= i £ o X 2  ̂i=1 Mf i Zfi + i=1 “aii Za/i-l x 1 * (1*50)

The relations between these different sets of amplitudes can be obtain
ed by straightforward calculation, and we will summarize here only the
results,given in matrix notation. Square brackets [ ...] will denote a
matrix (6x6 or 8x8) and a 6- or 8-component vector will be indicated bypa tilde ~ , Thus we write for the vector amplitudes (with K -dependence
understood everywhere)

A(s,t) = [B"1(s,t)][C(s)]F(s,t)
=o - (1-31 )

F(s,t) = [0i(z)]MfC»)
and the reciprocal relations

F(s,t) = [C"1(s)][B(s,t)] A(s,t)
„ .J (1.32 )

M^(s,t) = dx [Di (x)] F(s,t) .

Explicit forms of the matrices B, C, D, G are given in Appendix C. Some2kinematical factors, depending only on s and K , have been collected
in the matrix C and its inverse, in order to simplify the form of [ B]
and [B-^].

For the axial vector amplitudes similar relations hold, using
now matrices [Ba(s,t)], etc. These formulas will be referred to as
(1.31*), (1.32*).

1.5 GENERAL OUTLINE OF THE CALCULATIONS

Our aim will be to find numerical values for the cross-sections
for pion production processes and to compare these with available
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experimental results. Via the scattering-matrix elements the cross-
sections can be expressed in terms of the various amplitudes that were
introduced in sec.I.4, and so the problem is to obtain values for these
amplitudes.

Due to the presence of the strong interaction we can not find
directly a solvable set of equations for the amplitudes. We can make
however some general assumptions about properties of the S-matrix
elements. These lead to a set of integral equations for the invariant
amplitudes, the so-called dispersion relations. These relations can
then be transformed into a set of coupled integral equations for the
multipole amplitudes. This programme is carried out in Chapter II.

For a solution of the integral equations we still need informa
tion about the strong interaction. In our case this can be extracted
from pion-nucleon scattering, since under certain conditions (described
in Chapter III) we can relate the multipole amplitudes for pion
production to the partial wave amplitudes for pion—nucleon scattering,
which are well-known from experiments. (For this reason we have intro
duced the multipoles in this chapter.) By further making a few approxi
mations we are then able to find a numerical solution for the multipole
equations.- In Chapter III this method of solution is described and the
results for the cross-sections are discussed and compared with the ex
perimental values.
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C H A P T E R  I I

A N A L Y T I C  P R O P E R T I E S  O F  T H E  S C A T T E R I N G
A M P L I T U D E S  F O R  P I O N  P R O D U C T I O N

II.1 INTRODUCTION

In Chapter I we noted that the S-matrix elements for pion pro
duction are partly determined hy the strong interaction. Since there is
no straightforward method to calculate the effects of this interaction,
we have to rely on general properties of the S-matrix elements to obtain
information about the unknown strong interaction part (see e;g, [Ed66l).
Of these general requirements the most important one is the postulate
that the invariant amplitudes, in terms of which the S-matrix elements
can be expressed (sec.I.4), have certain analytic properties in suitabTy
chosen kinematical variables. In sec.II.2 we state this postulate and
derive from it the general form of the dispersion relations that have
to be satisfied by the amplitudes. Useful symmetry relations for the
amplitudes ("crossing symmetry") are obtained in sec.II.3. In sec.II.4
we find more information about the analytic structure of the amplitudes
from the unitarity of the S-matrix, and from the assumption of what is
called "extended unitarity". The pole terms occurring in the dispersion
relations are derived in sec.II.5» while sec.II.6 gives the final form
in which the dispersion relations can be written, using previous re
sults. From these relations finally the integral equations for the
multipole amplitudes are derived.

II.2 ANALYTICITY
We have seen in Chapter I that for a scattering process XN-»nN
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(cf. fig. 2 ) we can express the scattering-matrix element in terms of a
set of invariant amplitudes, as defined in sec.I.4, which are functions
of the variables s, t and u. (Only two of these variables are inde
pendent, due to the relation s+t+u=^ m^ (1.1 1).) For such a process s
equals the square of the total energy in the centre-of-mass frame.

Together with this process we consider two others, obtained from
the first one by replacing an incoming particle by an outgoing anti
particle and vice versa, i.e. Xn -»NS and XS-»nfJ. For these two pro
cesses we can again define similar sets of amplitudes, depending on s,
t and u. (These variables are still defined by (1.1 0) where it is unde»-
stood that the particles retain their labels in the "crossing".) In the.

of these two cases the square of the total centre—of—mass energy
is now given by the variable t, while in the second it is given by u.
Using this as a distinction between the three processes these are often
called s-, t- and u-channel processes respectively. We note that for
the different channels the regions in which the variables s, t and u
have physical values (the "physical regions") are disjoint.

It is clear that in general a different set of amplitudes is
needed for each channel. The analyticity postulate states that only one
set of amplitudes is needed for a description of all three channels and
that these amplitudes are meromorphic functions of two variables (e.g.
s and t) with only those singularities that have to be present because
of other assumptions about the S-matrix. (The origin and nature of
these singularities will be discussed in sec.II.4.) This means that
given the set of amplitudes in one physical region, the amplitudes for
the two other processes can be obtained by analytic continuation from
this first set.

We will first consider the analytic properties of the
amplitudes as a function of complex s, for fixed real t; so we need to
know the singularities of the amplitudes in the complex s-plane. We will
find (sec.II.4) that these consist of branch cuts along the positive
and negative real axis (from -00 to b and from a to +00 (see fig.3)), to-

O p
gether with two poles at s=m and at u=in (s=c and s=d in fig. 3). In
sec.II.4 we also find that the amplitudes are real analytic functions,
i.e. Bj(s*,t) = B*(s,t). We now take the contour C in fig. 3 and apply
Cauchy's theorem. This leads to
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B .(s', t)
ƒ -l\ ds' = 2ni { B^(s,t) + 2m -s 2m -u

(2 .1)

where s is a point within C, and R^ and R*̂  are the residues of the poles
at c and d respectively. When we take the limit where the radius of the

(m-2n)-t-K‘
fig. 3

m +(i -t-K'

circle iii fig. 3 becomes infinite, the contribution of the circle to
the integral in (2.1) vanishes, provided that the amplitudes approach
zero sufficiently fast as s -fco. If this is indeed the case, as we will
assume for the moment, we are left with

Bj(s,t)
s-m u-m

1
2ni

bI
“ OO

+ 1
27X1 7

ds'

ds1

disc[ B .]
.1 u

s '-s
disc[ B..] a

s 1 -s ’ (2.2)

where disc [ B .]g ^ are the discontinuities of the amplitudes across the
branch cuts on the positive and negative real s-axis (i.e. in, the s-
and u-channel physical region). In (2.1) and (2.2) s is complex and in
order to obtain the physical amplitudes it has to approach the real
axis. To specify how this limit is to be taken, we define in the con-

p
ventional way the physical amplitude in the s-channel (s real;s >(m+p) =

2=a) as B,(s,t)=lim B.(s+ie,t). In the u-channel (u>(m+p) , i.e.
3 e + 0

s<-t-K +m(m-2|i)=b) we then have to take the limit u+ie with e+ 0, which
means that on the left-hand cut in the s-plane we have B^.(s,t) =
= lim B.(s-ie,t).

e+0 J
From the fact that the amplitudes are real analytic functions,

Bj(s*,t)=B^(s,t ) (cf. sec.II.4 and ref.[Ol62]) it follows that for real
values of s
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disc [B.] = 2i In B. ,
0 0

and that the residues of the poles are real. We can then rewrite (2.2)
for real s as

rJ R*'. ' b
?.*$,) = --- t  + — — r + — lim I  ds'

, s-m u-m e *0 °°

+ — lim 7 ds1
n e +0 a

ImB.(s',t)
s'-stie +

ImB .(s',t)
s'-s+ie ’ (2.3)

where we have to use +ie if s lies on the left-hand out, and -ie for
the right-hand cut. Taking the real part of (2.3) and using

Re 1
s'-s±ie P _J__

s * -s

(p denotes the principal value) gives a dispersion relation

Re Bj(s,t;

Re Bj(s, t)

Rû P
2 +  71u-m

b
I

“ OO
ds'

P+ —n 7a ds '

■ £  m?,
l  l

Rû P 7 ds
2 + nu-m a s1 — i

ImB.. (s' ,t)
s 1 -s

ImB .(s' , t)

(2-4)
In the same way we can consider the analytic properties of

Bj(s,t) for complex t and fixed real s. Then we obtain the result (as
shown in sec.II.4) that the expression for the amplitude B.(s,t) con-

3tains a pole term ----, analogous to the s- and u-channel poles. To ob-
t-|j

tain a correct behaviour for B^s.t) at s-bo , this term has to be in
cluded in eqs.(2.1)..(2.4), so that finally we find the dispersion
relation for fixed t

Re Bj(s,t) Ri *u p ?
o +  o +  9 + “  Ja . . 2 2 n as-m t-n u-m Im[Bj(s' ,t)+Bj(u' ,t)]

(2.5)
We will not discuss possible convergence problems for the dispersion
relation (2.5), although in sec.II.5 some remarks are made concerning
subtractions that are necessary to avoid evident divergencies.
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In deriving these results the argument was based on the
postulated analyticity properties of the amplitudes as functions of one
complex variable, while the other had a fixed real value. It is also
possible to consider the analytic structure of the amplitudes as
functions of two complex variables. This led Mandelstam [Ma58] to
postulate the double spectral representation for the invariant ampli
tudes, from which the simple (one-dimensional) dispersion relation can
again be derived. This double dispersion relation or Mandelstam repre
sentation for the amplitudes B^ reads as follows

Bj(s,t)
t-U

1 7 , . ps(s,)— + — J _ ds1 --:--- +2 n / \2 s'-s(m+H )

n ^2 dt'ft . 2
pj(f)
t'-t i 7 ,

(m-i+i )‘

7
(m+M .

7  dt'
4h

,t')

4 7 ds'
(m+u )‘

d1

7
(m+ti )

7 ,
(m+H )

(s'-s)(t'-t) +

b^ (s1,u'), , S U V ’ '

2 u (s'-s)(u1-u)

(t '-t)(u1-u) (2.6)

This representation can be made plausible by taking (2.2) (including
the t-channel pole) and considering disc[B.l as an analytic functionJ s ,u
in t, and writing a dispersion relation for the discontinuity in that
variable. Evidently we need several assumptions about convergence
properties of the integrals in (2.6), i.e. about the behaviour of the
double and single spectral functions for large s and t.

In this section we have used only the amplitudes B^, but com
pletely similar relations can be obtained for the axial vector ampli
tudes (Ba.j or { Aa^j as defined in sec.1.4. It can be shown [Ba6l],
[He6l] that these amplitudes do not contain any kinematical singular
ities, so that analytic properties could be postulated for them. In the
set of vector amplitudes however, a kinematical singularity appears
in A . and A_ due to current conservation relations (1.21). Except for2 5
the effects of these extra singularities the A. have still the same
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analytic properties as the B^. Since in practical calculations it is
more convenient to have current conservation built in already, in the
rest of this chapter we will use mainly the amplitudesA^ (and Aa.). The
complications due to the kinematical singularities are discussed in
sec.II.5.

II.3 CROSSING SYMMETRY

As a consequence of the analyticity postulate the matrix
elements in all three channels can be expressed in terms of the ampli
tudes Bi, or equivalently in terms of A±. For the matrix elements of
the (electromagnetic or weak) vector hadron current JV, this sub
stitution rule reads

out^N2 P̂2^,n^ ^  J(ilNl(Pi^in = U(P2)C% Ai(s»t,u)Mi(i]u(p1)
“out^N2^P2^’̂ 1 ("P1 (“ )̂) in=̂ (p2^ i >u)Mi(1] v(-P-j )
out^S1 ("P-|)*n Jjl®2^-P2^in=7 "̂p2^ l Ai(s ̂  "̂C-P-, )

(2.7)
for the s—, t-, and u-channel matrix elements, respectively. Analogous
expressions can be given for the matrix elements of the weak axial
vector hadron current . To derive "crossing" symmetry relations be
tween the amplitudes Ai for different values of their arguments, we
combine eqs.(2.7) with the behaviour of the matrix elements vinder
charge conjugation. The corresponding operator C (in the following
denoted as C) transforms a particle into its anti-particle; it is -de
fined such that it is conserved by the strong interaction (see Appendix
A ).

We need the transformation properties

• < c - - i
c a-1 . J*
C n“ c-1 = -(-1)“ na ,

(2.8)

where we have assumed that the currents are both first class
currents [We58] (for second class currents we would get the opposite
sign in (2.8)), and for the pion we have used eigenstates na of C, na
denoting the a-component of the pion field (a=1,2,3), i.e. a linear
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combination of physical pion states. (n ̂ =—  (n
/2

\ 2 i / +=-— -(7t -n
V 2

3 Os571 =n .)

Using the transformation properties we can write

out<Vr2>.«“<'»KT|»,<V>i» -
i (2'9)and. a similar relation for the matrix element, where an extra minus

has to be included. Apart from different signs for P. the right-hand
side of (2.9) contains just the u-channel matrix element. Indicating
again explicitly the isospin dependence of the amplitudes and the
momentum dependence of the matrices M. (using the notation from sec.I.
3) we find from eqs.(2.7) and (2.9) for the vector current in electro
production

x£ ü(p2)[S (A°(s,t,u)ra + A+(s,t,u)&a5 +
+ A“(s,t,u).-i[Ta ,T5] )Mi(l(P,K,Q)]u(p1)x1 =
= -(-1)“ X j v(p1)[S(A°(u,t,s)ra+ A^(u,t,s)6a5 +
+ A"(u,t,s).-y>a .Tj] )Mi(l(-P,K,Q)v(p2)x2 =
= _(_i)a xI (-ut(p1)c-1)[.(...).](c ST(p2))x2 =
= - ( - i f  x j  ( - u T ( p1) ) [ S ( . . . ) C ' 1Mi t l ( - P , K , Q )0] ü T (p2) x2 =

= -(-1)“ x| (p1 )Cs (—  )rii m^(p,k,q)]üt(p2)x2 =
= x\ u(p2)[S(A°(u,t,s)Ta + A^(u,t,s)6a5 -
-  A " ( u , t , s ) . | [ T a , T 5] )r]i  Mi ( l ( P , K , Q ) ] u ( p1) x1 . ( 2. 10)

The X- are isospinors, and we have defined by means of the relation

-C"1 M.[i(-P,K,Q)C = 7). M^(P,K,Q) .

From the explicit form of the (1.22 ) we find { tj to be (+1, + 1,-1,
+1 , - 1 , - 1).

In neutrinoproduction we have to omit the term with , and
we must replace  ̂by , and [ta ,t ?] by [>a ,t±] . For the weak
vector current only these changes are necessary in eq.(2.10), and con
sequently jt) j is the same as for electroproduction. For the weak axial
vector current we have to use Aa. , tj and M a ^  , while we also get an
additional minus sign. (Note that here i=1,..8.) The result for { t) a }̂
is then (-1,-1,+1,-1,+1,-1,+1,-1)•

We now define £=1 for amplitudes with + or 0 isospin index and
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S=-1 for - isospin index. The matrix [£] is defined by [?] & „  î .
The crossing relations that follow from (2.10) can then be summarized
by

A(sft,u) = [£]A(u,t,s)

Aa(s,t,u) = [Sa]Aa(u,t,s) .

II.4 UNITARITY

Defining T by S=1+iT, the unitarity relation S+3=SS1'=1 for the
S-operator can be rewritten as (T-T )=iT+T, or in terms of matrix
elements between initial and final states i and f

<f|T|i> - (f| T̂ | i) - i $  < * | 4 n > < » M  i> , (2.11)

where the summation is over a complete set of states n. For the matrix
element (f|T|i) we have ( e •MD understood)

<f|T|i>=Tfi = ü(p2) S A^s+ie.tjMj u ^ ) , (2.12)

while it can be shown [ 0162] that if the A . are analytic functions in s

< f | T+1 i) -<i|l|f)* = u(p2) S Aj (s-is»t)M^ u(pj.) , (2.13)

so that opposite boundary values of the amplitudes appear in these two
expressions. Substituting this in the unitarity relation (2.11) we find

ü(p2) Aj(s+i£,t)-A;.(s-ie,t)}M;. u ^ j  = i £< f| T+| n><n| t | i> ,
or

ü(p2) S disc[ A..] a ̂  u(p.,) = i S <f| T+ | n><n| T| i> . (2.14)

The right-hand side of this equation is non-zero when a state n exists
that gives non-vanishing matrix elements. In that case at least for
some of the amplitudes A. there must be a discontinuity corresponding
to a branch cut singularity or a pole on the real s-axis (see e.g.
[Ed66] ). For low energies in the physical region with s or u between/ . 2 "2(m+p ) and (m+2d) the only state n that is possible will be a pion-
nucleon state. Consequently there will be cuts on the real s-axis from
-oo to b and from a to +<» (cf.fig.3). A new cut will start at each value
of s or u where a new state becomes possbile} these cuts can be taken
along the real axis as well. In the t-channel the first cuts arise from
two- or three-pion states, starting at t=4M^ or respectively, (in
this channel, due to G-parity [ Le56A], states with an even number of
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pions contribute only to isoscalar 4-vector amplitudes and to isovector
axial 4-vector amplitudes; those with an odd number of pions only to
isovector 4-vector amplitudes.) The effects of these t-channel cuts
will be neglected in the following calculations.

Since the unitarity relation holds only in the physical region,
we obtain no information about the part of the real s-axis between b
and a. Therefore we introduce here an extra assumption, usually called
"extended unitarity", which states that eq.(2.14) holds also for un
physical values of s and t. From this we conclude that the right-hand
side of eq.(2.14) vanishes on the real s-axis between b and a, except

2 2 2 2in the points c=m and d=m +|i -K -t, which correspond to n being a one-
2nucleon state. In the t-channel there will be a singularity at t=p ,

due to the one-pion state (again contributing only to isovector 4-
vector amplitudes). The singularities in these three points are single
poles, which are discussed further in the next section.

Using the behaviour of the amplitudes under charge conjugation,
it can finally be shown [ 0162J that A . (and B .) are real analytic

«J J

functions, i.e. A^(z*,t)=A.(z,t). This means in particular that we have

A*.(s+ie,t) = A.(s-ie,t)
and thus

disc[A.] = lim [A . (s+ie,t)-A.(s-ie,t)]
3 e+0 3 3

2i lim Im A.(s+ie,t)
e+0 J

2i Im A . (s,t) .

An other consequence of this is of course the reality of the pole re
sidues which follows immediately from the fact that the poles lie on
the real axis.

From the assumptions of unitarity and extended unitarity we
thus find several singularities for the amplitudes on the real s-axis.
The analyticity postulate for the amplitudes is that these are the only
singularities in the whole complex s-plane ("maximal analyticity").

II.5 POLE TERMS

To obtain the explicit form of the-pole terms in the dispersion
relations we use again the amplitudes B.. (This is done to avoid at
this stage problems connected with kinematical singularities in the A..)

36



( 2 . 1 6 )

Thus eq.(2.14) is written as
ü(p2) S[ Im B,. (s,t)] N̂. u(p1 ) = i £ <f| T+ | n)<n| t | i) .

On the right-hand side of this equation, in the term where n is a one-pnucleon state in the s-channel, a factor 6(s-m ) will appear because
the nucleon has to be on the mass-shell. The contribution of this term
to the form ü(p ) E. B. N. u(p.) will then contain a factor — . It

i 3 3 3 - 1 s-in
can be shown (cf. [Ma70] ,p.284ff) that this contribution is just the
renormalized Born term, corresponding to the diagram in fig. 4 » cal
culated with'normal Feynman rules, but with the introduction of form-
factors at the weak or electromagnetic vertices. Similarly the terms
due to a one-pion state in the t-channel and a one-nucleon state in the
u-channel are given by the B o m  terms corresponding to the diagrams in
. Id ofigs. 4 and. 4 • To obtain the pole terms in the individual amplitudes

these B o m  terms have to be expressed in terms of the matrices N..

fig. 4

N./ sN IT
fig-1*2 \

For the electroproduction process the Born terms read as follows
s-channel

g ü(p2)xt2VtY5
ir.(K+P )-m -
— — 2— F  * i(F?T« + F 1 ^ Tcx ’T 3] 4 0 « 3 ))Y H +(K+P^) +m • y

+ ^ Fl Ta + FI ^ Ta «T 3 ^ ( * 3 ) ) c nv *1 u 6 , )  ( 2 *1 7 >

u-channel

iY.(P2-K)-m
T2 2

(F 2"K) + (2.18)
t-channel

i g ü(p2)x+2V+Y5.è[Tc( ,t $]----: — 2 I 2(e . Q) — (e .K)j F̂  x u(p.,)
(Q-K) -Hi (2.19)
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The isospin notation is the same as in sec.I.3. The formfactors F ^ K  ) of
the nucleons (i=1,2 for Dirac- arid Pauli-formfactos) have heen decom
posed into an isoscalar and an isovector part (fY=F?~fY ; F^=F?+F^), and
F (K^) is the electromagnetic formfactor of the pion. The normalization
71 *)
is given by '

F®(0) - F^(O) = Fn (0) = 1

s gg -
F l ( ° )  “  2 Ï  H  +  4 *  •

where |i1 and |i ' are the anomalous magnetic moments of the nucleons
.79;(i^=-1.91). The factor g is the pion-nucleon coupling constant,

ê è  h .a .
For neutrinoproduction,the Born terms corresponding to the

vector part of the weak current are essentially the same as for
electroproduction, (in the s- and u-channel we have to replace the
factors (F^a+F^(+4[Ta ,T3]+ha5)) hy F ^ i ^ ^  ,x +U xa ,x ̂  ) , and in the
t-channel x^ becomes x + . For production with anti-neutrinos x should
he used instead of x .) According to the conserved vector current

"*■ V 2 2theory the formfactors F.(K ) and F^(K ) are the same in both cases.
For the axial vector part we have Born terms corresponding to the dia
grams in fig. 4a and 4° only, since in the t-channel G-parity [Le56A]
allows only intermediate states with an even number of pions in this
case (cf. sec.II.4). The axial vector Born terms are
s-channel iy^K+Pj-m

t e ü (p 2)x+?+y 5 ----- -y-y- l.GA(^xa ,x±] + è{xa ,x±} )Y(ir 5 -
(K+P.) +m

- iHA(tfxa ,x±] + 4{xa ,x±} )y5Kuje[1 X 1 u(p1) (2.20)

u-channel
£ e ü(p2)x+2v+ {GA(~èOa,T±] + ±̂1 V s  -

iy.(P -K)-mv
- (p y j V i  "(p'|2.21)

' a factor e that would appear normally in eqs.(2.17>18,19) has been
absorbed in e (eq.(l.8a)) in order to obtain a simpler correspond
ence between electromagnetic and weak amplitudes.

2
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o
The axial vector formfactor Ga(K ) is normalized by GA(0)= gA=1.23±0.01
(experimental value 5 cf. [Ch67] ); Ha (K; is the induced pseudoscalar
formfactor (see e.g. [Be68]). If we may assume that the axial vector
current is "partially conserved" (PCAC-theoryj for a review, see e.g.
Ma69 ), then we have HA(K2)=2mGA(K2)/(K2-Hî ).

To obtain the contributions of the Born terms to the amplitudes
B. we express them in terms of the matrices N. (sec.I.4, eqs.(1.18,19))
and find the following results.
Vector part, s-channel

^ 2  “( ^ l  Vd ^«(FiTa+Pl ^ Ta'T3 ^ a 3 ^ ^ Nr N2"^N3"^N4̂  +
+ ’T 3] +6a 3)) (2mK1-mN4+2lI6+Il8)} X 1 u(p, )

(2.22)
u-channel

^ 2 S( ^ 2  ^  l*6(p?xa+pJ(-4[Ta,TJl^a3))(Hr H2+èH3-iB4) +

+ ie(ï’2Ta+P2(‘^ Ta»T 3^+6a 3 ) ^ 2inNr mN4+2I,6"N8 ^ x 1
(2.23)t-channel

— ~2 5(p2) x+2 Va' ^ T«'T 3^g Pn("N3 + ^4) X 1 u(P-i) (2.24)"t “ H
(in this form the formulae hold for electroproduction. For the vector
part in neutrinoproduction the usual changes in the isospin factors
have to be made again; cf. eqs.(1.14)).
Axial vector part, s-channel

— 7  5(P2)*2V$  -£s(tfTa >T±J+& Ta ’T±} )(GA(Ma1+Ma )+HAMa8)jXl u(p.,)
- ~ ....  (2.25)

u-channel
1 -ü(p2)x+2V+{ig(--è[Ta ,v±]+̂ 1:afT±} )(GA(Ma1-Ma5)+HAMa0)}x1 u(^ )

(2.26)
From these equations we can obtain the residues. For the isoscalar 4-
vector amplitudes B^ we have

Rl,u " *g <*l + 2“pS2)
Rs,u * "*g F1

R3 = +ie p?a  11 1

ls,u = (pi + 2mP2)
1 ,J3

Rs,u - g P2

Rs,u = iig Fl
(2.27s)
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(upper sign for s-channel, lower for u-channel residues ). For iso
vector (+ or -) amplitudes B~1 the residues are obtained from (2.27) by

S V **changing F. to F. and, in the case of (-) amplitudes, adding an extra
- sign for the u-channel residues. For the (-) amplitudes only, we also
have residues

R = - 2R = - s Ft t s n '
+For the isovector axial 4-vecfor amplitudes Aa. we have
J

Ra1 =s - g g a

Ra5 =s - g ga

Ra8 =s - g h a

Ra

Ra

Ra

i « ° A
; g ga
± g H A

(2.27b)

(2.20)

(upper or lower sign for (+) or (-) amplitudes). All other residues are
zero.

Next we have to consider again the question of subtractions.
Therefore we first recall the two current conservation restrictions
(1.21) for the amplitudes B„

£ K2 B1 + P.K B2 + Q.K B? + K2 B4 = 0

B + P.K Bg + K2 B_ + Q.K Bg = 0 .

Substituting here for the B. only the pole contributions, we find thatJ
for the isovector (-) amplitudes the left-hand side adds up to a non
zero constant. To ensure compatibility between the dispersion relations
and the current conservation conditions, we have to include a sub
traction constant in the dispersion relations for two of the amplitudes
B7 to cancel these constant terms. This can be done conveniently by
J — V \ 2 —adding a term C“=^g(Fn -F^)/K to the dispersion relations for B^, and

Cl=gFY to the one for B7. (This is allowed since B. and B_ are even5 2 5 4 5
under crossing (s X u).) Further subtractions in the fixed-t dispersion
relations might follow from the one-dimensional spectral functions p
in the Mandelstam representation (2.6). For the vector current however,
the compatibility with current conservation requires all p^ to be zero.
We will assume that this is also the case for the axial vector current.

The fixed-t dispersion relations for the amplitudes A. are now
obtained from those for the B.. by using eqs.("l.23). With this step we
clearly introduce a kinematical singularity in and A^. In principle
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this should not cause problems, since in all physical quantities the
amplitudes appear in the combination £ A. M., in which the singularity

V  V  u
is cancelled. In approximate calculations,and in numerical work, care
should be taken to avoid spurious effects of these singularities (cf.
Appendix E). With the results of sec.II.3 the pole contributions to the
amplitudes A (using again vector notation) can now be given in the form

[5] )r(t) + i(i-s)
t-p

(2.29)

and similarly, (using Ta(t) and omitting the T -term) for the amplitudes
Aa. We have absorbed the two subtraction constants in the T, which are
defined by

1
+
2
+
3
+
5

i s  )

*2 FI(K2)t-p
r* - -4* f f (k 2 )

-4 — ^ pYCk2)
t-p*

r&z

r a'

-e g a (k *)

-s ga(k*)
+ +

Ta" = r & Z5 o
r a:

r.- . -* h (k )

(2.30)

The IV are obtained from the by replacing F^ by F®. These relations
simply follow from eqs.(2.27) and (2.28), while for the vector ampli
tudes we also have to use eqs.(l.23), giving the connection between
A i) and { B }

II.6 DISPERSION RELATIONS AND MULTIPOLE EQUATIONS

Combining the results of the previous sections, we can trans
form the dispersion relation (2.5) for the amplitudes B.. to the relation
for the set { A .} (j=1,...6), written as
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1Re A(s,t) = j ■ U] -rl r(t) + K1-0 — ^  +

+ ̂  7 - dB-
n (m+p)2

ü-m ' t-p

L  • [C] TT^i lm A(s*,t) (2.31)s 1 -s

and a similar relation (without the t-channel pole) for {Aa.} (j=1,..8).
V

The matrix notation was introduced in sec.I.4, the isospin variable £
and the matrix [c] were defined in sec.II.3, and the residues r(t) and
r were obtained in sec.II.3»

Using the relations from sec.1.4 we transform this set of dis
persion relations into a set of coupled integral equations for multi
pole amplitudes. Formally at least, it is straightforward to rewrite
(2.31) as ' „  ~  p

Re M ^ s )  = dx[D/ (x)][ C"1 (s)] [ B(s,t)] {£ - ^ + U ] ^ - ^ + i ( l - 0 — \  } +
s-m u-m t- p

1
+ f  7  ds' dx[Dt  (x)][C-1(s)][B(s,t)]{ + U ]  }

(m+p )

. [B"1(s',t)][C(s')] ,,S [G.,(x')] I m M  (s ') , (2.32)

and similarly for Ma,(s). The various matrices were defined in sec.I.4,
and we use x'^kqx+^^q^-kQqQ^/k'q'. Changing variables from s=W2 to W
and using a shorter notation we write

ImM, (W  )
Re M,(W) w  2 dW'- 4 7 dW'l/ m+p -  W - W  -n m+p ”  I  KU  - (W ’W ’ »  ImMi - <W ’)

(2.33)
The first term in (2.32), i.e. the multipole projection of the pole
terms, has been denoted here as . The integrand of the second term in

(2.32) has been split into a term
ImM, ( W  )

W - W -, giving rise to a principal

value integral, and the sum ,[ K,, , (W,W )] ImM^ , (W  ). It can be shown
that with this definition the kernel [K^,,] is non-singular in W and W!.
Both M^ and [ k,, ,] can be calculated explicitly by performing the
matrix multiplications in (2.32). The results can be found in Appendix
F.

We note that in the last two equations we encounter an other
convergence problem since in the multipole expansion of ImA(s',t) under
the integral unphysical values of x' occur (| x • | >1 in some parts of the
s'-range). It can be argued however that for low energies W the
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expansion will converge properly (see e.g. [D072] , [Ad.68]).
In the next chapter we show how a solution for this set of

equations can be found and which approximations and additional inform
ation we need.
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C H A P T E R  I I I

S O L U T I O N  O F  T H E  D I S P E R S I O N
R E L A T I O N S  A N D  C R O S S - S E C T I O N

C A L C U L A T I O N S  F O R ,  P I O N  P R O D U C T I O N

III.1 CONNECTION BETWEEN PION PRODUCTION AND PION-NUCLEON SCATTERING

Making use of the postulated analyticity properties of the
invariant amplitudes we obtained in the second chapter an infinite set
of equations (2.53) for the multipole amplitudes that describe pion
production. No essential approximations were involved until then,
except for the restriction to lowest order in electromagnetic or weak
interactions. In the derivation we assumed however, that no sub
tractions other than those mentioned in sec.II.5 were needed to ensure
convergence, and that the multipole expansion was valid even under the
dispersion integral. For the energy range we will consider, i.e. from
threshold (1080 MeV) to about 1320 MeV (in the nN^-centre-of-mass
system), these assumptions may indeed be made. In this chapter we will
obtain numerical values for the pion production multipole amplitudes in
this energy region and we use these amplitudes in a calculation of the
differential cross-sections for electroproduction.

Equations (2.33) as they stand can not provide a complete
solution for the amplitudes and we will need additional information
concerning the strong interaction dynamics. This can be obtained from
the experimental results on pion-nucleon scattering, since a link
between this process and pion production can be made via a theorem due
to Fermi and Watson [ Wa54]• This theorem is based on the unitarity re
lation (2.11), rewritten as

Im < f| t | i> = <f|T+|n><n|T| i> . (}.1)
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Por energies below the two-pion threshold («<1220 JteV) the intermediate
states n that give non-vanishing contributions to the s- or u-channel
matrix elements can only be pion-nucleon states, if we consider only
lowest order in weak or electromagnetic interactions. For these states
we have on the right-hand side in eq.(3»l) the product of a pion pro
duction matrix element (n|T|i) and the complex conjugate of a pion-
nucleon scattering matrix element (n|T|f). By making an angular
momentum decomposition it can then be shown (as is sketched in Appendix
D), that a multipole amplitude for pion production with definite values
of the angular, momentum and isospin in the final rcN-state has the same
phase as the nN-scattering partial wave amplitude with these same
quantum numbers. That is, writing for the latter amplitude (see e.g.
[ D067] )

-21 1 .21 \ . .21 ,, .
fi± “ q exp sin 6/± * (5.2)

where I is the total isospin, I the pion angular momentum (the total
angular momentum being given by J=i±^), q the absolute value of the

21centre-of-mass 3-momentum and 6.. the phaseshift, we finally obtain for
/ f 5the multipole amplitudes with isospin 1 or 3 (l=‘p or 2» se°.I*3»

eq.(l.17))

Mii' “ lMii'l exp b/± + inn ) > (3.3)
where n is an integer, and the + or - sign occurs for i1 odd or even,
respectively. For the isoscalar amplitudes, which are denoted by an

1index 0, we have to use the 6^+ phaseshift.
Although this theorem holds only for energies between the one-

pion and the two-pion threshold, it can be extended to somewhat higher
energies, as long as the inelasticity for the nN-scattering partial
waves is small. This means that for the inelasticity parameter T) , de
fined by the expression

f/± = "2q exp (2i 6/±) - 1 ] (3-4)
(a generalization of (3.2)), we have 0.9 £ t)=1. Inspection of the para
meters for the lower nN-partial waves (table I) shows that the in
elasticity becomes important only outside the energy region that we are
considering, with a possible exception for the -phaseshift. (We use
the notation L^  where L indicates the spectroscopic notation
(S,P,D,..) for the angular momentum of the pion.) Due to this small
inelasticity we can apply the theorem even though part of the energy
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region lies above the two-pion threshold.

Table I
Inelasticity in the lower nN partial wave amplitudes [Do67]

W1 W2

S11 1320 1415

P11 1280 1360

P13 1470 1570

P13 1360 1470

D15 1500 1570

*15 1500 1600

F17 1630 2980

W1 W2

S31 1390 1510

P31 1570 1670

P33 1480 1670

D33 1360 1510

D35 1570 1670

P35 1600 1715
P37 1600 2980

where 1 - 7) £0.,0001s lowest nN-centre-of-mass

W^: lowest nN-centre-of-mass energy where T) = 0.9

Two-pion threshold is at 1220 MeV

III.2 TRUNCATED DISPERSION RELATIONS

Because of Watsons theorem (sec.III.1) a resonance in pion-
nuoleon scattering can be expected to have much influence on pion pro
duction. In the relevant energy interval there is one resonance at an
energy 12J6 MeV in the P partial wave 5 this resonance will play an
important role. To verify this in more detail we note first that in
eq.(2.33)» which reads

Re M,(w) = M?(W) + - 7 dW' lm M.(W')/(W'-W) +
At At TL At

+ i aZ(i dW' 5.[KiiI(W,W)] Im M/t(w) ,
■p

the multipole Born terms  ̂and the kernels [ ,] can be evaluated
exactly (see Appendix F) , while for Im .(w) we obtain from (3-3)
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( 5 . 5 )lm IfJJ(w) tg &J*('w) Re mJJ(W)

For W 0  320 MeV (the "low energy region") only the P.^-phaseshift is
large (passing through 90° at the resonance energy, W=1236 MeV), while
the other phaseshifts are generally smaller than 10° (only for the S-

0+' <20 ), Assuming that the Born contribution Mt*. (see
Appendix F) gives a rough estimate for the magnitude of the real part
of the amplitude, we find from eq.(3»5) that compared to the imaginary
part of the P.^-multipole amplitudes, all other lm M , a r e  small. Atii
somewhat higher energies the situation becomes more complicated, be
cause both in thé P ^  and waves there is a resonance at an energy
of about 1600 MeV, causing the corresponding phaseshifts to rise steep
ly through 90°. Also the S-wave phaseshifts are larger in this region
(<a30 ). From a numerical evaluation of the kernels we see however, that
these fall off rapidly if W and W' move apart, so that for W in the low
energy range these effects at higher energies will not make a very im
portant contribution to the last term in eq.(2.33). Thus it seems a
reasonable approximation (for W O 3 2 0  MeV) to neglect all multipole
amplitudes except those for the P„-waves in this integral, and to cut
off the integration at an energy W_ = 1540 MeV. Further we find that
for iS 2 (i.e. D,F and higher partial waves) the corresponding phase-
shifts and the kernels connecting with the P^-multipoles are so small
that we can neglect the whole term, while for isoscalar multipoles
these kernels are identically zero. We will neglect the second term in
eq.(2.33) for all multipoles other than P ^ ,  and D.|,, and cut off
this integral at W."n - 1540 MeV for P „ ,  and at W' m  1, ______0 33 0 11
and D multipoles, pome remarks concerning the errors introduced by
these approximations are made in sec.III.5.

This leaves us with the following relations:
for the P,,-multipoles

1700 MeV for P.

-33"

ReMpJ5(w)>« M^5?(w ) 71. IÏ1+JI dW ImMp33(W') 1 "0
W'-W +n m+n

for the P -multipolesa?n m-H-iE e M p ^ W )  - 2*^(1)
ImM (W') "0dW'-- £JJ---+-L JW'-W n m-Hi

dW'[K11(W,W' )] ImMp (W' )
(3.6)

dW'[ K11 (W,W> )] ImM (W1 )
( 3 . 7 )
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(3.8)

for the other S- and P-multipoles (i=0 or 1)
W„_ 0

Re Msp(w) « Msp(w) + J  ̂  dW'[Kfi(W,W')]ln Mp„(W' )

for the D -multipoles

7 1 P33'

13
~ ~r p "Ó ImlL (W')

Re 1L.,(W) « MT._.(w) + - J dW ---±LL2----D15 D13 n m-Hi W  -W (3.9)

while for all other multipoles we take . We used the notation

Mpjj = (E1+t0,M1+,0fS1+,0), etc.

Finally, we can make these equations more suitable for numerical
calculations by taking into account explicitly the behaviour of the
multipole amplitudes for small values of the momenta k and q. Assuming
that this behaviour is the same as for the Born terms, we find from the
explicit forms for M?.i i

M/ i ~
/q for q-* 0,

while for k-* 0 we obtain

E/ - ~ k*-2 lf , JMa^ ~ k

S/ ± ~ k*±1 (Ife2) Lao+ ~ k

*1-^ k2 Sai± ~  k

other vector amplitudes ~k other axial vector ampltides
1~k

Defining Mj.(w) by the relation M^(w)=q^k^ Mj^(w), with the appro
priate choice for I 1, we can rewrite eqs.(3-6)..(3.9) in terms of

I I -M* (W). When the various threshold factors q k are then absorbed in
the Born terms and the kernels, the form of these equations remains
unchanged. The advantage of extracting the threshold factors is that
the new amplitudes M̂ 1 . do not have very strong variations even near the
threshold, which is important for numerical calculations. (We see that
in this context especially the small q behaviour has to be taken into
account, since q=0 at threshold,whereas the point k=0 does not lie in
the physical region and so has less influence.) In the following we
will use the amplitudes ., but we will omit the prime from now on.
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III.3 METHOD OP SOLUTION FOR THE MULTIPOLE AMPLITUDES
Several methods have been applied in the literature to solve

the dispersion relations for the multipole amplitudes in pion pro
duction processes (cf. sec.III.5). Most of these methods are based on
the solution given by Chew et al. ([Ch57]> further referred to as CGLN)
for photoproduction in the static model (i.e. in the limit of infinite
nucleon mass). In this treatment the M^ multipole emerges as the
dominant one in the low-energy region, where it is given in the form

1 +

.3,SB
1 +

*3fSB 1+
1 +

f? - -r •—k _e
2 2m

H -hp n exp (i6^+)sin 6^+ (3.10)

3 SB 3 SBHere M ’ and f ’ are the Born terms in the static model for the M^1+ 1 +
multipole amplitude in pion photoproduction and for the P 1 +

33 partial
wave amplitude (f?_) in pion-nucleon scattering, respectively;
f-gp/2m, where g is the nN-coupling constant; |i and are the total
magnetic moments of the nucleons. Since the other P„-multipole in

/ 3 33 *photoproductipn (E^+) gives a negligible contribution, the other multi
pole amplitudes are then calculated from the Born terms plus the con
tribution (via dispersion relations) from the M^ amplitude.

Although the simple model gives quite reasonable results, a
relativistic treatment is necessary for a good description of the
experimental data, especially in the case of electro— or neutrino-
production. J!he situation is more complicated here, because the E*

1 +amplitude can not be neglected, while also other P„-multipoles are
important here, that are absent in the case of photoproduction. To be
precise, for the vector part we have three P...,-multipoles, E? , M5 and

3 33 1+’ 1+“l+ > while for the axial vector part (in neutrinoproduction) there are
3 3 3 3four, Ea^, Ma^+ , La^+ and Sa^+. For these multipole amplitudes eq.

(3»6 ) gives a set of three (resp. four) coupled integral equations. We
have tried to obtain a simple approximate' solution of these equations,
by using as an "Ansatz" a form for the multipoles, given by a relati
vistic generalization of the CGLN-formula (3.10). In the CGLN-model the
M1+ amplitude satisfies a dispersion relation which is similar to the
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one for , and their solution gives a simple proportionality of the
+ 3 5amplitudes U' and £' , with as a factor the ratio between the "forces"

in the dispersion relations for the two amplitudes (i.e. in this case
only the ratio between the static model Born terms for the two ampli
tudes). Although in a relativistic treatment the simple correspondence
between the two dispersion relations is lost, one can try, as a first
generalization of the model, to use the full relativistic Born terms
for f^ and in the ïirst part of (3.10).

Our solution for the P^j-multipoles is obtained by using a
further generalization of this model, where instead of the Born term

we use the full "force"1+ ’ ■5;p

_(W'Kl11(W,l')] 55ImS^+(W')j ,

from the dispersion relation (3.6)
(i.e. those terms on the right-hand side of the equation that do not
contain Im ), defined by

WQ
MU  “ »i;B - n m4 dW'lU^W.W'^ImE^..

(3.11)
3 P 5 por the forces , S' , etc., defined in a similar way. This form is

used (with an adjustable factor A ) in an iteration procedure in which
we find numerical solutions for the multipole amplitudes, that satisfy
the dispersion relations (3*6) to within reasonable errors.

Before we describe this procedure in detail, we consider the
form of the multipole Born terms as obtained in sec.II.5 (and given
more explicitly in Appendix F). These Born terms can be written as a
sum of three terms

MBlt i n=1 II?.iijn
•p ’ B / 2 \where M7. is that part of M-. that contains the formfactor F (K ).t i;n * 1 1 n'

(F̂  and F^ are the nucleon formfactors; F^=Fn is the pion formfactor5
cf. sec.II.5-) Since the dispersion relations are linear in the form-
factors, the multipole amplitudes can be split up in the same way, i.e.

u. .i i;n 2 ? Mn=1 fijn
The Ansatz for the P^-multipoles is then written as

P33 n=1 1
P33:n /., 3 \ . «3
737b" exP <161+) sin 61+
*1+

(3.12)

where is the (relativistic) Born term in the P__ partial wave
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amplitude for nN-scat-fcering. To start the iteration procedure a first
approximation for Re and Im is calculated by using

3 n ’ n *
(3.12) for M1 + , with as force only the Born term M ^ B , (i.e. we start
with calculating exp (i&J+) sin &^+/ f ^ B, for n - 1 , 2 , 3 ) .  The con
stants \n are then determined by calculating from the dispersion
relation (3.6) the values of Re (n=1,2,3) at the resonance energy
(W=1236 MeV), and requiring that these should be zero. (As input the
values for Im are used, as obtained from the Ansatz (3.12),

3 n 3while E1+ and S1+ are set equal to zero for the moment.) In the second
part of the first iteration step essentially the same procedure is
repeated for the amplitude S. , using in the Ansatz the force

S U  = S1+B + n m4  dW' U*ij, (»#**)] 5$ Im Mu  + [^/W.W')]^ Im E^J ,

with the values for as calculated in the first part, while
5 1+ Tt

®1+ I® zero. In the third part E^+ is calculated, now using the
force

P w0
Eu  = E1+B + Ji «'([«^(W.W)] 15 Im M*+ + [ K-j 1 (W, W )] Im S*+} ,

with the values for and from the first and second part,
respectively. This completes the first iteration step. This scheme is
then repeated, now of course without setting E^+ and S^+ equal to zero,
but using the results from the most recent iteration step. (Note that
the coefficients have to be calculated anew in each part of an
iteration step.) The iteration procedure is summarized in the "flow
chart" of fig. 5.

After each part of the iteration a check is made to see how
well the dispersion relation (3.6) is satisfied by the multipole ampli
tudes obtained from the Ansatz, by comparing Re Mp^  as calculated from
the dispersion relation, to the values obtained directly from the
Ansatz. In normal cases the results are stable after four or five
iterations, and the dispersion relation is satisfied to within 10$.
Exceptions occur only at a few values of K2, and only for the ampli-

3 3tudes E1+ and S1+. When the imaginary part of one of these amplitudes
changes sign in or near the integration region, this results in an
instability for that multipole, and no acceptable solution can be found
directly. A better result can be obtained in those cases by performing
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fig. 5- Flow chart for the calculation of P„-multipoles
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the iterations with the combination (e.g.) a.E. ,+a.E^ .. Here E^l 1+51 0 1+;j 1+ji
is the part of the amplitude that is instable against the iterations;
E1+ . is one of the other parts, which is also calculated by itself, so
that the value of E^+  ̂can be separated out afterwards. By varying the
coefficients a^ and a. we obtain different solutions, from which we
select the one that gives the best fit to the dispersion relation (3.6)

The equations (3.7)..(3.9) are then used to calculate the real
parts of the other multipole amplitudes; the imaginary parts of the S-
and P-wave multipoles are found by using Watson's theorem in the form
(3.5)? imaginary parts for higher multipoles are set equal to zero. For

and multipoles we use in the principal value integral of eqs.
(3«7) and (3-8) a simple Breit-Wigner form.

Calculations have been performed for 11 different values of K2p
between .01 and 2.(GeV/c) , both for vector and axial vector

* )amplitudes '.

III.4 CROSS-SECTION FORMULAE

In sec.1.1 a general expression (1.9) was given for the pion
production cross-section. In the present section we will rewrite this
in terms of nNp-centre-of-mass amplitudes and of the multipole ampli
tudes. We thus have to express the square of the matrix element, i.e.

- I Tfif ̂  = %  ev out<"N2lJ> i > i n o u t ^ ^ V i n  * . , (5-15)

in these amplitudes, where is given by eq.(l.8).

A. E 1 e c t r o p r o d u c t i o n

Since the current J” 1 is conserved, i.e. K (.. | JEM| ..)=0, weH- M1
may replace the e in (3-15) for electroproduction by b = e
~e ,K—  » which we also used in eqs.(1.26) for the matrices A i (defining
the amplitudes F ,), We sum over the final spins and average over the
initial spin of the electrons (i.e. we consider only unpolarized

*1 \ -------------- -----
for the calculation of the axial vector amplitudes essentially the
same procedure was used, the main difference being that in this case
also longitudinal amplitudes occur (cf. eq.(l.29)).

53



electrons) and define a =4 2 b b*C ,
' pv ^spxns p v v where C.=1 for i=1,2,3 and

C.=-1. (No summation over v in this case.) Apart from a common factor
,4 . 0 4
/(4n^K the non-zero components of a are given by

'11
2 2K + 4^ aQ 0 ~ K2(4m/2+/^)/lc2

,2/. 2 2 2\'A’ (3.16)i1[K‘: (4inJ+K V k
where we used L=(/, Ü q )=K^+K2 , and m/=m/i“m/2 *

A useful parametrization of can be given in terms of the
quantity £ [Ha63Al ,[Do69] , defined by

e -1 - 1 tan2 ^0b (3.17)

which is used frequently in the description of experimental results,
(0. is the electron scattering angle in the laboratory frame). When we
neglect (where possible) the electron mass (i.e. the electrons are
treated in the extreme relativistic limit, which is a very good appro
ximation in these processes), we find

L21
and obtain thus

apv i £* spins b b*C\i v v
A 2Otf

(3.l8a)

with for the non-zero elements of

P ̂  = è(i+e) ooa

P 22 “ oa

Ppv
e K2/k2

P 01 = [£e(l+e)K21 ^ A  •
(3.18b)

The space components of the matrix p are the same as for the polariza
tion density matrix of a real photon with a partial linear transverse
polarization, and so e is often called the polarization parameter of
the virtual photon. (Note that in our case scalar components are pre-.
sent as well, which are of course absent for real photons.)

Before substituting (3.18) in the expression for the matrix
element squared (3.15)» it is convenient to use eqs.(l.26)

e
P .("Nout' 2

tEMiJ
P ' N,> .1 in v+ P Y

* 2 x 1 X+2 i=1 F 1 A i x 1
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Prom the definitions of the A .it is clear that we can separate P into a
transverse (T) and a scalar (S) part,

FT “ i-1 Fi A i} FS = i=5 Pi A i * (5.19)
Summing over final nucleon spins, we then have

final I TfJ “ X 1 ^FTFT + F̂TFS + *SFT^ + FSFS^X 1 * (3.20)
spins

The first (purely transverse) term has the same form as in real photo
production, where of course the other terms are absent. By explicit
calculation we obtain

final X 1FTFTX1 = i,0=1^A 6 ij + B ®i^J + ImC PN ’ (RxS)§i$j +
spins

+ UnD ^(RxP^)^ + ImE (Rx^). +

+ ImF q±(4xPN)j + ImG PN.Rq.($xR)_.}«.. (3.21*)

2 x l(FTFS+FSFT^X 1 = i=1 t (ReJ + PN. (flxRjlmK)^ +
spins

+ ImL(PNx5 )i  + ImM(PjjXR)i  + ImH(P ,R)($xR) ]oc

(3.21b)
fjnql x 1F3F5X 1 = (H + ImI pN-(^))«oo ' (3.21°)
spins

In'these equations a can be expressed in terms of e by means of eqs.
(3.18). The initial nucleon polarization PN is given by Pjj'OCy’X , and
the coefficients are defined as follows,

A = J p-,l 2 + | F2| 2 - 2 cose Re(P»P2)

B - | P?| 2 + | P4| 2 + 2Re(P»P4+P|P5+cos0 F*F )

C = - 2 F*P.3 4

D = -2[+fP*P2 + F*F? - F*,F4 - cos0 F*F ]

E - - 2 P»P2 P = -2 P»P4

G - - 2 F*F 1 = 2  F̂ F,.2 3 6 5
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l*5l2 + If6
f»(p 1+p4) +

FtF.6 4 5 3
F*F„ - F?F„5 2 6 1 ;6r2

L = P»P1

mtp'6 2 (5.22)
Por unpolarized nucleons we find from eqs.(3.1S) through (5•21)

with P =0

V m s i  Tfil 2 = i v.aJt'A 5 . . + B 5.5.3a.. + * .E2 ReJ 5± « i0 + ^  aQ0 =

——  —  [ A + -g-B sin^0 + Jr e B sin20 cos2<p + e ^  H -4m; K k

- 2{ 1+e)K2/k2} sReJ sin0 cos cp] (3.23)
The cross-section for electroproduction (unpolarized nucleons), which
is found immediately from eq.(3.23), is given usually in terms of the
so-called "cross-section for pion photoproduction with virtual photons",

d2av
denoted as — g—  , and defined by

•5 . L 2 - d ad _ _2 k e _T_____ v_
j. L L, n | L / 0 \ 3 t-2 1 —€ d Q
dk20dQedQn k1 (2n) K 71

d2a 2 2 _ 2
— ■—  = — -— - [ A + ifc-B sin 0 + -g-e B sin 0 cos2<p +d w & /, in (4nW)

+ eK2H/k2 - 2{ 1+e)K2/k2} 2 ReJ sin0 cos 9 ].

(3.24s)

(3.24b)

Most experimental results are given in terms of this quantity ^ ^ ,
n

but the factor T is different with various authors. Either T=1 is taken
(e.g. in refs. [ Ak67] , [ C067] ) or T = (W2-m2)/2Wk (eg. in refs. [Mi69],
[Ly67], [S171]), which factor also reduces to 1 in the limit of real
photoproduction, (K =0).

Via eq.(3.22) we thus have obtained expressions for the doubly
differential cross-section (3.2 4 ; in terms of the centre-of-mass
amplitudes F^. In the calculations the substitution in the P^ of the
multipole amplitudes as obtained in sec.III.3 is done numerically by
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computer, using eq„(l.3l)* The results of these calculations are given
in the next section.

To obtain the cross-section for the situation where the
direction of the final pion is not observed, evidently we have to
integrate over dQ . The terms containing cosq> and cos2<p then vanish,
and the results can be expressed directly in terms of the multipole
amplitudes, again using eq.(l.3l). We find

« J

+tz(t +i)[|m , "+ E 2] + 2 e %  (i+l)5| S ( /  + 1). 2+/ 3ls »-i)J2h
(3.25)

Also for this case some results are given in sec.III.5.
Cross-section formulae, valid for electroproduction on polar

ized nucleons can be obtained in a similar way from the complete eqs.
(3.21), with Pjj/O. Since for this case no experimental information is
available as yet, we will not discuss it further.

B. N e u t r i n o p r o d u c t i o n

For neutrinoproduction we have to use in eq.(3.15) the currentW V AJ -J +J (Cf. sec.I.4), and we obtain

sp̂ .ns I TfJ = sp^ns E|i£v̂  out^711̂  Jp I N1̂  in out^*1̂  Jv I in +

+ out<nN2l JJlNi>in «ut<nI2t j i v i n '  +

+ out<nN2l #  V  in out<nN2l JvVl N1> in +

2  ̂ + °ut<"N2lJ>i>inout<nN2lJvA|N1>*iJ *

“ + C  + O  ’ (5.26)
where we have used

aHV
2

spins V * Cv “ 2m^m^(LnLv"KpKv'^(L "K )6pv±£pvpaKp Lc ̂ ’
^  (3.27a )

and where p , etc., denote the various products of hadron current
matrix elements. The last term in (3.27s ) occurs because the initial
lepton is completely polarized (due to the factor (1+y^) in eq.(l.8b)
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for e ). The + sign holds when neutrinos are used, the - sign for anti-" 2
neutrinos. Apart from the factor G /2n^m_  the non-zero matrix
elements of a  ̂ are given by

2 2 2
“ n ~  *1 + K + ”<2

“22 ~ K2 + ml 2
2 2 2

«53 ~ - k0 + mt2

2 2 2
“ o0 ~ *0 - k ■ m/ 2

a 13 roIK\8II

a „ = a „ ~ i i10 01 1 0

a __ = -a ~ +ik„i23 32 0

“ 20 = ^ 0 2 ~ +ik/ "

“ 12 “ -“ 21 ~ ± i (W 0-k0/ 3)
(upper or lower sign for v or v ),

03 1 3i o " kk0
(3.27b)

Since is a conserved current, but is not, only those
factors that are contracted with have to be replaced by b (eq.
(1.26)). When the different terms in (3.26) are calculated separately,
we obtain for the first term the same form as given in (3.20) and
(3.21) for electroproduction, with of course now a different definition
for e in the quantities a ^ , but with the coefficients still given by
(3*22). For unpolarized nucleons this is

i £
®nucl.
spins

V Va v B .,j=1[A 6 ij+B M j K j  + *
2 Vi ReJ q. a*

+ £ H 00 (3.28a)

where a 2 b b*Cspins n v v
(*2>

other terms of (3.26) it
working out the products
and anti-symmetric (a) forms a

can be obtained simply from eqs.(3.27). In the

is easier to use a as defined in (3.27),
working out the products b e*, etc. We obtain, using the symmetric (s)

:s,a = |r'(öc ±oc ),nv *' nv v|i' ’
i 2. a p =“ nucl. (ivrnv £ . 2 5 [T 6 . ,+2Re(U+V)R.$.+S {.q.+R O . ] » ? .  -1 i j 1 J 1

spins
- g f a e W  §. + ReX K.la? ‘+ -iZa).,. +1 r1 1O z 00

^[i Im(U-V)K.qjla ij
+ s 3 r. « i-a

iiO=

- .2"[ i ImW q. + i ImX R.jai=1 ni iJ : (3.281
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* null. “ i sf1[lm(Pc-Cc)(Rx§).KJ + Im(Ec-Dc) (Kx§).q<.]a® . +
spins

+ h eijk §k (2Ac+Cc+cos 0(Dc+Ec)+Fc) +

+ i Re(2Bc - cos9(Cc+Fc) - Dc - Ec)]as  ̂+

+ i£i[(Rx4)i Im(-Gc+Hc)]oc®0 + KRxq)i i Re(Gc+Hc)]asQ,
■ ' (5.28°)with coefficients given by

R = 2Re(Pa^Pa*+cos 0[Fa5Fa£-Fa2Fa*] )-| Fa2| 2+| Fa^ 2+| Fag| 2

S = 2Re(Fa Fa*+Fa Fa*+cos0 FazFa*) + I Fa,I 2 + |FaJ21 4  * 5  3 4 . 1 y  1 4'

T - | Pa J 2 + I Fa-gJ 2 - 2 cos 0 Re (Fa Fa*)

ÏÏ = Fa^Fa* + Fa.jFa* - cos0 Fa2Fa*

V = Fa^a^ + Fa2Fa* + Fa^Fa* + Fa^Fa^ + cos0(Fa5Fa£ + Fa .Fa*)

W = Fa.jFa* + Fa2Fa*‘ + Fa^a* + Fa^a* + cos (Fa^a* '+ Fa^a* )

X - Fa.,Fa* + Fa^Fa* + FagFa* + cos0(-Fa2Fa* + Fa^a* + FagFa*)

Z = |Fâ | + |Fag|2 + 2 cos0 Re(Fa„Fa*)
(3.29a)

Ac = Fa^F*
Be = -Fa.jp* - Fa2F̂  + cos0 Fa2F*

Cc = -Fa.F*1 1 cos 0 (Faii*+Fa2f*) + -|(FaiF^+Fa2F*)
Dc = Fa^F* + Fa2F*
Ec = Fa?F̂  + Fa F*
Fc = Fa F* + FagI*
Gc = Fa F£ + Fa„F*I D  £ J

He = -Fa8F̂  - Fa F*
The differential cross-section is given by

d5° = ^2 kL £ m ml 1 ml 2 1
dk20dQ/Ldön kb (2n)5 k (4„w)2

(3.29b)

nuc 1.1-“ v P|i vW (i v P Jv (i v P |fv
spins (3.30)
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III.5 NUMERICAL CALCULATIONS AND RESULTS

Numerical values for the various parts of the multipole ampli
tudes (without the forrafactors) were calculated on a computer by the

2method given in sec.III.3, at eleven different values of K between
2 ‘ 2 ' * 1 , ' \ . 20.5 n and 100 (i (u = pion mars), i.e. between .01 and 2 (GeV/c) , and

at 43 energy points (31 for the axial vector multipoles), in the range
between 7.722u and 9.46(1 (1080 to 1320 MeV). The results were stored on
a magnetic tape and used as input for the computer program that per
formed the cross-section calculations. This program selects the appro
priate multipoles, inserts the formfactors and the isospin coefficients
and then applies the formulae from sec.III.4 to obtain the differential
or total cross-sections.

We have performed several tests to investigate the influence of
the various approximations (made in sec.III.2) on our results. Varying
the value of the cut-off energy WQ was found to have little effect,
although it is of course difficult to predict the effect of a complete
integration without cut-off, since there is not much information about
the multipoles at those high energies. Also in that case the question
of convergence becomes more important, and related to this we might
need several subtraction constants.

Including the imaginary parts of non-P^j-multipoles in the
integrals in (2.33) was found to be unnecessary, except possibly for
the S-wave multipoles, which can have some effect on the P-waves (other
than P^). Numerical evaluation showed however, that even here we can
expect the effect to be less than 5$, so we have not included these
terms in our calculations (as indicated in (3.6)..(3.9))» since other
factors will cause greater uncertainties.

For electroproduction we performed cross-section calculations
in order to make a comparison with three sets of experiments, done at
Stanford [ Ly67] , Harvard (CEA) [Mi69] and Daresbury [He7l], [Si7l]. For
the nucleon formfactors we use results from ref.[Go67], where a fit to
experimental data for elastic electron-proton scattering is given in
terms of the Sachs formfactors [Sa62], that are defined by

K2G = F - —  FUE 1 2m 2
F1 + 2mF2; (3.31)
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(we have omitted here the upper indices p, n, or S, V; of. sec.II.5).
These formfactors can be described by the "scaling law" parametrization
[Go 67]

GEM(k2) = GM(k 2V %  = G | U 2) = (l+K2/0.7l(GeV/c)2)-2 , (3.32)

(ti is the total magnetic moment of the proton). For G^(lC2)/m-n we
assume the same form, and we take Gg(X )=0 (see e.g. [Ru69l). This
leads to

F^'V = FP ± F^ m Ge m (K2)| 1+K2(|i^±^)/(K2+4m2) j ,

4 ’T = F2 4 *2 “ GEM(K2){ 2“ (»1p±l*^)/(K2+4**)l , (3.33)
(upper or lower sign for isoscalar (S) or isovector (v) formfactors,
respectively). For the pion formfactor we use a form (1+K /m,2)“\
with a mass m' = 560MeV ([ Mi69] 5 cf. also [Ak67]), i.e.

Fn (K2) = (1 + K2/0.3l(GeV/c)2)"1 . (3.34)
(For comparison, in the case of n+ production a few calculations have
been done as well, using an other form for F (see figs.9 and 10)} for0 n
n production the cross-section calculations are rather insensitive to
the precise form of F ).

The Stanford group [ Ly67] gives only the total cross-section o .
which via eq.(3.25) can be calculated directly from the multipole
amplitudes. A selection of their results is shown in fig.6, where our
calculations are compared with the experimental data. The two other
groups have performed coincidence experiments, in which the two charged
particles in the final state are both measured. Thus they obtained
angular distributions for the cross-sections5 the results are expressed

do
in terms of ^  , eq.(3.24). To make a comparison with these experiments,

 ̂ n
the computer program first uses eq.(l.3l) to calculate the centre-of-
mass amplitudes F , then expresses the coefficients A, B, H and J in

’ ' d o
terms of the (eq. (3.22)), and uses eq.(3.24) to obtain . The

0 71Harvard group [tli69] measured both nu and n+ production. Some of their
results for n production together with our calculations are given in

while fig.9 gives some experimental data and calculations for
n+ production. (Figs.8 and 10 give separate terms in the cross-section.)
The Daresbury group [He7l], [Si7l] give extensive results on
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d> ,= 12 7. 1 <D =127. 1)2sinè ReJ

O .= 127. 1 O ,= 12 7. 1

o o
YT = 0.25 Gev
W = 1259 MeV

Pig. 8. Separate terms in the cross-seotion for ep -* ejit0. (of. (5.24 ))

Pig. 7.(page 64). Angular distributions for ep -» ejn°
Experimental points: Mistretta et al. [Mi69 ]5 solid line: our calcula
tion; dashed line: Adler(A) [Ad68 ], Zagury [ Za66 ], [Za67 ] ,cf [Mi69 ].
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■&„= 1 5 .9 ' e,= 15.8

30, -(A; K

25 Gev= 0.
1260 MeV

Fig. 9* Angular distributions for ep -* enn +
Experimental points: Mistretta et al. [Mi69 ]; solid line: our calcula
tion; dashed line: Adler [Ad68 ], Zagury [ Za66 ] , [Za67 ] ,cf [Mi69 ] .
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Fig, 10. Separate terms in the cross-section for ep -* e m +. (cf. (3 .24̂ ))
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e , =  50.0e=50.0

■&,= 130.0 ■©■,= 130.0

«-,= 150.0

0.3 Gev 0.3 Gev
1205 MeV 1235 MeV

Fig. 11. Angular distributions for ep -* epx°
Experimental points: Siddle, Hellings et al. [Si71 ], [He71 ];
solid line: our calculation.

68



■©■,= 5 0 . 0  *
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F ig .  12 . A n g u la r  d i s t r i b u t i o n s  f o r  ep  -* e p  0

E x p e r im e n ta l  p o i n t s :  S id d le  , H e l l in g s  e t  a l .  [S i7 1  ] ,  [ü e 7 1  ] ;
s o l i d  l i n e :  o u r  c a l c u l a t i o n .
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n production, of which a selection is presented together with our cal
culations in figs. 11 and 12.

Together with the experimental data and our results, we give in
fig. 6, 7 and 9 also some results of calculations that were performed
by Adler [Ad68], and by Zagury [Za66], [ Za67] • The method of
Adler and that of Zagury is similar to ours, in that they also use
partial wave dispersion relations, an approach which has been very
succesful in photoproduction (for a review see e.g. [Be67A], [D072]),
and is based on the work of Chew et al. (CGLN; [Ch57] ) and (for
electroproduction) by Fubini et al. [ Fu58] .

To obtain solutions for the dispersion relations, Zagury uses
the N/D-method, while Adler uses for part of the ^-multipoles an
approximate solution which is similar to ours; however, we have taken
into account the P„-contributions tp more multipole amplitudes than
these authors. (Adler calculates only the part of the multipole ampli
tude that is multiplied by the magnetic form factor in a more sophisti
cated way, and uses a very simple approximation for the other parts.)
Devenish and Lyth use resonance saturation of the dispersion relation;
(their work also includes effects of higher resonances). An other cal
culation of the electroproduction multipoles has been done by Von
Gehlen [ V069] , [ V070] ; in his work the solution of Zagury is used as a
starting point for a variational procedure. No cross-section calcula
tions have been published however by this author.

From the various results for the multipole amplitudes it seems
to be clear that the amplitude is the dominant one as was expected,
and here the numerical predictions do not differ very much. The

3 ' +amplitude is small in general, while S;j + is more important, but both
amplitudes are predicted differently by various authors, (in comparison
our values for seem somewhat large.) In most of the other multi
poles the main contribution comes from the Born terms and from the
influence of (although especially can not be neglected), so
that there the results agree reasonably well. At the moment it is not
yet possible to extract values for the multipoles from experimental
data as in the case of photoproduction, although Siddle et al. [Si7l],
[He7l] give some results, based on their data combined with a few extra
assumptions.

From the cross-section values, as presented in figs. 6,.., 12,
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we seé that there are a few points where our results are too high
compared with experiments, especially in the total cross-sections in
fig. 6, and in the differential cross-sections for n production (figs..
7, 11) for low values of the angle q>. This may he due to the S^+ ampli
tude, for which we find a rather large value. In general however, in
the comparison with the CEA-data (figs. 7,..,10) it is difficult to
chose between the various theoretical predictions; although these differ
appreciably among each other, they describe the data reasonably well.
Also the correspondence with the Daresbury data is reasonably good.
Finally we notice that the choice (3.54) for the pion formfactor agrees
in most cases with the data in fig. 7, although especially at
2 2K * .6(GeV/c) the predictions are too low. Certainly for n+ production

more data are needed to make a good comparison, and to be able to
extract information about F .n
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C H A P T E R  I V

G E N E R A L  F O R M A L I S M
C O M P T O N  S C A T T E R I N G  O N

F O R
N U C L E O N S

IV.1 S-MATRIX AND CROSS-SECTION

In the following chapters we consider the process
TP -* YP , (4.1)

where y is a (real) photon and p is a proton. The formalism that we use
is also suitable to describe the more general process

yN -* yN ,

where N is a nucleon (proton or neutron), but we restrict the actual
calculations to scattering on protons, since only for that case experi
mental data are available. The situation here is very similar to that
described in Chapter I for pion production; i.e. although the process
is caused by the electromagnetic interaction, the strong interaction is
very important as well. We will again retain all orders for the strong
interaction , and only lowest order for the electromagnetic inter
action. For the matrix element we obtain then in the same way as
indicated in sec.1.1,

<T2»2|S|T,»,> . < Y 2»2|y ,»1> . i(2n)-2 6<4)(P1.K1-P2-lt2) ( j j - ^ E- ^ - ) .

Tfi (4.2)
where we denote the 4-momenta of the nucleons by P^ and those of the
photons by K. (i=1,2 for initial and final particles). The conventions
are the same as before. Further we have

T.. = e* .<n J J J I N.) . e ,fi 2v out' 2' |i v f i n  1(i ’ (4.5)
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where é are the polarization vectors of the photons (see Appendix A) .
The cross-section is given by

d^o (at) -2fc(4)(p1+Ki-P2-K2)m‘:(4Pi.Ki)"1|T 2 dk2 -vn k (4»4 )p20 K20
In the centre-of-mass system we obtain for the differential cross-
section per solid angle

do
dQ Z ^4nW^ lTfJ (4-4

where W is the total centre-of-mass energy, and 2 denotes a sum over
final spins and polarizations and an average over initial ones.

IV.2 KINEMATICS

The momenta in the Compton scattering process are labelled as
indicated in fig. 13.

fig. 13
The labels K^, P. represent
the momenta; e . the polari
zation vectors (K^.e.=0)

Energy-momentum conservation implies

P1 + K1 P2 + k2 . (4.5)
Instead of using the momentum variables P.̂ and K., it is more conve
nient to work with the variables P, K and Q, defined by

Pv- i(P1 + p2)

K - i(K1 + K2) (4.6a)
Q K1 -  K2 P - P2 1

or with orthogonal set P', K, Q, N, where P' and N are defined by
V - -b-eij,
-i b P'K 0 .Iivpo v p^o

P'
*)

(4.6°)

Our choice of sign in N agrees with refs. [He62], [Ra66]; the
opposite sign is taken by [ Ba68] , [He6l] , [ Pr58] , [ Ko68] .
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We also define the Lorentz-invariant variables

s = -(K., + P ^ 2

t = -(K1 - K2)2 (4.7)

u = -(K1 - P2)2 ,

satisfying the relation
s + t + u = 2m2 . (4.8)

We then find P,2N2 = ^(su-m^)2, and we define (P,2N2)^ = -fr(su-m^). The
photon polarization vectors satisfy the relations

e..K. = 0 (i-1,2) (4.9)
due to the transverse polarization of the photons (see Appendix A).

We will work in the centre-of-mass system, with a coordinate
frame for which the x^-axis lies along the direction of p^, and the
x^Xj-plane is the scattering plane. Denoting the polar angles of p„ by
(9 ,<p ) , and defining

P = I pJ =1 kj (i=1,2)
E * (p2 + m2)^ , ’ - .

we have in this coordinate frame (since q>=0)
K1 = (-P1>ip) = (0,0,-p,ip)

K2 = ("Po*ip) “ ("P sin9, 0,-p cos9,ip)
(4.10)

P1 = (p^iE) = (0,0,p,iE)

P2 = (P2jiE) = (P sin0,O,p cos9,iE) .
The total centre-of-mass energy is W=p+E.

IV.3 SPACE-TIME STRUCTURE OF THE SCATTERING-MATRIX ELEMENT

In this section we expand the matrix element T^. for Compton
scattering, as defined in eq.(4.5)» in terms of various sets of ampli
tudes similar to those introduced in sec.1.4 for pion production. Two
different sets of invariant amplitudes, depending only on the
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i n v a r i a n t s  s ,  t  and u ,  w i l l  be  d e f i n e d  i n  p a r t s  A and  B o f  t h i s  s e c t i o n ,

w h i le  i n  p a r t  C we i n t r o d u c e  h e l i c i t y  a m p l i t u d e s .

I f  o n l y  p a r i t y  c o n s e r v a t i o n  (an d  no C- o r  T - i n v a r i a n c e )  i s

a s su m ed ,  t h e  number o f  a m p l i t u d e s  i n  e a c h  s e t  w i l l  be e i g h t ;  i f  C - i n v a -

r i a n c e  i s  im posed  a s  w e l l ,  t h i s  i s  r e d u c e d  t o  s i x .  We w i l l  t r e a t  t h e

g e n e r a l  c a s e  where C - i n v a r i a n c e  i s  n o t  assum ed a  p r i o r i ,  so  t h a t  we

w i l l  be a b l e  t o  i n v e s t i g a t e  t h e  c o n s e q u e n c e s  o f  C- o r  T - v i o l a t i o n  f o r
t h e  r e s u l t s .

A. I n v a r i a n t  a m p l i t u d e s  (A. )

We d e f i n e  a  s e t  o f  e i g h t  a m p l i t u d e s  A. by  w r i t i n g  t h e  m a t r i x
e le m e n t  T „ .  a sf i

f i e* ü(p„)[ .E® A.1tyCp„)c2v v r 2 ' L i=1 pv i J ' * 1 ' ( 4 . 1 1 )

where t h e  m a t r i c e s  L ^ a r e  g i v e n  by

K2 6 2K K
(i v(iv

l 2 v " * k2[ Yp ( iY • k )yv “Yv ( iY • K V + ( p - k ) ( %  Kv +±y v Kp ) ~

- ( i Y * ) ( V v + p vy

Lpv “  ‘V H V  ( i Y . K ) , i y v]+ 4 [  i r (1, ( iY .K ) ] K v -m(iY(xKv +iYv K| j )+

+m6(iv( iY .K ) - ( P . K ) 6 tiv + (P)iKv+ Pv K(i)

L(fv *

£  -  - K2PpPv + ( P - K) ( Pp Kv +Pv K̂ +^ p 2K2- ( P - K) 2 )6p v - P \ Kv

L|iV = - p|1( i T ^ ) pv + i ( p .K )( iY llpv +i YvPw) + i ( p . K) [ Y ^ ( i Y .K)r v -

-Yv (iY . K y  -imK2[ Y(1 ,YV] + ^ ( P . K ) 6 (iv+i P 2 ( i Y .K )& ^ -

-(iY .K)KMK + im  ( i Y K + iY K ) -£m (P  K +P K ) -H V ^ v II V  1 V fl '  ^ V |1 V V

-■Jml̂ K(i[ ( i Y . K ) , i Y v] +Kv [ i Y , ( i T .K ) ] j

i 7 -  i K 2( Pu [ » (iY -K)] +PV[ iY^ , (iY .K)] j - i ( P . K ) j  K j  i Yv , ( i Y .K)] +Tiv
+ \ [  iŶ  , (iY .K)] } +m| P̂  (iY (iY .K)PvJ -(P .lO ^K ^K  )

I®v = -K2 (iY^Pv - iY v P(1) + ( P .K ) ( iY tlKv - iY v K( i ) - ( i Y . K ) ( P (iKv -Pv K( )
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When C- (or T-) invariance holds, only the first six amplitudes will be
non-zero. These are the same as the six amplitudes introduced by
Bardeen and Tung [Ba68l. In the case that these invariances may be
violated we will need the complete set of eight amplitudes.

The amplitudes A are free of kinematical singularities, and
furthermore they have the important property that there are no con
straint equations that have to be satisfied, since the matrices L4 areliv
explicitly gauge-invariant and regular. The procedure that leads to
this special set of matrices is given in ref. [ Ba68] and can be briefly
summarized as follows. We start from an expansion for Tfi, in which all
possible matrices constructed from B, K and y are used. (We do not need
y, since this can be easily eliminated by using the Dirac equation and
the polarization conditions, e..K.=0 (i=1,2).) Denoting these matrices
hy and the corresponding amplitudes by a^, we have instead of eq.
(4.11),

Tf i  -  e 2v a i ] u ( p i > i d (4.13)

where th e  m a t r ic e s  are  g iv e n  by

1 1 = 6fl V (IV %6 V = ^ [ i Y ^ U y . K ^ - i p J i y ^ , ( iY .K )]

/ 2 = 6  ( iy  .K)Hv |iv x ' i  = t fY ^ ,Y v]

■*= 
V*

<

N

y® V8v -  ^ U Y . K ^ - y ^ i y . K ^ ]

i 4 = P P ( iy  .K) -p. V  |1 V N 9 i 9 = iy  P -  iy  P
|iV |I V V |I

-  i y  P + i y  P
|iV n V V |i

10
4 dV “ iYv ’ (iT *K)] +^ Pv[ i T d  . ( iY .K )]

(4.H)
It can be verified [He6l] that the amplitudes a., defined by (4.13),
are free of kinematical singularities. They are however not independent,
since we now have ten amplitudes instead of the eight needed, and even
when two of these are eliminated, gauge invariance imposes further con
straints. The next step is then to introduce gauge-invariant matrices
i 1 ' ,|XV

/1 = I /1 I , (4.15)dv up po ov ’ J '

where I v is the operator that projects out the gauge-invariant part of
the ^  . It is given bydv p

I = 6  - K0 K„ /2K . (4.16)dv dv 2d 1v' '
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i» oThe matrices contain kinematical singularities, due to the K -
denominator in (4.16), which would lead to zeroes in the corresponding
amplitudes a!. In the last step these singularities are eliminated by

i itaking appropriate linear combinations of the I , while at this stage
we also reduce the number of invariants to eight, using relations
between the invariants, obtained in ref. [Sc68]. This finally leads us
to the invariants L given in (4.12).

B. I n v a r i a n t  a m p l i t u d e s  (B.)

An other useful set of amplitudes, B., is defined by

Tfi - e2v 5(P2)ti£? Bi^(Pi)e i, (4-17)
and

m 1 = P'P'/P'211V M- V'

M2 - N N /N2pggi i V'

= (p;HVTf;»|1)iy(p,2N2^.
’ U y . ?

= (p;Kv+P̂ »tl)iY 5(iT • K)/(P' 2»2)t
\7v “ (p,iNv+P>:\)iT5/(Pl2N2)^

- (p;Nv-pv \ ) i1r5(iY.K)/(p,2N2)i • (4.18)
In the case of C- (or T-)invariance again the last two amplitudes, B^
an<i Bgi will be zero. The first six amplitudes are the same as those
introduced by Hearn and Leader [He62] , (cf. also [Pr58]). Since some of
the gauge-invariant matrices M1 are singular in the points t=0 and4 *Vsu=m , the following extra conditions have to be imposed on the ampli
tudes B± to ensure that Tf. is regular, (of. part C of this section)
at t=0:

m(B1 + B2) " ̂ (8 " m )(®4 + b5) = 0 ,

^ ( s  - m2)(B4 + Bj) + 2B? = 0 , B0 - 0 , (4.19)
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at su=m^:
è(s - m2)(B - B ) + (s + m2)B6 = 0 ,4 5

2m^B 1 - B 2 ) + B 6 0. (4.20)
Due to the simple forms of the matrices M , as compared, to the

i ” ̂L , the connection with helicity amplitudes (cf. part C of this
section) and Born terms (cf. Sec.V.4) is less complicated for the
amplitudes B^ than for the A^. Thus we will use the B^ as an interme
diate set between the and other forms. A simple method to obtain the
relations between these two sets of amplitudes is given in Appendix G.
These relations are summarized as

A - [Z]B (4.21)
(using the same vector notation as in sec.I.4.D), with [Z] given by
eq.(G.6).

C. H e l i c i t y  a m p l i t u d e s

We define helicity amplitudes f. , (9»<P»p) for Compton42P2jX1P1
scattering by taking the matrix element of the T-operator between
states with definite photon and nucleon helicities, writing in the
centre-of-mass frame [Ja59]

<k2,\2jp2,(i2| T| k1 ,A _j.jp' ,|i

(r2) _ (O _
5 (P2)£*2v (k1)u (P-|)“ m 1n1(0 ,<p ,p)

(4.22)
where p^ is the momentum of the initial (i=l) or final nucleon (i=2),
and k . -p^ the momentum of the initial or final photon (cf. sec.IV.2);
H . is the nucleon helicity and that of the photon (n ̂ =±-g}\ . = ±1; we
will also use r.=2(i.=±l)j 0 and q> are the polar angles of the vector
P2< For the polarization vectors we have

( V
(-P1)

(-V Uh,)
and (4.23)

(*2) -
e 2 2 (P2) \  • =  ±1 exp(-i(A'-A2)qp )c^ ,x (0 )e ̂   ̂(P-j ) >
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where the cL*’ , (0 ) are defined by Jacob and Wick [ Ja59] . Denoting the
spinor for a nucleon at rest with helicity in the direction £

ty (*-,) /X(r-t)
■ 1

/ X U J  \ • • , n
0 ) ’ with X (+1) = (q ) and X(-1) = (” ),

we have for the spinors the relation

(r2)
%

s =± 1 exp;(ti-(r2-s)q,)d|^ir (e) ^ (a)
1

The spinors for a moving particle are then obtained from
(r±) m-iy.P (r )

u (p,) = --------- T u*
(2m(E+m))* *i

(4.24)

(4.25)

Using these formulae and the explicit forms for the polarization vec
tors from Appendix A we obtain, substituting in eq.(4.22) for T the
expansion in terms of the amplitudes B.,

8nWf, > 2 >
V 2 ’X 1|*1(9,<P,P) ‘ 2ma' *'(P2)e 2v <' ^ v e t l)(ï1)u(ri)(?i)

(*2)

_ ( r 2 ) _  2 2iA <p o 2 i \  pT o
mu ( p 5) l [ ^ 9 (o o s  ^ 0 -e  s i n  ^0 ^ + 4(008 -jje+e s i n '%Q)ê,

- AgSinOe

2/i 2

i*2<P

- cos^ C “(B2-A1A2B1)-Wp(B5A lA2B4)+r1(\2^.1)WpB0 -

- r1(A1+A2)WpB6] + 6ri ̂ r^sin^t-r1E(B2-\..|A2B1) +

+ r 1mp(B^-A 1\ 2B4 )+(A1A 2)pB5+(A i +A 2)pB^] } exp(i(\ 2 ~\ ̂ (r.j-ïg) )<p ) .
(4.26)

(This calculation is a generalization to eight amplitudes of the method
given by Rasche and Woolcock [ Ra66] , cf. also [Ra65] .) Since we have
chosen our coordinate system in such a way that <p=0, the exponential
factor in èq.(4.26) equals one, and will be omitted from now on. We
introduce a shorter notation for the helicity amplitudes by defining

*1 * f

*2 “  f
* 3 " .f

1 *ib 1 *■£ *4 f„ i1>-t;i»a

i-ii 1ti

-1tit1 *6 =
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(4.27)-1 4 %  “ >2» 1 » 4

The relations between the and the can be read off immediately
from eq.(4.26), and using the formulae from Appendix G (eq.(G.6)) we
obtain the relations with the amplitudes A.:

= -52-fCOsie[2((s-m2)2+tm2)A4-m(su-m4)A5-((s-m2)2-tm2)A6]

= -— -— -sin^eft(s+m2)A1+2((s-m2)2-(su-m4))A,-mt(s-m2)A?]
}2nW 5

= 32ÏÏW cos^[ 2mt(A1+A5) - t(s-m2)Ag]
1 4 2 g$ = ------ sin^6 (su-m^)[ 2mA .+-̂ (s+m )A,-+mA,-+(s-m )A„]

4 32nW^ 4 5 I

cos&  (su-m4)[ 2A4 + + Ag]

- — -— - sin|G[ t (s+m2)A .+jnt (s-m )A2+2m2tA,]
b 32nW2 5

®7 = 32^W co&è0[ 2mt(41+Aj) + t(s-m2)A8]

= — -— - sin^G (su-m4)[ 2mA .+-̂ (s+m2)A(-+mAg-(s-m )A-] (4.28)
0 32nW2 4 0

As we have remarked before, the amplitudes A_ and Ag are zero in the
absence of C- or T-violation. We see from (4.28) that we obtain in that
case and $ leaving six amplitudes.5 7 4 ö
The inverse relations are

8nW r. i w _ _2w/ 2s2t  ̂ \ 8nW2/- - w / _ _ 2 N2
1 mtcosjG{ 1+it(s+m2)/(s-m ) ] (®3+4 7)+7ï^p'(4’2'4’6)/(s"111 ^

C. / C- \m (s-m ;
- 5 ® * — 1+2(s-m2)/t] ( * ^ 7) ^ { -4> +2

-(l+4(s-m2)/t)$6] J

8nmW
3 ~ , 2x2 1 cösiëm(s-m ;

2 2 2 i8nW . 8nW [ (s-m )(s+5m )+m tl)(s+3m2
(su-m )

___________3-m2)!
sin-iG / 4\ 4w 4“*'8* (su-m ;

*4 , m2)2 * ”cos4®^ 1+cos-jG s  +

8nmW2 r t+2(s-m2)1 , \i
«-Ï /I . Vr jl TT O /. J
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(su-m4)(s-m2)
64nmW
"cos^Ö * 5 sin-gö

?2nff , xi
G-inU X® /I ̂  R ' I

(s-m )

2 2 2i_ r 16tcW , 1ónW r m t-(s-m ) 1 ^
2\2 ‘cosië 1 " cösië (su_m4) 5

l6nmW_____t
sin-gQ / 4>“ (su-m J

l6nw
siné9 ( 4\/ 2x ' 42 (su-m )(s-m )
l6nW_____1___ /# ^  x
C0S^  t(s-m2)  ̂  ̂ 7^ •

(4.29)

Due to angular momentum conservation, in the forward direction
(9 =0) all helicity amplitudes except * 1 and #,. must vanish, and in the
backward direction (0=n) only#- and should be non-zero. Moreover,
from the partial wave expansion for the helicity amplitudes [Ja59j>

*i -<v2lTlVi> -sH W
V

+ i)#J <iJ (e)' V V v V ' '1 2  1 2
J

(4.30)

with v.=p.-A.) and using the explicit forms for the d“ (9)* it cani i i  ' ̂ ' g
be shown (see e.g. [Co68],Ch.IV) that the amplitudes #. should contain
factors

I V1"V? L  , v | v +v J(singO) (cosg0) ,
(which automatically ensure that the restrictions for 9=0 and n are
satisfied). Comparing with eqs.(4.28) and using the relations

and
t = -sin2^9  (s-m2)2/s

* f 2x2--st - (s-m ; 2i Q/ 2x2cos g0(s-m ) ,

we can immediately verify that the expressions for #. in terms of the
amplitudes A. explicitly contain the correct factors. For the cor
responding expressions in terms of the amplitudes this is not the
case, and this results in the restrictions (4.19) and (4.20) for these
amplitudes.

Via the unitarity relation (cf. sec.V.3) Compton scattering is
connected with pion photoproduction, and in the calculations we will
need helicity amplitudes for this latter process. We denote these
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amplitudes by ¥ . , and write

^ i = ( 9.»0»Pn>d | T| k̂  ,\ ̂ Jp 1 ,p = iK p g ) ^ E (2J+1 (9 )d^ (6)
J 1 (4.5la)or in a shorter notation

*i = <H| T|X 1 ,n 1 ) ,
with

- UIT! 1.* > »3 = <i|T| -i,1 >
*2 K-ilTl •>.£> *4 -C-ü,Pl-i.lJ>. (4.3ib)

The helicity of the final nucleon in the photoproduction process is
denoted with p 5 the helicities of the initial photon and nucleon are
again \ ̂ and p ̂ , and v.=p..-A.|. The kinematics for this process is given
in sec.I.2 (of. fig. 2; there i3 a minor change in notations the

2initial photon here has momentum , and is real (K^O); the final
nucleon momentum is P ,(p =-q).)n’'fn '

IV.4 LOW-ENERGY BEHAVIOUR OP THE INVARIANT AMPLITUDES
It is well-known ([Lo54] > [ Ge54] ) that to first order in the

photon energy the Compton scattering amplitude depends only on the
mass, charge, and magnetic moment of the scatterer (i.c. the proton).
This result can be derived, using only gauge invariance and relati
vistic invariance [Lo54]• Denoting this first-order approximation at
low energies (in the limit p->0, 0 fixed) for the scattering amplitude

1by T^, we have in the centre-of-mass system
2

’’fi “ " 2iUpP^*[ -

- “ie|ipp[c •f1 ^  1 )($1 •x^)^.^2(g2x"e*)."e1 -

- c . (®^<e^) (52."e 1)] + ^iep^pc. (ê <e )]x (4.32)

where e is the charge and p the magnetic moment of the proton; p^ is
the anomalous part of the magnetic moment; x- are the Pauli-spinors of
the nucleon. By a straightforward calculation one can derive from this
expression for T*. the low-energy limits for the amplitudes A^ or B^.
Denoting these limits by A^ and we obtain (using now the proton
formfactors P^(0) = 1 and F2(o)=̂ i ̂ /2m, or briefly P^ and P2; cf. sec.V.4),
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.1 2_2 , 2
A1 = e F i / ^ P

kl2 = e2P1(F1 + 2mF2)/m2p2

= 2e2F2(F1 + mF2)/mp

A* = e2F1(F1 + 2mF2)/m2p2
o p . 0 0A* = -4e ̂ F g / *  p

a6 “ -4e2F2/mp

4  “ Ag - ° (4.53a)

K  - -(1 - oos9)e2F2/m

®2 = 4e2F2(F1 + mF2)

Bi = -(l-cos0)e2F1(F1+2mF2)/2in - 2e2F2(F1+mF2)

- -e2F2/mp

Bi = e2(F1+2mF2)2/mp

B^ = (1-cos0)e2F^(F.+2mF2)/2m2 + 2e2F2

4  - 4  = 0 (4.33b)
When we write down dispersion relations for the invariant amplitudes
(which will be done in the following chapters), we have to ascertain
that the amplitudes will correctly satisfy these low-energy limits (cf.
sec.VI.1).•

IV.5 OUTLINE OF THE CALCULATION

In the following two chapters we present the formalism for the
calculation of Compton-scattering cross-sections, and we compare the
numerical values obtained in this way with experimental results. The
first step in this procedure is described in Chapter V, where we make
use of the analytic properties of the invariant amplitudes, to derive
a set of integral equations (dispersion relations) for these
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amplitudes. This derivation is similar to the one given in Chapter II
for pion production, but in the case of Compton scattering it is not
necessary to transform the equations to integral equations for multi
pole amplitudes.

The method of solution for the dispersion relations is
described in Chapter VI. Via an expansion in terms of helicity ampli
tudes, it is possible (in the energy region under consideration, i.e.
near the first resonance) to express the integrands in terms of
experimental data from pion photoproduction. The equations are then
solved numerically, and amplitudes and cross-sections are calculated.
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C H A P T E R  V

A N A L Y T I C  P R O P E R T I E S  O P  T H E  S C A T T E R I N G
A M P L I T U D E S  F O R  C O M P T O N  S C A T T E R I N G

V.1 ANALYTICITY

The analytic properties of the invariant amplitudes for Compton
scattering are quite similar to those for pion production. Therefore
we will mention in this chapter only those aspects that are typical for
Compton scattering, and refer to Chapter II for a more detailed treat
ment.

The analyticity postulate for the invariant amplitudes for these pro
cesses is the same as stated in sec.II.2, i.e. we need only one set of
amplitudes for a description of these three processes, and the ampli
tudes are meromorphic functions of s, t and u. Since we consider
electromagnetic interactions only in lowest order, the singularities
which are determined by the possible intermediate states in reactions
(5.1) are the same as for pion production, as can be easily verified.
Thus, also the positions of poles and cuts are the same in both cases
(fig. 3). For the Compton-scattering amplitudes A., with j=1,...6, we

V

can then derive again a dispersion relation as in eq.(2.5),

We consider the three related processes

*iNr * 2 N2
S1®2” * Y 1Y 2

(s-channel)

(t-channel)

(u-channel) (5.1)
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I,

Re A^(s,t) 2 +  , - 2 +  2 + , 2s, 2\ +s-m t- |i u-m (s-m ;(u-m )

+ ijn a
ds 1

s 1 -s 14 Aj(s' »t) + A..(u' ,t)] . 0 - 1. . . 6)
(5.2)

The residues are of course different from those in eq.(2.5)j they are
calculated in sec.V.4. (Notice the appearance of a double pole in (5.2),
which was absent in (2.5).) For the amplitudes and Ag however, we
find a different equation, since the amplitudes are not real analytic,
which is due to the fact that these are C-violating amplitudes. It can
be shown that iÂ . (j=7>8) is real analytic, so that for real s we
obtain

disc [A.] = + 2 Re A^ (j=7,8) ,

where disc[A.] is the discontinuity of the amplitude across the branch
cut (cf. sec.II.2). This leads to a dispersion relation

Im A^s.t) = - | 7  RejA^s' ,t)+Aj(u' ,t)] (j=7,8), (5-3)

where no pole terms appear, since the Born terms do not contain a C-
violating part (cf. sec.V.4).

V.2 CROSSING SYMMETRY

Since for Compton scattering the s- and u-channel reactions are
identical (5• 1)» the crossing symmetry relations can be derived quite
easily. In fact, we have in the s-channel

<n2(p2),y2(k2)| t| *1CPl,),yl0cl)> =
= e 2V (*2 ^ * 2 ) $  'Ai<B . t , « ^ v (p» K M P i :)c;1jl,(iti) , (5.4)

and in the u-channel

<N2(P2) ,Y 1 C - K t)J t | N 1 (P1 ) ,Y 2(-K2)> =

= S Ai(s,t,u)L|jlv (P,K)u (p1)e2V (-k2) . (5.5)

Of course, the matrix elements can not depend on the way in which the
photons are numbered, so that we may rewrite (5.5) as

< n 2(p 2) ,y 2(-k 1 )| t | n 1 (p 1 ) ,Y 1 (-k 2)> =

= e 2|l(-k1)ü(p2) S Ai(s,t,u )L^v (P,K)u(pi)e1v(-k2) . (5.6)
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Making-in (5.6) the substitution tt+v and K. + -K2, we find
' < n 2 (p 2 ),y 2 (k 2 )|t |n 1(p 1),y 1 (k 1)> =

= (k2 )ü(p2 ) S A i (u,t,s)Ljv (P,-K)u(p1)€ 1̂ ( k 1 ) . (5.7)

Comparing (5*4) and (5•7)» and using the explicit forms for the L1̂
(eq.(4.12)), we obtain

Ai(u,t,s) m Ai(s,t,u) (5.8a)
with

= (+1,+1,-1,+1,+1,-1,-1,-1). (5.8b)
Similarly, we obtain by replacing £ A^ L^v in eqs.(5.4)ff. hy £ irĵ

BiCu.t.s) = t)® Bi(s,t,u) (5.9a)
with

{t)J = (+1,+1,+1,-1,-1,+1,-1,-1). (5.9b)
The same results should be obtained by using the charge conjugation
properties of the T-matrix element. For the C-conserving part we have

< N 2 (P2 ) ,Y 2 (K2 )| T°| N 1 (P1 ) ,Y 1 (K1 )> <N (P ) ,Y „(K )| T°| N (P ) ,Y . (K )> ;
2 2 2 2  1 1 1  1(5.10)

a similar relation with a minus sign holds for the C-non-conserving
part (T ). Comparing the right-hand side of (5.10) with the inverse
u-channel reaction matrix element for T° (denoting the corresponding
amplitudes by A., and the crossing factors by t)?),

< n 1 (-p 1),y 2 (ic2 )|t 0 |n 2 (-p 2 ),y 1 (k 1 )> =

= -e 2v(k2) v ( - p 2 ) [ i2® A° ( s , t , u ) l ^ v ( p »K) ] v ( - P i ) e i t l(k 1) , (5- 11)
and proceeding as in sec.II.3 (eq.(2.10)) we find

= T)° (i= 1,.. . ,6)
=-»)° (i=7,8) .

Usi.i.g T c and q ^ c , we obtain the opposite sign. For compatibility with
eqs.(5.8) clearly we must have A?=0 for i=7,8, and A ^ c=0 for i=1,..,6,
thus verifying that indeed A„ and Ag are the two C-non-conserving
amplitudes. The same results can be obtained for the amplitudes B^ and

V
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V.3 UNITARITY

As in sec.II.4, it can be shown that from the unitarity rela
tion for the T-operatorf i.e. (T-T^ ) = iT-*- T, follows

The intermediate states n, that give non-zero values for the right-
hand side of this equation, are of the same type as for pion production
so that the same poles and branch cuts occur as in Ch.II. The dis
continuities are given by [0162]

disc [Aj(s,t)] = 2i Im A^.(s,t) for j=1,...6
and ; ' 1 (5.1 3)

disc [A.(s,t)] = 2 Re A.(s,t) for j=7,8 ,

due to the fact that the first six amplitudes are real analytic, while
A„ and A„ are imaginary analytic.

I 8

V.4 POLE TERMS

The pole terms in the dispersion relations for the amplitudes
A^ (or B.) are found by making an expansion of the renormalized Born
terms, using the matrices (or M^v ), These Born terms correspond to
the diagrams in fig. 14» calculated with normal Feynman rules, but

e2v*(p2) iS®(Ai(s+ie,t)-Ai(8-i,et)l^vu(p1)e1(l =

" e*2v^P2)£l lfv'*(ï1)*1|, * i 2<f|T+|n)<n| T|i>
(5.12)

s-channel

fig.14
7\ / ‘

p̂2^62v  ̂F1Yv"F2avaK2â
iy.(K.+P.)-m

(p.,) (5.14)+F2abp K1P(K.+P.) +m
^ \

a factor e appears in eqs.(5 .1 4)» (5*1 5)» due to our normalization
of the formfactors (cf. sec.II.5 ).
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u-channel
? ï l '  w iY.(P?-K )-m
e 5(P2)C1(1[ V n ^ n a K ^ ]  . .2 2 [71Yv - V v p Kgp]e2»n^l) (5*15)(P2-K1) +m

t-channel
1
2 2 “pvpa 6 1p e2v F1p F2o (5.16)

The formfactors P are the nucleon formfactors Fp(0) or F^(0), intro
duced in sec.II.5 (p for protons} n for neutrons); g is again the pion-
nucleon coupling constant, and G is the n -* 2y decay constant

p 1
G = G(p ) = -8(n/tp )®

where t is the (n -* 2y)-lifetime. (The sign of G is taken from ref.
[ La62] ; cf. also [He62], [ Ko68] .) In the rest of this work we will con
sider only the case that the nucleon is a proton, and we omit the index
p on the formfactors F? from now on.

The expansion of the Born terms is done most easily in terms of
the invariants , using the method described in Appendix G. Via eq.
(4.21) we then obtain the pole termsfor the amplitudes A^. We find in
thejj-channe1» ±y .(K +P )-m
e “(p2̂ C2v t FlYv“P2avaK2ô  \ 2  ̂F1Yp+F2app Kip^e1p u(p-|) =

5G*2>€2V*-~2 ~  [Yv(ir.K)ril+P0uiT11+P4lliTj
m -s

P.P1 2
p ~ 2 v ~'p ~ ip*'vj + —  t2(m -8)y vy p +m -s

+ 2iYv (iY -K)P1P+2P2V <» •*)1YU+4 W XI (iY *K)Yn +2*(P9u iY„ +P1n iYu )-2P^P1ll]2v p 1p v ' 2v 1pJ

2m -s
[(m -s)(-y. (iY.K)rtl+P2viY(j+P1(iiYv+2mYvr(i) - 4P^(iY.K)P

4m(iYv (iY »K)P 1ji+P2v (ir ,K^irp )+4m?Yv (iY •k)y,J Ie 1(1 U (P-,)
p2

2 ^(P2)e2v* ~ V  +
P.P

+ — ^-|[|(u-s)(s-m2) ^ xj+2(s-m2)l̂ fv + (2m2+|(s-m2)2) ^ i -^f(s-m2)l(pv t

i !  P24 » ^  -2mM^v] +— sm(s-m2)M^v -m(s-m‘:i)M^v - (s-m^)!^1
s-m

(4m2+(s-m2))ĵ 5v + (s-m2)l^v3}e1|i u ^ )

2W 4

(5.19)
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From 6q« (5.19) tli© contributions from the s—channel Born term to the
amplitudes can be read off immediately. Using (4.21) we find for the
contributions (a?) to the amplitudes A.s

s-m mt
2e

2 2s-m

[— 4  (4(s-m )2 + 2t(s+m2))F2 - 2F F - 2mF2 ]
m t  i _ , u* < i

t-o-ö(4(s-in2)(u-m2)+2t(s+m2))F2+—^(4m2+t)F.F„+2F? ]m t ' 1 2  2

s-m
2e
2s-m

2

[-^f(s-m2)F2 + (2 - |(s-m2))F1F2 + 2mF2 ]

[4ji2 + 0£jiji + 2f2 ]Lt r1 + t 1*2 + 2 J

s-m
2

f _ —  F F 12 L t 1 2  J

e
s-m2 [-4F2 ]

a® = 0

a8 = 0 (5.20)
The pole residues for the s-channel are then found by taking the limit

lim (s-m2)a?
2 1s-m

(5.21)

The u-channel residues can be found in the same way, but it is much
simpler to use the crossing properties from sec.V.2, which give R?=n R®i ' l l
The t-channel pole can be found to contribute only to A2 (or B^).
Summarizing these results, we obtain for the complete pole terms for
the amplitudes A :̂

A® = f-—  [ -2e2F2(F +mF2)] + - L _  [ _4e2mF2 ]
\ s-m u-m / s-m u-m

2
A2 - ("S + F (F +mF )] + “4 (F +2mF a +

\ s-m u-m/ s^m u-m

2 2s-m u-m
1 X [2e2F2(F1+mF2)]

s*.m u-m
2gG _1__
Hm , 2t-p
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J

A

A

A

A

B
4

B
5

B
6

B
7

s-m  u-m /

^ - 4 i l 6 e 2V 23s-m  u-m

1 1
s—m u-m

2 j [ - 4 e 2F 2 ]

+ " 2 [*-4e2F1(Ft+2mF )]
s-m  u-m

( 5 . 2 2 )
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C H A P T E R  V I

S O L U T I O N  O P  T H E  D I S P E R S I O N
R E L A T I O N S  A N D  C R O S S - S E C T I O N

C A L C U L A T I O N S  F O R  C O M P T O N  S C A T T E R I N G

VI.1 DISPERION RELATIONS AND LOW-ENERGY LIMITS

Using the crossing properties (5.8) of the amplitudes A., we
rewrite the dispersion relations (5.2) and (5.5) as

Re A .(s,t)

Im A .(a,t)

AB (s,t) + - 7  ds' (-j-- +~
J 71 (m.*)2 8 8 8

“̂ )lm Aj(s1,t)
Ü -1 . . .6 ) (6.la)

7
(m+n)

U-i

or in a shorter notation

Re A .j
,C

«BA . + A .
3 3

Im A
3 3

2 ds' ^i T ^ +7 ^ ) Re A (s',t) ,2 s -s s -u j ( .=7>8)

0 - 1, . . 6)

(d-7,8)

(6.1b)

(6.2s)
(6 2b)

J
where A are the pole terms (5.22), and we have denoted the integral

o c /terms by Â. (continuum contributions). In the derivation of these
equations we assumed that no subtractions were necessary. For this to
be true, it is at least necessary that the amplitudes appearing in eqs.
(6.1) should have the correct low-energy behaviour. This is in fact theQcase, since the terms A. can not contain dynamical singularities for

') [ Ba68] , and thus will become constants, while it can
, B

p -»0 (i.e. s-
be verified easily that the pole terms have the same low-energy
limit as given in eqs.(4.55 )• It might be that subtractions are
necessary which do not spoil the low-energy limit; but we will assume
that this is not the case.
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We note however, that for the amplitudes B. the low-energy
z V  k

limit of the pole terms does not agree with eqs.(4»33 )• Thus, evenQassuming lim B.=0, we still would have to introduce subtractions in the
p-o J

dispersion relations for the amplitudes B^ [He62], [K068] . This, and
the related fact [Ba68] that for these amplitudes B. we have to take
into account the constraint equations (4-19)» (4*20), leads us to write
down the dispersion relations (6.1) for the A., and to use the B^ only
as a set of intermediate amplitudes to simplify several calculations.

VI.2 CONNECTION WITH PION PHOTOPRODUCTION

With the assumption that the unitarity relation (5.12) holds
even for unphysical values of s, the integrands in eqs.(6.l) can be
found in principle from the results of sec.V.3. We will restrict our
calculations to the energy region from threshold (940. MeV) to about
1350 MeV in the centre-of-mass system (i.e. photon laboratory energies
below 500 MeV). In this region the process is dominated by the first
pion-nucleon resonance (1236 MeV). The dispersion integrals are cut off

0at an energy Wq » 1800 MeV (s^» 3.2 GeV ), which will be a reasonable
approximation for low s. Further, we simplify the right-hand side of
eq.(5.12) by taking as intermediate states |n) only states, containing
one pion and one nucleon, thus reducing the expression to

i <y n | T1'|nN)<nN| t |t N) ,

i.e. essentially a product of two matrix elements for pion photopro-
duction, where the £ denotes a sum over the two possible charge states.
Below the two-pion threshold this is correct, and for higher energies
we can expect it to be a good approximation, since inspection of photo
production and pion-nucleon scattering data shows, that in the region
considered, the matrix elements involving two (or more) pions will be
small (<5?S) compared to those for single pion photoproduction, (cf. the
discussion in sec.III.2). To express Im A^.(s',t) and Re A^.(s',t) in
terms of photoproduction amplitudes, both sides of eq.(5.12) are
expanded in terms of partial wave helicity amplitudes $  ̂ and ¥ ,

1 2  1 2
which were introduced in eqs.(4.30) and (4.31)• ®ue to orthogonality
of the d -functions, a very simple relation results. If T-invariance

V 1V2
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(6.3)
is assumed we obtain (for details about isospin see sec.VI.3),

Im 4>'V V1 2 v _v v „V

where v.] and v2 are the total helicities for the photon-nucleon states,
and v for the pion-nucleon state (cf. sec.IV.3.C). In the more general
case (no C- or T-invariance), the scattering operator can be separated
into a C-conserving part (T°) and a C-non-conserving part (Tno). It was
shown in sec.V.2 that the matrix elements of Tc can be expanded in
terms of the amplitudes A ...A,, and Tn° in terms of A„ and A_. Prom, . ' ° 7 8eqs.(4«28) it is then clear that the helicity amplitudes $. can be
written as a sum of a C—conserving amplitude (9 .) and a C—non—conserving
amplitude (<P̂ ). A similar decomposition will be possible for the pion
photoproduction amplitudes ¥ , and for the corresponding partial wave
amplitudes,

, J$V V ̂1 2

V . 2

J , J=  qp + 9 '
V 1V2 V 1V2
. J= (|) + 4' ̂
V 1V2 V 1V2 (6.4)i \z i z i 2

We then obtain from the unitarity relation a generalization of eq.(6.3),
: jIm qp

He <p

v . v „1 2

V1V2

*  2. ,v =i-o (4^ 42 'T»-1v T

H  2vt±A <♦*

,J*  4 4 1J 4 1J*
V 2V V1V 'V2V

4 1 J* + 4 * ̂  4
V2V V1V v 2

(6.5

(6.5
Via eq.(4.30),

~  S (2J+1 J dJ (6 ) ,
i 2p jv V 1V2 V 1V2

we obtain from eqs(6.5) expressions for Im qp ^ and Re 9 !. Using eqs.
(4.29) we can thus express Im A., (for j=1,...6) and Re A.. (j=7,8) in
terms of partial wave helicity amplitudes for photoproduction. Via the
dispersion relations (6.1) we then obtain Re A . (j=1,..6) and Im A.
(0=7,8). ° J

We noted already that s' may reach unphysical values in the
integrands, and the same is true for 8. It can be verified however,
that the factois sin^8 and cos^G that occur in eqs.(4.29) cancel against
the factors in the functions dr (0), so that this does not give

1 2
further complications for the calculation.
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VI.3 AMPLITUDES FOR PION PHOTOPRODUCTION

Results for pion photoproduction are summarized often in terms
of multipole amplitudes, obtained from an analysis of experimental data.
These amplitudes are defined in essentially the same way as in sec.I.4.
C for electroproduction. There is only a difference in normalization
/ 4nW(an extra factor -1—  has to be inserted on the right-hand side of eq.
(l.28a) for photoproduction), and no scalar or longitudinal multipoles
appear, since now the photons are real. In terms of these multipole
amplitudes the partial wave helicity amplitudes are given by

t 4 - *  *  -  E ( i + i ) > ( i + 2 ) ( Ei + + M( i + i ) J ]

- ^ ^ ( /+2̂ e/+-m(/+d -)+/(m/+ + E(/+i P ]

1 12 2

1 12 2
, (6.6)

where J=i+^. The isospin decomposition of these amplitudes (W , M and E)
follows directly from eq.(l.1 5)» if we omit both e-, and add a y in the
initial state. For a given initial state (yn) two distinct pion-nucleon
states can occur. Clearly the amplitudes  ̂ as used in (6.3) ,  or

(6.5)> should represent a sum over these two states. Introducing ampli
tudes with distinct isospin indices, 'PnJ , with n=0,1,3 (or 0, + ,-),

V 1V2
(of.sec.I.3), and dropping the indices J, v 1 and v2 for the moment, we
find
W *  = X Of +W +*+2l'l!~* + 3S!0V!0* )l + (w ‘V°*4¥Ĉ +*+2J'1'CI* + 2J'C\'“*)t j]x-

where we have introduced isospinors Xj for the nucleon; I and x^
are the familiar 2x2 matrices.

The present experimental situation is such, that for the photo
production reaction with initial protons far more data are available
than for photoproduction from neutrons. As can be seen from (1.15)»
from the proton data alone, only the amplitudes E^+ and M^+ , and the

(6.7)
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/ O 1 1 0 11combinations \^++~^£+) and (Ê  + +—E^+ ) can be extracted. Thus it is
useful to rewrite (6.7) in the following form (valid only for protons)

W *  = 3(ST°-î  1)C * T 1 )* + . (6.8)
Similar relations hold for the various terms in eqs.(6.5).

To introduce T-violation in our calculations, obviously we
should use T-violating photoproduction amplitudes. No direct multipole
analyses have been performed however, that include the possibility of
T-violation, but we will follow the arguments given by Berends and
Weaver [Be71b] to obtain a phenomenological form for these amplitudes,
containing one parameter. We write the multipole amplitudes as
M^± =nV± +m]l± ’ (e'fcc*)* where again m^+ denotes the T-violating part, and
n is the isospin index. Using the unitarity relation, it can be shown
[Be71b] that the phases of the amplitudes m and m' differ by 90°, i.e.

m *= ±| m| e1 (6.9s)

m'= ±i| m' | elb , (6.9*)

where 6 is the corresponding pion-nucleon phaseshift (cf. sec.III.1).
Defining x by

x = ±| m'| /| m| , (6.10)

where the sign is the product of the signs that are chosen in eqs.(6.9^
and (6.9 ), we can write

*4+ = I mi±l (1+x;2)̂ exp[ i(6^±+tan“1x)] . (6.11)
We have assumed here that the absolute value of the amplitude M^+
remains the same, with or without T-violation. Information about the
parameter x has to be obtained from a comparison between photopro
duction and the inverse reaction (nN-*yN). Some results are given in
ref. [ Be71b ] .

VI.4 NUMERICAL CALCULATIONS AND RESULTS

Expressing the centre-of-mass cross-section for Compton
scattering (4.4 ) (with unpolarized particles) in terms of the helicity
amplitudes we obtain the simple expression

—  - *  E 8dO “ * i-1 (6.12)
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As we have shown in the previous sections, we can obtain numerical
solutions for the amplitudes A. by using experimental data from pion

J
photoproduction. In these numerical calculations we used as our main
source of input a set of photoproduction multipole amplitudes (with
J= •j) from an analysis by Berends and Weaver [Be71a] , covering the
centre-of-mass energy range between 1100 and 1315 MeV (i.e. photon lab.
energies between 180 and 450 MeV). For the energies in the dispersion
integral that lie above this region (up to 1770 MeV in the centre-of-
mass, i.e. 1200 MeV photon lab.energy) we used results from a multipole
analysis by Walker [Wa69] , with J = ^ .  (The effects of higher multipoles
are estimated to be small (<5$) in this energy region.) In some cases
(see below) a T-violating part was introduced in the multipole ampli
tudes via eq.(6r1l).

By means of a computer we applied the method given in the pre
vious sections, to calculate from these multipole amplitudes the
Compton scattering amplitudes and cross-sections. The steps in this
calculation can be summarized as follows. From eqs.(6.6) and (6.8) the
photoproduction helicity amplitudes are obtained (with or without a T-
violating part). The imaginary parts of the Compton scattering helicity
amplitudes q>̂ , and the real parts of T ̂  are then found from eqs.(6.5)
and (4«50). Since it is clear that the amplitudes A. (with j=1,...6)
depend only on <p̂ , we can calculate via (4.29) ImA^ f°r these six
amplitudes. Similarly, A„ and Ag depend only on<p^ so that their real
parts can be found. Via the dispersion relations (6.1) we obtain the
corresponding real or imaginary parts. The cross-section is then calcu
lated via eqs.(4.28) and (6.12). In figs. 15 through 18 the results of
these calculations are given, and compared with experimental data and
other theoretical work. In fig. 15 our "normal" calculation (no T-
violation; sign of t-channel pole as given in eq.(5.22)) is compared to
the "unitary limit", i.e. a calculation with all Re $ ̂  set to zero.
From eq,(6.12) it is clear that this must give a lower limit for the
cross-section, but we see in fig.15 that some of the experimental
points at energies near the pion-nucleon resonance (especially at
angles 9»90°) lie very close to, or even below this limit. A similar
picture emerges from a recent calculation by Pfeil et al. [Pf73] » who
used a Bonn multipole analysis ([ N071] ,[ Pf72]) as input. The theoreti
cal assumptions involved here, are essentially only
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C-, P-, and T*invariance, analyticity and unitarity of the S-matrix. If
one assumes these to he correct, this means that the experimental data
for Compton scattering are incompatible with the photoproduction multi
pole analysis. The data for Compton scattering are not very abundant
however, while for photoproduction there are some uncertainties, since
several new experiments have been performed since these multipole
analyses were made.

Although the conflict between the data may be resolved by new
experiments, it is worthwhile to investigate the possibility of
obtaining agreement by relaxing the theoretical assumptions. The intro-

. *)
duction of T-violation ' can in principle affect the unitary limit and
the values of the cross-section. It can be verified that eq.(6.12) may
be written as

da 8 /i
dfi “ i-1 l<P!| 2 ) (6.13)

i.e. without cross-terms between T-conserving and T-violating parts of
the helicity amplitudes, but from eqs.(6.5) and (6.6) we find that the
amplitudes q> will depend not only on the absolute value of the multi
pole amplitudes, but also on their real and imaginary parts. These
parts may change if T-violation is introduced in the way, described in
sec.VI.3, so that in principle it is possible that the absolute value
of <p ̂  becomes smaller.

In fig.16 we give the results of a calculation in which a T-
violating effect is introduced in the photoproduction amplitudes, by
assuming for the dominant multipole amplitude (M^+) a T-violating
phase tan ^x=-20°,(cf. eq.(6.1l)); the other multipoles are taken with
out a T-violating part. This form for the T-violating amplitudes in
pion photoproduction was taken from an analysis by Berends and Weaver
[Be71b], who could account in this way for a small discrepancy between
experimental data on photoproduction and its inverse reaction. For
comparison, we give in fig. 16 also the results of the calculation
without T-violation, and some experimental points. We see that for
energies below the resonance (W< 1236 MeV) the cross-section is in fact
reduced somewhat by the introduction of T-violation in this way, but

P-mvariance seems to hold quite well in e.m. and strong interac
tions; there is however a possibility that T- and C-invariance may be
violated by e.m. interactions.
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near the resonance the effect is very small, so that the discrepancy
remains.

Fig. 17 gives our normal calculation compared to one with an
opposite sign for the residue of the t-channel pole. For energies below
the resonance the normal calculation results in a somewhat larger value
for the cross-section than the one with the opposite sign, while near
and above the resonance there is a small difference in the other
direction. Although for a scattering angle 6=135° the situation is not
very clear, we see that at 6=90° the experiments favour the "normal"
sign of the residue, as given in (5.2 2). This result is in accordance
with earlier analyses ([ La62] , [He62], [K068]).

In fig. 18 finally, we compare our results to those of the Bonn
group (w.Pfeil et al. [Pf73] ) and Köberle [ K068] . Both of these calcu
lations use the set of amplitudes Bi (in our notation), introduced by
Hearn and Leader [ He62],, and based on work by Prange [Pr58] . In ref.
[Pf75] the constraint equations between these amplitudes (eqs.(4.19),
(4.20)) are taken fully into account, while this is not the case in
ref. [K068]. We do not need these constraints, since we use the ampli
tudes A^, where the conditions leading to the constraints are auto
matically satisfied. The t-channel continuum contribution, which
involves the pion-pion interaction, has only been included by Köberle.
Since for these contributions only model calculations can be used, and
Köberle finds a small effect, we have omitted them, although they can
be fitted into our formalism without much trouble. (They contribute an
extra term to the fixed-t dispersion relations (6.1).) The input from
photoproduction is different for the three calculations. Köberle used
theoretical predictions for pion photoproduction, the Bonn group used
a multipole analysis ([N071], [ Pf72]), and we used a different multi
pole analysis [Be71a]. (For the high-energy data Pfeil et al. used
[M073] > and we took [ Wa69] , but this different choice hardly
influences the results.) A special feature of the calculations by Pfeil
et al. [Pf73] is, that they also performed a simultaneous partial wave
fit to the experimental data for both Compton scattering and photopro
duction. The photoproduction amplitudes agree more or less with normal
analyses, and they obtain phenomenological amplitudes for Compton scat
tering. The results for the cross-section, calculated with these ampli
tudes is also shown in fig.185 they are clearly smaller that the dis
persion calculations.
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fl

Figs.15,.., 18: Cross-sections for Compton scattering on protons.
In these figures a solid line represents a fit to our calculations.
The experimental data are denoted by triangles (with error bars);
they are quoted from ref.[pf73]. The meaning of the other lines is
explained below. The energy (EG) is the laboratory energy of the
initial photon.

Pig.15 (page 100,101). The "unitary limit" is given by the crosses
and the dashed line, respectively. The solid line is the normal
calculation (no T-violation).
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ETfl

Fig,l6 (page 102). The "unitary limit" with a T-violating phase of
-20° is given by the lower line. The other two lines give the normal
cross-section (solid, line), and the cross-section calculated with T-
violation (-20 ).
Pig.17 (page 105,104). Cross-sections with normal (+) and opposite
(-) sign for the t-channel pole.
Fig.18a (page 104). Comparison of our calculations (solid line) with
refs.[Ko68] and [Pf75] (indicated by K and P).
Pig.18^ (page 105). Comparison of our calculations (solid line) with
[Pf75]. Also shown is the result of a simultaneous fit for Compton
scattering and photoproduction, from the same authors [Pf73].
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A P P E N D I C E S

ppendix A

Conventions

D n i t s. We use units in which “h=c=1. The mass will be expressed in
MeV, and occasionally also in terms of p' (i.e. the pion mass).

P o u r - v e c t o r s .  Notation: Q=(q,q^)=(q,iqQ ). The scalar product
is given by P.Q=p.q-p.qQ. The summation convention is used for Greek
indices, i.e. instead of 2 5 P C  we write P 0 .p-1 pTi p'p
S c a l a r  f i e l d .

q> (x) *= (2n) 2 1  dk(2k0)"^(a_+elK*x + b£e"iK-x) (A.1)
k

Commutation relations: [ a ^ a ^ ]  = [b ,b^ ] = 6 (k-k') (A.2)
’ k k' k k'

All other commutators vanish.

V e c t o r  f i e l d  (mass M^O).

(x) = (2n) \ I  dk(2k0 )”^  ej(k)( \  iK.x J t  -iK.X\a e—*
k

+b e
k

The vectors e (k) (with A = 1 ,2,3) are polarization vectors,

eJ(k)=(ê1,0) ; e^(k)=(ê2,0) 5 e^(k)=^(k0ê5,ik) ,

which satisfy the relations

(k) “ 6AA'
and

.2 ? eX (k)eX (k) = bA = 1 p ' ' v v ' - K K /K^pv p v'

) (A.3)

(A.4)

(A.5)

(A.6)
)The three-vectors ê. (i=1,2,3) form an orthonormal basis, with ê,=R.

Instead of these , we will also use polarization vectors e' ,

V In defining helicity amplitudes, it is more convenient to use a
coordinate frame with ê,=-R, etc. In eqs.(A.4) and (A.10) the ê. are
then replaced by -ê^, and ej = (0,0,0,-l).
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( A . 7 )

c o r r e s p o n d i n g  t o  s t a t e s  w i th  h e l i c i t y - e i g e n v a l u e  s ,

(±0 _  2 -1+ —-  (e ' ± i e '
“ J i  /  2 11

The com inu ta t ion  r e l a t i o n s  a r e
r X X 't-i r , X , X' t  -i
La _>a _  J = L b ^ , b ^  J =

k k '  k k '

A l l  o th ex - co m m u ta to rs  v a n i s h .

an d  e ( 0 )

6XX* 6 ( k “ k ' )  • ( A .8)

E l e c t r o m a g n e t i c  f i e l d .

- 3 /
( x )  = (2 k ) " 2 d k ( 2 ko ) ^ ( k ) ( A. iK .  x  -A - i K . x[ a _ e

k
+a e—»

k
) (A .9 )

The v e c t o r s  e ^ ( k )  ( w i th  X = 1 , . . 4 )  a r e  p o l a r i z a t i o n  v e c t o r s ,

< y ( k )  = ( « ^ 0 ) ,  c 2(k)  -  ( ê 2 , 0 ) ;  e 5 ( k )  = ( ê y 0 ) ,  e* (k )  = ( 0 , 0 , 0 , 1 )

( w i t h  d e f i n e d  a s  b e f o r e ) ,  w h ich  s a t i s f y  t h e  r e l a t i o n s

(k )e  ( k )  = 6XX,

and
(i pi

eX ( k ) e X (k )  = 6X = 1 | i '  ' v '  ' |iv

( A . 10)

( A . 11)

( A . 12)

( A l t e r n a t i v e l y  one may U3e a  sum o v e r  t r a n s v e r s e  p o l a r i z a t i o n s  o n l y ,

A*j = t ±j -  k . k . / k 2 . )  (A. 15)

I n s t e a d  o f  e j  and  Ê 2 we can  a g a i n  u s e  w i th  h e l i c i t y  s ,

( ± d  .  x  _ i  ; £ i * .+ —  (e ± ie  *) ( A . 14)

The c o m m u ta t io n  r e l a t i o n s  a r e

bXX
r a -X11L a _ , a _  JJ = & ( k - k ' )  » ( A . 15)

k k '
-X Xt „ , . „ ,  - 4  At

w i th  a ^ a ^  f o r  X = 1 ,2 , 3 ,  and  a ^ - a j ^  . A l l  o t h e r  co m m u ta to rs  v a n i s h ,
k k k k

D i r a c  f i e l d .
_-2j j

<K*) = (2 n )  2 X 2 / d k ( m / k  ) ^ ( a _  e iK ,x u . ( k )  + b* e " iK - xv . ( k ) )  . (A. 16)
J= k j  J k j  J

We h av e  a n t i - c o m m u t a t i o n  r e l a t i o n s

{ a_  »ai  } = { b _ * b i  j = 6  6 ( k - k ' ) . ( A . 17)
k j  k 1 j  • k j  k * j  *

The D i r a c  e q u a t i o n

(Y(idu + m)(|i(x) = 0 (A. 18)
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implies
(iy .K + m)u(k) = 0

(iy.K - m)v(k) = 0

ü(k)(iy.K + m) = 0

v(k)(iy.K - m) = 0 ,

where ü=uty . and v-vO.,4 4
The Dirac matrices are defined by

(A.19)

y+ = y

“ 2\ v

Y5 = y 1y 2y 3y4 *
We use the representation

0 -in
3

/  °  - i n  \ / 1 0 / 0 -1 \
( ) 5 Y4 “ ( ) J Y5 " ( )' i p  . '  *  '0 -1 7 3 -1 0 'J

where all matrices are 2x2 matrices, and j=1,2,3- The Pauli matrices o
are given by

-0 1\ / 0 -i x / 1 0 .
1 1 0

5 o , i
0 -1

5

(A.20)

J (A.21)

J

(A.22)

they satisfy the relation a .a = 6.,+ie .a.. We define the 4x4 matricesJ *£ Jr Jrx. I
o asHV

The spinors u.(k) and v.(k), with j=1,2, areJ J \
3

u.(k)
m+ k „ \ ^  Y

o . k
\ m+k0 J

(A.23)

(A.24a)

v^k) = -(-O'3 1fm+koyV 2m /

jand X 2 “ ̂(?)• •
u . u . - vTv. m 6ij ko/’1 3 i 3

Ü.U .1 J
= v.v. = 6i 0 ’

1 ° »k
2 / m+k„

normalization is

(A.24b)

(A.25)

and the sum over polarizations
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( A .26)

j j \ , 2 &  “ 2 ï ( m- iY*K)p«

j = ? ,2  "  2i ( - m- iY ‘ KW

D i  s c r e t e t r a n s f o r m a t  i  o n  s : P,  C , a nd  T.

The a c t i o n L o f t h e t r a n s f o r m a t i o n s  ]?, C and  T on t h e D i r a c  f i e l d i s

g iv e n by

P a P- 1 -  a  _  5 P b _ P" 1 =
k j - k j k j - k j

C c -1 = b
k j k j '

T a - >
-T-1 -  ( - 1 ) J * a +_  J T b + T“ 1 -—» ( - 1) ( a . 2 7 )

k j - k j ' k j - k j ’
w i th  j ^ j ' .  I n  c o n n e c t i o n  w i th  t h e s e  t r a n s f o r m a t i o n s  i t  i s  c o n v e n i e n t  t o

u s e  t h e  f o l l o w i n g  p r o p e r t i e s  o f  some s p e c i a l  p r o d u c t s  o f  D i r a c  m a t r i c e s

( d e n o te d  h e r e  w i th  t h e  same symbol a s  t h e  c o r r e s p o n d i n g  t r a n s f o r m a t i o n ) ,

P = Y 4 : Y4 u , ( k )  = U j ( - k )

Y 4  Vj ( t )  = - Vj ( - ^
( A . 2 0 )

c  - y 2y 4 « U j ( k )  -  C v j , ( k )

▼ j(k)  -  C u . . , ( k ) ( A . 2 9 )

< V " 1 “  “Y,x * Cy 5 C" 1 “  y 5 ( A . 3 0 )

T “  "y 1y 3y 4 8
T ï ï j ( k )  -  ( - 1 ) J u . . , ( - k )

T v ^ k )  = ( - l ) J , Tj f ( * k )  , ( A . 3 1 )

a g a i n  w i t h  j j i  j  ' .

F o r  t h e  s c a l a r  f i e l d  e q s . ( A . 2 7 )  h o l d  w i t h o u t  t h e  m inus  s i g n  i n

f r o n t  o f  t h e  o p e r a t o r s  a _  and  b , and w i t h o u t  t h e  i n d i c e s  j  o r  j 1.
k k

F o r  t h e  v e c t o r  f i e l d  we h ave

P P-1 = -a X_  j P b ^  P' 1 = -bX
k - k  k k

~ A _-1 -AC a ^  C = -b_,
k k

T aX T" 1 = -a X^  j T b ^  T-1 = -bX* , ( A . 32)
k Jk  k -k

and  f o r  t h e  e l e c t r o m a g n e t i c  f i e l d  e q s . ( A . 3 2 )  h o l d  i f  b i s  r e p l a c e d  by a,
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and if we use a\ instead of a ^ ,

I s o s p i n. The proton and neutron fields (<p and <|>n) are combined

to a nucleon field ¥

and

J, so that we have to use the isospinors

for proton and neutron, respectively.
± 0 ,The pion fields (n ) can be combined to give a vector (p in

isospin space,
— L ('<»+

sf 2
(<pT +  <p)

<P 9 -  (<P+  -  <P )
V 2

("°) ,
with qp = (n + )+ = —  (qp.

V 2

qp = (n")+ = — !■ (<p.
V 2

+ i<P2)

i< P 2 ) •

This leads for n states to an isovector

1 ' 1T . 7  i (A.33*)

and for n states to

0) .
1 7 (A.33b)
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Appendix B

Multipole amplitudes
In the nN^-centre-of-mass system we write the matrix element

for the process XN -»«W2 (of. fig.2) between states with definite
momenta and spins as

I.fi - < qö ' | T| kk> = < §s' | T ' | Ks\> , (B. 1 )
labelling the states by their momenta and spins, and omitting the
particle labels. In the second step we have absorbed the energy
dependence in the operator T'. The variable X indicates the state of
the incoming X-particle, which we take as an eigenstate of angular
momentum and parity, (X=E, M, L or S5 of. table B.l).
Following ref. [Pe57] we make a decomposition in terms of angular
momentum eigenstates of both initial and final states, and write
(using variables, defined in sec.I.2),

2 <5s'|im/s')<imis'| T'| LMLsX>< LMLsX | KsX> =
I1*}

Yim  ( i i X / ^ s ' l  J^Mj>< J iM j|  T '|  JLMjX>< JLMjX| LMl s\> B x I * m (R )
(l j

We have used here the relations
1
(B.2)

< qs11 / m̂  s ')v = ailm,) = Ylm (4)

<LMts\| Ks\> - < lmt\|r\> - b^ ï*^ (r ) ,
L (B.3)

with Ï. the usual spherical harmonic functions. The brackets j Lj
denote the set of indices jJ,Mj,L,M,,i,m.J , and R, are the operators
(see e.g. [G064] ),

- i e.(fc<*k)
\ /  L (L+1)

e  . 7

c .R

\ /  L (L + 1 )
(B.4)

which give, when acting on (R), the correct behaviour for
particle with respectively an electric, magnetic, longitudinal or
scalar po:
photons).
scalar polarization character, (R„ and R„ are the same as for real

JEÏ M

111



In the summation over ( L } in (B.2), non-zero terms appear only
for J=L±ji, and /=J+ij. Furthermore, ( J/Mj| T'| JLMjA.) will vanish for all
combinations of I , J and L, other than those in table B.I, due to the
parity character of the incoming X-particle. Thus we can write

Tfi = v/m («X/m^'l^jLMLs)^^ (R)
JL I L i L (B>5)

where PJ-j, are projection operators that select the appropriate value
</' ) of I for a given value of J and L, depending on the type of pola
rization A. These operators (4) are given by [G064]

P/+4,/,/ ~ 2/ +1 (/+1‘KT,̂ q) p/-£,/,/ “ 277? (B*6a)

P/+-|,f +1 ,/~2 / + 3 P£-^,£-1 ,£~2£-1 (B. 6 )
As can be seen from table B.I, for the vector amplitudes we have to use
(B.6a) for \=E,L,S, and (B.6 ) for A=M. For the axial vector amplitudes
the opposite choice should be made. Using now (cf. [Er53])

<imi8'llAJLs.lLMLsX> (f)]X l ,
Z L

*M. L LIf

anl 4, V * ’ •»<**>,.. (»-h
we find

Tfi = 2 ^<Ji’|T«|jIA>x+2[(2Ul)PJU,(4)R̂ (E)PL($.R)]x1,
JL (B. 8)

where PT(q. K) are Legendre polynomials.
For the vector amplitudes, current conservation can be imposed in the
same way as in sec.I.4.B, by substituting b̂  for in R^ (see e.g.
(1.28)). This will eliminate the terms with \=L in eq.(B.S). since RTJj
becomes RT=b.E=0.II
We finally introduce multipole amplitudes by defining

</+i,i | T'|/+£,/+1,E> = 4"i E/ + \l (/ +1) (l +2) (/SO)

</-£,/| T'|/-£,/-1,E> = -4ni E V/ (/-1) (/S2)

</+£,/| T'|/+i,/ ,l»̂> = 4ni Mi+ V /  (/ +  1) (/S1)

</-i,/| T'|/-■!,/ = 4"i M, V/ (/+1) (/£1)
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< l + è , i | * ' | i + è , i + l fS> = 4 « i  S/ + ( i + 1) ( ië O )

,S) = 4 n i i S  ( / ë l )
4 (B.9)

( l +k , l \ T'|i+£>* ,E) = -4ni  Eay \ l t  (i + 1) ( ië  1)

,E>' = 4 " i  Ea^ V i (* + 1) (ië 1)

< 4 + i , i | T ' | / + i , 4 + 1 flO = 4n i  Mâ  V (ƒ+ l ) ( / + 2 )  ( /ëO)

| = 4 n i  Ma \ J I  ( i - l )  (4 ë 2 )

< i + i , / |  T ' | 4 + i , 4  ,L> = 4 n i ( i + l ) L a / +  ( ië O )

,L> = 4 " i / L a  ( i ë  1)

< i + i , / |  T ' , S >  = 4 n i ( i + l )  S a  ( ië O )

,S> = 4 " i  l  S a .  , ( i ê  1)
( B .1 0 )

where t h e  i n d e x  l ±  i n d i c a t e s  t h a t  J»/±-£.

W ith  t h e  n o t a t i o n s

Mi i  = (E/  + ,Ei - ’Mi  + ,M/ - ,S/ + ,S/ ^  ( i = 1 , . .  . 6 )
and

Mai ±  -  (Eai + ,Eai _,Mai  + ,Mai _ , L a i  + ,Lai _ , S a i  + ,Sa / _)  ( i « = 1 , . . . 8 )

and t h e  d e f i n i t i o n s

zi 1  - o . 4 ( i + i ^ . 7  ) i i (a<ik)Pi + 1 ( i . 4 )

Z/ 2  = -°-4(^+a."?q):b.(Kx7k)Pi _1(R.4)

• i t J -  - i ( / + i w . 7 q) b .r k pi (* .4)

Z/ 4  = - i < l ^ % ) b . 7 k Pj (K .4 )

z/5  = - i ( / + i ) 7 . 4 ( i +i-?.7^)b0 p<+1( k.4)

z/6  = - i i  o, 4 ( i « . 7  )bQ p̂ ^ r.4)
(B. 1

and
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Zan  = -(<+1-w.‘7q)e.(Bx'7k)Pi(ï.4)
Zai2 = (i-?.iq)t.(Rxik)p/ (K.(i)

Za/3 = -io4(i + M . 7 4)t./k Pi+1(R.4)

Za^ = -i a.4(/^.7^)t.7k ^ _ ?(R.4)

Za/5 = i(/+l)(/+1+o.7 je. R (R. 4)

Za/6 = i /(/^.7q)t.R p/(R.4)

Za/? = -i(i + l)(i + n7.7q)e0 P/(R.(l)

Za/8 = -ii(i^.74)e0 Pi (t.4) (B.12)

we can then write
+ 00 r 6 8

Tfi = X2 i=0 i=1 M/i Zii + i-1 Mai i Zai J X 1 (B*13)
for neutrinoproduction; for electroproduction we have of course only
the terms with M^.

Table B.I

Multipole
transition j /

Vector Axial vector
multipole parity multipole parity

2^+1
electric ,

2 1

£ +-J-
0 1x 2

L-1

L+1
E/ +
E/-

(-1)L Ea(/+1)-

Ea(/-1) +
2l

magnetic .
2T

* +è L

L
M/ +
Mi-

-(-DL Ma(/+1)-

Ma(/-1)+
(-1)L

J  +1
longitudinal . .2x-i

/ +^
f 4

L-1

L+1
Li +
L/-

(-1)L La(/+1).

La(/-1)+
-(-1)L

2i +1
scalar .

r  ’1

i+£ L-1

L+1
S/ +
S/-

(-1)L ' 3a(i+1)-

Sa(/-1)+
-(-1)L

L:angular momentum of the lepton pair(i.e.: of the virtual "K-
particle"). Js total angular momentum. It orbital momentum of the
final pion.
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Appendix C
Transformation matrices between sets óf amplitudes (Pion production)

Explicit expressions are given for the matrices, introduced in sec.
I.4.D

M  +« I

Ml +

M

115

(ro)



fc” 1 ( s , t ) ]

2 2  2p =w -m+iK

b = |K .Q + k QW

4W2kQ

K2

2kQW2 ( t - H 2 )

4W2kQ

1

4W2k0

3
2W2k0 ( t - t x 2 )

,„2 2W -m

4W2kQ

(W-m)[ (W+m)2

„E +m
- K i r —  ]E -m

kQ(W-m)

E.+m1

(W2-m2+K2 )

K2- -2 m (W + m )(K .Q -^ k .q )
k

K22 m (W -m )(K .Q -^ k .q )
k

CM«
 

CM
OM

h k0 K2

k 2

, W-m
. 0 E 1-m

. W+m
0 E +m (W2-m2 )

K k
(W2-m2 ) ( - ^ | + ^ f )

K K

, sk0
-(W+m)—

k

ko
(w - m ) - f

k

k (W-m)2
0 E -m1

. (W+m)2
0 E +m

(W+m) .
K2- -(K .Q -— k .q + 2 k  W)
k* u

(W-m) .
k 2_  _

( K . Q - ^ k . q + 2 k  W)
k u

k0K'

k 2
k o * 2

k 2

k (W-m)2
E^-m

, (W+m)
0 E.+m (W + m ) (K .Q - ^ k .q )

k

k2 _  _
( W - m ) ( K .Q - ^ k .q )

k

k0 K2

k 2

k0 K2

k 2

k  W-m
" K0 E^-m

, W+m
0 E^+m (W2-m2 ) ( p ^ ) (W2Mn2 ) ( j p ^ )

p k

xk0-(W+m)—r
k

ko(W -m )- |
K

ko
E -m

ko
E +m k

_ i k a + ( w_m)]Li£
W+m v '  , 2k

ko
‘  k 2

ko
■ k 2

(C .2 )



[ 0 ( b ) ]

(E +m)(E +m)(W-m)
qk(W+m)

(E +m)(W-m)

(W-m)[(E +m)(E +m)]

(E +m)(W-m)

[C(s)-1] is the inverse of [c(s)1, and can be obtained directly from (C.3) • (0.4)



1
2 (1 + 1 )

_1
21

1
2 ( i  +1 )

_1
21

1
2 ( i  +1)

- P/ + 1 (X) 21 +1 ^P/  -1  ( X) “ PZ +1 ^ X^ 2i+3̂ P/ X̂̂"P/+2̂ X̂ 0 0

M x ) - P/ - 1 ( x > 21 + 1 ^ Pi + 1 ^ X^ " Pi - / X^ 21 -1  ( P1 ( X) ~ P1 _2̂ X̂ 0 0 !

P / ( X) - P/ + 1 ( x ) 21 +1 ( P/  +1 ( x ) ” Pi  -1 0 0 0

■p< ( x ) 1 ►
r

21 +1 ( P* -1  ( X) -P /  +1 ^x ^ 0 0 0

0 0 Os 0 pi + 1 ( x ) pi<x)

0 0 0 0 p/ - 1 ( x ) pl < x )
1

21



C (ac)] -

pj + i t * ) pi_ - , (x ) iP i +/ x ) (£ + l ) P j _ 1(x) 0 0

0 0 ( i + l ) P j ( x ) *P j( x ) 0 0

pi ! i W f j W - pj  i i<*> pi  l i W 0 0

-P j  ' (x) -Pj ' (x) P j ' ( x ) -Pj ' (x) 0 0

0; , . 0 0 0 - ( i  + l ) P j ( x ) I P j ( x )

0 0 0 0
^ r i i u - w - £Pi J * ï

(C.6)

[ B a ( s , t ) ]  =

W+m ! o 0 -m 0 0  t 0 q

-(W-m) 0 0 -m 0 0 0 o

1 1 -1 0 W+m -(w+m) 0 q

-1 -1 1 0 W-m -(W-m) 0 q

0 1 0 0 W+m ■; o : -1 -(W+m)

W-m
E,+m -1 0 m

”E j+m W-m 0 1 -(W-m)

- (E 2-m) - ( e 1+e 2) " * q -m (W-m)(E1+E2) (^(W-m) “ ko j k Q(W-m)

E2+m V V *0 -m (W+m)(E1+E2) qQ(W+m) kq kQ(w+m)

(C.7)
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( 8 *0 )

j ï l ( M + ^ a ) - (M + La ) - ° b ° b ra+La
m-M

L -

(n i+ M )- (tn+M) (M + L3 ) ( n - M ) ( M + l' a ) - (m + M )° ï> - ( m - M ) ° b
. 1,in + ^ a

ra-  M
2  Z

( m - M ) -

l L ° a ° a

1tot
ro+

(M+2 a ) -
m + l’a _
ra+M l -

r l ° a ° a ° b ° b
m + l' a _
m+M e  I "

0 0 0 0 0 0 v ; M2
/ -  . N111( r a -M )— -
v 'MZ

ra-M ( m + M ) - ( ra+ M )0 ^ - (m + M )(M + 2 a ) ( r a - t t ) ( M + 2 3 ) -
m + La

2 *
m+M

m-M (<n+M)- ( n + M ) ° 5 l - ( m + M ) ° b - ( m - M ) ° b
L

ra+ 3
(n + M )

( t n - M ) -

0 0 0 0 : 0 ■ o M2" M2 ■

* [ ( * ‘ e ) L_Ba] o



[ Ca(s)] 2m

1
q02

%
K

q2k

0

0

0
qk
±
2

° 1 k

1

(0.9)

01 *  \/~(Ë~my(Ë~mJ
|(E1+m)

° 2 =

[Ca (s)] is the inverse of [Ca(s)] (C.10)
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[ (x ) ]

2 ( / + l )

1_
21

2 ( /  + l )

1
21

2 ( i+ 1  )

1
2i

2 ( / + 1 )

1
21

p/ + 1 ( x ) “M x >
/ 2vPi + i ^ x ^

- < 1- x > i + i
o p ; ( x )

- ( 1 - x 2 )

p/ - 1 ( x ) ■p< w
o  PJ A * )

O - * 2 ) '- , 1
2 Pf ( x )

( 1 - 2 ) f c t

- p/ + 1<x ) M x >
2 * 1 * 1 C *)

" ( 1 ' X ) ( / + l ' ) ' ( / + 2 ) 0

p/ - 1  ( x ) - pi  <x )
o  p ;  . ( x )

- ( 1- x  ) 7 f f V
0

p/ + 1 ( x ) 0 X

+

X

__
__

__
__

_I

xP/  ( x ) P/ + 1 ( x ) V X>

1 X o XPi _ l ( X) xP/  ( x ) P/ - 1 < X) V X)

V x > p m W

P ,(x ) p/ - 1 (x)

( C . 1 1 )



[Ga/ (x)]  =

P/ t ( x ) P - ( x ) ~ ( i + 2 ) P « ( x ) ( i - l ) P j ( x )

0 0 ( * + i ) p ; + 1 ( * )

P ; ( x ) p ; ( x ) P J’ ( a t ) - P » ( x )

1
*

fs + X
 

,

i
*

3
i X

0

- p j ( x ) - x p ; ( x ) - p ] ( x ) - x p ; ( x ) pi’_1<x) - ( i + l ) P j ( x ) i P j ( x )

X P / + 1  ( x ) x P J - . / x ) x p ; + 1 ( x ) - x p ; - _ i ( x ) ( / + i ) p ; + 1 ( x )

(*+ i ) p ; +1(*)

- ( / + i ) p ; ( x )

-/p._i(x)

(C.12)
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Appendix D

Watson's theorem

To derive the theorem, we make use of helicity amplitudes for
the process X N ^ n N ^  (cf. fig.2), which are defined by

fp2,Xp (e *eP).= <t*2l TIX|11> * (D.1)
where n ̂ ,h 2 are the helicities of the initial and final nucleons, and
X the helicity of the X-particle, in a centre-of-mass coordinate frame
with the x^x^-plane as the production plane and the x^-axis along
p =-k. The angular momentum decomposition [Ja59l is given by

fh2,Xn = iS(2J+l)exp[-i(X-n +(x )(p]<|i | TJ|X(i >d^ , (9).
2 1 J 1 2  2 1 H.j-A.Wg (D>2)

The partial wave helicity amplitudes <|i 2| T*̂| X|i can be expressed in
terms of the multipole amplitudes with the same values of J, and vice
versa. This connection can be found by expressing first (|i2|t |X|i ) in
terms of the centre-of-mass amplitudes F^, defined in sec.I.4.B, and
then using the relations between F^ and the multipole amplitudes from
sec.I.4«C. We further need helicity amplitudes for pion-nucleon
scattering, given by

gi „ (e2tp2»e i<Pl) = 2ÏÏ E S (J+^)^2lTJ|ti1'>D^' ̂ 2 ,92,"Cp2)DMn ^ 1 ,er " CP1̂°|»2P1 2 2 1 1 j M 1 (j,.})

where the angles 0 .,<jk specify-the direction of the initial and final
nucleon. If we make the approximation of retaining only nN-states for
the states |n) in the unitarity equation (5-1)» then we obtain

if we take for | i) and |f) states with helicities (X,n ) and (pi?).
J 1 2

Using the orthonormality relations for the D„ -functions,

/ dfi' DJ*D“* (cp ,9 ,-q> )Dmn' ’ ' m' ,, (<P .0 »-<P ) -4” 5 62J+1 JJ' mm '6nn' (D.5)

we find from eqs.(D.2)..(D.4)
Im <h 2|t j |x h 1> <|*'|t J|h 2)+<|1,|t JU h 1>. (D.6)

When this is expressed again in terms of the multipole amplitudes, we
have
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Im .[<41 TJ | # ± < 4 j  TJ | - $ ] *

where we have u sed  th e  r e l a t i o n

<i|TJ|±# = -< -41 tj | +4 >.

(+ o r f o r  i  odd
(D.7)

o r  even)

(D.8)

S in c e  f o r  t h e n i l - s c a t t e r i n g  p a r t i a l  wave a m p l i tu d e s  we have

f/± ~ [<4| tj |^±<4|tj | -4 >]
and

1fi ± = - e  s i n 6 /±  (B .9 )

( o f .  s e c . I I I . 1 ) ,  we o b t a i n  f i n a l l y

Mi i '  = I i • I exr t ± ' (6/±  + i n n ) 3 » (D. 10)

(w ith  n an i n t e g e r ,  and a g a in  w i th  + o r  -  f o r  i 1 odd o r  e v e n ) .
For co m p le ten ess  we g iv e  h e re  a l s o  t h e  r e l a t i o n s  betw een

h e l i c i t y  a m p l i tu d e s  and m u l t i p o l e  a m p l i tu d e s .  D e f in in g

TJ(1 ) -  <4I TJ| -1 4  >

TJ(2) -  <41 TJ| 1 - 4  >

TJ(5) -  <4I TJ| -1 - 4

TJ(4) = <■41 TJ 1 * >

TJ(5) = <41 TJ| 0 4 )

TJ (6 ) - < 4 t TJ| 0 - 4 )

we can  w r i t e

E/ +  = 4 ( i + i )  £ | i +2( - W 1)+W 2))^ (3)“W 4)]

E( i + i ) - = “ 4U +1)  -̂Vt ” +4^1 +̂Ti  +4^2^ +Ti-+4^5 +̂Tl  +4^4 ^

M/  + = " 4 (4 + 1 )  ^  i ^T/  + 4 ( 1 ) -T/  +4^2 ) ) +T4 + 4 ( 3 ) -T/  + 4 ( 4

M( i + l ) - “ ■ 4(4+1)  t f / + 2  ^T/ + ^ 1^+T£ + i^ 2 ^ ~ ^ / + i ^ ^ +T£ + i ^ ^

S4 + -  2 ( h i T ^ [Ti+4 (5) ♦ T/ + i (6)]

S ( / + 1 ) - '  -  Ti + i (6)] (D .12)
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and the inverse

V 2 W 11 ■■ \[I (4+2) [B<+ - Mi+ - E (/+1)- 1+ ]

V  2 W 2) ■= \ft (/ +2) [M/+ - Ei+ " E (/+1)- ]

\f 2 W 5) •■[(I+2)(M (4+1) “ E/+) “ / (“i + + E(^+1)-) ]

\f 2 W 4) ;= \.l (Mi+ - E (/+i).) + (i +2)(M(i+ 1)- + E4* »

W 5) = ^ (/ + 1)tsi+ + s (i +D - ]

W 6) " £ (/+1)[S/+ - s (i+ D - 1 •

For the axial vector amplitudes we have to replace the last
two equations of (D.12) by

La1 + * 2(4 +1) 1Tal+$^) + Tai+i^6  ̂^

U (i+1). “ 2(1+1) tT*i+i® " Tai+i<6> 1

3ai, -I(7TÏ7^[Tai+i<7) tTa«+i<8) ]
Sa(/+1). - K H i T  t0 tTai+ i « )  - Iai+i<9> 1

and the last two equations of (D.13) by the corresponding inverse
relations. The other equations remain the same (except for the added
letters a).

Notice that the partial wave helicity amplitudes T T(i) differj "
slightly from the photoproduction amplitudes ¥ that were used in

1 2
Ch.IV and VI. Apart from a factor 4nW/m, due to the different normali
zation for photoproduction, we have the correspondence

Tj(l) ~ i ï '
~ 2~2

TJ( 2 )~-i¥J1 1
"2 '2

T (3) ~ i ïJi 1d ” 2~2

Tt(4) ~-i ï Ji 1 (D.15)
The amplitudes T t(5) and T t(6) do not occur in photoproduction.<J J
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Appendix E

A different set of invariant amplitudes

In sec.1.4 we introduced two sets of invariant amplitudes,
denoted by { A Ĵ and { B̂ j , respectively. The set { B.} is free of
kinematical singularities [Ba6l], but vector current conservation
imposes the two restrictions (1.21) on these amplitudes, so that they
are not independent. Two of them can be eliminated, which is done in
eqs.(l.22) by introducing the set { A^}, [De6l], This elimination causes
the appearance of kinematical singularities in the amplitudes A_ and

p ‘
A^s these have a pole at t= |i (outside the physical region). In the
scattering matrix elements T^. the amplitudes A^ always occur in the
combination S A . (eq.(1.22a)), where these singularities must be can
celed.' In fact, we have

A2M2 + A5M5 = ir5(P.e)(t-M2)A2 + ir5(-2P.K. A2 - K 2)(Q.e) =

= ir 5(P.e)(t-p2)A2 + 2iY5B5(Q.e), (E.1)
iwhere in the first term the singular factor ---- in A_ is canceled

t-u2 2
explicitly, while the second term can be expressed in terms of the
amplitude B^, which is free of kinematical singularities.

As has been argued by Berends [ Be70] (cf. also [Ad68]), in
numerical work the cancellation in the second term of (E.1) can cause
problems, which are avoided by using instead of the amplitudes A^, a
new set ( A!J , where

A' = k ±/ (i/5)
and

A5 = B5 = "P*K A2 " - q!k [**%+*•* V k2b4 J • (E-2)
For these amplitudes the dispersion relations (2.51) still hold, only
with residues T' and which differ from eqs.(2.30), and are given by

r i = r i ■ (i/5)

i f ’0 = -igF^S

r t5 = -6j5gV  (E*5)
It can be verified, that this new set of dispersion relations is the
same as the old one, except for an additional subtraction constant in
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the relation for A^, since we can write

Re B^(s,t) )isFi - i O - S ) g ( V Fi>
"fc

+ l ^ ds' I - i ^ l Il"[i(8'-u,)A2 (8,»t )-^k 2a (s',t)]
and

(P.K)ReA2(s,t) g(u-s) F . +2 T 2 ... 2v 1, s-m u-m / )

+ — I ds' j — | lm [ -i(s-u)A0(s' ,t)] .n 1 s'-s s1 -u’ L 4V '2' ’ /J
Combining these two equations, we find

(E.4a)

(E.4b)

-iK2ReA5(s,t) = -|K2

- è’K2 1/

5 \ p i-iv-2 (1 -C)
1 5 " 2 2

15
t-ii

s1 — s s’-u | ImA (s' ,t)+4— (1-£)■/" ds'ImA0(s' ,t)
5 2,1 2 (B.5)

i.e, a dispersion relation for A^ with an extra subtraction constant

- J 0 ds' ImA (s',t) .
n K (m+p)

(E.6)

If we use the amplitudes A^, corresponding changes must be made
in the matrices [b ] and [b- ] (see Appendix C), These changes can be
summarized as

B'i5
_2 B,2 Bi5

and

2P.K
i2 15

Bij = Bij W 2 or 5)

■ g2t*-^2> b .ci5 40 i5
■ 1

ij 3i] (d/5) ,

(B.7)

(E.8)
p o pwith p=W -m +£K . We have performed a series of calculations with these

new amplitudes A^, and found the difference with the original cal
culation to be less than a few percent, i.e. within the errors (which
are 10̂ 6) the results are the same.
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Appendix F

Multipole Born terms and integral kernels

B o r n  t e r m s .
The multipole Born terms (of. eqs.(2.32),(2.33)) have the

following form for the amplitudes with isospin index 0,+ (£=+1) or -
(£=-1)} (we omit the index S or V on the formfactors F^ for
convenience).

„B jrzC(V
I + 4m(ï+ï „2 2W -m

- 2(1-5 )F_ [

[F1-(ff-m)F2 + £ (W+nOFg] - £[ F1+2mF2] T/ +

q(/+l)Ri+1«5
n L (E^+m)(W-m) ~ k(E2+m)(W-m) ] -

(F.1)

?B èaC(W-m)
i _‘ -5[ F1 +2*., Fg] Tj _+2(1 -5 )Fn[■

mB _ SgC(.W-:
i+ “

(E.+m)(W-m)~ k(E2+m)(W-m)J

r (*+l)R? q/R® . \
- 2e[V (»-„)P2i R Ï- _ ^ _ T

n

2̂ EP1 + (Ei+m) (w-m) 0.3)
irB -ggC(W-m) 2qk5
I _ 4mi

-2(1-O f,

(“3---fLipL-F1-(W+m)F +£(W-m)F 1 + £[f +2mF J  T.
\C (W-m) 1 1 <r i-.(T(W-m)

-A^E-i;m)(W-m) " 25[F1 + (w+m)F2] (F.4)
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,B ègC(W
i  + ~ 4m(i + 1

2k6 .

(E 1+m)(w2-m2 )
[ F 1 + (E 1+m)F2 + 5(W+m)F2 +

( l ^ ) - | ( W + m ) ( F  -F  )] + ( 1 - 0
K

2q0 -k 0 _ r V * 0 >  Sl + 1 (5p) -i
tt L — 7 TT I m  ^ U  /  l?  _i_m ^ -*W-m n L q ( E 1+m) "  k(Ë~+m)

* ^  t  I *

2q6 /  1-,B _ jgC(W-m)
V (E 9+m)(W-m)

k

[ F 1 -  (E 1-m )F 2 -  C(W-m)F2 +

—n u r (ftfl) ft, _ i ( 9 n )
( 1 - 5 ) — (W-m) ( P 1 -F^ ) ]  + ( 1 - 0  pn t  q(E  +m) '  k (E  +m) ^

K l ^

5 ( - 1 )

0,
K2

i+ 1

2(1o - ko

W-m
, r ft, ( I 2 ) f t / _ i ( E2 )

[ (2q0 - w) p 1 + m( 2<l o " kO^F^ ^ q ( E 1+m) + k ( E 2+m) ^

S ( - 1 )
i+ 1

[mF-, “ (k0W+K2-4i2)F 2 3 [^ |-^ y  '  k O ^  )  (F*6>
ft^(E2 ) f t i _ i ( E2 ^

W-m

Ba?+ -  4m(J+l) ( ^ V / + + * G
( i+ 2 )q R' /+1

A C2 (W-m)
-  2£G

( / + i ) r;
A k(W-m) (p.7)

Eo B gC(W-m)
E i -  “  4 mi

B gC (W-m
Mai +  "  4m(i + 1

B gC(W-m)

26i 1 ^ GA

(W-m)2 (E2+m)
“ ^ GAXi  -  " ^ GA „2

^ i O ^ A + ÜG.X, . -  2£G
(E 1+m)(W2-m2 )

C (W-m)

RN
Ri+ 1

A C2 (W-m)

♦2£G

tai - 4 mi "6GAXI -  + 2CGA _2
i -1

C (w-m)

A k(W-m
( p • 8 )

(F.9)

( F . 10)
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La.

o -osv

KCfW-nO /' 26i0 r
4m(/+l) '̂k(w2-m2)
+ l (-d ;

k(W-m) [(2m2 - kQ

, M " 1)*k(W-m) [m(2W-kQ)G

sC(W-m) /; 2*6/i
4m/ \' C2(W-m)2

+ L(rl4k(W-m) [ (2m2 - kQ

, ("1) [m(2W-kQ)Gjk(W-m)

gC(W-m) / ■

*0'' A + — :---] +AJ L 2A c2
2tt tr ̂  + 1 Qi ^ 2^
‘ HA]L f --- 1 Z W Z

2.

kq

] ) (F.11)

[(E1+m)GA + C(W-m)GA - k^Hj +

,2ulrW M  . W*0" A 2 + 'kq 3 +
,2U lrS - 1^  Qi (E2^

AJL C2 kq :0 ( P . 1 2 )

3a/-

+ s(-ir
W-m

E.(-1)£
W-m

gC(W-m)
4mi

£(-lV
W-m

. £ (-1)*
W-m

W-m

[(W-2q0)GA + mknHj[ %  ̂ E2  ̂ 1̂+1 (E2^
(TA-1 L kq + 2 ] .♦

[mGA + Wk0HA][ ^
2qk&

■T " \ 2 [oa + k H ] +
C (W-m) A u A

Ê2  ̂ Ql+1 ̂E2  ̂ \
kq " „2 ij (F.13)

[ (W-2q0)GA + mk^Hjt

[mGA + WkQHA][

S*-1 Ê2  ̂ (E2^
c2 + kq

S«-1(E2) S<(E2^

] +

kq l) (F.14)
In these formulas we have used the following definitions

C « [ (E.|+m) (E2+m)]^

Ë2 = (2kQE2 + K2)/2kq

50 = (2ko«o + k2)/21cg
1

^(y) = è ^ d x  Pj(x)/(y-x) (F. 15)
(P̂  and Q are Legendre functions of the first
and second kind.)
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i ±

f e l "  K + / V  -

l - S + 1 ^ 0 ^  “  « i - t M

W+m
24+1

H ^ qE W C (W-m)
Qi±1(E2)]

X4± = ("1) t^JË~+my % ( K 2 ^ ~ k(E2+m)(W-m) Q/±/E2^ * (F*'>6)
The Born t e r m s  f o r  m u l t i p o l e  a m p l i t u d e s  w i t h  i s o s p i n  i n d e x  1 o r  3

( i s o s p i n  ^  o r  3 / 2 )  c a n  be o b t a i n e d  f rom e q s . ( F . 1 ) . . ( F . 14) by  u s i n g  e q .

( 1 . 1 7 ) .

I n t e g r a l  k e r n e l s .
The i n t e g r a l  k e r n e l s  i n  e q . ( 2 . 3 3 )  t h a t  c o n n e c t  I m M ? , ( W ) t o

ReM^(w) a r e  d e f i n e d

[ l ^ i ( * , W ' ) ] W' - w- [ I ] 6 i r 5 „ „ , + 2 W _ /  d x t D C B j l ^ + C C ] — }[BCGf ,]
1
I-1 s ' - s

where [ i ]  i s  a  u n i t  m a t r i x  (6x6 f o r  v e c t o r ,  8x8 f o r  a x i a l  v e c t o r

a m p l i t u d e s ) ,  and we ha v e  e x p l i c i t l y  i n d i c a t e d  t h e  i s o s p i n  i n d i c e s

( n , n ' ) .  F u r t h e r  we u s e d  t h e  a b b r e v i a t i o n s

( F . 17)

[DCBj] = [Di ( x ) ] [ c ' 1 ( s ) ] [ B ( s , t ) ]

[BCG,] = [ B “ 1( s ' , t ) ] [ C ( s ' ) ] [ G r  ( x ' ) ]  ,

( F . 1 8 a )

( F . 1 8

(kqx +

„2

*0^0 “ V U A ' l0 H0 ;

and d e f i n e d

x '  =

and

s '  1 W‘
I f  i s o s p i n  i n d i c e s  + , - , 0  a r e  u s e d ,  t h e  f a c t o r s  c and d a r e

g i v e n  by

n n ' n n ' ( F . 1 9 )

Wi th  i n d i c e s  1 o r  3 ( i . e .  i s o s p i n  £  o r  3 /2  s t a t e s )  we f i n d  f rom ( F . 1 9 )

and  ( 1 . 1 7 )

11 1 d „  -  - 1 /5

33 ”
1 d 35 "  V *

13 “
0

tc\IIrT\

31 =
0 *51 '  2/ J
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if we define £ = 1 for these cases (i.e. [£]=6^ t)j J cf. sec.II.3).
The matrices [DCB^] and [BCG^, ] can simply be calculated by

using the formulae of Appendix C. In our calculations this was done
explicitly, after which the kernels were obtained by further evaluating
eq.(F.17) numerically on a computer.

T h r e s h o l d  f a c t o r s .
As has been noticed in sec.III.2, for the numerical calcula

tions we extract threshold factors (powers of q and k) from the multi
pole amplitudes. According to this, the formulae in this Appendix
should be slightly modified: eqs.(F.1)..(F.14) must be divided by the
appropriate factors of q and k} the same holds for (F.18a), while
(F.18 ) has to be multiplied by factors q' and k'.
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Appendix G

Transformation matrices between sets of amplitudes (Compton scattering)
To obtain the connection between the different sets of inva

riant amplitudes that were introduced in sec.IV.5, it is useful to
introduce the following set of momentum tensors X̂ - :

X1 = P'P'/P'2|iV p, V'

x2 = N N /N2|IV |i V '

X5 = (2P,2N2)"^(P'N -P'N )J1V V ' ' ( I V  v (i7
X4 = (2P'2N2)"^(P'N +P'N ) (G.1)

Since P.N=0, we have clearly X^vX^v=6̂ .̂, and it can be shown (cf.[He62],
[ Ba68] ) that if we write the matrix element T„. as

- <Y2»2It|y iH1> = c ^ a 2)nG 2) T|1V u G ,)* =
= ^ ( k ^ u C p ^ t . ! 4 xjv Y.JuCp^e^C^) , (G.2)

the forms Y. will contain, apart from scalar coefficients, only the
matrices and (y.K). Further we have

Y . = X,̂  T (G. 5)0 pv v "

due to the orthonormality of the X^v , and the fact that the set j X^j
is complete, in a sense that is evident from eq.(G.2). Using the
results from table G.I, we can express the forms Y. both in terms of
the amplitudes A. and in terms of B^, e.g. (omitting the spinors and
polarization vectors)

Y. = X,1 T = B. + (iy.K)B. =1 ptv pv 1 ' ' 4
= [k 2A1 - (P.K)Aj + mK2A4 - iK2P'2A5 - im(P.K)Ag] +

+ (iY.K)[mA3 + (P.K)A4 - iP2Ag] ,
and similar relations for j=2,3»4. From these expressions we can find
immediately the matrix [z- ]̂ , defined by the inverse of eq.(4.2l),

B = [Z"1]A . (G.4)
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[z-1] -
K2 & -(P.K) mK2 -£k 2p '2 -im(P.K)

K2 0 -(P.K) -mK2 £K2P'2 im(P.K)

0 mK2 (P.K) 0 0 0

0 0 m (P.K) 0 _ip2

0 0 m -(P.K) 0 ip2

0 0 0 -K2 0 i(p.K)

2 2-K P' O

2O K
(G.5)

The matrix [ Zj is given by
[z] =

1
2K2

t 1 0 (P,K)
m (P.K)

m 0

1
mK2

Ö _ 0 1 (P.K)
2m

1,P.K)
2m 0

J_
2m 0 ó 0 1 1 0
-1
.2 2KP'

0 0 0 è(P.K) -i(P.K) P2

1
2 2KP' *

-1 1 0 0 0 -2m

1
2 2K P* *

0 0 0 -K2 K2 -2(P.K)

-1
,2 2K P' . 1 0
1
K2 0 1

Tg» 6)
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We can use the same method to express the Born terms (5.14)••
(5.16) in terms of the invariants (eq.(5.19))« We then need the
results from table G.II, where the various terms in the expressions for
the Born terms have been denoted by R • .

Table G.Ia

1
x2 L1

J1V J1V
_ l x 3 Li >

X
I

1 K2 K2 0 0

2 0 0 „2.mK ïy _
5

0

3 - (P .K ) + m ( i Y . K ) - ( P . K ) + m ( i y . K ) ( P . K ) i Y 5 0

! 4 mK2+ ( P . K ) ( i y . K ) -mK2- ( P . K ) ( i y . K ) 0 -K2i y 5 ( i y . K ) ;

5 -4K2P’2 i K 2P ' 2 0 0

6 - i m ( P . K ) - ^ P 2 ( i r . K )  i m ( P . K ) + i P 2 ( i y . K ) 0 i ( P . K ) i y 5 ( i y . K ;

7 0 0 0 2 2-K P'  i y c

8 , .0. ____ 0 K2iY5(iy.K) 0

Table G.I1?

1 x.1 M 1Vv J1V X2 M 1(iV |IV — X5 M 1M V  V v — X4 M1
Sf 2

1 1 0 0 O!
2 _ o — 4- 0 0

3 0 0 - iYS> . 0

4 (iy.K) 0 0 Ö ;
5 0 (iy.K) 0. 0 s

6 0 0 ' .Ö iY5(iy.K)
7 0 0 0 iY5
(8 - 0 0 iŷ (iy.K) 0
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T a b l e  G . I I

Hnv
1

X R
|iV |LL V

X2 E
| iV  |IV —  X5 R

\J 2
—  X4 R
\ f  2  * *  “ V

V u - 1 1 - i Y 5 ( P . K ) / K 2 0

Yv (iY.K)Y(i - ( i Y . K ) - ( i Y . K ) -m iY 5 0

Y „ ( iY » K )Y v - ( i Y . K ) - ( i Y . K ) +miY5 0

i Y ^ i Y . K ) ? ^ 0 0 - i p , 2 i Y 5 - i P  , 2 iY
5

P j v ( i Y . K ) i r(i 0 0 - i p ' 2 i Y 5 + ^ P ,2 i Y 5
I

iY P .
(1 j v - m - ( P . K ) ( i Y . K ) / K 2 0 - è i Y 5 ( i Y . K ) + i i Y 5 ( i Y . K )

iY. P .v j(i - m - ( p . K ) ( i Y . K ) / K 2 0 + i i Y 5 ( i Y . K ) + i i Y 5 ( i Y . K )

P 2 v P 1|i P ' 2 0 0 0

P 2v ( i Y *K ) P i(i ( i Y . K ) P  ' 2 0 0 - 0

Y 5W QP Kc
0 0 2K2 i Y 5 0
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S A M E N V A T T I N G

In dit proefschrift komen twee verschillende soorten processen
aan de orde:
1) electro- en neutrinoproductie van n-mesonen, dat wil zeggen: inelas-

tische verstrooiing van electronen of neutrino's aan nucleonen,
waarbij een pion geproduceerd wordt:

e N -• e N n
v N -» e N ne
v N -  n N n .h

De eerste reactie wordt veroorzaakt door de electromagnetische wis
selwerking; de twee andere door de zwakke wisselwerking.

2) Compton verstrooiing aan nucleonen, ofwel elastische verstrooiing
van fotonen aan nucleonen:

Y N-» r N ,
welk proces weer van electromagnetische aard is.

Hoewel deze processen slechts kunnen verlopen door middel van
de electromagnetische of zwakke wisselwerking, geldt in beide gevallen
dat men rekening moet houden met een belangrijke invloed van de sterke
wisselwerking, aangezien er hadronen aanwezig zijn (in casu: pionen
en/of nucleonen). De invloed van de electromagnetische en zwakke wis
selwerking kan goed beschreven worden door middel van storingstheorie
in laagste orde; voor de sterke wisselwerking is dit echter niet moge
lijk, zodat deze in zijn geheel in rekening gebracht dient te worden.
Aangezien de theoretische kennis omtrent de sterke wisselwerking niet
voldoende is om de invloed ervan op bevredigende wijze te kunnen bere
kenen, kunnen geen numerieke waarden voor de botsingsdoorsneden van de
beschouwde processen verkregen worden, als men alleen uitgaat van theo
retische beginselen. Daarom is het nodig een andere methode te volgen
voor onze berekeningen. Dit is mogelijk door aan te nemen dat de
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verstrooiingsamplitudes voor de beschouwde processen bepaalde analyti
sche eigenschappen bezitten, als functies van geschikt gekozen kinema-
tische variabelen. Deze aanname leidt tot dispersierelaties voor de am
plitudes, welke samen met de eis dat de verstrooiingsmatrix unitair
dient te zijn, de basis vormen voor de theorie der dispersierelaties.
In het kader van deze theorie kan de invloed van de sterke wisselwer
king op de verstrooiingsamplitudes voor de beschouwde processen in ver
band gebracht worden met andere processen, waarbij deze wisselwerking
een rol speelt. Op deze manier kan men experimentele gegevens omtrent
deze andere processen gebruiken om het gebrek aan theoretische kennis
aangaande de sterke interacties te compenseren. In ons geval houdt dit
in dat we gebruik maken van experimentele gegevens over pion-nucleon
verstrooiing bij de berekening van electro- en neutrinoproductie, en
van experimentele gegevens over pionfotoproductie bij de berekening van
Compton verstrooiing. De zo verkregen resultaten kunnen vergeleken wor
den met experimentele gegevens over deze processen (i.e. over electro-
en neutrinoproductie, respectievelijk Compton verstrooiing), voorzover
deze al bekend zijn, of zij kunnen dienen als theoretische voorspellin
gen van toekomstige experimenten. Bezien vanuit theoretisch standpunt
kan anderzijds overeenstemming tussen theoretische resultaten en expe
rimentele gegevens beschouwd worden als ondersteuning van de veronder
stellingen waarop de theorie der dispersierelaties is gebaseerd. In dit
proefschrift zijn de eerste drie hoofdstukken gewijd aan electro- en
neutrinoproductie, de laatste drie aan Compton verstrooiing. De behan
deling van deze twee soorten processen verloopt grotendeels parallel.

In Hoofdstuk I worden formele uitdrukkingen voor de botsings-
doorsneden voor electro- en neutrinoproductie gegeven, alsmede de kine-
matica voor deze processen. Verschillende stelsels van amplitudes wor
den beschreven, waarin de matrixelementen van de verstrooiingsoperator
kunnen worden ontbonden. (De belangrijkste hiervan zijn de Lorentz-
invariante amplitudes en de multipoolamplitudes.) In Hoofdstuk II wor
den de dispersierelaties verkregen, uitgaande van de veronderstelde
analyticiteitseigenschappen van de invariante amplitudes, waarna een
transformatie volgt tot een stelsel gekoppelde integraalvergelijkingen
voor de multipoolamplitudes. In Hoofdstuk III gebruiken we experimente
le gegevens over pion-nucleon verstrooiing, met behulp waarvan de fases
van de multipoolamplitudes voor electro- en neutrinoproductie gevonden
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kunnen worden, binnen een bepaald energiegebied. De multipocl-dispersie-
relaties zijn dan bij benadering oplosbaar, zodat we numerieke waarden
voor de multipoolamplitudes kunnen vinden. Deze amplitudes dienen ver
volgens vermenigvuldigd te worden met de geschikte pion-, of nucleon-
vormfactoren, die weer uit experimentele gegevens afgeleid zijn. Voor
electroproductie zijn de benodigde nucleon-vormfactoren bekend, terwijl
de pion-vormfactor verkregen zou moeten worden uit een vergelijking van
experiment en theorie voor electroproductie. Zoals in dit hoofdstuk
blijkt, zijn de resultaten nog te onzeker om deze vormfactor geheel
vast te leggen. Voor enkele verschillende keuzes van deze vormfactor
zijn hier botsingsdoorsneden voor electroproductie berekend. Voor een
volledige berekening van neutrinoproductie zijn dezelfde vormfactoren
nodig als bij electroproductie, vermeerderd met de twee axiale nucleon-
vormfactoren, waarvan er een slecht bekend is. Aangezien er bovendien
weinig experimentele informatie over dit proces beschikbaar is, zijn
hier alleen de amplitudes berekend, en niet de botsingsdoorsneden. Voor
deze laatste worden alleen formele uitdrukkingen gegeven.

De drie hoofdstukken over Compton verstrooiing volgen ongeveer
hetzelfde schema als de eerste drie. Hoofdstuk IV geeft formele uit
drukkingen voor de botsingsdoorsnede, behandelt de kinematica en intro
duceert diverse stelsels van amplitudes. In Hoofdstuk V worden de ana-
lyticiteitseigenschappen van de invariante amplitudes behandeld, waar
bij vaak terugverwezen wordt naar Hoofdstuk II. In Hoofdstuk VI wordt
aangetoond dat in het energiegebied van de eerste resonantie de disper
sierelaties voor Compton verstrooiing opgelost kunnen worden met behulp
van amplitudes voor pion fotoproductie, welke goed bekend zijn uit ana
lyses van experimentele gegevens. Amplitudes en botsingsdoorsneden voor
Compton verstrooiing kunnen dan berekend worden en vergeleken met ex
perimentele waarden. Verder kan uit de fotoproductie-amplitudes een
ondergrens berekend worden voor de botsingsdoorsnede voor Compton ver
strooiing, waarbij alleen gebruik gemaakt hoeft te worden van de unita-
riteitsrelatie en de gebruikelijke invariantie aannamen voor de S-matrix
(C, P, T). Het blijkt nu dat deze ondergrens geschonden wordt door en
kele experimentele punten. Om na te gaan of deze discrepantie opgeheven
kan worden door de eis van T-invariantie te laten vallen, is het forma
lisme dienovereenkomstig gegeneraliseerd, en hebben we enkele bereke
ningen gedaan waarbij op eenvoudige manier een schending van deze
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invariantie werd ingevoerd in de fotoproductie amplitudes. De resulta
ten tonen aan dat hierdoor de genoemde discrepantie iets kleiner kan
worden, maar vermoedelijk niet geheel zal verdwijnen.

Tenslotte zijn enkele appendices bijgevoegd, waarin de ge
bruikte conventies zijn samengevat, alsmede enkele details van de be
rekeningen.

144



S T U D I E O V E R Z I C H T

Na e^n s c h o o lo p le id in g  aan  de R i jk s  H .B .S . t e  M iddelbu rg  begon
i k  i n  i960 met m ijn  s tu d ie  aan  de R i j k s u n i v e r s i t e i t  t e  L e id en . In  mei
1964 leg d e  i k  h e t  can d id aa tsex am en  a f ,  met hoofdvakken  n a tu u rk u n d e  en
w iskunde, en  b i jv a k  s te r r e k u n d e . H ie rn a  koos i k  de s t u d i e r i c h t i n g
th e o r e t i s c h e  n a tu u rk u n d e , w aa rin  h e t  d o c to raa lex am en  werd a fg e le g d  in
decem ber 19^7 • In  1965  was i k  gedurende een  h a l f  j a a r  werkzaam op h e t
K am erlingh Onnes L ab o ra to riu m , i n  de w erkgroep M e ta len . S in d s  ju n i
1967 ben  ik  verbonden  aan  h e t  I n s t i t u u t - L o r e n tz  v o o r T h e o re tis c h e
N atuu rkunde, ( i n  d ie n s t  van  de S t i c h t i n g  vo o r F undam enteel O nderzoek
d e r  M a te r ie ) ,  w aar i k  o n d er l e i d i n g  van  P ro f . D r. J.A .M . Cox en
D r. F .A . B erends heb gew erk t aan  e n k e le  o n d erzo ek in g en  op h e t  g eb ied
van  de h o g e -e n e rg ie  f y s i c a  i n  v e rb an d  met d i s p e r s i e r e l a t i e s .  Tevens
heb ik  e n ig e  m alen w e rk c o lle g e s  i n  de quantum m echanica v e rz o rg d . In
1968 en 1969 heb i k  tw eem aal een  w erkbezoek van e n k e le  maanden ge
b ra c h t  aan  P ro f . D r. A. D onnachie van  de U n i v e r s i t e i t  van  Glasgow.
Deze r e iz e n  w erden m o g e lijk  gem aakt d o o r een  f i n a n c i ë l e  b i jd r a g e  van
de S t i c h t i n g  F.O.M.
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