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INTRODUCTION

One of the most versatile methods of obtaining information
about the dynamics of electrons and nuclei in molecules is the
study of their interaction with electromagnetic radiation. Two
aspects are especially important in this respect:

1. Energy exchange between molecule and radiation.

2. Polarization of the molecule and the associated scattering of

light.

If radiation energy is absorbed or emitted, the frequency of the
electromagnetic field at which it occurs is directly proportional
to energy differences between stationary states. The intensity of
these processes are determined by electric or magnetic transition
moments. Both quantities (energy differences and transition mo-
ments) are very helpful in testing theoretical deductions about
the structure of the molecules.

Very often absorption or emission occurs outside the region
that is accessible with current laboratory equipment. It then be-
comes worth-while to study the polarization of the molecules,
induced by the electromagnetic radiation and vibrating with the
same frequency. This can be done - in principle - at all frequen-
cies. Therefore it could constitute a more convenient method of
investigation, but unfortunately the interpretation in terms of
molecular structure is less direct than in the case of an absorp-
tion or emission spectrum.

In principle a complete knowledge of all the absorption bands
contains the same information as the knowledge of a complete dis-
persion curve of the polarizability, since both effects are
closely related (Kramers-Kronig relations). In practice, however,
usually a small region of the spectrum is only accessible. Then
experimental conditions determine the choice of the quantity to
be studied.

In this thesis we will only be concerned with polarizabilities.
In practice one does not study the polarizabilities of a single
molecule, but the response to a beam of light of a large number
of molecules which compose a piece of matter. In reality one mea-
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sures the refractive index or the rotation of the plane of pola-
rization. Therefore the problem arises how these phenomenological
quantities can be used to derive the constants which characterize
an isolated molecule,

The classical solution to this problem due to Lorentz (1880)
and Lorenz (1881) leads to the formula®’:

n?aq "y
—_— v
nZ+9 3 -

where n is the refractive index, v is the number of particles in
1 cc, and a is the mean polarizability of a molecule.
In organic chemistry the molar refraction:

n2-1 M
n?+ 2 do

where M is the molecular weight and do the density of the sub-
stance, has some time played an important role as an aid in de-
termining structural formulae. At present the average polarizabi-
lity of a molecule, on which the molar refraction depends, does
not contribute much to the deepening of our insight. Much more
important is the study of the anisotropy of the polarizability,
which reveals itself in birefringence, and the investigation of
higher order polarizabilities, which are responsible for the phe-
nomenon of optical rotatory power. In this thesis two aspects of
polarizability will be studied. First we will deal with the rela-
tions of the rotatory power of a piece of matter and the molecu-
lar third order polarizabilities, characteristic of a single mo-
lecule, In the second place we report the application of electric
birefringence to the determination of the structure of some orga-
nic molecules.

*) Throughout the first part of this thesis we use rationalized
gaussian units,
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CHAPTER 1

FORMULATION OF THE PROBLEM

General considerations

If a plane-polarized beam of light traverses a piece of opti-
cally active transparant matter the rotation of the plane of po-
larization is related to a difference in refractive index of
right- and left-handed circularly polarized light. The relation
is expressed in the equation:

(n. - n,) 1.1

Here X is the angle in radians/cm over which the plane of pola-
rization has rotated, n_ and n, are the refractive indices for
left- and right-handed circularly polarized light and Avac is the
wave length of the light in vacuo. The problem is to relate the
phenomenological quantities n_ and n, to molecular constants.,

In the theory of electrons the phenomenological quantities that
appear in the Maxwell equations, and that characterize the propa-
gation of light in matter, arise through an averaging procedure,
which eliminates the rapid variations which occur on a molecular
scale. Therefore one has to explain the contribution of a molecu-
le to these averages in terms of its intrinsic properties and of
its interaction with other molecules,

Each molecule which is perturbed by an electromagnetic field
becomes itself the source of secondary radiation. Thus the field
polarizing a molecule is built up by the primary field coming
from outside the matter and the fields scattered by all the other
molecules, Therefore the first question with which one is con-
fronted in the development of the theory is:

1, How is the averaged field perturbing a single molecule - cal-
led the local field - related to macroscopic quantities?
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The primary as well as the secondary radiation propagates with
the velocity of light in vacuo c. The averaged quantities, how-
ever, describe waves which travel through matter with a smaller
velocity c¢/n. A second question which has to be answered is:

2. What is the detailed mechanism by which the incident wave is
eliminated and is replaced by a wave with a different velocity?

The solution to this problem is known as the extinction theorem.

The problems 1 and 2 are dealt with in chapters 3 and 4. Before,
in chapter 2, we will discuss the response of a single molecule to
an electromagnetic perturbation.

Historical remarks

The response of an optically active molecule to a beam of light
was formulated quantummechanically by Rosenfeld (1928). More spe=-
cial but still rather general models are due to Condonet al,
(1937) (one-electron model) and to Kooy (1936) and Kirkwood
(1937) (a system of coupled oscillators).

A large number of papers have appeared dealing with the problem
of the local field. In Lorentz' model (1915, 1952) the correlati=-
ons of a molecule with its neighbours do not appear explicitly.
Kirkwood (1936) and Yvon (1937, II) were the first to take account of
the correlation in position, Kirkwood in a theory on the static
dielectric constant, Yvon also ina theory on refraction. Bottcher
(1952) corrected the Clausius-Mosotti and the Lorentz-Lorenz
equation by using Onsager's concept of the reaction field, which
also involves a correlation effect, In a series of papers by Jan-
sen, Mandel and Mazur (1955, 1956) the ideas introduced by Kirk-
wood and Yvon were combined with the effect derived by Jansen and
Mazur about the dependence of the polarizability on the density
of the gas, In a theory of the electric birefringence Mazur and
Postma (1959) also included the correlation in orientation of the
molecules.

In all these theories the dimension of the molecules was consi-
dered to be negligible with respect to the wavelength of the
light, so that the local field could be regarded as constant over
a molecule., In the theory of optical rotatory power variations of
the local field inside the molecule have to be known, The calcu-
lation of the variation of the local field gives rise to specific
difficulties and has led to several controversial statements a-
bout the influence of the refractive index on the rotation. Pri-
marily Born (19185 derived that the rotation was proportional to

n2 + 2 R4V D
a factor |——— ) . Later (1933) he changed this factor in|—|.
3 3
The first result was also reached by Kooy (1936), while de Malle=-
man (1924, 1925) proposed a factor 1, Finally Hoek (1939) gave a
very thorough discussion in which he analysed the origin of the
discrepancies.

The extinction thecrem is due to Ewald (1912, 1916) and Oseen
(1915). A somewhat different approach was given by Darwin (1924)
who considered a plane parallel slab of matter. A general deriva-
tion of the theorem applied to normal refraction as well as opti-
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cal activity and applicable to a piece of matter of unspecified
form was described by Hoek (1939, 1941). Postma (1959) reformula-
ted this theorem for birefringent media. In other treatises
(e.g. Yvon) the extinction theorem is not ment ioned, but is im~-
plicitly accepted by using Maxwell's equations,

Although the problems of the local field and the extinction
theorem were treated very satisfactorily by Hoek, the incorpora-
tion of the correlation effects is lacking. In particular for the
optical rotatory power these effects should not be neglected,
Goossens (1958) attempted to approach the problem by applying On-
sager's reaction field, but it remains uncertain whether the in-
fluence of correlations on optical activity is thereby satisfac-
torily accounted for, It is our aim to give a treatment which
allows for the explicit introduction of correlation effects in
the calculation of the internal derivatives of the field. We will
restrict ourselves, however, to the case in which the molecular
polarizabilities can be considered as independent from the mole-
cular environment., We therefore exclude any change due to the
formation of e.g. hydrogen-bonds and charge-transfer complexes,
or due to local electrostatic fields, or the presence of other
polarizable molecules (Jansen-Mazur effect).

13



CHAPTER 2

RESPONSE OF AN ISOLATED MOLECULE TO A
LIGHT WAVE

T nit osdtua'c it 1-oin

In the theory of dispersion usually the semiclassical method is
used (Kramers‘), 1938, Chapter 8). This method consists in
calculating by quantummechanical theory the current distribution
in the molecules induced by a light wave, whereas the electro-
magnetic field remains unquantized. This current distribution is
then supposed to behave as a classical source of scattered radia-
tion. Where, in this chapter we collect the ingredients necessary
for the statistical treatment of the rotatory dispersion problem
we can therefore as far as radiation is concerned restrict
ourselves to the classical formulae (A). Correspondingly the
response of a molecule is first described with classical po-
larizability tensors (B), which are further explained quantum-
mechanically in Section C,

Ay Olassiecal radiation Tormulage

The microscopic Maxwell-Lorentz equations, which describe the
electromagnetic fields and their dependences on the charge and
current distribution are:

2.1

2.2

Vee
*) Abbreviated in this thesis by Kr.
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e and h are the microscopic electric and magnetic fieldstrengths
respectively, o isthecharge density and v is the charge velocity,
consequently pv is the current density. The equation of continuity
follows from 2.2 and 2,4:

Ve (pv) + p=0 2.5

The fieldstrengths can be derived from a scalar potential i
and a vector potential a:

1
e=-Vg-—
C

i 2.6

h=Yx(1 v B f

{ and a are not completely defined by these equations. Their
choice can be restricted by the so-called Lorentz gauge:

Consequently § and a satisfy the wave equations:

1

A\‘; - —' (Z: = >0 2.9
c?
. 1 (pv)
Ag = —a= - — 2. 10
c? c
Solutions of these equations are:
% {P}
Gy = B ay 2. 11
A 4 Tr B
g AR
3. {ov},
gy = = 4 dll 2 12
C . /,urAh ’

to which solutions of the homogeneous equations can be added.
rap 1s the distance between two points A and B and the braces
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mean that o' and pv have to be taken at the retarded time
(t - rAB/C)' For normal refraction and optical rotation only those
components of p and py are of importance, which are induced by
the light wave and which have the same time dependency. The same
applies to other field quantities and they can therefore be
written as the product of a time independent part and a factor
e'®! where w is the circular vibration frequency of the light.

By virtue of 2,5 it is possible to derive the charge and
current density from a single vector,

pv=p" p=-V-p 2.13

p' = TorPv is the dipole moment density of the - microscopic -

true charge distribution,
Similarly &: and a can be derived from a Hertz potential z:

z g==Vez 2.14

L[]
]
R N

c
z = — a satisfies the wave equation:
ww
fL
Az - —z=-p' 2, 15
- CL = -

The solution of this equation is:

-1kr
{P'}B b AB :
= = &¥p or .z,™ Pg —d¥y 2,16
‘/’ﬂrAB = = /;7rrAB

ZA

V V
to which solutions of the homogeneous equation can be added and
where e and h can be derived from z by:

1
e=VV‘z--3'z' 217
ER T -

1 ;
h==Vx 2,18
c

I~
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Since all quantities depend on time by a factor eiw', we can

simplify these equations to:

e= VY« z+ k%

When the dipole moment distribution of a scattering molecule is
known, the Hertz potential can be determined by eq. 2.16, If the
molecules are spherical or nearly spherical it is useful to
enclose the entire source by the smallest possible sphere and to
develop the dipole distribution with respect to the centre of
this sphere, The Hertz vector outside this sphere can then be
developed in a series consisting of products of spherical Bessel-
and Hankelfunctions, and Legendre polynomials (Stratton, 1941;
Phillips, 1962) or in terms of so-called “irreducible tensors”
(cf. Rose, 1957).

Darwin (1924) and Hoek (1939, 1941) use a Taylor series de-
velopment which can be written as:

. -ikR
¢ EB ‘V e T .
z = pg € dVyg 2,21
v 4 RA

R, is the distance of A to the molecular centre. rg is the vector
from this origin to some point B in the molecule. The nabla
operator differentiates the function of RA at the molecular
centre, The integration is over the molecular volume,

When we take only the first two terms of the series and in
addition assume that the wavelength of light is much larger than
the radius of the molecular sphere, both developments are iden-
tical,

The result is®):

-1kR -1kR
e A e A
2z, =p + 20 20 22
47#& 4WBA
3 I ) § ' 7
where p = / Pp dVB and q = / Pg T'p dVB 2. 23
V V

*) For the vector and tensor notation see p. 56.




In index notation:

-ikRA -ikRA
e
(ZA)a =P + 9%p vﬁ

% 47R 4R,

For later use we give the formula of the electric field, arising
from eq. 2.19 and 2, 22:

-1kR
[ e e A |

9
= (Vavﬁ + kU 2.26

) €8s rm g e Sam e’
aB ]PB [477A q‘B'y ¥ 4773/1 l

Here U or U,zis the second order unit tensor. The first term
between the braces gives the electric dipole radiation. The
second term is responsible for magnetic dipole and quadrupole
radiation (See e.g. Jeffreys andJeffreys 1956, section 24, 23).

Not all redundancy is avoided in these formulae since the Hertz
vector may contain a part which corresponds to a zero electric
field (See p. 25).

B, Iatrodueatiaon . f,miol ecunlar piosl.a=
riZzZzabhidl ity . $€en80108

The dipole moment distribution p’ which according to the
previous section determines the radiation field, depends itself
on the electric field distribution inside the molecule originating
from outside the molecule,

p'(x) = [ olnx') - e(x') d¥
mol

The polarizability q(g,g') is a second order tensor density,
which relates the fieldstrength at the point 5' to the polariza-
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tion at x. The quantity o(xz,x') is a generalization of the
tensors gk’ introduced by Born in his theory of optical rotatory
power (Born, Optik, p. 406). Born considers a molecule consisting
of a number of coupled anisotropic harmonic oscillators. 4

gives the dependence of the polarization of oscillator k from
the electric fieldstrength at oscillator l. In Born's theory the
fundamental relation

kKl _ 4lk
Aaﬁ = A,Ba 2.28

was derived on the assumption that the coupled oscillators form a
conservative system. It will be shown in the next section that a
similar relation exists for the tensor density o(x,x'):

Oop(%:x") = 0g,(%,%) 2,29

o(x,x") is not only a generalization of Born's model in the sense
that a continuous distribution of oscillators is considered, but
also encompasses the one-electron model introduced by Condon et
al. (1937). It then describes how the induced motion of the
electron at point x depends on the fieldstrength everywhere
inside the molecule,

It is advantageous to characterize the state of polarization of
a molecule with the moments of the continuous dipole distribution
since for our purpose a few moments suffice (See e.g. eq. 2,25).
On the other hand for the dependence of these moments on the
electric field distribution it will be sufficient to develop the
electric field by a Taylor expansion with respect to the origin
and to restrict ourselves to the first two terms. We write:

e(x') = elz' *Y) ¢ 2,30

where the differentiations are to be taken at the centre of the
molecule.
The total dipole moment of the molecule is:

pe= [p'(x) de = p1) + pt2) &+ [ ... 2.31

where:

p!) = [fo(x,x') dx dx' * e=a -+ e 2. 32



p? = [Jo(x,x') x' dedx' : (Ve) =S : (Ve)
The second moment is defined by:
q = Jp'(x)x dx = [fo(x,2")x dx dx'
In the case of the second moment we will retain the first term of

the expansion. For the sake of clarity we will describe the
equations 2,32, 2.33 and 2.34 also in index notation:

(]) = JJo,g(% %" )dx dx' eg = Qg €p
(2) - 'y ! ' = e
patt = JJOAE(E'E )xy dx dx (V@/eﬁ) = Fhﬁy(t7
Y -~ - ' WL !
i jjcaﬁ(f'i )x7 dx dx eg = Papy s
G Quam tunmeechantical deridvation of
t e peoelTardzability tensors
As mentioned in the introduction to this chapter the calculation
of the current density distribution which determines the Rayleigh

scattering of a molecule in a stationary state n is essentially a
quantummechanical problem with the solution (Kr. eq. 8-223) " ):

[ov] o = — B

1
c

where:

o, | (v e Ju - %) ¥

W 3 +
B l h-w+ @)

I (fa - {p@o}nm av){pv°}
h(w+ w,,)

mn _

*) Kramers explicitly indicates that the real part of the
righthand side has to be taken., In the present considerations
it will not be confusing to omit this indication.




The dash beside the summation sign denotes that m#n.
a is the microscopic vector potential inside the molecular
volume, coming from outside the molecule, @ and @, . are the
circular frequency of the incident light and the circular tran-
sition frequency from mn(hw,  =E - E_ ). {py°}mn is the matrix
element of the unperturbed current density operator, which is
given by (cf, Kr. eq. 8-9):

m

g SR PR * %
{pyo}nm = ? v/-g-ﬁin %1 E? dm o € 93 ¢h) ? dfj A

J#i X=X

P and ¢h are time independent wavefunctions.
The unperturbed velocity operator is:

(Kr. eq. 8-4) 2,41

i/op

1
R (0,
m.

1

Here (pi)op is the momentum operator of particle i, miis its mass.

2
&%
il 1 /@; , T ds; (Kr. eq. 8-221)  2.42
¥k j#i 2z

i

nn

The current distribution [py]hn depends on time through a which
contains the timefactor e'®?, therefore:

!

p = !” 2.43

1
wwe
Since a is the vector potential of the field which has its
origin outside the molecule it behaves as a field in vacuo. This
implies that it is possible to choose the gauge of the potentials

@ and a such that ¢ = (.
Consequently:




Combining 2.39, 2.43 and 2,45:

1
o nies I
e 22 -

where

.w' =3 [ {p"-lo}nn jg 2 {pgo}.n dy +
n ] h(-w+ @, )

, (e * o)y ),

hiw+ w,, )

sibwml

This can be written as:
p'(z) = J n(z,z") « e(z')dz" + U(z) e(z) 2.48

where x and x' are the coordinates of two points within the
molecule,

[ (o202}, 5 M

h(w+w,,)

1
n ‘/ i
‘aﬁ(EZ) an l

(5 ) (202D |
h(w + C"mn) J

1
{(z) =" =5 San

Comparing 2.48 with 2.27 it appears that 7 and [ together are
equivalent to o(x,x"): S

o(x,x') = 7(x,x") + {(x) 8(x - =')U

§(x - x') is the Dirac o-function. U is a second order unit
tensor, n(z,f') as well as [(x) are real quantities. This can
easily be shown by choosingall the wavefunctions ¢ , ¢, real,
which is always possible if the Hamilton operator, having Cn
and ¢, as eigenfunctions, does not contain an imaginary part.
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that:

Since (U is isotropic a similar formula applies to g(g,g'ﬁ

Eq. 2.49 can be simplified now to:
2

noa(x,x') =—=2 w

/a,g-- .?M

It follows from this equation that:

('Uyo}mu = —{pgo};. g -{’Oyo}-n

{pvg(2)} . {PVR(2" )} 0

w e hkuzn - @?)

Tap(%:%') = Npga(%2)

Opp(%x') = Og,(%,%)

which was already mentioned before.

For the general formulae for a, 5 and ' we have to substitute in
2.32, 2.33 and 2.34 the expression for o(x,x'). The results are:

2 w
). mn
aaB )i h i: a;;Zn - 2 (Pmu)a. (Pnn),B

2 g ‘1 1 o (] ' '

' 2 U 1 1 - .0 o ' '
Papy = % % Wl . Wl ;)m_nj{f"”a(’-‘)}nm z,dx [ {pvg(z')},, d
Here

1 1 =
.{)nm % >y Enm 5 J{’A’E (5)}’”" (15 (Kr' €q. 8-24)
L>unm Lu/nm

For the derivation of the well-known formula 2,56 use is made of:

4

ihm

0

(an)a (i)mn),’j = (i)nn),ﬁ (Pmn)a]

llﬂl-

ke
c Z—l"aB

{pv°},, is then an imaginary operator and from 2.40 it is clear

2.52

2. 53

2.55

2, 56

'

2,57

2,58

2. 59

2,60
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which are the commutation relations of P, and an (Kr.eq. 8-204).
Similarly for the derivation of S and g' use is made of the
analogous relations:

1
R IR, Hovg(a'), xds’ - [lovi(x')},, xdz" (P,,),] =

e

= Zl : (x'y)nn Ua.,B

D. General remarks

I. Magnetic dipole and electric quadrupole moment

A number of authors prefer to formulate the response of a
single molecule to an electromagnetic perturbation in terms of
electric and magnetic moments, This has an advantage if one
assumes that the phenomenological quantities P and M which occur
in the equations:

D=F+ P 2.62

B=H+M 2.63

depend on the molecular moments in a well-known way, so that this
relation offers no problem (e.g. Rosenfeld (1928), Condon et al.
(1937), Eyring et al. (1949)). Since we do not start with the
assumption that the dependence of f and_@ from molecular mo-
ments is known beforehand - in fact we even do not need this
dependency - it is not necessary to introduce magnetic moments as
such,

For the sake of comparison, however, we will give the relation
between the second order moment g and the usual definitions of
magnetic and quadrupole moments. B

The magnetic moment is defined by:

1
& J x x (pv)dx 2.64
C vy
Y (Heitler, 1954, p. 24, eq. 23b)

with 2,13, 2,34 and 2,37:
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1 : 1 STt e
m, = '?': [aﬂ)/]qyﬁ = 5: [aﬁ)']p-yclg €e

where D%By] is the permutation tensor,

[agy] =1 fora=1, B=2, v =23 or cycl.
[afy] = -1 fora=2, f=1, v=3 or cycl.
[aBy] =0 fora=p B=y ory=a

n

be defined by the equation:

The quadrupole moment can

ka—y =/ p, x, dx + | p,; x,dx 2.66
V V
(Stratton, 1941, p. 433, eq. 17)

Consequently:

ka.y = qay + qya 2.67

Generally the quadrupole moment is neglected in considerations
about optical rotatory power, as its influence vanishes for an
isotropic liquid if the molecules have no specific interaction
(See chapter 5, eq.5.4). Vol'kenshtein (1950) showed that for
anisotropic media the quadrupole moment can not be neglected
because of the conservation of energy. In the case of an iso-
tropic liquid where the molecules can have a strong interaction
we cannot neglect them either,

II. Duplicate rule

Since V + e = 0 we can add to Byyyr Pagy and S 4 an arbitrary
vector component o,, without changing the dipole moment. A
similar relation holds for the tensor g'. Here the reason is
that the Hertz vector may contain a part which corresponds to

zero electric field (See p. 18)., This implies that:
5131 + ﬁéﬁz + péﬁz = arbitrary 2,68
(cf. Hoek, thesis, p. 52)

Similar relations also apply to higher order polarizability
tensors., (Darwin's duplicate rule, Darwin, 1924).




CHAPTER 3

THE AVERAGE QUANTITIES

Introduection

The response of a single molecule to a monochromatic light wave,
which was discussed in the former chapter, forms the basis of the
study of a system of many molecules., The first task is to set up
equations which give the polarization of an arbitrarily selected
molecule due to the primary field and the secondary fields of all
the other molecules. These equations have to be averaged in order
to obtain macroscopic quantities (section A). In the reduction of
these equations we make use of molecular distribution functions
(section B) and the closely related distinction between short-
range and long-range interactions (section C). In section D the
macroscopic polarizability densities are derived.

Ah., Fundamental equations

We consider a medium consisting of N equivalent molecules in
statistical equilibrium. These molecules are supposed to be
sufficiently spherical so that the series development of the Hertz
vector discussed in the preceding chapter (eq. 2.21) can be
applied, The position of a molecule is specified by the coordina-
tes of its centre and by its orientation, both with respect to a
space-fixed coordinate system. The polarizabilities a, /5 and
E', which were introduced in chapter 2B, are so defined that
the determination of the polarization of a molecule requires only
the knowledge of the effective electric field and its derivative
at the molecular centre.

The electric field to which a molecule k is subjected consists
of the primary field E® coming from outside the medium and the
secondary fields scattered by all the other molecules. This is
expressed in the formula:
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e(R) = E“(R) - S'FR.Ry) * py - SHER) g, 3.1

or

€a(®) = EZB) - S'F (BB * pf) - THp BB : af) a2

The dash at the 2 sign means that [ = k has to be omitted.

~ik|By-R |

Pﬁﬁ(ﬁ'ﬁl) = -(VaV% + k?Uaﬁ) -Z;Tézjéi' 3.3
-ik|B;-8|

HopyBBy) = =(V, Vg + k% 3.4

M

R is the position vector in a space-fixed coordinate system of a
point inside molecule k; R denotes the centre of the molecule

l. The differentiations are app11ed at Bl. These formulae follow
immediately from 2, 25.

The polarization moments of molecule k can be calculated from
the electric field and its derivative by:

f’=p(“*£(2)=c—1' S(Bk)+g_5: (Yf)n=nk 3.5

g=p -+ e®,) 3.6

From these equations it follows that:

Pr=% * E - ?Qk B %'9/@ “Hy g
Y& - {(Yl_ie)k i %—'l(z’."kz) ' El} &
‘1k=£3/'z'§e‘?f’i 21 P 3.8

Products of third order polarizabilities are neglected, since
their contribution to the dipole moment of k is small with
respect to other terms. Therefore the moments q; do not appear in
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the expression for the derivative of the electric field (eq. 3.7).
Similarly the moments q, are neglected in eq. 3.8.

It is from these equations that expressions for the macroscopic
moment densities as statistical averages have to be derived. Via
the Maxwell equations these macroscopic moment densities determi-
ne the propagation of light through the medium.

The averaging procedure may be formulated in different ways.
Kirkwood (1936), Yvon (1937) and also Mazur et al. (1955, 1956,
1959) use ensemble averages, whereas Hoek (1939, 1941) and Rosen-
feld (1951), following Lorentz (1902), think in terms of space
averages. This approach has the advantage of a certain visualiza-
tion, especially if the liquid for which the laws of light
refraction are derived is actually a rigid glass. We prefer,
following Kramers (1938, § 95), to consider our averages as
"averages over planes of constant light phase”., Since in the
theory of optical rotatory power the dimensions of a molecule can
no longer be neglected with respect to the wave length of light,
the volume over which an average has to be taken should be small
compared to a molecular diameter, at least in the direction of
the light wave., Therefore the volume element has to be inclosed
by two planesof constant light phase, a very small distant apart,
but of sufficient extension to contain a large number of mole-
cules. A molecule is considered to be inside the volume element
if its centre is, For the rest the averaging procedure is
identical to that described by Hoek (1939, p. 25) and Rosenfeld
(1951, chapter VI, § 1).

Indicating average values by a bar, edq. 3.7 becomes:

_——. e- U - e - - ' . .
Pp=% " E %Ek Per P %‘fk ot 9

P, 3.9

+ By 2 (YES), - %’ék DY By

The bar means that the average is extended over the positions of
the centres and orientations of all the molecules, except over
the position of the centre of molecule k. E;, é: thus become
functions of Bk‘ The averaging is actually performed by inte-
gration of eq. 3.7 after multiplication by an appropriate distri-
bution function. This function gives the relative frequency
density of finding all the molecules with their centres at spe-

cified points and with given orientations. In the neighbourhood
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of molecule k the distribution of the centres and orientations of
molecules ! will strongly depend on the position and orientation
of k. At greater distances this correlation gradually disappears.,
There it is allowed to average over the positions and orienta-
tions of molecules l disregarding the position and orientation of
k.

Let us assume for a moment that everywhere correlations between
molecules can be neglected. If then as an example we consider the
second term of eq, 3.9, it becomes:

.

The bar over f}l has to be continued as a second bar over ET,
because ET still depends on the position of the centre of [,

This expression suggests the introduction of the internal field
and the internal derivative of the field:

5:’52'%fk1 'El'lz”_’kl‘ﬂ_z 3.11

and
(VE)y = (VE®), - Z;'(kakz) o 7 3.12

In 3.12 a term with g has been omitted., With these expressions
3.9 can be written as:

Pe=% " Ei+ B ¢ (VEX

-2'a, *F -2'a, *H

S0k skl B0 S 2510 VR E

S Vet t 8
I_. ¢ ._ '_. -— I‘, . ._
+%9k Fir }_)I+%‘(_Lk ﬁklﬂl’%ﬁh-%sz Py 3.13

In the same way we find for 3,8:

T AT e i = R N e T A=
% =5 °E %Bk F El"%ffk Fepopp 314
When all correlations are neglected E; becomes:
Pe=2 " EL+ By i (VE)} 3.15

and




3.15 and 3,16 form together the simplest approximations for the
moments of an optically active molecule.

B, Molecular distxribution func tions

A further reduction of the equations 3.13 and 3.14 can be
obtained with the molecular distribution functions introduced by
Kirkwood (1936) and Yvon (1937) and generalized to include
orientations by Mazur and Postma (1959). These functions can be
derived from a general distribution function, which for a system
in equilibrium and neglecting velocity dependent effects can be
written as:

f =C exp{- Uo(ﬁN,bN)/KY} 317

Here x is Boltzmann's constant and UO(BN,HN) is the intermole-
cular energy dependent on the coordinates and orientations of all
the molecules. C is a normalization constant determined by:

<f>=1 3,18

where in the usual way brackets indicate integration over all
variables.

In view of the further reduction of equations 3,13 and 3.14 we
summarize the definitions and properties of the simplest mole=-
cular distribution functions.

The number density is defined by:

v®) = £ <5(®, - B)F>

Similarly:

N
ny(B.6) =2 <8(B; - B) 8(6; - 6)f> 3,20

nl(B,Q) is the density of molecules with position R and orien-
tation 6. In a homogeneous medium both ¥(R) and n(R,6) are
uniform - except close to the boundary of the system - and
therefore in fact independent of R. The molecular distribution
functions pertaining simultaneously to pairs of molecules are:
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ngB) = 5 <5, - BBE; - B> 3.21
1,)=
N '
nyBBI66') = 2 S, - B)S(B, - B )5(6, - 0)5(6, - 0')f> 3.22
"'J=
In a homogeneous and isotropic medium ny(ﬁ,ﬁ') and n,(R,R',6,6')
depend on R and R' only through the distance Bj?==f§'-§|. For
n?(ﬁ,ﬁ') Yvon derived a power series in 1/N:

2 1
ny@B.B') = v¥{g(Ryy) + Th(Ryy) + .0t} 3.23
For increasing Rjgz
g(Bj?)-——* 1 and h(RIQ)-——+ h,(Ry5) 3,24

(cf.Yvon (1937, I, p.25, eq. 67), F. Brown (1956, p. 65, 66))

Like ny(R,R'), ny(R,R',6,6") and similar distribution functions
for three or more particles tend to products of distribution
functions of a smaller number of molecules when the intermolecular
distances increase. Yvon showed that in liquids and gases con-
sisting of molecules which are small with respect to the wave
length of light, the influence of the correlation between mole-
cules is restricted to an area, which is also small compared to
the wave length., In addition Yvon proved that the reaction field
which still would exist if mechanical correlations could be
disregarded is due to interactions which are also restricted to a
region of the same extension. We assume with Mazur and Postma
(1959) that these results also apply for the orientational part
of the correlations.

In view of these considerations it is expedient to introduce
the concept of a “correlation sphere” with a radius of the same
order of magnitude as the “correlation length”, The idea is that
the molecule which is at the centre of this sphere feels the
influence of the molecules outside the sphere as if they form a
continuum. The molecules inside the sphere, however, have to be
considered as particles,

C.C Long-range and short-range inter-
ac'khiomns

With the aid of the molecular distribution functions the
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formulae for the internal field and the internal derivative of
the field can be written as:

E*(R) = E°(R) - v 2 [F(R,B')n,(R,R') + P(R")dR’

- v~ 2 [H(R,R" )ny(R,R") : Q(R')dR'

(VE)*(R) = (VE®)(R) - v"2 [VoF(B,R")ny(B,R") * P(R" )dR'
where the macroscopic polarization densities are defined by:
P(R) = vp, 3,217

QR) =vg, 3,28

The integrals over ﬁ' can be applied to the whole medium, since
the distribution function n?(ﬁ,ﬁ') becomes zero for distances
IR" - Rl smaller than a molecular diameter and therefore singu-
larities do not occur, Actually, however, a sphere with its centre
at R can be excluded from the integral without changing its value
as long as its radius is small with respect to the wave length of
light. This result which was already known in the theory of the
normal refraction also applies to optically active systems, as is
shown in the appendix. The derivation depends essentially on the
properties of F(R,R') for small values of the argument |R" - R| and
the assumption that the variations of P over a region of the
order of magnitude of the correlation sphere are comparable to
the variations of the primary field.

We will choose the correlation sphere as the volume to be excluded
from the integrations since outside this sphere nQ(B,ﬁ') = p?
(except to terms proportional to 1/N, which will be neglected).
3,25 and 3.26 become:

E*(R) = E°(R) + E4(R) 3,29

H(R,R') : Q(R')dR'




V
(VE)*(R) = (VE®)(R) - (JR) V. F(R,R') * P(R')dR'  3.31

Because the correlations between k and | vanish outside the
correlation sphere, the terms in the second and third row of 3.13
pertaining to molecules in that region cancel. The same applies
to the second and third term in 3,14,

The assumption that the correlation radius is small with
respect to the wave length implies that the fkl—operator for the
particles inside the correlation sphere can be replaced by the
static dipole-dipole tensor T, ,.

1
Tiq = VN 3.32
/lﬂrlk

Yvon showed this approximation to be valid in the theory of
normal refraction. In the case of optical activity it cannot be
adopted without further inquiry. However, the validity still
holds since the terms in the series development of F,, after T,
contain k to the second and higher powers., For similar reasons
H“——> v 1 I+ (See appendix),

In the appendlx it is also shown that 7 il = 0 v, Lgaim. 0,
Tpyryp=0andV, T,, r,, = 0. Therefore the third row of
3.13 and the thlrd term in 3,14 are zero. Thus we reach the
results:

'a_k'ff‘“E: (YE)Z"SI"?k * TP

and
I T Y T
9% =By "Ey -2'B, " Ty * By 3.34

The summations over [, now only refer to molecules inside the.
correlation sphere,

Apparently the electric field at particle k is composed of
three contributions:
a, The primary field E°,
b. The field due to the polarization outside the correlation
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sphere, which can be calculated as arising from a continuum, Ed
(3.30).

c¢. The short-range contribution due to the granular structure of
the medium inside the correlation sphere,

The derivative of the field can be divided similarly.

As will be shown in the next chapter, the field arising from
the continuum can be written as the sum of two surface integrals:
one over the surface of the correlation sphere, the other over
the external surface. This last integral cancels the primary
field (extinction theorem). A consequence of this situation is
that the electric field at molecule k can be calculated from
contributions arising from the immediate neighbourhood of mole-
cule k only.

Di v e m 8/ 1 0:'8ic.o piirc, Dol artzaddon
die:n sit i e B

In order to evaluate 3.33 and 3.34, which after multiplication
with v give the macroscopic polarization densities f and Q, we
have to substitute expressions for P and q;. For the moments of
a molecule [ we will not use expressions similar to 3.33 and 3. 34,
but instead we will try to write the polarizing field at l in
terms of E} and (VE)p. In a certain sense we could say that the
field coming into the correlation sphere from outside is regarded
as a "primary” field for all molecules which are inside this
sphere., This “primary” field is supposed to be described suf-
ficiently accurately by:

* (VE)} 3,35

where Lk is the vector pointing from the centre of k to the
centre of l. This field differs from the field which actually
polarizes molecule l according equations similar to 3,33 and 3.34.
The difference is due to the neglect of correlations between
molecules | inside the correlation sphere and outside. But the
idea of the correlation sphere is that these correlations are not
perceivable at molecule k and thus are of no importance for the
calculation of E;.
Up to terms quadratic in the polarizabilities 3. 33 becomes:
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This series can be continued to any desired accuracy, In the last
five terms we have omitted for the sake of brevity to substitute
the appropriate expressions for Pa and qp We will need these
terms later in a discussion of the reaction field., The success of
this development depends on how many terms have to be taken into
account,

The terms quadratic in the polarizability will be discussed in
some detail, Inthe third column the terms - >'a, * V| T, : 5, * E}
and - Z'E% - Yllﬂl * a; * E} are corrections to the first term

- %'gk *T,; * &, * Ej. These corrections arise if it is deemed
worth-while to account of third order polarizabilities. The ratio
of these correction terms tothe principal termisabout equal toa
molecular radius divided by the intermolecular distance. They are
as important in the theory of the static dielectric constant as
in the theory of refraction, Nevertheless they are almost always
neglected. The terms of the last column, proportional to the
internal derivative of the field, are responsible for optical
activity., The first is the counterpart of a molecular model of
coupled oscillators as are encountered in the theories of Born
(1933), Kuhn (1932), Kooy (1936) and Kirkwood (1937). The other
three are again correction terms, which are smaller than the
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first by the same previously mentioned ratio. Since for dense
media this factor is not very small (it can amount to 0.3) it may
be worth-while to investigate numerically the influence of the
contributions of polarizabilities, of higher order than the third.

Similar remarks apply to the expression for the moment 6; which
follows from 3. 34:

I’I - - - ; -“ l‘l - . . ¢
'_E:'I‘Ek Tyt 2 " B %(ﬁ’k Tere © ) 2 (VE)

WA= = =
G Tei

We will neglect the third term as it is a factor rlk/x smaller
than the second one. We mention that the second term is the
counterpart of the last quadratic term of 3,36,

The macroscopic moment densities P(R) and Q(R) can now be
written as

P(R) = A - E*(R) + B: (VE)"(R) 3,38

Q(R) = B' + E*(R) 3,39

>'a; NG Z'Ek : VBT,
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We have included all terms involving pair distribution functions
up to the third order in the polarizabilities, Explicitly a term

like v 2'a, * T,, * a, reads as
l

Ja(6) * T(R,R')a(6’ )n,(R,R:6,6' )dR'dOd’.

37




CHAPTER 4

THE GENERAL WAVE EQUATION AND THE
EXTINCTION THEOREM

TRty oductdlon

In the equations:

P(R) = A - E*(R) + B: (VE)"(R)

Q) = B' + E*(R)

E” and (VE)" depend on the primary field and the polarizations
everywhere in the medium. Thus they are relations between
macroscopic quantities which have the form of integro-differen-
tial equations., It appears to be possible, however, to derive a
differential equation for the moment densities P and Q.

The usual procedure to effectuate this (e.g. Rosenfeld, 1951)
consists in assuming for E a plane wave with constant amplitude
and then to show that the internal field propagates in a similar
way. An essential step in the derivation is the elimination of
the primary field E® which is annihilated by an integral over the
outer surface of the medium (extinction theorem).

Hoek (1939), however, showed that for an isotropic medium
without optical activity a more fundamental treatment is possible
which consists in first deriving the wave equation and then
proving the extinction theorem without specifying the wave
motion.

For optically active media Hoek returns again to the first
mentioned procedure, which is also followed by authors dealing
with anisotropic media (Darwin, 1924; Mazur et al., 1955, 1956,
1959).

We will show that Hoek's method can be generalized for an
anisotropic as well as optically active medium, Without speci-
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fying the type of wave motion we will derive a differential
equation for the polarization density P. With the aid of this
equation the extinction theorem, which is no longer necessary for
deriving the wave equation, follows,

AA The differential equation for an
arbitrary wave in an anlitsotropicoc

optlically aectivie mediumnm

According to eq. 3.38 and 3, 39:

P(R) = A « E*(R) + B: (VE)"(R) 4.1
QR) = B' + E"(R) 4.2

where:
V
EX(R) = ES(R) + (jn) {(V Y, + k?(_,’aﬁ))’(_[_\‘,[_f')} P4(R" )dR'

0
V
( r 7 i 19‘- ' v ' : ' '
¥ ofH){(\/a&'B + k laﬁ)vyy(ﬁlﬁ )} Qﬁy(ﬁ )dﬁ 4.3

l,
(V, Eg)*(R) =V ES(R)+ O(J‘R){(vﬁv8 + k*Ugs )V Y(R,R' )}Ps(R' )dR' 4.4

V;,means a differentiation at R’, and Vg, at R. V denotes the
outer boundary of the medium. o(R) is a small sphere, centred at
R, whichis excluded from the integrations. After the integrations
the radius of this sphere is reduced to zero.

o-ik|R'-R|
YR,R') = — — 4.5
i 47 |R"-R|

As products of third order polarizabilities are always ne-
glected we can combine 4,2 with 4.1:

QR) =B'« A~1 « P(R) 4.6

We need a number of formulae which are obtained through inte-
gration by parts:




vV v
{V' Y(R,R' )}P.(R")dR' = S(1) - Y(R,R')V' P.(R' )dR" :
o(JR) YRR )P (R )dR" = Si5 o(jﬁ) (R.R')V,Ps(R')dR" 4.7

V
1
vl ' ' RS 8 S
O(JR){VBV,YY(B;I_? )}PS(B )dB = Sﬁyg + 3 bﬁ)})g(ﬁ)

V
+ Y(R,R') V.V Ps(R" )dR'
o?JR) (_ — ) ﬁ % 8(_ ) —

V
! ' I ' ‘ ' - 1
oy (Va5 YRR )Py (B! )R’ = S(Z)5 - — (35,9, + eyel. )Py(R)

g

o J

V
. o#mm_e,i_f )V, VeV! Py (R*)dR" 4.9

The surface integrals over the outer boundary 2 with normal
unit vectors u are:

s
803 = | Y(RR' )u Py(R')dS

> b3
S[;ig = J{V,Y(B,R") }u Ps(R")dS - J YRR )ugVy Py(R')dS 4,11

2 2

S{3)s = JAVLVEY(R,R') Yu, Py(R')dS - [ {V,Y(B,R' )}u,yV; Py (R )dS
s

+ | Y(I_?,B')uaVév; Ps(R' )dS 4,12
With these equations 4,1 can be reduced to:

v

P,RB) + €@B) + S,R) + ?)‘R))(B,I_i')cp?(lj’)d}_{’ “:D
(2]
The following abbreviations are used:
P,(R)=P, (R 1—A P (R +1—1 3! (A1 $. V. + cyel. )P (R)
1(_)_ a-—)-3 aﬁlﬁ £) 5'(1‘3[765(/ )Ep( By '8 cyel. ) ul2

1
-?Baﬂs(%yvf cycl.)l’y(ﬁ) 4, 14




SR) = - A, FLR) - B,z V ES(R) 4.15

&5 2) . 1 3 2¢ (1
S,R) = -4, s( ) AuBres(A), {9( g# + k bﬁysg#)}

Baﬂs{s[(;;gy + k%, S(1)} 4.16
CP?(B') = = Aaﬁ{ va; + k?lfﬁy}l’y(é")
APl ) (9, ¢ KU VTP (B')
B,gs{V5V), + k%, Vi P (R') 4.17
Applying to eq. 4,13 the operator (A+ k?) leads to:
(5 + k2) Py(R) - P,yR) =0 4,18
since this operator annihilates the primary field and its

derivatives and also the integrals over the outer surface of the
medium. At the same time use is made of:

2
(A + k2) Jo) YBB") PofB )dB' = - <P y(R) 4,19

(see Hoek, 1939, appendix).

Substituting the expressions for CZ)I and CI)Q, the wave equation
can be written as:

1 1
(A+k2?) {Pa(_i_{)-—?-AaH!’ﬁ(l_f) +§AaEB;SS(A'I)m(§>ﬁ7V5 +cycl. )P (R) +

l

"Baﬁs(bﬂyv% + cycl.)py(ﬁ)] A

7 L 21)
- "‘a[i{vﬁ‘\y + k l[i'y}l)'y(ﬁ) +
1 -1 VAvY %
1a’,?[;765(/1 )6# {\/ﬁvy + k lﬁ‘y }vsl)#(}i) 4
217 7 =
RaﬁS { \7,,3\77 + k Lﬁ’y } Y/SPy(B) = () 4. 20
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For the general case of an anisotropic and optically active
medium this is a rather intricate equation., In chapter 5 this
equation will be applied to the case of an isotropic optically
active medium,

B. Extinction theorenm

The extinction theorem can be proved by substituting
(A + kQ)Cp (R') for <P (R') under the integral sign of eq.
4,13, By appllcatlon of Green s theorem, the integral can be

reduced according to:

V V
(7[%) Y®,B')(D + k?) P (R') = J(R)[)*(Lf,l_%’)uﬁ D,R) +

o

- (BYBE')) D ()]’

2 3P .(R') 3Y(R,R
. ' {87
J [m_%,i_f L l - } D, @®")

/

efh) 3P, (R’ 3Y(R,R'
- | [}*(}3,1_{’) qirj(- ) ) { (1/-1;— )} cpi(@')] dS 4, 21

(/ iy

The surface integral over the small sphere is equal to CP (R).

The integral over the outer surface is abbreviated by éS (R)

dn is a line element of the outward normal in a p01nt of the

surface in Q'—Space (R is to be regarded as constant).
Substituting this result in eq. 4.13 leads to:

E[R)+ S B)+ SyB) =0 4,22

which is the mathematical formulation of the extinction theorem.




CHAPTER 5

ISOTROPIC MEDIA

Intraduction

In section A of this chapter the general theory is applied to
an optically active isotropic medium. The limitations of our
method are discussed in section B, where also the results for two
simple models are given. In view of our results several recent
papers on this subject are commented (section C).

Ah. Rotatory power of an isotropiecec
medium

In case of isotropy the tensor A becomes the unit tensor multi-
plied by a scalar AO; B and ﬁ' are reduced to the permutation
tensor multiplied by constants B, and B;.

4aﬁ =AU, 5.1
3] s [~ /4 [3
Laﬁy = HOLHoJ 5.2
B, s, = B, lafy] 5.3

If 5,3 is substituted in 4.2 it follows that:

Q. =-0 and ( =0 5.4

ay Sya ‘aa

This means that in an isotropic medium the quadrupole moment,
which depends on the symmetric part of Q, vanishes (chapter 2D),
Substitution of 5.1, 5.2 and 5.3 in 4,20 yields:




1 : A+ k2P + A{V.V, + R2U_.} P
--\§'L10(4'>}Q)<74+ ] aﬁ+ afB B
+ (B, - B;)k?[qpy]vypﬁ =0

Multiplying 5.5 with Va and summing over a gives:

J

2 ?
1+=A |(A+Ek2)V.P, =0
? o a a

As P does not satisfy the same wave equation as E°® eq.

implies that:

VP, =0

a

3
if the assumption A, # - — holds.
Eq. 5.7 simplifies 5.5 to:

AP +k?—z——1’%A°P +k“?u laBy] V_P, = 0
¥ 1-.?'40 3 1_TLA0 A

We suppose now that there are solutions for P satisfying the
equation:

(A + n%k?)P =0

Substituted in 5.8 it follows that:

VxVxP=YV-P-AP =-AP=n%kP
it follows:
1+ %A T g
o 370 '\Txl’+n)/«:‘—9——g—'l_’=“
2 i?‘o ’ B g ‘%Ao
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From the equations 5,10 and 5,12 it follows that:

) ,
(n? = 1+ 2’40) =4 Bo -iBo 5 5.13
1 - 3 A, g = 3 Ao

with the corresponding solutions:

1
P+ —VxP=0 5.14
L

The meaning of this result can perhaps best be illustrated by
considering a plane wave travelling in the 3-direction:

-znkz?
P=Pe N 5.15
In components 5.14 yields:

t P, =0 5.16

With a right-handed choice of axes the + sign refers to a right-
handed, the - sign to a left-handed circularly polarized wave.
Calling the roots of 5.13 corresponding to the upper or lower
sign n,, n_:

s 5,17
n, ~n_=———0p"u .
1-44,

The rotationof the plane of polarization follows from Fresnel's
formula (cf. eq. 1,1):

which becomes:
k2 B' - B
y =t St A

o) 5.19
2 1-44

0

The right-hand side of 5,13 is very small with respect to the
other termsin the equation, For example a rotation of 1 radian/cm
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BO F o

t o sz,
2 is about 2. Therefore to a good

implies that (n_ - n ) or k is of the order of

magnitude of 10"5, whereas n
approximation:

Substitution in 5.19 yields:

k2 (n? + ?)
t=—|\——) (B' - B 5. 21
2 3 Y 4

"0

This equation has the same appearance as Hoek's final formula,
It also contains the factor B2:+2 to the first power. The dif-
ference is that our constants BO and B; incorporate the reaction
field and correlation effects. Given our model eq. 5.21 is in
principle exact, since B, and B; can be calculated to any desired
accuracy.

Although we have not explicitly dealt with mixtures it will be
obvious how the present treatment can be extended to systems
containing different molecules,

It may be of some interest to consider also other solutions of
eq. 5.8 which more closely correspond to what happens in actual
polarimetry. We introduce as a trial solution a plane wave, again
travelling in the 3-direction but having a real amplitude which
may also depend on x, ("linearly” polarized light with rotating
plane of polarizatioﬁ):

-tknz , 509
Do L4

P(x,) = P, (x,)e

Writing u for the unit vector in the 3-direction, the equation
V.= P =0 yields:

u v Bo=ikng P, 5. 23

since P, and P are real it follows that u = which implies
that we have a transverse wave,
With the abbreviations:
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o, 1+ %4 B8 Bl b,
i?= —34—2 ganq = 420" "¢ ;2 5,24
Pa g 29%= 42
3% 3 o
the wave equation becomes:
(A+ k%W2)P - 29V x P=0 5. 25

Substituting 5,22 in 5,25 yields:

P" - 2ikn P’ + k?(R? - n?)P + 2iknyu x P - 2vu x P' = 0 5,2
=0 =0 - = ) — =0

Writing the real and imaginary parts of this equation gives:

P, + k*(@? = n?)P. -~ 2yux P! =0 5.27

BirsssymgiP o @ 5.28

From these two equations EO and the value of n can be derived.
Scalar multiplication of 5,28 with BO gives:

P o Phim 0 5.29
el < -0

which implies that the absolute length of the vector BO is con-
stant, It is easily shown that the solution of 5.28 and 5,29 is:

Py)y = |P, |coslyx; + ) 5. 30

(Py)y = |P, | sin(yx; + ) 5. 31

This means that the angle X (in radians/cm) over which the vector
P, (“plane of polarization”) has rotated to the right is:

AARF =0y 5.32

which is the same result as 5.19, as it should be of course,
Differentiation of eq. 5.28 together with this equation yields:

P 4 o ?p =0 5.33
-0 -0

On the other hand the differentiated eq. 5.28 together with 5, 27
gives:




Paix k(o2 = RAP,

These two equations imply that:

1
ﬁ? + _7?

k2

For all practical purposes n =

B, Limitations an d applications

1t may be useful to recapitulate at this point the main
characteristics of our model and to discuss its limitations. We
consider the medium as an assembly of identical almost spherical
molecules each of which is characterized by polarizability ten-
sors a, 3 and S'. An arbitrarily selected molecule has a position
and orientation which is correlated with positions and orientati-
ons of other molecules within a sphere, the correlation sphere,
about the selected molecule. With molecules outside this sphere
no correlations have to be taken account of. This model of course
is only of limited applicability.

A first limitation consists in the neglect of the dependence of
polarizability terms on the density of the medium (Jansen-Mazur
effect). The influence of this effect on the polarizability
densities B and B’ has not yet been studied. In a classical pic-
ture of the polarizability this effect is due to anharmonically
bound electrons. Anharmonicity, however, is important in the one-
electron model for optically active molecules (Condon et al.,
1937). It consists of an anisotropic harmonic oscillator with an
added cubic term in the potential energy.

Perhaps more serious is the deviation from the spherical shape.
Here too, it is difficult to estimate the error introduced by
our assumptions without explicit calculations., This point could
be very important in the case of macromolecules, but on the other
hand, phenomenologically the optical properties of systems with
large molecules do not deviate essentially from systems with
small molecules.

A drawback of our model is that in the final formula B and B'
occur in the combination B - B;, which in our derivation of this
formula is more or less fortuitous. In other derivations based on
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simpler models (Born, 1933; Kooy, 1936) or in some macroscopic
derivations (Ramachandran, Ramaseshan, 1961) optical activity
is described by one second order pseudo tensor (gyration tensor),
which is not necessarily built up from two third order tensors.

Although the transition to an isotropic medium has not been made
until chapter 5, the general formulae which have been given
before, should not be applied to an anisotropic medium without
caution. For the molecular distribution functions were supposed
to depend on the distance between the molecules and not on the
direction of the line connecting their centres,

Applications

As an illustration we will derive the expression for the optical
activity of a molecule represented by coupled anisotropic polari-
zabilities, This model has been studied extensively by Born
(1933), Kuhn (1932), Kooy (1936) and Kirkwood (1937). To this
model we can apply equation 3.41 neglecting all S and '-tensors
and considering a molecule as an assembly of almost spherical
units with anisotropic polarizabilities a, interacting through
dipole-dipole forces. The fact that the units constitute an opti-
cally active molecule shows up in a strong correlation between
positions and orientations of the units. In this description the
molecule may be rigid as well as flexible. Neglecting correlations
between molecules, eq. 3.41 applied to the present model yields:

J

S S o T 4 .
oA >y TR TP T B

where j is the number of units in a molecule and v is the number
of molecules in 1 cc. This equation can be simplified by assuming
that the polarizabilities are linear along the unit vectors Qk
and b,:
a, = o.b b, 5.37
a, =0;b,b 5.38

Introducing (cf. Looyenga, 1955):

S B30k * rud by * o) = ria(ly © b)Y 5.39

g 4”r?k




os tuteson' 4
Dy ® Bebilye S (b, x b;] * Ly, 5. 40

we find:

B e U s
B =<u 2> .9 Sklnkl 5.41

In molecules where all groups attached to an asymmetric carbon
atom have axial symmetry about the bond joining them to the
asymmetric centre, these pairwise interactions contribute nothing
to the optical activity (Kauzmann and Eyring, 1941; Kauzmann,
Clough and Tobias, 1961), In that case higher approximations of
eq. 3.41 should be used,

As a second illustration we will for a simple case derive an
approximation to the reaction field. Let us omit the correlation
between the particles except that they can be approximated as
hard spheres which can not approach more closely than a molecular
diameter. In addition we will assume that the a polarizabilities
are isotropic. From eq. 3.41 it follows:

gaﬁy = V}«Jo[am] " vzzl af?‘ié”ri‘“

- v3' o FOTED P15,

-1/%';%[abe]vgk)ngl)r;lk)ao i S

1 (]

|~

+ u}l;' az'It(lgl)Tgik)[epy]po 5.42

The second and fifth term can easily be shown to vanish (see
appendix). The third is zero because the averaged fourth order
tensor is symmetric in the indices o and €, while the permutation
tensor is antisymmetric in these indices. For similar reasons the
fourth term is zero. The sixth term, which represents the first
approximation to the reaction field does not vanish:

TOETIp(IR) o 221 45
ad S€ 4877‘ (1'? a€ 5.43

where V is the volume of the medium and a is the radius of a
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molecule (see Kirkwood, 1936; Kirkwood's T is 47 times the
tensor T used by us). Summing 5.43 over all particles and substi-
tuting in 5.42 yields:

By s b
= Ys + a, 5.44
aBy rol Agﬂa‘?l Y.
Similarly 3.42 yields:
2
B o= v8 L e —0 L [a8)] 5. 45
apy = o |1 " Lgnad | ’

Aslanian and Vol'kenshtein (1959) also calculate the reaction
field in order to study theoretically the influence of solvent on
optical activity. They use a more specialized model than we do.
This results in a correction term which has the same shape but is
less simple than ours.

C. Comment on recent publications

I. Goossens (1958)

In his thesis Goossens aims at improving Hoek's theory on
optical activity by reformulating the theory in such a way that
Onsager-Bottcher's concept of the internal field can be used.
Hoek shows why the part (VE)Y equal to (V xE)¥ differs from
V x E¥ but is equal to V x E,where E is the average field which
occurs in Maxwell's equations. His proof is given for the model
leading to Lorentz’ local field. Goossens remarks that, in our
notation, (V x E)¥ is equal to - %-B”, where BY is the working
magnetic induction. Since the diamagnetism of a liquid implies
only a very slight difference between B” and B, this entails that
(V x E)*is (V x E). As this is a very general result it also
holds for the Onsager-Bottcher model.

Goossens’ fundamental equation (Goossens ID11 or ID16) can be
written as:

(n? - 1)E(R,t) = 4nrvoG()E(R,t) + 8nvo '"ikn[u x E(R,t)] 5.46

For comparison we reproduce our eq. 5.10:




(n? - 1)P(R) = A, — ; 2 PR) + (B, - B! )iknlu x P(R)] 5. 47

4o in eq. 5.46 corresponds to a_ of our theory and 810! to

(5, = B,). G(n) is a factor dependent on the refractive index

which converts the average field into the internal field. In the
2

Lorentz approximation G(n) = n_i%_Z , Whereas A = va, and

B = B = VCé - p ). In this case both formulae are the same.
If the Onsager Bbttcher model is applied:

n 3n? 1
mn =
m? +1 1- fo

5.49

and a is the radius of the cavity in which a molecule is embedded.
G(n) involves the influence of the reaction field. According to
Goossens only the internal field *) as far as it works on o is
affected. This has a definite influence on the final formula for
the optical activity. Numerically it becomes practically indepen-
dent of the refractive index.

According to our eq. 5.21, however, reaction field and corre-
lation effects only show up through their influence on (B, - B;)
whereas the dependence on rotation of refractive index remains
unchanged. Although the origin of this discrepancy is difficult
to analyse, it may be that those terms in R which have a, as the
first factor are contained implicitly in Goossens factor G(n).
It may be also that the neglect of the difference between BY
B is not sufficiently warranted.

II. Aslanian and Vol'kenshtein (1959)

These authors study the influence of solvent on optical acti-
vity. They consider the interactions between an optically active
molecule consisting of two coupled anisotropic polarizabilities

*) It should be noted that internal field here means the field
actually polarizing the molecule, It differs from our defini-
tion of the internal field (see p. 29).




with a solvent molecule having an isotropic polarizability. Three
corrections to the Lorentz approximation are introduced.

As a first correction they calculate the indirect coupling of
the anisotropic polarizabilities via solvent molecules, The re-
sult is an intricate equation which has the same general appea-
rance as our reaction field correction (eq. 5.44 and 5.45).

As a second correction changes in the anisotropic group polari-
zabilities due to inductive effects of the environment are
introduced., However, if the resulting equation (eq. 16) is
averaged, no change in the polarizabilities remains.

As a third correction Aslanian and Vol'’kenshtein introduce
hyperpolarizabilities of the different groups. This means that
the polarizabilities depend on the static field of the dipole
moments of other molecules. As we did not introduce the change of
the polarizability in our theory, we will not discuss this point
further.

I1I, Venkataraman (1961)

The starting point of this author is the polarizability theory
as applied by Ramachandran to the rotatory power of [(-quartz and
some other crystals. Small molecules as well as polymers are as-
sumed to consist of groups with second order polarizabilities
only. For this model Venkataraman arrives at an equation which is
similar to our eq. 5.41 which was obtained by specializing our
general equation (chapter 5B) for the same model.




APPENDIX

In chapter 3 (p. 32) it has been stated without proof that in
a number of integrals a spherical region does not contribute to
the value of these integrals, The integrals are:

v
> 1""-?_,! ﬁ‘(ﬁ'ﬁl )n?(ﬁlﬁl) . i_)-(ﬁ, )(ﬂ_{l

’
v=2 | H(R,R')n,(R,R") : Q(R')dR’

ey |

V
£
1% JI

GE(BR') * P(B')dB!

=3

The radius of the sphere which has its centre at R should be
small with respect to the wave length of light. Small means that
if the integral over the spherical region is expanded in powers
of k, terms with powers > 1 can be neglected.

In order to simplify the proof we assume that P and ( can be
represented by plane waves:

P(R') = P(R)exp{ikn(R-R' )} Ad
Q(R") = Q(R)exp{ikn(R-R")} A5
where n is n times the unit vector in the direction of the wave.

n is the refractive index.
Expanding F(R,R') * P(R') to the first power in k, yields:

T

$OFEE U
fa‘rz(”l ’A)l,’r':(r) & ,(_ —’ (“’a", r 1-'0“3}) +

n.
- ik = (3b,bgb,, - i‘a,e"y)] P4 (o)
= :




where b is a unit vector pointing from R to R’ and r = |§'-ﬁ|.
If now we integrate over the polar angles & and ¢, the term
independent of k and the term proportional to k vanish. The
higher order terms may be neglected according to our assumption.
Similarly for I, we develop H(R,R') : Q(R') which becomes:

A
- = [ (4 - S 1
HO.,B’)'(O‘ r)QB’Y(, ) - t [—,—/’ i- 1‘)bab[3b‘y + j(byoaﬁ + bﬁba‘y + bab,@'y))

ikn

S ¢ g ” :
—5 {156,bgb,bs = 3(bgb,B,s + bsbgdy, + bgbaérﬁy)}:llgﬁy(o) AT

+ ¢
B ay

Again terms independent of k and proportional to k disappear
after integration over a spherical shell, This result applies
immediately to I, as:

VaF(BB') = -H(B,B') A8

In addition we have to prove that:

T,,=0 A9
Teibiy 0 A10
Yolgy 20 All

Vilci, =0 A12

These equations hold since in each case integration of the
expression under the bar over polar angles gives zero. This can
be shown by straightforward calculations or more elegantly by
symmetry considerations.
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NOTATION AND SYMBOLS

The description of the optical rotatory power requires scalar
quantities and cartesian tensors of the first, second and third
rank. In some equations the tensors are written in components. As
much as possible the first five characters of the Greek alphabet
are used as suffixes, The summation convention is applied which
means that one has to sum over the three values of an index if it
appears twice (contraction).

We also use a shorthand notation where all vector and tensor
quantities are underlined. The dyadic product of two tensors of
arbitrary rank is denoted by writing one next to the other
without a connecting sign in between. A dot between two tensors
indicates a contraction, a colon a double contraction. For
example VE® in eq. 3.7is a second order tensor and V * E® = divE®
is a scalar. This notation, however, is not unambiguous as it
does not show which indices are contracted. To avoid confusion
some of the equations are given in both notations.

g8t 'of sy mbioLs

second order polari- 15 macroscopic, internal

zability tensor den- magnetic induction

sity 2 mormalisation con-

interaction tensor stant

between particles k auxiliary function

and [ dielectric displace-

scalar polarizability ment

density ) macroscopic, exter-

third order polari- nal electric field

zability tensor den- strength

sities (&)* internal electric

scalar polarizability field

densities (VE)® internal derivative
of the electric field




auxiliary electric
field

energy levels

dynamic dipole-dipole
interaction tensor
auxiliary function of
n

dynamic interaction
tensor

macroscopic magnetic
field strength
auxiliary integrals
molecular weight
macroscopic magnetic
dipole density

total number of mole-
cules in the system
macroscopic electric
dipole density
electric dipole tran-
sition moment

radius of a sphere
vector potential
unit vector
velocity of light in
vacuo
density
charge of particle 1
microscopic electric
field strength
distribution function
function of n
distribution function
distribution function
Planck's constant
microscopic magnetic
field strength

-1
current density

R, [_1,:’ ﬁk

dS

m,n

o(R)

'
Py

macroscopic higher
moment density
position vectors

| -4]

distance of A to mo-
lecular centre
auxiliary function
sur face integrals
over the outer boun-
dary

surface element
static dipole-dipole
tensor

absolute temperature
second order unit
tensor

intermolecular energy
volume of the medium
auxiliary vectors
Green’'s function

7

w
c

)

\

quadrupole moment
mass of particle 1
magnetic dipole moment
particle indices
refractive indices

n times unit vector
in direction of the
wave
distribution
tions
numbering
functions
volume of a small
sphere at R

dipole moment density
at B

func-

of wave
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dipole moment of par-
ticle k

momentum operator of
particle t

higher moment of par-
ticle k

distance between A
and B

distance vector point-
ing from k to 1

coordinate indices
scalar polarizability
second order polari-
zability tensor
permutation tensor
third order polariza-
bilities

scalar polarizabili-
ties

angle

Dirac o-function
Weierstrass symbol
auxiliary functions
line element of a
normal vector
polarizability tensor
density

orientation para-
meters of a molecule
Boltzmann's factor

1~
-]

17
-~

=
~—

IR IS IE o~
-

-
I=

"~

M9

S

position vector of B
in the molecular space
surface of a small
sphere at R

time

unit vector

charge velocity
position vectors in
the molecular space
Hertz potential

wave length

number density

charge density
macroscopic surface
scalar polarizability
constant
polarizability tensor
density

wave functions
scalar potential
rotation angle

phase angle

circular frequency
Nabla operator
Laplace operator
complex conjugate

function of P
function of E°
function of surface
integrals
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PART TWO

KERR EFFECT APPLIED TO CONFORMATIONAL
ANALYSIS




CHAPTER 6

INTRODUCTION

When a homogeneous isotropic transparant medium is placed in a
strong electric field, it becomes birefringent. This phenomenon
is known as the electro-optical Kerr effect (Kerr, 1875). Let us
consider a beam of light which passes through the medium in a
direction perpendicular to the static electric field. The
components of the light with the electric vector parallel to the
static electric field and the one vibrating perpendicular to the
field, propagate with different velocities resulting in a phase
difference A. This phase difference is proportional to the light
path | and to the square of the electric field E. The proportio-
nality constant B, which is called the Kerr constant is defined
by:

A =27BIE?

Usually A is given in radians, ! in cm. and E in e.s.u.. B depends
on the nature of the medium, its temperature and density and
moreover on the wave length of the light.*)

A is also proportional to the difference in refractive index
(n -ns) of light vibrating parallel and perpendicular to the
electric field:

2ml(n_=n_)
Mol ey SRSl
A

6.2

where A\ is the wave length of the light in vacuo. Combining 6.1
and 6.2 yields:

6.3

1
E?

To indicate orders of magnitude B can amount from 7.10"2 for

*) In part two of this thesis we use electrostatic units.
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liquid carbon tetrachloride to 4.10"° for liquid nitrobenzene
(both at room temperature for yellow light). Moreover it may be

positive as well as negative.
The results of measurements on gases are usually expressed with

another Kerr constant:

K s 6.4
" n n E? i

wheren is the refractive index of the medium. K has the advantage
of being practically independent of the wave length.
For liquids the molecular Kerr constant is used:

§ (;}-J’lBM
K's ——s . 6.5
n" (m? 4+ 9)%e + 2)%

where M is the molecular weight, € is the dielectric constant
and d is the density of the medium. Sometimes the factor 6 is
omitted. It is supposed that to a first approximation this
constant mk characterizes the molecule independent of its state
of aggregation.

The counter part of the Kerr effect is the electric di-
chroism. Both effects give in principle the same information since
from a complete knowledge of the dispersion of the Kerr effect
the electric dichroism can be calculated by the Kramers-Kronig
relations and vice versa. Unlike the similar situation in optical
rotation where the dispersion of optical activity can be measured
through an absorption band, the determination of electric
birefringence is practically unfeasible in a region where ab-
sorption occurs. Although the study of electric dichroism has
become possible since the pioneering work of Kuhn et al. (1939),
Liptay and Czekalla (1960) and Labhart (1961), and its theoreti-
cal interpretation has certain advantages, its application is
restricted to those substances that have easily accessible
absorption bands.

In gases and liquids the electric birefringence is mainly due
to an orientation of optically anisotropic molecules. If the
molecules have a permanent dipole moment its coupling with the
static field will in the first place determine the degree of
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orientation. Usually smaller in magnitude is the coupling of the
anisotropic static polarizability with the electric field.

In the solid state orientation of molecules may still occur but
generally the electric birefringence will be due to a deformation
of the molecules and of the crystal lattice. Deformation effects
may also play a role in the Kerr effect of isotropic molecules
like CH4, CCl4 and A in the gaseous state. It may also be that
other more subtle explanations apply in these cases., In the
liquid state the molecular distributions may become anisotropic
(anisotropic electrostriction).

Our measurements pertain to dipole molecules only, so that our
considerations will be restricted to orientation effects. Without
going into details one can say that the Kerr effect gives
information about the molecular shape. In a flexible molecule it
may contribute to the conformational analysis. For this purpose
the measurement of the Kerr effect is not sufficient since the
interpretation requires also the knowledge of dipole moment,
average polarizability and depolarization factor. These additio-
nal data can be obtained in favourable cases from measurements of
dielectric constant, refractive index and light scattering. In
other cases some of the data have to be estimated, for instance
with the aid of additivity rules.

A detailed theoretical interpretation is well-founded for
measurements on gases, but here the experiments are difficult and
the results lack sufficient accuracy. Moreover many chemical
compounds have too lowa vapour pressure at normal temperature and
decompose at higher temperatures. With liquids the measurements
are less difficult but the theoretical interpretation is hampered
by the insufficient knowledge about the electric field working on
an individual molecule. This difficulty appears twice, First in
estimating the field that actually orients amolecule, Secondly the
polarizing field of a light wave is not exactly known,

As a solution to these problems we have assumed that the formu-
lae which apply for the gas phase can also be used for conside-
rations of the liquid phase if the local fields are calculated
according to the Lorentz model. Some authors (Klages, 1952;
Steppuhn, 1956; Narayana Rao, 1958) use a model of the Onsager-
Bottcher type. Becauseof the uncertainties of some of the assump-
tions (e.g. shape of the cavity, effective “dielectric constant”
of the molecular substance) we did not consider it worth-while
to introduce refinements which go beyond the Lorentz model.
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The orientational theory for gases

For a gas of not too high density the refractive index of a
light wave is related to the polarizability of the molecules by
the Lorentz-Lorenz equation:

n? - 1 brr
—2—-_— fl\'a 6.6
n* + 2 3

N is the number of molecules per cc., a is the mean polarizabili-
ty.

In the case of electric double refraction this equation has to
be replaced by two equations, one for light vibrating parallel
(6.7), the other for light vibrating perpendicularly (6.8) to the
static electric field.

ng -1 Im
—_ = — Na 6.7
n2*29 3 P

P

nf -1 4

= = — Na 6.8
nz + ? 3 s

s

o and o are the mean polarizabilities in parallel and perpendi=-
cular directions. The problem is now to relate these polarizabi-
lities to the anisotropic polarizabilities of the individual
molecules.,

Each molecule is characterized by a dipole moment, a static and
an optical polarizability tensor (visualized as polarizability
ellipsoids). Usually it is assumed that the principal axes of
polarizability are the same for static as well as for optical
polarizabilities., Moreover a relation suggested by Gans (1921) is
used stating that the optical polarizability is equal to the
static polarizability times a factor which depends on the
frequency of the light, The static polarizabilities along the
principal axes are denoted by EI,IT? ,5?, the optical polariza-
bilities by Ay,09,0y. The components of the dipole moment along
the same axes are [l , lo, fg-

The mean polarizabilities a ,a_  are obtained by averaging the
molecular polarizabilities over all orientations each with its
proper Boltzmann factor. The procedure is somewhat more compli-
cated but essentially similar to that followed in the theory of
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dielectric polarization. If the expressions for the mean polari-
zabilities are substituted in the equations 6.7 and 6.8, the
difference of these equations gives the Kerr constant " ’:

K ﬂ('lz+?)? 9)2N(6, + €
= — € + 6, + 0 6.9
. 7k Lo ( )N, +6,)
with
£ = 1 N ~ el -~
b [(‘11 =@y = aght(@y 2 Balla, = ag) ¥
+ (@5 -3g)(a, - aﬂ] 6.10

) 1
b e 2 g e Qi g2 2
62 45}227? [(;“_1 #Q)(a1 (1.?) i (,u? ILL3)(Q? (13) ¥

+ (,u:‘; - pg)(a? - aj)] 6.11

€ is the dielectric constant., U, is called the anisotropy term,
0? is the dipole term.

In principle it is possible to determine FI and 5? separately
from the temperature dependence of the Kerr constant. As ﬁ? is
often much larger than U,, this method is inaccurate. Therefore a
different procedure is accepted. With the Gans relation:

= = o - X
’Oi=(l?=a—‘?=i=n‘f’-1tn°°-1 6.12
dolfol,  wge . @i & dnel

61 becomes:

: SO
3, = —— ———— Sk 2 . 2 o 9
435 45kT n - 1 [(uf 'l?) . (a? a3) ¥ (a3 aj) ] 6.13

The expression between brackets can be derived from the degree of
depolarization of Rayleigh scattering. n, is the refractive
index for infinite wave length which includes the influence of
infrared absorptions.

From the knowledge of ¢y and h?, which can now be calculated
from the Kerr constant K, one can determine a,, a, and a, sepa-
rately if the mean polarizability, the dipole moment and its
orientation with respect to the principal axes are also known.

*) Debye and Sack (1934) give the derivation which was originally
formulated by Langevin (1910) and Born (1918).
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If the Gans relation holds or nearly holds 51 is always positi-
ve. A negative sign for K can only be caused by the dipole term
f.. For example in chloroform where the dipole lies along the
axis of the least polarizability, the Kerr constant is negative.
As Fj and U? have a different temperature dependence, it may
happen that the Kerr constant changes sign at a certain tempe-

rature (e.g. ethylalcohol).

Molecular Kerr constants from me a-
surements on solutions

For dilute solutions Briegleb (1931) suggested the following
formula:
mkl? % mkfff % mk?f? 6.14

where the suffixes 1, 2 and 12 refer to solvent, solute and solu-
tion. f, and f, are molar fractions.

mK19 is calculated from experimental data according to the
formula:
Ghrljgiilz;wjg

Kip= — ‘ : 6.15
RAZL g e )ALy v5) 5y

for mK the same formula applies but with suffixes 1 instead of
12.

If now mk? is calculated from eq. 6.14 the results obtained by
several authors show that the values scatter such that the
applicability of this method has been questioned (Stuart, 1952,
p. 430). Therefore Le Févre and Le Févre (1955, p. 281) have
suggested a somewhat different procedure. First the quantities
B, €, d and n which are the direct results of measurements on
dilute solutions are smoothed as linear, or when necessary, para-

bolic functions of f.:

1

€40 = 51(1 + ifg e se ) 6.16
dyo = de(1 + nfy + .ei) 6.17
ng, = "1(1 + Qf? By oaie) 6.18
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BI? =B,(1+ Kfg+ «v2) 6.19

Inserting these expressions in eq. 6.15 leads to:

oy e
wl Ks) * Mj-n+§+»<—H{,-Jgej K 6. 20
where:
n? 2
H=4-2—L J=
n1+? €1+?

M1 and MQ are the molecular weights for the solvent and solute.
For a gas it follows from eq. 6.4, 6.5, and 6.9:

K 2264 @, + 6,) 6.21

m 9 1 =9 .
It is assumed that for GD(ml\'?) the same formula holds especially
if the solvent has a low Kerr effect and consists of molecules
which presumably have no specific interaction with the solute
(e. g. CC14). From the formulae 6,10 and 6.11 for 51 and ﬁ? 1t
follows that the molecular Kerr constant depends on six unknown
quantities, the three principal polarizabilities and the three
components of the dipole moment with respect to the axes of the
polarizability ellipsoid. Measurements of the dielectric constant
give the absolute value of the dipole moment. Very often it is
possible to make a reasonable guess as to the direction of the
dipole moment with respect to the principal axes of polarizabi-
lity. For example the dipole moment of thiophene will un-
doubtedly lie along one of these axes. Even in these favourable
cases there remain three unknown quantities ay, @, and @ e
Therefore two other equations are required to determine the three
principal polarizabilities. One of these equations is obtained
by measurement of the molar refraction, which gives a value of
the mean polarizability:

1
.1=-}—(r;1+(1?+a_?) 6.22

Measurement of Rayleigh scattering yields a value of Hl which
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supplies the third equation (Le Fevre and Purnachandra Rao, 1957;
Vuks and Elminov, 1953). Since it is difficult to measure the
Rayleigh scattering of solutions accurately and since the inter-
pretation is still uncertain, a different method suggested by Le
Fevre and Le Févre (1955, p. 287) may be very helpful. It consists
in estimating the polarizabilities by adding bond polarizabili-
ties (i.e. addition of polarizability tensors). This method
becomes especially important if the molecules under investigation
exist in several conformations. In those cases a knowledge of 51,
although giving additional information, is still insufficient to
determine the occurence of the different steric possibilities.

For the purpose of conformational analysis the procedure
consists in calculating for each of the conformations the mole-
cular Kerr constant mK. Both Hj and ﬁ? are calculated from an
estimate of the dipole moment (magnitude as well as direction)
and an estimate of the polarizability tensor by the just mentioned
additivity rule. If there are not too many conformations and if
their mK-values differ notably, it may be possible to decide from
the experimental mk which conformations are the preponderant.
Originally the method of addition of bond polarizabilities was
introduced by Meyer and Otterbein (1931). This method is justi-
fied if the electrons of different bonds do not interact (ec. f.
Hirschfelder et al., 1954, p. 942). According to Ingold (1953,
p. 136) and Le Fevre and Le Févre (1955, p. 300) bond polarizabilities
may not always be considered as independent of the rest of the mole-
cule, Electromeric and inductive effects may interfere, Neverthe-
less it has appeared that the additivity rule leads to satisfactory
results, if used in the same class of compounds. We have used
bond polarizabilities which were derived by Le Fevre and Le Fevre
from known Kerr constants and refraction data assuming that the
C-H bond is isotropically polarizable,

The dipole moment to be used in the formula for the Kerr con-
stant requires some comments, Le Févre and Le Févre (1955, p. 285)
suggest that the dipole moment should be determined from soluti-
ons in the same solvent that is used in measurement of the Kerr

constant. For the calculation of the dipole moment we followed
the method of Halverstadt and Kumler (1942).
The formulae are:

9RT -
M= /m_f\A (ld - HD) 6.23



where:

o = M( )
€y snd T M d 1 1
PZ=_1__ _.2+M1 + 1 2/0 6.24
€, + 2| M, ofo /, (€4 +2)
and
9
_n[‘)-l M
Rn— 9 — 6.25
nn'f? d

for the pure liquid. In the case of the solid m,m' -dianisyl Hn is
determined from the solutions by the formula:

(Bn ) 5

2 i\ 37 2 >

-1M of . M - 1 d

CD(HD) -~ n1 -—2 + 6 (f2 - -(;1 + '112 M
1

I 6. 26
nZ+2d (n? +2)? d; nj+2 \3f,/ 1

1 1

In the following chapters a description of the apparatus will
be given (chapter 7) and the results of our measurements on
1-chloro-1-methyl-cyclohexane, anisole, m,m’'-dianisyl (3,3'-
dimethoxy-biphenyl) and thiophene. At about the same time Le
Fevre et al. also measured the Kerr constants of anisole and thio-
phene in CCl4 as solvent. The agreement between their results and
ours is satisfactory. In addition to CCl4 we also used cyclohexane
as a solvent for thiophene and benzene as a solvent for 1-chloro-
1-methyl-cyclohexane, anisole and m,m'-dianisyl.

The benzene solutions showed a marked solvent effect, The Kerr
constants of 1-chloro-1-methyl-cyclohexane measured in CCl4 and
in benzene differed considerably. The same phenomenon was obser-
ved with anisole, but not with m,m’'-dianisyl. Klages (1952) found
similar effects for several polar compounds. The Kerr constants
at infinite dilution from benzene solutions was much smaller than
those from CCl4 or heptane solutions. Since these deviations
could not be explained with Onsager's internal field Klages
concluded to a specific interaction between benzene and the
solutes.
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CHAPTER 7

THE APPARATUS

.ot rio.dnec t 1 on

Electric birefringence of liquids is measured by a Kerr cell,
which consists essentially of a parallel plate condenser. If a
potential difference is applied to the plates, the homogeneous
electric field makes the medium in the cell double refracting.
The cell, then,is optically equivalent to an uniaxial crystalline
plate, cut in a direction parallel to its optic axis. The two
components of a beam of light, one polarized parallel and the
other perpendicular to the electrostatic field, entering the cell
with the same phase emerge with a phase difference. The generated
retardation is generally quite small and its measurement consti-
tutes a difficult problem.

For the determination of such small phase differences several
methods are known. They all have in common that light is used
which propagates in a direction perpendicular to the static
electric field and which is plane polarized at an azimuth of 45°.
The beam of light becomes elliptically polarized during its pas-
sage through the cell. The methods differ in their way the
ellipticity is measured. In the relative methods a second Kerr
cell is used to compensate the effect of the first cell, In the
absolute methods the ellipticity leaving the Kerr cell is deter-
mined., For this purpose a variety of methods is available. We
will describe in some detail the two methods which we have used.
The first we call the direct method as it is based on the compa-
rison of the intensities of the components of the light polarized
parallel to the principal axes of the ellips. In the second, the
Sénarmont method (1840), the elliptically polarized light is con-
verted into linearly polarized light, the plane of polarization
of which is rotated with respect to the original azimuth. Al-
though the measurements reported were performed in the visual
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part of the spectrum we always used photoelectric methods. This
made it possible to extend these measurements also to the ultra-
violet part of the spectrum.

The direct method has also been used by Ingersoll (1931)
and Benoit (1951). The Senarmont method is very similar to
that described by 0'Konski and Zimm (1950). They used a Foucault
prism as % A-plate whereas we used a Soleil-compensator.

In A we describe the experimental arrangement. B gives the
discussion on the optical method. C contains some additional
remarks.

A. Experimental arrangement

The arrangement of the apparatus®) is illustrated in fig. 1.

Figure 1, Optical arrangement
L. Highpressure mercury arc (Philips, HPK 125 W, brightness 600
Stilb).
S, Aluminized mirrors,
M. Mirror double monochromator (Kipp, type van Cittert, opening

F/6).
Le., Quartz-LiF-achromate (focal length 10 cm,).
P. Polarizer \ Glan=-Thompson prisms (effective aperture
A, Analyzer J 1 5% eut)s

K., Kerr cell. :

Sc, Soleil-compensator (Steeg und Reuter), adjustable at 1/1000 A
at 546 mu.

D. Diaphragm (diameter 0,6 cm.).

PM. Photomultiplier (RCA 1P21).

G. Mirror galvanometer (Kipp, type A5, sensitiveto 5° 10-11 A.)e.

The photocurrent was measured without amplification. The analyzer
was fixed in a graduated circle equipped with a vernier, adjus-
table to one minute.

The hollow mirror S, imaged the light source on the entrance
slit of the monochromator., With the collimator the exit slit was
focussed on the photomultiplier. All parts at the right of M were

*) Our sincere thanks are due to Messrs. G. Horsman, R.0. de
Jongh, L. Kok and J. van Thuijl for their assistance inthe con-
struction of the apparatus.




fixed on an optical bench of 2 m. length. This rather long bench
was very convenient in order to eliminate perturbing effects of
reflections in the Kerr cell and in the compensator. For that
purpose the distance between D, A and PM and the other parts of
the apparatus was made as large as possible., Although this arran-
gement does not guarantee an optimal light flux towards the pho-
tomultiplier, the disadvantage of a waste of light energy is
largely counter-balanced by the rejection of undesired reflec-
tions. Since our measurements are made at the very intense green
Hg-line, the remaining light energy was always sufficient for our
purpose., The beam of light was limited in horizontal direction by
the entrance of the Kerr cell (0.4 cm.) and in vertical direction
by D (0.6 cm.).

Figure 2, Kerr cell

Our Kerr cell (fig. 2) was a variant of the one described by Le
Févre and Le Févre (1953). The electrodes (E), forming a parallel
plate condenser can be thought of to be constructed from a cy-
lindrical brass rod (length 20 cm., diameter 4 cm,) cut along its
axis. They were gilded to avoid corrosion by chemical substances.
The flat sides are kept at aminimal distance by eight glass tubes
(T) of equal length (0,354 cm.). Small glass rods (R) which fit
in holes of the plates keep these glass rings in position. From
the ends the cylindrical sides were fraised over a distance of
4 cm. to make the back flat, so that the correction formula of
Chaumont (1915, 1916) for edge disturbances of the electric field
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could be applied. The condenser fits in a double-walled pyrex
tube (inner diameter 4 cm.). Spacers push the electrodes away
from the wall and keep the plates at the minimal distance. The
pyrex tube was thermostated (25.0°C). Quartz windows (W) were
pressed against the ground flat ends of the glass cylinder and
made a liquid-tight connection. These windows (optically ground
fused silica, diameter 45 mm., thickness 2mm.) showed a small
birefringence (20 minutes). In the description of the optical
method we will discuss its influence. Thin platinum wires (P),
connected to the electrodes, conduct the electric potential
difference through long side arms (length 5cm.) via liquid-tight
seals to the outer connections of the cell. The cell could be
dismounted for cleaning purposes.

Before filling the cell the liquid (100 cc) was filtered
through a rough glass gooch in order to eliminate dust particles.
Gas bubbles had to be avoided as they enhance the chance of
electrical break-down. The cell was mounted on sledges and was
adjustable in all directions. A plummet served to direct the
electric field in horizontal direction (estimated error 0. 5.

An earthed E.H.T.-unit (Philips, 25 kV.; Siezen and Kerkhof,
1948) supplied the DC voltage. The high tension side was connected
to earth via five thermostated precision resistances in series,
each 500 M () (Resista, Rsg 8500). The current was indicated by
a pA-meter (Goerz, type 124217, 0-30 pA, class 0.5) with a knife-
edge pointer and a mirrored scale. With cable, designed for neon
illumination, the tension was led from the connection between the
first and second resistance on the high voltage side (20 kV) via
a switch to the Kerr cell. All sharp edges in the electrical
circuit were avoided and the relative humidity of the room was
kept low (20-30 %) in order to suppress the spraying of the high
tension. The voltage difference on the Kerr cell was measured by
reading the pA-meter and multiplying the current with a constant
resistance which was determined as 1,86 °* 10°Q (error 1.5 %).

The 1P21 photomultiplier was fed with stabilized 1000 V DC. No
absolute measurements of the light intensity were made, since only
relative intensities were needed. To avoid the dependency of the
photocurrent on the plane of polarization of the incident light
(Glancy, 1952) 2 piece of white type-writer paper, which .depola-
rized the light sufficiently, was wrapped around the phototube.
At the green mercury line the waste of light intensity was of no
importance. In order to avoid leakage due to humidity the dynode
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resistances were heated to some degrees above room temperature.
As the photocurrent was usually of the order of 10°% A, fatigue
effects were negligible. The dark current was about 4+ 107'% A, In
order to keep the photocurrent constant, the light source as well
as the E.H.T.-unit were fed by stabilized power supplies.

B. The determinationof the phase difference

I. The direct photoelectric method (D)

In this rather simple method the uncharged Kerr cell is placed
between two crossed polarizers. The photocurrent, which is mini-
mal in this case, rises to a certain value when a tension is ap~
plied to the connections of the Kerr cell. This value is re-
established after the high tension has been switched off, by
rotating the analyzer. The angle of rotation equals half the
induced phase difference in the Kerr cell.

Unfortunately this method is not very suitable for small
retardations, as the sensitivity to adjust the analyzer to a
certain intensity is minimal in the crossed position (cf. H.
Rudolph, 1955). Another disadvantage is the interference of a
small retardation in the quartz windows with the determination of
small phase differences in the Kerr cell.

As an illustration we consider a system of two double refracting
plates, placed between a polarizer and an analyzer (fig. 3).

6, 6,
P 12 A

Figure 3,
P and A are the polarizer and the analyzer. OP and OA are the

vibration directions of polarizer and analyzer. OXI. OX2 are the
fast directions of the plates 1 and 2. b,, 6, are the phase

75




differences introduced by 1 and 2. @, Yy Vo are the azimuths of
the analyzer and the plates 1 and 2, measured from OP. J2 is the
intensity emerging from the analyzer, According to Jerrard

(1938, eq. 4b):

)
J2 = cos’p + shl?yjcos?6¢ B yﬁ)sin?(y? - 71) sin? ?5

o

+ cos27y,sin2(¢ - 72)sin?(7? - y,)sin? =£

¢

+ sin2y,sin2(¢ - 7?)c032(y? - 7¢)sin

(5]'

- sin?jyisin?6¢ - y?)sin?(y? - 71)sin? 5

where the intensity emerging from the polarizer is assumed to be
1. If we have only one plate: ¥, = 6? = () and

g ®
+ s1n‘”y151n 2¢ - 71)51n ?; 7.2

The direct photoelectric method consists of one retardation

o

plate (Kerr cell) at azimuth 7, = 45” and crossed polarizers.

Therefore:

Ji(ryau5° ¢=90%) = S18° 2 1K

With zero static field b1 equals zero and for a certain azimuth of
the analyzer:

5
Jo = cos“¢ 7.4

When J from eq. 7.3 is equal to J, of 7.4, the difference of ¢
from the crossed position equals half the phase difference of the

Kerr cell,

To discuss the influence of a birefringent window let us assume
that the false retardation (?2) can be described with an extra
plate of the same azimuth as the Kerr cell, We consider b , to be
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so small that sinéi? ¥ 5? and cosr‘}? ¥ 1. Inaddition we assume that
~

siné'j T 81 and cosbl = 1.
The intensity with crossed polarizers is now:

1 .
J?=Z(b1 + 82) Tsd

After the high tension on the Kerr cell has been switched off,
the intensity reaching the photomultiplier is (see eq. 7.2):

2 2

2 b?
Jj = cos“p - —= cos2¢ 7.6
/
Let X = 90° - ¢, then:
2)?
J, = sin?y + -2 cos2% ;{5

2 4

Equalizing J? (eq. 7.5) and .Ij (eq. 7.7) and assuming that
~ - ~

sinX = X and cos2X = 1:

)
1 “
- N2l 2 2
F (51 - o?) 7 g - 7.8
Assuming as an example, 5, = 0

1
Z=i3\/§51 7.9

instead of X =+ % 0, if b? = 0. This means that considerable
errors can be introduced in the determination of small Kerr
effects, when the quartz windows are birefringent.

II. The Senarmont method (S)

In the Sénarmont method a %-wave plate (with azimuth 0°) is used
to convert the elliptically polarized light emerging from the
Kerr cell in a linearly polarized one. Combined, the Kerr cell
and the Soleil-compensator act as a rotator of the plane of
polarization. The angle over which the plane is rotated equals
half the phase difference in the Kerr cell.
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This is illustrated by substituting in eq. T7.1: %, = 45°,

¥g ™ 07 Sy = 90°, Then:

o, 1 [ )
= 528 - T o fR R B A (B | o N
J? cos“@p - cosZPsin 5 ik sin2 @ \ sin 9 + 45

Or

Or

J‘.‘,=sin?<'/_+:?—1) .12

Evidently for £ = T] . J? = 0,

Now the influence of birefringent windows has to be considered.
A blrefrmgent plate before the Kerr cell with an azimuth of 0°
or 45° doesnot change the angle difference of the minimum of
light intensity with and without static electric field. Nelther
would the exit window show any change when its azimuth is 45°.

We will show, however, that this does not apply when the azi-
muth is 0°. This situation is equivalent to the case that the %-
wave plate has not an exact phase di fference of 90°, Now we have
to substitute in 7.1: %, = 45°, 5 0° y 09 = 90° + p.

Then:

where X = 90° - ¢

9
P4

O 7n 1 1
8 A C
J., = cos“¢- cos2¢sin” ;1+; sin?2 [sm?I (01”)+450
Or
9 0 . T =
J, = cns‘(q, - -—I) - sin2¢ sin o sin” s .14
L {) ¢
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For estimating the minimum value of J?, —2 = 0, Or:

sin?@cosbi = cos?¢sin51cosp 7.15
giving
tan2¢ = tan o, cosp 7.16

o

Introducing X = 90" - ¢

n

tan2X = -tand, cos p 1.3

~

Suppose now that tan2X 2X and tan o
then: 2X = -d,cosp

In this case p may be as large as 8° before an error of only 1%
is made, This result indicates that the influence of the bire-
fringence of the quartz windows is negligible in the Sénarmont
method.

Similarly it can be shown that the azimuths of the Kerr cell
and the Soleil~-compensator could be adjusted sufficiently pre-
cise to keep the error in the final determination of the retar-
dation in the Kerr cell far below 1%. The same applies to the
quality of the compensator. The Kerr cell could be adjusted
within 0.5° the compensator even better.

The method of symmetrical angles (H. Rudolph, 1955) was used to
determine the azimuth of the plane of polarization of the beam
emerging from the compensator. We chose a symmetrical angle of
2° to 3° to combine the sensitivity of the optical method with
that of the photoelectric system.

C. The performance of the apparatus
As to the two polarized lightbeams, according to Kerr's law:
A = BIE? 7.18
Here A\ is the pathway difference expressed in wave lengths. [ is
the length of the effective lightpath (in cm.) through the Kerr
cell, E is the electric field (in e.s.u.). B is the Kerr constant
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(in e.,s.u.). Both the methods D and S give as a result an angle
¢ equal to half the retardation in the Kerr cell. Consequently
= —— where ¢ is expressed in degrees,

180
The effective lightpath [ through the Kerr cell has been calcu-

lated by a formula due to Chaumont (1915, 1916), to include edge
disturbances of the condensor plates:

Limil 0[1 d"l (1 a) 19
= + - + - y + - 7.168
° g a Re d

l, is the length of the plates, a their distance and d their
thickness (all in cm.). In our case lo = 20,02 cm., a = 0.354
em., d = 0,97 cm, Consequently ! = 20.22 cm., We estimate the
error in l to be certainly less then %%. E = - , where V is the
potential difference between the plates (in e.s.u.). V = 3°0 ”
where R is 1862M() and x is the current (in pA) through R.

Consequently E = 350 * 0.35%

-

and B = % 0.895 + 1076 e,s.u..
x

For estimating the accuracy of the determination of B, we list
the following relative errors: resistance 1.5 %, current 0.5 %,
length of the Kerr cell 0.5 %, phase difference ¢ about 1 minute
for the method S and 2 to 3 minutes for method D. The relative
error in the determination of A depends on its absolute value,
but for the values occuring in our experiments it is about 1 %.
Altogether the relative error in B is about 5 % or in some un-
favourable cases of very low B-values perhaps 10 %.

The internal consistency of our measurements, however, is much
better since errors in the high resistance and in the lizhtpath
of the Kerr cell remain constant. From the evaluation of our
measurements by the method of least squares it follows that the
standard deviations of B-determinations are in the range of
b = 3 %

Since the main sources of errors are to be sought in the mea-
surements of the azimuth of the analyzer andof the current through
the resistance, the accuracy of the measurements can be improved
by using better devices for thedetermination of these quantities.
For instance a Faraday cell has to be preferred to an analyzer
with mechanical adjustment,
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CHAPTER 8

o F Lt:he

MEASUREMENTS AND THEIR EVALUATION

apparataus

In order to check the reproducibility of the measurements with

our Kerr apparatus we determined the Kerr constants B for the

pure solvents CCl4, CeHg
of determinations were performed,

and C_.H

With each solvent a number
sometimes using the direct

method sometimes the Sénarmont method. The results are given in
table A. Brackets and asterisks indicate that the samples were

taken from the same batch of destillate.

Cell12
Method D Method S Method S Method S
B.10% B. 108 B. 108 B.10°
0.77 (0.88 (4.21 (0.63
0.84 0.87 4,22 0.59
(1.17 0.89 4.19* (0.61
1.08 0.89 0,57
(0.92
0,90
(().86
0.85
(0.85
0.85
Mean value 0.97 0.876 £ 0,008 4,21 = 0,02 4,21 0,60

Table A




From inspection of these results it becomes clear that method S
is superior to method D. Probably the main reason for the lower
reproducibility of method D is its higher sensitivity to the
birefringence of the Kerr cell windows. These had to be removed
for cleaning the cell when changing from one batch to an other.
The birefringence of the Kerr cell windows was about 20', whereas
the birefringence of a CCl4 filling was about 100’. With benzene
this amounted to 520'. This explains why the reproducibility of
method D is worse with CC14 than with CGHG. As has been discussed
in chapter T the Sénarmont method is largely independent of the
birefringence of the quartz windows. Another advantage of the
Sénarmont method is that with small retardations more light is
available than in the direct method.

In order to compare our results with those given in litterature,
some values are collected in table B, all pertaining to the green
mercury line (546 mw) and to 20°C.

CG”G CCl4

B.10% | B.10®
Briegleb (1931) 4.08 0.714
Dillon (see Briegleb) 4,17 -
Leiser (see Briegleb) 4,52 0,884
Stuart and Volkmann (1933) 4,03 0,842
Otterbein (1934) - 0.84
Le Févre and Le Févre (1953) ) 4.71 0.76
Our results..) 4.24 0.88

Table B

The standard deviation of our CCl4 value is 0.008, that of a
single measurement 0,024, For benzene the standard deviations are
0.02 and 0.05. It is seen that our values lie in the same range
as those given by others.,

Since the electric birefringence of CS2 has been measured many

!
*) The dispersion law of Havelock was applied for wave length s

corrections.
**) For the temperature corrections data quoted by Stuart and

Volkmann (1933) were used.




times and since its Kerr constant is the most accurate known, we
also measured this quantity. With the direct photoelectric method
we found: B = (34.35 % 0,04) - 10°8%, By means of the Soleil-
compensator (used as a real compensator) we found: B = (34.64 *
0.07) « 108, International Critical Tables gives: B = 34.88 =105,
In all cases the wave length of the light was 546 mu and the
temperature 25°C.

In addition to Kerr constants dielectric constants, refractive
indices and densities were measured, For the dielectric constant
measurements the commercial "WIW Dipolmeter” (Wissenschaftlich-
Technische Werkstatten, Weilheim, Germany) was used., Density
measurements were performed with pyknometers with a volume of
6cc, (for a description see Scholte and de Vos, 1953). The re-
fractive indices were measured with a refractometer of the Abbe
type*) (Bausch and Lomb precision refractometer, type 33.45.03),

The quantities B, 21 Ry Mg (Hg refers to 546 mw), d and the
specific volume v = ) were determined for a series of concen-
trations. The concentrations are given in molar fractions. For
each quantity the method of least squares was used to find the
best parabola to fit the experimental points. All the measure-
ments have been given the same weight factor. The concentrations
were considered to be known exactly.

Bi Chemicals

I, Solvents

Benzene (Merck, A.R.) and cyclohexane (Fluka, benzene-free,
puriss. F 4° - 5,5°C) were refluxed over Na and fractionated with
a Widmer column. CC]4 (Merck,A.R.) was refluxed over on5 and
also fractionated. A fresh batch of 1.8 1. was prepared for each
series of measurements.

II. 1-Chloro-1-methyl-cyclohexane

1-Chloro-1-methyl-cyclohexane was prepared ") by HCl-solvolysis
of the corresponding alcohol (cf. Brown and Fletcher, 1959). 1
mole of the alcohol was shaken vigorously with 5 moles of con-

*) The measurements were performed with a refractometer that was
placed at our disposal by the department "pysische Chemie I1”.

**) T am particularly indebted to Mr., H.M. van Dort for the preparation
of this compound and for the help in performing the measu-
rements described in this thesis,
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centrated HC1 at a temperature of 0°C. After separating the two
layers, the upper layer was dissolved in ether and treated with
a diluted NaHCO3 solution, then washed with water and dried over
MgSO4. Next the ether was distilled off and the remaining com-
pound was distilled in vacuo, The liquid was stored at -15°C with
a small amount of P205 as a desiccant.

Before the measurements were made, the compound was redistilled.
The boiling point appeared not to have changed during storage.
Although the pure liquid liberated HC1 easily at room temperature,
the dilute solutions of the compound proved to remain unaltered
during the measurements. B.p. 38.5°Cat 14 mm.. nj’ = 1.4577. n}® =
1.4557, d}° = 0.9668 giving R, = 37.27 cc. /mol.

According to Mousseron et al. (1946):
np’ = 1.4565, d2° = 0.965 giving Rp, = 37.39 cc./mol.

According to Van der Bij and Kooyman (1952):
np? = 1.4579, d2° = 0.9665 giving Ry = 37.44 cc. /mol.

ITI. Anisole

Anisole (Fluka, purum) was shaken with a 10% NaOH-solution to
remove any possible phenol., It was dried over CaCl2 and distilled
(b.p. 51°-52°Cat15 mm.). The refractive index was "55 = 1.5146,
whereas the value given in Weissberger (Organic Solvents) is

nﬁﬁ = 1.5143.

IV. m,m'-Dianisyl (3,3'-dimethoxy-biphenyl)

m,m'-Dianisyl (available at the laboratory) was recrystallized
from ethanol until constant melting point (42° - 43.5°C)(cf.
Adams and Kornblum, 1941).

V. Thiophene

Thiophene (Fluka, purum) was dried over Na and distilled before
the measurements were made, ngs = 1,5254 whereas Weissberger (Or-
ganic Solvents) gives 1, 52517.

C. Measurements
In the following tables we report the observed data of B, €, d
and n”P for each series of measurements and np, for m,m'-dianisyl.

Moreover the constants are given of the best parabolic curves
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y:
functions of the concentrations. S,, Sg S
dard deviations of A, B, C and of a single measurement®). All
experiments were performed at 25°C., B and ny, were determined at

A + Bf, + Cf??, which represent the mentioned quantities as

C and S are the stan-

a wave length of light of 546 mu. For controll we determined all

quantities of the pure solvent on two different samples, one at

the beginning of each series,

the other at the end.

1-Chloro-1-methyl-cyclohexane in CCl4. Method D,

| o 1.17 1.5844 1 1.45965 | 0,63115
\ 0 1.08 1.5844 | 1.45965 | 0.63115 |
5.850 1.35 1.5794 | 1,45968 | 0.63315
8.568 1.48 1.5770 | 1.45968 | 0.63412
| 21.889 2,01 1.5657 | ; 1.45977 | 0.63869
27.411 2,22 1.5611 | 2.3854 1.45982 | 0.64057
| 37.154 2.63 1.5529 | 2.4426 | 1.45985 | 0.64306
| 55.940 3.49 1.5378 | 2.5479 1.45988 | 0,65028
115,53 6.35 1.4907 2.8717 ‘ 1.46004 0.67083
. | el
A S B Sk ‘ [ [FEs ‘ s
W PRIV 7, o T el . b 0 v o] oy
B.10 1,126 0,016 38, 880 0.916 54.969 7.833 0.029
d 1.58437 | 0,00005 | -0,859 0.003 0.420 0.027 0.00010
€ 2. 2300 0.0007 5.757 0,042 -1.733 0.362 0.0014
g 1.45965 | 0,00001 0.0058 | 0.0006 | -0.021 0.005 0.00002
v 0.63116 0.00002 0.343 0,001 0,004 0.011 0,00004
NN (1 ol (S|
Table C
*) We wish to express our gratitude to Miss'M.J. Wiggers de Vries

who carried

out these

calculations,




1-Chloro-1-methyl-cyclohexane in CCl4. Method S.

3 8
g¢ 10 B.10 d € n v
1y He
0 0.881 1.5844 2,2300 1.45955 0.63115
0 0.874 1.5844 2.2334 1.45955 0.63115
8,066 1,188 1,5775 2,2768 1,45956 0.63391
22.714 1,764 1.5650 2.3629 1.45964 0,.63898
34.524 2.280 1.5550 2.4335 1.459689 0.64309
51.466 2.979 1. 5410 2,5359 1.45978 0.64893
66.979 3.681 1.5283 2.6342 1.45978 0.65432
101,93 5,363 1.4997 2.8527 1.45993 0.66680
115,31 6.123 1.4899 2.9328 1.45994 0.67119
A S, B Sp s Se S
Ii.lO8 0.883 0,013 37.241 0.647 69.10 5.61 0,022
d 1.5844 0,00013 -0,864 0,008 0.361 0,056 0.00022
€ 2.2308 0,0014 5.829 0.068 2,446 0,588 0.0023
n”g 1.45954 0,000012 00,0046 0,0006 -0.0090 0.0053 0.00002
v 0.63114 0.00006 0.345 0.003 0,032 0,025 0,00010
Table D
1-Chloro-1-methyl-cyclohexane in C6H6. Method D.
3 8
j?.l(l B.10 d € nﬂg v
0 4.253 0,8733 2,2648 1.50183 1.1451
0 4,274 0.8733 2,2646 1.50182 1.1451
3,138 4.230 0,8737 2,2858 1.50159 1.1445
6.399 4,275 0.8741 2.3034 1,.50130 1.1440
15,931 4,333 0.8753 2,3573 1.50062 1.1425
23,046 4.367 0,8763 2.4018 1.50014 1,1412
28,760 4.446 0.8771 2,4359 1.49971 1.1401
49.662 4.622 0.8799 2.5611 1.49821 1.1365
71.761 4.918 0.8828 2.6941 1.49674 1.1328
S S N S
A Sy B Sy ( .’\‘C S
|
L.IO8 4,249 0.011 3.913 0.953 75.146 13.58 0.020
d 0,87328 0,00002 0,131 0,002 0,026 ‘ 0,029 0.00004
€ 2.2653 0.0007 5.879 0.0861 1.377 ‘ 0.863 0,0013
nﬂg 1.50182 0.000013 -0.0755 0.0012 0.065 0.016 0.000024
v 1.14510 0,00004 -0,1%72 0.004 -0,004 0.052 0,00008

Table E




1-Chloro-1-methyl-cyclohexane in CSHG. Method S.
3 8
foe10 B.10 d € "Hg v
0 4.208 0.8731 2.2692 1.50160 1.1453
0 4.219 0.8731 2,.2692 1.50159 1.1453
7.817 4.262 0.8742 2,3165 1.50101 1.1439
16,946 4,324 0.8754 2,3688 1.50028 1.1423
24,803 4,416 0.8764 2.4163 1.4997) 1.1410
38,7981 4.513 0.8782 2.4990 1,49866 1,1387
48.263 4.588 0.8795 2.5564 1.49810 1.1370
71.913 4,936 0.8825 2,6882 1,49645 1.1331
98,221 5.371 0.8858 2,8531 1.49467 1.1289
A NA B Sk C S
11.10ﬂ 4.219 0,011 4,901 0.644 69.21 6,68 0,019
d 0.,87312 0,00002 0.134 0.001 -0.052 0.011 0.00003
€ 2,269 00,0005 5.943 0,030 0,088 0.315 0,0008
n”F 1.50159 0,000024 -0.0764 0.0014 0,063 0,015 0.000041
v 1,14529 0.000026 -0,175 0.0015 0,083 0,015 0.000043
Table F
Anisole in CCl 4 Method S.
3 8
e 10 B.10 d € n ®
fg He
0 0,856 1,5844 2.2326 1.45985 0.63115
0 0.847 1.5844 2.2321 1.45987 0,63115
5.111 0,949 1.5810 2434 1.46018 0,63251
9.944 1.075 1.57717 2.2529 1.46055 0.63383
24,017 1.370 1.5685 2.2804 1.46157 0.63755
34,543 1.555 1.5614 2.3053 1.46237 0,64045
45.549 1.767 1.5541 2.3274 1.46318 0.64346
50.431 1.893 1.5510 2,3376 1.46355 0,.64475
57.367 1.989 1.5463 2.35)1 1.46404 0.64671
A .\A B SI‘ G SC S
| el
li.l()8 0.850 0,009 22,0717 0.944 -36,65 16,93 0.015
d 1.58439 0,00004 ~0.666 0,004 0,098 0.071 0,00006
€ 2.2326 0.0006 2.053 0,061 0,439 1,096 0,0010
"Hg 1,45984 0.000014 0.,0715 0.0014 0.034 0.026 0,000023
v 0,631155| 0,000015 0.265 0,0010 0,102 0.028 0,000025
Table G
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Anisole in CCl

Method S,

7

Table

Anisole in CsHG' Method D.

T B | ¥l
foe10 d rn,“v 1
—

0 0,847 ‘ 1,5840 1.45949 0.63131

0 849 ‘ 1.5840 1.45949 0,63131

6.315 7 | 1.5799 2,247 1.46001 0,63285

14,747 1.117 1,5743 2.2 1,46059 0,.63520 ‘

24,521 1.361 1.5677 2, 1.46137 0.63788 ‘

| 34.209 9 1.5612 2.3 1.46208 0,64053
42,429 689 1.5560 2, 3¢ 1.46260 0.64267 |
53.318 902 1,5487 2,34 1.46338 0.64570
63.610 092 1,5422 2,3 1.46416 0.64842
= ———— = = = ——¢ = ——
A B | c ‘ S S
‘ (

- =—=—=== : —
0,845 20,514 0,766 -13.74 12,38 i 0.014
1.58405 0.00006 -0.671 0,005 +195 0,085 0,00010
2,2350 0.0005 2.085 0. 045 -0,083 0,734 ‘ 00,0009
1.45950 0.000022 0.0764 0.0018 -0,056 0,031 0,000036
0,63129 0,000025 0,268 0.002 0,031 0,035 0.000041

4.240 0,8732 2,2696

0
0 4.240 0,.8732 2.2668
4.038 4.233 0.8738
T.462 4.290 0.8742 2,2796
19,549 0.8760 2,3115
28, 597 4.535 | 0.8773 2,328)
35,260 4.529 k 0.8782 2,3416
56,008 4.742 0.8811 2.3893
85.459 5.005 0.8852 2.4517
A B Sn
4.227 9,511 0.987
0.87319 0.00002 0,143 0.0013
2,.2667 2.157 0.089
1.50181 0.000016 0.0211 0,0011
1.1452]1 0,000025 -0.187 0,002

2741

A 1]
—t i ! :
| 1.50179 | 1.1452
| 1.50180 ‘ 1,1452
1,50189 1.1444
1.50200 { 1.,1439
1.50226 | 1.1416
| 1.50242 1,1399
1.50252 1,1387
| 1.50301 1.1349
1.50365 1,1297
— oo — =
c Se } S
-4.86 11,84 0.025
-0,035 0.016 | 0.00003
0.14 1.07 0.0023
0.004 0.013 0.000028
0.065

0.021 0,000045

Table I




m,m’-Dianisyl in CCl 4+ Method

d Ry v

1.5846 2,2309 1.45963 1.45731 0.63107
1.5845 2.2309 1.45967 1.45734 0.63111
1.5818 2.2441 1.46069 1.,45839 0.63219
1.5794 2,2554 1.46146 1.45913 0,63315
1.5785 2.2618 1,.46188 1,45950 0.63351
1,5771 1.46239 1,46002 0.63408
1.5759 7 1.46284 1.46048 0,63456
1.5725 1,46403 1.46163 0,63583
1.5696 1,46514 1.46270 0.63710

B > c

0,886 0,012 3.35 531.4 0,018
1.58455 0,00007 =-0.890 0,019 1,14 0.00010
2,2309 0,0005 4.165 0,133 30,07 0,0007
1.45965 0,000013 0.324 0,004 -0.288 0,000020
1,457335 0,000017 0.321 0,005 -0,543 0.000025
0.63109 0,00003 0.364 0.007 -0,336 0.00004

Table J

m,m’-Dianisyl in CCl,. Method S,

foe108 b.108 ¢ " ap

0 0,817 K 1.45959 1.45728 0.63123
0 0,904 31 1.45959 1.45729 0.63123
2,234 1.145 z 3 1.46027 1.45794 0.63185
4,958 1.498 g 1.46118 1.45885 0.6329]
6.387 1.656 2.4 1.46160 1.45922 0.63335
8.510 1.937 1.46231 1.45994 0,63420
11,194 2,258 2,¢ $ 1.46323 1.46085 0.63512
13,515 2,559 « 57 § 1.46399 1.46157 0.63593
15.368 2,1 L 1.46430 1.46190 0.63625

s, S c Se S

0,903 0.009 117,53 2, 0,014

1,5843 0,00015 =-0.907 0.00024
2,.2310 0,0010 4.525 0.0015
1,45956 0,00005 0,336 0.00008
1.45726 0.00005 0.326 0.00008
0.63119 0.00006 0,363 0,00010

Table K




m,m’-Dianisyl in CgH;. Method D.

fou10°

B.10°

’IME

"p

—

1.469
3.797
6.082
7.841
10,845
15,528
28.164

4,137
4,130
4.329
4.634
4.873
5.082
5.455
6.252
7.898

0.8730
0,8730
0,8738
0.8750
0.8763
0.8772
0.8788
0.8812
0,8877

2,2687
2.2692
2.2760
2.2892
2,3011
2,3068
2.3179
2.3407
2,3976

1.50190
1.50189
1,50226
1.50282
1.50337
1.50381
1,50451
1.50559
1,50854

1.49789
1.49788
1.49823
1.49882
1,49933
1.49978
1,50046
1,50152
1.50442

1.1455
1.1455
1,1444
1,1429
1.1412
1,1400
1.1378
1.1348
1.1265

S

b

hn

li.lO8 4.128 0.033 124,82 6.96 343 247 0,057
d 0.87300 0.000016 0.540 0,003 -0.653 0.120 0,000028
€ 2.2697 0.0010 4.731 0.216 =7.25 7.64 0,0018
nhg 1.501900 0.000008 0.243 0.,0018 -0,270 0,064 0,000015
"D 1.497880 0,000012 0,240 0.0025 «0,299 0.089 0.000021
! 1.14550 0,.00003 -0.711 0.006 1.286 0,202 0.00005
=t i ll) Y
Table L
Thiophene in CC14. Method D.
3 8
f:,. 10 B,10 d € "Hg v
0 0,77 1.5843 2.2435 1.45959 0.63119
0 0.84 1.5844 2,.2440 1.45960 0.63115
17.870 0.90 1.5767 2.2519 1.46068 0.63424
39.932 1.08 1.5666 2.2618 1.46216 0.63832
68.294 1.28 1.5544 2.2740 1.46396 0.64334
137.17 1.79 1,5237 2,3044 1.46822 0.65630
188.95 2.13 1.5001 2.3287 1.47155 0,66662
219.80 2.31 1.4856 2.3415 1.47359 0, 67313
240,08 2,48 1.4761 2,3520 1,47496 0.67746
A .\'A B Sb C SC S
b'.l()8 0.793 0.016 7.325 0.430 -1.451 1.812 0.027
d 1.5843 0.0001 -0.432 0.003 -0,077 0,012 0,0002
€ 2.2439 0.0003 0,437 0.008 0.047 0,033 0,0005
n”g 1.45961 0.00003 0.0622 0.0008 0,008 0,004 0,00005
v 0,6312 0,00005 0.171 00,0013 0.089 0.005 0.00008

Table M




Thiophene in C6H12. Method S.
3 » 8
.10 B.10 d € n v
I'y 7 Heg
0 0.626 0.7743 2.0203 1.42571 1.2915
0 0.589 0.7743 2,02056 1.42570 «2015
26,89 0.771 0,7792 2,0310 1.42732 1.2834
53.77 0.928 0.7843 2,0418 1.42895 1.2750
72,89 1,014 0,7880 2,0514 1,43022 1.2690
101,99 1.184 0.7940 2,.06686 1.43212 1.2594
137.45 1,439 0.8012 2.0843 1.43458 . 2481
163,35 1.628 0.8065 2,0959 1.43642 1.2399
224.70 2,011 0.8202 2.1268 1.44108 1.2192
A ‘QA B ‘QH [ S
h.los 0.609 0.013 5.544 0.306 3.291 1.398 0.02
d 0.7743 0,00006 0.182 0,001 0.101 0.006 0.00009
€ 2.0198 0.0007 0.429 0.016 0.220 0,074 0,001}
"Hy 1.42571 0,00001 0,0584 0.0003 0.045 0.0012 0.00002
v - 1.2916 0.0001 -0.,305 0.002 -0.074 0,010 0,0002
Table N
Thiophene in C6H12. Method S.
3 8
foe10 B.10 d € Mg v
0 0.608 0.7764 2.0209 1.4255) 1.2880
0 0.572 0,7764 2,0200 1.42558 1.2880
30.77 0.801 0.7821 2.0330 1,42740 1.2786
55.39 0,946 0.7868 2.0431 1,42902 1.2710
79.738 1.048 0.7917 2,0529 1.43060 1.2631
121.04 1.300 0.7999 2.0743 1.43327 1.2502
146,62 1.505 0.8052 2.0882 1.438510 1.2419
180,20 1.712 0.81286 2,1036 1.43759 1.2306
212,49 1.943 0.8197 2,1191 1.44004 1,2200
A Sy B Sk c Se S
B.IO8 0,610 0,015 5.574 0,385 3.390 1.844 0,024
d 0.7764 0,00005 0,182 0,001 0.101 0,006 0,00007
€ 2.0201 0,0008 0.411 0,019 0,279 0,092 0.0012
n”! 1,42554 0.00003 0.0596 0.0008 0,040 0,004 0,00005
v 1,2880 0,00008 -0.304 0.002 -0,077 0,008 0.00012
Table O
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CHAPTER 9

DISCUSSION OF RESULTS

Al 1.2C hil'o'rio'=1 -"weit hry'l = e el ohie xid'n e

Solvent | Calc. from | o(.Ko) ° 1012 #(D)

table

Table P

The mk-values with CC1, as solvent agree satisfactorily. The same
is true if benzene is used as a solvent, It is surprising,
however, that the Kerr constants in the two solvents are entirely
different.

Conformational analysis

When we assume that 1-chloro-l-methyl-cyclohexane is completely
in the chair form, the question remains whether the chloro atom is
more favoured in the equatorial than in the axial position. In
order to contribute to the solution of this problem we will
estimate the Kerr constants of the two possible chair confor-
mations. The estimates are based on the empirical rule that the
polarizability tensor of the molecule can be obtained as a sum of
the polarizability tensors of the bonds. Moreover it will be
assumed that the Kerr constants are determined by the dipole
orientation term only, the anisotropic polarizability term being
generally small for compounds with a relatively large dipole
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moment. The dipole moment of 1-chloro-l-methyl-cyclohexane is
assumed to lie along the direction of the C-Cl1 bond. Taking the
1-axis parallel to the dipole moment the formulae to be used are:

9.1

2
Jd

o ST,
2 45RT7

(25 ¢ = by s biss) 9.2

In the calculations we have used the bond polarizabilities
given by Le Févre and Le Fevre (1956). In their system it is
assumed that the C-H bond is isotropically polarizable whereas
the polarizabilities of the other bonds have rotational symmetry
around the link. From their data we quote:

10235$°Cl = 0,382 cc.; 10236C-C
1023bC-C
I

0.185 cec.
0.0986 cc.: 102”bf'“ = 0.0274 cc.

1023567 = 0.0635 cc.
!l refers to longitudinal, ¢ to transversal.

As far as we could determine, the b values have been derived
from Kerr constants and depolarization factors at the Na D-line
and refraction data at infinite wave length., This should be kept
in mind when comparing values calculated with these constants,
with experimental data,

The coordinate axes are chosen such that the 1-axis is in the

C-Cl direction and the 2-axis in the HyC-C-Cl1 plane.

o(K9) for equatorial Cl

CH3 2
3‘<:
1££:::;77kcl .

Figure 4




1 = 05704 2667C+ 56§°C sin? 19°28" + 56§7C cos® 19°28" + 13677
by = bC-Cl4 266-C+ 4b$-C cos? 19°28" cos® 60°+ bG"C cos? 19°28"+
+ 465-C sin? 19°28' cos?® 60° +4b$°C sin® 60° +

+ 66-C sin? 19°28' + 13664

b,, = bf'm + 2!;(;'(j + 4(;(1‘"(’. cos? 19°28' sin? 60° +

33
+ 4b$°C sin? 19°28" sin? 60° +4bS°C cos® 60° + b$C+ 1367

23 - =

10 b“ = 1,581 cc.
2 - ‘

10235, = 1.329 cc.
23 - »

10%3b,, = 1.392 ce.

118wy T = o. s Vs S an i
For ;= 2.14 D and 1 298 m(ml\?) 113 10

J;(ml‘?) FEONT  A-X 1l Csl

-

Cl

AF '

Figure 5

C-H

C cos? 19°28' + ]31,1

20 e G ) o G
L €l 4+ 766-C sin? 19°28" + 767

o

b = 11({'-("1 + 3(;(17-(: (1()52 19“'_’8' + 4':(’"-('. (:(\52 ],()m?_ﬂl ('(1.\'.2 6N +

+ 4',‘,'"' sin? 19°28' cos? 60° + .4:,‘{"" sin? 60° +
=iy s o C=
+ 39 € sin? 10°28" + 13b] h
by, = 1,‘;'” + 31/{7"% 40‘,"" cos? 19°28" sin? 60° +

+ 469-C sin® 19°28" sin? 60° +4b$™¢ cos? 60° + 1365

m”z,” = 1,455 cc.
10234, = 1.456 cc.

23 _ 99 co
10 b” = 1,392 cc.



For u = 2.14 D and T = 208% ( K,) = 15.9 » 1072

Acverage polardzabill by

l'll*(’n'7+(}?? 23
For this substance we found that ————=—= = 1,434 - 10" ““ecc,

J

We determined the refraction at 546 mw and 589 mu. The value at
infinite wave length was calculated with the extrapolation
formula (cf, Bottcher, 1952, p. 256):

X S b *bu,*b =
We found: [R]. = 36.43 cc., which gives —4—22—33 = 1,445 - 10723

J
cc., which differs less than 1% from the predicted value,

Comic:l us i o:n

The calculated values of the Kerr constants for the two con-
formations pertain to the Na D-line, whereas our experimental
value in CC14,m(mAQ) = 56 * 10"2,was determined for the green
mercury line. Since Kerr constants for these two wave lengths
differ not more than 2% and since we have already introduced the
inaccuracy of neglecting G4, we have disregarded the dispersion
of the Kerr constant when comparing experimental and calculated
values,

The experimental value can be explained by assuming that the
compound is a mixture consisting of 60% of the conformation with
the Cl-atom axially and 40% of the conformation with the Cl-atom
equatorially.

If it is assumed that steric factors mainly determine the sta-
bility of a conformation this result is not unexpected since a
Cl-atom and a methyl group have about equal size,

It will be clear that along these lines no explanation is
possible for the low Kerr constant obtained from benzene solu-
tions, In this case one might think of an explanation in terms of
specific interactions e.g. of the charge-transfer type.




B. Anisole

S
Solvent Cale, from c,L,(ml\?) 10 wu(D)
table
CCl4 G i A - S L 1.25 £ 0,02
CC14 H 91,308 1,2 1,25 £ 0,02
CgHg I 178:8 £ .93 1.23 + 0,03

Table Q
Other values of the dipole moment are:
1.3 D in CH, (Le Fevre and Le Févre, 1950)
1.25 D in CCl4 (Klages and Koppling, 1953)
1.28 D in CSH6 (Everard and Sutton, 1949)
1.27 D in CCl4 (Aroney et al., 1960)
The value of the Kerr constant determined by Aroney et al. (1960)
in CCl, solutions, at 25°C and with the Na D-line was w(mh?) =
28.8 * 10712, With anisole again we found a much lower value of
the Kerr constant when determined from benzene solutions.

Conformational analystis

Aroney et al, (1960) have analyzed their data by calculating
the Kerr constants for a number of conformations, differing in
the position of the methoxy group with respect to the plane of
the benzene ring. They find agreement with the experimental value
if it is assumed that the methoxy group is rotated over an angle
of 18° out of the plane of the benzene ring. We have made a simi-
lar analysis by calculating the Kerr constant for a molecule with
freely rotating methoxy group and for a flat molecule, neglecting
a slight exaltation of the average polarizability which was
accounted for by Le Fevre and Le Fevre,

For both cases we use the expressions:

1

I ;Y = 2 2 2 2
6, = st Y T (by4=bgg)® + (bggbss)® + (byo=b, )* + 6b,,

+ 6b,,7 + 6by,” 9.4

1
( = 2/0 2
17 S Ty & Bt (¢b “boo=b, ) + i (?b -b,,~b ) +
2~ 45R2T2 M1 145997933 Ko SOTHINE 233
2 . n
+p37(2b357b g mbgg) + Bbygppig + 6byigpty +

+ 6b 93Mol 3 9.5
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which can be found in the paper of Buckingham and Pople (1935).
They are especially useful when the polarizability tensor is not
diagonalized. In Gy the difference between static and electronic
polarizability is neglected.

Figure 6

The C-0-C angle is taken equal to the tetrahedral angle 109°28°,
The angle between the C-0-C plane and the plane of the phenyl
nucleus is called ¢. According to Klages (1954) Ky = -0.53 D and
iy = -1.13 D, Aroney et al. (1960) and Le Fevre et al. (1963)
give the following group and bond polarizabilities:

1023th = 102362k = 1,12 cc.; 10236B% = 0.735 cc.

]

1023460 = 0.089 cc.; 1023650 = 1023650 = 0.046 ce.

102356~ = 0,064 ce.

With these values we obtain:

y = (0.2965 cos%p - 0.2671 cos?p + 0.2223 sin®2¢ +

+ 0.1482 cos22¢ +0.0293 cos2¢ + 0.1608) 10748

2 = (4.290 cos3¢ + 2.815 sin%p - 3.687)-107%°

When averaging over all values of ¢, making use of cosz¢r= B,
COSIQL = 3/8, cos2¢ =0, cos?2¢ =%, sin®2¢ =%,

we find:
y = 0.3236 + 10746
z = -0,1340 * 1059
ol Kp) = 2.2699 + 103%y+ 0,552 + 10%°z = -0.052 + 1077

For a flat model, ¢ = 0, we find:

-12

wlnKo) = 41.64 = 10




Neither the one nor the other model agrees with experiment. The
measured value of nK (32:5 ° 10°'2) can be obtained assuming
that ¢ = 19°,

Aroney et al. mention that this model is in agreement with the
supposed steric hindrance between the methyl group and ortho
hydrogen atoms.

It is of some interest to compare our results with those which
Klages (1954) derived from relaxation measurements. Klages tried
to explain the relaxation behaviour by assuming that a fraction
of the molecules has freely rotating methoxy groups, whereas the
other molecules have a fixed methoxy group. In addition Klages
thinks it probable that the group is jammed in the plane of the
phenyl group with an ortho hydrogen atom in between two hydrogen
atoms of the methyl group. Klages' conclusion is that 15% of the
molecules have a jammed and 85% a freely rotating methoxy group.
Our results point in the opposite direction since we would find
80% in the flat conformation and 20% freely rotating.

C. m,m'-Dianisyl

s 12
Solvent | Calc. from | (,Ko) 10 K(D)
table
CCl4 J 187:5.% 541 1.64 + 0,03
CCl4 178.1 £ 4, 1,72 * 0,08
CGHG L 171.8 £ 9, 1.70 £ 0.05
Table R

The averaged value for the dipole moment is 1.69 D. Klages and
Koppling (1953) found 1.74 D from CCl4 solutions. The averaged
o Ko) for CC1, solutions is ( K,) = 183 - 10"'2, The deter-
mination in benzene solutions deviates less from this value than
in the case of anisole, Former determinations of the Kerr con-
stant of m,m’-dianisyl are not known.

Conformational analysis
We have calculated the Kerr constants for nine conformations of

m,m'-dianisyl, see fig. 7. In the conformations a-f the planes of
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the phenyl groups are parallel, in the conformations g-i they are
perpendicular to each other. In conformation e the 2-axis is laid
along the phenyl-0 bond, in all other conformations the I-axis is
oriented along the C-C bond. In all cases the 1-2 plane is the
plane of the paper. In order to simplify the calculations we have
assumed that the dipole moment of the methoxy group lies in the
plane of the phenyl ring to which it is attached and is oriented
perpendicularly to the phenyl-0 bond. With a more realistic model
reflecting more precisely the results obtained with the anisole
molecule the calculated values of dipole moments and Kerr con-
stants could be somewhat different. We do not expect, however,
that the changes will be important, The results are given in
Table S. ?WN 97 NA

Sy IO & i i 5 B cm— i
m(mh?)D ——6—4..? is the dipole term, w(mhv)A iy is
the anisotropy term. ,(,K,) = ol Ko)y * ol Ko)pe
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Figure 7. Conformations of m.m'-dianis_vl
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calculations the same formulae and the same constants as
before were used. We assumed that the bond connecting the two
phenyl groups can be considered as an aliphatic single C-C bond,

It is seen that none of the conformations leads to the measured
dipole moment or Kerr constant.

This could hardly be expected.

HResultant

HResultant

1.53 D

1.47 D

Neglecting the twisted structures we find for the other ones:

Taking the average over all 9 structures giving b,e,g and i the
weight 2 and h the weight 4, we find:

We have also calculated the interaction energy (W) between two
methoxy dipoles for all 9 structures (table T). Since RT at 25°C
equals 592 cal/mol., the dipole-dipole interaction energy is not
sufficient to give preference to some of the conformations.

Conformation

K(cal /mol.)

+ 104

104

+ 104

+ 19

Table T




Ciovn: er1ru 81 offh

Although it appears to be impossible to reach a definite con-
clusion from the measurements of dipole moment and Kerr constant
as to the shape of m,m’ -dianisyl one gets the impression that all
conformations are present in comparable quantities.

D. Thiophene

Thiophene has been measured in CCl4 as well as in cyclohexane,

2
Solvent Cale. from u‘(m,\’ﬂ) . ]()l" (D)
table
CCl4 M 1178 -£0:7 0,54 £ 0,01
cyclohexane N 11.4 0,6 0.51 £ 0,02
cyclohexane 0 11.4 * 0.8 0.49 * 0,02
Table U

Averaging leads to u = 0.51 D and ,(,K,) = 11.5 * 10~ 12

Le Fevre et al. (1959) found ( K,) = 11,19 + 107'2 for
thiophene dissolved in CC1, at 25°C. For u they found 0.54 D
whereas Harris et al. (1953) report 0.52 t 0,05 D. The semi-axes
of the polarizability ellipsoid have been calculated by Le Fevre
et al. (1959). From our measurements it follows that both solvents

used give identical results,

B Gsenferal cconeclmsion

The Kerr effect may be an important tool in solving problems in
conformational analysis. This is substantiated by the extensive
investigations of Le Fevre and Le Févre and their group, by
Klages and coworkers and by the earlier pioneering work of Stuart
and coworkers. There are also other contributions in this field
but they have a less systematic character. It is a disadvantage
of the method that the measurements as well as the evaluation of
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the results are rather tricky and time consuming, Consequently it
has only a sense to incorporate the Kerr effect in organic
investigations if it will be used regularly during a rather
lengthy period. Otherwise the acquisition of the necessary
experience, experimental as well as theoretical,will take rela-
tively too much time.
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SUMMARY

The importance that the determination ofoptical anisotropies may
have for the study of details of molecular structure, has led to
theoretical investigations of optical rotatory power of gases and
liquids (part I) and to measurements of the electric birefringence
of dilute solutions of organic molecules (part II),

Rart U

The study of the relation between molecular quantities and
measured optical activity has in the past led to a number of
divergent interpretations. The origin of these discrepancies were
analysed by Hoek, who at the same time found the solution to a
number of the problems involved, However, his treatment did not
take into account correlations in position and orientation of the
molecules, In order to meet these imperfections, Goossens intro-
duced the Onsager-Bottcher concept of the internal field into the
theory. In the present thesis these correlations are accounted
for by statistical mechanical methods, analogous to the methods
used by Yvon and Kirkwood in their theories of dielectric pola-
rization,

Our treatment starts from the microscopic Maxwell-Lorentz
equations. The molecules are characterized by classically defined
polarizability tensors, for which quantummechanical formulae are
derived, The interactions between the molecules are described in
terms of a Hertz vector, For a given electric field the polari-
zabilities determine the electrical dipole moment and two higher
moments (equivalent to an electrical quadrupole and a magnetic
dipole moment) of the molecule. Special attention is paid to the
relation between our considerations and the Akl-theory of Born as
well as the one-electron model of Condon et al,.

After this the averaging of the microscopic moments follows., In
order to describe the interactions between the molecules adequa-
tely each molecule is considered to be at the centre of a cor-
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relation sphere. The medium outside this sphere is considered, as
far as the centre molecule is concerned as a continuum. The
granular structure inside the sphere is reflected in effective
polarizabilities.,

The macroscopic moment densities are shown to satisfy a general
wave equation which applies to a medium which may be anisotropic
as well as optically active. With this equation the extinction
theorem is proved, without introducing a particular solution of
this equation, as is usually done.

Finally the theory is applied to an isotropic medium; for a
simple model the influence of the reaction field is determined.

Payr bt Il

The electro-optical Kerr effect of a series of solutions was
measured, The solutions consistedof 1-chloro-1-methyl-cyclohexane,
anisole, m,m'-dianisyl and thiophene dissolved in carbon tetra-
chloride, benzene and cyclohexane, The method was an absolute
one, using a static electric field and a photo-electric detection
system. Molecular Kerr constants were derived following the me-
thod of Le Févre and Le Févre.

The molecular Kerr constants of anisole and thiophene, deter-
mined from solutions in carbon tetrachloride appeared to be in
accordance with measurements, performed almost at the same time
by others. The molecular Kerr constant of 1-chloro-1-methyl-
cyclohexane can be explained by assuming that the molecules are
in chair conformations, 60% with the cloro atom axially, 40% with
the chloro atom equatorially. The value of the molecular Kerr con-
stant of m,m’'-dianisyl suggests that none of the conformations
occurs predominantly. The values of the molecular Kerr constants,
determined from solutions of 1-chloro-1-methyl-cyclohexane and
anisole in benzene, appear to be far smaller than those from
solutions in carbon tetrachloride. Possibly this is due to spe-
cific interactions. Special attention is paid to the influence of
the birefringence of the Kerr cell windows. For some methods of
measurement this influence is important, for others it is less
perturbing than one would be inclined to assume.




SAMENVATTING

De belangrijke plaats die de bepaling van optische aniso-
tropieén kan innemen bij de bestudering van gedetailleerde mole-
cuulstructuren, heeft geleid tot een theoretisch onderzoek van de
optische activiteit van gassen en vloeistoffen (deel I) en tot
metingen van de electrische dubbele breking van verdunde oplos-
singen van organische moleculen (deel II).

Deel I

Het onderzoek naar het verband tussen moleculaire grootheden en
gemeten optische activiteit heeft in het verleden tot een aantal
uiteenlopende interpretaties geleid, De oorsprong van deze ver-
schillen zijn door Hoek geanalyseerd, die tevens een groot deel
van de gerezen moeilijkheden heeft opgelost. Hij heeft evenwel
geen rekening gehouden met de correlatie in plaats en oriéntatie
tussen de moleculen. Om aan dit bezwaar tegemoet te komen heeft
Goossens in de theorie gebruik gemaakt van het inwendige veld
volgens Onsager-Bottcher. In dit proefschrift worden deze corre-
laties verdisconteerd met behulp van de statistische mechanica,
naar analogie van het werk van Yvon en Kirkwood op het gebied van
de diélectrische polarisatie.

Uitgangspunt vormen de microscopische Maxwell-Lorentz vergelij-
kingen. De moleculen worden daarbij gekarakteriseerd door klas-
siek gedefinieerde polariseerbaarheden, waarvoor naderhand
quantummechanische formules worden gegeven. De interacties tussen
de moleculen worden beschreven met behulp van een Hertzvector.
Bij een gegeven electrisch veld bepalen deze polariseerbaarheden
het electrisch dipoolmoment en twee hogere momenten (equivalent
aan een electrische quadrupool en een magnetische dipool) van het
molecuul. Er wordt gewezen op het verband tussen onze beschou-
wingen en zowel de Akl-theorie van Born als het één-electron
model van Condon e.a..

Hierna volgt de middeling van de microscopische momenten. Met
het doel de interacties tussen de moleculen adequaat te beschrij-
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ven wordt om het centrale molecuul een zogenaamde correlatiebol
gedacht. Het medium buiten deze bol wordt ten aanzien van het
centrale molecuul als een continuiim opgevat. De korrelige struc-
tuur binnen de bol wordt verdisconteerd in effectieve polariseer-
baarheden.

Vervolgens wordt voor de macroscopische momentdichtheden in een
medium, dat zowel anisotroop alsoptisch actief mag wezen, de alge-
mene golfvergelijking afgeleid. Met behulp van deze vergelijking
wordt de uitdovingsstelling bewezen, zonder gebruik te maken van
een oplossing van deze vergelijking zoals gewoonlijk gebeurt.

Tenslotte wordt de theorie toegepast op een isotroop medium,
waarbij voor een eenvoudig model de invloed van het reactieveld
op het draaiingsvermogen wordt vastgesteld.

Dewe 1 'II

Van een reeks oplossingen van 1-chloor-1-methyl-cyclohexaan,
anisool, m,m'-dianisyl en thiopheen in tetrachloorkoolstof, ben-
zeen en cyclohexaan werd de electrische dubbele breking gemeten.
Daarbij werd gebruik gemaakt van een absolute methode, een sta-
tisch electrisch veld en een foto-electrisch detectiesysteem.
Voor de bepaling van moleculaire Kerrconstanten werd de methode
van Le Fevre en Le Févre gevolgd.

De moleculaire Kerrconstanten van anisool en thiopheen bepaald
uit oplossingen in tetrachloorkoolstof bleken overeen te stemmen
met metingen, vrijwel gelijktijdig verricht door anderen. De mo-
leculaire Kerrconstanten van 1-chloor-1-methyl-cyclohexaan kan
worden verklaard door aan te nemen dat de moleculen zich bevinden
in stoel-conformaties, waarvan het chlooratoom in 60% axiaal en
in 40% equatoriaal is geplaatst. De waarde van de moleculaire
Kerrconstanten van m,m'-dianisyl wijst erop, dat geen enkele
conformatie in overwegende mate voorkomt. De waarden van de mo-
leculaire Kerrconstanten, bepaald uit oplossingen van 1-chloor-
1-methyl-cyclohexaan en anisool in benzeen, bleken belangrijk
kleiner te zijn dan die uit oplossingen in tetrachloorkoolstof.
Mogelijk moet dit toegeschreven worden aan specifieke interacties.
Aan de invloed van de dubbele breking van de vensters van de
Kerrcel wordt een afzonderlijke beschouwing gewijd. Bij sommige
meetmethoden is deze invloed belangrijk, bij andere minder sto-
rend dan men geneigd is te veronderstellen,
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Op verzoek van de Faculteit der Wiskunde en Natuurwetenschappen
volgt hier een kort overzicht van het verloop van mijn academi-
sche studie.

Na het behalen van het einddiploma B aan de toenmalige Chris-
telijke H.B.S. (nu Christelijk Lyceum) te Leiden in 1949, begon
ik in september van dat jaar met mijn studie in de schei- en na-
tuurkunde aan de Rijksuniversiteit te Leiden, Het candidaatsexamen
(letter E) werd afgelegd in juni 1952. Mijn studie werd voortge-
zet onder leiding van de hoogleraren Dr.L.J. Oosterhoff, Dr.S.R.
de Groot en Dr.C.J.F. Bottcher, Het doctoraalexamen met hoofdvak
theoretische organische chemie en bijvakken theoretische natuur-
kunde en fysische chemie werd afgelegd in october 1955,

Van april 1953 tot november 1958 was ik verbonden als assistent
aan de afdeling voor Theoretische Organische Chemie. Het onder-
zoek op het gebied van het Kerreffect, zowel experimenteel als
theoretisch, waarmee ik onder leiding van Prof.Dr.L.J. Oosterhoff
reeds voor mijn doctoraalexamen was begonnen, vond in deze perio-
de plaats. In november 1954 werd mij door de Nederlandse Organi-
satie voor Zuiver-Wetenschappelijk Onderzoek de gelegenheid
geboden tot een verblijf van 2 maanden aan de Heald Green Labora-
tories van de British Rayon Research Association te Manchester,
Engeland, om onder leiding van Dr.G. Porter (thans hoogleraar te
Sheffield) ervaring te verkrijgen met zijn apparatuur voor
flitsfotolyse.

Van november 1958 tot november 1960 moest ik mijn studie onder-
breken voor de vervulling van de militaire dienstplicht. Hierna
volgde mijn aanstelling als wetenschappelijk ambtenaar le klasse
aan de afdeling voor Theoretische Organische Chemie te Leiden, en
werd ik in staat gesteld tot het theoretisch onderzoek op het
gebied van de optische rotatie.

De resultaten van deze onderzoekingen en van het experimentele
werk aan het Kerreffect zijn grotendeels in dit proefschrift
beschreven,












STELLINGEN

Een cel, waarvan de dwarsdoorsnede van de binnenkant der elec-
troden de vorm heeft van twee elkaar toegevoegde orthogonale
hyperbolen, kan voordelen bieden boven de door Buckingham en
Disch gebruikte meetcel voor de bepaling van het quadrupool-
mommn,VM)COT

A.D.Buckingham en R.L.Disch, Proc.Roy.Soc,
(London) A 273 275, 1963,

Hoewel moleculen die bepaalde symmetrie-elementen hebben, zoals
een vlak van symmetrie, gewoonlijk niet tot de optisch actieve
verbindingen gerekend worden, is het zeer goed mogelijk dat
deze moleculen in een anisotroop milieu wel verschijnselen van
optische activiteit vertonen.

I

3. De uitspraak van Margenau en Murphy: “...that the solution of
a differential equation is not an altogether mechanical matter
and that caution must be used at every step” wordt door het

door hen gegeven voorbeeld niet doeltreffend gelllustreerd.

H.Margenau en G.M.Murphy, The Mathematics of
Physics and Chemistry, p.63, Van Nostrand,
New York, 27d ed,, 1959,

4. De door Streitwieser en Nair toegepaste iteratiemethode in hun
a~-techniek voor geconjugeerde systemen kan door een beschouwing
van de pseudo-fout belangrijk worden bekort.

A.Streitwieser en P.M.Nair, Tetrahedron 5 149,
1959.

5. De bepaling van absolute brekingsindexveranderingen onder in-
vloed van een homogeen uitwendig electrisch veld kan een waar-

devolle bron van informatie over hyperpolariseerbaarheden
geven,

H.A.Stuart, Hand- und Jahrbuch der Chemischen
Physik 10/I1I p.57, Leipzig 1939,




10.

De wijze waarop Buckingham c.s. de optische hyperpolariseer-
baarheden beschrijven is onjuist.

A.D.Buckingham en J.A.Pople, Proc.Phys.Soc.

A 68 905, 1955,
A.D.Buckingham en M.J.Stephen, Trans.Faraday
Soc. 53 884, 1957.

Het model dat Kunkel en Tiselius gebruiken voor de interpretatie
van meetresultaten bij papierelectroforese wordt door McDonald
met een onjuiste argumentering aangevallen.

H.J.McDonald, Ionography, p.60,79, Year Book
Publ., Chicago, 1955,

H. G.Kunkel en A,Tiselius, J.Gen,Physiol. 5
89, 1952, ]

De verklaring die Stillo geeft voor de isomerisatie van precal-
ciferol naar calciferol is aanvechtbaar.

H.S,Stillo, Thesis, Michigan State University,
p. 141, 1959,

De ladingen die Pauling toekent aan de atomen in het sulvaniet-
rooster zijn onwaarschijnlijk.

L,Pauling, The Nature of the Chemical Bond,
p.445, Cornell Univ,Pr,1960,

Het waardevast maken van elk inkomen genoten uit arbeid of
vroeger verrichte arbeid, zal kunnen leiden tot een verzwakking
van de rem, die thans nog bestaat op een voortschrijdende loon-
en prijsinflatie.









