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INTRODUCTION

The time-dependent statistical-mechanical behaviour of harmonic oscil
lator assemblies has been studied extensively, also in recent years. In
particular these investigations have dealt with the stochastic types of
motion of one single particle *> 2> 3> 4> 5> 6> 7). Though e.g. Fourier’s macroscopic
law of heat conduction is violated in such assemblies8), it has been shown
that harmonic oscillator assemblies exhibit some remarkable properties
characteristic of the behaviour of systems with more realistic interactions.

The studies referred to above, have dealt with essentially local properties.
In this thesis, however, we shall discuss a property of the system as a whole,
viz. the total magnetization of a harmonic oscillator assembly in a magnetic
field. In a time-dependent magnetic field such an assembly may then serve
as a model for diamagnetic relaxation, i.e. may be expected to exhibit, in a
qualitative way, the behaviour of real diamagnetic systems. In the theory
of diamagnetic relaxation, which will be presented in this thesis, the time
behaviour of the autocorrelation function of the magnetization in the canonical
ensemble plays a central role. Mazur9) has pointed out recently that the
time average of such an autocorrelation function is intimately connected
with the ergodic properties of the phase function (or operator) involved.
In this light considerable attention will be given to the ergodic behaviour
of the total magnetization in harmonic oscillator assemblies.

In chapter I the dynamical problem of a linear chain of charged aniso-
tropically coupled two-dimensional harmonic oscillators in a magnetic field
B will be solved. We shall derive an explicit expression for the autocorre
lation function R(t) of the magnetization in the canonical ensemble. In the
limit of an infinite system the asymptotic time behaviour of R(t) will be
discussed in connection with the ergodic properties of the magnetization for
varying values of B and the anisotropy parameter y. It will be shown that
the magnetization is ergodic only in the case y /  0 and B  -> 0.

In chapter II a linear response theory for simple diamagnetic systems in a
time-dependent magnetic field will be presented. We shall give expressions



for the isothermal, adiabatic, isolated and frequency-dependent suscepti
bilities per particle for diamagnetic systems. Inequalities between the
various susceptibilities will be derived. The theory will be applied to the
system discussed in Chapter I.

In chapter III the stochastic behaviour of the normalized total magneti
zation X(t) of the system studied in chapter I, will be investigated in the
classical limit. We shall, in the limit of an infinite system, derive expressions
for the joint and conditional distribution functions of X(t) in the micro-
canonical ensemble. The process X(t) will be found to be a stationary,
gaussian, non-markoffian process. We shall discuss the asymptotic time
behaviour of the conditional distribution function and the conditional
average of X(t) in connection with the ergodic properties of X(t) for varying
values of y  and B . It will be found that, if y  ^  0 and B  -*■ Ö, the process
X(t) is an ergodic process. Finally we shall establish an equality connecting
microcanonical and canonical autocorrelation functions of sumvariables.

REFERENCES
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5) Turner, R. E„ Physica 26 (1960) 269.
6) Mazur, P. and Braun, E., Physica 30 (1964) 1973.
7) Ford, G. W., Kac, M. and Mazur, P., J. math. Phys. 6 (1965) 504.
8) see, e.g., Hemmer, P. C., loc. cit.
9) Mazur, P., Physica 43 (1969) 533.
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Chapter  I

HARMONIC OSCILLATOR ASSEMBLIES IN A MAGNETIC FIELD

Synopsis
The dynamical problem of a linear chain of charged anisotropically coupled two-di
mensional harmonic oscillators in a magnetic field B is solved. The constants of the
motion of the system are analyzed for varying values of B and anisotropy parameter y.
It is shown that the invariants have an essentially different nature for y —0 and for
y 0, if B  tends to zero. The autocorrelation function R(t) of the magnetization in the
canonical ensemble is explicitly derived. The asymptotic behaviour of R(t) for long
times is studied in the limit of an infinite system, with very general assumptions with
respect to the interactions. It is shown that the magnetization is in general not an
ergodic property of the system. Only in the case B -*■ 0 and y #  0 is the magnetization
found to be ergodic. There is, as expected, a close relation between the ergodic behaviour
of the magnetization and the non-analytic nature in y of the constants of the motion
in the limit B -*■ 0.

1. Introduction. Considerable attention has been given, also in recent
years, to the time-dependent statistical mechanical behaviour of harmonic
oscillator assemblies. In particular the stochastic types of motion of a single
particle in such assemblies were studied in great detail1). Much of the
relevant information for this case is contained in the momentum auto
correlation function of the specific particle considered. A number of signifi
cant results have been established by studying this single particle momentum
autocorrelation function2). Thus it was found that a given particle in the
limit of an infinite assembly will exhibit an irreversible behaviour in the
following sense. In an ensemble in which all degrees of freedom of the
assembly, except the specified momentum of the particle considered, are
initially canonically distributed (at temperature T), this particle will perform
a stochastic type of motion such that its momentum distribution function
will for long times reach its equilibrium form and become Maxwellian. For
a very heavy particle harmonically bound to a linear chain of harmonic
oscillators of equal but light mass, this approach to equilibrium follows the
stochastic equations of Brownian motion1-3). Brownian motion can also
be simulated by a particle having the same mass as the other particles in the
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assembly provided a specific and unique choice is made for the interaction
matrix of the chain4). A harmonic oscillator assembly may therefore act
as a “heat bath” with respect to a specific particle of the assembly. However,
the energy flow within such a “heat bath” does not obey the macroscopic
law of Fourier. A number of papers have in particular dealt with the heat
flow in linear chains of harmonic oscillators5).

In all the investigations referred to above, the properties studied were
essentially local properties. In this chapter we discuss a model of coupled
harmonic oscillators which enables us to study a property of the assembly
as a whole. The model consists of a linear chain of N  two-dimensional
coupled charged harmonic oscillators in a magnetic field B, perpendicular
to the plane of motion. Furthermore we introduce a uniform anisotropy in
the interaction. The property studied is the total magnetization of the chain.

In section 2 we study the dynamics of the model. By means of canonical
transformations the Hamiltonian is written as a sum of 2N  independent
linear harmonic oscillators whose frequencies are expressed in terms of the
normal mode frequencies of the chain in the absence of an external field and
of anisotropic coupling, and in terms of the field and the anisotropy para
meter y. The discussion of the dynamics is then reduced to solving the
(operator) equations of motion for the independent oscillators.

In section 3 we discuss the behaviour of the constants of the motion ex
pressed in the original coordinate and momentum operators of the chain,
with varying magnetic field B and anisotropy for the “coupling” parameter
y-

It is shown that at finite value of the magnetic field the constants of the
motion are analytic functions of y (for sufficiently small y). However, in the
limit as B tends to zero, these invariants of the motion are non-analytic
functions of y : they reduce to different operator functions if y is equal to
zero, and if y tends to zero.

In section 4 we study the time autocorrelation function of the total
magnetization in a canonical ensemble. We first express a total magnet
ization operator in terms of the operators pertaining to the 2N  independent
modes of oscillation of the system. The autocorrelation function of the
magnetization can then be evaluated in a straightforward way. In order to
investigate the behaviour of the function in an infinite chain, some very
general assumptions are made concerning the interaction matrix character
izing the chain. For the infinite chain the autocorrelation function is then
written as an integral whose asymptotic value, as time tends to infinity,
exists. It is shown that for finite magnetic field B this asymptotic value is
not equal, but is larger than the value to be expected for thermodynamic
behaviour, i.e. to be expected if the magnetization were an ergodic property
of the system. However, in the limit as B, the magnetic field, tends to zero,
the asymptotic value of the autocorrelation function is zero for finite y, and
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equal to the value to be expected in this case if the magnetization were an
ergodic property of the system.

Therefore, according to a well known theorem on correlation functions,
ergodicity of the magnetization is thus implied by the asymptotic value of
the autocorrelation function in the latter case (B -> 0, y ^  0). It should
be stressed here that ergodic behaviour of the magnetization in a limiting
case for our model is in no way meant to imply that the system as such is
then “an ergodic system”. On the other hand we note that ergodicity in the
above restricted sense, viz. ergodicity of the system with respect to a specific
property of the system as a whole, in casu the magnetization, appears to be
related, as we show, to the non-analyticity in the "coupling” constant y
of the constants of the motion of the system.

2. Dynamics of a linear chain of two-dimensional coupled harmonic oscil
lators in a magnetic field. We consider a linear chain of N  identical charged
particles, whose motions are restricted to the xy plane. The particles interact
through harmonic forces and are subjected to a homogeneous external
magnetic field B along the z axis.

The Hamiltonian is given by

H  =  £  «ƒ>< -  A(n))* +  \  2  r? A /(l +  (1)
a,p=x,y

Here r* and pi are the two-dimensional displacement vector and momentum
vector of the *'th particle. The quantities Q%j are the elements of a symmetric
N  X N  matrix £2 characterizing the interaction between the particles; 1
is the 2 x 2  unit matrix and oz the 2 x 2  matrix

The parameter y* is therefore a measure for the anisotropy of the interaction
in the x and y direction. It is seen that in this model the anisotropy of the
forces is independent of i and ƒ. Finally A(rf) denotes the vector potential
of the homogeneous magnetic field B, which is given by

A(rt) =  $B a rt. (3)
For reasons of convenience we have assumed both the mass and the charge
of a particle to be equal to unity. We have also taken c to be unity, (c =
velocity of light). With eq. (3) the Hamiltonian (1) may be rewritten in the
form

H  —  2  h P i — B fr i 'a * -p t)  -f- | B 2(ri*r<) +
i= l

+ i  £  if  (4)
i , i - \ .....N

a,P—x,v
* Without loss of generality we assume y  >  0.
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where the 2 x 2  matrix av is given by

The symmetric matrix £2 can be diagonalized by an orthogonal transfor
mation :

N  N
2  OijQjkO^1 =  (o\du; 2  OijOik =  djk, (6)

j ,  k = 1

where the quantities cof(* =  1, N) are the eigenvalues of £2. Introducing
new coordinates and momenta

w r = i
1

(J>tY =  £  OiiPf (oc =  x,y)  (7)
1

the Hamiltonian then becomes (dropping the primes denoting the new
variables)

H  =  2  iP? -  ^ ( r r o ^ - p i )  +  iM(co? +  i # 2) 1 +  (8)
i=l

The Hamiltonian H  is thus the sum of N  uncoupled quasiparticle Hamilto
nians Hi

Hi =  \ p l  — Blfi'oV’pi) +  £»•<•{(«>< +  i B 2) 1 +  yw|oz}-rj. (9)

Each quasiparticle is thus an anisotropic two-dimensional oscillator acted
upon by a magnetic field B. In order to solve the dynamical problem for
each quasiparticle we shall now perform an additional canonical transfor
mation by which the Hamiltonian Hi becomes a sum of two independent
Hamiltonians H f  and H ï  each describing a one dimensional oscillator. To
this end we introduce new coordinates R{ and momenta P{ related to and
Pi by

n ~  R{ — Ciax-Pi,

p i  =  ai<jx-Ri +  (1 — diCi) Pi (i =  i, N), (10)

where ax is the 2 x 2  matrix

and where a* and cj are arbitrary constants. It can easily be checked that
the transformation (10) is indeed a canonical transformation for all values
of Ui and cj.
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With ai and cj given by

yco? -  (y2«,f +  B2K* +  i^ 8))* *
a* = -------------------2?-------------------’ (:I2)

5
C i _ ”  2(y2wf +  B2(w2 +  i 5 2))* * (13)

the Hamiltonian Hi given by (9) assumes the form Hi =  H f  +  f f r  with:

H i =  tA tPl'i +  IB tX l  (14)

Hi — \A i P y j  +  \B i y | ,  (15)

where A f  and B f  are defined by

2(y2a>? +  ffl(o? +  jffl))* +  2ycof ±  B2
i 4(yV + 2?*(«J + IB*))* ’ ( )

Bt  =  {2y2co} +  2Bt (a>i +  \B 2) -

—(2yo>? +  B2)(y2«><* +  B2K? +  J52))i}. (17)

We refer to appendix I for details of this calculation. By suitably rescaling
the coordinates and momenta according to

*«' = 7 l W X<’ P ' * . i = M ) kPx,i,
'  * ( 18)

=  M - )* Bv,i — (At )* Py,i,

we finally obtain (dropping the primes once again)

H i  =  \ P x , i  +  (19)
H ï  =  \ P \ , i  +  W - , i Y l  (20)

where to2 * and a>2_ti(i =  1, N), defined as

oA,i =  =  \{B 2 +  2a>* ±  2(y2cof +  B 2(co? +  JB2))*} (21)

are the squares of the frequencies of the 2N  uncoupled one-dimensional
harmonic oscillators.
We note that

lim co±ti =  wt( 1 ±  y)1
B->0

as it should be, according to (8).

(22)
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Furthermore

lim (o±,i =  (oof +  i-B2)* ±  \B,  (23)
y-*0

which is the well-known result for an isotropic oscillator in a magnetic
field.

We are now in a position to solve in a simple way the dynamical problem
involved. Indeed from (19) and (20) we obtain the following equations of
motion

P x ,i  =  ^  Pz,i>

p y ti =  -«>*_.* Yu Yi =  Py,i ( i = l , . . . , N ) ,  (24)

with solutions:

P x,i(f) =  Px,< cos oi+'il — X<to+>( sin co+, ,̂

Xi{t) =  .Xj cos co+,{t -j- Px,<-------sin a)+tit,
C D + ,  i

P y,i(t) =  Py,i cos co—( — Yico- t sin w-jt ,

Yi(t) =  Y i cos co— (I -\~ P y ,i------ sin co_t it (i =  1, ... > tPfi
C O -  i

where Py.c and X it Y t are the initial (for t =  0) momenta and coordi
nates.

The treatment given above, holds both classically and quantum-mechani-
cally, if one replaces in the latter case the classical momenta and coordinates
by the corresponding quantum-mechanical operators. For the quantum-
mechanical case, however, it is useful in view of the statistical analysis of
section 4, to introduce boson creation- and annihilation-operators:

t Px,i "F ico+.i-Xj
a+’i _  (2 *«>+,«)* ’

Px,i — i«>+, < Xi
U+>i~  (2h(o+,ip

(i =  1, (26)

t Py,i i<U-, <Yi
l~,i (2fta)-' ip

Py,i — io>-,<Y<
(2 h(o-,ip

satisfying the commutation relations

[a±,i, a±,j\ =  <%,
[«+,<. «-,ƒ] =  [«+.<.a-,i\ =  0 for all i and ƒ.

(27)

In terms of these operators we may now write the Hamiltonian as

Hi =  Hi + H ï.

8



with

H i — "t" è) h(0+t i (28)

and

H T  =  («!,< «-,t  +  i )  h(o-,i. (29)

The equations of motion are:

«+,< =  7  \.H> «+,<] =  itu+,<«+,<»n

«+,< =  — [H , a+,i] =  —ico+,ia+'i,n

d-.i — — [#, «Ld =  i»
i«-,< =  — [ƒ/, <] =  — iet)-,( a - < (* =  1, .... N), (30)
n

with solutions

«+,<(<) =  exp ico+, ,̂
a +,i(f)  —  «+,< exp —ito+,^,

=  «!.< exp ieo-, it,
U—t {(t) d_> c exp —ico—t it.

3. The constants of the motion. Let us now study in somewhat more detail
the behaviour of the constants of the motion of the system, expressed in
terms of the coordinate and momentum operators of the quasiparticles,
with varying external magnetic field B and “coupling” constant y.

In terms of the operators defined by (18) we had found 2N  constants of
the motion given by (19) and (20). Inverting the transformations (18) and
(10) and expressing (19) and (20) in terms of the quasiparticle operators, we
obtain

H? — +  \B£ (1 — a<c<)2 xf cfpli -f- a\y\ +

+  B fa (  1 — aiCt) Xipyi — A f  atyipxi (i =  1, ..., N), (32)

H i  —  CiP x i +  a i x i  +  i - ^ i  P y i +  \ B ^(1 — fljCi)2 y | —
—A f  atXipyt +  B ïa {  1 — UiCt) yipXi (*' =  1, ..., N), (33)

where at and c< are given by (12) and (13) and A f  and B f  by (16) and (17).
From inspection of these last four expressions it is seen that all constants,
and therefore (32) and (33), for B ^  0 may be expanded in a power series in
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y. However, the radii of convergence of these series depend on B and vanish
for B tending to zero. Indeed, defining the function 1 (y) to be

f 1 y =  0
% ) = 1 n  7 /-n (34)(0 y =£ 0

one obtains, by taking the limit B -*■ 0 of the coefficients in (32) and (33),
for the constants of the motion the following expressions

H f  =  +  «?(1 +  y) x*} +  i  i m p i  +  <o\y\) - ( P l i  +  xo\x\)} -
- \l{y )o H L i (i =  1, (35)

Hr =  \\p \i +  <»i(l — y) y?} +  i  l(Y){{Pli +  <°ixi) — iPvi +  ^iVi)} +
■+■ J l(y) (OiLi (i =  1, N), (36)

where
Li =  X i p y i  yipxi (37)

is the angular momentum of the fth quasiparticle. Thus in this limit these
constants are not analytic in y. In particular we then have for y ^  0:

H i  =  +  «1(1 +  y) *?} (* '= 1 ...... N), (38)

=  htPli +  “>?(! - y ) y V s  (39 )

which are Hamiltonians for the two normal modes of an anisotropic two-
dimensional oscillator in the absence of a magnetic field.

On the other hand, if y — 0, we find
H i  =  \(Hi -  (OiLi) (* =  1, ... N), (40)
H r  =  i(JJt +  (OiLf) (i =  1.......N), (41)

where
Hi =  %{pli +  (o\x\) +  \{pyi +  (o\y\ ) (i =  1, N) (42)

is the Hamiltonian of a two-dimensional isotropic oscillator in the absence
of a magnetic field.

Thus for this value of y and in the limit B -> 0, the constants of the motion
(32) and (33) reduce to linear combinations of the Hamiltonian and the
angular momentum of a quasiparticle.

This non-analytic behaviour in y of the constants of the motion is directly
related to the asymptotic behaviour for long times of the autocorrelation
function of the magnetization in the limit B -*■ 0, as we shall show in the next
section.

4. The time-dependent autocorrelation function of the z component of the
magnetization in the canonical ensemble. In this section we shall investi
gate the time-dependent autocorrelation function R(t) of the z component
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of the magnetization in the canonical ensemble, defined by

R{t) =  —  {<pMM{t)y -  <pilf>2}, (43)

where < • • • > denotes the quantum-mechanical trace and where the density
operator p is defined by

exp — pH
<exp —PH> ‘ (44)

We shall restrict the discussion to the quantum-mechanical case. The
classical results can be found trivially by taking the limit H -*■ 0. In terms of
the original coordinate and momentum operators the magnetization is given

by
M  =  i  2  {r« a pi — \B{rv ri)}. (45)

i- i
By performing the transformations given by (7), (10), (18) and (26) we may
write M  in terms of the boson creation and annihilation operators as

N
M  =  S  mi> (46)

i= 1
with

i I o/ u +  t j — \  ^(2ya>? — B 2)(o)+)1w - <)* t w _ t  , v
mi =  \c i\2{HZ —Ht ) ----------2ÏBÖ)i(\ y)*-------(a+ ,i~  a+’*)(a- ,i  + a-  «)

h(2ycoj +  B 2)((o+,i(0-i)*  t w' t  , J

( i = l , . . . , N ) ,  (47)
where H f  and H r  are defined by (28) and (29) and where we have used the
following relations:

A f B f  =  co2±ti (by definition) (21)
A tB Z  =  co.? (1 -  y) (48)
A Z B t  =  o>?(l +  y) (i L  1, .... N). (49)

Using now the relation

«+.t(o-,i =  «,* Vl - y 2 ' ( i ' = l .......N) (50)
we may write mi as follows

f 2vco? — B 2 /  1 — v \i
m{ =  \ci j2(/77 — H r) + ih----- ---------I j  — «+,<)(«!,, +  «-,<)

2yo)t? +  B 2 / 1 + y V ,  t w t  , J
- 1» — ^ ( a - - i ~ a- i^ a+'i +  a+’i^ \

(51)



or, using the commutation relations (27)

mi — ci(Hf — Hi ) îftKi(a+ti a+, (<*-,<)
■p&£'<(0+,< ,< ̂ +,< ®—,<)> (52)

where the quantities Ki and Lj are defined by

f 2yco? — B2 f  1 — y  2yea? +  B2 /  1 +  y Y1 ,c™
K‘ “ “i 2B "(7+7J ~ 2s (TryJ)- <“>

( 2y«>| —  B 1 f  \ -  r \ ‘, +  B* /■ 1 +  y Y1
i, = C,l---2B (7+7/ + 2B (TTryJ}

(* =  1/....JV). (54)

Inserting the solutions of the equations of motion for the boson operators
(31) into (47) we get for M(t) the following expression

N
M(t) =  2  mi{t), (55)

i—1
with

mt(t) =  ci(Hf — H r) +  \\hK t{a \Aa'_A exp i(co+,< +  co-,<) t —

— a+,ia-,i exp — i(«w+,< +  «-,<) t} +
+  %ihLi{al_tia -'i exp i(a>+, < — (o-t()t —
— a+,ia^_A exp —i(to+,< — eo_,<) t) (i =  1, .... N). (56)

On the other hand, substituting (55) into (43) we obtain for R(t):

1 N
Rlt) =  —  S  {<pmimj(t)> — (pmi)(pm])>}. r (57)

N  i,i= 1

Since Hi commutes with mj for i #  ƒ, we have

<pmim](t)'> =  (pmt exp (iH}t) mj exp (—iHjt)>
=  <ipmi) ip exp (iHjt) m] exp (—iH]t)>

=  (pmtXpmjy (i j) (58)

so that R(t) then assumes the following form:

1 NR(t) — —  2  {<pmimi(t)> — </>Wi>2}. (59)
N  i= 1

Inserting now the expressions (56) into (59) we get:

R(t) =  ~  2  [4cf{</,(^+)2> -  2<pHfHr> +  <p(H^f>} +
4N  1

+  WK\{(pa\_Aa*_Aa+,ta-,i> exp —i(co+,i +  co-,i) t +

12



+  </>«+, exp i(to+,i +  (0-,i) t] -f

+  Aai-<{</>a+,<a-, «a+, «al ^  exp —i(cw+>i — o>_ <) t +

+  </><*+, ia-,id+tia-,i> exp i(co+> t — cu_ <) t) —

-  4c\{<pHt>' -  2<pHtXPHr> +  <P#r>2}]. (60)

where we have used the fact that the following traces vanish:

</>#f «+,<«-,<> =  <Pa+,ia-,iH t>  =  0, (61)
<pH faltia-'i> =  (Pa \ . ia -'iHt'> =  0, (62)

=  <P«+,<«-,<»+,<«-,<> =  0, (63)

<Pa+, <«-, <«+,<«-,<> =  <pa+, <«-, <a+, <o_, <> =  0, (64)

=  <p«+,ifl-.<> =  0 (i — 1, .... IV). (65)
Since furthermore

ipHtHry  =  <ptf+><p//r> (»=  1.......IV), (66)

we may write for i?(£)

1 £
=  4ÏV <?x t4c?{<p(^if )2> -  <P#i+>2 +  <p(^-)2> -  <p//t~>2} +

+  *2-Ki{<P«+>i«l.t«+, <«-,<> exp — i(cu+>< +  (o-,t) t +

+  </>«+, <«-,««+,<«!,<> exp i(co+i< +  w_,i) 2} +

+  #a£?{</>«+,<«-,««+,w i j  exp — i(to+,< — co_ <) i +

+  < / > « + , exp i(eo+i< — ci>_, <) *}]. (67)

In order to evaluate the remaining traces in the expression (67) we make use
of the following relations:

;  , t . 3 In Z
<p(a±,ia±,i +  i)> = ---- Tjrz------=  |  coth \(ihoi± iopna)±'i

(* =  1.......N), (68)
^(*±,<*±1* H- i ) 2> — <p(«±,^±,< +  i)>2 =

82 1nZ 1
3(phco±'i)2 4 sinh2 \pha)±ti ^  !>•••• IV). (69)

where the last members follow from the explicit form of the partition function
Z  for our system:

N  ,
Z =  <exp — pHy == n  — --------------------------------- . (70)

i=i 4 sinh %pha>+t i sinh \pha>-t t

13



Indeed, also using the commutation relations (27), we obtain from (68):

=  £ (coth \^h(a+ti — l)(coth — 1), (71)

<pa+,i#-,i»+,&t,i> — <p(«+,i«+,i +  !)(«-, ia- , i  +  J)> =
=  J(coth \pha>+,i +  l)(coth +  1), (72)

<pa+ =  <P^+,i^+,i{a-,ia- ,i  +  !)> =
=  J(coth \fihoy+'i — l)(coth \(Sh<a-ti + 1 ) ,  (73)

<pa+1<al ia+1a-,i> = <p(fl+,i<*+,« + 1) <*!,<<*-, i> —
— J(coth Iflhco+'i +  l)(coth $ph(o-,i — 1) (* =  1. •••. N) (74)

and from (69):

<p{H? — <PHt » z> =
ifitol.i ( i =  1,4 sinh2 i

With these results the expression for R(t) finally becomes:

h2
m

Ns , c* (  (0+’i
42V »=i I 1 V sinh2 |/3#co+>< sinh2

-f- |2£f(coth coth j +  1) cos (a>+,i +  «>-,<) t
+  £i£?(coth +  coth i sin(oj+>i +  m-,i) t
+  \L \{coth \fihw+'i coth — 1) cos(w+j< — co-,i) t

|(co th  \f}hw+ti — coth i sin(a)+,i — w-,i) •I T *
2 * - i

(75)

(76)

So far we have only required the interaction matrix £2 to be symmetric and
to have positive eigenvalues. As we are going to investigate the behaviour
of the system in the limit 2V —> oo, we shall now make more specific assump
tions concerning the matrix £2. We suppose the elements Qjk of £2 to be
given by

Qjk =  -— \ d0/(0) exp i(ƒ -  k) 0, (77)

where /(0) is an even positive function so that the elements of the matrix £2
are real and have the property that Q]k =  Q\)-k\. Furthermore we require
/(0) to be piecewise strictly monotonie and differentiable for —n <  0 <  n.

Let us define the following functions

©±(fl) =  [\{B2 +  2/(0) ±  2(y2{/(0)}2 +  B2{f(6) +  i # 2})*}]*, (78)

g±(0) =  w+(0) rb <«-(0),

14



k(0) =  -

m

{2Ytm -  ^ ( j + ^ Y  -  {2y/(0) +

'  4(y2{/(ö)}2 -i 52{/(0) +

{2y/(ö) -  5 2}f-— Y +  {2y/(ö) +  W - ~ r Y

1 +  y

1 +  y V 1 — 7 /

(80)

(81)4 (y 2{/(0)}2 +  B 2{ /(0 ) +

W ith these definitions we may in the lim it N  -*■ oo, using the theorem stated
in appendix II, write R(t) in the following form:

m d 0-
4[y2{/(0)}2 +  B 2 {/(0) +  i s 2}]

X

W (0)}2
+  —

{to_(0)}2

+

sinh2 J/8hco+(6) sinh2 |/Mco_(0)
It

+

+

+

1Ó7T

h2
167c

h2
1 6tc

h2
1 6tc

d0{/c(0)}2 {coth f̂iha>+(6) -coth 6Hod-(6) +  1} cos g+(6)t

7t

d0{/f(0)}2 {coth |j3^co+(0) +  coth ^ftkw-(d)} i sin g+(0)t

t

d0{A(0)}2 {coth $ph<D+{d) - coth ipkco-(0) -  1} cos g_(0)ü

rr

d0{A(0)}2 {coth 8k(o+(0) — coth %(ihw-(0)} i sin g-(0)t.

(82)
The behaviour of R(t) is then completely determined by the choice of /(0).
Its  asymptotic value for t -» 00 can, for the general case, be found with the
theorem of Riemann-Lebesgue:

ffl
hm R(t) =  —
t—*00 07T

d0
4[y2{/(0)}2 +  B 2{f(0) +  IB 2}]

X

X W (Ö)} 2 +  {«>-(0 )}2
_ sinh2 6ftco+(0) sinh2 ^pk(o-(6)

In  the classical lim it this becomes
T

lim RM  *= — . „„
47T/S2 J y2{/(0)}2 +  R2{/(0) +  md0-

(83)

(84)
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Taking now the limit B -+ 0 we find for the asymptotic value
n

ffl
lim lim R(t)
B->  0 t-+oo

% )
1Ó7C

d0 sinh2 kPtiy/fiO) ’
( 85)

where l(y) is the function defined by (34).
For the classical case we have

lim lim R(t)
B-+0 t-*  oo

l(y)
1

4tc/S2

1

Jd0
1

m (86)

We note that by taking first the limit B 0 in (82) and subsequently the
limit t -*■ oo, one finds again (85) and (86).

The asymptotic behaviour for long times of the correlation function R(t)
discussed above, is directly related to the ergodicity properties of the total
magnetization M(t). Indeed, ergodicity of M(t) would imply that the time
average of R(t) is given by:

T
1

lim —
T-+oo T

R{t) dt =  —  <p(M(E) -  <pM»2>, (87)

where M(E) is the microcanonical average of M  when the eigenvalue of the
total Hamiltonian H  is E. I t can be shown that for the present model the
following equality holds in the limit N  ^  oo (c/. appendix II I) :

1 <p(M -  <PMy)(H -  <ptf»>2
~N ~~■ <P{M(E) -  <pM»2> (88)

(89)

N  T—"  ' N  <p{H -  <pH»2>
Therefore, for our model M(t) will be ergodic if, in the limit N  -> c

.. 1 <P(M -  <PM »(H -
=  '

The l.h.s. of (89) has been evaluated above (see (83)). As for the r.h.s. of
this equation we may, with (51) and (75), write it in the form:

<P(M -  <pM»(H -  <ptf»>2
lim —

N-+oo jy <P(H -  <pH»*>
n

I' B
2 (y2{/(0)}2 +  B2{f(6) +  JB2})*

X

X
aW i (0)

x

| h2o)+ (0)

( 4 sinh2 \ph(o+[d) 4 sinh2 \pha)-(6) j_

*2«,2 (0) ^2w2_(0)

X

- J de 4 sinh2 %fihoD+(0) 4 sinh2

-l
(90)
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which satisfies the following inequalities:

d0

X

X

B
2(y2{/(©)}2 +  B2{/(0) +

W c d 2_ { 6 )j  h2a)̂ _ (0)
|  4 sinh2 8h(o+(0) 4 sinh2 |/S#to_(0)

X

d0

d0

ffia>2+ (0) *2wi(0)
4 sinh2 \fihw+[Q)

B

4 sinh2 \^h(o-{d)

X
2(y2{/(0)}2 +  B \m  +  iB 2})*

X

X

f A2ct>2 (0) + h2m2_(Q)
[ 4 sinh2 %f}ft(o+(6) 4 sinh2

[hid0
h2a>2+ (0)

d0

4 sinh2 \@ha>+{6)

B2

+
fc2w2_(0)

4[y2{/(0)}2 +  B2{/(0) +  iB 2}]

4 sinh2 %(M(o-(d)

X

X
^2co2 (0) £2w2_(0)

{ 4 sinh2 \fiha>+(0) ^  4 sinh2 %f}hw-(0)

- i

(91)

The last member of this (Schwarz-)inequality is equal to the r.h.s. of (83).
We therefore conclude that in the limit N  -»■ oo

limB(<) >  ~
t—>OO

<P(M  -  <PM »(H  -  <PB »>2
<p(H -  <pB»2>

(92)

I t is seen from inspection of the explicit expression for both sides of (92)
that in the general case (B ^  0) the l.h.s. is larger than and not equal to
the r.h.s. Thus the magnetization is in general not ergodic. However, if
B -»• 0, we have according to (85):

71^2 /*
lim lim R(t) =  d0-------------- = = - ,
B-.-0 t-*x> 16tc J sinh2 \fih\Jf(0)

—n

while the r.h.s. of (92) reduces to
l <,p(M -  <PM »{H  -  </jB »>2

lim lim — -----------------------------—----------  =  0.
b-»o N-+oo N  </>(BT — <pfl>)2>

(93)
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Thus we find that, if B -> 0 with y #  0, the magnetization is ergodic. If
B -> 0 with y — 0 the magnetization becomes a constant of the motion,
and is not ergodic, in agreement with the above result.

In this connection we may mention that a lower bound can be found for
time-averaged autocorrelation functions in terms of ensemble averages in
volving the constants of the motion of the system. The general inequality
established by Mazur5 6), reads in our case

T

, (94)

where the H% (i =  1, ..., N; « =  + ,  —) are the constants of the motion
given by (28) and (29). It can be shown that in general (B #  0) the r.h.s.
of (94) is larger than the r.h.s. of (88), so that the non-ergodicity of the
magnetization in this case may already be inferred from the above ine
quality which is obtained without explicitly solving the dynamics of the
system. However, in the limit B -*■ 0, the r.h.s. of (94) behaves differently
for the cases y =  0 and y 0, due to the non-analytic behaviour in y of
the constants of the motion in the limit B -> 0, and reduces in fact for the
infinite system to the r.h.s. of (85). Thus in the case B -*■ 0 y 0, ergodicity of
M  is not excluded by the inequality (94). We may therefore conclude that
there is an intimate relation between the possibility for ergodic behaviour
of the magnetization and the non-analytic character of the invariants H“.

5. Conclusions. In a recent article Niemeijer7) studies the dynamics and
statistics of the so called X-Y model for spins |  as a soluble model for
paramagnetic relaxation. He computes the autocorrelation function for the
magnetization in this model and shows that for t -> oo this function relaxes
to a nonzero asymptotic value. He also finds that there is no value of the
“anisotropy” parameter y in this model, for which the correlation function
becomes exponential in time, so that no “weak-coupling limit” in the con
ventional sense exists. Mazur has shown6) that the asymptotic value
reached by the correlation function in the X-Y model is not the thermo
dynamically expected value for the autocorrelation function of the magnet
ization, but is restricted to a higher value by the invariants of the system:
the magnetization is not an ergodic function in this model.

In this chapter we studied, as it were, a soluble model for diamagnetic
relaxation. We have seen that the magnetization is also in our model in
general not an ergodic function, but that it does become one when the
static magnetic field B tends to zero. We have pointed out that this ergodic
behaviour is connected with the non-analytic nature in y of the invariants
in the limit B -+ 0 (In fact in our model the 2N non-analytic invariants
may be linearly combined to yield N  analytic invariants, the energies of

lim —
T-*oo T IR( t )d t> —  2

a = =  + ,  —

<p{M -  2
<p(H? ~  <pBf»*>
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the quasiparticles; however, the remaining N  invariants are essentially non-
analytic functions in y). In  this connection we m ay point out th a t in the
X -Y  model the invariants expressed in terms of the original operators re
main analytic functions in the “coupling” param eter y for all values of the
static field B. Balescu8) has derived for oscillator systems conditions neces
sary to  insure th a t these admit no invariants analytic in the coupling
constant (special case of Poincaré’s theorem). These conditions are obvi
ously satisfied in our case for a quasiparticle (with B  =  0) but not in the
X -Y  model.

Finally we wish to make three remarks:
1. I t  should be noted th a t whereas the X -Y  model reduces to a fermion-

problem the analogous problem treated here is a bosonproblem.
2. The treatm ent in this chapter has been restricted to linear chains of two-

dimensional coupled oscillators, bu t could easily be extended to simple
two-dimensional or three-dimensional arrays of these oscillators.

3. I t  turns out, from inspection of the expression (82) for the correlation
function R(t), th a t even in our model and in the limit B  -> 0, no weak
coupling limit  (y —*■ 0, t ->-oo; yH =  finite) exists for the correlation
function R(t). Indeed, if we consider for simplicity’s sake the classical
case, we find that, for B  -> 0, R(t) reduces to  (cf. eqs. (78)-(82)) :

R(t) 8tt jS2
d0 m 1 — y2 V 1 — y2 _

X

x cos{V/(0)(Vl +  y +  Vl — y) t) +

; + . d0 ——s^ 2 j m +
\ [ \ -

X
y  - i

x cos{V/(0)(Vl +  y — Vl — y) i}- (95)

Thus ergodicity in itself of a dynamical function is not sufficient to ensure
the existence of a weak-coupling limit as is customarily assumed for more
complicated systems. I t  would be worthwhile to  analyze in more detail
under which conditions weak coupling limits do or do not exist. Note,
for instance, th a t the momentum autocorrelation function for a heavy
particle in a linear chain of coupled harmonic oscillators does adm it a
weak coupling limit (the square root of the inverse of the mass ratio M
plays the role of coupling constant).

In  chapter II  we shall apply the results of this chapter to  study the
behaviour of our model under the influence of time-dependent external
magnetic fields and thus obtain information about the frequency-dependent
magnetic susceptibility.
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APPENDIX I

In this appendix we shall derive the expressions for at, ct, A f  and B f
given by (12), (13), (16) and (17) in section 2.

Substituting (10) into (9), Ht becomes (dropping the index i ) :

H =  %P-ö'P + $R.V-R + tR.\N-P,  ’ (1. 1)

where U, V and W are 2 x 2  matrices given by

U =  {(1 -  ac)2 +  c2(«)2 +  ^B2)} 1 -  (c(l -  ac) B  +  c2yco2} o2, (1.2)

V =  (a2 +  a>2 +  \B 2) 1 +  (ycu2 — aB) o2, (1.3)

W =  {2a(l — ac) — 2c(co2 -j- \B 2)} ax — i{(l — 2ac) B  2cycu2} a^. (1.4)

As we want H  to become a sum of Hamiltonians for two independent one
dimensional oscillators we expect U, V and W to satisfy the following
conditions:

(a, /S =  ^, y), (1.5)

^  (X /7  =  B(xd(X0 (a, /S =  *, y), (1.6)

W«0 =  O for all a and /? X*II£

(1.7)

From (1.2) and (1.3) it is clear that U and V are diagonal 2 x 2  matrices,
so the conditions (1.5) and (1.6) are already satisfied for all values of a
and c. In order to make W satisfy condition (1.7) the coefficients of the
independent 2 x 2  matrices ax and ay must be equal to zero. Therefore a
and c have to obey the following relations:

2a(l -  ac) -  2c(co2 +  \B 2) =  0, (1.8)

( 1 - 2 ac)B +  2cya)2 =  0, , (1.9)

which yield for a and c :

yco2 — [y2tu4 -f £ 2(ft>2 +  i-B2)]*
a = ------------------- — ------------------ , (1.10)

— B

C =  2[y2co4 +  B2(a)2 +  |B 2)]* ‘ '  ' 11'

The other set of solutions for (1.8) and (1.9) given by

ya>2 +  [y2«>4 -f- B2(co2 -(- JB2)]4
U =  B

B
C =  2[y2«)4 +  B2(ct)2 +  £B2)]*
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must be rejected, since this set does not exist in the limit B -*■ 0 and
y >  0. In this limit (1.10) and (1.11) both reduce to zero so that the transfor
mation (10) reduces to the identity transformation.

Substituting now (1.10) and (1.11) into (1.2) and (1.3) we find
_ 2[y2(o4 + + jg2)]t + 2yco2 ± B*

% 4 [y 2 o ,4  +  £ 2 (ft)2 +  ( ' 12)

and

B± ^ V XX =  - 1 -  {2y2ft)4 +  2S2(<02 +  i S 2) -

-  (2yco2 T  52) [y2w4 +  £2(^2 +  JS2)]i}. (1.13)

APPENDIX II

In this appendix we state the theorem that we have used in section 4 in
order to replace the summation in (76) over discrete indices by the integral
in (82) over a continuous parameter, in the limit N  oo.

Theorem
If f(6) is a real-valued Lebesgue integrable function whose Fourier coef

ficients are given by the elements of the N  X N  Toeplitz matrix £2, i.e.

* ] - k
1

2ir

(ƒ

d0 f(0) exp i (ƒ — k) 8

1 , . . . , N ; k =  1

( H I )

if furthermore AjiV) (v =  1, ..., N) are the eigenvalues of the matrix £2, and
if F(X) is a continuous function, we have

N -*oo v=  1 IV
1

2tz

%

5[/(0)] d0. (II.2)

The above theorem can be found in the monograph of Grenander and
Szegö on Toeplitz forms9).

APPENDIX III

In this appendix we shall derive that eq. (88) of the main text holds
in the limit N  oo. We consider the variables H  (=  total energy of the
system) and M& (=  diagonal part of the magnetization in the represen-
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tation in which the operators nak =  alka«k (a =  ± ;  k =  1, n) are di
agonal), which are sums of N independent, canonically distributed stochastic
variables:

H = 2 Hi = 2 int  + \) ^w+,t + (wi + i) (HI.1)
i= 1 i— 1

Ma =  S  Men =  S  c<{(wt +  I) ^co+,i — (»f +  i) &»_,<}. (III.2)
i=1 i=l

Next we introduce new sumvariables 3  and Md which are each sums of
normalized independent stochastic variables:

3 = i i 3 i (HI-3)
i=l

and

M& =  S  u, (m -4)
1=1

where and Mai are defined as:

3 t =  Hi ~~ <pHi>- (HI-5)
oh,nN*

and

Mai =  Md< ~  ( f = l , . . . , N ) .  (H I-6)

The quantities <jh, n and cm, n are given by :

OH,N =  f-^T j s  <p(Hf -  < ^ i» 2>|i > (IIL7)

and

<p(Mai -  <pMd<»2>} . (III.8)
I N  i=l J

The joint distribution function of the variables 3  and M& is defined by

f(3 =  1 ,  M& =  f )  =  <pd(B -  1 ) ö(Ma - ? ) >  =
+oo +oo

Jdt ds exp(—iXt — i ¥s)<p exp(iBt +  iMds)>. (III.9)

The logarithm of the trace in the last member of (111.9) can be developed
in a power series in t and s in the following way:
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N
In ip exp(iÜt +  i j f ds)> =  S  In

1=1

<exp(—(IHj) exp(iË jt +  iM&js)>
<exp(—/?#ƒ)>

=  S  InX1 -  -  <P{H} ~  i l
1=1 \  2 ffff.iv iV

_  — ipHjy)(Mgj — <pMd;>)>
aH,N<*M,N N

J_ <p(Mdj -  jpMd]})2} s* /  1 \)
2 ^ +

=  — — Bis — £s2 +  <S

where

(III. 10)

d _  1 v  (Pfój — (pH})) (My  — <pM,y>)>
” N  i=i (0 < B < 1 ) .  (III. 11)

aH,NdM,N

Thus for large N  the joint distribution function becomes Gaussian:
+ o o  4-oo

/(* . ?) (2tt) j  d* ds exp(—\ l t  — i Vs) exp{—1(<2 +  2Bts +  s2)}
—oo —oo

(2tcV 1 -  5 2 )- i  exp — ---- 2 g i y +  ? 2) (III. 12)2(1 -  B*)

Following the argument of the appendix of ref. 6 we finally have asJV->oo:

<pMa8>*<PM l(Ö  =  Ë)>
<p8*> (III. 13)

or:

—  <p{Ma(E) -  <PM,j» 2) =  —  -̂ (Md-----</>Md» ( # ___< ^ » >2
^  N  iP(H -  <ptf>)2>

(III. 14)
or (as IV -> oo):

t t « * « ~ < * » >  =  (i „ , 5)

since the non-diagonal part of ilf does not contribute to the traces on both
sides of this formula, which is just eq. (88) of the main text.
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Chapter II

THEORY OF DIAMAGNETIC RELAXATION IN
HARMONIC OSCILLATOR ASSEMBLIES

Synopsis
A linear response theory for simple diamagnetic systems in a time-dependent

magnetic field is presented. I t is shown that the average magnetization consists of
two components, one following the magnetic field instantaneously, and a second one
involving an after-effect function and giving rise to relaxation. Expressions are given
for the isothermal, adiabatic, isolated and frequency-dependent susceptibilities per
particle for diamagnetic systems. Inequalities between the various susceptibilities are
derived. The various relevant quantities are calculated for the case of a linear chain of
charged anisotropically coupled two-dimensional harmonic oscillators in a time-
dependent magnetic field.

1. Introduction. In chapter I x) t we solved the dynamical problem of
a linear chain of charged anisotropically coupled two-dimensional harmonic
oscillators in a constant magnetic field B. We also studied the autocorrelation
function of the magnetization in this system, in particular its asymptotic
behaviour for long times. In this chapter we shall investigate the behaviour
of the system considered in the presence of a small additional time-dependent
magnetic field. To this end we first develop in section 2 a linear response
theory for the magnetization, in simple diamagnetic systems, to a time-
dependent electromagnetic field. Whereas in the conventional linear
response theory one usually deals with dynamical functions which do not
explicitly depend on time, the magnetization in diamagnetic systems is a
function of the canonical variables and of time through the electromagnetic
field. As a result we find in this case that in contradistinction to the para
magnetic case, the average magnetization has a component which follows
the magnetic field instantaneously, and a second component involving an
after-effect function and giving rise to relaxation. As discussed in section 6
this second component becomes relatively less and less important at very
low temperatures. This is the reason why the electronic diamagnetism of
molecules follows the field, so to speak, instantaneously. However, inter-

t Equations and sections of chapter I, referred to in this chapter, will be preceded by
the prefix 1.
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molecular interactions may give rise to a small time lag. On the other hand
at very high temperatures both contributions to the average magnetization
are of the same order of magnitude.

We show in section 3 that in the situation in which the system is in
thermal equilibrium for times t <  0 with respect to a magnetic field B +  b,
and in which the field b is (unrealistically) thought to be switched off at
t =  0, the average magnetization first increases discontinuously at t =  0,
and then has for t >  0 a continuous time-dependent behaviour described
by the relaxation function. In particular this implies for a classical system
that the magnetization which is initially zero according to Miss van Leeuwen’s
theorem2), jumps to a positive value at t =  0, before decreasing again. We
give a formal expression for the relaxation function.

In section 4 formal expressions are derived for the isothermal, adiabatic
and isolated susceptibilities per article. It is shown that they obey the
same inequalities as the corresponding paramagnetic susceptibilities.
Special cases, i.e. when the system is a classical one and/or ergodic, are
considered. We also discuss in this section the frequency-dependent sus
ceptibility per article %(a>), whose asymptotic value for w->oo is related to
the jump in the relaxation function.

Finally in section 5 we calculate the various quantities, and functions
considered in sections 2-4 for the system investigated in chapter I, and discuss
their behaviour also in the light of the results obtained previously for the
autocorrelation function of the magnetization.

2. Lineair response theory for simple diamagnetic systems in a time-dependent
external magnetic field. We consider a system of N  interacting identical
particles (charge e) moving with respect to fixed centers of force (charge —e).
The system is subjected to a constant homogeneous external magnetic field
B\ and a small time-dependent external electromagnetic field, characterized
by the vector potential a(r, t) and the scalar potential <p(r, t). The hamil-
tonian of the system is given byt

H =  2 — [ p i -  —  fliX {Ri +  n ) - — o { R i  +  ri,t)i=i 2m ( 2 c  c

+  c 2  <p{Ri +  U, t) +  U(rN). (1)
< = i

Here Ri is the position vector of the center of force of the ith particle, and
r< and pi are the displacement and momentum vector operators of the ith
particle. U(rN) is the sum of the potential energy of interaction and the
potential energy of the particles with respect to their fixed centers of force;
m is the mass of a particle, and c is the velocity of light.

t We use rationalized gaussian units.
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The operator for the total magnetization of the system is given by
M(rN, p N \ t)

——  S '2me i = l (
C 6

rt X pi — —  BiX  (Ri +  f<)------a(Ri +  rit t)2 c c

The explicit time dependence in M refers to the terms on the r.h.s. of (2)
involving a(Ri -T fi, t) (i =  1, N). Performing the canonical trans
formation

P l - P i - — Bi x  Rt, ( . =  1.......Nh (3)

r'i =  r«,
we obtain for the hamiltonian (omitting the primes)

1
i = i  2 m

€ €
—  Bi x  u ------a(Ri +  rt, t)
2c c

+  e 2  <p(Ri +  ri> t) +  U(rN)

and for the total magnetization
M(rN, p N; t)

2 <fiX c c
pi — ~z— B\ x  n ------a(Ri -f- ru t)2c c2 m e  < =  i

We may rewrite the hamiltonian as follows:
N 1 /  e \ 2

H =  2  —— ( p t — —  BiX  r<) +  U(rN)i=i 2m V 2c /

2  ( pi  — —  Bi x u )-a[Ri +  rit t)2me i=i
„ N

2me <=x
2  a(Ri -f  rit t) ■(pi  — —  Bi x  n
1=1 \  2 c

+  e 2  <p(Ri +  rt, t) +  <P(a*).
t - i

Taking a gauge in which
div a =  0,

we obtain to first order in a and q>:

H =  H „ -----— 2  (p i  — —  Bi x  r<\a(A< +  rit t)
me 2c )

N
-(- c 2  <p{Ri +  fi, t),

* - i

(4)

(5)

(6)

(7)

(8)
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where
1

HBl =  S  — -
i —\  2m P i  ~  ~2c B l  X f< * +  t7^ '

We define the current-density operator j Bl(r) in the absence of the external
time-dependent electromagnetic field as

j Bl(r) — E +  f i — r) +  +  f i — ( 10)
i=  1

and the charge-density operator pe(r) as

Pe(r) =  E [«*(*« +  r« — r) — — f)]- (11)

We may then express the hamiltonian as

h =  hBi d rjBl{r)-a(r,f) + drPe{r) <p(r, t),
V

( 12)

where V is a volume enclosing the system.
We now suppose the system to be in thermal equilibrium at t =  —oo in

the presence of the static external magnetic field Bi. We shall investigate
the linear response of the average magnetization to a small external electro
magnetic field, characterized by the vector potential a(r, t) and the scalar
potential <p(r, t) with a(r, —oo) =  tp(r, —oo) =  0. In fact we shall first
derive an expression linear in a(r, t) and cp(r, t) and, making use also of the
multipole expansions for j Bl(r) and pe(r), convert this expression into a
response formula with terms Unear in the magnetic field b(r, t) and the
electric field e(r, t) with

b(r, t) =  Vr x  a(r, t), (13)

e(r, t) =  — -  d(r, t) —  Vr<p{r> *)•c
(14)

From eq. (5) it follows that the average magnetization at time t is given by

M(t) = <P{t) M(t)> =  <P(t) MBiy + <p(t) Mi(t)y,  (15)

where p(t) is the normaUzed density operator at time t, and where brackets
denote quantum-mechanical traces; MBl is the magnetization operator in
the absence of the time-dependent electromagnetic field

2 m e

N
E  r<x

i=  1
B i  X (16)
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and the operator M\(t) is given by
e2 n

Mi(t) =  — - — -  S  r< x  a(R( +  r(, t). (17)
2mc2 i= l

Note that from eq. (17) it follows that the second term in the last member
of eq. (15) itself is Unear in a.

With the form of the hamiltonian given in eq. (12) we can evaluate by
standard methods3-4) the first term in the last member of eq. (15) to first
order in a and (p, and obtain

(p(t) =  (,pBlMBiy

1
\hc

d r  j dr<MBl(r)[yBl(r), pBl]>-a(r,t -  r)

o v

+

(X

1d r df<M J,1(r)|>(!(f), pBl]> <p(r, t — t). (18)

o v
For the second term in the last member of eq. (15) we get to first order in a :

<P(t) Mi(0> =  <pMlMi(t)>. (19)

The operator pBi appearing in eqs. (18) and (19) is defined as

pBi =  p(—oo) =  exp(—pHBl)l<exp(—0HBl)> (/? =  1/kT). (20)

We now make use of the well-known multipole expansions of j Bl(r) and pe(r)
up to second-order terms:

J b M )  =  P(r) -  +  cVr X m Bl(r) (21)
and

Pe(r) =  -  VAp(r) -  Vr-q(r)l (22)

where p(r), q(r) and mBi(r) are the electric dipole moment, quadrupole
moment and magnetic dipole moment density operators, respectively:

p(r) =  e S  rtd(Ri — r), (23)
<=i

q(r) =  — S  riftdiRt — r), (24)
2 i= 1

s  n  X (fi)Bld(Ri — r). (25)
2C i= 1

One is justified in neglecting the higher-order terms in the multipole ex
pansions, if the fields a(r, t) and q>(r, t) do not vary too fast over the average
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displacements of the particles from their centers of force. In the same order
of approximation we expand in eq. (19) [see also eq. (17)] the vector potential
a(Ri +  ri> t) as follows

a[Ri +  rit t) =  a{Ri, t) +  (ivF*,) a(Ru t). (26)

Inserting eqs. (21) and (22) into eq. (18) and eq. (26) into eq. (19) we obtain
after some straightforward calculations (given in detail in appendix I) the
following expression for the average magnetization in terms of the fields
b(r, t) and e(r, t)

e2 N
4m c ^  ^  [h(I?i, t )  X rj]})>

dT

P

dr j*d2
a

dr
+  ihX) pBimBl(r)> ■ b(r, t — r)

At dr<PBl[MBi, p(r, - r )  -  Fr-q(r, -r)]> .e(r, t -  r).(27)
o v

We shall assume the magnetic field to be sufficiently homogeneous over
the dimensions of the system, and restrict our considerations to the response
of M(t) to the magnetic component b(t) of the electromagnetic field alone t.
Furthermore we suppose the static field Bi and the time-dependent field
b(t) (with magnitudes B\ and b(t), respectively) to be directed along the
z axis, and restrict the analysis to the z component of the magnetization,
which will be denoted by M  and referred to as the “magnetization”. Inte
grating the third term on the r.h.s. of eq. (27) over r, we then obtain

A M(f) M{t)
> P

4 m e 2 i= ls  <pbJA +  y<)> W)

dr
(pb^ b Mb^t +  ihX)y b(t t). (28)

Taking e, m and c to be equal to unity and defining the quantity Q as

Q = - i  S + yl). (29)i= 1

t For the harmonic-oscillator model studied in section 5 it can be shown that the
term in eq. (27) characterizing the response of M(t) to e(r, t) vanishes if the contri
bution arising from the quadrupole moment is neglected.
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formula (28) may be written as
AM(t) =  <PBlQ> b{t)

OO p

dA
'  s

Sr
+  î A)> b(t -  t). 30)

o o
It thus appears that the average magnetization has two time-dependent
contributions, one following the magnetic field instantaneously and a second
one involving an after-effect function.

3. The relaxation function. In this section we shall evaluate the relaxation
function of the magnetization. To this end we suppose the system to be
initially in thermal equilibrium with respect to an applied magnetic field
Bi =  B -}- b (B >  0, b >  0). At t =  0 the small magnetic field b is thought
to be switched off suddenlyt. We now define a function <p(t) as follows:

<p(t) H m -
b-*-0 N

( M ( t ) —  <p b M b >) (31)

For t <  0 <p(t) represents the isothermal static magnetic susceptibility per
particle xt{B) ■

Xt{B)
1 { ( .p B + b ^ B + b y  — <Pb^B >) 1 0<PbM b>hm -------------------- -----------------=  —--------------- ,b^oN b N SB j

(32)

while for t >  0 cp{t) is the relaxation function of the magnetization per
particle. Thus in order to calculate <p(t) we have to evaluate M(t) — <pb^ b>
up to first order in b. Eq. (30) gives an expression for M(t) to first order in
b(t) for an arbitrary time dependence of the magnetic field B(t) =  Bi +  b(t)
with b(—oo) =  0. The specific time dependence of B(t) for our case is

B ( t ) = B  +  b +  b(t), (33)
with

for t <  0,
for t >  0.

(34)

Inserting eq. (33) into eq. (30), we obtain the following expression for M(t)
[linear in b(t)] i

M(t) — <pB+bMs+b> +  <PB+bQ> b(t)
OO P

j <

dr dA (ps+bMB+bMB+bij +  i^A)> b{t -  r). (35)

t It is by no means implied here that the instanteneous switching off of the field
b{t) can indeed be realized. We only introduce such an unphysical time dependence
of b(t) as a formal way to define the relaxation function, which characterizes also the
response of M{t) in more realistic situations (cf. section 4).
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Using also (34), we have in particular, if t <  0
M{t) =  (pB+bMB+6>,

and if t >  0

(36)

M{t) — (pB+bMB+b> — HpB+bQ>
t  P 0
At I dA-^— (ps+tfMB+bMB+b(r  +  i#A)>.+  b

p

- ! •

(37)

Performing the integration over r  in the last term of the r.h.s. of eq. (37), we
obtain

_  p
M(t) =  ipB+b^B+b> — b(pB+bQ> +  b ƒ AA{<pB+bM B+t>MB+b{t +  i^ )>

(.PB+bMB+bMB+b(ifctyy} (t >  0). (38)

In view of the definition of q>(t) we have to linearize the traces on the r.h.s.
of (36) and (38) with respect to b.

First we replace M b+& by [cf. eqs. (16) and (29)]

Ms+b =  M b +  bQ.

Next we expand pB+b to first order in b:
P

PB+b =  p b [ 1 +  b ƒ AX{Mb{—i^A) — <p b M b >}].

(39)

(40)

Inserting (39) into (36) and (38), and subsequently expanding pB+b according
to (40), we get, neglecting all terms involving 2nd and higher orders in b,
the following expressions for M  (t):

M(t) =  <pbMb> +  6 ƒ dA[<pbM bM g(ihX)y — </>bMb>*] +  b(psQy

(t <  0),
p

M{t) =  </jbM b> +  b ƒ dA[<(pbM bM b (î A) > — <pbMb>2]

(41)

+  b ƒ dA[<pBMgM b (i +  î A)> — (.pbM bM b(i^A)>] (t>0). (42)

Thus in view of the definition (31), we can finally express <p(t) as follows:
P

dA[<p&MbM s(i^A)> — <pbA7b>2] (t <  0),

<p{t) — b 0 (43)
w <pbQ>+w

-jy- j  AX^pbM bM b^  +  i^A)> — (pbM b)2] (t >  0). (44)
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For the classical case we have instead of (43) and (44):

<p{t) =

1 B
-jy- <PbQ> +  -jy- [<PbM % } — <.pbM b>2]

B ‘J „
[<PBMBMB(t)> — <pbMb>2]

(t <  0),

(t >  0 ),

(45)

(46)

where pb, Q and Mb are the classical analogues of the operators defined in
section 2, and where the brackets now denote integration over phase space.
Since for classical systems in thermal equilibrium the average magnetization
is zero at any value of the applied magnetic field (according to Miss van
Leeuwen’s theorem2)), i.e., since

<.pB+bMs+b> — <pbM b~> =  0, (47)
we have furthermore

lim
b-*0

m
Nb

=  cp(t) =
0

P— - <pBMBMB(t)y

(t <  0),

(t >  0).

(48)

(49)

The result (48) can also easily be found directly from eq. (45). A very
remarkable feature of diamagnetic relaxation is the discontinuity of <p(t):

A <p lim <p(t) -  lim <p(t) =  -  —  <pBQ>.
fi o jf o A (50)

With eq. (29) it follows that the last member of (50) is always positive (both
in the classical and the quantum-mechanical case). This discontinuity is
characteristic of diamagnetic relaxation.

4. Isothermal, adiabatic, isolated and frequency-dependent susceptibilities
for diamagnetic systems, a) The isotherm al su scept ib i l i ty  %t- In
section 3 we have already defined the isothermal susceptibility per particle
Xt for diamagnetic systems:

Xt (B) =  — ---- — -----=  (p[t) for t <  0. (51)

As we have seen in section 3 [c/. eq. (48)] we find for the classical case

Xt (B) =  <p(t <  0) =  0 (52)

and for the quantum-mechanical case [cf. eq. (43)]

Xt (B) <PbQ> +
fi

dX R(ihX),
o

(53)
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where R(z) is the autocorrelation function of the magnetization

R(z) =  —- (<pbM b M b (z)~> — <pbM b >2)- (54)

b) The ad iab a tic  su sc e p tib ility  *s• The adiabatic susceptibility
per particle %s is given by (cf. appendix II and ref. 5)

P <PBMfAH>*
~N <pB(^H)2>

where AH = H — <pBH> and AM =  M B — <p bM b >. In the classical case
we have, since M  is an odd and H  is an even function of the velocities rit
instead of (55) the following equality:

P </bBAMAM>2

~N

XT —  Xs 0, (55)

XT — Xs 0. (56)
<ps{AH)*>

Therefore, since xt is zero in this case, the adiabatic susceptibility will also
vanish for a classical system.

c) The iso la ted  su sc e p tib ility  *is. In order to obtain an expression
for the isolated susceptibility per particle *is we first rewrite eq. (30) as
follows (with Bi =  B ):

■ <pbQ> W)

o

-I
<.pBM By]

3

dT± L j < , _ T).
dr

(57)

Here we also used eq. (44) defining the relaxation function q>. Suppose now
that b(t) has the following form:

0 t <  —T,
b(t) T  +  t - T £ t £ 0 ,

Then (57) reduces for — T ^  t ^  0 to:
T+t

1 ^  T  +  t ‘ .
AM T{t) = —  <PbQ> b ~  b

T  -f- t — r  dq?
dr
T+

dr

1 T +  t T + t ,
-jj- <pbQ> t  b +  9>(0+) —  bT

b
~T

<p(t) d7

N  T  ) T

T+t

<p(t) dr,

(58)

(59)
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where we also have used eq. (50). The isolated susceptibility per particle
is now defined t as

%is =  lim lim -  AMT(Q).
T -+00 6->0 N o

(60)

It follows therefore with eq. (59) that

Xu =  <p(0~) — lim —  | <p(t) dt
T —>oo 1

T

ƒ< XT — lim —
T —x o  1

<p(t) d t, (61)

where xt is the isothermal susceptibility [cf. eq. (51)]. It can be shown that
the following relation holds [c/. appendix III]:

lim —
T-xx> T

<p{t) dt =  ft lim —
T-+oo i

R(t) dt. (62)

Furthermore it has been shown by Mazur6) that the following inequality
holds quite generally:

lim —
T - x a  T

R(t) dt ^ <PAMAH>*
<p(AH)*>

£ 0 . (63)

When the magnetization is an ergodic function, the first inequality becomes
an equality in the limit of an infinite system. In view of eqs. (55), (61), (62)
and (63) we obtain the following inequalities:

Xt ^ X s ^  XiB-

In the classical case this reduces to [cf. eqs. (52) and (56)]:

0 =  XT =  Xs ^  tfis-

If the magnetization is an ergodic function, we have

Xt ^ X s =  %is,

and for a classical ergodic system

0 =  xt =  Xs — XiB-

(64)

(65)

(66)

(67)

t Many authors define the isolated susceptibility per particle ;jis by choosing
b(t) =  b eet, (/ g  0, c >  0) and writing xia =  lim ,,^ lim6_,0 (1 /Nb) AM e(0). One easily
verifies, using the fact that <p(t) is a relaxation function, that xia is identical with
Xia defined by (59) and (60). Note also that, when lim ^.^ <p(t) exists, xia  is simply
Xia =  XT —  lima-*» <p(t). (61a)
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In addition to (64) we expect for a diamagnetic system the inequality

XT ̂  0.
to hold. We note that according to eq. (53) xt consists of two contributions
of which the first one is negative and the second one positive.

It is easy to show that in the limit p -> oo for zero magnetic field the
second contribution vanishes for a rotationally invariant hamiltonian. xt
is then given by the conventional expression for the ground-state suscepti
bility

i N  gr. st. i N ___gr. st.

x r - o(°) =  -  ^  (*? +  y") =  “  "ëW  r< ' ^

Note that as a consequence of this value for Xt=o =  <  °)« which also
implies that xt is now simply equal to —A<p, <p(0+) and therefore also <p(t >  0)
vanish. Therefore in this limit there is no relaxation at all and the magnet
ization follows the field instantaneously.

On the other hand Van Vleck7) has given an expression for xt for the
case of free electrons at arbitrary temperatures, which is indeed negative.
For the case of a harmonic oscillator assembly with a hamiltonian which
is not rotationally invariant, as considered in section 5, we again find that
XT is negative as expected. We have not been able to establish in general
from expression (53), that xt must always be negative.

d) The frequency-dependen t su sc e p tib ility  *(«>). The frequency-
dependent susceptibility per particle %(co) is found by Fourier inversion of
(57). This leads to :

AM(a>) =  %(co) b(a>), (^ )

where AM(w) is given by

AM(w) =  ƒ d*e1<otAjr(*), (7°)
—  OO

and b(co) by

b(co) =  ƒ df e1®* b(t),

and where (̂co) is
OO

x H  =
l

~N <pbQ> — dr ew
d<p
dr

(72)

We note that the real part x'(w) x(a>) contains a constant (negative) term,
which is just minus the jump in the function cp(t). It can be shown that for
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a large class of functions <p the second term on the r.h.s. of (72) vanishes in
the limit a> -> oo. In this case (cf. also the example in section 5):

lim x H  =  lim x'(co) =  —  <psQ> =  —A<p.
J J — X i O  CO—>00 i V

(73)

The expression eq. (30) [or eq. (57)] for M(t) contains a term following the
magnetic field instantaneously. We have seen that this term gives rise to
the jump in q>. Here we find that it is just this same term which, for a large
class of functions <p, is responsible for the non-vanishing asymptotic value
of x{(o) in the limit tu - m x>. On the other hand we obtain in the limit a> -> 0:

x(°) =
1

N <PbQ> —
0

=  <p(0~) — <p(0+) — lim <p{t) +  99(0+) =  xt — lim <p(t). (74)
t—*oo t-*oo

Comparing with (61a) we see that %(0) exists and is identical with xis,
whenever l i m ^  <p(t) exists (cf. also ref. 4). It should be mentioned that the
real and imaginary parts of the complex function /(to) — N _1 (pbQ} satisfy
Kramers-Kronig dispersion relations, as follows from conventional con
siderations. Furthermore eq. (72) together with the explicit expression for
<p(t) ensures that the imaginary part x"(m) °f xi0*) *s non-negative for co >  0
and describes therefore absorption.

5. Diamagnetic relaxation in harmonic oscillator assemblies. We shall now
apply the theory developed in the previous sections to the system con
sidered in chapter I. This system consists of a linear chain of N  charged
anisotropically coupled two-dimensional oscillators in a magnetic field.

The hamiltonian of this system is given byt

H =  s  h(Pi -  x  r<)2 +  1 2  rfQtfil +  ya*)*^. (75)
u ,p = x ,y

This hamiltonian has the form of the time-independent part of the general
hamiltonian eq. (4). Since the dynamical problem for this hamiltonian has
been solved in chapter I, where we have also calculated the corresponding
autocorrelation function for the magnetization R(t), we can evaluate in a
straightforward way for this model the various quantities defined in sections
2-4. In the first place we calculate with (1.46), (1.52) and (1.68) the average
magnetization per particle in thermal equilibrium in the presence of a

t For notations used in this section cf. chapter I.
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magnetic field B :
1 /  v 1 £  B

—  <pbMb> 4[y2ft>4 +  +

X (foo+,4 coth %(iftco+,i — ^co_,i coth \{ih(o-ti) ^  0.

The inequality follows with co+, * co_, i 3: 0.
For high temperatures (/?̂ a)±,< 1) eq. (76) reduces to

—  <Pb M b > =  - ^ h 2B.

(76)

(77)

On the other hand for very low temperatures (/S&u±,j 1) we have:

1 1 N B  „
—  <Pb M b > — -------r y  E  , r  o 4 L P 2 /  g _1_ i P 2 \ i i  ( ^ 0)+ .<  —  &<*>-,i)- (7 8 )AT IV <=i 4[y2eo* +  £ z(a>* +  P>2)]*

From eq. (76) we obtain according to eq. (51) an expression for the iso
thermal susceptibility per particle:

/ D\ 1 3<pbM b>
 ̂ “  ~N dB

1 v  2y2o)| -  \B 4
8N i- i  [y2o)f +  B2(w- +  i ^ 2)]1

X (foo+, < coth i — ha)-, i coth \fih(o-t <)
1 *  B2

“  W  [y2cof +  fi2(co? +  iB 2)]

X ^ft>+, < coth %pha)+' i -(- h a j coth iflhco-, <

_  __________________ PWto-.t A  <  o  ( 7 9 )

2 sinh2 2 sinh2 \fiha)-t i )

The inequality follows with the help of standard inequalities involving the
functions x  coth x  and x  sinh-1 x. We see that %t {B) is indeed negative for
all values of B, y and T  =  (kfi)~l .

For high temperatures (/?fat)±, < ^  1) we have

Xt (B) =  -  (80)

whereas for low temperatures the susceptibility becomes

Xt {B) =  —
2y2co} — \B 4

8N  i- 1  [y2cof +  B2(oj? +  iB 2)]*
N

E

(&*>+,< — ha)-,i)

8N i- i  [y2(ot +  B2K 2 +  iB 2)]
(hco+,i +  hco-,i). (81)
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As we have seen in section 3, <p(t) has a discontinuity at t =  0 and jumps for
our model from the negative value <p(0~) to the positive value (p(0+). The
value of this jump may be calculated to be [using the transformations (1.7),
(1.10), (1.18) and (1.26), as well as (1.68)]:

1 N
A tp ~  <pb 2  (A  +  y*)>

4 N i=i

1 N

2 1
8N  i - i  «>|(1 -  y2)

4- i coth \flha>-' t —

hco+'i coth \f}h<o+'i

2y2eof +  B 2
2[y2cof +  B 2(w? +  i  B 2)]*

X (hco+f i coth \fSha)+' i — j coth \f}ha)-3 i) >  0.

In the classical limit (h
1 »

0) the jump of <p(t) is given by

A <p 2  1K (1  — y2).

(82)

(83)
2 Np <=i

As for the relaxation function q>(t) [cf. eqs. (44) and (54)]
P

<p(t) =  ƒ d2.R(t +  ihX),
o

it can be found with the explicit expression (1.76) for R(t), replacing the
real argument t by t 4- ihX. This yields:

B 2

(84)

<p(t) /?*2 £
4N i=i 4[y2o)f +  B2 (©■ +  \B 2]\

X ,+.i +

+

+

\  sinh2 \fiho)+' < ' sinh2 \f}ha)+3 j
h ^  c°th  IfihcD+'i +  coth \fiho)—_A.* -----------------------------------------

4N i - i  *
h *  coth \$h<a-'i

4N  <=i *

<o+,i +  0 ) - ' i

coth ^pha)+t i

cos (co i +  oj-'i) t

0)+,i — ft)—, i
where Ki and Li are defined by (1.53) and (1.54).
In the classical limit we obtain instead of (85):

JA _  1 £  B2
= ~2Nfi Si [y2(of +  B2(co* +  \B 2)}

1

COS(ft)+,i — ft)-, j) t,
(85)

+

+

N

2 K l
2Np ~i ft)|(l -  y2)*

1 N

2 / 2■C'i
2AT/S (=1 ft)2(l -  y2)i

cos(ft)+,i 4- CO- i) t

COS(ft)+, i - CO-*) t. (86)
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Since we are especially interested in the behaviour of the system in the
limit N  -> oo, we require, as in chapter I, the interaction matrix Q to obey eq.
(1.77). Using furthermore the definitions (1.78)-(1.81), we can easily express
the results obtained above, in the limit iV oo, as follows: For the average
magnetization per particle we have

lim —  <pbM b>
N-*oo

1
2nM 4{y2[/(0)]2 +  B \m  +  i # 2]}*

X \h(o+{6) coth £/Mku+(0) — ho}-(0) coth £/?#co-(0)]

For x t{B) we obtain:

.. ,. 1 d<PBM B>hm Xt(B) =  hm — -----—----
N-+oo iV  onN-+oo

1Ó7C
d0 2y2[/(6)]2 -  iB*

{y2mi2 + ^2[/(0) + m v
X [hw+(0) coth %f}h(o+(0) — hw-(d) coth w-(0)]

1
1Ó7I

d0
{y2u m 2 +  +  j b 2]}

—  7V

X j&o+(0) coth \fihu)+(6) +  h(o-(0) coth J/SH(o-(0)

^ 2 [ w+(0)]2 ^*2[tt>_(0)]2
“  2sinh2 %phco+(6) 2 sinh2 ^hco-{6)

For the jump of <p(t) at t =  0 we get

(87)

(88)

I f , .  1lim A® = ------I d0 ■---------—
v-**> 16ti J /(0)(1 — y2)

— 7T

X jfow+(0) coth lftha>+(6) +  ha>-(6) coth

_________ 2y2/(0) +  B2
2{y2[/(0)]2 +  S 2[/(ö) +  m y

X [/ho+(0) coth f̂}ha>+(6) — ha>-(6) coth f̂}ha>-(6)] >, (89)
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and in the classical lim it:

1
lim Agp:

N —* o o  4 l Z p Jd0 1//(0)(1 -  y«). (90)

The relaxation function <p(t) [t >  0) becomes in the limit N  -> oo:
it

B 2Bh*
lim <p(t) =  —

N -*oo  Ö7T
de

x

4{y2[/{0)]2 +  £ 2[/(0) +  i^ 2]}
—it

(  l>+(fl)]2 [cq-(0)32
V sinh2 W*a+(6) +  sinh2 lp1ko+(8)

+
h dfl W 9)]. c o th ^ a > +(0) +  co th ^a> -(0 ) cos g+(e) t

iti+  — |d0[A(0)]2

and in the classical lim it:
It

1

g+P)

coth — coth ^phm+(d)
g -m

cos g-(6)t, (91)

üm Vi*) . „
JV -k x j p  t

dfl-

-+ wid0

|ya[/(0)]2 +  B 2[f(d) +  i^2]}

W0)]*
/(0)(i -  y2)*

cos g-+(0) *

7t

— Tt

M 2
/(0) (i -  y2)*

cos g-{6) t. (92)

Now that we have taken the limit N  -*■ oo for the relaxation function, we
are in a position to evaluate the asymptotic value of <p(t) in the limit t -*■ oo.
From eq. (91) we find for the quantum-mechanical case, with the conditions
we have imposed on the function /(0) in 1. section 4, and making use of the
Riemann-Lebesgue theorem

lim (xt — Zis) =  lim lim <p[t)
N —+oo t-+oo N -+oo

ph2 j* B 2
“8iT  J ^  4 {y2[/(0 )]2 +  B 2[/(0) +

— It

(  [o>+(0)32 [co-(0)]2 \
\  sinh2 \pft(o+{6) sinh2 |/Mco-(0) J

(93)
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For h -> 0 this reduces to
lim (xt

N-*oo
Xla) lim lim cp(t)

t—X30 2V—>0O

4tu/5 .
d0 W (0)]2 +  B2[/(e) +  iB2]} •

(94)

If, however, the magnetization were to relax to its new thermodynamic equi
librium value, we should have found as asymptotic value of <p(t) for t -*■ oo:

lim lim <p(t)
t-*oo N->  oo

p (pAMAHy2
lim —-

jV->oo iV <p(A/7)2>
lim [far — %s). (95)

The second member of (95) is given explicitly by [cf. eq. (1.90)]:

iim
iV->oo -tV

P (pA.MA.Hy2

<P(AH)2y

1
271

d0
£

X

X

p

(  4 sinh2 ^ha)+(6) 4 sinh2 |/5#cu-(0) ƒ_

&2[&>+(0)]2 , ^2[o>-(0)]2

2{y2[/(0)]2 +  -B2[/(0) +  i-B2]}*
— 7T

^2[«)+(0)]2 ^2[o)-(0)]2

1
271

d0 4 sinh2 \ph(o+(Q)
— 7T

which vanishes in the classical limit:
P (pAMAHy2

+ 4 sinh2 \pha>-(Q)
- l

lim lim
■ -̂►0 N -+oo -tv

0.

(96)

(97)
(p(AH)2y

Comparing the r.h.s. of (96) with the last member of (93) (cf. 1. section 4)
and the r.h.s. of (97) with the last member of (94), we can easily check that
for our model the general inequalities (64) and (65) hold.

Furthermore the asymptotic value of <p(t) for our model is in the quantum-
mechanical case in general not equal to the r.h.s. of (96) and in the classical
case in general not equal to zero, so that true thermodynamic equilibrium is
not established in general, or equivalently:

X8 >  Xis. (98)
However, if we also take the limit B -> 0, we find instead of (93):

lim lim lim <p(t) =  l(y)
2?—► 0 £—>oo 2V—>oo

ph2
71

1d0
sinh2 tf*[/(0)]* ’

(99)

where l(y) is the function defined by (1.34).
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In the classical case we obtain instead of (94):
It

lim lim lim <p(t) =  l(y) ■ J d0 1 //(©).
B-»-0 t-yoo  N -> oo 4np J

—  7 t

( 100)

Note that the results (99) and (100) are insensitive to the interchange of the
limits B .-*■ 0 and t -»■ oo. Thus both classically and quantum-mechanically
<f,(t) vanishes as t oo, when B ^-0  with y =£ 0. This implies that in this
special case (B -» 0, y  ^  0) we have:

% T,= %is, (101)

and thus with (64):

XT =  Xa =  Xia> (102)

while we have in addition in the classical limit %t =  0. The equality sign be
tween xa and Xia in (102) expresses the fact, that in the case (B 0, y ^  0),
the magnetization relaxes to its new thermodynamic equilibrium value. This
is a consequence of the fact that the magnetization is in this case ergodic
as shown in 1. section 4, where we also discussed the connection between
this property and the nature of the constants of the motion for varying
values of B and y.

To summarize: we have found the following general behaviour of <p(t)
for our model (in the limit N  -> oo) in the quantum-mechanical case

<p{t) m xt{B)]< 0 for t <  0,
q>(0+) >  0,
|?>WI ^  (p(0+) for t >  0,
lim <p(t) =  XT — Xia ^  XT — Xs ^  0,
t ~*oo

(103)

i.e. the function q>(t) is first negative, then jumps to a positive value at t =  0,
and finally relaxes to a non-negative value. True equilibrium is again
established only in the case B -> 0, y  0, (i.e. when XT — Xa =  Xia)-

Finally we want to give an explicit expression for the frequency-dependent
susceptibility per particle for our model. In the limit of an infinite system
we obtain with eqs. (72), (89) and (91):

x H  =  — 1Ó7T
d0

/ ( 0 ) ( 1  -  y*)

X < h(o+(0) coth %j3ftw+(0) +  ftw-(0) coth \fihw-(Q)

2y*f(d) +  B 2

2{y2[/(0)]2 +  B*m +  my
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X [7ko+(0) coth \(iha>+(d) — Hw-(0) coth f̂ihoo-(d)]
oo n

h
+  ■ dr elmr d0{[#c(0)]2 [coth J/Mka+(0)

+  coth ho)-(d)] sin g+(0) r  +

+  [A(0)]2 [coth ^hoj-{6) -  coth tf*«>+(0)] sin g_(0) r}.

Using now the following relation:

OO

Je1®* dtf =  Tzd(x) — V(\/ix),
o

where P  stands for principal value, we have:

x H  = x{°°)
7t

l j  / •  /*

_|-------d0 < [ic(0)]2 [coth 10*oi+(0) +  coth t f h n - m
8n J [

— It

X —  {7TÓ[ftJ +  g+(0)j — TC0[C0 — g+(0)]}j

H-------P87c

x  i

d0 < [k(0)]2 [coth W c o +(0) +  coth i/5*®-(0)]

+

+  g+i6)  «> — £+(e)

d0 |[A(0)]2 [coth iPhw-(6) -  coth |/Mk»+(0)]

X —  {rt0[co +  g-(0)] —7r0[<w — g-(0)]}

h n
H-------P

87c

IT

J d0 |[A(0)]2 [coth \(lhw-(0) -  coth \\3ha>+{0)]

+  g-(6) (o — g-(0) 7j ’

(104)

(105)

(106)

with
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Z(oo) =  lim x H
(0—*00

n

—  TC

/(©)( 1 -  y2)

1

X jtöa>+(0) coth %f}ha)+(0) +  ha>-{Q) coth %(iha>-(d)

[2y2/(0) +  B*]
" 2{y2[/(0)]2 +  B \ m  +  i-B2]}*

X [̂ co+(ö) coth \fih<ji+{0) — Hw-(0) coth ĵ8fau-(0)] i , ( 107)

which is precisely equal to —A<p, as given by (89) [c f. eq. (73)].
By choosing w >  0, the delta functions <5[co +  g+(®)] and d[ou +  g-(0)] vanish
in the interval —tt ^  0 ^  tt, since g±(0) ^  0 for — tu ^  0 ^  tc. After some
simple calculations we obtain the following expressions for *'(co) and ^*(a))
[respectively the real and the imaginary parts of %(co)]:

x 'H  = x(°°) — -g ^ -p d0[#c(0)]2

_______sinh \fihg+{Q)_______
X sinh \(Sha>+{6) sinh

g+(0)
«J2 -  [g+(0)]2

- J L p
87t

X

d0[A(0)]2

sinh 6hg-(d) g - m

and
sinh \fiha)+(Q) sinh 8ho)-(d) co2 — [g-(0)]2

W e)]2

(108)

x"((o) =  —  sinh \fihw
lb

h .< ,
-)-------sinh \flh(o

d0

d0

sinh \fihu)+{6) sinh \f}hw-(Q)

__________t w __________
sinh \flh(o+{6) sinh

<5[co — g+(0)]

0[o> — g-(e)].
(109)

In the classical (or high-temperature) limit we have:

1 *  W0)]2 [g+(0)]2
x 'H  = x(°°) — p  I d0

4U/3
d0

/(0)(i -  y2)* <»2 -  [g+(e)32
-  it

[A(0)]2 [g-(0)]2
/(0)(1 -  y2)* w2—[g-(0)]2 ’

( 110)
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where x(°°) is now given by
n

l
x(°°)

4*P .
d0 /(0)(1 - y2) ' ( 111)

The imaginary part can in the classical limit be expressed as:

\ <° | I> ( 0) ] 2
X H  =  7 7  I dd -77ZTT,------ 5T1T <*[«> ~  g+(0)]8/3 /(0)(1 -  y2)i

+ 8/3 J
[ W  sr

( 112)

It is seen from eq. (109) that x'(co) is non-negative for co >  0 as expected.
One can finally check from eq. (106) that %{0) is indeed equal to xia-

6. Conclusions. In the preceding sections we have developed a theory of
diamagnetic relaxation and pointed out the essential differences of this
phenomenon with paramagnetic relaxation. The main difference was the
occurrence of a discontinuity in the relaxation function. We have illustrated
this specific behaviour of diamagnetic relaxation for the case of the linear
chain of two-dimensional harmonic oscillators. For this model we can there
fore estimate the magnitude of the discontinuity in terms of the characteristic
quantities of the system. Defining the ratio

D =  W \ Xt \, (113)

as a measure for the relative importance of the discontinuity, we find quite
generally from eqs. (79) and (82) that for this model

D ^  1. (114)

In particular we have for high temperatures

D -  6 1 v  1
1 -  y2 N  t- 1  ’

and for very low temperatures

+  y * m  1 -  y 2)*-

(115)

(116)

Thus D depends under all circumstances on the magnitude of the anisotropy
parameter y, and becomes large for large \y\ (|y| ^  1), as well as at high
temperatures. (Experimentally the discontinuity could be found from the
asymptotic value of the dispersion x'(m) f°r to -> oo.)
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We note th a t even in the low-temperature limit D can be larger than
unity. This implies th a t even in this limit the magnetization after a „sudden”
reduction of the field will a t first overshoot its new equilibrium value and
m ust therefore reestablish this value with some time lag. This relaxation
phenomenon is described by the function (p{t) [eq. (91)] in the corresponding
limit (/S -*■ oo):

<p(t)
h

4 tc
d 0[/c(0)]2

n

cos g+(6) t
g + (0 )

(117)

The following comments may now be m ade:
1. In  the above limit <p{t) vanishes as t tends to  infinity, for all values of y

and B. This implies, in view of the previously derived inequalities, th a t
%T =  %s =  £ls, as one would expect for a system in its ground state.

2. For B  =  0 and y  =  0 <p(t) vanishes for all t ^  0. But this is the case,
when D is equal to unity, th a t is, when the magnetization achieves its
equilibrium value instantaneously.

3. Even when the system is in its ground state, nonzero values of y, which
characterize the anisotropy of the interaction between the oscillators,
give rise to small relaxation effects. In  this connection we refer to the
controversy concerning the so-called inertia of the Faraday effect8).

Although we were able to come to m any of these conclusions on the basis
of the behaviour of a specific model, it m ay be expected th a t they retain
in a qualitative way their validity for real diamagnetic systems.

A c k n o w l e d g m e n t .  The author is grateful to  Dr. B. U. Felderhof
for stimulating criticism and discussions.

APPENDIX I

We shall derive here eq. (27) of the main text. Inserting eqs. (21) and (22)
into eq. (18) we obtain

(p(t) MBl) — ich
dr

o v

<.MBl{r)[p(r)—Vr'W )  +  cP,X  rnBl{r),pBl]>-a(r,t — r)

drdr
0 V

-  Fr-qW}. P*J> <p{r> t - r ) . ( 1 . 1 )
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By cyclic permutation of the operators in the quantum-mechanical traces
in eq. (1.1) and splitting up the second term on the r.h.s. of eq. (1.1) into
two terms we get

<p(t) MBl> =  <PBlMBiy
i ch W ‘o v

(Pb[M Bi, p(r, — t) — F,*q(r, t — r)]>-a(r, t — t )

oo

~  ^ J ^ j d r ^ M ^ ) ,  y r X m ,,(r)]>.a(f, t -  t)
0 V

oo

dr
o v

Vr‘{P[f, —t) — F,*q(r, — t)}]> <p(r, t — r). (1.2)

Integration by parts of the terms on the r.h.s. of eq. (1.2) (the second term
with respect to r, the third and fourth term with respect to r) yields

<p{t) MBiy =  <PBlMBiy

— ƒ  d f<P*,[M*1. P(r) — Fr -q(r)]>-o(r, t)

+ ic^ d r

0 V

oo

+

0 V

d r

0 V

dr<pBl[MBi, p(r, — r) — Fr-q(r, -T))>-d(r, t —  t)

dr<pBl[Mti(r), m Bi(r)]y.yr x  a{r, t -  r)

d r<pBl[MBl,p(r, —r) — F,*q(r, — T)]y-Vr<p{r,t — r).
(1.3)

Making use of eqs. (13) and (14) we obtain the following expression

<p{t) M Biy =  <pBlMBiy -
ic^ dr<pBl[MBl, p{r) — F,-q(r)]>-o(r, t)

-ij d r

0 V

dr<pBl[MBl, p(r, —r) — Fr’<l(r, —T)]>»e(r,  ̂— r)
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(1.4)

oo

-b-K dr<pBl[MBl(r), m tl (r)]>'b(r, t — r).
o v

The last term on the r.h.s. of eq. (1.4) may be transformed in the usual way
to yield

dr<pll [M ,1(r), m Bi(r)]>'b{r, t -  r)
0 V

1
’

0 V  0

OO P

- dr dr
v v i
0 V  0

CÜ —  <MBi(t +  ihX) pBltnBi(r)y-b{r, t — r )

<M B i {t  +  \h X )  pBlm Bl(r)> b(r, t — t). (1.5)

The second term on the r.h.s. of eq. (1.4) becomes after partial integration
with respect to r

-  j  dr<pBl[MBl,p(r) -  Fr -q(r)]>.a(r, t)
V

e* N
' — — V  at" S  **• ri]>-a(R{, t)2ic*n i= i

+  i< W f< x r«r<]>: VBia{Ri> *)}. (1-6)

where use has been made of the symmetry of the tensor q. The first term on
the r.h.s. of eq. (1.6) is given by

e2 1 *
— ~2c f  l T ^  <Ptiri X ft, ri]>-a{Rt, t)

e2 1 ^
=  — -r£ S  <pB/ i  X [ft, rt]>.o(Rf, t)

e2 1 " h 1

Nest we consider the vector given by the second term on the r.h.s. of eq. (1.6).
Apart from a factor —e2(4ic2̂ )-1 the a component of this vector is given by
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(restricting the argument to the ith  particle and omitting the index i)

{ W r  X t  " ]>  • VRa{R, <)}«

V  /  .  r-! S a » ( R > *)— Zi (P B iS<X0Vr p[r V> V » ]) ---- ^ -----
P.Y.W CKV

=  S  (pBie*0yrP§?Vt rli\ rv 4" rn\fv, *V])>--- -̂ -=r---—P.Y.P.v OKy

* 1 v  /  / t I .4 *  3%(«, t)jL (.PBiS«0VV ff̂ vOyn 4“ rp1'ndyv)y---—------i m p,y,/x,v dRv

h 1
i  2  ( pBleOt0YrP1'vm [fi.y.v \

dav(R, t)
dRv

4- 2  ( pBie«0Yr0rHP.Y.P \
daB(R, t)

h 1
{<PbS  X (r-VR) a(R, t)> +  <Pjlir x  VR[r-a(R, *)]>}«, (1.8)

(1.9)

where eapy is the Levi-Civita tensor

1 if a, /S, y =  1, 2, 3 cycl.,
Gapy =  — 1 if a, fi, y =  2, 1, 3 cycl.,

0 otherwise.

The second term on the r.h.s. of eq. (1.6) may thus be written as
e2 n

— S  <PbI u  X U, rtrt]y : VRla(Ru t)

e2 N
=  -T—T  S  {<pBln  X (rv VR,) a(Rit t)>

4 m e *  i = i

+  <pBlU X VRi[rr a{Ri, *)]>}. (1.10)

Inserting now eqs. (1.5), (1.6), (1,7) and (1.10) into eq. (1.4), we obtain

e2
(,p(t) MBl> — (PbiMBi

2me2 i=\2  <pBlrt X a(Rt, t)y

+ 2  {(pB^i x  [TfVRt) a(Ru t)y4mc2 <= i

4- <Pb '{ X VRi[rv a{Rit /)]>}
OO  P

dr dr d; • pBlm Bl{r)y ■ b{r, t — t)
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oo

1
'\h

d r<PBl[MBl,p(r,
0 V

—t) — Pr-q(r, —r)]>-e(r, t — r). (1.11)

So far we have found an expression for <p(t) MBl> [cf. eq. (15)]. Next we
have to evaluate <pBlMi(t)y [cf. eqs. (15) and (19)]. With the definition (17)
of Mi[t) we obtain, using the expansion (26) for a(R{ +  rit t), the following
expression

e2 n

(pt M\(t)y =  — —— -  2  <pBrt x  a(Ri +  rt, t)>
2me* i= l

e 2 N
— -  -=— =- S  </>*ƒ« X a(Rut)>2me* <=» l

e 2 &
— -r— f  S  <pBlU X (rvVRl) a{Rit t)>. (1.12)2mcó i= i

With eqs. (1.11) and (1.12) we thus find for M(t)

M(t) =  <p{t) MBl> +
e2 If

=  <pBlMBiy +  - ^ ^ - 2  {</>*ƒ! X F*,[r|.o(lt|, *)]>

— </>*ƒ« x (fi'F*,) a(f?i, *)>}
OO P

<MBi(t 4- iM) /»»,«*«,(*’)>!•&(*■, t — T)
0 F 0

00

1 dr | dr<pBl[MBl, p{r, - r )  -  Vr-q{r, -r)]>.c(f, f -  r).
■*.J J  (113)

dr dr d i

Making use of the identity

(ivFJ a(Rt, t) — F«,[rro(Rt, *)] =  [F*, x a(/*i, *)] x rit (1.14)

we finally obtain
e 2 N

= t S (puft X (b(Ri, t) X Tj)̂
i=  X

3r
<MBi(t 4- ihX) pBimBl(r)y •b(r, t — t)
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1
dr

o v
dr<pBl[MBl,p(r, - r )  -  Pr .g(r, -r)]> .e(r, t -  r),

(1.15)

which is eq. (27) of the main text.

APPENDIX II

We prove, closely following the argument of ref. 5 for the paramagnetic
case, that the conventional definition of the diamagnetic adiabatic suscepti
bility per particle

N  V
/  3< p b M b > \

/ 8
(II.l)

is identical with the one given in section 4 [eq. (55)]. From (II.l) it follows
that

1 /  8<pbMb> \  1 /  0<pbMb> \  /  3/J
N  V jff N \  dp A

=  , - - - < ^ > ( 1 1 .

From statistical thermodynamics it follows th a t:

dH(d <pBHy)s

(d<PBH » t — (pB

On the other hand,

dB,

dp,

(II.2)

(H.3)

(11.4)

(11.5)

d<pBH>
dB dB +  p<pBAMAH> dB -  <pB{AH)*> dp, (II.6)

where use has been made of the operator identity9)
P

0(exp —pH)
dB

d H
-  f dAexp[ - (p  —  exp[-XH), (II.7)
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and of the relation

Mb — —
dH
W

For an adiabatic process we obtain from eqs. (II.4) and (II.6)

( 11*8)

0 =  (d<pa#>)*

Thus we have

dB =  p(psAMAH>dB -  <PB{AH)^dp. (II.9)

/  w  \  <pbAMAH>
\  3B /*  P <pfi(AB)2> • (II. 10)

Inserting (II. 10) into (II.2) we finally obtain:
P <pbAMAH>2

Xt~ XT~~N  <pb(AB)2> ’ (11. 11)

which is just the definition eq. (55) of xs-

APPENDIX III

We shall give a proof of eq. (57) of the main text.
By definition we know that

T  T P

ƒ  d  ̂q>(t) — (fijdA B ^ +  i^ ) ,
0 0 0

(III.l)

T  p T

— j  dty(t) =  dA-^-j  dtR(t +  ihX).
0 0 0

(III.2)

The autocorrelation function R(z) is an analytic function in the strip
0 <  Im z <  hp, and furthermore R(z) is continuous at the boundaries.

Thus for every contour in the strip 0 ^  Im z ^  hp it follows th a t:

f R(z) dz =  0.

Therefore with (III.3) we can show that

1
~T dtR(t) -f- ■ dk'R(T + iM’) - - | d l f l ( H  ihX)

i h
~T

dXR(ihk') =  0 (for O ^ k ^ P ) .

(III.3)

(III.4)
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From (HI.4) it follows that

1
T diR(t) -  —

i h
~T

dtR(t +  \hX)

- r j&X'R(ihX') -  —  +  ihX')

^  2 T
dX'R{ihX’) < 2 —  I üX'R{ihX')

p

ƒ«
=  2<p(0+)hlT (for O ^ X ^ P ) ,

where we have made use of the following inequalities:
A A

| ƒ dA'i?(T +  iM')| |  dA'i?(iM') for every real T
o o

and
R(ifiX') >  0 for O ^ X ' ^ p .

Using (III.2) and (III.5) we finally obtain the following inequality:

ri—  dUp[t) - (*
T  .

o
P T
* 1
cU —

T -
ó ö
P T

dtR{t)

P T

dffi(t +  ihX) -  I dX —  J dtR{t)
0 o

T
1

JdA y  f  dtR(t +  MX) -  —  | dtR(t)

Or,

dX 2^(0+) h)T =  295(0 +) ph/T.

lim —
T -*00 T

’J

I dt<p(t) = P  lim —
T —*oo J-

2'

I'dt R(t),

and this is just eq. (57) of the main text.

(111.5)

(111.6)

(HI,7)

(111.8)

(111.9)
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Chapter  III

ERGODIC PROPERTIES OF THE MAGNETIZATION
IN HARMONIC OSCILLATOR ASSEMBLIES

Synopsis
The stochastic behaviour of the normalized total magnetization X(t) of a linear chain

of charged anisotropically coupled two-dimensional harmonic oscillators in a magnetic
field B is studied in the limit of an infinite system. Expressions are derived for the
joint and conditional distribution functions in the microcanonical ensemble. The
process X(t) is found to be a stationary, gaussian, non-markoffian process. The asymp
totic time behaviour of the conditional distribution function and the conditional average
of X(t) is studied in connection with the ergodic properties of X(t) for varying values
of B  and the anisotropy parameter y. If y #  0, B -*■ 0, the gaussian process X(t) is
found to be ergodic (i.e. all square-integrable functions of X(t) are ergodic functions).
In the limit of an infinite system an equality is derived, connecting microcanonical
and canonical autocorrelation functions of sumvariables. Mazur’s condition for ergodi-
city of certain phase functions is found as a corollary of this equality.

1. Introduction. The stochastic types of motion of one single particle in
harmonic-oscillator assemblies have been studied extensively (cf. section 1
of chapter I1).

In this chapter we shall discuss the stochastic behaviour of a property of
such an assembly as a whole, viz. the total magnetization of a linear chain
of charged anisotropically coupled two-dimensional harmonic oscillators in
a magnetic field B. In chapter I we solved the dynamics of this system, and
derived an explicit expression for the autocorrelation function of the magnet
ization in the canonical ensemble. Furthermore we discussed the ergodic
properties of the total magnetization of the chain for varying values of B
and the anisotropy parameter y. We considered both the quantummechan-
ical and the classical case in chapter I. In this chapter we shall restrict the
discussion to the classical limit.

In section 2 we derive, in the limit of an infinite system, expressions for
the joint and conditional distribution functions (d.f.’s) for the normalized
magnetization X(t) in the microcanonical ensemble. The process X(t) is found
to be a stationary, gaussian, non-markoffian process. Furthermore it is
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shown that, in the limit of an infinite system, the microcanonical and canon
ical autocorrelation functions of the magnetization are equal for all times t.

In section 3 the asymptotic time behaviour of the conditional d.f. and the
conditional average of X{t) is studied in connection with the ergodic proper
ties of X(t). It is shown that, if B =£ 0, when X(t) is a non-ergodic function,
there remains a “memory” with respect to the initial value Xo of X(t). If
y ^  0, B ->0, when X(t) is an ergodic function, the conditional d.f. tends
to the "equilibrium” d.f. and the conditional average tends to zero as t -+ oo.
In this case it is also shown that the process X(t) is ergodic (i.e. that all
square-integrable functions of X(t) are ergodic functions).

In section 4 we derive, in the limit of an infinite system, an equality
connecting microcanonical and canonical autocorrelation functions of sum-
variables. Mazur’s2) condition for ergodicity of certain phase functions is
found as a corollary of this equality.

2. Microcanonical joint and conditional distribution functions for the mag
netization in a linear chain of two-dimensional oscillators. We consider, in the
classical limit, the model studied in chapter I*, i.e. a linear chain of N
identical anisotropically coupled charged harmonic oscillators, whose
motions are restricted to the xy plane. The system is subjected to a time-
independent homogeneous external magnetic field B  along the z axis. The
hamiltonian is given byf

h  =  £  UPi -  £ 8 *  n)2 +  s  1 +  v*Y*A- 0)
i- l  i,i-1......N

«,P=x,y

By performing the canonical transformation given by eqs. (1.6) and (1.7) we
obtain (dropping the primes denoting the new variables)

H =  S  Hi, (2)

with
Hi =  \p \  — \B(ti a p t)z +  +  ££2)1 +  y a ^ } - r t. (3)

In terms of the quasiparticle coordinates and momenta the z component of
the magnetization for this system is given by

M = S M ,  (4)
<=■1

with

M i =  M (f < A Pi)* — i s (r ’ r i)}- (5)

* Equations and sections of chapter I, referred to  in  th is chapter are preceded b y  the
prefix 1.

f F or notations cf. 1. section 2.
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We shall now, in the limit of an infinite system, derive an expression for
the joint d.f. Wm(Xo, X ; t) and the conditional d.f. Pm(X, *|.Xo) in the micro-
canonical ensemble on the energy surface Ejy (with E^jN  =  c (constant))
for the normalized magnetization X(t)*. The variable X(t) is defined in the
following way:

X(t)

with

=  s  x t(t)
i= 1

Xt(t)

where

0m ,n

and

Mj(t)
o m , n  J N

( 1 N

exp — fiiH
R1 ~  <exp ( ~ PiH)> '

(6)

(7)

(8)

(9)

Here <. . .  > denotes integration over phase space. The parameter is chosen
in such a way that the corresponding canonical average of the energy is equal
to Ejy\

2N(i^1 — <,piH> = Ejy. (10)

I t follows from eqs. (3) -  (9) that

<piX{(t)> =  0 (» — 1,;. . .  , N) (11)

and

<PiX*(t)> =  S  <piX2i(t)> =  1. (12)
i= 1

Furthermore the autocorrelation function of X(t) in the canonical ensemble
corresponding with the parameter /?i can be written as

Rn {Pi , t ) =  <RiX(t)X(t -(- t)>
1 <piMM(r)> Rn (Pi , t )

N o\f N Rn [Pi> 0) (13)

where Rn (Pi , t) is the canonical autocorrelation function of the magnetiza
tion. From eq. (1.76) we can obtain an explicit expression for Rn (Pi , t) hy
substituting (} — f}\ and taking the limit ft -*■ 0.

For finite N  we obtain

* We note that the stationary microcanonical ensemble generates a stationary process
X(t). e g.,

W m(X 0, X  ; t0, t0 + t) =  W m(X 0, X; t ) .
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Rn (P i , t)

+

2N p \  i= i y^cof +  B > ?  +  w )

N
s2iV/Sf i=i «>2(1 -  y2)t COS (w+> { +  (O-, i)',

+ 2AT^ <=i a>*(l -  y2)i

so that the limit of an infinite system

R n (Pi , t) i?(/?i, r)

cos (<a+,j — oj-, i ) r ,

with

B ( f i u  t ) =  lim -------------------- ,
N-+oo Rn(Pi, 0) i?(/31( 0)

^(0i>T)

+

4« P\
de

+

W f

l
W f j

de

de

y2{/(0)}2 +  s2{/(e) +  iB2}

M« )} 2

/(0)(i -  y2)*

m ) 2
/(0) (1 -  y2)i

cos g+(0) 1

cos g-(d)i

( 14)

(15)

(16)

(for notations cf. 1. section 4).
Furthermore we introduce the normalized energy Y

N
y  =  s  y , (17)

with
v  ^y  = --------— (18)

where

d tf  = Hi — (piHi> (19)
and

( 1  "  )*
ffH.AT =  j —  ̂ 2 <pi(dff<)2> | (20)

It follows that

<piYt> =  0 (* =  1, . . N) (21)
and

N
<PiY*> =  s  <P1y 2> =  i.

<-i (22)

59



We shall now compute the joint d.f. Wm{Xo, X ; t) and the conditional d.f.
Pm(X, t\X^) for the process X(t) in the hmit of an infinite system.

Replacing the restriction H  =  EN by the equivalent restriction Y =  0,
we may define the joint d.f. X ; t) as follows

W™(Xo, X\t)  ^  fYW(Z0) X ’,t\Y  =  0)
< < W ) -  X 0) d(X(t) -  X) <5(Y)>

<«(Y)> " { )
By multiplying the numerator and denominator in the last member of (23)
with a factor (exp — /3i£v)/<exp(—P\H)y we can write (23) as a ratio of
canonical averages

<pid(X(0) -  X 0) d(X(t) -  X) d(Y)>
ÏY<*r)(Xo,X;*|Y =  0)’ <Pid(Y)>

By using the Fourier-representation of the Ó-function we may write
<pid(X(0) -  X 0) d(X(t) -  X) »(Y)>

-f-oo -f-OO 4*00

du  du dw  exp(—  iX qu —  iXv) i/j n(u , v, w ),

- o o  —oo —oo

where the characteristic function i/jy(u, v, w) is defined as
ifiiv(u, v, w) == <pi exp(LY(0) u -j- iX(t) v -j- \Yw)y.

The function v , w ) can be expressed as

/ I \ ti '<exP(~ faHi) exp(iZ; (0) u +  iX}{t) v +  iY^)>v, w) =  11

(24)

1=i exp<(— /Si Hj)y

(25)

(26)

(27)

where use has been made of the statistical independence of the quasiparticle
functions

(X) (0) u +  X}(t) v +  Yjw), ( j = \ , . . . , N ) .
The logarithm of v , w ) can be expanded in a power series in u, v and w

*  <exp(— /3iH}) exp(iX,(0) u +  iXj(t) v +  iY}w)y
v, w) =  L 1 n -------------------- ----- -— -  w  ;: —  ------—----

1=i <exp(— PiH))y
N

=  S  In
1=1

— \ip\Y)y w2 — ip\X}(0) x }(t)y uv

— <piX,(0) Y)> uw -  <piX](t) Y}> vw +  0 (  N  ) }

i l  -  \<piX){Q)y u2 -  \<piX){t)>v2

— — \u2 — \v2 — \w2 — Rif(t) uv +  0

where Rx(t) is given by eqs. (13) and (14).

(28)
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Thus in the limit N  -*■ oo (keeping En /N =  2/Sf1 constant) we find that
>Pn {u, v, w) exp{— — |ze>2 — jK(£) mv} (29)

uniformly in any finite region of (u, v, w) space3). R(t) is given by eqs. (15) and
(16). I t can then also be shown along the lines of an argument given, e.g., by
Van der Linden4), that

lim<pi<5(X(0)
N -+oo

l
(2tc)3

-  X 0) ó(X(t) -  X) S(Y)>
-}-oo + o o  -j-oo

du dv dw exp(— iXou — iXv)
—  OO  —oo —oo

X exp{— \u 2 — %v2 — \w2 — R(t) uv}
1 1 ___ X 2 -  2R(t) X X 0 +  X 20

(2tc)* {1 -  R2(t)}i GXP 2{1 -  R2(t)

uniformly in X  and Xo (for details see appendix).
Integrating (30) over X q and X  we obtain

(30)

lim</>i<5(Y)> =  -Z— T-.
N -> oo  (27T)*

Inserting now the results (30) and (31) into (24) we get

Wm(X0, X;  t) -  lim W™(X0, V ; t) =  - ■  1
n -**o 2 n {\  —

X 2 -  25(f) XXo  +  XlX ex p ------------ , _—  -----Ü-
y 2{1 — R2(t)}

(31)

(32)

uniformly in X  and X 0. The procedure followed above leads for every finite
set V(£i), X(t2), . . . ,  X(tn) to an «-dimensional gaussian d.f. for the joint d.f.
of this set in the microcanonical ensemble. Therefore the process X(t) is a
stationary, gaussian process. Integrating both sides of eq. (32) over X  we
find for the equilibrium d.f. Wm(X)

Wm(X) -  lim trmv) =  —  exp -  ±X2
N-+oo (ZTZ) 2

(33)

uniformly in X.  We thus obtain, in the limit of an infinite system, for the
conditional d.f. Pm(X, t\X0), defined as

Pm(X, t\X0) Wm(Xo, X; t)
Wm{X o) ’

the following expression, which follows from (32) and (33),

P m(Y, V q) 1 ( X -  R(t)Xo)2
[2tt{1 -  I?2(i!)}]i 6XP 2{1 -  R2{t)} '

(34)

(35)

61



With eq. (33) it follows trivially that limJV_KX)<.X'(£)>m =  0, as it should.
Eq. (32) enables one to compute the microcanonical autocorrelation function
pm(r) of the function X(t):

Pm(r) = lim cX(t) X(t +  r)>m
N-+oo

=  ƒ ! d x  dXo X X 0Wm(X0, X;r)  =  R(p 1, t), (36)
where r) is the function defined by (15) and (16). Instead of (36) we
may also write

lim —— <M(£) M(t -f- T)>m =  lim (p\M{t) M(t +  r)>. (37)
N —*oo N  N-*oo

In (36) and (37) the microcanonical average is taken on the energy surface
En (En /N — constant) and the canonical average is taken with the corre
sponding parameter /?i, defined by eq. (10). Eq. (37) is a special case of a
more general equality which will be derived in section 4.

As we have shown already in 1. section 5, the canonical autocorrelation
function R(fii, r), and consequently R((li ,  r) and pm(r), assume for no value
of the parameters y and B  the form exp(— ar) (a >  0). This implies5) that
the stationary, gaussian process X(t) is not a Markoff process.

3. The long-time behaviour of the conditional distribution function Pm(A, |̂Ao)
and the conditional average X(t) in connection with the ergodic properties
of X(t). In chapter I we have investigated the ergodic properties of the total
magnetization of the harmonic chain for varying values of the anisotropy
parameter y and the magnetic field B. We found that for our system the
magnetization, or equivalently the function X(t), is in general (B =£ 0) non-
ergodic. In the case y =  0, B 0 the magnetization and consequently X(t)
are constants of the motion, and non-ergodic. Only if y ^  0, B  -> 0, the
function X(t) was found to be ergodic*. Now we are going to investigate,
having taken the limit N  -> oo, the conditional d.f. P jd.(X, l|Xo) and the
conditional average X(t)x ° in the limit of infinitely long times. For the
general case (B ^  0) we obtain

1 (X  —  pmXo)2 ,~ q «
lim Pm(X, t\X0) -  -jr-r .----^  exp -  2 . (38)

oo |2 tc( 1 Pm)}* Pm)

* In chapter I this property was established in the limit of an infinite system.
I t  may, however, be verified that the magnetization, or equivalently X(t), is already
an ergodic function, if y ^  0, B —► 0, for finite N. In this case, however, only the time
average of the correlation function Rn (t) vanishes, but its limit as t —> oo does not exist.
I t  could furthermore have been checked that for the finite system, even when X[t) is
ergodic, the function X 2(t) e.g. is nevertheless a non-ergodic function. I t is the purpose
of this section to establish that in the limit of an infinite system all square-integrable
functions of X(t) are ergodic functions and that the process X(t) is a gaussian, ergodic
process, if y ^  0, B 0.
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where

pm = lim pm(t) lim R{t) — lim
t-x>o t-+oo K yJ)

(39)

R(t) is the function defined by (16).
For the conditional average X(t)X:> we get

X(t)Xo =  ƒ dX X  Pm(X, t\X0) =  Pm(t)X0

and in the limit i ->oowe find

lim X(t)X° = pmX 0.
t—*oo

(40)

(41)

From inspection of eq. (16) it appears that, if B 0, pm obeys the inequality

0 < j S m < l .  (42)

This implies that in the case B ^  0, when X(t) is non-ergodic, there is a
“memory” with respect to the initial value Xo, in the limit t -> oo.

In the case y =  0, B 0, i.e. when X(t) is a constant of the motion, it
follows from (23) (one does not have to take the limit of an infinite system
here) that

lim Pm(A:,*|Xo) = d ( X - X 0)
B -e0 ,y = 0

and
lim X(ty

B -* 0 ,y -0
X q.

(43)

(44)

Both (43) and (44) hold for all times t. It should be noted that one obtains
the same result in the limit of an infinite system, by taking the limit B -»
-*■ 0, y =  0 in (35) and (40) (pm -> 1).
Finally, if y ^  0 and B ->■ 0, it follows from (16) that

pm — lim pm{f) — 0-
t-+OO

Thus we obtain

lim P m(X, <|A"0) =
t—> oo

1 Z2

7 ( ^ r e x p ~ ^
and

limZ(<) = 0 .

(45)

(46)

(47)
t—*oo

In this case, when X(t) is an ergodic function, there is no “memory” with
respect to the initial value Xo■ The conditional d.f. Pm{X, £|.Xo) tends to the
“equilibrium” d.f. Wm{X) (cf. eq. (33)) as t -> oo. Or, equivalently, the
joint d.f. Wm(Xo, X ; t) factorizes into a product of two uncorrelated “equi-
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librium” d.f.’s as t -> oo:

lim W m{X0,X-, t)  =  PTm(A0) W m[X). (48)

A necessary and sufficient condition for X{t) to be an ergodic function is,
th a t the time average pm{t)dt vanishes as T  -> oo. I t  is obvious tha t
the property given by eq. (45) is a sufficient but not a necessary condition
to ensure the ergodicity of the function X(t). In fact, if y  ^  0 and B ^  0,
Pm{t) -> 0 as |2| -> oo, and this property is a sufficient condition for the
real gaussian stationary process X{t) to be ergodic6). The property th a t the
process X(t) is ergodic is of course stronger than  the property th a t the phase
function X(t) is ergodic. Indeed, ergodicity of the gaussian process X(t) implies
th a t all functions f{X(t)) for which

exists, are ergodic.

4. A n  equality connecting microcanonical and canonical autocorrelation func
tions of sumvariables. In section 2 we have derived an equality (37) connect
ing, in the limit of an infinite system, microcanonical and canonical auto
correlation functions of X(t) (with corresponding parameters E ^ f N  and /Si).
In  fact this equality is a special case of a more general equality. The reason
why we obtained the form (37) lies in the fact th a t for our model the quanti
ties

<piXj(t) Yj> or <piM](t)(Hj — <piH}y)y

vanish for all j  and N  and all times t.
Let us now consider a variable A  (t) which is, in terms of the quasi particle

coordinates and momenta, a sum of variables Ai(t) with independent distri
butions in the canonical ensemble. Let the normalized variable Z(t) be defined
as

JdA|/(Z)|2ITm(A)

N
Z{t) B  £  Zi{t) (49)

i=l
with

<Ja ,n  tJ N
(50)

where

AAi(t) =  A((t) — (p\Ai> (51)

and

S  </>i(dA,)2> (52)
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The canonical ensemble density pi and the normalized energy variables
Yi  (i — 1, . . N) and Y  are defined here in the same way as in section 2.
Let us now define the quantity Q as

1 t
Q =  lim —  2  <PiZtYi>.

N-*oo i=l

Substituting (18) and (50) into (53) we have

N-*oo N  «=1 OA,N<*H,N

(53)

(54)

(Note that for the variable studied in section 2 (i.e. if Ai{t) =  M t(t)) we
have Q =  0). Applying a Schwartz inequality to the r.h.s. of (54) we obtain
the following inequality

\Q\ < 1- (55)

Assuming now that the arguments, used in section 2 and in the appendix,
which led to eqs. (32), (33) and (35), are valid here too, we obtain in the limit
of an infinite system for the microcanonical joint d.f. Wm(Zo, Z ; t)

Wm(Z0, Z ; t) b  lim W ^ \ Z 0,Z;t)
N-+oo

with

Ê(t)

Here

m
where

_______  1 __  Z* -  2Ê(t) ZZ0 +  Z\
2tt(1 -  Q*){ \  -  £*(/)}* 6 X P  ~  2(1 - 0»){1 -  ’

W ) ~ Q 2
1

N

=  lim s  <piZtZt(t)y — lim
oi=l JV-x»

<piAAAA(t)>
< p i(d A )2 >  *

AA(t)
N

■  S  AAt(t).
i=l

(56)

(57)

(58)

(59)

With the assumption made above the limit in (56) is established uniformly
in Z  and Zq.

For the d.f. Wm(Z) we get

Wm(Z) m  lim W™(Z) =  — ‘ exp -  ** (60)
iV->oo {2tt(1 — (?2)}i 2(1 — Q 2)

uniformly in Z.
Consequently we have in the limit N  -*■ oo for the conditional d.f. P m{Z, t\Zo):
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Pm{Z> t\Z0)
Wm(Zo, Z ; t)

Wm(Z0)
1 „ (Z - Ê ( t ) Z 0)»

" (2tc)*( 1 -  Q*)*{1 -  e x p  2(1 -  0*){1 -  &Ht)} ■

From eq. (60) it follows immediately that

lim <Z(t)>m =  ƒ dZ Z  Wm(Z) =  0 (all t),
N->OO

which implies

(61)

(62)

lim —j — (<4>m — <p\Ay) =  0. (63)
N-+oo y /J y

For the microcanonical autocorrelation function we obtain in the limit of
an infinite system

Urn <Z Z(t)> m = fS d Z d Z 0ZZ0 Wm(Z0, Z; t)
N -+oo

-  ( i - e 2) ^ )  =  m  - Q 2- (64)

In terms of the variables A and H  eq. (64) becomes

. .  1 <AAAA(t)y mhm —  ------ 3--------
N-«x> N  a A ,N

= lim (-L <g ^ (3 >  _ _L (65)
JV -H »  1 N  a A ,N  N 2, 0 A ,N a H ,N  J

or

lim 1\<AAAA(t)>m =  lim —  |ipxAAAA (*)> -  ) • (65)iv->oo iv n~*oo Jy l (pi{AtL)*y )

Since in view of (63)

lim —  (<4>m — <pi^>)2 =  0, (67)
N-+oo Jy

we finally get the following equality

lim
N-+oo

r <(A -  <A>m)(A(t)

lim —  \ipxAAAA{t)y
n^oo Jy l

<piAAAHy*)
<Pi(AH)2> J '

(68)

It is obvious that, if A(t) =  M(t) (the total magnetization of the system), eq.
(68) reduces to eq. (37). The term by which the two autocorrelation functions
in (68) differ, finds its origin in the energy fluctuations of the canonical
ensemble.
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A necessary and sufficient condition for the phase function A (t) to be ergodic
is that the time average of the 1. h.s. of (68) vanishes. Since the time averages
of both sides of (68) are equal, Mazur’s2) condition involving canonical
averages, for A(t) to be ergodic, is found as a corollary of the equality (68).

The results otained in this section are valid in general for phase functions
A (t) defined for systems with a hamiltonian H , if both A (t) and H  are sums
of variables with independent distributions in the canonical ensemble, since
then the central limit theorem of probability theory applies, provided certain
additional conditions (cf. Van der Linden4) and the appendix) are satisfied.

Acknowledgment. The author is grateful to Professor P. Mazur for stimula
ting criticism and many valuable discussions.

APPENDIX

In this appendix we shall prove, for arbitrary but fixed t, that, as N  -*■ oo

<pid(X(0) -  Xo) d(X(t) -  X) <5(Y)>

1 1 __ X 2 -  2R(t) XXo  +  Xl
(2tt)* {1 -  Ë2(*)}* CXP 2{1 - R 2(t)} '

uniformly in X  and Xo (cf. eq. (30) of the main text).
Let tpj(u, v, w) be defined as

ip](u, v, w) =
<exp(— pH]) exp(iXy(0) u -f- iX](t) v +  iY]w)y

<exp(— pH])>
With eq. (27) we have

N
tflN(u, v, w) =  n >pj(u, V, w).

i= 1

(A.2)

(A.3)

By performing the canonical transformations (1.10) and (1.18) of chapter I
eq. (A.2) becomes

lfl](u, v, w) =
<exp(— pH]) exp(iXy(0) u +  iX](t) v -f- i Yjw)y

<exp(— pH])y
(A.4)

where the functions H], Xj(0), X](t) and Yj are expressed in terms of the
momenta P'X] and P'y] and the coordinates Xj  and Yj (cf. 1. section 2). The
variables P'X], P'y], Xj  and Yj will be referred to as qy, qz], qaj and q\], respec
tively, in this appendix.

In terms of the ^-variables the hamiltonian Hj reads

H] =  \q\] -f- \q\] +  \(o\ ]q\] -)- fly . (A.5)
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For the variable Yj  we have

=  o h  n  J N  (A.6)

where C f,) is a real constant.
For the variable Xj(0) we get

Xj(0) = ^  -|- \c](ti2+ jq\j hcja)‘i- jQÏj

— ^CjAj(o+jqz]q3j +  fajBjfO-, iVljq*}}, (A.7)

where A), Bj and Cj are defined as
2yco) -  5 2

* B(Oj( 1 +  y)* ’
(A.8)

2ycw* +  £ 2
* 2?Oty(l -  y)i ’

and

(A.9)

B
Ci 2{y2w* +  B2(co2 +  iB 2)}* * (A. 10)

For the variable Xj(t) we finally have

Xj(t) fycflij +  \ c}m\  \j
O M , N  yjJ-y

— \cj{Aj sin (o+jt cos w - j t  — Bj cos co+jt sin <w_i jtyijqz)

+  \ c]{A}W-,j sin (>)+jt sin co-jt -\- B jw - j  cos w+jt cos w-jfyqifqif
— ^Cj{Aj(o+j cos (o+jt cos (o-jt  +  Bjoj+j sin w+jt sin (o-jt}q2jqzj
-f- \cj{A](o+']c»-j cos a>+')t sin co - j t
— B](o+' )(o~t j sin oj+> jt cos co-i jtjqajqy]. (A. 11)

Now, with (A.5), (A.6), (A.7) and (A. 11 ),^  defined by (A.2) can be written as
oo 4

i/j}{u,v,w) =  expfiCj^Jf ƒ dqj ex p { - \  S  Sik(u, v, w)qk}qi}}]
—oo i ,k =  1

+ o o  4

X [ ƒ dqj exp(— \  S  Ttq$)]-1.
—oo i =  1

Introducing new variables q{j (i =  1, . . . ,  4) by

q'u —  ? y .  fa  =  (o+jqsj,
q'zj — qzj, q'ij =  w -jqy ,

(A. 12)

(A. 13)
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we obtain instead of (A. 12)
+ ° p  4

M «,v,w) =  exp(iC)w )[ I dqi èxp{- \  v, w)q'kjqi}}}
— oo i,k= 1

X [ ƒ dg /exp{- f  2  Tiq'lYr1- (A. 14)
— oo i= 1

Here the quantities T% are given by

Ti =  p (i =  1, . . . ,  4). (A. 15)

The 4 x 4  matrix S is defined as

S =  pU +  iG{u,v,w), (A. 16)

where U =  4 x 4  unit matrix and the elements of the real matrix G are
given by

r '  ci  1
G n  —  G 3 3  —  ( u  +  v )  w ,

(*M ,N y / N  (Jh , N  y / N
(A. 17)

G 22 —  G44 —  . . .  (U  +  V) W,
CfM,N y / N  a H , N  y J N

Cj
G12 —  G21 =  { A j  sin  ( o + j t  cos < o ~ j t

4 (*Mt N  y / M

(A. 18)

— B j  cos w + j t  sin (A. 19)

Cj
G 3 4  =  G43 =  — -- ----------------—  { A j  cos m+ j t  sin co- j t

2 o m , n  y / N

—  B j  sin ( o + j t  cos o j - j t } v , (A.20)

“ ' Cj
G i 4  —  G 4 1  —  [ { A j  sin M + ,j t  sin c o - j t

+  B j  cos c o + j t  cos o j - j t } v  +  B jU ] , (A.21)

Cj
G23 —  G 3 2  =  [{ • /!ƒ  CO S Q)+t j t  C O S CO—

2V V  N

“ |“  B j  sin (o+9j t  sin w —f j t } v  - | -  A . ju ] , (A.22)

G13 =  G31  =  G 2 4  =  G 4 2  =  0 . (A.23)

From  (A. 14), (A. 15) and (A. 16) it follows that

\>/tj(u, v , w ) \ —  | D e t / 3 U | * P 2
|Det(/SU +  iG )|t |D e t ( / S U  +  iG)|* •

(A 24)

Since G is a real symmetric matrix, we can diagonalize G by an orthogonal
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transformation:
(OGO-^ijc =  Aida (i, k =  1, . . . ,  4),

where the eigenvalues A( of G are real. I t  follows now, that
|Det(0U +  iG)|2 =  Det(0U +  iG)-Det(0U -  iG)

=  Det(02U +  G2) =  Det {O(02U +  G2)0 -1}

=  n  (02 4- A)) > 0*+  06 S A2
i - i  t = i

Since G is symmetric, Tr G2 is given by

Tr G2 =  £  {Goc)2.
i,t-1

With (A. 17) -  (A.23), eq. (A.27) reads explicitly

08 +  06 Tr G2.

(A.25)

Tr G2

+

4c2
~2
a M , N

(u +  v)2 +
JH , N N  +  2 a2

(A.26)

(A.27)

M 2 , p 2 \  « 2 +  V2
^  +  ---- AT-

+  Z?2) cos (D+tjt cos (o-fjt +  2AjBj

X sin co+,.0 sin w -t ft}
2 uv

(A.28)

Transforming to cyhndrical variables by
u =  p cos <f>, v =  p sin <f>, w =  w (p >  0, 0 ^  <f> <  27t)

we get instead of eq. (A.28)

Tr G2 c!
th , n N  +  2a\

[8 +  A 2 +  B 2
M , N

+  sin 2cj>{8 +  (A 2 +  B 2) cos w+jt cos co-jt

+  2AjB] sin a>+jt sin co-,^}] p2/lV.

(A.29)

(A.30)

It can now easily be checked, that the following inequality holds for all
N, j  (=  1, . . . ,  N) and <f>:

D\N)(<f>) =  c2[8 +  A 2 +  B 2 +  sin 2<0{8 +  (A2 +  B)) cos co+jt cos,
+  2A]Bj sin w+jt sin to-jf}] >  0. (A.31)

Since both lim^y..^, gm,n  and lim ^ ,^  oh,n  exist, there are positive constants
PM and hh such that

0 <C &m ,N  ^  P U

and

0  <  Oh , N  <  P H

for all N.

(A.32)

(A.33)
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I t follows from (A.30) -  (A.33) that
1

Tr G2 J s ------- —  +
Hh N  2fiM

(A.34)

Requiring the interaction matrix Si for our system (cf. eq. (1)) to obey eq.
(1.77), one can show that (see eq. (A.31))

iim AT _
oo A j = i

si>rtf)=4- d0c2(0){8 +  A 2(6) -f 5 2(0)}

+  I d0c2(0) [8 +  {A2(0) +  5 2(0)} cos a>+(0)t cos m-(0)t

+  2A (0)5(0) sin w+(0)t sin co_(0)<], (A.35)

where c(0), A (0), 5(0) and co±(0) are connected with the quantities cj, Aj, Bj
and a)±j in the usual way (cf. 1. section 4). The limit in (A.35) is established
uniformly in <£. With the conditions imposed on the function /(0) in
1. section 4, it can be shown, that there is a positive A, such that

1 N
lim —  S  D$m (<f) ^A(<f>) ^ A > 0  (A.36)

n ~*oo J y  i=  i

for all <j).
Since the limit in (A.36) is established uniformly in <f>, there is an No such

that, if N  >  N 0,

"tt S  Z>H*) >  ^  (A.37)A  #=x

for all <f>. Now we shall first give an upper bound for D(jN){<f>) for all N, ƒ(= 1,
. . . .  A) and <f>. From (A.31) it follows that for arbitrary N  and f

0 <  D^\4>) <  2c^(8 +  A * +  B)) (A.38)
for all <f>,
or

0 <  D\N\4>) <  4 (A.39)«>*(i — r)
for all </>.

Assuming that (=  (o\N)) obeys the inequahty
my > o > l > 0  (A.40)

for all N  and j, we obtain

0 <  D\N)(<f>) <  -  4 a  Do (A.41)
« w  — y2)
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for all N, j and <f>. Let the step-function E(x) be defined as

E(x) =
0
1
2

1

x <  0
x =  0
x >  0.

(A.42)

From (A.37) it follows with (A.42) that, if N  >  No,

—  S  Df\4>)[E{D\N\<l>) -  +  E {\4  -  D\N\ m  > \ A  (A.43)
IV 1=1

for all <j>. Let, for arbitrary N  >  TVo and </>, N[N)(<f>) be the number of j ’s
(out of 1, . . N)  for which

D ^ )  >  iA.

One finds with (A.41) and (A.43) that N \̂<f>) satisfies the following in
equality

~  {N[N)(<f>)Do +  ( N -  >  S  >  \A, (A.44)
*V IV ƒ=!

So that, if N  >  N 0,

—  {N[N\4>)D0 +  ( N -  >  iA  (A.45)

for all <f). More explicitly we obtain, if N  >  A'o,

M N)(<f>) >  -J— — T N ^ e N  ( 0 < e < l )
L>0 —  %A

for all <f>. Now we define the functions fj(p, <f>, w) and <Pn {p, <f>, w) as (c/.

xf}{p, <j>, w) =  fo(u, v,w) (j =  N)

and
N

$N(p, <J>, w) =  n  $i{p> <l>, w) =  M u> v, w).
1=1

(A.46)

(A.29))

(A.47)

(A.48)

In general we have

<f>, w)\ <  1 (A.49)

for all N, j, p, <}> and w. However, if N  ^  No, we have for at least eN values
of ƒ(=  1, . . . ,  N) the more restrictive upper bound

/ f 4 \A p  ̂ ^
I U p. <f>, «-) I <  P I {)38 +  /?« —  -jy- + 186^  (A.50)

for allp, (j> and w. Here we have made use of eqs. (A.24), (A.26), (A.30), (A.31),
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(A.32), (A.33), (A.34) and (A.46). Thus we obtain, if N  ^  No

\>J>n (p ,<I>,w))\ < I ( 4 \A  p2 ] -eN/i
1 ~fXH ~N(P ^  2/x m  ~Nfp\

(A.51)

for all p, <f> and w. Now there is an iV2 such that, if N  >  N 2, the r.h.s. of
(A.51) can be bounded by an integrable function. Let No be the larger one
of No and iV2. If N  ^  N3, |$ y (p , </>, w)\ and consequently \iftiv(u, v, w)| can
be bounded by an integrable function. The function ifj[u, v, w) defined by

v, w) =  exp{— \u2 — \vz — \w* — R(t)uv} (A.52)

(cf. eq. (29) of the main text) is integrable. Since furthermore, as N  -*■ 00
i/in(u, v, w) -*■ tfi(u, v, w) uniformly in any finite region of (u, v, w) space, we
may finally conclude that, as IV -»■ 00

<pid(X(0) -  X 0) d(X(t) -  X) Ö(Y)>
1 1 __  Z 2 -  2R(t) XXo -\-X\

(2it)» {1 -  i?2(*)P exp 2{1 -  R*{t)} Â'53^

uniformly in X  and Z q.
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SAMENVATTING

Het tijdsafhankelijke, statistisch-mechanische gedrag van systemen be
staande uit harmonische oscillatoren is het onderwerp geweest van vele, ook
recente, onderzoekingen. In het bijzonder hadden deze onderzoekingen be
trekking op de stochastische bewegingstypen van één enkel deeltje. Hoewel
in zulke systemen bijv. niet voldaan wordt aan de macroscopische wet voor
de warmtegeleiding van Fourier, is gebleken, dat deze systemen enkele
opvallende eigenschappen vertonen, die karakteristiek zijn voor het gedrag
van systemen met een meer realistische wisselwerking.

In de bovengenoemde onderzoekingen werden grootheden bestudeerd, die
essentieel locaal van aard zijn. Het in dit proefschrift beschreven onderzoek
echter betreft een grootheid, die betrekking heeft op het gehele systeem, na
melijk de lotale magnetisatie van een systeem bestaande uit harmonische
oscillatoren in een magneetveld. In een tijdsafhankelijk magneetveld kan
zo’n systeem dan dienen als model voor diamagnetische relaxatie, d.w.z. men
mag verwachten, dat een dergelijk systeem zich, in kwalitatieve zin, ge
draagt als een echt diamagnetisch systeem. In de theorie voor diamagne
tische relaxatie, die in dit proefschrift wordt gegeven, speelt het tijdsgedrag
van de autocorrelatiefunctie van de magnetisatie in het kanoniek ensemble
een centrale rol. Mazur heeft onlangs aangetoond dat er een nauw verband
bestaat tussen het tijdsgemiddelde van zo’n autocorrelatiefunctie en het ergo-
disch gedrag van de bewuste fasefunctie (of operator). In verband hiermee
wordt ruime aandacht geschonken aan de ergodische eigenschappen van de
totale magnetisatie in systemen bestaande uit harmonische oscillatoren.

In hoofdstuk I wordt een oplossing gegeven van de bewegingsvergelijkin
gen voor een lineaire keten van geladen, anisotroop gekoppelde, twee
dimensionale harmonische oscillatoren in een magneetveld B. Een expliciete
uitdrukking wordt afgeleid voor de autocorrelatiefunctie R(t) van de magne
tisatie in het kanoniek ensemble. Het asymptotisch tijdsgedrag van R(t)
wordt, in de limiet van een oneindig systeem, besproken in samenhang met
de ergodische eigenschappen van de magnetisatie voor verschillende waar-
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den van B en van de anisotropie parameter y. Het blijkt, dat de magnetisatie
alleen ergodisch is, indien y ^  0 en B -*■ 0.

In hoofdstuk II wordt een lineaire responsietheorie gegeven voor eenvou
dige diamagnetische systemen in een tijdsafhankelijk magneetveld. Voorts
worden uitdrukkingen gegeven voor de isotherme, adiabatische, geïsoleerde
en frequentieafhankelijke susceptibiliteit per deeltje van diamagnetische
systemen. Ongelijkheden tussen de verschillende susceptibiliteiten worden
afgeleid. De theorie wordt toegepast op het in hoofdstuk I bestudeerde
systeem.

In hoofdstuk III wordt, in de klassieke limiet, het stochastische gedrag
onderzocht van de genormeerde totale magnetisatie X(t) van het in hoofd
stuk I bestudeerde systeem. Uitdrukkingen worden, in de limiet van een on
eindig systeem, afgeleid voor de simultane en conditionele distributiefunctie
van X(t) in het mikrokanoniek ensemble. Het blijkt dat het proces X(t) een
stationair, Gaussisch proces, maar niet een Markoff-proces is. Het asympto-
tisch tijdsgedrag van de conditionele distributiefunctie en het conditionele
tijdsgemiddelde van X(t) wordt besproken in samenhang met de ergodische
eigenschappen van X(t) voor verschillende waarden van y en B. Voorts blijkt
dat het proces X(t) een ergodisch proces is, indien y ^  0 en B -*■ 0. Tenslotte
wordt een gelijkheid afgeleid die een verband geeft tussen de mikronanonieke
en kanonieke autocorrelatiefuncties van somvariabelen.
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Tot slot volgen hier enkele gegevens met betrekking tot mijn studie.

In 1961 behaalde ik het diploma H.B.S.-B aan de Stevin-H.B.S. te
’s-Gravenhage. In datzelfde jaar begon ik mijn studie in de wis- en natuur
kunde aan de R.U. te Leiden. In december 1964 legde ik het kandidaats^
examen (a') af en in april 1968 het doctoraal examen theoretische na
tuurkunde met bijvakken wiskunde en klassieke mechanica. Sinds januari
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