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INTRODUCTION
T n this introduction, we shall give in Part A a statement of the
A problem  of the origin of the solar system and of the facts
which have to be explained. In Part B, we shall take a necessarily
short survey of sundry theories which have been proposed,
together with reasons why we feel that they cannot be accepted
as final solutions of this fascinating problem.

A. Statement of the Problem.
The nearest neighbours of our earth in the universe are the

moon, the sun and the other members of the solar system. The
sun and the moon are by far the brightest objects in the sky and
the other m em bers of the solar system are also among the
brightest. It is not, therefore, surprising that astronomers through
out the ages have devoted special attention to the solar system.

Moreover, the system shews so m any regularities in its dynamic
and physical properties that its formation was certainly not due
to chance. The fact alone that the direction of orbital motion of all
planets and asteroids is the same is sufficient to establish this

Before we discuss some of the theories advanced as to the
origin of the system, we shall point out some of these regularities.

The solar system consists of the sun, nine large planets,
twenty-eight satellites belonging to six of these planets, more than
1500 asteroids, and the comets and meteors. We shall center our
attention on the large planets and only speak occasionally about
the other bodies.

The regularities shewn by the solar system may be divided
into a few groups:

A. The first group is that of the orbital regularities (cf. Table I).
Apart from the common direction of orbital motion, the eccen
tricities of the orbits are small and the orbital planes are practically

l *
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coincident. Also, the rotation of the sun is in the same direction
and its equator is only slightly inclined to the planetary orbits.

B. The second striking feature is that the mean distances of
the planets from the sun very closely obey the so-called Titius-
Bode law. If the m ean distance of the n-th planet from the sun
is denoted by rn and if we count the group of the asteroids as one
of the planets, we have:

rn =  a +  b • 2",

where a =  0.4 A. U. and b =  0.3 A. U.
■We m ay rem ark here that orbital regularities and laws for

distances, com parable to the Titius-Bode law, are also found for
the satellite systems (com pare Tables II, III, IV, V).

C. The next group is the fact that the planets can be divided
into two groups. The inner planets which form the first group
have relatively small masses, high specific densities, low rotational
velocities, and few satellites. The outer planets, which form the
second group, have large masses, low specific densities, a relat
ively fast rotation, and large satellite systems1.

If a theory is able to withstand the attacks of serious criticism,
it ought to be able to explain the above-mentioned facts. How
ever, there are more features of the solar system which have to
be considered. We may call the reader’s attention to a few of these.

Between Mars and Jupiter, there is no other planet, but the
system of asteroids, estimated by Baade to contain about 30000
bodies, of which only less than 2000 have been observed up to
now. The total mass of the asteroid system is extremely small
(about 0.0003 times the mass of the earth).

Saturn possesses a ring system.
The outer satellites of Jupiter and Saturn have retrogade

motions.
The inclination of the equatorial plane to the orbital plane is

increasing in the series of the outer planets. Also some orbits of
satellites are m uch inclined to the equatorial plane of their
primaries.

Pluto, as we have already rem arked, does not fit in with
the other outer planets.

1 We leave Pluto out of this discussion. Pluto’s orbit has a large eccentricity,
and the planet itself is small and dense.
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D. Finally, the distribution of the angular momentum  in the
solar system has proved to be a stumbling block for m any theories.
As it is, the sun, although possessing more than 99 per cent, of
the mass of the system, possesses only 2 per cent, of its angular
momentum. The puzzle is why the sun has so little angular
m omentum.

We may, perhaps, point out here the difficulties inherent in
this distribution of the angular momentum.

If the origin of the solar system has to be ascribed to a cata
strophe of some kind, this accident in itself could have been
able to transfer angular m omentum to the material which would
condense subsequently into the planets.

If, however, one tries to build up a theory starting from the
sun, perhaps surrounded by a gas cloud, it is difficult to under
stand how this distribution came about. If the sun had  been
surrounded from the beginning by a gas cloud, the difficulty is
to understand why the angular m omentum per unit mass in this
gas cloud should be so m uch larger than the angular momentum
per unit mass in the sun. If, on the other hand, the system started
from the sun alone, with the material for the planets being provided
for instance by eruptions from the sun, one certainly would ex
pect the angular momentum per unit mass to be about the same
for the solar as for the planetary m aterial.

Fouche, in 1884, was the first to point out the extraordinary
character of the actual distribution of the angular momentum.

We shall see how this question has played a great role in the
evaluation of sundry theories.

The origin of the asteroids will not be discussed here. The
generally accepted explanation involves the breaking up of a
larger body. According to recent work of B rown (1 ) ,  this process
might also have given rise to the meteorites.

We shall also not enter extensively into a discussion of the
irregularities mentioned above. As far as the satellite systems are
concerned, the great resemblance between them  and the planetary
system seems to point to a formation of the satellite systems
analogous to the formation of the planetary system itself, even
though the distribution of the angular momentum is not quite
so extreme as in the case of the planetary system (2).

The ring system of Saturn is probably due to the fact that its
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distance from Saturn is less than the limit of Roche, inside which
no satellite is stable against a tidal action of the mother planet.
To understand this qualitatively, imagine a satellite brought
nearer and nearer to its prim ary. The tidal forces increase, but
the gravitational forces of the satellite itself on its matter rem ain
the same. And so at a certain moment, the satellite, if liquid,
would break in two and so forth until the fragments would be so
small that surface tension keeps them together. If the density
of the planet were th e  same as that of the satellite, the critical
distance at which the breaking up would begin would be 2.44
times the planet’s radius, as shown by Roche in 1850. Since the
ring system of Saturn lies completely inside this limit, it seems
reasonable to accept the thesis that these rings are the rem ains
of a satellite, broken up during its formation.

It has been established that the age of the solar system is of
the order of 2 to 3.109 years by different, independent indications
such as, for instance, the lead content of rocks, where the lead
is the end product of a radioactive family and thus has a different
atomic weight (206.0) from that of the fam iliar lead (207.1).
Another determ ination of the age of the universe can be obtained
from the redshift of extragalactic nebulae, giving the same result1.

The sun is radiating at present at a rate of 4.10ss erg per sec,
which corresponds to a loss of mass of 4.1012g sec '1. If the sun
had radiated energy at the present rate during the 3.109 years
of its probable existence, it should only have lost 0.0001 of its
mass. We shall assume in the present paper that during the process,
leading to the solar system as we find it at present, the physical
state of the sun was as we observe it at present. It is possible that
we neglect vital processes by this assumption.

B. Survey of Theories about the Origin of the Solar System.
We can only report here very incompletely on the various

theories. For further details, and a detailed criticism of the older
theories, we therefore refer the reader to the original papers and
to the m any textbooks written on this subject, especially the
volumes b y  R u s s e l l , D ugan, and Stew a r t  (3 ) , N ö lk e  (4 ) , and
R u ssell  (5 ) .

1 Compare the considerations of Bok (39) and Unsold (40).
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In general it is possible to divide all theories into two groups,
according to the question whether or not the author has assumed
an interaction with other celestial bodies as an im portant factor
in the development of the solar system. In the first case, we have
an open system and, using the term  introduced by Belot, we can
call these theories d u a l i s t i c  (sometimes the adjective “cata
strophic” is used). In the other case, we have to deal with a
closed system and the theories are called m o n i s t i c  or u n i -
f o r m i t a r i a n .

I. M o n i s t i c  t h e o r i e s :  1. D e sc a r t e s’ theory. The first theory
proposed in m odern times is that of Descartes, advanced in 164£.
At that time, observational data were scarce and only the sun,
6 planets and 7 satellites (the moon, 4 Jovian and 2 Saturnian
satellites) had been observed. Also Newton’s law of gravitation,
which was to be published in 1665, was still unknown. It is
thus more surprising that Descartes was able to formulate a
theory which could explain m any of the observational data than
that his theory had to be abandoned after Newton’s severe criticism.

Descartes started from a large whirl of matter in which 14
large bodies were floating as pieces of wood in a river. As can be
seen in actual whirls carrying pieces of wood, the larger bodies
have a tendency to collect around them the smaller ones and in
the same way the sun became surrounded by the 6 planets, while
the earth, Jupiter and Saturn got respectively 1, 4, and 2 satellites.
Since the movement in the inner regions of a whirl is faster than
in the outer regions, one could also understand that the rotation
of the inner planets was faster than  that of the outer ones.

The great historical significance of this theory is that it was
the first attempt to explain the observational data, starting from
some simple hypothesis. As soon as Newton had found his
gravitational law, it was, however, possible to shew that this
theory could not be maintained.

Newton himself believed that God had created the solar system
in its present state and that He would look after it if its future
were endangered by m utual perturbations of the planets. His
influence on his fellow-scientists was so large that the cosmogon-
ical theories of Buffon and Kant rem ained practically unnoticed.
This only changed when Laplace arrived with his theory.—
Laplace who wrote about Newton: “ Je ne puis m ’empêcher d ’ob-
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server combien Newton s’est écarté sur ce point de la méthode
dont il a fait ailleurs de si heureuses applications.”

2. Ka n t’s theory. In 1755, I mmanuel Kant in his “Allgemeine
Naturgeschichte und Theorie des Him mels” gave a qualitative
cosmogony, which was ultimately worked out more quantitatively
by Du Ligondès in 1897.

Kant started his treatise by answering the theological objections
to the proposal of a cosmogony by rem arking that the laws of
nature are created, by God, so that it is not lack of reverence when
we try to find out the effects to which their action leads.

Kant’s idea is to start from a nebula in the centre of which
the sun is placed. Due to gravitational forces the rest of the
m atter will rotate around the sun. Under the influence of mutual
collisions, the nebula will pass into a disc, where all particles
are rotating in circles around the sun. The next step is that there
is a tendency of the matter in the disc to condense into some large
bodies which become the planets. Since this condensation takes
place gradually, the first result will again be a rotating nebula,
but now on a sm aller scale, from which the satellite systems ensue.
The larger the planet, the larger its gravitational attraction, and
the larger the num ber of satellites.

Kant also shews that the rotation of the planets around their
axes will be in the same direction as their rotation around the sun.
To understand this, we have to consider a particle moving in
the same orbit as and behind the planet. Under the influence
of the attraction of the planet, its velocity will increase and thus
also the centrifugal force. The result is that it will move outwards
and that if it collides it will give to the planet an angular mo
m entum  of the right direction.

Kant was able to explain the first group of regularities, m en
tioned in part A. He did not attempt to explain the other three.
He was unaware of the difficulty of the distribution of the angular
momentum, and even of the fact that angular momentum has to
be preserved. The fact that the present distribution of the angular
momentum was not explained in this theory was the reason why
Kant’s theory was not accepted as the final answer. In the following
chapters we shall see that an extension of this theory seems to be
able to give an explanation of C and perhaps of B.

3. L a pla c e’s theory. In many textbooks and popular works,
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Kant’s theory is mentioned together with the theory of Laplace
of 1796. The view often held is that Laplace put Kant’s ideas into
scientific terms. As we shall see, this is far from correct. The
theories are widely different. Moreover, Laplace when writing
his popular book “ Exposition du Système du Monde” was
unaware of the existence of Kant’s theory.

Laplace’s idea was to start from a situation where the sun is
surrounded by a hot gaseous atmosphere. This nebular atm o
sphere was gradually cooling and thus contracting. As it contracted,
the rotational velocity necessarily increased by the preservation
of angular m omentum, and thus also the centrifugal force at the
equator. Ultimately this force became larger than the gravitational
force and a ring of matter was flung into space.

This process was repeated, giving rise to a system of concentric
rings from which by a process not further explained the planets
derived. Finally, the rem ains constituted the sun.

Laplace can easily explain A and perhaps B, but the crucial
point here is again D. In fact, if all the mass and angular m omen
tum of our solar system was concentrated in even as small a
volume as that of the present sun, the centrifugal force at its
equator would only be about five per cent, of gravity and it
would be far from any danger of breaking up.

This failure to explain D alone suffices to disprove Laplace’s
theory. Another difficulty, which can only be overcome quite
artificially, is that the Laplacian rings have no tendency to con
dense into planets (they might form a swarm of asteroids but not
larger bodies). The only explanation is to suppose that the actual
condensation should have begun already before the throwing off
of the rings.

Faye’s theory of 1885 was essentially the same as Laplace’s
and is also unable to explain D.

4. B i r k e l a n d ’s theory ( 6 ) ;  B e r l a g e ’s theories ( 7 ) :  In 1912,
Birkeland gave a sketch of a theory in which the -solar magnetic
moment and the particles emitted by the sun played a role.
His idea was that through the strong magnetic field of the sun the
charged particles, which are for the most part emitted from the
equatorial regions, should spiral down towards limiting circles.
The radii of these circles would depend on the ratio of the charge
to the mass of the particles.
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Birkeland is thus able to explain both A and B. The problem
D is not a problem  in this case either, since, as shewn by Alfvén,
due to currents in the surrounding matter evoked by the sun’s
magnetic field transfer of angular momentum from the sun to
the surrounding m atter is possible. The time needed for this
transfer is small (105 years) as com pared with the age of the solar
system.

Nevertheless, this theory could not be m aintained since the
solar magnetic field is not strong enough to produce the desired
effect. The orbits of the emitted particles are only slightly curved
and they all leave the regions of the solar system.

Birkeland was the first author to consider electromagnetic
effects. After him, Berlage, inspired by his ideas, tried to account
for m any features of the solar system by taking the solar electric
field into account. Berlage’s theories met with the same fate as
B irkeland’s. They rem ained practically unobserved. For instance,
Alfvén who in 1942 again investigated the possible influence of
the solar magnetic field does not mention either of them.

In his first theory Berlage assumed that the sun emits negat
ively charged solid particles and positively charged ions. Their
emission is a consequence of the fact that radiation pressure on
them  exceeds gravitation. The result is a space charge around
the sun and a positive charge of the sun itself.

The next assumption is that the sun, as in the theory of Kant,
is surrounded by a gaseous disc. If we now roughly calculate the
equilibrium  position of an ion in the disc under the influence of
the space charge, solar charge and solar gravitational field (Ber
lage neglects the centrifugal force), it can be shewn that for each
ion there exists an equilibrium  distance which increases with
decreasing atomic num ber of the ions.

The result is that in the disc there will be formed concentric
rings of ions, their rad ii depending on the ion in question.

These ion rings will act as the initial nuclei for condensation,
and afterwards each of these rings will condense ultimately into
one planet, as in Laplace’s theory.

Since to each of these ion rings is ascribed a certain isotope of
one of the elements, Berlage is able to estimate the masses of
the planets. Also he finds decreasing densities of the planets with
increasing distance from the sun, which—assuming that Jupiter
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and Saturn possess a heavy nucleus surrounded by a lighter
atm osphere (Jeffreys)—is in agreement with observation.

The distance of the rings from the sun can be shewn to
correspond to the Titius-Bode law.

We see that Berlage is able to explain here A, B and C : he does
not attempt an explanation of D. This theory will not, however,
stand criticism. Apart froTn the fact that it can easily be shewn
that in the way Berlage suggests enough m atter can never be
collected to build up, for instance, Jupiter there is the fact that
the basic assumption that the sun should emit negatively charged
solid particles is shewn to be wrong by observation.

This was the reason why Berlage himself left this theory for a
second attempt where he now used the fact that the sun emits
positive ions and electrons. Considering the effect of space charge,
radiation pressure and gravitation on the charged particles, but
still neglecting centrifugal forces due to rotation, Berlage is able to
calculate the electric field strength in the neighbourhood of the
sun. It then appears that this field is of a periodic character. This
means that there are concentric spheres on the surface of which
the field strength is equal to zero.

If we now consider the gaseous disc which is again supposed
to be surrounding the sun, we see that since the atoms will all be
ionized for part of their life matter will be concentrated on the
circles where the disc is intersecting the spheres of zero field
strength. In this way Berlage now gets his rings of matter. The
rest of the condensation then takes place in the same un
explained way as in Laplace’s theory.

This theory explains A and B, but has to leave C and D
unexplained. Berlage himself sees as a serious deficiency of this
attempt that it is unable to explain the satellite systems. Another
serious objection is that the degree of ionization in the gaseous
disc will be so low that electrostatic effects are negligible (com pare
Chapter II, Section B).

In his latest theory, Berlage has completely left all electro
magnetic considerations and considers in detail the history of a
gaseous system which may be found around the sun. He thus
follows Kant. First of all, he shews that this system will assume
the form of a disc. He also gives an expression for the density
in the plane of the disc as a function of the distance from the sun.



12 Nr. 3

After that Berlage looks for a possibility that this disc may
condense spontaneously into rings. Afterwards these rings have
to condense into the planets. For that purpose he investigates
whether a slightly different density function might be stable.
This means that for this new density function, the total mass,
angular momentum, and energy are the same as before, but the
kinetic energy of the system is larger than initially. Berlage
really finds such a tendency to form rings.

In this way he can explain A and B. His reasoning is, however,
very loose as, for instance, his assumptions about the tem perature
distribution and the lam inar motion in the disc. Also his assertion
that rings will be formed does not rest on a firm foundation. F in
ally, there is still the difficulty of the condensation of the rings
into planets which we met already in the discussion of Laplace’s
theory.

5. A l f v é n ’s theory (8). The Swedish physicist Alfvén has
given a very interesting theory in a series of three papers, taking
into account the magnetic forces on ionized matter.

His reasons for advancing this theory are the following. To
begin with, the force exerted by the sun’s magnetic moment on
ionized m atter can be m uch larger than the gravitational force
on the same matter. For instance, on a proton moving in the
earth’s orbit with the earth’s velocity, the first force exceeds
the second by a factor 60.000. In the second place, A l fv én  has
shewn in an earlier paper (9) that transfer of angular momentum
from the sun to a surrounding ion cloud is possible. The rotating
magnetic moment of the sun evokes currents in the cloud and
an effect similar to that braking a metal between a magnet’s poles
takes place. This transfer of angular m om entum  can take place
in  an appreciable am ount in as short a period as 106 years. In
this way, D does not present any difficulty.

Now, Alfvén’s idea about the formation of the outer planets
is the following. Suppose.that in its journey through space, the
sun meets an interstellar gas cloud and becomes surrounded
by it. If we m ay neglect the rotation and velocity of the cloud with
respect to the sun, the atoms in the cloud will start falling towards
the sun, and their kinetic energy will increase during that fall.
Eventually this kinetic energy will become so large that ioniza-
ion by collisions can take place.
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The idea is now that collisions are so frequent that this ioniza
tion indeed takes place. Once an ion is formed, the movement
towards the sun is stopped and the ion has to move along the
magnetic lines of force until it reaches an equilibrium  position.
Alfvén shews that this equilibrium  position is situated in the
equatorial plane of the sun.

Assuming now that the ions are moving uniformly towards
the sun and are all ionized at the same distance from the sun,
and considering in detail the subsequent movement of the ions
towards their equilibrium  position in the equatorial plane, he
gets the mass distribution in the equatorial plane. Alfvén takes the
fact that this mass distribution agrees roughly with the mass distri
bution in the series of the outer planets as a support of his theory.

In this way Alfvén is able to account for the outer planets. This
m echanism  is, however, unable to explain the origin of the inner
planets because even in the most favourable case the distance
from the sun at which ionization occurs will be by far larger than
the m ean distance of Mercury from the sun. Also, one should expect
from this mechanism to find lower densities for the inner than
for the outer planets but the densities of the inner planets are
higher than those of the outer ones.

Alfvén without any detail suggests the following process. The
sun in its travel through space should have met an interstellar
smoke cloud consisting of solid particles. Through the strong
radiation of the sun those particles will sublim ate as soon as they
have come near enough. The resulting atoms become ionized but
at a shorter distance from the sun.

Instead of the Titius-Bode law, Alfvén introduces a diagram
where the ratios of the masses and of the distances from the
prim ary are connected. His explanation of this diagram, how
ever, seems to be extremely weak, and it does not seem to be
possible to get the same result by valid reasoning.

But also his original idea is unable to stand a critical scrutiny.
In the case of a gaseous cloud surrounding the sun from the
beginning electromagnetic forces will not play any role at all
because of the absence of ionization in the cloud (cf. chapter II,
section B).

As far as Alfvén’s suggestion about the heating up of an inter
stellar gas cloud is concerned, the atoms will certainly not save
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up their energy until they reach the immediate vicinity of the sun.
It can easily be shewn that their m ean free path is by far too
small. However, one could imagine that the whole cloud was
heated up while contracting. Apart from the fact that one has
to assume zero angular m omentum of the cloud around the sun,
and the fact that the energy gained seems to be emitted by rad ia 
tion before ionization takes place, it seems that the desired object
still is not attained. Ionization will start all over the cloud, and
since ions cannot approach the sun, only a very small fraction
of the gas cloud, insufficient to form the planets, will be available
for further condensation.

6. Von  W e iz sa c k e r ’s theory (10). In  a paper, dedicated to
Sommerfeld on the occasion of his 75th birthday, von W eizsacker
has advanced a new theory about the origin of the solar system.
The greatest im portance of this theory is in the fact that it provides
us w ith a definite scheme for further calculations1.

His theory can be divided into different parts, corresponding
to the different stages in the development of the solar system.
First, he discusses the formation of a gaseous disc around the
sun, secondly, the formation of a system of vortices in this disc,
finally, the condensation process, and the satellite systems.

The first part is practically identical with the sim ilar parts in
Kant’s or Berlage’s theory. The disc is supposed to contain about
one tenth of the solar mass, and the over all density will be about
1013 atoms per cm3.

The second part is the most interesting, but probably also the
weakest point in this theory. Supposing that the orbits of mass
elements in the disc m ay be assumed to be Keplerian, von W eiz
sacker shews that a system of vortices can be built up from these
Keplerian orbits. In fig. 1, we see such a configuration.

Von W eizsacker is led to such a configuration for two reasons.
The first is that gravitational forces are by far the most im portant
forces in the disc. The second is that in a system of vortices, as
shewn in fig. 1, the energy dissipation will be small. In the large
vortices the dissipation will be negligible in a first approxim a
tion. However, along those circles where the rings of vortices
meet there will be large viscous stresses. These will presum ably

1 It will be seen that the present paper is to a large extent a clarification and
extension of von Weizsacker’s ideas.
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give rise to secondary eddies on the circles separating the main
vortices. These eddies are called the “roller bearing” eddies.
They will probably regulate the whole system. However, energy
will be dissipated in these “roller bearings” . Conditions for con
densation will be more favourable in these secondary eddies
(com pare Chapter IV), and so we may expect the planets to be
formed at distances from the sun corresponding to the radii of

Figure 1. The outer arrow indicates the direction of rotation of the whole
disc, while the inner arrow indicates the direction of rotation in the vortices. The

sun is in the centre of the whole system.

the circles separating the m ain vortices. Now, von W eizsacker
gives reasons to believe that the num ber of large vortices in
each ring is constant. This means that the ratio of two consecutive
radii will be constant, thus giving us the Titius-Bode law for the
distances of the planets from the sun (neglecting the constant term ).

Another consequence of the condensation into planets in the
roller bearings” is that we will get a counter-clockwise rotation

of the planets if the whole system is rotating in a counter-clockwise
direction, in agreement with observation. The rotation in the large
vortices is in the opposite clockwise direction.

During their form ation and immediately thereafter the planets
will be surrounded by extended atmospheres. In these atm ospheres
the satellite systems will be formed. Von W eizsacker does not,
however, enter into an extensive discussion of this question.

Due to the dissipation of energy, the disc will disappear
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gradually. Von W eizsacker estimates its lifetime to lie between
107 and 108 years, which is of the same order of magnitude as the
period necessary to build up bodies of the size of the planets.

Von W eizsacker has given an explanation of A, B, and C.
He also gives an explanation of D in the following way. The
dissipation of the gaseous system is accompanied by a flow of
atoms into interstellar space and a simultaneous flow of matter
to the sun. He now assumes that the light elements leave the
system, carrying with them  the necessary angular m omentum,
while the m atter falling onto the sun does not possess any angular
m omentum. In this way, he can at thé same time explain the
difference in constitution of the planets and the sun, and the
distribution of the angular m omentum. It is, however, difficult
to see why this separation of the cloud according to angular
m omentum and atomic weight should take place. Also, this process
cannot decelerate the sun sufficiently; there is a discrepancy of
a factor 100.000.

Also his picture of the vortices seems difficult to m aintain:
Keplerian orbits are only a first approximation. Hydrodynamics
has to be applied, but, as we shall see in Chapter III, it is as yet
unable to give von W eizsacker’s configuration. However, the main
merit of this theory is that it has revived again Kant’s theory and
that it has draw n attention to the im portance of hydrodynam ical
considerations.. In the following chapters we shall see that a slightly
different attack seems to give a reasonable explanation of A, C,
and perhaps B, while D has as yet to rem ain unexplained.

II. D u a l i s t i c  T h e o r i e s :  1. B u f f o n , C h a m b e r l in -M o u l t o n ,
J e f f r e y s , J ea n s . Ten years before Kant published his theory a
dualistic theory had been advanced by Bufifon. In those days
fantastic ideas about comets were common and Buffon therefore
proposed the collision of the sun and a comet as the source of
our solar system. (Buffon estimated the mass of the comet of
1680 as 28000 times the earth’s mass.)

Through the collision matter was torn out of the sun which
m atter later condensed into planets. The rotation of the sun
might also have been caused by the collision.

Modern tidal and collision theories have the same foundation
the only difference being that another star, instead of a comet,
is the foreign body which produces the material.
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Chamberlin and Moulton proposed that as a second star was
passing the sun in a hyperbolic orbit by tidal action and eruptions
m aterial for the planets was provided. The first heavier eruptions
would provide the m aterial for the outer and the secondary
eruptions that for the terrestrial planets.

After the second star had departed the gaseous matter would
cool and condense. Part of it had fallen back on the sun and
part of it escaped into open space, but the rest could be used for
building up the planets. In the cooling process liquid drops
(planetesim als) would be formed and even larger solid cores
which were sufficiently large to hold the lighter gases. In the
course of their rotation around the sun those cores swept up
m atter and so the planets grew out of this gas.

The orbits of the cores which had originally large eccentricities
are “ironed out” by the resisting medium.

The theory proposed by Jeans and also by Jeffreys in his first
paper is about the same. They do not introduce the solar eruptions
since it is known that the radiation pressure responsible for
prominences and similar phenom ena is not large enough to cause
eruptions as large as needed here. Tidal action produced a fila
ment which breaks up into sm aller gaseous fragments. In those
fragments condensation takes place into liquid bodies and so
on to planets.

The small eccentricities are again brought about by the resisting
medium.

These theories have the advantage that they are able at first
sight to explain the distribution of the angular momentum  (D)
without difficulty. They do not attempt to explain either B or C
while for A they use the resisting medium.

The first difficulty lies in the explanation of the planetary
rotation. The explanation put forward by Chamberlin is not
convincing and therefore Jeffreys assumed later that it was not
a close encounter, but an actual collision which took place.
Taking into account the viscosity of the resulting ribbon torn
out of the sun, he could then shew that rotation of the right
order of magnitude would ensue.

The next and greater difficulty is as Nölke has shown the
influence of the resisting medium. It seems to be doubtful whether
this m edium  really can bring about the small eccentricities.

D. Ktfl. Dnnske Vidensk. Selsknh, Mat.-fys. Mcdd. XXV, 3. 2
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Another difficulty is the formation of the satellite systems.
Although the original idea was that tidal forces caused by the
sun were responsible for them, Jeans himself shewed that this
notion would not work. In Jeffreys’ later theory it is perhaps
more easily explained, since (quoting Russell) almost anything
may have happened in the period of wild turbulence, which
included the formation of the ribbon and its segregation into
separate bodies.”

Also, if the material comes from the sun, it will be extremely
hot and the danger exists that it may fly away into open space
before beginning to condense, as was pointed out by Spitzer  (11 ).

Finally, the explanation of D is not as easy as it seems. At first
sight one would think that during the collision sufficient angular
momentum may have been imparted to the filament. R u sse l l

(5) has shown, however, that this transfer of angular momentum
by the second star is not an easy job and that, if it was possible
at all, which he doubts, one would expect large inner and small
outer planets.

Russell also deals with some other hypotheses to save these
theories, but ends his monograph by saying that we are as yet
no wiser about the origin of the solar system than we were when
Newton found his law of gravitation, a point of view shared by
Nölke.

2. Rinary hypotheses; L y t tlet o n  (12, 13), H oyle  (14).
During the last decade, several theories have been proposed
involving the assumption that the sun was originally a member
of a binary or multiple system.

The first theory of Lyttleson assumes that the binary companion
of the sun undergoes a close encounter with a third star, similar
to the encounter assumed in Jeffreys’ theory. The encounter
results in a disruption of the binary system and the production
of a gaseous filament which may produce the planets. Although
Luyten’s manifold criticism does not seem to be valid, the forma
tion of satellite systems and the small eccentricities, together with
Spitzer ’s objection (1 1 )  seem to be too large stumbling blocks.

In his second theory, Lyttleton starts from a triple star. The
separation of the two companions of the sun will decrease as
part of the evolution of a binary system. The two stars will
finally combine into one mass. This mass will, however, break
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up because of rotational instability. After this fission the two parts
will leave the system producing a situation similar to that met
in Lyttleton’s first theory. The same objections apply, therefore,
to this theory.

The last development in this direction is given by Hoyle.
According to Hoyle, a supernova outburst of the second component
will account for the breaking up of the binary system and for the
material from which the planets are formed. It seems, however,
that this theory meets the same difficulties.

In his last paper, Hoyle considers the condensation process
in detail and arrives at estimates of the original rotational periods
of the planets. His reasoning develops along lines parallel to those
which will be discussed in Chapter IV. It seems, however, that he
arrives at wrong conclusions because he neglects the exhaustion
of the gaseous system and all hydrodynamical effects. His proof
of the direct rotation of the planets is essentially the same as
that given by Kant or Alfvén.

HI. F in a l  Rem arks :  We have not included all theories in
our survey. Manyof them as, for instance, those by Arrhenius
and See are merely variations on themes discussed here. Other
theories like the “Welteislehre” by Hörbiger-Fauth, which has
been dealt with conclusively by N ölke  (4), or the recent
theory by H aldane  (15) who seems to drive the consequences
of the expanding universe rather far need not to be taken
seriously.

However, there exists one recent theory which seems to be,
at present anyhow, only an outline of a theory but which must
be mentioned briefly. It is W h ip p l e ’s attempt ( 16)  to produce a
planetary system from a large smoke cloud. He starts from a
smoke and gas cloud with a radius of about 30000 A. U. con
taining about one solar mass. The contraction of this cloud should
produce both the sun and the planetary system.

The original cloud is assumed to possess negligible angular
momentum so as to account for the low angular momentum of
the sun. The planets are assumed to be formed in a stream in the
cloud so that those initial condensations which have to develop
into the planets have already from the beginning the necessary
angular momentum. The solution of D is thus put into the theory
from the beginning. The planets (or better the condensations

2*
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which will later form  the planets) will now spiral towards the
sun because their accretion of matter of zero angular momentum.

W hipple gives a rather half-hearted explanation of A, but
does not attem pt to explain B or C. Furtherm ore, his discussion
of the planetary rotations seems to be difficult to follow and
lacks quantitative evaluation. Altogether, there seems to be very
little reason as yet to accept this theory as a final solution.

Recapitulating, we can say that there seems at present to be no
theory which can explain satisfactorily the various properties of
our solar system. Especially the differences between the outer
and the inner planets and the present distribution of the angular
m om entum  seem to have presented unsurm ountable difficulties.

A GasserL(HeWZeprhysalA c t ^ S ,  S T l 9 « ? j ! Ï Ï Ï Ï ( £ « ^

I t  has not, however, been possible to  include these in the review in th is intro
duction.



Chapter I.
Summary.

In view of the fact that as yet no acceptable solution for the
origin of the solar system appears to exist, it seems justifiable
to investigate again a few aspects of this old question. There are
several reasons why this should be done. First of all, it seems
that as yet no sufficient attention has been paid  to the physical
properties of a gaseous system from which the planets should
condense. Secondly, up to now nobody seems to have draw n any
conclusions from the rem ark of J e f f r e y s  (17) that the initial
steps in the condensation process will be the same as in the
case of a supersaturated vapour. H oyle (14) has discussed this
problem  rather extensively, but his discussion lacks quantitative
reasoning and he neglects a few im portant aspects of the problem
and therefore arrives at the wrong conclusions. Finally, in an
as yet unpublished paper which was dedicated to Prof. Niels Bohr
on the occasion of his sixtieth birtday1, von W eizsacker  (18)
has set forth new ideas about cosmogonies which might be used
for a discussion of the origin of the solar system. Our discussion
will, however, run  along lines slightly different from those of von
W eizsacker’s own theory (10) about the origin of the solar
system, because of the difficulties encountered there.

Before discussing the new ideas which we wish to present
in the present paper and the reasons why we are discussing just
those points which we shall look into, we shall briefly discuss
this second paper by von W eizsacker.

Von W eizsacker starts from a situation in which the universe

1 I wish to express my sincere thanks to Prof. Bohr for giving me an oppor-
tunity to see this manuscript. This paper has in the meantime been published.
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is filled with gas. The composition of this gas is supposed to be
roughly the same as that of the sun or of the interstellar gas, i.e.,
mainly hydrogen. Also there is a velocity distribution which m ay
be described apart from its fluctuations as the expansion of the
universe. The origin of these velocities and of the distribution
of the elements in th e  gas are not discussed and are supposed
to belong to earlier periods. Now, von W eizsacker investigates
the development of this gaseous system. Because of its large
dimensions, turbulence will be present. The consequence is that
there will be regions of higher density. Matter entering such
denser regions will lose the energy gained in the gravitational
field because of viscous interaction and will be captured. In  this
way we shall get conglomerations of matter. These conglomera
tions are the first stage of galaxies.

In such a proto-galaxy, the same process will start afresh
on a smaller scale, and the condensations will now be the proto
stars. The next step should be the form ation of planets in the
gaseous system doomed to become a star, and the last step
might be the formation of the satellite systems.

The formation of the star from the gaseous rotating system
will be accompanied by the dissipation of the system. The rotation
is due to the whirling movement of the matter, and we m ay expect
the linear velocities at the outskirts of the system to be of the order
of magnitude of the turbulent velocities. Due to the concentration
of matter in the centre, the outer parts will try to move with veloci
ties given by Kepler's third law. This means that different parts
of the system will move with different velocities and viscous
stresses will result. These forces try to accelerate the outer parts
and decelerate the inner parts of the system in an attempt to bring
about a uniform  rotation like that of a rigid body. Also these
viscous forces entail a loss of energy. So we have a situation
where there is at the same time a dissipation of energy and a
transfer of angular m omentum from the inside to the outside of
the system. Von W eizsacker assumes that these two processes are
possible because mass with higher than average angular m omen
tum  disappears into interstellar space while at the same time
the rest of the mass with low angular momentum will become
concentrated in the centre of the system thus providing us with
the necessary energy. In this way we get a slowly rotating central
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mass (the star) surrounded by a faster rotating surrounding
gaseous cloud. This implies that although in the initial stages
the rotational velocities in the centre were m uch higher than at
the outskirts the second stage presents us with a slowly r o ta tin g
star and a faster rotating gaseous cloud. As soon as the density
in the cloud is below a certain lim it the rotational velocities in
the cloud will be determined by the central mass and follow
the th ird  Keplerian law.

The equilibrium  shape of such a rotating gaseous cloud will
be a lens shape or disc. In this disc there will still be turbulence.
However, it is still the question whether the configuration of
vortices will really be as regular as the one given by von Weiz-
sacker.

Accompanying the disappearance of the solar gaseous envelope,
condensation will take place in it. There will be m any centres of
condensation and during the lifetime of the disc these condensa
tions will grow to become as large as the present planets. Together
with their form ation the planets will become surrounded by
extended atmospheres. The evolution of these atmospheres will
probably be analogous to the evolution of the solar envelope.
In this way we have a mechanism for the  formation of the
satellite systems.

Now, the question discussed in the present paper is in  how far
this qualitative scheme m ay account for the various properties
of the solar system. Before starting to discuss the various aspects
of the problem  quantitatively we shall give a brief survey of the
contents of the following chapters.

In Chapter II we shall first of all discuss the shape of the solar
gaseous envelope. We shall try to take into account the dissipa
tion of the disc by assuming this disc shape to vary slowly. After
that we shall discuss the various physical properties of this disc.
The most im portant property is the tem perature in  the disc since
the tem perature is im portant in determining the shape of the disc.
First, it is shewn that ionization in the disc is negligible. As was
first shewn by E ddington  (1 9 ), ionization by stellar (or solar)
radiation will result in a m uch higher tem perature of the gaseous
system because the electrons will leave the atom with kinetic
energies corresponding to the surface tem perature of the star.
These high velocity electrons will, by interactions with the gas
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atoms, set up a high tem perature. Then, we have to calculate
the optical depth of the disc in order to determine whether much
radiation energy is captured in the disc. This, however, appears
not to be the case. After that, we can determine the tem perature
in the disc. This tem perature ranges from 75°K in the neigh
bourhood of Neptune, to 700°K in the vicinity of Mercury.

Next, it is shewn that the radiation density will be approxi
mately a diluted Planck radiation, that radiation pressure can be
neglected, and that there will be no appreciable separation of
elements, due to either gravitational separation, therm al difffusion,
or other sources. Finally, we compute the densities of various
molecules in the disc.

In this way, we have a more or less definite physical picture
of the disc.

In Chapter III we shall discuss the hydrodynam ical aspects
of a gaseous disc in general.

We shall try  to estimate the lifetime of the disc, and the
transfer of angular momentum, not necessarily due to a flow of
matter, from the central body to the disc during the lifetime of
the disc. We shall also discuss the question whether it is possible to
explain the Titius-Bode law.

In Chapter IV the condensation process is discussed. This
discussion will resemble very closely the discussion of H oyle  (14)
or von W eizsa ck er  (10) but some new features will be revealed.
We shall discuss the three stages in the condensation process.
These are the formation of condensation nuclei, the growth of
these nuclei, and finally the stage of rapid  gravitational capture.

In  Chapter V we shall apply the results of Chapters II to IV
to the solar envelope. We shall see that we are now able to explain
the differences between the outer and the inner planets as far as
mass and density are concerned.

In  Chapter VI we shall discuss the satellite systems and the
rotations of the planets. It will be seen that we can divide the
satellites into two groups which we shall call the “ regular” and
the “ irregular” satellites. It is proposed that the “ regular” satellites
are formed out of the planetary envelopes. The “ irregular”
satellites, however, are supposedly captured by the planets.

If we now compare the results of the present paper with the
requirem ents of a successful theory discussed in the introduction
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we see that we have been able to explain some hitherto unexplained
points of the group C, and, possibly, shed some light on the
difficulties connected with the explanation of B and D.

We have been able to account for the fact that the planets
fall into two definite groups (C) by looking carefully into the
condensation process.

Although the Titius-Bode law (B) has still to rem ain  unex
plained there seem to be indications that a thorough investigation
of the hydrodynam ical problem s connected with the evolution of
gaseous systems, such as we have studied here, might give a
clue to this property of the solar system.

A regular system of vortices would at the same tim e give us an
easy explanation of the circular orbits. The direct rotation of all
the planets in one plane follows immediately from the fact that
the condensation takes place in  a rotating disc.

The present distribution of the angular momentum  (D) still
cannot be explained but some indications are given as to the
direction in which the solution might possibly be found.

We have not discussed at all the way in which the sun should
have been formed from an original nebula. This form ation may
have an im portant bearing on the explanation of the present
distribution of the angular momentum  but falls outside the scope
of the present paper.

Altogether, the present paper gives a program  for future
investigations of m any points rather than a complete solution.



Chapter II.
Physical Properties of the Solar Envelope.

We shall consider here a gaseous system in the centre of
which the sun is situated. The radiation of the sun is assumed
to be the radiation of a black body of 6000 °K. The dimensions
of the sun are supposed to be the same as at present (r0 =
7.1010cm). The constitution of the envelope will be assumed
to be about the same as the constitution of the sun, i. e., mainly
hydrogen and helium, corresponding to a m ean molecular weight
of about 3.

A. Shape of the envelope. In this section we shall follow
von W eizsa ck er  (10) with a few alterations. We shall start from
the equations of motion:

grdd U -\—  grad p  — w2 s — 0, ( 2 .1)

where U is the gravitational potential energy, q the density of the
gas, p  its pressure, and co its angular velocity. Finally, s is the
vectorial distance from the rotational axis (z-axis).

We take for U:

U = yM0
( 2 .2)

where y  is the gravitational constant, M0 the solar mass (we neglect
the gravitational action of the gaseous envelope), and r  the distance
from the centre of the sun.

For the pressure we use the ideal gas law:

p  =  qRT, (2.3)

where R is the gas constant per gr., and T  the absolute tem perature.
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For this tem perature we shall use:

T — a-r~  i ,  (2-4)

which follows if the tem perature is determ ined by an equilibrium
between the absorbed solar radiation, and emitted black body
radiation by the gas. In the next sections of this chapter we shall
derive this form ula for the tem perature.

Combining equations (2.3) and (2.-4), we have

p  =  b Qr~*. (2.5)

Normalizing b so that T  =  6000° for r  =  7.1010cm (solar
radius), we get: b =  4.1016 cm§ sec- 2 . 1 *

Introducing:

ftlog— =  a,  (2.6)
Qo

where g0 is an arbitrary constant, and writing equation (2.1)
out in  the two directions parallel and perpendicular to the ro ta
tional axis, we have

d_Q _  /

d z  \

M  *

r8 2 r * r
(2.7)

II
to I

Cto 1 2 yM 0 b \  io -----------------   r *  s .
r 3 * * 2 A )

(2.8)

Equation (2.7) can be solved, and gives us

a =  2_yMo +  ^ log r  +  T(s) j (2.9)
r*  I

where r  is independent of z, and has to be solved from the fol
lowing equation, obtained by substituting equation (2.9) into
equation (2.8):

d r  „ i  .—  =  a>Ms. (2.io)

1 Von Weizsacker’s normalization giving 300° K. for r =  10la cm (mean
distance of Venus from the sun) is derived from the observational data about
Venus’ temperature. The surface temperature of Venus is, however, lower than
the equilibrium temperature required here by a factor 1.4 because of the fact
that the sun can only heat up that part of the surface which faces the sun.
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Since x is independent of z we have for the case of equilibrium :

=  f ( ^ f \  -  (2 .11)

where p  is still a function of s.
Now, the pressure gradient is everywhere in the system small

com pared with the gravitational force (even for r =  1015, the
term  with b in equation (2.8) is only about 1/200 of the gravita
tional term ). It seems therefore to be permissible to neglect in
equation (2.1) the term  dp/ds, and determine to from the equation:

■ 8 U  ,
os

or
(o2K ^ ,  (2.12)

r3

which corresponds to Kepler’s third law.
We might try to take into account the dissipation of the disc,

which will result in a steep density gradient, and therefore a
steep pressure gradient. (Von W eizsacker here introduces an
artificial boundary.) One way of introducing this is by putting

p 2 — 1 — a-s, (2.13)1

where a m ay increase with time. As long as a-1  is large as com
pared with the dimensions of the solar system, equation (2.12)
will approxim ately be valid in the equatorial plane of the sun.

Using equations (2.6), (2.9), (2.10), (2.11), and (2.13), we
get for the density in the envelope:

where x  is given by

x =  =  1010 cm1.
0

(2.14)

(2.15)

We see from equation (2.14) that the density falls off rapidly
in directions perpendicular to the equatorial plane. If we take

1 Any f i2, decreasing with increasing s, will give a slowly decreasing density
in the equatorial plane. Equation (2.13) is one of the simplest ways of introducing
such a decreasing f t2.
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for the height of the disc the distance over which the density is
decreased by a factor 2, we get for this height h:

-  =  2 |/log2 • ~  3Q- (2.16)1

The density in the equatorial plane decreases because of the
term with xa Jfs  in the exponential. Since x 2 is very large com pared
with the dimensions of the solar system, it is possible to find
values of a such that xa |/s is large as com pared with one, and still
a-1  large as com pared with the dimensions of the solar system.
In this way, we should have an appreciable decrease in density
in the equatorial plane, thus getting for the shape of our envelope
a lens shape.

The density in the equatorial plane can be written in the fo rm :

where gm is the m aximum  density in the disc, and sm the distance
from the sun where that maximum  density is attained. We find
sm from:

«m =  ( x a ) - 2. (2.18)

The advantage of the density function given by equation
(2.14) over the one given by von W eizsacker lies in the fact that
it is now no longer necessary to introduce an artificial boundary
as was done by von Weizsacker.

In using equation (2.17), we shall often assume:

gm =  2.1016 atoms per cm 3; sm =  1,6.1012 cm, (2.19)

corresponding to a total mass of the system of about one tenth
of the solar mass. The value of sm is taken so that we can expect
a maximum  planetary mass in the approxim ate neighbourhood
of Jupiter (cf. Chapter V, Section B).

B. Degree of ionization. There are two possible causes for
ionization, viz., the solar radiation or the collisions between the
atoms. In order to get an idea about the degree of ionization due

1 Strictly speaking h/r depends on r but only as rVi. The value given in equation
(2.16) is an average value for the disc.
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to the solar radiation, we may suppose for a moment that we have
to deal with a spherical gaseous envelope with a density of about
10“  hydrogen atoms per cm3. This certainly will give us an upper
limit since there is a possibility of the loss of energy by oblique
emission from the disc which possibility is not present in the
case of a sphere.

Using St r ö m g r en ’s equation (20):

10log S0 == -  0.44 -  4.51 0 +  |  10log T + 1 “ log R - 1 10log N,  (2.20)

where S0: radius of the sphere containing the H II region (i. e.,
the region where the hydrogen is ionized), in parsecs
(1 pc =  3.1018 cm);

R : radius of the central star, in solar radii;
T: temperature of the central star;

5040°
9: t  ’

N: number of hydrogen atoms per cm3.
Using T =  6000 °, N =  1016 cm-3, we get from equation (2.20):

S0 =  3.10® cm,

which is even far less than the solar radius. This means, of course,
that we may safely assume all the hydrogen in the disc to be neu
tral. Since the ionization potentials of oxygen and nitrogen are
larger than that of hydrogen they will also be neutral.

The next element is carbon. We then have the equation:

“ log So =  - 6 . 1 7 - 1 “ log a - 1 0X + 1 10log T +

+  — “ log R —!  “ log N,
( 2 .21)

where a is the absorption coefficient at the absorption edge, and
X  the ionizational potential. Using ac =  aH (.Xh Ix c Y  =  17 cm2
(cf. (21)), x =  H»22 ev> we §et:

S0 =  10® cm.

We shall finally investigate Mg, Na, K. Their abundance and
ionization potentials decrease in this order. Using again equation
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(2.21), we get the following table, where for the absorption
coefficients of Na and K  we use the values given by R u d k jö b in g

(21) and L a w r e n c e  and E d l e f s e n  (22), and for Mg:

ö Mg =  a Na (^ N a /^ M g )3:

T ab le  2. I.

Mg Na K

Abundance relative to hydrogen . 3.10-‘ 3.10-* 10~*
Absolute abundance........... 3.1011 3.1010 1010
Ionization potential in electrovolts. . . 7.61 5,12 4,32
a in cm2........... 5.10-20 1,6.10~12 3.10-“
S0 in cm ............... 7.101» 3.1012 7.1012

We see that the only element which might be ionized would
be potassium. We have not, however, taken into account that the
effect of recombination processes leading to excited states, fol
lowed practically always by cascading to the ground state, will
decrease the degree of ionization as pointed out by S t r ö m g r e n

(20). Furthermore, the fact that the radiation emitted after the
recombination can leave the disc obliquely also diminishes the-
degree of ionization.

One might be afraid that the radiation density in the ultra
violet might be higher than corresponding to a black body radia
tion of 6000°. Recent V-2 rocket experiments (23) show, how
ever, that the radiation density in the ultraviolet follows a black
body radiation of 3800° more closely than one of 60000.1 This
factor also shows that we have overestimated the degree of ioniza
tion. Using equation (2.21) with T =  3800°, we get for K for
instance:

S0 =  1018 cm,

which is far less than the mean distance of Mercury from the sun.
Altogether, it seems safe to conclude that the ionization due

to the solar radiation is certainly absent in the region of the major
planets and almost certain also in the region of the inner planets.

The next step is to investigate the degree of ionization due to
collisions between the atoms, i. e., the ionization equilibrium of

1 This may no longer be true in the tar ultraviolet.
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the different elements at tem peratures ranging from 700° K to
75° K. W e use the norm al Saha equation:

n*+n* . q^ * * * T .y ,~ XlkT. ( 2 .22)

where q is a weight factor, m  the electron mass, A+ the ion, and
A the neutral atom.

Even for potassium  (low density, low ionization potential),
at 700° K (highest tem perature), only one atom in 1010 is ionized.
Hence, we can safely conclude that this source of ionization can
also be neglected.

Since the solar radiation is unable to ionize even potassium,
we may safely assume that the highly diluted radiation from
other stars is also unable to produce any appreciable am ouni
of ionization except, perhaps, in a very thin boundary layer.

C. Optical depth; temperature of the disc. If the intensity
of the radiation passing through m atter is decreased by a
factor e~T, r  is called the optical depth of this matter. It is difficult
to estimate accurately the optical depth of the disc since we ought
to take into account the fact that the scattered radiation can
leave the disc obliquely so that the radiation has not to pass all
the mass before leaving the system.

We may, perhaps, obtain an estimate by smoothing out all
m atter in the disc over a sphere around the sun with the same
linear dimensions as the disc. W e obtain an upper and lower
limit for this optical depth by considering two cases, viz. either
a density varying according to equation (2.17), or a constant
density.

The selective absorption starts at 4.3 eV (ionization potential
of K) and the m axim um  intensity of the solar radiation occurs for
2.6 eV. Therefore, we may treat the scattering as Rayleigh scat
tering on H atoms.

The total optical depth r  is given by:

t  =  ( d g(r) dr, (2.23)

where d is the cross section for Rayleigh scattering (<5 =  10~27cm 2),
and q (r)  is the num ber of hydrogen atoms per cm3.
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The lower lim it is obtained by putting q (r) as constant. This
density will be about 3.1010c m -3 for a total mass in the disc of
about 0.1 M0. Then we get:

r  =  ÓIq ^  0.03,

where I is the total path  (/ ~  1015cm).
For the upper lim it we use equation (2.17) for the density,

with Qm ~  10u , corresponding to a smoothing out of the total mass
over the sphere. We then get:

t ~  2.

The actual r, giving us an estimate of the total scattering of
light in the disc, will probably be somewhat smaller than unity,
which means that the disc is rather transparent and that we may
assume that the energy which a gas volume receives from the
sun will be proportional to the inverse square of the distance
from the sun.

We can then calculate the tem perature in the way already
indicated in  Section A. The sun is considered to be the only source
of energy. Equilibrium  reigns if every gas volume in the disc
emits as m uch energy as it absorbs. If tem perature equilibrium
should exist, the total energy emitted by a gas volume would be
proportional to T* (Stefan-Boltzm ann’s law), which should still
be valid for a H and He atmosphere because of the principle
of detailed balancing. Since the energy received from the sun
will be proportional to r~2, we have:

T  =  a;r-i. (2 .4)

Normalizing T  to 6000° for r  =  7.1010 cm (solar radius), we
get the following table for the tem peratures of the cloud at the
present position of the planets:

T a b l e  2. II.

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune
650° K 480° K 400°K 330°K 170°K 130°K 90°K 75°K

These tem peratures may be lower limits in the neighbourhood
of the inner planets (ionization of potassium giving rise to high

D. Kgl. Danske Vldensk. Selskab, Mat.-fys. Medd. XXV, 3.



34 Nr. 3

energy electrons), while the temperatures in the regions of the
outer planets may be regarded as upper limits since there will
be a decrease in the intensity of solar radiation due to the Rayleigh
scattering. This might perhaps give rise to a factor two, Table 2. II
giving too high values1.

D, Radiative conditions: seperation o! elements. If we could
completely neglect absorption in the disc, the radiation would
be a diluted black body radiation, in as far as we may treat
the solar radiation as a black body radiation. This means
the energy density corresponding to a certain frequency (or
energy) is given by the well-known Planck formula multiplied
by a factor g, the so-called dilution factor:

where r„ is the solar radius and r the distance from the sun.
However, there will be an appreciable absorption in the ultra

violet region ( h v >  4.32 eV). For those wavelengths the dilution
factor may well be as small as 10~12—10-16. In the rest of the
spectrum, the dilution factor will probably be given by equation
(2.24), perhaps with an additional factor of the order x/t corre
sponding to the loss of scattered light (see Section C).

Since the disc is chiefly made up of hydrogen, and since
B aade and P auli (24) have shown that for hydrogen, at the surface
of the sun, the radiation pressure is negligible as compared with
the gravitational force, we may safely neglect the radiation pres
sure, the more so since the radiation pressure will presumably
decrease more rapidly (due to the absorption) than the gravita
tional force. If there were no absorption both would decrease as
the inverse square of the distance from the sun.

In the next chapter we shall see that all particles are part of
1 Dr. L. Spitzer has kindly pointed out to me that the opacity of the disc

might be larger than calculated in the beginning of this section, due to the absorp
tion and scattering by small solid particles.

8 n h v 3

The dilution factor g is given by

(2.24)
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the turbulent motion in the disc so that it is difficult to imagine
a process separating the different elements. The gravitational
separation discussed by E ddington  (2 5 ), e. g., will not take
place since the centrifugal potential will balance the gravitational
potential (cf., e.g., equation (2 .1 2 )) . Other effects such as therm al
diffusion, are very small and, as rem arked before, will probably
be annihilated by turbulence. Even if this should not be the case,
it can be shown that this should only slightly affect the ratio of
the heavier elements to hydrogen, and since anyhow hydrogen is
the m ain element and the ratios in  question uncertain, it seems
that we m ay neglect all separation effects.

E. Molecular densities. As the last feature in the disc, we
w ant to give a list of approxim ate densities of various compounds
in the disc. Of course these densities vary from point to point,
due to the different pressure and tem perature, but in  order to get
a picture, we m ay take a density of the hydrogen of 1016 at cm“ s
and a tem perature of a few hundred degrees Kelvin.

We are far rem oved from an equilibrium  situation, since the
tem perature of the radiation is different from the tem perature
in the disc and the radiation is diluted. It seems therefore danger
ous to use the (quasi) equilibrium  formulae of either Sw ings and
R o s e n f e l d  (2 6 ) or R o ssela n d  (2 7 ). We have instead to look
into the different possible processes, as was done for the inter
stellar space by K ram ers and the present author (2 8 )1.

As an example we m ay discuss the case of CH and use the
same considerations as in  BAN 371. The num erical constants
are, however, different. We now have: Tg ~  400°, Trad ~  6000°,
g as given in Section D. (W e shall use the same notation as in
BAN 371 and refer to that paper for this notation).

The first processes which are of interest are the radiation
captures (processes a and rj). The num ber of these processes is
given by

0 rad Qc+ Qh ' Ny =  0 rad Qc @h > (2 .25 )

where Qrad is given by

Qrad

/JO O

4 sr A  A (r) r2 (2 .2 6 )

1 We quote this paper in the following as BAN 371.
3 *
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where

•F(x) =  -~ C e  x 2dx.  (2.27)
ynJ0

U(r) and U'(r) are the potential energy curves of the mole
cule in the two electronic states between which the radiative
transition can take place (U(r)  is an excited state and U'(r) the
ground state). The transition probability at a certain distance
t  is given by A (r) and f  is the probability that the upper state is
realized when the two atoms meet.

In the case in which we are interested, the tem peratures are
so low that we can replace F ( x ) by

F ( x )  =  1 ----<Y ~ X ’ e  , 1 (2.28)
\ 7 l

and since U'(r)/kT  «  U (r) j kT  < 0, we can write with fair accuracy
instead of equation (2.26):

0 „ a -  O ) <■’ dr.  (2.29)

We see that for low tem peratures Qrad is inversely proportional
to the square root of the tem perature since the integral is indep
endent of T.

In the case of CH, we get from equation (2.29) by numerical
integration for T  =  400°:

Qrad ~  2.10- 17 cm3 sec- 1 . (2.30)

For CN, pum erical integration gives us:

Orad ~  10—17 cm 3 sec- 1 . (2.31)

We have assumed that three body collisions can be neglected
as a means for the formation of molecules. For a density of 1016
hydrogen atoms per cm 3, we get for the Q corresponding to that
process:

Q ~  10—18cm 3 sec-1 . (2.32)

For the rate of formation of those molecules which cannot
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be formed through a radiation capture accompanied by an
electronic transition, we can use equation (2.32).

Larger molecules will be assumed to be formed by radiation
capture, and we shall use for the capture cross sections fcf
BAN 371):

Qs-at 10 16 cm3 sec-1; Qn a{ =  10-19+n cm3 sec"1. (2.33)

For the processes involved in the CH equilibrium, we get the
following table (we refer to BAN 371 for the meaning of the
various processes):

Tab le  2. III.
N a =  4.10 17 gc+  oH ; Np  =  2.10'12 gel oC H +; N y  =  negligible
N ó =  negligible ; N e =  negligible ; JVf  =  2.10'13 ecH +
N ,  =  2.10-17 ec  eH ; N& — 10-16 QH  eCH ; =  JO-46 PHeecH+

(We have taken here T =  100° K.)
Since gel ~  Sc+ ~  0, we see that the only processes of any

importance are rj and ê  (i. e., radiation captures leading to CH,
resp. CHg), for the determination of pCH. The concentration of
CH+ will be negligible.

By equalizing NT, and N» we finally get:

Qch ~  2.1014 cm -3.

For a few other compounds we get the following densities,
using the above values for the formation cross sections. We want
to stress that all values in Table 2. IV are very uncertain and may
well be higher or lower by a few powers of ten.

H , : 10“  c n r 1
H aO : 1012
H C N : 1010
BaO : 106

Table
CH : 2.1011 cm-*
CN : 1011
COj : 10’
SO, : 2.10*

2. IV.
C H j : 2.1012 cm-2
N H S: 101S
C, : 101»
CO : 1010

^ i^ io 2.101»
o, 101»
SiC 108
NO 1010



C h a p ter  III.

Hydrodynamical Properties of a Gaseous Disc.
In this chapter, we shall be interested in the evolution of a

gaseous disc in the centre of which a large mass is concentrated.
We saw in Chapter II, Section A, that the angular velocities in
the disc follow Kepler’s third law closely. We shall assume that
we may use equation (2.12) for the velocities in the disc.

We shall treat the problem as a two dimensional problem,
i.e., we shall neglect all effects in directions perpendicular to the
plane of the disc. For the height of the disc we shall assume:

h — ar,  a ~  1/15 (3.1)

in accordance with equation (2.16).
The density in the disc may be given by equation (2.17). We

shall here use q measured in g cm s.
In the disc we have a velocity gradient and an energy gradient.

The energy content per unit mass is given by:

,  =  (3.2)
2 r  ’

giving the energy of matter, moving in a Keplerian orbit round a

mass M0 at a distance r. The kinetic energy ^  may be

neglected with respect to e, given by equation (3.2).
In Chapter I we saw that due to the velocity gradient in the

disc viscous stresses will be set up which together with the
escape of matter at the boundaries in the course of time may
bring about a profound transformation of the disc. This trans
formation of the disc is accompanied by three phenomena, viz.,
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a loss of mechanical energy, a flow of matter from the disc, partly
to the sun in the centre and partly to interstellar space, and
finally a transfer of angular momentum in outward direction.
In this chapter we shall try to estimate the rate at which the
various processes take place.

A. Dissipation of energy. We can use here the formula
given for instance by Lamb (29) for the dissipation of mechanical
energy due to viscous forces. We have the equation:

dE =  ^n si {— \ d x d y d z ,

where r) is the viscosity coefficient and where we have assumed
that the velocity is everywhere in the plane of the disc and
perpendicular to the radius vector. The angular velocity will still
depend on the distance from the sun in the way given by equa
tion (2.12).

If we now consider a ring of height h, radius s, and thickness
ds, we see that the total loss of energy per sec in that ring is given
by: A

SE  =  2 nhs3r ] ^ ^ \  ds, (3.3)

and the total loss of energy in the disc is given by:

d E fs# 9 s
- j f  = \d E  =  -nanyM 0\og-*, (3.4)

Jr, A ro

where r0 is the solar radius, s0 the radius of the disc, and where we
have supposed r) to be constant throughout the disc.

In the case of laminar motion, rj is the normal viscosity
coefficient, but in the case where the motion is turbulent, we can
still use the above equations. The quantity r) is then, however,
defined by the equation:

1
*7 =  3 QvX,  (3.5)

where X is the mean free path or the so-called “mixing length” .
B. Lifetime of the disc. We see that we have a steady loss

of mechanical energy in the disc. The energy for this dissipation
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process is provided by matter falling towards the centre and so
gaining gravitational energy.

We can estimate the total am ount of energy available by
assuming that a fraction /? of each volume element in the disc
falls onto the central body and that the rest of the mass disappears
into space. In  section D we shall see that /? is given by:

P =  r0/s. (3.6)

For the total energy available, we now get, using equations (3.2)
and (3 .6):

E0 ( q 2 n shds +
J AS

2 7i shds =
Jr, 2s

[  qP  (S)
J r 0

yM 0M
" 6 0  sm ’

2 7i shds]

where M  is the total mass in the disc and sm the distance at which
the m axim um  density in the disc occurs.

The lifetime of the disc, r, will now be determined by dividing
E 0 by dE/dt of equation (3.4), and in this way we get:

p v A sm Sp ■ y .
r -1 =  90 Tia.— - l o g - .  (3.7)

M rp

The derivation of equation (3.6) is very tentative. Thus ft
might easily be larger, giving rise to an estimate of r  larger than
that given by equation (3.7) by, say, a factor 10 or 100.

C. Transfer of angular momentum. Due to the velocity
gradient there will be a transport of m omentum through any
area perpendicular to the radius vector. This transport of mo
m entum  will be accompanied by a transport of angular m om en
tum  and  energy. Those three quantities are given by:

dP  =  s r j <50 =  — s2» ? 4 r, d E  = — s2a>r) - —. (3.8)ds ds as

The total transport of angular m omentum per sec through a
cylinder of height h and radius s will be given by:

—  =  —2 7ihs3ri^^-  =  37tar)s^\/yMp.
dt ds

(3.9)
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We are especially interested in the angular momentum trans
ferred from the central body during the lifetime of the disc.
If in equation (3.9) we put s equal to r0, we get the transfer of
angular momentum per sec in a situation where the velocities are
perpendicular to the radius vector and given by equation (2.12).
As soon as the central body is slowed down, the velocity pattern
in the neighbourhood of the central body will become changed
and it is difficult to predict exactly what will happen.

In order to get an idea of the magnitude of the transfer, we
might compare dO/dt for a =  r„ with 0o/r, where 0O is the angular
momentum of the central body in the case where its angular
velocity corresponds to Kepler’s third law :

Td0„
d t 0.0003 M
0„ ~  M0 • (3-10>

where we have used s0/r0 ~  104, and 0O =  =  \ m o ]/r0yM0.O o
Although the above-mentioned phenomenon of transfer of

angular momentum will slow down the solar rotation, it is clear
at first sight from (3.10) that this can hardly account for the
present slow rotation (present 0 ~  0.005 0O).

The present slow rotation of the sun has perhaps to be ex
plained by an investigation of the earlier steps in the process
leading to the formation of the sun. This investigation, however,
falls outside the scope of the present paper.

D. Estimation of the increase of the solar mass during
the dissipation process. Before discussing the possibility of
a regular system of vortices, we wish to look into the question of
the dissipation of the disc. We shall try to estimate the quantity
/9(s), i. e., the fraction of the mass which will fall onto the sun.
In order to calculate this rigorously one should have to solve
the hydrodynamical equations, preferably with the terms involving
the viscosity. Also, one should have to consider a velocity compo
nent different from zero in the direction of the radius vector.
These calculations should give us at the same time the transfer
of angular momentum and, perhaps, the formation of a regular
system of vortices.
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However, we can try to get a first estimate of the magnitude
of /? in the following way.

If we consider a cylindrical ring with height h, between the
radii s and s + ds, this ring will lose per sec angular momentum
at the rate:

<50 =  (2 n hs3 rj ds = \  narj J/yM 0s ds.ds\ d s ) 1

The total angular momentum of the ring is given by:

0 =  2 jths3Qcods =  2 noLQ  j/y M0 s6 ds.

If a kind of over all equilibrium in the disc should reign, this
loss of angular momentum would correspond to a loss of mass
given by:

dm _  60
0 ’

where m  is the mass of the ring, and given by:

m  =  2 71 hs q ds.

The energy loss per sec is given by equation (3.3):

and if a fraction /? of the original mass of the ring falls onto
the sun, this loss of energy is compensated by the gain of energy
by this matter, again assuming a quasi equilibrium situation
throughout the disc:

Ö E2 = fit dm V- ^  =  P ~ m — 9. (3.11)
i*o 0 Jo

Putting d Ex =  <5 E2 we can determine /S, and in this way we
Set: ,/?(s) =  r js .  (3.6)
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The total mass which will fall onto the sun is now given b y :

pM y ln h sQ P  (s) ds
«V» 5 s m '

(3.12)

The reasoning in this section is only tentative. It would be
desirable to complement it by a direct estimate of the am ount of
m atter which escapes from the boundaries of the disc.

E. Possibility of regular systems of vortices. We saw that
von W eizsa ck er  (10) introduced a regular system of vortices
in  his theory and that he was able in that way to explain the
Titius-Bode law. In this section we should like to look very
briefly into this question.

Of course one cannot use von W eizsacker’s treatm ent since
the m ean free path  in the disc is far too small to allow for un 
perturbed Keplerian orbits. However, one might hope to be able
to deduce from the hydrodynam ical equations a sim ilar set of
rings of vortices.

The first im portant point is that, as we already saw in the
previous chapter, gravitational forces are by far the most im 
portant. They are not only m ore im portant than  the -pressure
gradient, but also than the viscous forces. (Reynold’s num ber

q vl
( =  where / is a length of the order of the dimensions of the

system), which measures the ratio of the inertial forces to the
viscous forces is very large in our disc). This might give rise to
systems like the one pictured by von W eizsacker (cf. p. 15).

The system which we consider is different from the common
hydrodynam ical systems because of the absence of a wall. But
the fact that the m ean free path increases with decreasing density
m ay have the same effect as a wall. And also it might be that
during the development of the gaseous system which will become
a galaxy the other turbulence elements m ay have acted some
what restrainingly on the whirl which would develop into the
sun and the solar system. We are thus tempted to com pare this
with norm al hydrodynam ical systems although we are aware
of the danger attached to this procedure. There are, however,
some signs that this might not be as far from the actual tru th  as
one might fear.



44 Nr. 3

The idea is to assume for a moment that due to the prepon
derance of the gravitational force regular systems of vortices
might be set up. Now, we can assume that the distance between
two circles separating the various rings of vortices will be given
by the m ean size of the turbulence elements. In  this way we might
arrive at an estimate of the size of the turbulent elements in the
solar envelope and in the planetary atmospheres from the
differences of the observed m ean distances of the successive
planets (satellites) from the central body since these planets
and satellites will probably have been formed on the circles
separating the m ain vortices, as we shall see in the next chapter.
In Table 3. I we have collected the data for the sun, Jupiter,
Saturn, and Uranus, using only the data of the “regular” satelli
tes (see Chapter VI). In the second row we have taken the observed
planets and satellites only and in  deriving the values for the
last row  we have assumed that due to some unknown reason
there are gaps, corresponding in the series of the planets, e. g.,
to the asteroids. Finally, we assumed that the size of the turbulence
elements is proportional to the distance from the prim ary:

.  / =  a-r, (3.13)

and  the values given in  Table 3. I. are the m ean values of a.
If r„ is the m ean distance of the n-th body from  the centre,
t =  r„  — rn_!, and 2 r  =  rn +  r„_!•

T a b le  3. I.

Sun Jupiter Saturn Uranus

Mean value of a for “regular” satellites 0.56 0.56 0.42 0.36
Mean value of a with assumed gaps. 0.50 0.45 0.33 0.28
The number of gaps is inserted between

brackets ....................................... (1) (1) (2) (1)

W e m ay compare this with von KArmAn ’s form ula (30) for
the m ean size of a turbulence element. This was first done by
T uom inen  (31), who shewed that the Titius-Bode law for the
planets follows within a factor 2 from the size of vortices given
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by equation (3.14). He did not, however, comp^re^th'É^Uqiets
with the satellites. We shall follow his argumentation
a few alterations. ^  A  M*

Von Karman had rem arked that for the cases which he
investigates the m ean size of the turbulence elements is given by:

I — k0 dv/ds
d2v/ds2 (3.14)

with a constant k 0 ( ~  0.4). If the velocity is given by equation
(2.12), we get for the size of the turbulence elements:

/ ~  0.27 r. (3.15)

If we now look at Table 3 .1., we see one striking point, viz.,
that a is decreasing with decreasing mass of the prim ary,’ i. e .’
with decreasing influence of the gravitational force and that a
approaches the value of equation (3.15). This might prove to be
an  im portant point in a discussion of the hydrodynam ical proper
ties of the disc and the planetary envelopes.

We want to point out a few more points connected with these
regular systems of vortices.

The first is that the energy dissipation in such a regular system
might be less than in the case of an irregular turbulent situation.
In this way, we should get a longer lifetime than that corresponding
to an energy loss, calculated under the assum ption that we may
use equations (3.4) and (3.5) with a k equal to the dim ensions
of the vortices. This might am ount to as m uch as a few powers
of ten. There are also other indications that the lifetime of the
disc might well have been m uch longer as we shall see in
Chapter V. This might then also be an indication that regular
systems of vortices have once been established. In order to
bring about a regular series for the distances of the planets
or satellites it is not necessary that the system rem ained the same
during the whole lifetime of the disc. As was already shewn by
von W eizsacker it is only necessary that these regular systems
lasted for about 10 years, which is of the order of m agnitude
of the period of rotation of the outer parts of the disc. In that
period the condensation products become so large that they
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can no longer be displaced appreciably by turbulence in
the disc.

The second point is that we can easily calculate the velocities
on the outskirts of the large vortices which will form the systems
of vortices. These velocities will be the turbulent velocities, and
we may take for those the mean fluctuations of the velocities in
a gas kinetic system with a velocity gradient as was done also
by P randtl  (32) in a similar case.

If v is the mean velocity given by equation (2.12), we have
for the turbulence velocity u:

u (3.16)

where A should be the mixing length which is equal to the mean
size of the vortices and given by equation (3.14).

We see that u decreases with increasing distance from the
central body which means that if the large vortices are rotating
themselves in a counter-clockwise direction the motion in these
vortices will be clockwise.

Between the rings of large vortices there will be large viscous
stresses along the circles separating the main vortices. We may
therefore here expect secondary eddies like the roller bearing
eddies of von Weizsacker. Those “roller bearings” will again
show direct (counter-clockwise) rotation. Since the planets will
probably be formed in those “roller bearings”, as we shall see
in the next chapter, we are here presented with an explanation
of their direct rotation. It is a tempting thought to assume that
the size of the “roller bearings” will be determined by the fact
that the velocities at the outside will be equal to the turbulent
velocities given by equation (3.16). This would mean that we
should be able to determine in that way the size of the planetary
atmospheres since the velocities in these atmospheres are deter
mined by Kepler’s third law (cf. Chapter II, Section A). We
may remark here that the considerations of this paragraph also
remain valid if there should not be a regular system of large
vortices.

Finally, we may remark that the size of the large vortices will
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only on an average be proportional to the distance from the sun,
i. e., that equation (3.13) will only approximately be fulfilled.
We should therefore expect rather than be disappointed by the
fact that the Titius-Bode law or similar laws for the satellite
systems do not hold rigorously from planet to planet or from
satellite to satellite.



Chapter IV.
The Condensation Process.

Condensation processes in astrophysics can be divided into
two different phases. The first phase is the formation of nuclei
on which the further condensation can easily take place. The
second phase is this subsequent growth of the nuclei. These
nuclei will grow in the beginning because impinging atoms or
particles will stick to them, but later this growth will be much
more rap id  because of the possibility of gravitational capture,

A. Formation of nuclei for condensation. We shall use
here a model given in an earlier p aper (33), in the following
quoted as BAN 361.

If we want to investigate the possibilities of condensation, it
seems to be a fair approxim ation to treat the condensed particles
as heteropolar crystals. We are interested in the condensation
in a gas with density q and kinetic energy corresponding to a
tem perature Tlt while the radiation density is assumed to be a
diluted black body radiation with tem perature T2 and dilution
factor g.

The first question to be investigated is the tem perature of the
condensed particles. We can find this tem perature from the energy
balance.

In as m uch as there are only slight deviations from harm onic
binding between the atoms in the crystal, the particles will emit
and absorb radiation practically as one large harm onic oscillator,
and only the fundam ental frequency contributes. If to is the
frequency of the oscillator and lcT<X ha>, we have for the emitted
and absorbed energy of the particle

E abs
ns2 , . „  8 n 2h w 3e2

("> ' E 'm ~  Me*
e

h u)
~ k f t (4.1)
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where M  and  e are the mass and charge of the oscillator, gnd
Q O )  the radiation density. If the particle, which is assumed to be
small compared with the wavelength of light considered, consists
of i atoms, we have: e =  i-e (e is an effective chargte), M = i m
(m . mass of one atom), T  =  Tt (tem perature of a particle con
sisting of i atoms), and co =  a>0 (fundam ental frequency).

On the other hand, we have energy conveyed to and from the
particles by colliding atoms which do not stick to the surface.
As was pointed out in BAN 361, these are mainly hydrogen atoms.
The energies in question are given by:

E on =  ci aQ vi* k T r, EoB =  c2 aq vi*kT., (4.2)

where cx and c2 are num erical constants of the order 1, a the
surface of one atom, v the mean velocity of the colliding atoms,
and q their density.

We have now the following equilibrium  condition:

£ on +  £ abs =  Eon +  £ em  ( 4 . 3 )or
o  /  \ — 1  / i w 0

A q T 1i ^ +  B g i \ e kT' - \ )  =  C g T . ^  +  Die kT,. (4.4)

For given values of q, 7\, T2, and g, we can determine from
equation (4.4) the tem peratures of the particles, 7).

Inserting num erical values, we have (cf. BAN 361):

A ~  C ~  4.10- 28 erg degree-1  cm3;

B  ~  D ~  2.10-13 erg; — Ü® ~  1 4 0 0°. i

In all cases, the term with A is large as compared with that
with B, but according to whether the term with C is small or
large as compared with that with D, we have the following two
cases:

(a )  C «  D, which will be realized in interstellar space, where
we have low gas densities and low radiation density.

(£) C »  D, which will be realized in all other cases in astro
physics such as condensation in nova shells, condensation in
the corona, or condensation in a gaseous disc such as we consider
in the present paper.

I). Kgl. Danske Vidensk. Selskab, M at.-fys. Medd. XXV,3. 4
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In case a, equation (4.3) reduces to

E on - E e m ’

or

T, =  =—yr-w'.' (4.6)1 log(fol)

In case (}, equation (4.3) reduces to

E on =  E ott>
or

Tt — Tj. (4.7)

The formation of nuclei can now be calculated in the way
first indicated by B e c k e r  and D o e r i n g  (34).

The m ain feature of the condensation is that in order to get
an appreciable precipitation it is necessary that the vapour
pressure of large particles is less than  the pressure in the gas
because in  that case there will be more atoms condensing on
than  evaporating from the particles.

In case /?, which is also the norm al case in chemistry (where we
have =  Tiy g — 1), the vapour pressure of the particles will
decrease with increasing size due to the influence of surface free
energy. Finally it reaches the value of the saturated pressure for
infinite size at the tem perature present. Thus, if this saturated
vapour pressure is smaller than the pressure of the gas, we can
expect condensation. This is the well-known phenomenon of
precipitation (or condensation) in a supersaturated vapour.

In case a, the decrease of vapour pressure with increasing
size is due to the decreasing tem perature (cf. equation (4 .6))1.
There are two possibilities, viz. that the tem perature is already
low enough for particles consisting of only a few atoms in which
case the rate of precipitation depends only on the rate of form a
tion of molecules of, say, 10 atoms because smaller particles
cannot be considered to behave like crystals. If we denote the
rate of precipitation by j ,  we have:

j  ~  Kgn, (4.8)

1 This case has been extensively discussed in BAN 361. We only give the main
results here, and refer the reader to BAN 361 for details.



Nr. 3 51

where n lies between 2 and 10 and depends on the num ber of
atoms for which the capture in the “ crystal” is difficult; K  is a
num erical constant.

This possibility is realized for extremely low densities. In that
case, the energy conveyed to the particles will be very small so
that their tem perature will be low enough to allow for an easy
condensation.

For higher densities which are still so low that we are in case «,
the tem perature of the small particles will be higher than corre
sponding to a vapour pressure equal to the gas pressure. How
ever, the tem peratures of larger particles will be low enough.
However, since the tem perature of the particles increases with
increasing density (cf. equations (4.4) and (4.6)), the critical
size, i. e., the size for which the tem perature corresponds exactly
to a vapour pressure equal to the gas pressure, will increase with
increasing density. The rate of precipitation will correspondingly
decrease :

j ~ K ea e~h(!' .  (4 .9)

The so-called characteristic density, i.e ., the density at which
the transition between the two above-mentioned possibilities occurs
and which also m arks a m aximum  in j ,  is m uch lower than
the density m arking the transition from a to

In case /? there will only be appreciable condensation if there
is a state of supersaturation, i. e„ if the gas pressure is higher than
the saturated vapour pressure.

The vapour pressure of a crystal is given by:

„ =  m ‘ (kT)^ -X J k T
Pv JT*— c * (4.10)

I

where m  and X are the mass and sublim ation heat (in ergs) of
an atom of the crystal. If the density of the gas is e atoms per
cm , its pi essure is given by the ideal gas law

Pa =  e k f -

The necessary condition for condensation is now

P .> P .  or

(4.11)

(4.12)

4*
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For a given tem perature and density we have a critical sublim 
ation heat x  determined by equation (4.12) with the equal sign.
Compounds with a larger sublimation heat will condense, those
with a sm aller sublimation heat will not condense.

From  equation (4.12) with the equal sign we can calculate x
for different values of T  and q, and we get the following table.
We have given x in and (between brackets) in Cal/mole.

T a b l e  4. I.
Values of the critical sublimation heat.

Q 50° 100° 200° 400° 1000° 10000°

101». . 0.14 0.29 0.60 1.25 3.23 35
(3.3) (6.8) (14) (29) (75) (810)

101S. . 0.12 0.25 0.53 1.09 2.84 31
(2.8) (5 .8) (12) (25) (65) (720)

1014. . 0.10 0.21 0.45 0.93 2.44 27
(2.4) (4.9) (10) (21) (56) (630)

to 14. 0.08 0.17 0.37 0.77 2.04 23
(1.9) (4.0) (8) (18) (47) (540)

We see from Table 4. I, and equation (4.12) that % depends
only slightly on q, but is mainly determined by T.

In the next table we have for comparison collected the
sublim ation heats (in Cal/mole) for a num ber of inorganic and
organic substances, and also their specific densities, a.

T a b l e  4. II.

Com
pound X a

Com 
pound X 0

Com-
1 Xpound

a

C O ............... 1.9 0.9 H N O , 8? 2? Mg 34 1.7

C H , ............ 2.3 0.5 SO , 8.5 2 B a 41 3.5

N O ............... 3.8 1.6 H CN 8.5 1? Ca 43 1.5

N , 0 ............ 5.8 1.6 H ,0  * 11.3 0.9 BaO  90 5.7 .

C ,H , ............ 6? 0.9? N ,O t 12.6 2.0 Fe 97 7.9

C O , ............. 6.3 1.6 N O , 13 1.5 C 125 3.5

7? 0.9 s o , 12— 16 2.4 Si large 2.3

N H , ............. 7.5 0.8 K 21.8 0.9 S iO , large 2.3

( C N ) , . . . . . 7.8 1 .4? N a 26 1.0 SiC large 3.2
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Comparing Tables 4. I and 4. II, and remembering that the
tem perature in the corona or nova shells is at least a few thousand
degrees, we m ay safely conclude that in those cases there will be
no condensation. This does not, however, exclude the possibility
of the presence of molecules (cf. (35)). We also see that it is
necessary to have a tem perature which is at most 1000° in order
to have an appreciable condensation. This is another difficulty
encountered by theories like the one proposed by H oyle (14).

B. Second and final stages of the condensation. After the
first stage, the formation of nuclei for condensation, there are
two more stages. The second stage is the norm al condensation
where the particles grow because impinging molecules stick to
them. The final stage is that of the gravitational capture.

We m ay draw  attention here to the fact that as soon as there
is a state of supersaturation the nuclei will be formed in sufficient
num ber (34), so that it is not necessary to consider that stage of
the condensation process in any more detail.

The second stage closely resembles the process proposed by
L in d b l a d  (36) for the formation of interstellar smoke particles.
For the sake of simplicity we shall assume that the particles are
spherical with radius r and specific density q0.

If the density of the m atter impinging on the particle and
sticking to it is denoted by qu and their m ean relative velocity
by vu we have for the increase of mass per sec:

a m  A 2 v i—  =  4rc (4.13)
Since

m =  3 K Q o r 3 , (4.14)
we have

(4.15)

This is qorrect as long as gravitational effects can be neglected.
If, however, we have reached the last stage, we get a m uch faster
growth1.

We can introduce a distance R  (by Chandrasekhar called the
For an extensive discussion of this stage of the Condensation, we may refer

to a paper by E a k in  and M cCr e a  (37). J
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“ gravitational rad ius” ) such that the gravitational energy of
matter at that distance from the centre of the particle is equal
to its kinetic energy:

R==2 y m t (4.16)'

where v2 is the m ean velocity of the matter in the system and m
again the mass of the growing particle.

The cross section for gravitational capture is now n  <52 R2,
where <5 is of the order of magnitude 0.1. For the growth of the
particle we have now

—  =  4 nd2R2'^ q i , (4.17)

or, using equation (4.16):

*  _  fir - , f  (4.18)
dt y

with the solution:

r 3 =  1---- - ,
3 ( e - / 9 0

where e is an integration constant to be determined by r =  rcrit
for t =  0. The quantity rcrlt is the radius of a particle for which
the gravitational cross section n  d2 R2 equals the geometric cross
section n  r2:

i,2cH t =  ^ 4 r -  <4-20>cnt 8 nyoQ0

If there should be no exhaustion of the gas, the lum ps would
become infinitely large in a finite time, given by:

*crit +  jij =  3 *crit> ( 4 - 2 1 )

where /crit is the tim e necessary to reach dimensions of the order
rerlt, and given by (cf. equation (4.15)):

=  4po ■_ vu / 6 go\»
crit GiVi Fcrit V1Q1 \rcy&)

(4.22)
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As we mentioned in the previous chapter, condensation is
more likely to take place in the “ roller bearings” than in the large
vortices, as was first shewn by von W eizsacker, whose reasoning
we follow here in the form presented by C h a n d r a se k h a r  (1 0 ).
This preference for the “ roller bearings” is due to the fact that
the m ean free path for larger particles is greater than the size
of the “roller bearings” . The m ean free path is in this case defined
as the distance travelled through by the particle before its loss
of momentum  is of the same order of m agnitude ats its original
momentum. This means that these particles will no longer be
carried along by the “roller bearings” even though the large
vortices are able to carry them  along. Therefore the num ber of
collisions between such particles and gas atoms or smaller con
densation products will be enhanced in the “ roller bearings” .

The m ean free path of a particle can be estimated in the foll
owing way. If gx is the gas density, m  the mass of the particle
(for m  we have equation (4.14)), r its radius and us its velocity
relative to the medium, we have for the loss of m omentum in an
interval dt:

mdus =  — n  r2 Qi u% d t . (4.23)

Using the definition of the mean free path,
we get for Xp :

, =  " W  _  4 go
p n r 2ql u\ Us 3 g iT'

Xp given above,

(4.24)

which gives us with g0 =  3 g cm-3 , q1 — 10—5 g cm ~ 3:

Xp =  4.10® r. (4.25) .

As long as Xp is smaller than the size of a vortex, this vortex
will carry the particle along. We see that hence there will be a
range of particle sizes such that the large vortices can carry them
along, but such that the “roller bearings” can no longer carry
them along. Therefore, the probability of finding a condensation
product is largest at the “roller bearing” circles in the regular
system of vortices—if such a system has ever existed. It has not
been proved that only one planet is formed on each circle. We
may, perhaps, be allowed, as far as that is concerned, to express
an optimism similar to v on  W e iz s a c k e r ’s (1 0 ) .
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The time necessary to reach such dimensions that even the
largest vortex is unable to move the particle essentially is found
by combining equations (4.15) and (4.25).

As soon as the last stage, i. e. the stage of the gravitational
capture, is attained, the bodies will collect an atmosphere around
them. We can estimate the dimensions of these atmospheres in
two different ways. Either in the way indicated at the end of the
previous chapter, viz. that the velocities on the outskirts of the
atm osphere should be equal to the turbulent velocities, or by
using for the radius of the atmosphere the “ gravitational rad ius’’.
In form ula we have, using equation (3.16) for the turbulent velo
cities and putting a =  1/2 in equation (3.15),

* ' =  16s f 0 =  7.108ms (4.26)

*  _ 2  yM  _
R‘ *t

2 s ~  =  108ms,M0 (4.27)

where M  and m  are the planet’s mass in grams and in the earth’s
rtiass as unit, and s its distance from the sun in astronomical
units. For v2 we have used again equation (2.12). We see that both
equations, apart from a factor 8, give the same result. In the
following chapters we shall use equation (4.26).



Chapter V.
The Planetary System.

In this and the next chapter we shall try to apply the results
of the foregoing chapters to the solar system and the satellite
systems of the m ajor planets.

A. Densities of the planets. In Chapter II we saw that the
tem perature in the disc decreased with increasing distance from
the sun. If we assume that the planets were formed at essentially
those distances from the sun at which they are observed now,
each p lanet corresponds to a certain tem perature, as shewn in
Table 2. II. According to the previous chapter, however, a given
tem perature corresponds to a certain critical sublim ation heat
given by equation (4.12), So we can assign to each planet a
sublim ation heat telling us which compounds will have taken
part in the initial condensation process leading to dimensions of
rcrit (see previous chapter). In Table 5. I we have given these
sublimation heats. We have taken an average density of 1012
at- cm-3 . 1 Of course, we should for every compound calculate its
density in the disc (cf. Chapter II, Section E) and investigate
whether its sublim ation heat is higher or lower than  the critical
sublimation heat for that density and the given tem perature. So
we should find for each tem perature which compounds would

T a b l e  5. I.

Mer
cury Venus E arth Mars Jup iter Saturn Uranus Nep

tune

T ................... 650° I 480° 400° 330° 170° 1 130° 90° 75°
X  in Cal/mole 42 30 25 20 10 8 5 4

1 This corresponds to  about Ö.1 per cent, of the gas condensing, and an average
density of 1014 at cm—3 in the disc.
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condense a t the given tem peratu re. Fortunately, however, the
critical sublim ation  hea t does not depend  very  strongly on the
density, as we saw  in  C hapter IV, so th a t we can  calculate the
sublim ation  heats for an  average density  and  we need not w orry
abou t the varia tion  of density  for various substances.

If  we com pare this tab le  w ith the sublim ation  heats given in
T able 4. II, we see th a t w hile in  the outer regions com pounds
like HCN, H zO, N H 3 can  condense, in  the regions of the inner
planets only m etals and  other inorganic com pounds can  condense.
T his h as  two consequences. T he inorganic com pounds are less
frequen t an d  are  h e a v ie r .. Therefore, the first stage o f the con
densation  will end in  heavy bodies in  the inner regions and
lighter bodies in  the regions of the ou ter planets. Since the d im en
sions of the in n er p lanets are  hard ly  larger th an  r crlt, we can
expect h igher densities for the inner p lan e ts  than  for the outer
planets. T he in itial condensation stage brings this difference
about, an d  the gravitational cap ture, p ractically  only acting in
the case of the outer planets, accentuates th is difference. The
dim ensions of the inner p lanets are only  ju s t larger th an  rcrit,
w hich is given by  E quation  (4.20), an d  gives us:

w ith d ~  0.1, go ~  3 g cm -8 , v2 ~  106 cm  sec-1  (corresponding to
Ju p ite r’s d istance from  the sun). W e see from  this equation that,
indeed , gravitational cap tu re  can  only have p layed  a m inor
p a r t in  the grow th of the in n er p lanets.

It seem s even possible to  account for the sm aller differences
in densities of the various p lanets, as was also shew n by  B rown

(1). W e shall not, how ever, en ter into this question here.
B. Masses of the planets. The second consequence of the

condensation p ic tu re  is th a t there will be m ore condensation
nuclei per cm 3 in the regions of the  ou ter p lanets th an  in  the
inner regions because there are  m ore com pounds w h ich  can
condense. T his m eans th a t a g reater fraction of the gas will
take p art in  the condensation in  the outer regions. This again is
accentuated  by  the fact th a t gravitational cap tu re has p layed  a
p a rt in  the bu ild ing  up  of the ou ter p lanets. If  we postpone for

10® cm (5.1)
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a m om ent the discussion of the problem  why this gravitational
capture has not been active in the case of the inner planets, we
can try to estimate the masses of the planets under the assumption
that a larger fraction of the m atter took part in  the building up
of the m ajor planets than in the case of the inner planets.

For the mass of the n-th planet we may write:

M n =  A n e ( r n ) A n h n ’ ( 5-2)

where An : fraction of the gas taking part in the condensation
process;

rn : m ean distance of the planet from the sun;
q (/■): gas density in the disc, given by equation (2.17);
An : area in the disc, involved in the building up of the

planet; we may take An =  c-r„ (c will be of the order
of magnitude one) ;

hn : height of the disc at a distance rn ; hn is given by
equation (3.1).

E quation (5.2) can now be written in the following form:

Mn =  A An6 (rn) r* =  B A n r\ *-<'«"■»>*, (5.3)

where A and B  are constants. We now, for the sake of simplicity,
take A to be constant throughout the regions of the inner planets,
and also constant throughout the regions of the outer planets.
For the ratio of A in the two regions we shall take 100, which
takes into account the fact that gravitational capture has played
a part in the formation of the outer planets, and the fact that
lighter elements are more abundant than the heavier elements.
We then get Table 5. II.

We see that the general agreement is quite good, especially
in view of the fact that we have simplified the problem  very
much. We could probably get an even better agreement by a
variation of sm and the ratio of the An’s in the two parts of the
planetary system, but it does not seem worth while to do that.
The only point is that the condensation picture presents us with
a mass distribution in the solar system which agrees as well
with the observational data as we can expect from necessarily
rough considerations.
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T a b le  5. II.

-'n ? rn ■^calc ■^obs
"^earth dearth rearth ■^earth ^ e a r th

M ercu ry . . i 1.9 0.4 0.11 0.05
V e n u s . . . . i 1 .4 0.7 0.5 0.8
E a r th . . . . i 1 1 1 1
M a rs.......... i 0 .6 1.5 2.1 o.l:
J u p i t e r . . . too 0.045 5 640 318
Saturn 10Ó 0.005 10 450 95
U r a n u s . . . too 1 ,4 .10-* 19 100 1 5
N  e p tu n e . . too 6.10-* 30 16 1?
( P lu t o . . . . too 6.10-» 40 4 0.9)

The only serious disagreement seems to be a too small mass
of Mars and the absence of a planet in the neighbourhood of the
asteroids. We shall return to this point at the end of this
paper.

There are, however, a few points which we still have to examine
before we can accept the above considerations as giving us really
an estimate of the planetary masses. These are the following:

(a) How great has the density to be in the disc in order to
provide us with sufficient mass for the planets?

(b) W hat is the lifetime of the disc, and how does it compare
with /crit?

(c) W hy has the gravitational capture not played a role in
the building-up process of the inner planets?

(a) If we assume that a fraction 10™* has taken part in the
building-up process of the inner planets and a fraction 10™2 in
the building-up process of the outer planets, we have the following
conditions, if there has been enough mass available to build up
the inner, respectively the outer planets:

,*s Mars
10™4 2 n s - h d s >  1028g.,

Jr,
and

°0

10~2 \ q 2 tis-h d s < 2 . l 0 30 g.
*'* Ju p
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Using equations (2.17) and (3.1), we get for the m aximum
density gm the condition:

(?m> 7 .1 0 15 at cm-3 and gm> 3 .1 0 16 at cm- 3 .

This tallies very well with our assumption of gm =  2.1016
at-cm -3 , corresponding to a total mass of the gaseous disc of about
one tenth of the solar mass at the stage where equation (2.17)
is valid.

(b) From equations (3.7) and (4.22), we can calculate the
lifetime of the disc and /crit.

If we should assume a lam inar motion in the disc, equation
(3.7) would give us:

t =  3.1014 years,

which is obviously by far too large.
Even if we take into account the uncertainties involved in

the derivation of equation (3.7), it will stay too large. We should
in that case expect still to see the rem nants of the disc at the
present time.

However, if we assume turbulence, equation {IS.7) presents
us with a lifetime given by:

_  1 0 11

T ~  ^ a yrs ~  101y ” * (5.4)
i

where we used r) ~  ^gv X,  q ~  10 9 g cm-3 , v ~  106 cm sec-1 ,
A <v 1012 cm.

On the other hand, /crit as given by equation (4.22) gives us:

_  vz (6 10~3
crit « ig i\nyè) ™ q Â yrS 108 yrs, (5.5)

with A ~  10 2, q ~  10—9 g cm-3 .
Before looking into this question more carefully, and taking

into account the change of /crit with distance from the sun, we see
immediately that tcrit is m uch larger than r. This means that the
lifetime of the disc should be too short to allow for even the
building-up of the inner planets. We m ay rem ark here that these
considerations are not restricted to the gaseous disc which we
are considering, but may also play an im portant part in the
discussion of whatsoever other theory one wants to propose.
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If, however, some kind of regular system of vortices has
existed, the dissipation of energy might well h^ve been far less,
perhaps even so m uch less that r  in that case should have been
of the same order of m agnitude as fcrit. In that case, it will not be
unreasonable to assume a density distribution like the one given
by equation (2.17) for the estimate of the planetary masses. The
last part of the growth of the planets which is at the same time
the part of the rap id  growth happened just at a time when the
dissipation of the envelope began to be felt. That dissipation,
which will be strongest on the outskirts of the system is taken into
account by the decreasing density given by equation (2.17).

(c) If we compare the ratio  of r  and tCTit for the different
planets, we get

Now, v is proportional to s~È, X to s (cf. Equation (3.14)) so
that the num erator increases by a factor of the order 5 from the
inner to the outer planets. The denominator, however, increases
by a factor of the order 100. This means that it is possible that
/crit can be of the same order of magnitude as r  in the regions of the
inner planets while being appreciably smaller in the regions of the
outer planets. This entails that it is very possible that the size of
the inner planets was restricted to rcrit because of the dissipation
of the disc before they could grow larger. But the outer planets
grew faster and were able to grow beyond the critical dimensions
until also there the supply of matter ran  out.

We are quite aware of the fact that the above considerations
are very incomplete but in view of the m any uncertain factors
entering, it seems hardly worth while to start a more detailed
investigation. It is, for instance, easy to see from equation (4.17),
taking into account the decrease of q with time (q ~  that
if tcrit)  r, the condensation products will not reach even the
critical dimensions. However, if r>  #crit, the growth of the bodies
can go on until all m atter is used up. A change in the ratio tcrn/r
of only a few per cent, changes the picture completely in the
region where that ratio is about 1. It also seems to be very dificult
to take the exhaustion of the gas due to the condensation process
itself adequately into account.



Chapter VI.
The Satellite Systems.

In this chapter we shall discuss the properties of the satellite
systems and the rotational periods of the planets.

We want to stress the point that we cannot expect here a too
close agreement with observational data. On the one hand, the
observational data are not too accurate, and on the other, the
situation in the planetary atmospheres will have been even more
com plicated than in the solar envelope. For instance, the fact
that the dimensions of the atmospheres are of the same order of
magnitude as the height of the disc will cause our two dimensional
considerations to be certainly only rough approximations.

A. “Regular” and “irregular” satellites. If we look into the
data about the satellites of the solar system (see Tables II—V),
we see that we can divide them into two groups. The first
group is m ade up of the first five Jovian satellites, the first
eight Saturnian satellites, the four U ranian satellites, and Triton,
Neptune’s satellite. This group has orbits which are all approx
imately in the equatorial plane of the prim ary and whose eccen
tricities are small. We shall call these satellites the “regular”
satellites.

The second group,’ that of the “ irregular” satellites, consists
of the moon, the two Martian satellites, the six outer Jovian
satellites, and the outermost Saturnian satellite. Apart from the
Martian satellites, the “ irregular” satellites have orbital planes,
highly inclined to the equatorial plane of the prim ary, and great
orbital- eccentricities1.

We shall show here that there is also another* difference
between the two groups, viz., that the “regular” satellites may
have been formed inside the planetary atmospheres. The “ ir-

1 We follow von Weizsacker’s classification (10). The origin of the moon is a
problem lying outside the scope of the present paper. The Martian satellites are
perhaps wrongly classified. See, however, the discussion on p. 68.
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regular” satellites, however, are probably condensation products
captured at a later stage by the planets.

In order to prove the probability of this point, we have col
lected the next table. In the first row we have the m ean distances
of the outermost “ regular” satellite. In the second row we have
inserted the radius of the planetary atmosphere as given by equa
tion (4.26). In the th ird  row we have inserted the m ean distances
of the first “ irregular” satellite. Finally, in the last row, we have
given the ratio between the radius of the atm osphere and the
radius of the planet itself.

T a b le  6. I.

Mer- Venustu ry
E arth Mars Jup iter 1 Nep-Saturn j Uranus

tune

sregulin cm. 2.1011 4.1011 6.1010 4.1010
i?! in cm . . . 10’ 4.10s 7.10s 10s 12.1011 7.1011 2.1011 4.1011
$irr in cm . . . 4.1010 9.10» 12.1011 13.1011 ;.
^ i/^p lan  • • • 0.06 0.6 1.1 0.3 170 120 | 80 160

We see that, indeed, the values of the second row are every
where between those of the first and th ird  row in agreement with
our assum ption of the origin of the “ regular” and “ irregular”
satellites.

We note here finally that for the m ean distances of the “ regular”
satellites from their prim aries exponential laws like the Titius-
Bode law seem to exist:

r„ =  r0e". (6.1)

The value of e decreases from 1.78 for Jupiter to 1.44 for U ra
nus. The value for the solar system is 1.86 if we exclude Pluto
as an “ irregular” planet. We have commented on these exponen
tial laws in Chapter III and shall not discuss them here.

B. Densities and masses of the satellites. Since all satel
lites are smaller than  the critical dimensions, gravitational
capture has not played a role in their building-up process. Since
(apart from the moon) all satellites are formed in the regions of
the outer planets, we should expect densities of the satellites
lower than those of the inner planets, but higher than those of



Nr. 3 65

the outer planets, since the outer planets have been able to pick
up light gases during the stage of gravitational capture. This
agrees within the observational uncertainties with the observed
data.

We shall not estimate here the masses of the satellites in the
same way as we have done in the case of the planets. We can,
however, use equation (5.2) the other way round, and try to find
the density function in the original planetary atm osphere from
the observed masses of the satellites. We take the fraction of the
matter taking part in the condensation, A, to be constant in each
atmosphere.

The result is that we find a density function resembling very
closely the density distribution in the solar envelope, i. e., a
function with a m axim um  at a distance from the prim ary equal
to about 10 planetary radii. However, it is impossible to arrive
at any more definite conclusions.

We m ay draw  the reader’s attention to one more point con
nected with the condensation process of the satellites, viz. that
we have to assume that the building-up process of the satellites
started before the planets with their atmospheres were left in
the regions of the solar system like islands in an empty space.
The lifetime of the planetary atmospheres as given by equation
(3.7) is at least 100 times smaller than the lifetime of the solar
envelope, but the dimensions of the satellites are of the same
order of magnitude as the critical dimensions so that we see that
they could not have been formed during the time when the
atmospheres were left to themselves.

This means that we have to imagine the following picture of
the complete solar system, accepting for a moment the idea of
regular systems of vortices. In the initial stages of the process,
when the central mass had just become of the order of magnitude
of the present solar mass, the concentration of m atter in our
galaxy in  the neighbourhood of the solar envelope was still
large enough to regulate to some extent the motion in the solar
envelope. The result was a regular system of vortices, and between
them “roller bearings” . Originally these “ roller bearings” were
probably m uch smaller than the large vortices. However, after
the planets had grown considerably they could keep larger gas
masses around them. In that way the planetary atmospheres

D.. Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. XXV,3. 5
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started. In the first stages of their development, there was still a disc
of matter present which in its turn  regulated the motion in the
planetary atmospheres, resulting in  a regular system of vortices
in these atmospheres. In  the “ secondary roller bearings” the
satellites started to grow.

Finally the whole disc started to disappear, and we were left
with the system as we observe it at present. Of course, as soon
as the dimensions of the atmospheres had become so small that
there was no longer any turbulence, the planets were able to retain
the atmospheres. These atmospheres are the ones we can observe
now. Their lifetime is m uch longer than the probable age of the
solar system.

C. Rotational periods of the planets. We have seen that
there are so m any features which are the same for the planetary
system and the systems of the “ regular” satellites that it seemed
unavoidable not to arrive at the conclusion that their origin was
analogous. These features were the nearly circular orbits lying
practically in the equatorial plane of the prim ary, the distribution
of mass in the system, viz. the largest bodies in the middle of the
system, and exponential laws for the m ean distances from the
prim ary. Also the ratio of the total mass of the planetary system,
respectively satellite systems to the sun, respectively mother p lan
ets, is about constant, i. e. about one thousandth. The question
we are interested in now is why the outer planets have still a
fairly rap id  rotation while the sun is rotating so slowly.

Before considering the outer planets, we shall devote a few
sentences to the inner planets. There are two reasons why we
should expect low rotational velocities for the inner planets.
First, they have had  practically no atmospheres around them
during their growth (see Table 6. I). This means that the inter
action with the gas in the disc could not have followed a regular
pattern. Secondly, the tidal action of the sun has been much
larger for the inner planets than for the outer planets, as was
shewn by S t r a t t o n  (38). This easily accounts for the fact that
M ercury’s rotational period is equal to its period around the sun.

Altogether it seems that the low rotational velocities of the
inner planets constitute no serious difficulty. It is not, perhaps,
irrelevant that the earth with the highest rotational velocity has
also had the largest atmosphere.
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In the case of the outer planets tidal action seems to have
been negligible. We want to investigate how the atmospheres of
the outer planets could have influenced their rotation. At the
beginning, the large vortices will have supplied angular momentum
to the planetary atmospheres. The result was probably that the
angular velocities in these atmospheres corresponded to Kepler’s
third law (cf. Chapter II, Section A). In particular, the rotational
velocities of the planets will have been given by that law.

However, as soon as the disc started to dissipate, the same
process started for the planetary atmospheres, and the planets
were decelerated because of the transfer of angular momentum
accompanying the dissipation.

In the next table, we have inserted the rotational periods
corresponding to Kepler’s third law, the observed rotational
periods, and the percentage change in angular m omentum from
the first to the second:

T a b le  6. II.

r Kepl r obs Je/e

J u p ite r ............................................ 3 hrs 10 hrs 0.70
Saturn ................................... 4 hrs 10 hrs 0 .60
U ra n u s............................................ 3 hrs 11 hrs 0 .73
N e p t u n e ..................................... 2 hrs 12 hrs 0 .83

We see that though the rotations of the planets are still
fairly fast, they probably must have been slowed down consider
ably.

f t»



Final remarks.
In the last two chapters we saw that we could explain the

differences between the outer and the inner planets as far as
mass, density, and rotational velocities are concerned by looking
carefully into the condensation process. This then presents us
with an explanation of group C.

There are also indications given in Chapters III and V that
the motion in the disc has once shewn regularities which might
easily account for both the orbital regularities (A) and the ex
ponential laws like the Titius-Bode law (B).

We have not entered into a discussion of the m any irregul
arities which can be observed in the solar system. Some of them
have been commented upon by von W eizsacker  (10). For in 
stance, the fact that the eccentricity of Mercury’s orbit is so large
may well have been due to the regularity of the vortex system
being disturbed in the imm ediate neighbourhood of the sun.

We want to rem ark here that there is one point which seems
to deserve a thorough investigation. It is the fact that Mars is so
m uch smaller than the earth, that Mars has only two very small
satellites, and that instead of another planet between Mars and
Jupiter we find the asteroids which together possess only a very
small mass. This is an especially interesting point since there is also
other evidence that in that neighbourhood some catastrophe has
occurred. Recent investigations by B rown  (1 )  indicate that the
meteorites might be the rem nants of a planet of the size of Mars
which was broken up by some unspecified process.

A question which might be asked is how much chance is
there to find a planetary system surrounding a certain star. It
seems that planetary systems will be m uch more frequent than
corresponding to e. g. Jeans’ tidal theory. However, there are
still a few requirem ents which have to be met. One of them  is



Nr. 3 69

that the tem perature of the central star has to be below a certain
value. Otherwise condensation will be out of the question. This
can, for instance, be seen from equation (5.6). If the tem perature
in the disc is m uch higher than  in the disc considered in this
paper, the fraction of the gas taking part in the condensation will
be m uch smaller and fcrit will be larger than the lifetime of the
disc, thus leaving us without condensation products. A higher
tem perature of the central star results not only in  higher tem per
atures in the disc because of greater energy output, but also in  a
higher tem perature because of a higher degree of ionization.

Although the actual figures given by Jeans in  the following
quotation will not be the right ones if the theory given in this
paper should be correct, we still think that this quotation will
give us an adequate ending for this paper:

“ The contrast between the slowness of cosmogonic events
and the rapidity with which events on our earth move leads to
some interesting reflections. Let us suppose that civilisation on
earth is 10000 years old. If each planetary system in the universe
contains 10 planets, and life and civilisation appear in due course
on each, the civilisations appear at an average rate of one per
500 million years. It follows that we should probably have to
visit 50000 galaxies before finding a civilisation as young as our
own. And as we have only studied cosmogony for some 200 years,
we should have to search through about 25 million galaxies, if
they exist, before encountering cosmogonists as primitive as
ourselves. We m ay well be the most ignorant cosmogonists in
the whole of space.”

I should like to express my sincere thanks to the m any physic
ists and astronomers whose advice and criticism have helped me
so m uch during my investigations of this subject. In particular,
I want to express my thanks to Profs. N. Bohr, J. M. Burgers,
H. A. Kramers, J. H. Oort, F. J. M. Stratton, and B. Strömgren,
and to Dr. A. Pais for their m any helpful suggestions. I also
want to express my thanks to the Rask-Orsted-Foundation for
a grant which m ade my stay in Copenhagen possible.

Kebenhavn, Universitetets Institut for teoretisk Fysik.
Purdue University, Department of Physics.



Observational data1

E arth ’s mass: 5.975- 1027 g.
Moon’s mass: 7.35-1026g.
Sun’s mass: 1.992 • 10®* g.
Sun’s mean radius: 6.965 ■ 1010 cm.
Sun’s rotational period (at the equator): 24.65 days.

Table I.
Elements of the planetary system.

Mer
cury Venus E arth Mars J u 

piter Saturn Ura
nus

Nep
tune Pluto

Mean dist. from
sun in 101* cm. 5.8 10.8 15.0 22.8 77.9 143 287 , 450 591
Sidereal period 88 d 225 d 365 d 687 d 12 y 29 y 84 y 165 y 249 y
E ccentricity . . 0.206 0.007 0.017 0.093 0.048 0.056 0.047 0.009 0.247
Inclination of
orbital plane to
eclip tic ............. 7°0' 3°24' 0° 1°51' 1°18' 2°29' 0°46' 1°47' 17°19'
Mass in earth ’s
mass as u n it .. 0.05 0.8 1 0.1 318 95 15 17 0.9
Density in  g
cm- * ................ 4.1 4.9 5.5 3.9 1.3 0.7 1.3 1.6 5.5
Rad. in 10* cm. 2.5 6.2 6.4 3.4 69.8 57.6 25.5 25.0 6.4
Number of
s a te ll i te s ......... 1 2 11 9 + 4 1
Inclination of
equator to  or
bita l plane . . . 23° 25° 3°

rings

26° 98° 141°
Axial rotational
perio d ............... 88 d 24 h 25 h 10 h 10 h 11 h 12 h*

inner or terrestrial outer or major
planets planets

1 All d a ta  are tak en  from  R u ssell , D uoan , Stew art  (3).
2 I am indebted to  Prof. Lundm ark for giving me his new data  about Neptune’s

rotational period before publication.
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Table II.
Jupiter’s satellites.

5 Io Eu
ropa

Gany
mede

Cai-
listo 6 7 10 11 8 9

Mean dist. from Jup. in
1010 cm ............................ 1.8 4.2 6.7 11 19 115 118 118 225 235 237
Mean dist. in planetary
r a d i i ............................. 2.5 5,9 9.4 15 26 161 165 165 315 330 332
Inclination of orbit to
Ju p .'s  equat. p la n e . . . 27' 1' 28' 11' 15' 181° 243° 82° 232° 208° 61°
E ccentric ity ............. .. 0.0028 .0.0000 0.0003 0.0015 0.0075 0.16 0.21 0.08 0.21 0.38 0.27
Mass (moon =  1) . . . . 0.99 0.64 2.11 1.32
Density in g cm- * ___ 2.7 2.9 2.2 1.3

Table III.
Saturn’s satellites.

Mimas Ence-
ladus Tethys Dione Rhea Titan H y

perion
Ia-

petus
Phoe

be

Mean dist. from Sat. in
1010 c m .......................... 1.9 2.4 2.9 3.8 5.3 12 15 36 130
Mean dist. from Sat. in
planetary r a d i i ............... 3.11 3.99 4.94 6.33 8.84 20.5 24.8 59.7 217
Inclination of orbit to
Sat’s equat. p la n e ......... 1°31' 1' 1*5' 0 ' 21' 18' 17'-56' 14° 149°
Eccentricity-, . . . . . . 0.0201 0.0044 0.0000 0.0022 0.0010 0.0289 0.1043 0.0283 0.166
Mass (moon =  1). . 0.0005 0.001 0.009 0.014 0.03 1.9 < 0.0006 0.019
Density in g cm- * . . . . . 0.87 1.3? 1.0? 1.5? 1.0? 3.6? 1.3? 1.2?



72 Nr. 3

Table IV.
Uranus’ satellites.

Ariel Umbriel Titania Oberon

Mean distance from Uranus in 1010 cm 1.9 2.7 4.4 5.9
Mean distance from Uranus in pla-
netary  r a d i i ............................................ 7.4 10 17 22
Inclination of orbit to  Uranus’ equa-
torial p lane............................................... 0° 0° 0' 0 '

E ccen tr ic ity ............................................. 0.007 0.008 0.023 0.010

Table V.
Other satellites.

Moon Phobos Deimos Triton

Mean distance from prim ary in 1010 cm 3.8 0.9 2.4 3.5
Mean distance from prim ary in planet- 60 2.8 6.9 14

ary ra d ii....................................................
Inclination of orbit to prim ary’s
equatorial p la n e ..................................   • ~  20° 1° 2° 20°

E ccen tr ic ity ..........................................   • 0.055 0.021 0.003 0.000

Mass (moon =  1 )................................... 1 extremely small 1.8

Density in g cm- *.................... ............ 3.34 2.8
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SAMENVATTING VAN DE INHOUD.

In dit proefschrift wordt een poging gedaan een quantitatieve
analyse te geven van enige problemen, welke verband houden met
het ontstaan van ons planetenstelsel.

In het inleidende hoofdstuk wordt eerst besproken, welke feiten
verklaard dienen te worden door een aanvaardbare, complete
theorie. Deze feiten vallen in vier groepen uiteen. De eerste groep
bestaat uit de wetmatigheden der planeten- en maansbanen. De
tweede groep bestaat uit de wetmatigheden der afstanden van de
planeten, respectievelijk manen tot de zon, respectievelijk planeten.
De derde groep wordt gevormd door het feit, dat we twee groepen
van planeten kunnen onderscheiden. De eerste groep bestaat uit de
binnenplaneten (Mercurius, Venus, Aarde en Mars), die klein en
dicht zijn, weinig manen bezitten en langzaam roteren. De vier
grote planeten (Jupiter, Saturnus, Uranus en Neptunus), die de
tweede groep vormen zijn groot, hun dichtheden laag, ze bezitten
uitgebreide manenstelsels en roteren snel. Het vierde punt
is de verdeling van het impulsmoment in het zonnestelsel. De
moeilijkheid is hier de verklaring van de langzame rotatie van
de zon.
. Het tweede gedeelte van dit inleidende hoofdstuk wordt gebruikt
voor een overzicht over verschillende bestaande theorieën, waarbij
wij tot de conclusie komen, dat het laatste woord in dezen nog niet
gesproken is.

Het eerste hoofdstuk wordt gebruikt voor een korte schets van
een mogelijke theorie. Er wordt voortgebouwd op ideeën van
von Weizsacker. Het ontstaan van ons planetenstelsel zou in dat
geval een van de laatste stappen zijn in een ontwikkeling, waarvan
de eerste stappen de schepping van melkwegstelsels en sterren
waren. De laatste stap is de schepping van de manenstelsels rondom
de planeten. Deze theorie kan beschouwd worden als een moderne
lezing van de theorie van Kant, die uitging van de zon omgeven
door een gaswolk.

In het tweede hoofdstuk worden de natuurkundige eigenschappen
van een dusdanige gaswolk nader besproken. Het blijkt, dat ten
gevolge van de rotatie van de wolk, deze een schijfvorm aan zal



nemen. De temperatuur in de wolk zal afnemen als de omgekeerde
vierkantswortel uit de afstand van de zon.

Het derde hoofdstuk wordt gebruikt voor een grove, benaderende
bespreking van de hydrodynamische eigenschappen van de gaswolk.
De tijd, gedurende welke de wolk zal bestaan, wordt geschat en
er wordt een korte discussie gegeven over de mogelijkheid van een
regelmatig stelsel van wervels in de schijf. Dit hoofdstuk moet
echter meer als een verkennende inleiding tot de problemen, die hier
liggen, gezien worden dan als een afgewerkt geheel. De enige
conclusie, tot welke men schijnt te kunnen komen, is, dat het
onmogelijk is om de langzame rotatie van de zon te verklaren met
behulp van de wrijvingskrachten, die in de schijf aanwezig zijn.
Het schijnt, dat men de oorzaak van de langzame rotatie moet
zoeken in processen, die verder terug liggen in de tijd.

Het volgende hoofdstuk is gewijd aan een bespreking van de
condensatie in de gasschijf. De vorming van planeten (manen)
geschiedt in drie etappes, zoals ook reeds door von W eizsacker
werd opgemerkt. De eerste stap is de vorming van kernen, Waarop
de verdere condensatie kan plaats vinden. De volgende etappe is
de groei van deze kernen, doordat meer moleculen condenseren dan
afdampen en de laatste etappe is de snelle groei, zodra de zwaarte
kracht der brokken groot genoeg is om moleculen in te vangen.

In hoofdstuk V blijkt, dat we in staat zijn het feit van de twee
groepen van planeten te verklaren met behulp van het beeld van
de condensatie, gegeven in het voorafgaande hoofdstuk.

In hoofdstuk VI worden tenslotte een paar opmerkingen gemaakt
over de manenstelsels. Er wordt voorgesteld de manen in twee
groepen te verdelen: de „regelmatige” en de „onregelmatige”
manen, in dezelfde wijze, als dat door von Weizsacker gedaan
was. De „regelmatige” manen zouden gevormd zijn in wolken
rondom de planeten op een zelfde wijze, als de planeten in de wolk
rondom de zon gevormd werden. De „onregelmatige manen zouden
een andere herkomst hebben.



STELLINGEN.

Spitzer leidt een formule af voor de energie, die een gas verliest
door botsingen van zijn atomen met atomen van een ander gas,
waarvan de temperatuur lager is. Deze formule is, in tegenstelling
tot Spitzer’s veronderstelling, een benaderende uitdrukking.

L. Spit z e r  Jr., Monthly Notices, 100, 407,1940.

II
Kloosterman heeft een formule afgeleid voor het aantal op

lossingen van het stelsel diophantische vergelijkingen
*'• ■ s

2 .  ai j xi  *  • =  *n ,  X  X; =  n.
/ i = j

Men kan aantonen, dat de uitdrukking, die hij verkrijgt, nooit
negatief is.

H. D. K lo osterm an , Math. Ann., 118, 319, 1942.

I l l
De verklaring, door Klein gegeven voor het ontstaan der

hoogtestraling, schijnt niet voldoende te zijn.

> O. K l e in , Arkiv f. Mat., Astr. och Fys., 31A,
nr 14, 1944.

IV
Wheeler bespreekt de mogelijkheid, dat de mesonen een

samenstelsel van elementaire deeltjes zouden zijn. Zijn gevolg
trekking, dat de massa van een meson in dat geval een geheel
aantal malen de massa van een electron zou zijn, schijnt niet
gerechtvaardigd te zijn.

J. A. W h e e l e r , Ann. N.Y. Acad. Sc., 48,
236, 1946.
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V

Het feit, dat Dancoff en Morrison tot de conclusie komen, dat
de internal conversion coëfficiënt van de ij king van het electro-
magnetische veld afhangt, is een gevolg van een onjuiste formu
lering van het probleem.

S. M. D a n co ff , P . Mo r r iso n , P hys. R ev ., 55,
122, 1939.

VI

In tegenstelling tot de veronderstelling van McMillan en Teller,
moet men verwachten, dat de macht van de overschot-energie, die
optreedt in de doorsnede voor het produceren van zware mesonen
bij energieën juist groter dan de drempelwaarde, er niet van zal
afhangen, of men met scalaire of met vectoriële deeltjes te maken
heeft.

W. G. McM il l a n , E. T e l l e r , Phys. Rev., 72,
1, 1947.

VII

Men moet verwachten, dat He3 een zeer visceuze vloeistof zal
zijn, in tegenstelling tot de conclusie, waartoe London en R ice
kwamen, dat He3 niet vloeibaar zal worden onder normale om
standigheden.

F. L o n d o n , O. K. R ic e , Phys. Rev., 73,
1188, 1948.
L. T isza , Phys. Rev., 72, 838, 1947.

VIII

Zolang er geen aanvaardbare verklaring gegeven wordt van
het feit, dat de magnetische as van de aarde zo ver afwijkt van de
draaiingsas van de aarde, moet de door Blackett verdedigde these
als niet afdoende beschouwd worden.

P. M. S. B la ck ett , Nature, 159, 658, 1947.

IX

De terugkeer tot het Latijn als de wetenschappelijke voertaal
zou het internationale wetenschappelijke verkeer kunnen baten.
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