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Het bewijs dat Ky Fan geeft voor de matrixongelijkheid (II.1) is min-
der geschikt dan het hier gegeven bewijs als het gaat om het afleiden
van de noodzakelljke voorwaarden waaronder de ongelijkheid een ge-
1lijkheid wordt.

Ky Fan, Proc.N.A.S. (USA) 37 (1951) T60.
Dit proefschrift, hoofdstuk II.

De berekening van de vrije energie voor systemen met separabele in-
terakties, zoals gegeven in dit proefschrift, kan uitgebreid worden
tot systemen waarin naast de separabele interakties ook andere inter-
akties (bv. van korte dracht) aanwezig zijn. Wel zullen de separabele
interakties dan doorgaans uitsluitend van het ferromagnetische

type moeten zijn.

P.A.J.Tindemans en H.W.Capel, wordt gepubliceerd in Physica.

. Hallers beschouwt in de molekulaire-veldbenadering enkele modellen

voor het optreden van metaal-halfgeleidercovergangen. Een daarvan is
dan ekwivalent met een spin 1-model met nulveldsplitsing. In het bie=-
zonder kan het optreden van eerste-ordeovergangen in het metaal-
halfgeleidersysteem gekoppeld worden aan het optreden van eerste-
ordeovergangen in het tweede systeem.

J.J.Hallers, proefschrift Groningen 1972,hoofdstuk IV.
H.W.Capel, Physica 32 (1966) 966.

Ten onrechte denkt Danielian door het invoeren van een absolute
"interval'-temperatuurschaal in plaats ven de gebruikelijke absolute
temperatuurschaal, de onbereikbaarheid van het absolute nulpunt te

kunnen ontkoppelen van de derde hoofdwet van de thermodynamika.

A.Danielian, Phys.Lett. 51A (1975) 61.

Een 1-dimensionaal spinmodel met symmetrische interakties tussen de
x-en y-komponenten van de spins van naaste buren is slechts in schijn
algemener dan het XY-model. Dat is niet het geval voor een systeem
met antisymmetrische interakties.

8.A.Pikin en V.M.Tsukernik, Sov,Phys. JETP 23 (1966) 91k.

Het diasgonaliseren van een hamiltoniaan die bilineair is in fermion-
kreatie- en annihilatieoperatoren kan in een aantal gevallen ver-
eenvoudigd worden door gebruik te maken van een'deeltje-gat'"trans-
formatie in plaats van de Bogoliubov-Valatintransformatie.
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I. INTRODUCTION AND SUMMARY

One of the most important problems in classical or quantumstatistical
mechanics is the calculation of the thermodynamic properties of a many-body
system consisting of a large number of particles on the basis of the
microscopic interactions between the particles. For this purpose one has to
evaluate the logarithm of the partition function of the system (or the free
energy) from which other thermodynamic quantities can be obtained. However,
usually the interactions between the particles are such that an exact
calculation is impossible. Therefore, in many cases one has to use
approximate theories. One of the most important, and from a qualitative
point of view most successful, approximation schemes is based on the
construction of a one-particle Hamiltonian. For this we note that the
influence that is exerted on a given particle as a result of its interactions
with all other particles, can be viewed at as an instantanecus field acting
on the particle. In the one-particle approximation this instantaneous field
is replaced by an average, effective field which is commonly denoted by
"molecular" or "internal" field. One then constructs an effective
Hamiltonian which contains the molecular field (or fields) as parameters.
The best approximation in the framework of the one-particle description is
obtained by choosing the parameters in such a way that the free energy
calculated from the effective one-particle Hamiltonian assumes its minimal
value. All these one-particle theories originate from the molecular-field

1)

theory introduced by Weiss in order to describe the phenomenon of ferro-

magnetism. The first statistical formulations of these theories have been

2) and Fock 3), and by Bragg and Williems h), and are

given by Hartree
denoted by the HF and BW approximations.

The basic idea behind these approximations is to neglect completely the
fluctuations in the instantaneous field on & certain particle due to its
interaction with the other particles. Therefore it is to be expected that
in situations where these fluctuations cannot be neglected; the molecular-
field approximation bresks down. In fact, all one-particle theories lead to
definite predictions for the so-called eritical exponents, which are

usually in disagreement with experimental data. However, according to recent



5) 5

developments in the theory of critical phenomena the critical exponents
originating from a one-particle theory seem to be correct in the neighbour-
hood of a tricritical point. It can be argued that the width of the critical
egion, where fluctuations are important, decreases if the effective number
icles interacting with a given particle, grows. This corroborates the
general idea that molecular-field aspproximations in which fluctuations in
instantaneous fields are discarded, become better and better the larger the
number of particles in interaction with any particle is.
Given & microscopic interaction, its range determines how many particles
are interacting with a chosen particle. Therefore one expects there to be a
relationship between the reliability of molecular-field type of

approximations and the range of the interactions in a system.

In investigating such a relation one can distinguish between two
situations. Firstly, one may study systems with interactions of a long, but
finite range. In the process of taking the thermodynamic limit the range
becomes smaller and smaller compared to the size of the system and
afterwards a second limiting procedure is applied in which the range tends to
infinity. Usually this situation leads to a great deal of mathematical
complications. There are not many systems for which one can carry out the
calculations in the case of interactions of finite range to such an extent
the second limit can be taken after the thermodynamic limit.

The secona possibility is to consider interactions which have a range
proportional to the size of the system. In the thermodynamic limit there-
fore both the size of the system and the range of the interaction tend to
infinity. An important simplification occurs if the interactions are
assumed to be separable. By a separable interaction one means ean interaction

between pairs of particles, I (k,2), which is such that the operator

Vv
ko

V(k,%) describing the interaction between particles k and £ , can be written
as a product V(k)*V(2). One can distinguish between negative-definite
(attractive), and positive-definite (repulsive) separable interactions.
Clearly, if the operator V(k) is independent of k, the interaction between
any pair of particles is the same, irrespective of their distance. As a
consequence these interactions can be called equivalent-neighbour inter-
actions and can be viewed upon as interactions of an extremely long range.
Though, of course, such interactions represent a rather idealized situation,

the advantage of considering them is that one may be able to investigate in a

8




more exact way a rather large class of physical situations. In particular,
one may expect effective-field approximations to be exact for systems with
this kind of interactions.

In this thesis systems with separable interactions will be investigated
and in particular their free energy per particle will be calculated. In this
calculation one has to face the difference between classical and quantum-
mechanical systems. For classical systems the operators in the Hamiltonian
commute among each other. Quantummechanical systems are much more difficult
to deal with since the Hamiltonian contains non-commuting operators. In the
partition function one finds the operator e-SK; where ¥ is in many cases a
sum of a number of operators which on themselves can be diagonalized in a
trivial way. However, in general not much can be said about the

diagonalization of their sum i¥(.

Most investigations on systems with an interaction of a long, but finite
range have been carried out for classical systems. In connection with this
we can mention the work by Kac, Uhlenbeck and Hemmer Y, on the van der Waals
gas, where the interaction between particles at a distance r is chosen to

be —Y-Ie_Yr, and also the work by Siegert and Vezzetti 7

on Ising systems.
Lebowitz and Penrose 8), however, have given a gquantummechanical extension
of the theory of the van der Waals gas. As a general conclusion the
molecular-field approximation turns out to be allright except in a small
interval around the critical point which decreases with the inverse of the
range of the interaction.

Systems with separable interactions have been considered for a larger
class of physical situations. The simple cases of an Ising model with
equivalent-neighbour interactions and the corresponding lattice gas have been
treated before by Mihlschlegel and Zittartz 9) and Husimi and Temperley 10).
As a first example of a guantummechanical system with separable interactions
we mention the so-called reduced BCS-Hamiltonian 1) in the theory of super-
conductivity. Here the interaction between Cooper pairs (i.e. pairs of
electrons with opposite momenta k and -E, and spins o and -0) is assumed to
be constant in an energy interval around the Fermi energy, end zero, other-
wise. In ﬁ—space this interaction can be considered as an eguivalent-neigh-

12) of the BCS-Hamiltonian is

bour interaction. Miihlschlegel's treatment
one of the basic ingredients for the present investigation.

So far, two different 'approaches to the study of quantummechanical



systems with separable interactions have been developed. First of all, we
can mention the extensive investigations by Bogoliubov jr. 13), primarily on
systems with negative-definite separable interactions. Perhaps due to
Bogoliubov's emphasis on systems with BCS-type of interactions, the
generality of his approach seems not to have been appreciated sufficiently in
the literature. A number of special models has been investigated using this
approach, cf.several recent Dubna preprints 1h). For a more detailed dis-
cussion of Bogoliubov's line of reasoning, we refer to section 2 of

chapter V. In the second place a number of specific systems has been treated

15)

: “ S SR
in the framework of a C -algebra approach . Starting from a condition

16) (

which ensures the validity of the Bogoliubov-Haag procedure a procedure
in which certain sum operators are replaced by c-numbers), the free energy
can be obtained for extremal homogeneous states satisfying the KMS condition,

for each of the systems separately.

Returning now to the present investigations on systems with separable
interactions, we shall give explicitly the class of Hamiltonians to be

considered. They describe systems of N particles, labeled by k and 2.

N ! N e N
x= )] T(k) - (2N) E ) Va(k)V (2) + (2N) § ) W, (k)W (2).
L= o=

B

k=1 f=1 k,i=1 a=1 k,

Here the first term is a kinetic energy term or & term representing the
influence of external fields. The second and third term describe negative-
definite and positive-definite separable interactions. They will often be
referred to as "ferromagnetic" and "antiferromagnetic" interactions resp.,

a terminology which is borrowed from the situation that one investigates
magnetic ordering. It is important to note that the labels k and £ need not
refer to particles at a certain position, they can as well be used to denote
one-particle states corresponding to another property such as the momentum.
An example is provided by the BCS-reduced Hamiltonian. In such a situation
one deals with a given number of one-particle states, rather than with a
fixed number of particles. All thermodynamic averages are then grand-
canonical averages. The operators T(k), Vf(k), fim e ps end Wa(k),
a=1, ..., q, are completely general, bounded, hermitean one-particle

operators and in particular do not satisfy any prescribed commutation




*)

relations.
We shall give a rigorous calculation of the free energy for the class of
systems defined above. The expression we obtain turns out to display a
molecular-field character: i.e. it can be found from an effective one-
particle Hamiltonian containing a number of parameters each of which
corresponds to one of the separable interactions. These parameters can be
considered as order parameters and characterize the different phases in which
a system can be. So in the BCS-model they are related to the energy-gap,
while in magnetic systems they represent the total or a sublattice
magnetization. Their values have to be determined from molecular-field
equations with the additionnal requirement that the expression for the free
energy in terms of these parameters be minimal. For the systems under
investigation an unequivocal meaning can now be given to statements such as
"The effect of a separable interaction between the particles is equivalent
to an additional field acting on the particles". For systems with more
general interactions which are not of the separable type, the investigations
reported in this thesis give a general and unambiguous way to obtain the
results which would have been found in the molecular-field approximation. For
that purpose one replaces the interactions between the particles by
equivalent-neighbour interactions. The general scheme given here can also be
useful in establishing relationships between models which, in spite of the
variety of physical situations for which they can be used, have a similar

underlying mathematical structure.

Finally we shall give an outline of the method used in this thesis. The
free energy per particle will be obtained from an upper and a lower bound
which will be shown to be equal in the thermodynamic limit. The upper bound
on the free energy is derived by means of a variational type of argument
based on Bogoliubov's inequality 17). In order to obtain a lower bound we
follow a standard approach in statistical mechanics and proceed to derive

an integral representation for the partition function Z = Ie-NG, where G

#) In chapter V we point out thet in the case that the "antiferromagnetic"
operators are absent, the results are valid also if ZkT(k) and kaf(k)
are replaced by more general operators T and Vf. In that case the name
"quadratic" interactions is, perhaps, to be preferred to "separable"

interactions.



is in general a complex function depending on the integration variables use
in this representation. Here the quamtummechanical case presents additional
complications. Due to the fact that the operators in the Hamiltonian do not
commute, the operator e_ﬁx cannot be factorized into a product of exponential
operators, each containing one separable interaction. Since such a
separation seems necessary in order to obtain a useful integral
representation by applying a familiar trick due to Stratonovich 18), a
special procedure is required. Mihlschlegel uses the ordering procedure due

Q)

19
to Feynman ““ for that purpose. We prefer, however, the Trotter product

20)

formula for reasons to be explained in chapter III. As a consequence of
the use of Trotter's formula (or of any similar procedure, for that matter)
the number of integration variables in the integral representation must go
to infinity before the thermodynamic limit is taken. We want to obtain a

. i W aeh 3 o (¢ Rl | (Ll
lower bound on the free energy by estimating Z = fe tobe Je » Where
Gy is the real part of G, and by calculating the resulting integral by

means of Laplace's method. Usually, one obtains as a result of such a

. 3 . : -1 :
calculation an asymptotic series in powers of N . The leading order term

is obtained immediately from the absolute minimum of G;. The first order
correction term can be expressed in terms of the determinant of the matrix
of second derivatives of G;, evaluated at the absolute minimum. In
aspects the quantummechanical case is much more difficult than the classical
ocne. The function G; contains the trace of an arbitrary number of operators
and the determination of its absolute minimum depends on the possibility of
finding both an estimate on such traces of products of operators, and the
precise conditions under which the estimate becomes an identity. Such an
estimate is provided by a generalization of Holder's inequality to operators,
which can be derived from a sharper inequality for the trace of a product of
operators. In chapter II a simple and straightforward proof of the latter
inequality will be given and the conditions under which it turns into an
equality will be established.

As to the first correction term in the asymptotic series, a term which
is related to the second derivatives of G;, we remark that in classical
ceses this term can easily be shown to lead to a contribution to the free
energy which is independent of the volume, and hence can be neglected in the
thermodynamic limit. In the quantummechanical case, however, the essentially
infinite number of integration varisbles makes a careful investigation

2 : S ; =NG
necessary. In particular a crude estimate on the integral /e could lead

12




to unphysical divergencies. It will be shown that our calculation leads to a
correction term which is finite except possibly on a discrete set of
temperatures. For Hamiltonians with separable interactions of the "ferro-
magnetic" type only, it will be shown, moreover, that the temperatures where

a second or higher order phase transition occurs, belong to this set.

In chapter II we deal with the inequality for the trace of a product of
matrices, which leads to the Hdlder inequality for operators. Also a number
of other applications is discussed. In chapter III we give the calculation
of the free energy for systems described by a Hamiltonian containing & number
of "ferromagnetic" separable interactions. In chapter IV the calculation
will be extended to Hamiltonians containing an arbitrary, finite number of
"antiferromagnetic' separable interactions as well. In chapter V, first
some remarks are made about an extension to Hamiltonians of a somewhat more
general nature, the equivalence to a Bragg-Williams formulation is
established, and another formulation avoiding the explicit introduction of
"ferromagnetic" and "antiferromagnetic" operators is given. Finally we
treat from our general point of view a number of specific models which have

been investigated in the literature.
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ITI. AN INEQUALITY FOR THE TRACE OF A PRODUCT OF MATRICES

1. Introduction

Estimates on the trace of a matrix play an important role in
calculations in quantum statistical mechanics. This is easily understood by
noting the occurrence of traces in the basic expressions for the free energy,
the entropy (cf. e.g. ref. 1) or correlation functions of quantummechanical
systems.

In the course of the evaluation of the free energy for the systems that
will be investigated in this thesis, one naturally encounters the problem of
finding an upper bound on |Tr Al-'-AnI' Here A,,...,A, are arbitrary finite-
dimensional matrices and n is an arbitrary integer. Secondly, and not less
important, there is the problem of establishing necessary and sufficient
conditions under which the inequality to be derived will turn into an
equality. The right-hand side of the inequality is expressed in terms of the
eigenvalues of the matrices /rA:X;‘ » and after applying the Hdlder
inequality to this expression we obtain another inequality which may be called
the HOlder inequality for operators.

In section 5 of this chapter a number of applications of this inequality
will be discussed. These applications deal with e.g. the convexity of the

free energy and with convergence properties of Dyson expansions.

2. The theorem

We state the theorem in the following way (alternative formulations will

be given in section 4).

Let Uy,...,U, be unitary operators on the m-dimensional complex BEuclidean

space , *) Let Ak for k = 1,...,n be semipositive definite (hermitean)
operators on " with eigenvalues agk) > aék) > see 2 uik) > 0. Then
m n
[Tr U3 ... UA | < ] @ alk) (1)
WY =i, i
i=1 k=1

®) We shall not distinguish between operators on ¢ ™ and the corresponding

m Xm matrices.

15



Let p < m be the largest integer such that

n
(
n a‘k) 2ul0s
P

k=1 =

The equality sign in (1) holds iff there exists an orthonormal basis {wi} of

- m . :
d ", such that for the first p vectors y. (=0 Sios Ph:

A oy, = a.(")w. for all k
K'1 1 1

Uwi AV,

- L -1
dk = U, ..U, Ak(Ul...Uk)

The case n = 1 is trivial. For n = 2, the theorem has been treated first
2) e : . :
by von Neumann , while a simplified proof has been given by Mirsky
The general case is, as far as the inequality is concerned, due <o
L)

Ky Fan . He derived the theorem in the form of a maximum principle (ef.

the second formulation in section 4). He used as his main tool an elegant
[~

lemma by Horn )), based on an inequality for a determinant and & lemma Dby

6)

S $ » 3
Polya . An extension to compound matrices ) has been given by Marcus and

7)

Moyls , and by Mirsky 8). There it is shown that a similar inequality

holds for these compound matrices if one replaces the simple summation in
the right-hand side of (1) by the elementary symmetric functions ").

A review of related properties of matrices derived on the basis of
properties of determinants, cen be found in a paper by de Bruijng)

The proof that will be given here is rather straightforward. Use will be
made of the spectral resolution of a hermitean operator A (i.e. it can be

written as a linear combination of projection operators), and of a number of

A . Y A : 5 m m
») A compound matrix associated with a given m*m matrix A is a fr) x (r)

matrix which has as elements the subdeterminants of order r of A.

th

#*%) The r = elementary symmetric function of the numbers &,;...s& is defined

as

Er(al,...,am)




relatively simple properties of projection operators. In this way also the

necessary conditions for the equality sign to hold can be obtained.

3. Proof of the theorem

As a first step we consider four lemma's which will be used in the proof.

Iemma 1: Let Pl,...,Pn be projection operators on ( M i.e. P2 = P and

P+ =P, (P+ is the hermitean conjugate of P). Then for all peC®

(vo) > (v, Pl...PnPn...le) s (1)
with equality sign iff
PV =V , k = 10 o oain, (8)

Proof: For n = 1 the lemma is trivial, since (¢, (1-P2)y) = (¢, (1-P)2y)>0
with equality sign iff Py = y. Suppose it is correct for n-1. Consider
A S0 -+« Py . Then

($sB) we BB ooo Pp) = (x5 B2X) < (xsX) < (¥59)

with equality signs iff an X and Pkw =y , k=1, so0s n=-1,

respectively. Then eq. (8) immediately follows.

Lemma 2: Let PI""’Pn be projection operators, and U be a unitary operator
Then for all ye ™

(v,9) 2 [(v, Py ... PUR)| (9)

with equality sign iff

PYV=y k=1, ...,1n, (10)

Uy = Ay for some A with [A| =1 . (11)
Proof: Apply Schwartz's inequality and lemma 1.

[(p, Py .. Pnuw)l < (¥y Py vue PnUU+Pn = le)%(w,w)s < (y,¥) . (12)

The equality sign in the first inequality of (12) applies iff

U+Pn cee Py =y , (13)

17




for some u, whereas the second inequality turns into an equality iff

Eqs. (13) and (14) are equivalent to (10) and (11).

Lemma 3: Let Py, ...s Pn be projection operators, U a unitery operator and

s $ m . 3 3
d, the dimension of the subspace E(k of € on which Pk projects (i.e. the

number of eigenvalues equal to 1) and let g be such that dq = min{dl,...,dn}.
Then

|Te P, ... P U| < min {d), ...5 &) .

The equality sign holds iff for all eigenvectors wi corresponding to eigen-

value 1 of P _:
q

(1) | gla) g gk)

or B - A S (16a)

(q)

(i.e. the dq-dimensional space E is a subspace of all E(k)), and

Ub; = A%y

Proof: Suppose dq is the smallest number among dl’ AP dn. Tr Pl...PnU =

Tr'P B where B=P_ . ... P UPXU_1
q q+1 n

basis {wi} with respect to which Pq is diagonal. Then

Okl UPq_TU_1U. Consider an orthonormal

|79, »vo BB]S (wi,qui)l(wi,Bwi)l <

: (V.,P¥.) =d_ . (17)
1 3=1 i‘llql q

In the second step use has been made of lemma 2. (B is a product consisting
of projection operators end a unitary operator). The equality sign in the
second step of (17) holds iff

P for k > g+1; UPRU-1wi =y, fork<g-1,

A
Wby = A

for all eigenvectors vy corresponding to eigenvalue 1 of Pq’ or equivalently:

¥; for all k, and Wy, = A9, - (18)

The equality sign in the first step of (17) holds iff arg(wi, Bwi) is

independent of i. Hence A; = A and egs. (16a) and (16b) have been proved.

Lemma 4: Let ng) be arbitrary complex numbers, defined for k =1, ..., n

18




and i =1, ..., m. Then

? ( ; 2K i} = ? ; (28 (®) -ﬁzér)x(19)

3 ) min{i;,... RS B T
. 2 +
i =t k=t BY gy gmq e A4

Proof: For arbitrary values il’iz""'in both sides of (19) contain nkz§:).

We show that the coefficients in front of these terms are equal. The

right-hand side of eq. (19) can be written as:

(k)

(r.h.s.) =1 (ng) - zék) - ...+z(k))-+ﬂ (z2 ..t z(k))+...+ I
k » k " k

Tl + Toid s Tm % (20)

(k)
ki
subscripts i, ..., in' This particular term is found in the (r.h.s.) once

Consider an arbitrary term II Let q be the smallest value of the

in TysTpsees,T but not in T "Tm' So the coefficient in

q_1'Tq’ q+1'Tq+2"'
front of this term is q, as it is in the (1l.h.s.).

This completes the proof of the lemma's. We now proceed to the theorem (1)
itself.

Proof: We write

|Tr UsAy o UA | = T oy L. AU, (21)

A = Uiees UAWUL..U)T" and U = Up...U, as dn (5) and (6). A, is
hermitean and has the same eigenvalues as Ak' We use the spectral resolution

of a hermitean operator A with eigenvalues &) > a3 2 ... > @ :

)P +a P ; (22)

= + (ap- + o
A (al-az)Pl (02 03)P2 + (am_T—am 4 o

Here

P.iw) P P (23)
R

where Pa- is the projection operator on the i-dimensional subspace of the

i
ith eigenvector, which belongs to eigenvalue o On account of

P o= pu‘s.. S (2k)
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Pj is the projection operator on the j-dimensional subspace of the largest j

eigenvalues. Define:

(k)

i+1

(k) _ (k)
m

a if. 1= 1, «vey m=1and 2z, =@ , for all k. (25)

we have from (21)

n 2 n
|Tr kn1 UA | < . 26y |pp {(kn1 ng) )u}l, (27)
= : BRI k =

n

k)

n
with equality sign iff all terms Tr ( T ng) )JU for which szi does not

k=1 ‘k
vanish, have the same argument.
Using lemma's 3 and 4 we find
n m n m n
(073 M INe T (k)
| Tr k21 UkAki < ! ) 27 Jmin {igseeei} = 2 a;”" . (28)

15e+epi =1 k=1 Tk i=1 k=1

The proof of inequality (1) is hereby completed.

We now investigate the necessary and sufficient condition under which the
inequality turns into an equality.

Eq. (2) implies that there exists a number kg such that

=0 fori=p+l, +ces (p < m)

o{50)
x

If (3) and (L) are satisfied, we have

|ze oAy ... A U] = |2 Hrry UJI oo A |

1 ko

v4kowi =0 for i = p+1,

we find that

lTI‘ dl e U"Ul
n




thereby proving the sufficiency of conditions (3) and (L).
Suppose now the equality sign holds. Then we have in particular from
(27) and (28):

3 7 5(x)
[E (¢ B B N0} o wally, s S 2 (32)
k=1 *k
-
1 zgk)>o . (33)
k=1 “k

In order to prove (3) and (4) we shall consider suitable sets of integers

{il,...,in} such that (33) is satisfied.

(x) (k)

Let us suppose that z; >0 and let Ei be the (i-dimensional) space on

which the operator Pik projects. We show that Eik) = Ei’ i.e. E§k) is

independent of k; furthermore we shall prove that

E;CcE. , fori<j , d,j<p (34)

J
(p being the largest integer such that n£=1uék) >0, as defined by (2) ).
We may restrict ourselves to those values of i such that zgk) >0 for at

)

Let us select a pair i,j < p, 1<J, and consider first the following

least one value of k, otherwise ng would not appear in any o4k.

sets of integers.

If zik) >0, we teke i, = i, If z

. : X (%)
integer Qe > 1 such that zqk > 0.
amk) >0, we can choose qk =m. Ifa

k) = 0, ik may be chosen to be any

There is always such a value Gy« If
)

B~ e~

(

i = 0, however, there must be a Q.

with p < q <m since u;k) > 0).
So for such a set we have min {i ,...,in} = i. Applying the necessary

conditions for the equality sign in lemma 3, we find that the subspaces

g (k) (x)
i i

space is denoted by Ei' Since this line of reasoning can be applied to any

» defined for z >0, are independent of k. The resulting i-dimensional

number < p, we find in particular for a fixed value j>i that all operators
ng) (for all k such that zgk)

Now the relation E. CE. is trivial if there exists a value k such that

both ng) and ng) occur in ‘)¢k' If such a k does not exist, we consider a

special set satisfying the requirements mentioned asbove with iz = i and

im = j for some 2 # m. Frmm the conditions for the equality sign in lemma 3

we then have
g gt g gl
J i

>0 ) project on the same space Ej'
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(m) is a space with dimension j-i > 0. Since Eg & Ej and E§1) - Ei’
we have Ei(:Ej' 8o far we have investigated all projection operators ng),

i<p, for k such that zgk) >0.

where R

(k)

We now must consider the projection operators Pq

If for given k, zék) = 0, we select for i=p some special sets of the type

considered above, viz. those where g subsequently has all values >p such

theat z(k)
q

(k)

with g>p and zq >0.

> 0. The conditions for the equality sign in lemma 3 tell us then
that

k) _ 5 o 5K
P q

& (352)

(x)

For k-values such that zp >0, it is easily seen from the spectral

resolution that

(k)
q

(k)
Q

E

=E @R (35b)
P

From (34) and (35) it is obvious that there exists a set of p orthonormal

vectors Yy, +eey ¢p s Ssuch that

£< i

p and z§k)> 0.

Starting from the spectral resolution

W) 2 (B gp 4 (oK) _ () yp k)

(k)
82 Py + .n +1 P pt+1 p+2 ‘" ptl
P P

(x)

o F ot P »
m m

where terms with agk) - agii = 0 do not contribute, we find then

immediately that condition (3) holds, i.e.

= (5)
wfkwi = ai wi

As to equation (4) we note that the conditions for the equality sign in
lemma 3 applied in the case i = p of a set of the above-mentioned type, also

imply that Uy = Ay for any wEEp. Then (4) is obvious.
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4. Remarks

In this section we give two alternative formulations and a slight
generalization of the inequality (1). Here Aj, ..., An will denote arbitrary
(x) k)

Js e

complex m xm matrices with singular values agk) >a vele > a; o

ST

a) Consider the so-called polar decomposition: for every complex mXm matrix
. A : +
A there exists a unitary matrix S such that A = § /A A 10) .
Then it is obvious that the inequality (1) can be replaced by

m n
P8y sacom) b Foul ugk) : (39)
i=1 k=1

If one specifies the matrices A;, ..., An to be positive definite hermitean,
then it immediately follows from (3) that the equality sign in (39) holds iff
KAstisiviv A, are such that there exists an (orthonormal) basis Yis i=1,.00.,m ,

satisfying

Akwi =a., Y. , for all k . (ko)

b) Consider the expression ITr UIAI"'UnAnI for all unitary m xm matrices

Ul,...,Un and fixed matrices Al"---An- From (39) it is clear that

m n (k)
|Tr UjA)... UA| < T @ a; : (41)
anl — . i
i=1 k=1
Using the relations A =8/VA'A, 7/ A'A = VAv'1, A= wﬁw”, where S, V
and W are unitary matrices, A and ! diagonal and where 1 has the same
entries as A but ordered in decreasing magnitude, it is easy to see that
the equality sign in (41) can be realized. Hence we arrive at

m n
max |Tr U1A7... UA| = ¥ 7
Upaeeesl, R =

at® (k2)
Since in this formulation one considers |Tr UjAj... UnAn| for given matrices
By ensy An as a function of Uy, ..., Un, it is desirable to give the
necessary and sufficient conditions on the matrices Uy, ..., Un such that
the maximum is attained.

It is not difficult to show that the conditions (3) and (4) are

%) The singular values of a matrix A are the non-negative square roots of the

eigenvalues of A*A, where AJr is the hermitean conjugate of A.
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equivalent to the following statement.

Let ¢§k),...,¢ék) be any set of p orthonormal eigenvectors belonging to

¥ t 1 i
the p largest eigenvalues agk), Sirarp a;k) of /ARAk ordered in decreasing

magnitude.

Let Zk be any unitary operator on ™ that satisfies the relations

(x) _  (k=1)
Lt ¢

Zl¢§1) ¢§n)

Note that Z, depends on, but is in general not uniquely determined by the

eigenvectors ¢§k), ~ o ¢ék). Then the unitary matrices Ujse.., Un should

satisfy the relation

(44)

R ) u /=¥ o s ) I, ST
where S, 1s defined Dby \ Sk Ak and Zk satisfies (l3) for & certain

choize of cigenvectors ¢; "5 ».es ¢ék) 3k A Sy M

e) Let W15 «vns wm be an arbitrary orthonormal basis of ( m, and let P2 be

the projection operator on the space spanned by the first & of these

vectors. Since P2 has % eigenvalues 1 while all other eigenvalues are zero,

one finds by applying (39) to the product PQAI'-' &

i (b5 Ape--A )| = |Tr RAr..oa | < A (45)

i=1 i
If we now replace A; by DA; where the unitary diagonal metrix D has elements

8:5 exp[-i arg(wi, Al...Anwi)] 4

then eq. (45) reduces to

)
liz (wi, DAjAz...A V.

Define

gk)

b, = [(w;, Al...Anwi)] and &, = i

n

- k

We label the basis vectors in such a way that by > bz > ... 2
now reads

b1+b2+...+b <81 * oo . 2._<_m

2




Applying a lemma of Polya 6), we find for an arbitrary convex increasing
function w(x)

% L
I wdg) s I owley) . (49)

i=1 i=1 *

5. The Holder inequality

A useful inequality can be derived from (1) by applying the HOlder

’ % A 4 * -1 -1 k
inequality to its right-hand side. If 0< ek < 35 £§=18k = 1 and ag )> 0,
the Holder inequality reads
6-1
m n A n m 8 k
! m ﬂgx) < n |} (aik) Y : (50)
i=1 k=1 k=1 |i=
with equality sign iff
) 6
(k)y k _ (2), 2
(ai ) Moy (al ) 3 (51)
for every pair (k,%) with Aer independent of i.
So we obtain from (1) the Holder inequality for operators
-1
n Bk ek
|Tr UyAy..UA | < M (T A : (52)
k=1 _
with equality sign iff
) 0
A K AL ;
k Ao %y for all k, & (53)
U =X | (54)

-1 %
= i 1 =
Here f = Up...U A (U;...U.)" end U = Uy...U;, as in (5) and (6).

A different treatment of the Holder inequality for n = 2, 3, which is
also valid for compact operators in an infinite dimensional Hilbert space,

1)

has been given by Dunford and Schwartz . , based on a rather deep convexity
theorem by M. Riesz 12). The inequality for arbitrary n can then be derived
easily. In ref. 11 no necessary conditions for the equality sign to hold
have been given.

Egs. (52), (53) and (54) will be important tools for the calculation of

the free energy for systems with separable interactions, as is shown in
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chapters III and IV of this thesis.

We mention a number of other applications of the inequality (52).

a) On many occasions it may be sufficient to approximate some of the
operators A in a given product by their norms l[A" . Such a norm can be
arrived at by choosing the @ corresponding to the particular operator A to

be =, since we have the formula
=1

. 1. O
1im [Tr (ATA)2%) = [|A]l . (55)

-0

Divide now the operators Aj,...,A (which need not be positive definite
n 5

hermitean) into two sets A. ...A. , and A, ...A, . Choosing 6., = ... =
11 % J1 In-r pop -1 =

. = and 0. seeey0. in such a way that 23 « =1, one

1y Jl Jn-r ; o=1 g
finds from (52) and (55) the special case

7 9-1 *)
n-r + zeo o
|Te Ay.ocA | < |1A;. oo lA; | T |Tr(A. A, ) X (56)
5 i iy i o 35
r o=1 o Yo

By identifying the operators in an appropriate way one obtains the
specialization to finite demensional spaces of the following formula given by

14)

Ginibre and Gruber 5
Let H be self-adjoint on some Hilbert space, with Tr e_ad < » for each o.
Let Ay,...,A De bounded and a, > 0 with Lo, =1. Then

¥ 3 K . (57)
|Tr (N e )< n Jal - mre™
= Ak k=1 Ak

As an example of the use of the "norm-version" of the Hdlder inequality we
consider the Dyson expansion for a Hamiltonian X = ¥p+h, in which the

perturbation is assumed to have a finite operator norm |n] < =. The Dyson

expansion can be written
T

= B T1 n-1
-BH _ =830 n
e = e Y (=) dty dATo o drn h(Tl)...h(Tn) b (58)
n=0
where
Tﬂb -Tﬂb
h(t) = e he ; (59)

#) An estimate involving operator norms can, of course, also be given for the
(k)

r.h.s. of (1), since for & given k all a.

ugk) :'agk) = | Ak" » cf. theorem 4 of ref. 13.

s X = 15 cesy n satisfy
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Let now the average value of an operator A with respect to the

Hamiltonian ¥y be defined by

-8y
Tr A e
z —_— 60
CAD g e (60)
Tr e
Then
—B(3,+
( R ) Ir e 4l 1 E (61)
L My -8 +n=1 "
Tr e
where

"BJ(O - " B T Tn_1
o, = (Tr e ) (=) l dry l dto ass £ 3

—(8—11)J(U ’(TI'TZ)’}(O -TnJ(O
°Tr{e he B vasih @ } b (62)
Applying (57) we have immediately
g™ n
la | <= llnl" ., (63)

n!
so that the series appearing in the r.h.s. of (61) is convergent. Similar
considerations have been applied in the evaluation of the high-temperature
expansion of xx-spin correlation functions in the spin-cyclic one-dimensional

XY model, cf. ref. 15, app. A.

b) The Hdlder inequality for operators can also be useful in connection with
convex functions.
Consider an arbitrary product of nonsingular operators. This can always

be written in the form

Therefore we consider

n
4
-
o}

where Re Xk > 0 and Hk is hermitean, k

the function

—BAka

e | ‘&) (64)
1

=1

G(a) = =87 1n |Tr

n=ap

k

where A is the n-tuple of complex numbers Aj, ..., An’ Re Ak > 0, and Hk is

hermitean, k = 1, ..., n.
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n
k=1
k=

Suppose that & Re Xk =¢ (0 < ¢ <«); then one finds using (52) with

the substitution 6 c(Re Ak)_1,

G(A) > -8 % (65)

where 1., is the n-tuple with A

= ¢ k

considered as a kind of convexity property. Consider now the special case

=1, and li =0, i#k. Eq. (65) may be

n = 2. If we restrict ourselves to real values A; = X and A; = 1-A, the
function g(A) defined by

g(d) = G(A, 1-1)
satisfies the inequality
g(d) > ag(1) + (1-1)g(0) ,
Eq. (67) implies in particular
g(1) < g(o) + g'(0) .
Noting that g'(0) is given by (¥} - I )J(.2 (68) can be written

F[H,] <F[H,] +(H; - X, ):R,2

where the free energy F corresponding to an operator ¥ is defined by

FIH] =8~ 1 mr B,

Eq. (69) is the so-called Bogoliubov inequality which is well-known in
statistical mechanics and which will be used in the next two chapters.

The Bogoliubov inequality in turn implies the so-called Peierls
inequality and the convexity of the free energy. This can be shown very
easily, following the line of reasoning of ref. 1.

We first consider the Peierls inequality. Let {li)} be an arbitrary
orthonormal basis and let ¥ be an arbitrary hermitean operator. The diagonal

part MD of ¥ for the given basis is defined by

cila1jy= 8, (il B (71)

Now obviously (¥ - MD ) =0, so that

1@

D
FlX 12F[x] -
This is the well-known Peierls inequality.
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In order to show that the free energy is concave we must prove the

inequality
FI1-M)30 + MG 1> (1=X)F[¥Ho] + AF[3; ] . (73)

This can be done easily by choosing a basis {|i)} such that (1-1)#g +
+ M(; is diagonal. Then from (65) and (72)

-8(1-\)H0 -5 5 :
F[(1-A)¥g + M\€;] = - 1n Tr e e > (1=-A)F[¥3] + AF[3y] >

> (1=X0)F[3q] + AF[ %]

¢) We now consider an inequality which can be applied to imaginary rotation
operators. An imaginary rotation operator over an angle o around an axis

defined by the unit vector E, has the form
- >

-ae*d
e 3

- . .
where J 1s an angular momentum operator. The trace of such an operator is

given by
++ sinh a(J+3)
e e ———— (74)
sinh >

2 b 4
where J is the norm of any of the components of J.
Let us now consider a number of successive imaginary rotations. Then we

have the inequality

—a.e.'d sinh a(J+3)

|Tr.11:1l o IiT’ (75)
1=1 sinh 5
where o = Z?=1 a; . Eq. (75) can be found from (52) by substituting Uk =7
and ek - cx/ak . The equality sign holds iff gi = g, independent of i. The
version for J = 3 of eq. (75) has been used by Mithlschlegel 16) in his proof
that the calculation by Bardeen, Cooper and Schrieffer 17) of the free energy

starting from the so-called reduced Hamiltonian is exact in the thermodynamic

limit.
d) 1In Chapter III use will be made of the following inequality

n -£(a-7P )

X,.B
l]JlTI‘n n =1 flf‘f

R(A- (76)
e z f f

n
_z In Tr e N

5=

i=1
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where Ay, Bys svey Bp are hermitean operators and x_,. real numbers. The

i
equality sign holds iff

§ (x,. = x,.)B, = C.. ¥ (17)
£=1 fi > 2y [ 4 1)

where Cij is a c-number for all values i, J = 15 «uss 0.
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III. AN EXACT CALCULATION OF THE FREE ENERGY
IN SYSTEMS WITH SEPARABLE INTERACTIONS

Synopsis

By deriving an upper and a lower bound we give a rigorous calculation of, the free energy, in
the thermodynamic limit, for a general class of model systems, characterized by a hamiltonian
that contains a one-particle part and separable two-particle operators. The result is an expres-
sion for the free energy which is of the molecular-field type. The upper bound is obtained by a
variational type of argument. Using the Trotter product formula and a well-known integral
representation the partition function can be expressed as a multidimensional integral of a func-
tion e~ In the derivation of the lower bound we have employed Laplace’s method. The abso-
lute minimum of the function G can be obtained using Holder's inequality for operators.

In addition the second derivatives of G at the minimum are investigated in detail.

1. Introduction. 1t is well known in the literature that molecular-field type of
approximations can give rigorous results in the thermodynamic limit if the range
of the interactions in the model under consideration tends to infinity. The simplest
example is the Ising model with equivalent-neighbour interactions, i.e., a model
in which all the spins have equal interactions, independent of the positions.

This model has been treated by several authors, e.g. Miihlschlegel and Zittartz?)
and Niemeyer?).

A lattice-gas model which is equivalent to this particular Ising model was
proposed by Husimi and Temperley?), and has also been studied by Katsura*).

For results on Ising models (with S = 4) with more general interactions that
are also essentially of the long-range type, the work of Kac®), Baker®), and Siegert
and Vezzetti”) may be mentioned.

The one-dimensional Van der Waals gas with long-range interactions has been
considered by Kac, Uhlenbeck and Hemmer®), by Van Kampen®), and also by
Lebowitz and Penrose!?).

Another way to obtain the molecular-field approximation is to use an expansion
of the partition function in inverse powers of the number of nearest neighbours z;
¢f., the expansions by Brout'') and Horwitz and Callen'?). In ref. 6 a similar
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expansion is employed. The leading term in these expansions corresponds to the
molecular-field approximation. In addition Fisher and Gaunt'®) have shown by
numerical extrapolation on nearest-neighbour Ising models on d-dimensional
hypercubical lattices, that if d, the number of dimensions, tends to infinity,
important molecular-field results are obtained, e.g. the nature of the divergence
of the susceptibility.

Several rigorously soluble models investigated by Hallers and Vertogen'#} as
special cases of the Hubbard hamiltonian'®) in the theory of metal-insulator
transitions, are equivalent to Ising models with equivalent-neighbour interactions.

The case of S = 1 ions with zero-field splitting and equivalent-neighbour inter-
actions, where some interesting first-order phase transitions can occur (¢f. refs. 16,
17) has been treated by Blume and Watson'®).

So far we have only mentioned models in which all operators occurring in the
hamiltonian commute with one another. The case of noncommuting operators is
in general much more difficult to handle.

However, the isotropic Heisenberg model with equivalent-neighbour interactions
presents not more difficulties than the corresponding Ising model. It has been
considered by Niemeyer?), while also the computer calculations by Kittel and
Shore!?) may be mentioned.

In relation with the general noncommuting case it is important to refer to a paper
by Miihlschlegel?°) who proved, starting from the so-called reduced hamiltonian
in the BCS theory of superconductivity?"), that the calculation of the free energy
by BCS is exact in the thermodynamic limit. (Quite a different and more com-
plicated proof of this had been given previously by Bogoliubov, Zubarev and
Tserkovnikov??). In addition various models with equivalent-neighbour inter-
actions have been studied by a C*-algebra type of approach using the Bogoliubov-
Haag procedure (¢f., e.g. refs. 23-26).

In the present paper we give a calculation of the free energy in the thermo-
dynamic limit for a fairly general class of hamiltonians, viz. those which contain
a one-particle part and separable two-particle operators (the interaction being
essentially of the equivalent-neighbour type).

The method of calculation is essentially a generalization of Miihlschlegel’s
treatment of the BCS theory; there are, however, some differences. While Miihl-
schlegel follows Feynman?”) in introducing dummy ordering parameters in order
to deal with the problem of noncommuting operators occurring in the exponents,
we prefer to use the so-called Trotter product formula?®-2?) instead, for reasons
to be explained in section 4.

Although we also start to bring the partition function into a form that is suitable
for a saddle-point integration, where the large parameter is provided by the number
of particles (or the volume) of the system, we will use this saddle-point integration
only to derive a lower bound for the free energy. It will be seen that an upper
bound can be found rather easily by a variational type of argument on the basis




of a general thermodynamic inequality of Bogoliubov®®). This derivation of the
upper bound for the free energy establishes a direct connection with a molecular-
field treatment of the hamiltonian. Since there are in fact no restrictions on the
separable two-particle operators that may occur in the hamiltonian, a general-
ization of Hoélder’s inequality to operators®!) is needed to get the appropriate
information on the absolute maximum of the integrand in the expression for the
partition function.

The paper is arranged as follows. In section 2 we define the class of hamiltonians
that we are going to investigate. Also some specific examples will be given. In
section 3 we deal with the case of commuting operators in order to introduce
some notations and to describe the method that will be used in handling the general
problem of noncommuting operators. In section 4 an integral representation for
the partition function Z is derived using Trotter’s product formula and a well-
known integral trick. In section 5 we investigate the absolute maximum of the
integrand in the expression for Z which plays a crucial role in the saddle-point
integration. In section 6 an upper bound on the free energy is derived using a
variational type of argument. The derivation of the lower bound by means of a
saddle-point integration can be found in section 7. Much attention is paid to the
determinant of the matrix of second derivatives. It turns out that in general the
influence of this determinant is negligible in the thermodynamic limit. However,
there are some exceptions and in section 8 one finds a discussion on the relation
between such a situation and the occurrence of a phase transition.

2. The hamiltonian. In this paper we are going to consider a set of model systems
which we define by their hamiltonians. Let H, (k = 1, ..., N) be finite-dimensional
Hilbert spaces. Let T'(k) be a hermitean operator defined on H, for each k. Let
Vi (k, 1) be an operator defined on the direct-product spaces H, ® H, for arbi-
trary k and /. We can define the corresponding operators in the direct-product
space H = ® H, by taking direct products of 7'(k) and ¥ (k, /) with unit operators
in the remaining spaces. The resulting operators will again be denoted by T'(k)
and V; (k, ). Obviously operators with different indices k (acting on different
““particles™) will commute.

The hamiltonian that we consider has the following form

N p N
# =3 T0-12N) ¥ ¥ VD), (1)

JS=1 k. 1=1

where we assume that the operators V; (k, ) are separable, i.e. they can be written
as a product of two hermitean operators

Ve (k, 1) = Vyk) VAD). (2
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The hamiltonian is defined on H. It can be written as

N » N 2
# =Y T(k)— (1[2N) ¥ (Z V,(k)) 2 3)
k=1 S=1 \k=1

Each Hilbert space H, can be interpreted to be the space of states of a particle k.
In this terminology the product space H is the space of N-particle states, T'(k) is
a one-particle operator and V; (k, ) is a separable interaction between k and /.
Here it is assumed that the unit operator 7(k) in the space H, and the opera-
tors Vy(k), f = 1, ..., p, are linearly independent. This is not a serious restriction
since, if there is a linear relation between these operators, a suitable linear trans-
formation will lead again to a hamiltonian of form (3), however, with p — 1
instead of p quadratic interaction terms.
The partition function of the system is given by

Zy=Tre ", 4)

where the trace is to be taken over a basis in the product space H. The free energy
per particle is given by

fv = —(1/N) ksT In Zy. (5)

In the present paper we shall give a rigorous calculation of the free energy per
particle in the thermodynamic limit:

f= iim Iy (6)
It will turn out that fis equal to the free energy per particle f, Which would be
obtained after applying the molecular-field approximation to the hamiltonian 5.
In addition grand-canonical ensembles can be treated as we shall see shortly.
(i) A simple example of a hamiltonian like (1) is a system consisting of N spins
S with equivalent-neighbour interactions, independent of the spins k and /. This
interaction can be an anisotropic ferromagnetic Heisenberg interaction [for anti-
ferromagnetic interactions we do not get a hamiltonian of form (3) with hermitean
operators V (k)]

—(1/2N) Y (J, S¢St + J>SYS] + J3SkSt),
k, I
or a biquadratic exchange interaction®?)
—(KJ2N) Z‘ (S¢)? (D)2,
k.

or even a more complicated expression. The one-particle operator T'(k) can be
any spin operator, for instance a Zeeman interaction with a magnetic field which
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may depend on the site k, ) , H,S; or a zero-field splitting term Y, D(S5)?, with
coefficients that may depend on k as well. In this case Zy is the usual canonical
partition function.

(if) Other examples can be found among fermion systems. Let the possible one-
fermion states be divided into groups k, where each group k contains a finite
number of one-fermion states aI, 0>, g =1,..., /%, where |[0,) is the vacuum
state of the Hilbert space H,. A basis for the 2** dimensional space H, is given by

[T (a)™ 04, (7)

where all numbers #n,, can have the values 0 or 1. This is consistent with the
terminology as described just after eq. (3), if we consider the states (7) as the one-
particle states of a particle k.

The set of operators # satisfying the condition stated in the discussion follow-
ing (1), contains as hamiltonians

H = % T(k) — (1]2N) Y. 3 Vdk) V,(1),
T S

where 7'(k) and V,(k) are assumed to be polynomials in the operators ay, and aj,
such that each term contains an even number of creation and annihilation operators,
as is usually the case. This condition is sufficient to ensure that operators 7'(k)
and V,(k) acting on different particles commute. As an example we consider

# =YL~ p g ~ (12N) 3 (T ViR

Here each group & has the same number of one-electron states and the one-electron
energy &, within each group k is taken to be constant; u is the chemical potential.
Vy is assumed to be nonzero and independent of k, if &, belongs to an interval

lex — u| < hw. (8)

For other values of k, ¥, is assumed to be zero. This implies that the interaction
between k and / is independent of k and / and nonzero if lex —'u| < ko, and
le; = u| < hw. In this case Tr e "#* is the grand-canonical partition function and
the thermodynamic limit is obtained by letting the volume £ (which is proportional
to the number N of groups k satisfying eq. (8)) tend to co.

A special example is the reduced hamiltonian in the BCS theory.

‘)f = g(ek —. ,u) (altfakr + atkla_kl)

~(V/4N)( Y (a,t,a*_u-i-a_“an))z

|ey—=u| <ho
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—(V/4N) ( Z i(aI1a"_u = a—klald‘))z

leg—pl <ho

i ;(Ek — u) (aI;an o atkla—kl) DY alra'-k;a-z;an-

p—ho<eg,
g <p+ho

Here A", = 2 for each k. The Hilbert space H, is constructed from the basis states
[0, aI; [0k, at-u 0> and aItaf_“ [0k -

After these examples we shall give in the following sections an explicit calculation
of the free energy per particle for the general class of systems defined by the
hamiltonian (3). Here it may be important to note that nothing has been assumed
on the commutation properties of the operators 7'(k) and V(k). In the special case
that these operators commute, the calculation is rather easy. This case will be
treated in section 3. The more complicated situation of noncommuting operators
constitutes the main part of the present paper.

3. Commuting operators. In this section we calculate the free energy per particle
under the assumption that all the operators 7'(k) and V,(k) commute. In that case
the result is simple. Applying a well-known integral representation (cf., e.g., ref. 33)

o

eAz A :-} J' dxe—xl CZXA, (9)

-0

to any of the operators 4 = Y ; V,(k) (f = 1, ..., p), and after changing to inte-
gration variables &, = (38N)"* x,, the operator e ?%* can be written as

e = (BN|2)*" [ diexp(~4BNE -Qexp (=fY # (k.8)), (10)
where
H (k&) = T(k) — &+ V(k). (11)

Here & and V are p-dimensional vectors with components Gy by By v ves Kops
respectively, and

Ev Wi BV e BV, (12)

is the scalar product; d¢ denotes the p-dimensional volume element d&, -+ dé,.
From the fact that operators acting on different particles commute, i.e., (A (k,E),
H# (1,&)] = 0 if k # [ it follows that

Tr exp (—5; # (k, é)) = [T trx {exp [-8# (k, O]} (13)
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where Tr is the trace over the product space and tr, the trace over the one-particle
space H,. Using (13) we can write for the partition function

Z = (BN2m)* [ dEe M@,
where

G@) =3p¢-¢ - (1/N)§1n try exp [—B# (k,$)]. (15)

The integral can now be treated by Laplace’s method. Let G(&) have an absolute
minimum for & = &°, then

P

Z = (BN27)* f dE 6N oxp (—M’(é — &) - &0): 226 ) (16)
0& 0&

-m

Noting that the second derivatives 8>G/o€ 0 are finite, and transforming back to
the integration variables x, = (38N)* &, it can be shown that

Z=e N, (17)

where C is a finite constant independent of N. In the thermodynamic limit the
free energy per particle is then given by

S=p7"'G¢), (18)

and §° is the value of & such that G(&) has an absolute minimum.

4. An integral representation. We now consider the situation of noncommuting
operators. This case is certainly more difficult to handle, although the final result
will be the same. In the first place we have in the expression for e “#*, an exponen-
tial operator containing in the exponent a sum of squares of one-particle operators.
In order to be able to apply the integral trick, the exponent of the sum should be
replaced by a product of exponential operators.

In the case of noncommuting operators this can be done using a straightforward
generalization of the Lie-Trotter formula

exp(d, + 4; + -« + 4,) = lim [exp (A—

n—=+x




¢f. for instance refs. 28, 29 for the special case of two operators™. Here for the
moment the number of particles, ¥, is assumed to be finite so that all operators
Ay, ..., A, act on a finite-dimensional Hilbert space H. The thermodynamic limit
will be taken at the end of the calculation (after the limit #n — o0).

An alternative way of dealing with the case of noncommuting operators is to
introduce ordering parameters as was done first by Feynman®?). Then one treats
all operators as if they commute, keeping track of the correct order by using an
ordering operator. Finally the so-called ‘‘disentangling process” removes the
parameters again. This method has been used by Miihlschlegel and also by other
authors in different problems (e.g., Schrieffer®).

In the present paper we prefer to use Trotter’s formula, one of the reasons being
that one sees clearly how certain commutators between operators lead in the free
energy to a term which remains finite for large values of the number of particles.
This term can only be neglected in the thermodynamic limit. A more detailed dis-
cussion will be given later in this section.

Using eq. (19) the operator ¢ ?* can be written

e o[ g + ]

Applying the integral trick (9) this can be changed into

*pn .
e = lim (ﬁ—N) [ J d& exp (— ﬂ.’;’ -(‘)
n=w \ 270 2n

wewp (-L ¥ T(k)) [ow (563 Vf(k))] . 20)
n'E 5 n Uk
In order to handle the integral it is convenient to replace the exponential factors
B B ey vk
€Xp | —— Z T'(k) H exp &y Z k) |
n k J n k

by one exponential factor

n k

exp [—ﬁ- INUCERAZ (k))]. 1)

* Dr, J. Vlieger kindly pointed out to us that the Trotter formula had already been applied
in 1955, ¢f. ref. 34.
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At first sight the validity of this procedure seems to raise no doubts since the
commutators between the operators (8/n) ) , T'(k) and (8/n) Y, V;(k) are of order
f?/n* and therefore seem to be negligible in the limit 7 — co. In appendix A it will
be shown that the contribution of such commutators to the integral amounts to
a constant factor which can be neglected in the calculation of the free energy per
particle in the thermodynamic limit. So in this limit we can make the replacement
(21). In the remaining formulae for ¢ “?* and the partition function finite values
of n and N occur. In the notation it will henceforth be implied that two limits have
to be taken: first the limit » — oo, ¢f. eq. (20), and afterwards the thermodynamic
limit. (This is necessary since in view of the replacement (21) the results would be
incorrect for finite N.)

As a result we write

ton v )
e h (ﬁN_) [ f dé exp (—ﬁ—Né 'f) exp (—EZ H (/‘3‘3))] ’
27n 2n IR X

-0

where # (k,&§) = T(k) — &+ V(k) as in (11), and where the vector notation,
¢f. (11) and (12), has been used.
The partition function can now be expressed in terms of a pn-fold integral

Z=Tre_p"=( f fnd“
27n i=1

X exp <—l;— Z & - )Tr ‘[:[1 k[;[l'exp <—ﬁf(k.g”,)).

n
(23)

Here we used that operators acting on different particles commute, so
[ (k. Q). # (O =0 if k#l (24)

In fact, o# (k, &) and # (I, &), for k # I, commute irrespective of §; and &;.
From this one easily checks that, ¢f. eq. (13) in section 3,

Tr ‘]Jl ]:[ exp (—% H (k, é,)) l_[ try n exp <—£ X (k& > (25)

i=1 4

Here Tr is the trace over the product space H and tr, the trace over the one-
particle space H,.

After inserting (25) into (23) we obtain the following integral representation for
the partition function:

in 0o
Z = <f_]v_> '[ j.ndéle-hlc(m“- (26)
n ] i
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where
G({él}) o G(:ls"')én)
i o T = p
= Y. & Y Intr, [ [] exp ( —— # (k. &) ) )- 27
2n i=1 N k=1 i=1

= n
Note that in general G({¢,}) will not be real though Z, of course, is. So we can

write

G = G, +iG,, (28)

where

G, iz&% - LZln tr, [ ] exp (—E .;f’(k,t‘;’,))'
2n T N % i n

G, = s Yy arg (trkﬂexp (—ﬁ H (k, §‘)>>.
N % 1 n

In the following sections we consider the integral (26) in more detail. If all
operators commute the situation is simple: in section 3 it was shown that the
free energy per particle is given by

=86,

where G(&) has been defined by (15), and &° is the value of &€ such that G(&) has
an absolute minimum for & = &°.

In the present case the situation is more complicated. We have an integration
over pn variables and the limit n — oo has to be taken. In principle this could be
done by using the saddle-point method, which includes in particular the calculation
of the determinant of a pn X pn matrix consisting of second derivatives.

In the present paper we proceed by deriving an upper and a lower bound for
the free energy per particle, viz.

S < B~'Go, (29a)
fZ ﬂ_lGO, (29b)

where G, is the value of the real part G, of the function G at the absolute minimum
of G,.

The proof of (29a) is simple using a variational type of argument based on the
Bogoliubov inequality. This will be discussed in section 6.
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The derivation of the lower bound, i.e. eq. (29b), is much harder. We use the
inequality

J J.I-[ dé‘e—N(G’+IGZ)
i
= [+ [T d& e ¥ cos NG, < [+ [[] d& e~ (30)
i i

and apply Laplace’s method to the right-hand side. In order to be able to do so
we need some properties of the minimum G, of the function G,. These will be
derived in section 5.

As a result of Laplace’s method we find that the partition function is equal to
¢ V% multiplied essentially by the inverse square root of the determinant of
second derivatives of G, in the absolute minimum. In section 7 it will be shown
that this determinant does not give a contribution to the free energy per particle
in the thermodynamic limit.

5. Investigation of the absolute minimum of G, . In this section we shall investi-
gate the minimum of G, . First it will be shown that in the absolute minimum
&y =Y (independent of 7). (31)

Eq. (31) implies that in the minimum we also have

Gim0, (32a)
(a_c_) 0 (32b)
Eg, min

(this will be shown at the end of this section).

Eq. (32) ensures that the phase of the integrand is stationary in the absolute
minimum of G,. If this property would not be satisfied, the absolute minimum
of G, would give no contribution to the integral because of rapid phase variations.

Egs. (32a) and (32b), however, will not be used explicitly in the proof that
f =BGy, cf. (29).

Eq. (31) would be trivial if G,({,}) would be of the form G, = (1/n) 3, g(&)).
This, however, is not the case; instead we shall prove that there exists a function

»({&:}) = (1/n) .Z, P&, (33)
satisfying the following properties:
a) G, =y, (34a)
b) G,=vp iff* e =4, independent of i, for arbitrary &. (34b)

* If, and only if.
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From (33) we immediately see that there is at least one point§, = &% i=1,...,n,
where y has an absolute minimum. Eq. (31) then follows quite easily as we shall
show after proving (34a) and (34b).

The function p is obtained by using the following upper bound for the trace
of a matrix product which is essentially a generalization of Hélder’s inequality to
operators:

Let A,,..., A, be arbitrary m x m positive-definite hermitean matrices, and
6,, ..., 0, arbitrary positive numbers satisfying ) 7=, 6;' = 1. Then

tr Ay - A, < [ @r 479", (35)
i=1

The equality sign holds iff A" = 4,4} for all i, j, where A, are arbitrary con-
stants. A simple proof of egs. (35) and (36) has been given in ref. 31. (36)
Using (35) in the special case that 6, = n, i = 1, ..., n, we find

In |tr f] exp (—ﬁ .)f(k.i,)) < b In <]:I try exp [—f# (k,g“,)]). (37)
i=1 n n =1

We now define the function g by

n ] N

(&) Y & Y Y Intr,exp [-AF (k. &)]. (38)

"n =1 Nn k=1 (=1

It is easy to show that y has the desired properties: a) from (28), (37) and (38)
we have G, = y; b) (36) shows that G, = y iff

exp [—H (k,§)] = Ay exp [—pH (K, &),

K (k&) = H (k. &) + eifk),
where ¢;,(k) is a c-number. Us'ing (10), eq. (39) reduces to
— &) * V(k) = e, fk).
Since, in view of our discussion in section 2, the operators 7(k) and V(k) can be

assumed to be linearly independent, we have &, = §,i = 1,..., n, iff the equality
sign holds. In order to derive (31), we note that y indeed can be written as

v({&}) = (1/n) ‘; (&),




if we define

$E) = 14p& ¢ — (1/1\’)“2l In try exp [-B# (k. S)]. (40)

Here we have to consider two different cases:

1) There is only one point £° where ¢ assumes its absolute minimum G,. From
(33) it follows that y({&,}) has an absolute minimum if §;, = &° (i = 1, ..., n). But
then on behalf of (34a) and (34b), also the absolute minimum of G,({&}) is
reached at &, = &° (i = 1, ..., n) and this minimum is equal to G,.

2) If there are more points, say &, ..., &", where ¢(&) is absolutely minimal,
then y({¢,}) reaches its absolute minimum in %" points, viz. those points where
each & (i = 1, ..., n) can be arbitrarily chosen from the set &', ..., &". But from
(34b) we see that only in » points [if all §; are equal to the same &™ (r = 1, ...,7)],
G, = y. So we find that G,({,}) is absolutely minimal if all § are equal to the
same & (r = 1, ...,%). This proves (31).

In the present paper it is assumed that the function ¢(&) can only have a finite
set of isolated absolute minima. In principie, however, it is possible that ¢(&) has
a continuous curve of absolute minima in & space. Such a situation may be due
to a symmetry property of the hamiltonian. In addition there may be difficulties
using the Laplace method in order to derive a lower bound on the free energy.

In order to avoid these difficulties one could introduce an extra *‘anisotropy”
term in the hamiltonian, which destroys the symmetry in the hamiltonian and
which removes the ambiguity in the £°. (The introduction of such an ‘‘anisotropy”
term is not unusual in a molecular-field treatment of the Heisenberg hamiltonian
in the absence of a magnetic field. The assumption of a preferred direction for the
spontaneous magnetization is equivalent to the introduction of an infinitesimal
magnetic field.)

Then the free energy in the presence of the “‘anisotropy” term can be calculated
exactly and it is assumed that the free energy in the symmetric case is obtained
by considering the limiting case that the anisotropy term tends to zero, after the
thermodynamic limit has been taken.

The extrema of the analytic function ¢(&) are given by d¢/é& = 0. By using the
identity

B
T‘?_e"ﬂd’ R e—ﬁ:!’J’dTetxxje—rx’ (41)
(’./'j 0
for an arbitrary operator J# of the form # = —) ; A,0¢,, it follows that

2 _ e L3 | ftrexp (B (e, Q1
& N % i
X I, (e—ﬂ.x'(k.c)fdr e\'x k. &) V(k) e—rx' (k.{))]. (42)
0

43



Hence in the extrema we have, using the cyclic invariance of the trace:

& = UM TV EOx, o
where
{A)y = tr (4 e"""“‘-"’))/trke-ﬂﬂk,e%_ 4

From the preceding discussion we conclude that G,({¢,}) reaches its absolute
minimum in the points & = &° (i = 1, ..., n) where &° is such that ¢(&) has an
absolute minimum for & = &°,

We finally show that G, = 0 and 6G,/d&; = 0 inthe absolute minimum [egs. (32a)
and (32b)]. If &; = &° then

G=1pE°)’* - (I/N)gln try exp [—BH# (k,&°)],

and this is a real quantity so that G, = 0 if &, = &°. In addition, using again (41)
and the cyclic invariance of the trace

OGN, Nt g Uit ny
(a§l>mln né nN ;< ()>k

This again is real (it is even zero), so in particular dG,/d¢, = 0 at the absolute
minimum.

6. An upper bound for the free energy. We derive an upper bound for the free
energy using a variational type of argument based on Bogoliubov’s inequality.
We write the hamiltonian J# as

H = HoQ) + H#,(8), (45)
where

%O(E)=§T(k)—¢-;V(k)+§N§-¢, (46)
and

#1(&) = —(1/2N) (‘f‘ Vik) - Nf)’- 47)

Here a set (&,, ..., &,) of arbitrary real parameters has becn introduced. From (47)
it follows that

(H1)x, < 0. (48)
Here use has been made of the notation

(A>pg = TrAe *®[Tre~?", (49)
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Now Bogoliubov’s inequality3®) states that for any two hermitean operators 3,
and 5, we have

F[”o+-#:]5F[-#o]+<3fl>xos (50)
where
F[A] = =~ 'Intre 4, (51)

From (48) and (50) we see that F[#] < F [#(&)] for all &, hence
F[#] < F[#,(&°)], (52)

where ¢° is such that F [#4(£)] has an absolute minimum for & = &% Using (51),
(46) and (11) we find

F[#o@)] = INE-& - p! g Intry exp [-Bo# (k,&)] = Np~'¢ (&), (53)

where ¢(&) has been defined in (40). Hence from (52) and (53) we have F[#]
< NB~'G,, where G, is the absolute minimum value of (&), reached at & = &£°,
This implies in particular eq. (43) and it follows that the upper bound N~'G,
is equal to the free energy which can be calculated from the “‘molecular-field
hamiltonian”

1 : S i Ny
fm,=;r<k)-;<g V(k)> Sl = @ Vw> ‘ (54)

where (3", ¥(k)> can be found from the implicit equation

<g V(k)> =2 {"" xp [‘% (T(k) o % <{V_ V(k)> . V(k))]}_1

x tr, V(k) exp [—ﬂ (T(k) = iN< }k: V(k)> - V(k) )] (55)

n
The free energy obtained from #,, is the free energy that can be obtained from

the hamiltonian 2 in a variational formulation of the molecular-field approxi-
mation, ¢f. ref. 36 for some specific examples.

7. A lower bound for the free energy. In order to derive a lower bound for the
free energy we apply Laplace’s method to the integral

[ JTTdg e~ @D reee (30)].
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We expand G, in the neighbourhood of the absolute minimum of G, where
& =& @G=1,...,n). Then

: o [ %G, !
Gi=Go+3 ) &—-8)(— (€ —¢°)- (56)
fJ=1 oG 05_] min
Consider
F=-f"'InZ

= NB~'Go — f~'In ((%]Y_)*P"J‘ w J‘ndéle_N(G—GO)>

n
( +pn
> N~ 'Go—f~'In ((-ﬁ—N—> JH dg’,e“““"c"’). (57)
i

27n

Substituting (56) in (57) we have

pn ™
F>Nﬂ”‘Go——ﬂ"ln[<ﬁN> I---jndé,
27n . i
X exp (—iNz(c. &) (—‘3—6—) &)= '°))]
1J Cé[ Uéj min

_ nR-1 o BN \* (2z\*" [n pn y
= Np~'Go — B ln[<_2_7_:_) (T/) (F) — *]

= NB~'Go + (1/28) Indet H, (58)

where (8/n) H denotes the pn x pn matrix of second derivatives of G,. Use has
been made of the relation

[ e [dxy - dx,exp (1 T Muxix) = @2r)*" (det M)™2. (59)
o i

At this stage it might be useful to point out that a direct calculation of the integral
I= [e "% could be possible by expanding the complex function G up to the
second derivatives at the absolute minimum. However, it should be noted that
the validity of eq. (59) in the case that the matrix M is related to the second deriv-
atives of G, requires that the matrix of the second derivatives of the real part, G,,
of G be positive definite, ¢f. ref. 37. In addition it is necessary that in the limit
n - oo the determinant of H remains finite. Hence in order to justify a direct
calculation of I we have to go through all the steps of the calculation of
I, = [e~©7%), The latter calculation provides, as we shall see, the appropriate
lower bound to the free energy per particle in the thermodynamic limit. So a
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detailed calculation of 7 can be useful if one is interested in the corrections to the
free energy due to a finite value of N. We now proceed with the calculation of 7, .

An explicit calculation of the second derivatives of G, (that is the elements of
matrix H) is given in appendix B. The result can be written as

H = 1, + (Aln) + (B/n?), (60)

where 17, is the pn x pn unit matrix with elements Or0i; (,g=1,...,pand i, j
= 1,...,n); A and B are pn x pn matrices with elements which depend on n and
are at most of order unity. The elements A y1oy of the matrix A [which are of @( 1)]
are given by

Apyy = _(ﬂ/N)kZ {trexp [-B# (k, &)} ¥ Vv our

x exp [—3f (h, + hg)l cosh [B (4 — | — il/n) (h, — h,)]
2 (ﬁ/N)g<Vf><Va>' (61)

The subscripts p* and ¢ indicate the eigenstates of the hamiltonian # (k, s
h, and h, the corresponding eigenvalues; further Vr,q 18 the matrix element of ¥,(k)
between the eigenstates p and q. [In eq. (61) the k dependence of ¥, and V,, h, and
hq is not shown explicitly.] The elements of the matrix B are bounded (in fact for
i # J these elements are of order 1/n, while for i = J, they are of order unity).
The precise expressions are irrelevant in the limit 7 — oo in view of the following
lemma given by Lenard?®):

Let P,, and Q,, be m x m matrices such that the elements Prs(m) of P, and gq,,(m)
of Q,, obey the relations lim,,_, o, p,(m) m = constant (depending on r and s) and
lim,, ., » g,(m) m3? = 0, uniformly in the limit 7 — o0 ; then

lim [det (7, + P, + Q,) — det (1, + P.)] = 0. (62)

m-+w
In our case we have a pn x pn matrix H [see (60)] and the lemma ensures that

lim det H = lim det (7, + Aln). (63)

n—+wo n-+o

The matrix elements A4,,,, have been defined for 1 < i,j < n. We note that they
have the following properties:

() Ay = Agisys
(1) Appy = Apjors

* The label p which denotes here the eigenstates of the hamiltonian ¢ (k, £°) should not be
confused with the number p of independent separable interactions in the hamiltonian >,
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(iii) A4,y depends only on j — i. (64)
So Ay = Agg, j-15
where A, is defined for —n + 1<i<n-1;

(iV) Aypn—i = Agg.1 = Agg, 1 = Agg, -n+1 for Isisn=1;

where in the second step use has been made of (ji). These properties can be verified
directly from (61); they also follow from the corresponding properties of the
matrix elements T, in appendix B. Properties (iii) and (iv) show that A is a sym-
metric cyclic matrix with respect to the indices i and j. They imply that the matrix A
which is a pn x pn matrix, can be reduced by a unitary transformation to n blocks
of p x p matrices D(x) where x runs from 0 to n — 1. This reduction proceeds in
complete analogy to the derivation of the dynamical matrix in the theory of lattice
vibrations.

The eigenvalues of the matrix —A/n are the eigenvalues A(x) forz =0, 1, ...,
n—1andf=1,...,p, of the matrices D(x) with elements

n-1

D;(x) = -—(l/n)l_zo Ay, 5 €Xp (27ijx[n). (65)

(This will be derived in more detail in appendix C.)
The determinant is now given by

n-1 n—1
det (1,, + An) = [Io I;I [1 = A09] = 130 det [1, — D(2)] (66)

and for the free energy we have the inequality

F > NB~'Go, + (1/2p) lim In det H

n-+w

n—-1

= NB~'Go + (1/2f) lim ) Indet [1, — D(x)]. (67)
0

Substituting (61) into (65), we find

Dy, (,m) = — (ﬂ/N); CVAKYY {Vo(k))¥y. 0
* (l/N) Z ((trk e—ﬂl(k' CO))_l Z preVﬂw e._ X%
k p.a

(B0 %, ' cosh (8 & = jin) (hy ~ ). (68)
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Performing the summation over j, one finds

n—1
= Y ¥ cosh [B (3 — jin) (h, — hy)]
n Jj=o
n, i sinh [48 (h, — h,)] sinh [(8/n) (h, — h,) (69)
2n  sin? (nx/n) + sinh? (B)2n) (h, — h,)
which reduces to
2}32 sinh [%ﬂ (hp 5 hq)] (hD = ha) (70)

4n? sin? (zxfn) + 2 (h, — hy)*’

in the limit » —» 0. Since D(%) = D (n — %), the terms with % and n — » will give
equal contributions to the r.h.s. of (67). Hence in studying the convergence of the
sum we do not have to take into account terms with x > In. Using the inequality

sin x/x > 2/= on [0, 4=], (71)

we see on substituting (70) into (68), that the terms with % < in of D (x, n) are
of order 1/x*. This implies in particular that for large » (< 4n where n —» ) we
have

det [T, — D(%,n)] = 1 + 0 (1/x?). (72)

If now D(x) is such that all eigenvalues are smaller than 1, the second term in
the r.h.s. of (67) reduces to a value independent of N since a series of the form
Y. ln(l + 1/x?) is convergent. In the thermodynamic limit this leads to the
following lower bound for the free energy per particle.

Sz p~'G,. (73)

Combining this result with the upper bound derived in section 6, we find that the
free energy per particle is given by

S =B""G,. (74)

However, for small #, especially » = 0, one or more of the eigenvalues of D(x)
may become 1 (depending on the parameters of the problem, such as temperature,
interaction strength). The divergence in (67) that results from it, is closely related
to the onset of a phase transition. This relation with phase transitions will be
discussed in somewhat greater detail in the next section.
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Remark. As we have seen, the corrections to the free energy due to the second
term on the r.h.s. of (67) are essentially independent of N. They are, however, in
general not the only corrections of this magnitude. Referring to the discussion
following eq. (21) we note that nonzero commutators between the different
operators V,(k),f = 1, ..., p,lead to contributions of the same order of magnitude.
On the other hand, if there is only one operator V (k) (so p = 1), the corrections
to the free energy that are finite if N tends to infinity, can indeed be calculated by
evaluating the second term of the r.h.s. of (67). Note that in this case all derivatives
0*G|ok, &, are real, which can be seen from egs. (B.3) and (B.5) by omitting the
real-part symbol Re, so that automatically the contribution of the second derivatives
of G at the absolute minimum is equal to the contribution of the second derivatives
of G,.

8. Discussion. We investigate in this section somewhat more closely the relation-
ship between the solutions of the molecular-field equations (43) and transitions
between two of them on one hand, and the properties of the eigenvalues of the
matrix formed by the second derivatives of G; on the other hand.

We assume that for each f8 there is a finite number of solutions of the molecular-
field equations

¢ = (l/N); (VK. (75)

These solutions are denoted by E™(f), r = 1, 2, ... For each of them we define
the function

FO(f) = NG, (§7(B), B). (76)

In this notation it is understood that & = &, independent of i. In the neighbour-
hood of each solution &‘” we expand G, .

G, = G3’ + (B/2n) }: x50x8) (844015 + AFigsIn), (77)

where x4} = &, — £9 [cf. eqs. (60) and (61)). After diagonalizing A, we can
write this as

G, = G3’ + (B/2n) z (79601 [1 = AF(x)], (78)

where A(x) are the eigenvalues of —A®/n (¢f. appendix C), and the 7)) are
suitable linear combinations of the components of x‘”, which can be considered
as normal coordinates.

The eigenvalues 4, (, &) can of course be defined for arbitrary points &; = &,
independent of 7. In this notation 4, (x, &) = A{’(). We now consider for each r
the maximum eigenvalue 27, = max; , A7(%) = (Ay(&™).
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We have the following possibilities: (i) if 2%, < 1, G, has a minimum at &;
(ii) if Afax > 1, G, has not a minimum at &®; while (i) if 25 = 1, no definite
statement can be made.

The maximum eigenvalue A7,,(f) will be a continuous function of # and it will
be assumed that it has the value 1 only in a discrete set of points. The existence
of an absolute minimum of G, for each # implies that for each p there exists at

least one r such that
FLan Bl (79)

We can now divide the set of all points £ into three sets. (a) Those # for which
252:(B) = 1 for at least one value of r; these points form a discrete set B. (b) Those
f# for which 253,(B) < 1 for only one r, and A(B) # 1 for all 5. Then in ™ we
have the only and therefore absolute minimum of G, so that the free energy is
given by F(f). From the continuity of AZ)(B) and F*” it follows that also in a
neighbourhood of such a temperature 3 the free energy is given by F™. (c) Those
where A5.(8) < 1 for several values of r, while at the same time AS2(B) # 1 for
all 5. Then the free energy is equal to the lowest value of FOUB), ' =y 25 5k

A phase transition will occur at a point f. if for B < . and # > f. the free
energy F will be given by two different branches which we denote by F™ and
F®, respectively. Of course we have FY(B.) = FA(B,). Two situations may occur
at a transition point

i) V() #E2(B), (80a)
(i) (B = EX(B.). (80b)

In order to discuss these two possibilities we note that &”(p) can be expressed
as a derivative of the function F. For this purpose we replace the one-particle
operator 7'(k) in the original hamiltonian 3¢ by

T(k,e) =T(k) + &- V(k), (81)

where the operators ¥, (k) have been introduced in (2) and T'(k) is independent
of the real parameters &. Then the solutions & of the molecular-field equations
and the corresponding functions F depend on &.

Now clearly
1 oF™m 1 0T(k. 5) (r) 1
—_ = — — = e Vik (r=)=..(’=), 82
N(58)¢=o Nzk:< e >:=o NI;(())“’ Se=0 (82)
where

(A(k)>:r=)o = tr, A, exp [_ﬂ.;*’ (k, é(r))]-
try exp [—B# (k,&™)]
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Hence the parameters & " can be considered as derivatives of F” after introducing
an infinitesimal one-particle operator & « V(k).

Such a one-particle operator can be interpreted as a coupling of particle & with
external fields &,, €5, ..., &5

A special example is given by the Zeeman term in an external field eV (k)
— — HSZ. In this case & is the magnetization per particle § = —(1/N) (CF|¢H).

We now consider the two cases (80a) and (80b) in more detail.
(i) Since not all the components of & are continuous at the transition, at least one
of the derivatives of the free energy F with respect to the parameters &;, €. ..., &
will have a discontinuity, so that there is a first-order phase transition.

(i) §V(B) = &'(B) = & (83)

Since all the derivatives of F are now continuous we have a 2nd-order or higher-
order phase transition. We prove that in such a case B. € B, that is at least one of
the maximum eigenvalues A5, is equal to 1. Suppose 202 (B.) < 1. Then there
exists a number 8 > 0 such that A84(B) < 1, for B, < f < B + 9, i.e. G,(§) has
a minimum at & = EX(B).

For f in this interval F is given by F@ 50 there is also a minimum at §‘*(f).
After parametrizing the straight line that connects EM(B) and £¥(f) by a para-
meter 1. we see that G,, considered as a function of #, has a maximum at some
point 0 < 7 < 1. Then it can be seen that in the point { = EX(B) + to [EP(P)
— EM(B)] we have: Ay, (§) = 1, where Apax(€) = max, , A; (%, §). Since such a {
can be found for all 8 with f. < p < B. + 8, we can construct a path in ¢ space
on which we have 4,,,,(£) = 1.

In particular after taking the limit f# — f;, we have

Amax(8e) = 1.
In addition we know that 4,,.,(&.) < 1. Hence
@) = 1. (84)

As an example of the relation between second-order phase transitions and the
occurrence of an eigenvalue 1, we consider the special situation that

tr, V(k)e ?T® =0, forall B. (85)

This implies that & = 0 is always a solution (to be denoted by a superscript 1)
of the molecular-field equations (75). We investigate the stability of this solution.
First of all we prove that for & = 0 we have

A = max max 2(x) = max A5 (0). (86)
% J J




Proof. From (68) and (85) we have

1 .
; DS)(x) 2}z, = - g (try e PT¢N)—1 ¥ 2D (p, q.%),
g9

rq

; zVy.,

where z, are arbitrary complex numbers,
The function @ (p, ¢, %) is nonnegative, while also @ (p, g, x) < D (p, q,0).
Using the notation [|z]|? = Y, |z,|?, we have

max 2 () = max Y. D) 23z, = ¥ DY) 28,
I llzll=1 rsg fa

< ) D3 J(0) 27z, < max ¥ D$(0) z}z, = max 2$0),
1o llzll=1 sg I
whence (86) follows.

Here Z, are the components of the eigenvector of D‘V(x) that corresponds to
the eigenvalue max A5(x). In the limit 8 — 0, all matrix elements D, ,(x) tend to 0,
so that G < 1, i.e., & = 0 is a stable solution.

Define now f. as the highest temperature such that D (0, p) has an eigen-
value 1. Then on account of (86) f, is also the highest temperature for which
e = 1. We assume that A% is neither degenerate, nor has a maximum at § = 3,;
and also that there are no solutions with & % 0 for P < B,

Consider on the other hand the solution of the molecular-field equations for
small values of § different from 0. Expanding the r.h.s. of (75) and writing ¢ = Aa
with 4 — 0, one finds as a condition for the temperature below which there exists

a solution & # 0:

a=a-(1/N)Y (tr e ?T®)-1
k
]
X ll'k (V(k) e—ﬂT(k)J'dx e::7‘(k) V(k)e—x‘l'(k)) =gq- A(ﬂ), (87)
0

i.e. the matrix A(f) should have an eigenvalue 1.

A straightforward evaluation of the integral in A(f), using a representation in
which T'(k) = # (k, 0) is diagonal, shows that [cf. (68)] A(f) = D™ (0, B). Now
clearly g, fulfils (87). Hence it follows that at this temperature a second-order
transition will take place such that the & values at the absolute minimum of the
function G, change from 0 for # < f. to values # 0 for p > B.. A very simple
and well-known illustration of this behaviour is provided by the Ising model with
equivalent-neighbour interactions given by the hamiltonian # = —(J/2N) Q. xor)?.
The molecular-field equations are ¢ = tanh BJo (0 = J~*); and the eigenvalue
A(%) of the 1 x 1 matrix D(x): A,(x) = D(x) = BJ0,, 0 (1 — 6%). One sees that
above the critical temperature, given by f.J = 1, the solution ¢ = 0 will be stable
whereas below this temperature 24(0) > 1 so that this solution becomes unstable.
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However, below 7. there is a stable solution with ¢ # 0. The correction term
in (67) is given by (1/28) In [1 — 40(0)] for T > T; and by (1/2) In [1 — A,(0)],
o # 0, for T < T,, which shows that at T, where both A’s are 1, this correction
term diverges (¢f. ref. 2).

The point that the expansion we used leads to difficulties at the critical temper-
ature, could have been anticipated: we may refer for instance to the work of
Siegert and Vezzetti”).

In this paper we have considered the ‘“ferromagnetic” case: separable operators
with negative coefficients [¢f. (31)]. In a following paper®?), we deal with the
““antiferromagnetic” case: separable operators with positive coefficients. Also
some more explicit examples will be investigated.
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APPENDIX A

Consider eq. (20) for the operator e % for finite values of N; in agreement

with the discussion on the notation below (21) also n is taken to be large but finite.
The operator can be written

@

dpn i
e hr (ﬂ_N.) [ [ g exp (_ﬁ’ia -c) exp(—iz mk,é)) A(a:)] ,
27n o, 2n n 'k

A.l
where (at)

H (k, &) = Tk) — &+ V(k)
and
A(&) = exp <-§- 2“: ¥ (k, 6)) exp (——% ; T(k)) ];[ exp (% & ; V,(k)).
(A.2)

In order to get an operator which unlike 4(&) no longer depends on &, we write (A.1)
in the following manner:

Ml - (M_)hn {[Jdé exp (._ﬁ_N & §> exp (_.’i Y K (k, (5))] ff}",
27n 2n n'k ,

(A.3)




where we have defined:

A= [fdéexp (—fi—i:/é -é) exp (—’EI; # (k, é)):l_
x J'déexp(—’;—’vé-:) exp (—ﬁz # (k, «E)) Q). (A4)
n n

Remembering its definition in (A.2) we can expand the operator A(¢) in a power
series in 1/n and §. Obviously the zeroth-order term is 1, while there is no term
proportional to 1/n.

It is also clear from the way in which ¢ occurs, that a term in the expansion
with r factors £, contains at least a factor n=*. So we have

AQ) =1+ Y 4,49, (A.5)
s22 rss

where A,, is the contribution of the terms that contain s factors I/n and r factors &,
More explicitly

Ars(gu) =J Z (I/n’) 5-’1 »es EI’B.(;:...;’.
A

where the B’s are polynomials in products of the operators ) , 7(k) and >« Vilk).
Inserting the expansion (A.5) into the definition of 4. we have

A=1+Y Y4, (A.6)

s22 r<s

where A4, is the contribution due to A, in (A.4). It is not difficult to estimate the
order of magnitude in 1/n of a particular term A,,. For that purpose we note that
the appropriate integration variables in eq. (A.1) are given by 5 = (BN/2n)* &, so
that each factor & contributes a factor n*. Hence the order of magnitude of a
particular term A, is given by n~*+7/2,

Since we must take the nth power of the expansion in order to get e ¥, the
only terms of A4, that can give a contribution in the limit n — oo, are those for
which s — 3r < 1, which leaves only one possibility, viz., s = r = 2, to investi-
gate. So we write:

A=1+ 4,, + 0372, (A.7)

where 0(n~3/2) does not contribute to e ™% if n — co. It may be remarked that
this holds whatever the N dependence of the terms in O(n=3'?) may be, since the
limit # — o0 has to be taken first. In general, however, 4,, may give a non-
vanishing contribution but we shall show that it leads to an additional term in the
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free energy, which remains finite for large N and can be neglected in the thermo-
dynamic limit. We expand 4(£), as defined in (A.2), up to order 1/n?, defining

By = —ﬂ; T(k) and B, = ﬂé,% Vik). (A.8)
Then
ENEBY o B; 1 =
A=exp(—-) —) [T exp —> =1+ — Y [B;,B] + 0(n~3). (A.9)
i=o n /) i=o n 2n? i<j

Noting that the commutators [B,, B,] give rise to terms which are linear in &,
we have

A22(&) = +3 ) &,& (BIn)* ) [Vi(k), V(K))

I<g k

+&f2 &,£, (BIn)* NCy,, (A.10)

where C;, = (1/N) Y« [Vi{(k), V4(k)), is a bounded operator even in the thermo-
dynamic limit. In order to find 4,, we have to perform the integration over &
Since the appropriate integration variables in (A.4) are again (ﬂN/'Zn)* &, each
factor & contributes after integration a factor (n/N )*. Consequently

A= (ﬂ’/n)fg Qras (A.11)

where the Q,, are bounded also if N — co.
Substituting (A.7) and (A.11) in the expression for e P* we find

Z = Tre ™ = (BN/2zn)*"" Tr (0,0,)", (A.12)
where
0, = fdéexp (—ﬂé -é) exp (-ﬁz # (k, é)),
2n n 'k
(A.13)
0;=1+ (Bn) Y. Oy,

S<g

In general, for finite values of N, the commutators, i.e., the operator O, will
give a non-negligible contribution to the free energy.

However, in the thermodynamic limit this contribution can be neglected. This
can be shown by using a special case of the Holder inequality for operators
(cf. ref. 31).

105~ Tr 0 < |Tr (0,0.)"| < ||0;|" Tr 0. (A.14)
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Here the operator O, is positive-definite hermitean and O, is a nonsingular
operator for sufficiently large values of z. In the limit n — oo, the operator norms
|0,]" and || O3 *||" reduce to finite constants which can be neglected in the thermo-
dynamic limit.

In this limit the free energy per particle is given by

f= =lim (8N)~! lim In [(BN]2zn)*"" Tr 07],

N-=w n-+w

which corresponds to eq. (22).

APPENDIX B

In order to calculate the (pn x pn) matrix H which up to a factor f8/n consists
of the second derivatives of the function G, , we introduce the short-hand notations

o(i) = exp [-(B/n) # (k,&)] and T({&}) = trll__Ilg(i). (B.1)

For the sake of convenience the k dependence has not been written down explicitly.
From (28) and (B.1) we have

Rey L OT(ED
k T({fl}) aé;

’

where again the k dependence is not shown explicitly. Hence

a2 ~2 -

f G, ﬁénfsu— z_I_ o*T +_LRCZL7<A(T)(6T)_

06p106qy £ T 06706 N K T% \05pi) \0&,
(B.3)

First we take j > i. Considering the second term in the r.h.s. of (B.3) we see from
(B.1) that

i i do (i) d0 (1)< 1>]
0f sy 064y [(H ()) 085 <l ll—lﬂg( )> 08, \u=s+1 e )|

Eq. (41) enables us to calculate the derivatives and (30) shows that at the minimum
we have o(i) = ¢ = exp [—(f/n) # (k,&°)], independent of i. Then, using also




the cyclic invariance of the trace

2T Bin Bin 5
—> [ dr, | dr, tr 6" Y (k)
é?"E.r'l 6501 min 0 0

% e—ni(k.{%(/—i efﬂf(k-é") Va(/\') e—r,J?’(k-6°) Qn-JH]
Bin B/n)—1, e
= [dr, [ drtr [Vk)o! ' eV (k)

0 ~%3

X e_””"":o)g"“-’*’]. (B.4)

We now consider a representation in which J# (k, £°) is diagonal. The eigen-
values are denoted by /,; the k dependence is not indicated explicitly. Then:

n? o0*T ot g
Tflvj EkRC ;2— (E—I—"f—> éz Re (prqygw) exXp (—-—g— (_] -— l) /1q>
'S min

Ii (/5!” kp.a
Bin  (Bim)—1t

2
X [exp (—ﬁ (n—j+1i) h,):l %J dt J dr et (B.5)
n
0

=) 1
Using (V,.)* = V,,, and evaluating the integral one finds (we still have j > i)
Tri0s 22 VipoVoop €XP [—1B (hy + hp)l cosh y
kp.a

L (cosh [(B/m) (h — hp)) — l>, (B.6)
B? (h, — ha)z

where y = B [3 — (j — D)[n] (hy — hy). (B.7)
We note four properties of the matrix elements 7,

l) T:fla.l= Ta!ﬂ

which is a direct consequence of the definition of the matrix elements
as second derivatives,

2) Ty = Tyuysys (B.8)

3) Ty is a function of j — i only;
it will be denoted by T}, ,-,and it is defined for 1 < j—i<n -1,

4) Ty, is a function of | — (j — i)/n|
which shows that Ty, ;- = Tpp n—j+4-
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Property 1 enables us to find 7, for i > j, and together with property 2 it ensures
that y, see (B.7), which contains the whole i/ and j dependence of 7',,; may be
replaced by (4 — |j — i|/n) (h, — hg), which is now valid for both i < j and
J<i

In the calculation of 7, one should note that the operators ¢ and e~
such as in eq. (41), depend on &,. A straightforward but tedious calculation leads
to the result

1=

) n? 2 eWMb=hd 1 B
Triei =3 Re (V. V, ) —e =) (B.9)
A :Z:q i g REERIN. B - B, "

A comparison with (B.5) shows that (B.9) cannot be obtained from (B.6) by
inserting i = j. Egs. (B.6) and (B.9), however, are identical as far as the lowest-
order terms in 1/n are concerned. Hence we can write

Tyigs = }:g)] + Byigyln, (B.10)
where
T fies =§Z Vi Vao € 2% cosh [B (3 — |j — il/n) (h, — k)], (B.11)
p.Q

for all values of j and i, including j =i (i,j = 1, ..., n), and where the matrix
elements B,,; are bounded (for i # j, the elements are even of order 1/n). The
precise expressions for By, are irrelevant since in view of the application in sec-
tion 7 of a lemma given by Lenard®®), the B,,,, will not give a contribution to the
determinant of second derivatives in the limit # — co. It is easy to show that the
first three properties of (B.8), which are valid for the matrix elements 7},,,, hold
as well for the elements 7§;,. In addition we have, using properties 2) and 3) of
(B.8):
Tion-1 = Tigli = Tfg) -y = Tfg) sy for 1<isn-—1, (B.8)

showing the periodicity in the label i.

Passing on now to the last term in the r.h.s. of (B.3) we see that we have from
(41) and (44)

1 T B
— == Vk)). B.12
(T ae,)m.n £ vy 3.12)
Combining egs. (B.3) and (B.10)~(B.12) we finally arrive at
2
Sl ) A (a,,a,, + Aoe g Brw ), (B.13)
65!1 6501 min n n n?

59




Agigs = %g CVARY <Vl — %;(m L

Vi, Vo, € 2 ®*" cosh [B (& — |j — il[n) (h, — b)), (B.14)

99p
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where A satisfies the same properties as T,

APPENDIX C

In this appendix we show in some more detail how the pn x pn matrix A is
reduced to a sum of » blocks of p x p matrices.

Denoting the eigenvalues of —A/n by 4 we have the following eigenvalue
problem:

(I,’n)ZJ:A,‘,Jd),J = —Ad . (C.1)

Here ¢,; (g = 1,...,pandj = 1, ..., n) is the gj component of the eigenvector
corresponding to the eigenvalue —A. Up to now 4, , was defined fori= —n+1,
..»0,...,n— 1 only. Using (64iv) we can give a periodic extension of the
definitions of 4, , and ¢/, viz. for integers i’ satisfying i’ = i (mod n) we define

Asg,10 = Aggy and Prir = Py (C.2)
We arrive at the eigenvalue problem

E;Afa.l—id’o} =~ (C.3)
g

where now i and j run through the set of all integers. The conclusion is that the
eigenvectors can be chosen to be basis functions for the irreducible representations
of the abelian group of translations {7}, hence satisfy

P55 = ¢4(x) exp (2rijx/n). (C9)
From the boundary condition (C.2) it follows that x is an integer, so that we may

restrict ourselvestox =0, ..., n — 1.
The eigenvalue problem reduces to

ZID,,(x) %) = Ax) px), x=0,...,n~—1, (C.5)
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where

n-1
Dyo(#) = =(1[n) Y. Ay, exp (2rij[n), (C.6)
J=0
and the eigenvalues of — A/n are given by the eigenvalues Aded), fi=Ts s, OF

the matrices D(x) forx = 0,...,n — 1.
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IV. AN EXACT CALCULATION OF THE FREE ENERGY IN SYSTEMS
WITH SEPARABLE INTERACTIONS. II

Synopsis

In this paper we extend the calculation of the free energy in systems with separable interactions
given in a previous paper, to a more general class of systems characterized by a hamiltonian
which contains a number of separable two-particle operators of the antiferromagnetic type in
addition to separable ferromagnetic interactions and one-particle operators.

By deriving an upper bound and a lower bound we establish an expression for the free energy
which is of the molecular-field type. In the derivation of the lower bound we have used Laplace’s
method in order to evaluate a multidimensional integral of a function e~¥%. The proof that the
second derivatives at the absolute minimum do not give a contribution in the thermodynamic
limit is more complicated than in the ferromagnetic case and is given in detail,

1. Introduction. In a previous paper') we considered a general class of systems
described by a one-particle operator and some separable two-particle operators.
The hamiltonian can be written

N r N 2
H = Y T(k)— (1/2N) LI B V,(k)} ; (1)
k=1 J=1 k=1
Here T'(k) and V/(k), for f = 1, ..., p, are operators which are defined on a finite
dimensional Hilbert space H,, for k = 1,2, ..., N, respectively. Various examples
of such a hamiltonian have been mentioned in ref, 1. Here we note that the Hilbert
space H, may be interpreted as the space of states belonging to a “particle k”
(although grand canonical ensembles of many fermion systems are by no means
excluded). In this language 7'(k) and V;(k) are one-particle operators,
The interaction between different particles k and / # k is given by

—(l/N)}/: Vilk,1) = —(l/N); Vik) VA1), (2)

i.e. each two-particle operator Vy (k, 1) can be written as a product of one-particle
operators V;(k) and V,(/). In the particular case of operators >« V,(k) which are
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invariant for permutations of the particles, the interaction between k and / is
independent of the choice of k and / and can be called an equivalent neighbour
interaction. It can also be considered as an extreme case of a long-range inter-
action.

In ref. 1 we have given an exact calculation of the free energy per particle in the
thermodynamic limit for systems described by the hamiltonian (1). In this proof
no assumptions have been made on the commutation properties of the operators
T(k) and V (k). As a result we obtained an expression for the free energy of the
molecular-field type, i.e. the expression can be obtained from a suitable one-
particle hamiltonian in terms of p parameters corresponding to the different inter-
actions in eq. (1). These parameters satisfy equations of the molecular-field type.
In addition the parameters must be chosen in such a way that this function
assumes its absolute minimum. This result is in agreement with the general idea
that the molecular-field approximation can give rigorous results in the thermo-
dynamic limit, if the range of the interaction tends to infinity, ¢f., e.g. Miihlschlegel
and Zittartz?), Kac®), Baker*), Siegert and Vezetti®) for the Ising model, Kittel
and Shore®) and Niemeyer’) for the Heisenberg model and Miihlschlegel®) in the
case of the so-called reduced hamiltonian in the BCS theory of superconductivity®).
Additional references, for instance on the C* algebra type of approach can be
found in ref. 1.

Note that the coefficients of all separable interactions in eq. (1) are negative.
For that reason these interactions may be called “‘ferromagnetic”, cf. the simple
case that V (k) = Sk, i.e. the z component of spin k. In the present paper we
extend our considerations to a larger class of systems including also a finite number
of separable interactions with positive coefficients. These interactions may be
called “antiferromagnetic” and the hamiltonian can be written
2

N p (N 2 a (N
H = k; T(k) — (1/2N) Zl {k; Vf(k)} + (1/2N) a; {k; Wa(k)} (3)

=
Here T(k), Vk),f = 1,..., p,and W,(k), fora = 1, ..., g are bounded hermitean
operators which are defined on the Hilbert space H, and which may be interpreted
as one-particle operators. The antiferromagnetic and ferromagnetic interactions
have been labeled by a and f, respectively.

A particular system belonging to the general class, as defined by eq. (3), has
been treated by De Vries, Vertogen and Kraak'®). The hamiltonian of this system
is given by

N N N
..#-:(l/N) J, z S,‘SJ+JZ Z T"TJ+JJ Z S,'TJ. (4)
ihWJ=1 hJ=1 i,Jj=1

Eq. (4) describes an equivalent-neighbour coupling between spins S and T belong-
ing to different sublattices A4 and B, respectively. J, and J, are the interaction
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strengths between spins within the same sublattice 4 and B, respectively. J; gives
the interaction between spins belonging to different sublattices. Starting from a
condition which ensures the validity of the so-called Bogoliubov-Haag proce-
dure'’), they use a C* algebra approach in order to calculate the free energy in
extremal homogeneous states satisfying the KMS condition.

In this paper we shall show that the free energy for a system defined by eq. (3)
can be expressed in terms of p parameters &,, &,, ..., &, corresponding to the
interactions V;, V5, ..., ¥, und g parameters 9, 1, ..., 7, corresponding to the
interactions Wy, W, ..., W,.

The result is

f=lim (=N~'%,TIn Zy) = lim (5 $ 8- S n2

N—=x N—~wx

= N“kBTg In tr, exp [—ﬂ {T(k) + 2‘1: NaWa (k) — i &V, (@}])-
k=1 a=1 S=1
(5)

Here tr, is the trace over the Hilbert space H, and &, and 7, are determined by
the implicit equations

& =Nt z T tr, V) exp| -8 (10 + 3 ) - P77 "‘)}j ,

_ ©)

=Nt 3 T Wl exp‘—ﬂ{ﬂk) RV ACE =2 @ .
where i ]

Tt = trexp [ -6 {10 + 3 na®) - Pz (k)}]. )

If eq. (6) has more than one solution we should chose that particular solution
which leads to the lowest value of f. This lowest value of f'is the free energy per
particle in the thermodynamic limit.

In the absence of antiferromagnetic interactions W, eq. (5) reduces to the free
energy given in ref. 1, cf. egs. (1.29) and (I.15). In ref. 1 the free energy was obtained
by deriving an upper bound on the basis of a variational type of argument and
a lower bound using Laplace’s method. In the present paper we shall also prove
that the right-hand side of eq. (5) provides an upper bound as well as a lower
bound to the free energy per particle.

The upper bound of the free energy will be derived in section 2. The derivation
of the lower bound is much harder and will be treated in the remaining sections
of this paper. This derivation involves in particular the introduction of a set of
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parameters corresponding to the antiferromagnetic interactions. This point will
be discussed in more detail in section 3, where we derive an integral representation
| e~ N¢ for the partition function.

In addition we prove that the real part of the function G cannot be smaller
than pf where fis given by eq. (5). A careful analysis is necessary in order to show
that the integral je'"‘a"’”) does not give a contribution to the free energy per
particle in the thermodynamic limit. For that purpose we derive in section 4
another integral representation which will enable us to study both the absolute
minimum of the real part of G and the contribution due to its matrix of second
derivatives. This will be done in sections 5 and 6. Finally in section 7 a simple
example is discussed.

2. An upper bound for the free energy. The upper bound for the free energy will
be derived by using a variational type of argument based on Bogoliubov’s in-
equality.

We write the hamiltonian J# as

H =iIN@E —n®) + Ho + H,,

where

N

Ho(Gm) = qu{T(k) — & V(k) +n- W}
and

HyGm) =Ky &)+ HiEn)
with

Hy = —(12N) (‘k; V(k) — Ng)*?

and Hi = (1/2N) (2: W(k) — Nr))z. (10b)

Here we have introduced the following vector notations: § and V(k) are p-dimen-
sional vectors with components &, , &, ..., &, and V,(k), Vi(k), ..., Vy(k),respec-
tively, whereas # and W(k) denote g-dimensional vectors 7y, ..., % and
W,(k), ..., W k), respectively. No confusion should arise from this notation:
it is implied that the symbols & and V always refer to p-dimensional vectors,
whereas # and W refer to g-dimensional vectors exclusively.

The sets (£,, ..., &,) and (9;, ..., 7)) consist of arbitrary real parameters.

On account of the Peierls-Bogoliubov inequality*?), we have

F[#o + #,) < F[Ho] + {H 1),




for any two hermitean operators »#, and #,, where

F[A]= —f~'InTre™ %4, (12)

(BY,=TrBe #Tre 74, (13)

In contrast with the ferromagnetic case we do not have the simple inequality
{H#1)», < 0, since the second term {H#7)x, gives always a positive contribution.
On the other hand, we have the parameters # at our disposal and if we can
choose these parameters in such a way that {H#1)x, is of order 1 rather than of
order N, the second term can be neglected in the thermodynamic limit.
From the definition (10) we have,

(HDwy = (1/2N)kZ‘ W)« W)y — 1 kZ (W(k)w, + INn*.  (14)

Since 4, (&, ) is a sum of one-particle operators J# (k, &, ), where
H(k, & m) =Tk) + n- W(k) — &- V(k), (15)

we have for k # [,

SWK) » WD), = (W) - <D, (16)
where
Wk = try W(k) exp [—BoH (k, &, m))/try exp [—Bo# (k, &, )], (17)

and the trace tr, is taken over the Hilbert space of particles k. If we choose
n = (1/N) ) {W (k). (18)
k

then

KD, = (1/2N):[_ UKW KD .ty = WO e} = O(1),  (19)

where ((1) is a shorthand notation for a term which is of order 1 rather than of
order MN.

Using egs. (8), (11), (19), and the relation (Jf",},o < 0, we have
F[#] < F[#o (& ] + (N2) (& — 5*) + 0(1).
For the free energy per particle it follows that

f<pB9&n), (20)
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where

& (& m) =18 — 1) — (1IN) Y Intr, e X *Em, (21)

Eq. (20) holds for all & and 5, provided that eq. (18) is satisfied. Consider now the
identity
0

p
——ePA =P (dret Ay (22)
04y 0

for an arbitrary operator A = — Y ; A4;4;. From (21) and (22) it follows that
oglon = —ﬂ{'l =3 (1/N)Zj <W(k)>k’, (23)

so that (18) is equivalent to the condition o¢lon = 0. (24)
The upper bound can now be written

f=<p™ mcin ¢ (&, 1mrA8)); (25)

where #,,,(&) is a solution of d¢/dn = 0.

The upper bound [i.e. essentially the function ¢ (&, )] clearly has a molecular-
field like nature. Therefore, and also for later reference, it is useful to discuss some
properties of ¢ (&, 7).

I. Eq. (24) defines a unique function 5§ = (&), which is such that for fixed &,
¢ (&, n) has a maximum for # = #,,/(¢). In the proof use will be made of Bogo-
liubov’s inequality (11) with

Ko=)y Ho=He@m),  Hi= L (=10 W), ()
where 1, is an arbitrary point. Then
F[#o (& )] < F[#o @& 1)l + (1 — 10) - <; W(k)>, e (27)

We now expand the left-hand side into a Taylor-series around the point # = #o.
Since the first derivative of F with respect to # is just the average of Y « W(k)
with respect to #, (&, 11o), it follows that in any point #,, the matrix of second
derivatives 92F|dy 0y is negative semi-definite. From egs. (21), (15) and (26) we
now have for 5 # 1,

¢ :
(n - rlo)-<———> “(n — mo) = —3B (n — 1o)
0N 0n /y=n,
2
+ﬂN“(rl—tlo)-<—ai> (g — 1) <0. (28)
a” a” n=no
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Assume now that eq. (24) for fixed & has two different solutions
b and N =1m +e,
then there exists a point

n* =9, +te with 0 << 10

such that

P I
on on

I
<y
&

n=q*. (29)

Eq. (29) is in contradiction with (28) so that (24) can have at most one solution.

On the other hand, there must be a solution since ¢ (&, #) for fixed & tends to — oo

in the limit || — oo so that ¢ (&, #) as a function of & must have a maximum.
I. Since eq. (24) has only one solution the upper bound (25) can be written

[ < B min D(¢), (30)
¢

where D(§) = ¢ (&, 1,,,(€)) is a unique function of & The minimum of D(¢&)
satisfies d@/d§ = 0 and from (24) it follows that also d¢/d& = 0, so that

S< B 'ming (& n) (31a)
under the condition that
0¢loE =0, oplon = 0. (31b)

From (23) and a similar calculation of d¢/a¢ it follows that eqs. (31b) are equi-
valent to the molecular-field equations (6).

III. From eq. (18) it follows that |g,,(&)| < (1/N) Y& |W(k)|| so that (&) is
a bounded function of & An implicit equation for its derivative can be found
from (18) using again (22):
N B
dn,/dé = (1/N) ¥ Ty ' tr, { [ deeS™P¥EEN P ) o~ EL® W,,(k)}.
k=1 0
(32)

Here, as well as in the rest of this section, # is meant to be s Furthermore T}
is defined in (7), and

Vik) = V(K) — VAR — (W(k) — (W(R)D) + dy/dé, (33a)
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and
Wk) = Wok) — {Wa(k)k (33b)

where the averages are with respect to 5 (k, &, n).

IV. The molecular-field equations (6) have already been seen to be equivalent
to d®/d&€ = 0. Only those solutions for which the matrix d*®/d¢ d¢ is positive
definite, are stable (i.e. @ has a minimum). The matrix d*@/d¢ d& can be evaluated
using (22). The result is

N
Bt d*PldEdE =1, - —~ . L _ (/N) ¥ T
k=1
X try { (k) fdz P X K lm gy ot "’}, (34)
o

where 1, is the p x p unit matrix. The symbol (dn/d¢) - (dn/d&) will be used in
this paper to denote the p x p matrix obtained from the dyadic product (dy/d&)
x (dn/d&) by taking the inner product with respect to the #’s. So (d#/d&) - (dny/d&)
=) 5=1 (dn,/d&) (dn./dE).

3. An integral representation for the partition function. In the derivation of a
lower bound for the free energy complications can arise from the presence of
antiferromagnetic operators in the hamiltonian (3). At this stage it may be worth-
wile to point out that there is a priori no reason to expect that the antiferromagnetic
interactions W should be treated in a similar way as the ferromagnetic inter-
actions V. For this purpose we review some aspects of the derivation of the upper
bound in section 2. There it was seen that the average () », Of the negative
definite operator #; which is due to the ferromagnetic operators, could be
neglected in obtaining the upper bound. This, however, was not true for the
average of # which contains the antiferromagnetic interaction operators. Instead,
we had to make a very definite choice for the parameters y which were introduced
in (9), thereby minimizing the effect of the quadratic antiferromagnetic operators
in #;. As a result the contribution of the average of »#] could be neglected in
the thermodynamic limit. From this discussion it seems reasonable to treat the
ferromagnetic and the antiferromagnetic operators in a different way: the ferro-
magnetic operators will be dealt with in a manner similar to ref. 1, whereas the
effect of the antiferromagnetic ones will be treated by introducing parameters
comparable to those that were used to obtain an upper bound for the free energy.

First we apply the generalized Lie-Totter formula'?) in order to replace e **
by a product of exponential operators

n—ow

A n
exp(do + Ay + +++ + 4,44 = lim (expﬁ’.exp 4, exp ——"“) , (35)
n n n
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where

Ao = —ﬁgT(k),
AJ’ = (ﬂ/ZN) [g V!(k)]z' f= l!"'sp! (36)
AP+0 e _(ﬂ/zN) [2: Wu(k)]zv a= l ..... q.

In ref. 1 we linearized the squares occurring in the exponential operators by
means of a simple integral trick, ¢f., e.g. Stratonovich!'#)

et =77t [dxe ¥ e, (37)
-

In view of the remarks made above on the antiferromagnetic operators we apply
this integral transformation for the moment only to each of the ferromagnetic

operators exp [(8/2aN) (3 V,(k))?].
The result is

+pn @
e P _ lim (ﬂ_N> { [ déexp (_/‘Z_Ng. ,g)
- o0 n

27n
g z B

x exp| ——3 T(k)| [ exp| =&, 3 Vik)
n % s=1 n %

X a]f[l exp [—L (; Wa(k))z]}n. (38)

2nN
As for the antiferromagnetic operators, we hope to “tame™ then to a large extent
by introducing an arbitrary set of real functions n4&),a = 1, ..., g, corresponding

to the antiferromagnetic operators W,.
This can be done by using the trivial identity

_B_ ] afegs [N 4 af :
exp [_ i (; W (k) )] = exP[ = m(&)] exp[ = ; Walk) m(c)]

B :
X exp| ——— Wik) — Nn. (©))?*|. (39

p|: 2nN (g ’ i ) )
The right-hand side of eq. (39) contains three factors, first a constant factor
exp [BN (2n)~* 2(&)], then a Boltzmann factor corresponding to the sum of one-
particle operators and a Boltzmann factor which contains interactions between
all pairs of particles k£ and /. Such an interaction term is in general difficult to deal
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with, but here we have the parameters #,(&) which are arbitrary real functions of
the parameters & = (&;, &, ..., &,) and which can be chosen in such a way that
the interaction term becomes small. We may hope that this will prove out to be
sufficient for the derivation of a lower bound. (As we shall see later on, para-
meters # which are independent of &, will not always lead to the correct result.)
In the calculation of the integral over & which can be obtained from (38) by
substituting the identity (39), it is convenient to make the replacement

q

o [_é ) T(k)] {f.5%8 [% 5 V,(k):l I exp [—g A0 m.(:)]

x  exp [—7% (5 W) = M, (:))2]

-+ exp [——ﬂ— S # k&, n«f»] [Texp [—i (5 W) - M <¢>)2],
n 'k a 2nN \k

(40)
where # (k, &, ) has been defined in eq. (15).

This replacement is similar to the one used in ref. 1, ¢f. eq. (I.21); the proof of
its validity, however, is somewhat more complicated due to the exponential
operators involving W,(k). In appendix A it is shown that the contribution to the
irtegral due to the commutators which are neglected, amounts to an additional
factor. This factor remains finite in the thermodynamic limit and can be neglected
in the calculation of the free energy per particle. In the remaining formulae for
e ?* and the partition function finite values of » and N occur, just as in ref.1.
Ir the notation it will henceforth be implied that two limits have to be taken,
first the limit » — oo and afterwards the thermodynamic limit N — co. Inserting
(40) and (39) into (38), we arrive at the following integral representation for the
partition function

4pn -4 n
Zy = ( ﬂN) J. ‘H dél e—NG((Cd), (41)

27n =1

where G({&,}) is a function of all the np variables &,,. The explicit formula is
given by

G({&}) = (B[2n) "zil & - 1)

~ N~'InTr [] {exp [-—-g ; X (k, &, 'l(éa))]

i=1

x TTexp [—;ﬂﬁ (5 Witk) = N, (é.))Z]}.




In the absence of antiferromagnetic operators W and with the choice 7,(£,) = 0,
eq. (41) reduces to the integral representation (1.26) derived for the ferromagnetic
case. In ref. 1 the absolute minimum of G, = Re G was determined by using the
Holder inequality for operators together with the condition under which the
equality sign holds. The lower bound for the free energy was obtained by using
the inequality

“‘Hdc,e‘"‘“"%’ 38 fﬂdé.e‘”‘cl‘ao’. (43)
i i

The integral in the right-hand side of (43) was evaluated in ref. 1 by using
Laplace’s method. The contribution to the free energy from the determinant of
second derivatives of G, at its absolute minimum was shown to be finite in the
limits n — o0, N = 0.

In the present case, where antiferromagnetic operators are included in the
hamiltonian, we cannot determine the absolute minimum of G, exactly. However,
we can easily give a lower bound for G, by means of the following form of the
Holder inequality for operators!®).

Let A,..., 4, and B, ..., B, be arbitrary matrices, then
n n
|Tr A, B, -+ A,B,| < [] {Tr (4]4)*}' [T {Tr (B}B)**}!/4 (44)
i=1 i=1

for arbitrary positive numbers 4, and 6, satisfying Yist AP +67)=1. We
apply this inequality with

4, = exp [-%; # k, &, n(é,»],

(45)
i 1 desm i - 2
5= 11 exp[ L (£ w0 - @) ]
in the case that A, = o0 and 0, = n, and use the fact that
lim {Tr(B]B)*}'* = |(B!B)?| < 1. (46)
Ay o
Then
G,({¢:}) = Re G({¢}}) = (.3/2'1);(6.2 ()
n N '
= (nN)"‘:Z1 k; In try exp [—BH# (k, &, 7(5)]
= (1/")I=Z1 ¢ (&0 m(&), (47)
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where the function ¢ (&, #) has been defined in (21) and where tr, is the trace over
the Hilbert space H of particle k. From (47) we have

B~1G, ({&)) = B! m§n¢(§, Q) = B¢ (&° n(&°)), (48)

where ¢ (&, 7(&)) assumes its absolute minimum at the point &, = &° which
obviously depends on . So far, we have considered an arbitrary set of functions
n(¢) and the lower bound to =G, ({£,}) is valid for any choice of these functions.
The best lower bound can be obtained by choosing #(§) in such a way that ¢ (&, »)
is maximal for 5 = #(&). As we have seen in section 2 this choice is realized, if 5
is the unique solution of the molecular-field equation (25), i.e. g = n,,(&).

For the free energy per particle we now get the inequality

f = ﬂ—l Ingin ¢ (é) ’lmf(é))

4+pn ~
~B~'lim lim N='In [( ﬂN) Jﬂdé.e‘"‘Gl“"”‘G°’], (49)
i

N=® n-m 2nn

where

GO = mcin ¢ (é- ”ml(é))’ (50)

and G,({&,}) is the real part of the function G({&,}) given by (42) in the special
case that n = #,,(¢). Then, assuming that the second term of eq. (49) can be
neglected in the thermodynamic limit, we would have a lower bound for the free
energy, which is equal to the upper bound (25), and the free energy per particle
would be given by (5). However, the validity of this assumption is by no means
obvious, just as in the ferromagnetic case which we have treated in ref. 1. We may
anticipate that the convergence of the correction term is ensured by the fact that
the function @(&), as defined in (30), assumes a minimum. An appropriate estimate
of the correction term, however, must be accurate and a Holder inequality like
(44) when applied to an integral such as occurring in the second term of (47) will
in general not lead to a convergent result. In fact, if we replace G,({&,}) by the
right-hand side of (47) which does not involve the antiferromagnetic interactions
except through the parameters #, the integral can be estimated to be a product
of n integrals and the result would be lim 9" where y is a finite constant which is,
certainly for almost all temperatures, different from 1, so that the expression
diverges if n — oo, In addition, we cannot proceed in the same way as in ref. I,
since the function G, ¢f. (42) contains the interaction terms in eq. (39) and starting
from (42) one cannot determine in a direct way the absolute minimum of G, and
the second derivatives.
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Remark. Finally it may be noted that it is really necessary to introduce para-
meters n, which are functions of ¢, after applying the integral relation (37). In
order to see this, let us consider a fixed value of #. In that case we can start with
the hamiltonian (3)

H = —INn? +§T(k)+;t]- W(k)

- (M) 3 (S VAR): +ARN) 3 (S Wk - M. 6D

Using the same line of reasoning as above we would obtain the inequality

S = f~* min ¢ (& #) + correction term, (52)

where the correction term can be obtained from the second term in the right-hand
side of (49) by replacing #,,,(£) by the constant value #. If we assume that the
correction term can be neglected, we have the following inequality

B~* max min ¢ (&, #) < f < B! min max ¢ (&, y). (53)
n ¢ ¢ n

The lower bound in eq. (53) is the best one we can obtain from (52) by choosing
a constant value of #, the upper bound is equivalent to (25) since max ¢ (&, )
= ¢ (&, #ms(&)). Although in some simple cases such as e.g. a spin-} Ising anti-
ferromagnet, the upper bound and lower bound in eq. (53) can be shown to be
equal, this is by no means true in general. A relatively simple example of such a
situation will be treated in section 7.

4. The absolute minimum. In order to prove that the correction term in (49) is
convergent, we must take into account the interaction terms

exp [—48 (Nn)~* (X x Walk) — Nna (§))?]

in eq. (39). In this section we shall derive another integral representation fie=ne
for the partition function which is such that we can determine the absolute
minimum of the real part g, = Re g exactly. We apply the relation

@
e =zt [dxe* 24 (54)

to each of the operators exp [—38 (Nn)~* (3x Wa(k) — N, (&))?] occurring in
(39). Then Zy can be expressed in terms of the trace of the nth power of a ( P+ q)-
dimensional integral [d&dy .- and by writing this nth power as a (p +¢q)n-
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dimensional integral [ []i-; d&, dg; ..., we find

in(pta) P
— ( pN ) f I dé dxexp [—‘;—”;(é,’ g »f(e,))]

27n

A ¥ 'I;[l exp I:—% ; o (k, &1, 'I(f«)):l V(xi, 1&)),

where

V(i 2(80) = I:[lexp [(iﬂxm/n) {; Wak) — Nng (4‘;)}] (56)

and  (k, &;, n(&,)) is given by (15).

We now use the fact that operators acting on different particles commute. This
implies in particular that the trace of a product Tr [ ], can be written as a product
of traces tr; over the one-particle Hilbert spaces H;. For the partition function
we obtain the integral representation

4n( .
Zy= (ﬂ) e fndfl dz,e'"’“e”"’“”,
i

27n

-0

where

g (& () = 2—‘1 ‘z (@& + 2 - 1)

N n Y
L S [ e [_ LA u(c,»] Uk n@,»]
N k=1 n

i=1
(58)
and

U (k, 20s m(&)) = [ exp [iBxualn) {Walk) — n(8)}]. (39)

a=1
One of the advantages of the present integral representation is that we can now
determine in a rigorous way the location of the absolute minimum g, of the func-

tion g, = Re g. [This was not possible in section 3, where we derived a lower
bound of Re G, ¢f. (47).]

First it will be shown that g, , for a fixed, but arbitrary function 5(¢), can only
assume an absolute minimum under the condition

& =&°  (independent of i),

1,=0.




The derivation of (60) will be based on the properties

a) g({&} () = (l/")‘;tb (S, (8D,

b) g ({51}» {Z:}) . (I/”)‘=ZI¢(51, (&), (61)

if and only if §; = § = independent of i, y;, = 0.

In the proof use will be made of the Hélder inequality for operators and the
condition under which the equality sign holds!5). In addition it will be assumed
that the unit operator 7(k) in the Hilbert space H, and the operators V,(k),
Vi(k), ..., Vi(k), Wi(k), Wi(k), ..., W k) are linearly independent.

Let 4,,A4,,..., A, be positive definite hermitean m x m matrices and S,,
S2,..., S, be unitary m x m matrices, then

|tr A,8,4,8; + 4,8, s‘]_"_[l(tr AYy (62)
for arbitrary positive numbers 6, satisfying Y i, 6; ' = 1. In addition

Itr 4,4, - 4, =‘]:‘[l tr Ap)'", (63)
if and only if

Al = A7, (64)

where the Z,; are constants.
From the explicit expressions (58), (59) we have, after application of (63) in the
special case that 6§, = n

g (&) (z) = 21 Y&+ 2 - i)

ni=

n N
— (/Ny} ¥ Intryexp [—Bo# (k. &, n(&))]

i=1 k=1
o = (U")Z,ld) (Ses m(&)). (65)

Hence eq. (61a) has been proved.
Obviously the equality sign in (65) can only apply for z: = 0 and using (64),
we have the additional condition

exp [—(B/n) # (k, &1, m(G))] = A,(k) exp [—(B[n) # (k, &;, n(E))). (66)
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Eq. (66) implies that for all &
(& — &) - Vk) — {n(&) — 0} - W(k) = efk), (67)

where ¢, (k) is a c-number for all i and j.
Since the operators 1(k), V,(k), ..., V,(k), Wy(k), ..., W (k) have been assumed
to be linearly independent, we can conclude from (67) that eq. (61b) is satisfied.
Using the same line of reasoning as in ref. 1, ¢f. the discussion below eq. (1.40),
we can conclude from (61b) that g, assumes an absolute minimum g,, at the
point & = &°, for i = 1,...,n, y, = 0, where &° is such that ¢ (&, #(§)) has an
absolute minimum, i.e.

gon = ¢ (% (&%) = mén ¢ (&, 7(&)). (68)

We now consider the derivatives of g = g, + ig, at the absolute minimum
of g;.
Using (22) it follows that

4 =ﬂ[ P <V(k) W(K) - >
( n NEk: dS / . & nen

o n

(E) iB [ Ey R z WED wa. . .«»]
0

Comparing this with (23) and a similar formula for d¢/d¢, we have

s i e A
&, n dé o0&  on d& & )o

(i&) ~0 (‘7L> iR (71)
i /o ; oxi /o n on

So far, we have considered an arbitrary set of real functions #(£). In order to
obtain the best lower bound for the free energy, apart from corrections due to
second derivatives, the function 5(&) should be chosen in such a way that g,, has
its maximal value. Using property I of the function ¢ (&, #), discussed in section 2,
it follows that the best lower bound is obtained by taking (&) to be ,,/(&), i.e. the
unique solution of eq. (24). Eq. (71) shows that this choice also guarantees that
dg2/0x, = 0 and provides together with dg,/d§;, = 0 a stationary phase of the
integrand e~ "¢ in (57) at the absolute minimum of g, .
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If the function ¢ (&, #,,,(&)) has more than one absolute minimum, we shall
assume that the number of such minima is finite. A continuous degeneracy can
be dealt with in the same way as in ref, 1 by introducing an additional term in
the hamiltonian which removes the degeneracy.

Remark. The assumption that the operators 1(k), Vi(k), ..., V,(k), Wy(k),..., W (k)
are linearly independent is not necessary. This is obvious, if the function @ assumes
its absolute minimum at only one point &,. On the other hand, if there are more
points at which ¢ (&, ,,,(¢)) attains its absolute minimum, it can be shown from
egs. (67) and (31b), that for all pairs i, j = 1, ..., n, we have

& — & = 2 /&E) - ;L) (72)

From eq. (72) we may conclude that &, = & s for all temperatures, apart from some
isolated values under rather pathological conditions.

From now on the n(&,) will be fixed to be Nmy(&;) and we shall omit the sub-
script mf which has been used up till now to denote these particular functions.

Since it has been shown to be possible to determine exactly the absolute minimum
of the function g, , while in section 3 we could not do the same thing for G,, we
might try to evaluate the correction to the lower bound on the free energy by
using the estimate

-nG, [ BN \@ror ~N@,~90)
Zyse " — [1dg, dyy e~ @00, (73)
i

2nn

where g, = G, = g,, in the case that = (), cf. (68). If we could show that
the correction due to the integral in the right-hand side of (73) is negligible, we
would obtain the correct lower bound on the free energy. To see to what extent
this is true we can apply Laplace’s method to the right-hand side of (73).

Using a similar line of reasoning as in the derivation of eq. (1.58), it can be
shown that

F > NB~'go + (1/28) In det H, (74)
where
(1) 3)
Hs(7 H ) (75)
H(J) H(Z)

Here H is a n(p + q) x n(p + g) matrix consisting of matrices H", H®,
H®, H®, which are np x np, ng x nq, np x nq, nq x np matrices, respectively,
and which can be expressed in terms of the second derivatives of g, at the absolute

79




minimum, viz.

n 0> n 0>
. (T—gL—) , H® == (._;g_‘_) k
B \0&s04)0 B \ @it /o

HS) =£(——""g' ) ﬁ:t’,-l(——a’g' )
B \ 0 0%sal/o B \0%ar /o

We can now write the matrices H as expansions in inverse powers of n. The
result is (note that the matrices H are the real parts of the matrices L which are

calculated in appendix B)

b

1) )
H, = 8, {a,, = :_5” . ::’} o Redfj, | ReBi,
J g n n

Re A2)
= 0y 0 + —fap
n2

3) 3)
H® — Re Ai}ja Re By,
ifja — " R ’
n n

where the matrices A and B are bounded with respect to n. Explicit expressions
for the matrices Re A can be found in egs. (94a,b), and the precise form of the
matrices B is irrelevant in view of a lemma discussed by Lenard'®), which ensures
that in the limit # — oo the matrices B do not give a contribution to det H. Then,
noting that the matrices A have a cyclic structure, we can introduce much in the
same way as we did in ref. 1 dynamical matrices D‘V(x), D®(x), D*(x), which
are essentially Fourier transforms of Re A, Re A® and Re AP,
Then the correction term in the right-hand side of eq. (74) can be written

l-lndetH =lim ) Indet
2

n-n x=0

(1,—(dn/dé)-(dn/d:)—o“’(z) D”’(x))

D‘3"(x) 1a A D‘Z’(z)
(78)

where 1, and 7, are p x p and g x g unit matrices and the detailed expressions of
DV(x), D®(x) and D®(x) are given in egs. (101) and (102). Since the matrices
D‘V(x), D®(x) are of order @ (1/%*) and D*®(x) is of order @ (1/x) for large values
of %, and (dg/d&) - (dn/d¢) is independent of #, the right-hand side of (78) diverges
as soon as # depends on &.

Hence we must conclude that the inequality (73) is too crude to provide us
with an appropriate estimate of the correction term. It is obvious that the imaginary
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part of the function g must be taken into account to cancel the singularities in the
right-hand side of (78). In order to establish a well-behaved lower bound to the
free energy, f, we must return to eq. (49) and prove that the second term in the
right-hand side vanishes in the thermodynamic limit. To this end we need a
detailed analysis of the function G,({&,}), as defined in eq. (42), and the integral
representation (57) will turn out to be useful. From the two representations 41)
and (57) it is obvious that the function G, can be expressed in terms of an integral
over the variables g,, viz.

6= Nt (L)'

]

j H dx‘ e‘Nﬂ((C()- {xh) | (79)

=00 i

2nn

In order to apply Laplace’s method to the function G, , we should calculate the
integral in the right-hand side of (79), determine the absolute minimum of G, and
in addition calculate the matrix of second derivatives at the absolute minimum.
Now there is a difficulty since it is in general not true that the function G, will
assume its absolute minimum at the same point & = &° as the function g1
although as we shall argue later on, the difference turns out to be irrelevant in the
thermodynamic limit. In addition the calculation of the second derivatives would
involve a gn fold integration over the variables y; and this integration cannot be
done analytically.

In order to avoid these difficulties we use a slightly different line of reasoning.
The Laplace method involves the calculation of the matrix of second derivatives
of a real function F occurring in an integral like | e~ *F at its absolute minimum F,.
Once it has been established that the second derivatives do not give rise to singu-
larities, we know that in the free energy of the system there is a well-behaved
correction which is of order 1. In addition one could also consider the contri-
butions due to higher-order derivatives of the function F. The exponentials of
these terms can be expanded and it can be argued that these higher-order derivatives
will lead to corrections of order N ! to the free energy.

Let us now return to the integral appearing in the right-hand side of eq. (79).
The function g may be expanded around the absolute minimum of g,, where &, =&°
and y, = 0 and we may estimate the correction due to the different derivatives.
The free energy of the system can be thought of as an asymptotic series containing
a term proportional to N, a term, which is of order 1, a term which is of order N ~!
and so on. If, as is the usual procedure in the Laplace method, we want to prove
that the term, which is of order 1, is well behaved, then we can restrict ourselves
to the second derivatives of the function g at the absolute minimum of g, since,
if this is the case, we may expect that the higher-order derivatives will lead to terms
of order N =*. Hence, if we do not want to go into the tedious details of discussing
the behaviour of terms involving N ~* and higher inverse powers of N, the func-
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tion g in the right-hand side of eq. (79) can be replaced by

ﬂ n
Bl=gplidy === le'LS)
2n t.j=1

ﬂ n

+= Y x L, (80)
ntJ=1

ﬂ c (2)
Xy = o I35 5%
AFEE S ‘.JZ_:__IZI g

where x, = & — £° and the matrices L are related to the second derivatives of the
function g at the absolute minimum of g,

n 02 n 0>
I, =2 (—g—) . AEhm (—g—) :
B \0&,06 )0 B \ 0%k /o

L(J) dl l ( azg )
5 &/ Chamy P .
B \ 0 0% /0

After substituting eq. (80) into the right-hand side of eq. (79) it can be shown
that G, has its absolute minimum at the same point §, = &° as the function g, .
In addition the matrix of second derivatives of G, at this point can now be calcu-
lated exactly. This will be done in section 5.

Finally, in section 6, it will be shown that the contribution to the free energy
due to the second derivatives is finite, provided that the function @(§) = ¢ (&, #(&))
has a strict minimum for & = &°, i.e. the matrix of second derivatives of @ is
strictly positive definite.

5. The second derivatives of G,. In this section we calculate the second deriv-
atives of G, at the point & = &° where g, = Re g has its absolute minimum.
As has been explained in the previous section, the second derivatives can be
calculated from (79) by substituting the expansion (80). In the first place it may
be noted that in view of (80) the function G, has an extremum at the point §;, = &°,

i.e.
(iG—') =10, (82)
dé; /o

where the suffix 0 indicates that the derivatives are taken at the point &, =¢&°.
In order to see this, we expand the function

exp [—N (g — go)] exp [/5' (2n)~* Z‘x.’]

as a power series in x, = & — &° and x;. From (80), (76) and (77) it follows that
the terms that are linear in x also contain a factor y, so that we are left with an
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integral of the form
Je (1 + axy + bx* + ¢x?) dy,

from which it is obvious that no terms linear in x, will occur in the expansion of

G, around the point &, = &°. From (79)-(81) we see that the expansion of G, can
be written

+aqn
G,({&}) =g —N~'In (ﬁ—N)

27n

_.Z H dx

i

d2G
o L) .x,. (83
rile <d€.d¢1)o B 92

At the point &, = £° the function G,({&,}) is given by the first two terms of (83).
Apart from the term g, there is a correction term containing an integration over
all x,. This correction term, however, vanishes in the thermodynamic limit; the
convergence of the integrals is implied by the fact that all eigenvalues of the
gn x gn matrix Re L'® are larger than 1, ¢f. the remark below eq. (110).

The second derivatives are given by

N
X exp [-‘i— Tael .z,]

dZ

2 -~ l—[dxl e—NO((cl)-[Xﬂ)
(di z&) it (4 d“d‘f’f‘ (84)
¢ J/0 d e-Na
II‘] Y 4]

and

e M -—Ne""'( ar SR ] 53)

- — (85)
08, %, 0508 3 0,

where the derivatives @ should be taken at constant values of z;, but the function
7(&) must be taken into account. From (80), (81), (84) and (85) it follows that

d*G = -
———) =pn""Rel’— pn-'Re ¥ LD Kyad> - I, (86)
dé;d¢; /o k=1

where

I dne™ na
o)) = pNn—t — (87)

SIT1dze™™ °
i

and y is a shorthand notation for

{1} = g ({& = &%, {x}) — g = %ﬂn“’ZJ 2 LY X




I is a ¢ x p matrix with elements (L$}’).; = (Lf");a = Lj7la- In order to evaluate
the right-hand side of eq. (86) we need expressions for the matrices LV, L and
L. These matrices have a cyclic structure (a property which originates from the
cyclic invariance of the trace) in the indices i and j:

L9 =2 LS =12y, a=1,2,3. (89)

The explicit expressions for the matrices L'’ are derived in appendix B, cf.
egs. (B.10), (B.11) and (B.13). These formulae are rather complicated and there
is no need to give them here. Since the limit n —» oo must be taken before the
thermodynamic limit, we can restrict ourselves to the expansions

d (§5)] (1)
L5 =8 A 4 Ay + —= Bis (90a)
dé¢ dé n n*

(90b)

3) (3)
2 A Bu e 80 (90¢)
J dé

n )12

Here 1, and 7, denote the p and g dimensional unit matrices and all the elements
of the matrices A and B are bounded with respect to n. In the same way as
in ref. 1 the application of a lemma given by Lenard'®) ensures that the matrices
B™ do not give a contribution to the determinant of the matrix of the second
derivatives of G, at the point &, = &° in the limit n — 0.

The explicit expressions for the matrices A’ can be found from (B.10), (B.11)
and (B.13). By decomposing these equations in a real and an imaginary part it
follows that Re A{Y’, Re A{}’ and Im Af}’ are given by

—ﬁN-‘ 2 Ti! Y X239 (p, g) e H %o coshy, .y, (Ola)

I’G

and Im A{)’, Im A{}’ and Re Afj’ are given by

ipN-'Y Ty z_ X123 (p gye ¥t sinhy, .
»

Here the summation over k is a summation over the particles k = 1,..., N
and T, has been defined in eq. (7); p and g denote the eigenstates of the one-
particle hamiltonian # (k, &°, (£°)), as given in eq. (15), h, and A, are the cor-
responding eigenvalues and O,, is the matrix element of an operator O between
eigenstates p and g. Of course, p, ¢. h,, h; and O, depend on k, but for the sake
of notation the explicit k-dependence has been omitted in eq. (91) and the following
formulae.
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Furthermore, cf. also (33),

X“) (p’ ‘1) o~ qu Vq;n (928)
X(Z) (p’ q) S W'quqpv (92b)
X®{(p,q) =V, W,,: (92¢)

Finally y, is given by

v, =p <-l—- - lj—l-) (h, — hy) L:, if. . J#0,
171
(93)
Yo =3B (h, — h,).

From eq. (91) and the trivial relation y_; = y,_, it is obvious that the matrices
A}’ are cyclic with respect to the indices i and j; i.e. for every pair of indices
(1. 2), (a, b), (f, a), we have

@y (1) . (2 (2) 5 3) _ 3
Alf.la = Afe.1~i> Aian o Aab.)-l* Alf/u - Afa.l—l
(94)
) _ 4D . (2) _ 4@2) 3) _ 4(3)
Afv. = AIy.n—J» Aub. === Aah.n—.l* Afn. =7 N ‘4fa.n—1'

In addition, it is shown in appendix C that the matrix {xix;>> which occurs
in eq. (86) has also a cyclic structure, i.e. for every pair of indices a, b, we have

CLiakse)) = Xab, 51 Xab, —5 = Xab,n—j+ (95)
Now all n x n matrices O,; occurring in eqs. (94) and (95) for fixed values of 1, g,

a and b can be diagonalized by the same unitary transformation, ¢f. appendix A
of ref. 17, viz.

(U'0U); = 281y  for ILm=1,...,n, (96)
where

Ui = n " tebmbnn. (97)
and

e |

n
)., b Z 0] le:ljl/n.
i=0
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Using eq. (86), the expansions (90) and the cyclic properties (94) and (95), it is
obvious that the matrix

n d?G,
ﬂ dElfdéjp

LTI >

(98)

has a cyclic structure with respect to i and j, since the product of a number of
cyclic matrices is again a cyclic matrix, i.e.

Higjo = Hpg, 45 Hpy, -y = Hpg p-y- (99)
Then the unitary transformation determined by the pn x pn matrix
Virse = 07U1ss (100)

where Uy, is given by (97) transforms H into a direct sum consisting of n p x p
matrices; we write

(101)

D(x) = "il {6;.0 (1., = . - H,} TN, (102)

J=0

We shall show that the matrix D(x) can be expressed in terms of the matrices
D™ () and E“(») defined by

8=l
D) = —n~*' Y, (Re Aj*) ™", (103)
J

=0

1
E®¥®) = —in~' ¥ (Im Aj®) e*™", (104)
J=0

fora = 1,2,3andx =0, 1,...,n — 1. From (86), (90a), (98) and (102) we have
D(x) = DV(x) + D®¥(x), (105)

where

n—1

D) = ¥ Re(t - (Gutisp> - IP) o,
J, k, 1=0




In (106) use has been made of the cyclic properties of the matrices L® and
(t12>- The matrix {{zix14,>) is given by
n—=1

Ctadie 2> =n~* Y N(x)exp [27i (I + j — k) %/n], (107)

x=0

¢f. egs. (C.2) and (C.3) in appendix C.
The matrix N(x) can be expressed in terms of the matrices D®(x) and E®(x).
The calculation is tedious and is given in appendix C. We find

N(z) - [1 = D(z’(x) w5 E‘z’(x) {1 — D‘z’(x)}" E(z)(x)f]—x
X [1 + E®(x) {1 — D®()}~1]. (108)

By using the expansion (90c) and the inverse relations to (103) and (104), one
calculates in a straightforward way the matrix D3(x). The details will be given
in appendix D, and one arrives at

D) = D) {NGo) + N'G)} DDY(x)

+
“ (E"’(x) - i g—;’) (N(x) + N'(»)) (E"’(z) - i g—;’>
. dg t
+ 3D (N(x) — N'(x)) (E‘”(x) e E>
ity (E%) L3 %) (NG) — N'G) D). (109)

So far we have expressed all second derivatives (98) in terms of the matrices
D™ and E, as defined in (103) and (104), ¢f. (101), (105), (109) and (108).

The explicit expressions for D> and E” can be evaluated easily if one uses
egs. (91). It follows that in the limit 7 — oo, D™W(x), D®(%) and —iE®)(%) are
given by

NS TS X2 (p, g) e % sinh 34 (h, —
A ».Q

4p (h, — h,)

X 2
4n* sin? (zx/n) + B2 (h, — h,)?

(110)

where X has been defined in (92). Note that because of the minus sign in the
definition of X®, the matrix D®(x) is negative definite so that all the eigenvalues
of Re L® are larger than 1. Furthermore —iE™M(x), —iE®(x) and D®(») are
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given by

NI T X0 (p, g) ™ sinh 36 (5, — h)
Py

4n sin 2nxn !

" i () + B2 (h, — h)*

(111)

From (110) and (111) one obtains a number of symmetry relations for the matrices
D and E®, viz.

DW(x) = DV(—%) = DD(x)*,
D“’(z) = 5”’(x);
D(Z)(x) == D(Z)(—%) = D(Z)(x)*’ E(z’(}c) e —E(Z)(—X) = E(z)*(x)’

2 (112b)
D) = 0¥,  E®) = — EPx);
D) = —D¥(~x) = ~D(0)*;

(112¢)

E"’(x) = E‘”(—x) —~ _E(3)t(x).

Here —# is meant to be n — x if % is restricted to the values x =0,...,n — 1.
For the matrix N(x) we have, ¢f. egs. (C.1) and (C.3) of appendix C:

N(x) = N(—x%) = N*(x). (113)

6. The correction due to the second derivatives. From (98) and (101) it follows
in complete analogy to ref. 1, that eq. (49) can be replaced by

fzp! mein ¢ (& Mns(8))

n—+w

n—1
+ N-'lim 38~* ¥ Indet (1,, S Eosipll D(-/.)>, (114)
x=0

dé dé

where the matrix D(x) is given by (102). In order that the correction term is
negligible in the thermodynamic limit, the following two properties should hold:
(i) all matrices 1, — (dg/d&) - (dn/d§) — D(x) are positive definite;

(ii) the behaviour of D(x) for large x is such that the sum converges.

The first property is of course equivalent to saying that the function G, really has
a minimum at the point & = &£°. In this section we shall first show that this is the
case, using the fact that the function @(&) = ¢ (&, #,,,(§)) has an absolute minimum
at the point & = &°.
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In order to prove property (i), we consider the matrices
M, = D¥(x) (1 — DP())~* D(x) — D3¥(x) (115a)
and
M; = D(0) — DV(x) — D) (1 — D®(%))~* D¥(x). (115b)
The proof rests on the fact that these two matrices are positive definite, i.e.

M, >0, M, = 0. (116)

This will be established in appendix E.
From (115) and (116) it follows immediately that

D”)(H) = D(l)(O) 4 D(SS)(%) < Oy (ll?)

so that, by using (105), we have

1’, = d_t’. . d_t’ == D(;{) = 1‘, X d_t’ 3 d_" A= D“'(z) = D(a:n(,{)
dé  dé d&  de
>1,- 31,87 _ hay. (118)
d&  de

On the other hand we can evaluate eq. (34) for the second derivatives d?@/d¢& dé&
in a representation in which # (k, &% #(&°)) is diagonal. Comparing the result
with the explicit expression (110) for D¥(x) if » = 0, we find

B! d*PdE dE = 1, — DD(O) — L. 91 (119)
dé d¢é
Hence the inequality (118) can be written as
1p__ql.£il_0(;¢)2 -1£. (120)
d¢ d¢ dé d¢

So, indeed, if @ has a strict minimum, all determinants occurring in the right-
hand side of (114) are positive and cannot give rise to singularities if we take the
logarithm.

We finally must investigate the behaviour of the matrices 1, — (dg/d&) - (dg/d)
— D(x) for large values of x. First of all we note that

D(x) = D (n — %), (121)
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so that in the summation over % we can restrict ourselves to terms with » < n.
Eq. (121) is obvious if one considers the expression for D(x) in terms of the
matrices D”(») and E‘“(x), ¢f. (105), (109), (108), and uses the relations

D(l)(?f) o D(]) (n — 7{), D(Z)(x) e D(Z) (n . x)’
E®¥(x) = E® (n — %), EV() = —EV (n — %),
E(z)(x) = _E(z) (n pes Z), D(3)(x) = _D(3) (n == Z).

These relations in turn are a special case of the relations (112). Using the inequality

EPEILIE o [0, l] (123)
1] X 2

we see that in the limit x — oo, (for 2 < 4n)

D"(x), D'®(x) and E‘®(x) are of order O (1/x?)
whereas

EV(x), E*(x) and D®(x) are of order 0 (1/x). (124b)
This implies that, ¢f. (113)

N() = 1 + EP(x) + 0 (1/%),

and since E® (%) is antihermitean, we have

N(x) + N(%) = 1 + 0(1)x%),

N(x) — N'(x) = 0 (1/x).

Noting that E®(x) is hermitean we then find from (109)
D(33)(x) p—

so that

(128)

The term —(d#/d¢é) - (dg/d&) in the left-hand side is cancelled by the same term
in D®%(x) and this last term arises from the imaginary part of L®, hence from
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the second derivatives of the imaginary part of the function g at the point &, = &°,
2 =0.

Now the convergence of a series like Y, In (1 + 1/x?) ensures that the sum
over x in the second term of (114) is finite, so that the correction term can be
neglected in the thermodynamic limit.

Hence it has been proved that the free energy per particle cannot be smaller
than #~! min, @(§), which value is equal to the upper bound (30).

7. Parameters independent of §&. We have seen already in section 4 that the
difficulties in connection with the correction due to the second derivatives stem
from the fact that the parameters s were chosen to be &-dependent, ¢f. the dis-
cussion below (78).

In this section we shall give an example that we do not get the correct lower
bound if the parameters are taken to be independent of &. In that case, of course,
all the properties of the absolute minimum of g,, as derived in section 4, remain
valid. For fixed parameters # the value of the minimum of g, is go, = min; ¢ (&, n),
¢f. (68). Since the matrices D'V(x), D®(x), D®(x) are of order @ (1/x2), O (1/%?)
and 0 (1/x), respectively cf. (124), the correction (78) due to the second derivatives
is finite and we have the following lower bound for the free energy

f= B *min ¢ (& n) for all #. (129)
¢
Combined with the upper bound derived in section 2, this results in
max min ¢ (¢, #) < ff < min max ¢ (&, 7). (130)
n ¢ ¢ n

Note that for the lower bound we have

max min ¢ (§, #) = min ¢ (&, 0) = By, (131)
] 4 S

where f,, is the free energy derived in ref. 1 for the corresponding pure ferro-
magnetic case without operators W(k). Hence we see that the introduction of
antiferromagnetic operators never can lower the free energy; i.e. we always have

S = fim:

In order to see that the lower bound in (130) can actually be lower than the upper
bound, we shall discuss the following model.

Consider a spin system consisting of two sublattices of N spins each. The spin
variables on one lattice are given by S*k), k = 1, ..., N, S*k) = +1, and those
on the other by T%(k), k = 1, ..., N, T*(k) = 1,0, — 1. The hamiltonian is given by

J N
= W‘MZ:IS (k) T=(1). (132)
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We assume that the coupling between the two lattices is antiferromagnetic, i.e.
J > 0. The hamiltonian can be written as:

'——i () z _L 2 L z 2
X = S [‘I‘L—S(lx)+§7’(k)]2 e [;S(k) ;T(k)] - (133)

so we have one “ferromagnetic” and one ‘“‘antiferromagnetic” operator. This
hamiltonian has the form (3) with 7(k) = 0 and

W(k) = 37 (S7(k) + T*(k)),
(134)
V(k) = 3J* (S*(k) — T*(k)).

The operators V(k) and W(k) act on the six-dimensional product space of a
particle with spin + and one with spin 1. The function ¢ (&, %), ¢f. (21), is given by

¢ (&.n) = 1p(E? —n*) — Intrexp B (§V — qW), (135)
where the trace is over the six-dimensional space. Using the notation

_ tr{dexp [BEV —aW)]}
trexp [B (§V — nW)]

4>

the molecular-field equations are
E=(V) and g =<I(W).
Similarly one has
?¢log* = p — p* {KV?) — (V%)
*¢lon* = —p — B2 {KW?) — KW)?},
Plok on = B2 {KVW — (V) (W}
We introduce new variables, v, w, x and y by
V=3, W=3iltw, x=3p%, y=1iply. (139)

Also b = (J/4) p. The function ¢, expressed in these variables, will again be
denoted by ¢ (x, y) and reads

¢ (x,y) = (1/2b) (x* — y*) — Intre¥ ", (140)




Egs. (137) and (140) can be written as

X + y = 2btanh (x — y),

sinh (x + ) st

1 + 2cosh (x + y)

x—y=4>b

and
¢ (x,y) = 367" (x* = y*) — In 2 {cosh 2x + cosh 2y + cosh (x — y)}. (142)

From (141) one sees that apart from the solution x = y = 0 which, of course,
exists for all b (i.e. for all temperatures), there exists a solution (x,, y,) # (0, 0)
for b > /6. In addition (—x,, —y,) is a solution.

If one calculates the second derivatives for the solution x = y = 0 (oré = =0)
one finds that 8%¢/dx* (or 0*¢/0&?), which is positive for small b (high temper-
atures) becomes zero at b = 3.

Furthermore d?¢/dx? which is larger than %¢/dx* becomes zero at b = } J6.
Here d*¢/dx? is the derivative which takes into account the variation of the
function y = y,,(x) determined by d¢/éy = 0. In this discussion we shall need
in particular the function

¢ (x,0) = 367'x* — In 2 (cosh 2x + cosh x + 1). (143)
In order to determine the minimum of this function we write down

09 (x,0) _ p-1y  _Sinh 2x + 2 sinh 2x

3 - (144)
0x 1 + cosh x + cosh 2x

0=

From eq. (144) it can be seen that for b < % only the solution x = 0 exists,
whereas for b > # apart from x = 0, other solutions, which we denote by +x0#0,
exist. Since ¢ (x, 0) = o0 if x = + 00, for b < %, ¢ (x, 0) has a minimum in x =0,
whereas for b > % ¢ (x, 0) has a maximum in x = 0 and minima in +x,.

Consider now first temperatures larger than 5J/12kg (i.e. b < ). There is only
one solution, x = y = 0, of the molecular-field equations. The upper bound is
¢ (0, 0) whereas the lower bound is max, min, ¢ (x, y). By taking x = 0 we see
from our discussion above that min, ¢ (x,0) = ¢ (0, 0). Hence the bounds are
equal, so that the free energy is given by ¢ (0, 0).

If we now take ¥ < b < }.,/6, the only solution of (141) is still x = y = 0, so
that the upper bound is ¢ (0, 0). In order to calculate the lower bound we note
the following three relations for ¢ (x, y):

¢ (x,y) =@ (=x, —y), (145a)
¢(xl,») > ¢(=Ixl,») ify=0andx#0, (145b)
¢ (—|x|, ») is a monotonically decreasing function of y for y > 0. (145c¢)
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Egs. (145a,b) are obvious from (142). Eq. (145¢c) follows directly from the fact
that

o (—|x|, ») el - 2 sinh 2y + sinh (jx| + )
oy b  cosh 2 |x| + cosh (|x| — y) + cosh 2y

Because of (145a) we may restrict ourselves to y > 0. Since ¢ (x, y) » oo if
x = +oo for fixed y, ¢ (x, y) has at least one minimum which we denote by x,().
On behalf of (145b) the absolute minimum must occur for x,(y) < 0. Then

¢ (x;(»),y) =mind (x,») < ¢ (—x5,¥) < ¢ (—x,,0)

min ¢ (x, 0) < ¢ (0, 0), (146)

where (145¢c) has been used and where in —x, the function ¢ (x, 0), defined by
(143) assumes its absolute minimum.

Eq. (146) shows that the lower bound to ff is equal to ¢ (—x,, 0) and is lower
than the upper bound which is ¢ (0, 0).

To give a numerical example for this difference we consider » = 0.605. Then
the lower bound to ffis —1.79187, whereas the upper bound is —1.79176. (Note
that the general proof of this paper shows that the free energy in this region is
given by =1 ¢ (0, 0).)
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APPENDIX A

In this appendix we give a justification for the replacement (40), i.e. in the
calculation of the free energy per particle, we may use the expression

0, = Tr{ de exp [—ﬁz—}:(é’ - n’)] exp [-—g ; H (k, &, 'I)]

-

x [Texp [——’3— MZCE Nnay]Jn,

a=1 2nN \%




instead of

0, =Tr [ f dg exp [—'i—N €* - rl’)] exp [—ﬁ 3 T(k)]
~n n k

-

x || exp EE,Z Vk) | [Texp o Y. Wik) — Ny,)?
! n K a 2nN \%

X exp [—ﬁ Y. W (k) r),:” : (A.2)
n

Note that the &-dependence of # has not been written down explicitly. Just as in
ref. 1 use will be made of a special case of the Holder inequality for operators, viz.

102" Tr 0} < [Tr (0,0,)] < |0;|" Tr O, (A.3)

where the operator O, is assumed to be positive definite hermitean. In the absence
of antiferromagnetic interactions W, the expression for 0, can be expressed as
Tr Of, where O, is positive definite hermitean. This is not true in the present case.
Therefore we shall compare g, and o, with the expression
@ n
es=Te| fazo,)f, (A4)
=g

where

0.8 w exp [—ﬂz—’: @ - rf)]

X exp [_ﬁ S H (k& n) -zﬂv (Z W (k) — Nr),,)z]. (A.5)
n 'k a2n \k

We shall prove that in the calculation of the free energy per particle o, and p, can
be replaced by g,, so that o, and g, can be interchanged. In order to prove this,
we write

o =Te | fez0.0 400"
(A.6)

ol Bk [ €0, Am(e)]
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where

(1) e ﬁ _ﬂ__ — 2
AD(E) = exp [n ;f(k, & n) 4_-2:2"N (; W, Nm) ]

X exp I:—gg_x’(k. 3 rl)] H [——ﬁ— (Z W, — Nm) ]

(A7)
AD(E) = exp[ X k. & ) t g (Z Wa — Nia) ]cxp [—g Z T(k)]

2nN

x I,] exp [i:‘ 5[2": V,(k)] H exp [—i (Z We — Nr/u) ]

X exp l:— fid ¥ W,r],,:l.

As in ref. 1, we define operators A’ and A‘® which no longer depend on &, viz.
AV = {[dE 0,(@)} " [ & 04(8) A7),
A® = {[dE 0,()} " [ d& 0,(8) 49,

(A.8)

so that
01 = Tr (0, AV, 0, = Tr(0,4?),
where
0, = [d¢ 0,(8). (A.9)

We now expand the operators A(¢) in (A.7) as a power series in 1/n and £. Note
that # depends on & so that such an expansion in principle would contain all
derivatives of #, which turns out to lead to divergences if the orders in 1/n are
considered separately. However, it is sufficient to restrict ourselves to functions g
which are bounded with respect to &, since ultimately we are only interested in the
choice # = 1,,,, and the function #,,,(§) has been shown to be bounded in sec-
tion 2. This shows that a term £,()/(¢"/n°), which is obtained by expanding A($)
only as far as its explicit &-dependence is concerned, and which therefore contains
an g-dependent (hence &-dependent) coefficient f,.(#), is bounded by M, (& [n°)
where the finite constant M,, no longer depends on &. Hence in such an expansion
which is meant to see for which values of  and s terms of the form £"/n* contribute
after integration (£ ~n*) and after taking the limit n — co, the &-dependence of g
need not be taken into account.




We write the expansion as

A(é) =1+ Z Z Ars(f)9 (AlO)

s22 rss

where A,(&) is the contribution of the terms that contain s factors I /n and r
factors &. In accordance with the discussion given above only the explicit £&-depend-
ence is taken into account. For the &-independent operators 4 we have a similar
expansion, where 4,, is the contribution due to A, (&) in (A.8). Using the same
argument as in appendix A of ref. 1, we see that, apart from the constant 1, only
A,, may give a nonvanishing contribution to the free energy.

We now consider the expression (A.7) for AV(&) and A2(&) in more detail.
Clearly

A58 =0, (A.11)

since the terms that are proportional to 1/a? contain at most one factor £ Hence

lim Tr {_fdg 0,(&) Am(c)}" = lim Tr {_fdé o,(:)}". (A.12)

n—-w n-+om

Eq. (A.12) shows that the replacement p, — p, is correct, even for finite systems.
On the other hand,

4@ - 1 p+2q p+2q B,
@) =exp|—— Y Bi| [] exp(—
n i=o

=0 n

=1+ —l— Z [B;, B;] + O(n=3), (A.13)
2n? i<y
where

B, = —ﬂ;T(k),

B, = ﬁ&g Vi), f=1,...,p,

Byi2a-1 = —f (2N)~! (Z, Wak) — Nm)”

Bysza= —BY Wane, a=1,...q. (A.14)

For A53(&) we obtain the same expression as in ref. 1, i.e.

ADE) = z’i—zfg 84,3 V00, V00, (A.15)
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which leads to

2
~2(.‘-;) ='ﬁ— Z Qfﬂy

n r<g

where the O, are bounded in the limit N — oco.
Now g, = Tr {0, (1 + 433)}" and using (A.3), we have

1077 "es < @2 < 021" s, (A.17)

where 0, = 1 + 453.

In the limit » — oo, the operator norms |03 '|~" and | O,||* reduce to finite
constants. Hence in the thermodynamic limit the replacement p, — p; is correct.

APPENDIX B

In this appendix we calculate the elements of the matrices L'V, L®> and L*® as
defined in (81).

Analogously to appendix B of ref. | we express the matrix elements in terms
of the derivatives of T (k, {&,}, {x}) defined by™

T (k, {&i}, {11}) = trx JUI (k) o,(k), (B.1)
where

o,(k) = exp [—(B[n) F (k, &;, n(E))]

and

q

o,(k) = Hl exp [(iB/n) %saWa (K)].

We have e.g.

. 1 d*p? n —2 [ 0T (k, {&}, {x:}) )
LY =6,(1,-— — Y T
% ’( 2 dcdc>+Nﬁ§ ; < 2, 0

- ( o (k, (&}, () ) 0 ("ZT(’" e} {"})) . (B.4)
o 1]

o, BN & 08, 9,

* This function should not be confused with the operator 7'(k) in the hamiltonian (3).




Note from (58) that instead of T (k, {&:}, {x:}) we should have taken
T (k, {&1}, {:}) * exp [—(iB/n) 7(&0) - 2. The last factor, however, only gives a
contribution id,; (dy/d¢) to L{}’, and does not change L™ and L. For L} and
Lﬁ’ — 16, (dy/d&) we have formulae similar to (B.4). From the expression

2 0,
(q ¢ Z‘ ) ="_k{91 (Q-|ﬂ> 0!-:(9—1?_9) 9"-!}, fori <j,
0&iy0€s /o Oéy %,

(B.5)

e = o(k) = exp [—(B/n) # (k, &°, n(&°))], (B.6)

and the analogous expressions for J < i two general conclusions may be drawn,
using the invariance of the trace for cyclic permutations.

1) the derivatives have a cyclic structure, i.e. L = L, and L33 =%, for
a =1,2,3. This property enables one to write down the expression for i > j
directly from the case i < j.

2) the second term in (B.4) may be combined with the last one by considering
instead of p~! (9p/d€) in (B.S) the expression (¢~ (dp/0&) — T~* (3T/&)). This
corresponds to replacing

v-w. L by .80 <V— W-ﬂ> =V  (B7a)
dé dé dé /.«
and
W by W-(W,=W (B.7b)
in the other derivatives.
In the calculations use is made of the expressions
B/n
0o, (k d
- LB f dr exp [(r - ﬁ) # (&, rz(é.))] ( Vi) - Wk - —”)
¢, n dé
0
X exp [—v# (k, &, n(&))], (B.8a)
and
oo, (k) i i i
B _ B e [ﬁ l,,,w,,} W, T exp [ﬁ x,,,wb], (B.8b)
%ta n b<a n b>a n
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and all derivatives eventually must be evaluated at & = &% x, = 0. From
(B.4)—(B.8) and the cyclic properties of L*? one finds, ¢f. also (I.B.6), for i # j

—spn+ny 2n* {cosh (B/n) (h, — k) — 1}
V V B (hy+hy) ? q
LT L Ve e B (hy — hyy

(l) =3
U U( dédé d(: dg
18
nN

X (coshy;_; — sinhy;_)). (B.9)

Here h, and h, are eigenvalues of the hamiltonian # (k, §°, #(¢°) and O,, are
the matrix elements of an operator O in a representation in which # (k,&°, n(£°))
is diagonal; y, has been defined in (96). For i = j one should be careful. First
of all, as in ref. 1, it turns out that (B.9) may only be used to first order in 1/n
to evaluate L‘” There is, however, also an extra term which arises from
d2# (k, &;, n(&;))/d&; d&;. This term can be seen to be

n B/n
SR, 2 P ¢ 0 (1l ik ik
BN % 0

2 (dzé?’ (k, &;, ’I(é/))) o= (k. 80 &%) en—l},
dél $ déj 0

which at the minimum, is equal to

dé df

thereby cancelling the term —d, 4+ (d*y/d& d¢) in Lf}’ in view of (18). So the
result is

dg dy B e i s
LV =6 y P pea AN S (PRI Yl £ V..V, e ¥ t+h)
iJ iJ r d§ df nNZ' K ;q{ ra ar

x (coshy,_, — sinhy;_)} + 0 (1/n%). (B.10)

Using a similar line of reasoning one finds for EPra=D

L2 = 8,1, + — sz try {o™*'~I(k) W(k) o'~ '(k) W(k)}

= 8,1, + —}:T'1 Z W, W, e ¥ ®* (coshy,_, — sinhy,_),
(B.11)




which is also valid for i > j in view of the relations

1@ =12;  1D=12,

For L{}’ we have for i < j

o dyg i > e
L = iy —L = LY Iyt iy |f dee ™ Cone
N % 0

x W (k) e~ % € oI =iy Jr(k) 0"+ (k) ). (B.12)

The expression for j < i can again be derived using the cyclic properties. The
result is

8 e~ HBythy
Ly =idy———) Ty
i i Z k Z We B

X Jcosh Vit (cosh L (h, — hy) — 1) — sinh y,_, sinh g (h, — hy)
n n

L

— sinh y;_; <cosh .4 (h, — h,) — 1) + cosh ;- sinh B (h, — Iz,)}
n n

— ié 91 T Z Tk Z i}paWu e-*“hﬁhq)
dé nN 'k P q
x {coshy,;_; — sinhy,_,} + O (1/n?). (B.13)

APPENDIX C

In this appendix we prove that the matrix {{z.x,>)> has a cyclic structure and
in addition we calculate the matrix N(x), cf. eq. (107).
In order to do this, we introduce the Fourier components

209 = n Y x e, (C.1a)
J=1

and we have the inverse relation

n—1
s n-i’ zz(x) elxl/x/n (C.lb)
x=0
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Then
n-1

L) =n? ;_o x=*) 2(2)>) exp [(2wi[n) (I — kx)].
If we want to prove that {{y>> is cyclic, we have to show that

{x*6) 2(2)>) = N(x) 6, ,, (C.3)

i.e. the left-hand side is diagonal in .
Using egs. (C.1b), (90b), (103) and (104) we find that the quantity y, cf. (88),
is diagonal in » and can be written

y = iﬂn"kzlz. L

= 3pn~1 Y x*@) - (1, — D) — ED()) - 2().
Since x; is real, we have

25(%) = x (n — ). (C.5)

In order to perform the integrations in {{y*(x) z(2))), ¢f. (87), it is convenient
to use real variables. For these we can choose

if n is even:
Re 7(0) = x(0); Re x(%); Im () for x=1..,3n -1,
and  Rey(in) = y (3n);

if nis odd:

Re2(0) = 2(0); Rex(»); Imz(); =x=1,...,3(n—1).

The jacobian associated with the transformation of x,, j = 1,..., n to these new
variables does not depend on these variables; hence it disappears from { {x*(»)x(2) >
From (C.4) it is obvious that the integrals j'e'"’ 2¥(%) 7(2) can only be non-zero
ifA=x0rd=n-—x

First we prove that

KK*@x@—%)>> =0 (x+#0,3n).

Define

y=px) =Rexx), z=22x) =Imjyx).




If we write y = Y 320 p(»), ¢f. (C.4), and use eqgs. (122), we have (C.9)
) +y(m—x)=@m){y (1 —=DP)+y +z-(1 —=D?) .z
+iz.E(2).y_iy.E(2),z}. (C,IO)

The quantities in the right-hand side of (C.10) depend on #, but this dependence
has not been shown explicitly for the sake of convenience. Using (C.8) one arrives at

L' = %)) = Kyyd) = Kzzp) — i {Ky2)) + (2D}, (C.11)
where now e.g.
Kyyd) = (BN[n) [ dy dz e™" 77D pyi( gy dg e~ MO0 - (C,12)

In view of (C.10) it is easy to see from simple transformations of variables like
(»,2) = (2, ) or (y, 2) = (y, —2), that

Kypo) = Lppdd* = Kz2)),
Kyzd = =Kpd* = {p))*.

(C.13)

From (C.11) and (C.13) it follows that {{x*(x) x (n — %)>> = 0, and eq. (C.3)
has been proved.

In order to calculate the matrix N(x) = {({x*(x) 2(%)>), for » # 0, in we
introduce a 2g-dimensional vector ¢ = (y.z) and the 2g-dimensional matrix T
defined by

T(x) = (1 = D= =8P 0) ) (C.14)
ED(x) 1 — D)

Then

) +y (=) =pn~"t-T-1, (C.15)
and

NG) = 28Nn=" [dee ™™ T 2 (yp 4 jpz)/[ dee™PVn"e-T e, (C.16)

From (112) it follows that T is a symmetrical matrix; also, in view of eq. (110)
which shows that 7 — D®(x) is positive definite, Re T is positive definite.
For an arbitrary symmetrical m x m matrix M with positive definite real part,
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we have the relations, cf. ref. 18

f° dx, -- dx,, exp (-5 i x,M,,x,) = (27)*™ (det M)~ %, (C.17)
= Lj=1

f)dx, -+« dx,, X;x; €Xp (—fz x,M,,x_,) = (211)*"'(M“),, (det M)~*, (C.18)
D i.J

where M~! is the inverse matrix of M. After applying egs. (C.17) and (C.18) to
(C.16) we find that the elements of the matrix N can be written

Nop(®) = (T~ Voa + i (T~ g 4,05 (C.19)

wherea, b =1,...,4.

Eq. (C.19) is also valid if x = 0, 4n. In fact a straightforward calculation shows
that N,(») in these cases is given by the matrix (7 — D®(x)),,", which is equi-
valent to the right-hand side of (C.19) since we have E®(x) = 0 if » = 0, in,
of. (112).

It is now easy to derive an explicit formula for the matrix N(x) in terms of the
matrices D'®(x) and E®(x). In order to do this, we start from (C.14). We write
the inverse matrix 7~* as

A B
T-1= ! C.20
(r 4) (C.20)

where A, B, I' and 4 are g x q matrices satisfying the relations
AA — iET =1, iEA + AT = 0.
Here A and E are shorthand notations for
A=1-D%x), E = E¥(%).
From (C.21) the matrices A and I can be solved and we have
A=A;', I'=-id"Ed;’, (C.23)
where
Ag = A + EA'EY, (C.29)

The inverse matrices A~! and A" exist since D‘®(x) is negative definite, so that
A =1 — D®(x) and EA~'E" are positive definite.
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From (C.19), (C.23) and (112) it follows that the matrix N is given by
N=A+il=Az* (1 + EA™Y)
= [1 = D) + EP() (1 = DDG))~ @)

x [1 + E@(x) (1 — DD(x))].

APPENDIX D

In order to derive eq. (109), we define the matrix

D(%) = D¥(x) + EP(x) — i %Z—

Then, in view of (90c), we have

n=1

Ls;) T Z D) e2nlix/n. (D.2)

x=0

From appendix C, ¢f. egs. (C.2) and (C.3) we conclude that {{xzxx;,>) can be
written
n-1
Kdis ) = Zo N(x) exp [(2=i/n) (I + j — k) x]. (D.3)
Substituting (D.2) and (D.3) into (106) we get
n-1 n-1

(33)(,‘) i’ﬂ -3 z Z Z 9(3)(}') 9(3)(/‘) Nab(‘y)

wA1=0 A,p,v=0 a,b=1
x exp [2=i/n) (jx — kA — lu + (I + j — k) )]

+3n72 ¥ ¥ T 9500 957w Na)

Jokod Aypu,v a,b
x exp [2ri/n) (x + kA + lu — (I + j — k) »)]. (D.4)
The summations over k, / and j give a number of Kronecker delta’s, viz. 8, _,,
d,,,and 4, _, in the first term and ,, _,, d,,, and 4, , in the second term. As a

result we have

D$(x) = % Z D5)(%) 25 (—%) N —%)

g % Z 9(3)‘( M) Q(B)t(") N,‘,(x).




Using (113), we can write (D.5) in matrix notation as

D®¥(x) = 3B (x) N(—x) 9 (—%) + h.c., (D.6)

where h.c. as usual denotes the hermitean conjugated operator. Substituting (D.1)
into (D.6) and applying some of the properties (112) one readily obtains eq. (109).

APPENDIX E
We first prove that M, , ¢f. (115a), is positive definite, i.e.
z*«D¥V.z < z*. D) (1 — D@)~1 p@t, 2, (E.1)

for arbitrary complex z. Eq. (E.1) will be proved as a special case of the more
general inequality for the matrix N

&)= IN+NY =2 (IN+N) 2+ & (N=NY - g
-2 (IN=NY- L -2 —D¥)-1.¢ <0, (E.2)

for arbitrary g-dimensional vectors ¢, z. In order to prove (E.2) we note that the
matrix N can be written as

N = A" (1 + EA™Y), (E.3)

where Ag =1 — D®, E = E® and Az = A+ EA~'E*, ¢f. (C.22), (C.24) and
(C.25). We use the relations

Ag (N + NY) Ap = 24,

Ag (N — N Ap = 2EA~'Ay = 24,47 'E,

ApA=*Ap = Ay — EA~'AzA~E.
Then by using the notations

x=—A"'EA;'-{ and y=dA;'+y,
so that

x*={0* A;'EA"* and y* =py*-A;',
we have from (E.4)

Wl 2)=—-(x=p)* A (x-p») <0,




since the matrix Ay is positive definite. Hence (E.2) has been proved and (E.2)
reduces to (E.1) by substituting

§=DM.3, (E"’— 2;’) . Z. (E.7)

Next we consider M,. M, = 0 is equivalent to
&* - [DV(x) — D(0) + D) (1 — D))~ DD'(2)] « & < 0, (E.8)

for arbitrary &. Eq. (E.8) will be proved as a special case of the more general
inequality

¢@Gx)=8* DY) &+ x* DP(x) o g + &* - DV ) - 1
+ 7% D) - & < &* - DY(0) - &, (E.9)

for arbitrary p-dimensional & and g-dimensional y. From the explicit expressions
(110), (111) and (92), we have

2 —3p,+ny 40 sinh 48 (h, — hy)
$= PN T e By — h (1 + €29

X {%pal? = [Vsal? + (Xha¥pa + YieXpa) Cpa €0 (=)}, (E.10)
where Xx,,, ¥, and ¢,, are shorthand notations for
Xpa =V & Voa=Wao i  Cpe = nsin(zx/n)/f (h, — h). (E.11)
It is clear that the term between brackets in (E.10) is smaller than
Ppel? = 1 7oel? + 2 [Cpal %ol [75el < (1 + €50) [Xpal? (E.12)
Using (E.12), we then have

{ ~3pn,+np 4nsinh 38 (h, — b))
MmN)-1 J 2a 2 (hy+hy) q
¢ < B (2nN) Z k le |°e Bk, — h)

= &* . DWY(0) - &, (E.13)

which proves (E.9).
Eq. (E.8) can be obtained as a special case of (E.9). By substituting

x= —D‘”“(x) D(:m(x) o &
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into (E.9), one finds that

& - D) = DD(0) — DV) DV~ DV'Ga)] - & < 0.

Since the matrix D'?)(x) is negative definite, we have
DP=Yx) + (1 = DP())~* = D®~1(x) (1 — D¥(x))~* < 0. (E.15)
Then also

¢+« D¥(x) DD=*(%) DG « &+ &* - D) (1-DP() ™ DY) - £ <0,
(E.16)
and (E.8) is now obvious from (E.16) and (E.14).

Note added in proof. A very interesting investigation of models with separable
interactions has been carried out by Bogoliubov Jr.'?). In ref. 19, the treatment
of hamiltonians with mixed ferromagnetic and antiferromagnetic interactions is
restricted to a subclass of the general hamiltonian (3) in the present paper, viz.
essentially a generalized BCS-type of interaction. In the ferromagnetic case, the
approach by Bogoliubov appears to have a much more general validity. Recent
applications can be found in several Dubna preprints, cf. also e.g. ref. 20.

One of the authors (P.T.) wishes to thank Dr.J. G. Brankov for an interesting
discussion.
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V. APPLICATIONS OF THE GENERAL RESULTS

Introduction

In the introduction to chapters III and IV we have already mentioned a
number of models that have been considered in the literature. These models
cover a fairly wide range of physical situations. They include e.g. the
phenomenon of superconductivity which can be described in terms of a
Hamiltonian containing long-range interactions. Furthermore one can also
consider problems concerning ferromagnetism and antiferromagnetism both of the
localized and the itinerant type in situations in which the interactions are
approximated by interactions of the extreme long-range type.

All such models can be described by Hamiltonians which belong to the
class that has been studied in chapters III and IV. One is interested in
the thermodynamic behaviour of these systems and it was seen in the foregoing
chapters that due to the extremely long-range character of the interactions
between the constituents ("particles") of the systems, their free energy
could be calculated exactly. It turned out to be of the molecular-field type
and contained a number of order parameters (analogous to the total or sub-
lattice magnetizations in magnetic systems), whose values must be determined
from so-called molecular-field equations. The solutions of these equations
and especially the stability properties of the free energy as a function of
the order parameters (it should be a minimum) have to be investigated in
order to find the correct free energy. All this is a necessary prerequisite
for studying different aspects of thermodynamic behaviour of these systems,

e.g. the occurrence of phase transitions and of critical or tricritical

points. In connection with this it may be noted that the classical critical

exponents seem to be exact in the case of tricritical points in a three-
dimensional system, in contrast to the exponents for a normal critical
point 1). Therefore we present in this chapter a number of general results
valid for the whole class of systems under investigation. Though to some
extent they can be considered as different formulations of results stated
previously, they can be useful in dealing with the equations corresponding
to some particular system . First, however, it is noted that a
generalization can be made to a much larger class of systems: i.e. the one-

particle operator T may be replaced by a more general operator containing
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interactions, at least for systems with purely ferromagnetic quadratic inter-

2) 3) ). This allows one to

actions (cf. also the work of Bogoliubov jr.
study the simultaneous occurrence of short-range and long-range interactions,
at least in principle. After these more general considerations we turn to a
more detailed discussion of several models which have been proposed for the
investigation of a great variety of physical situations. These models are
either members of the class treated in this thesis, or have been studied in
a molecular-field approximation. In both cases the present formulation
presents a general and unambiguous way for obtaining the equations relevant

for the discussion of the physical behaviour.

2. Extension to general T

The Hamiltonian that was considered in chapter III, consisted of a one-

particle part and of a quadratic ferromagnetic two-particle part

-1 2
x=17F 7(k) - (2N) f (y Vo(k) )° .
k f=1 k
Here the (bounded) operators T(k) and Vf(k), f=1, ..., p can be inter-
preted as one-particle operators.
Instead we consider the more general class of Hamiltonians, deseribing

systems of N particles

=1~ (2n)"" f vi, : (2)
£=1

Here T and Vf, f=1, ..., py are hermitean operators, defined on the
Hilbertspace of the N-particle system. It is supposed that the following

operator norms remain finite in the thermodynamic limit N + =, viz.

-1 =1 -1 -1
szl v L I8 em, v d s I8 vV 1 s fig=1seee0pe (3)

The generalization, as compared to chapter III, lies in the fact that T
need no longer be a one-particle operator, such as a kinetic energy term or a
term representing the influence of external fields. In fact, T may contain
any interactions between the constituents ("particles") of the system. In the
literature one finds discussions of one-dimensional spin systems, where T
contains a nearest neighbour Ising or an XY-interaction h),S),6). Also the
operators Vf may be more general. To our knowledge, however, no specific
examples of such a situation have been considered.

Folowing the line of arguments of chapter III, the free energy per




particle in the thermodynamic limit, f, for a system described by
Hamiltonian (2), is given by

£ = lim min F[INE2 + T - £+V]
N E

Here F[A] is, as usual, defined by

-1 BA

F[A] = -8" 1n Tr e

The result shows that the influence of the long-range, separable, ferro-
magnetic interactions can be accounted for by replacing them by —E-V with
suitably chosen parameters E. Of course the practical applicability of this
result is restricted to cases where the free energy of the Hamiltonian
KO(E) = INE2 + T - E'v can be calculated for arbitrary E %

The proof of eq. (5) is completely analogous to the proof presented in
chapter III. In fact, during all different steps in the derivation we have
not used in an essential way the assumption that the operators T or Vf
should be one-particle operators. The details of this proof will not be
given here, but can be found in a forthcoming publication, cf. ref. T.

Just as in chapter III we derive an upper bound and a lower bound to the
free energy per particle. As a result we have the inequality

n-1 - -+
8776y > £ 876y + (28M)7 1im J 1n aet(f - Bx) ), (6)
n»e =0 P

where 8-1Go is given by the right-hand side sz(h) and where the p* p matrix
g(x) is of order 1/k? for large x < #n and Ip-D(z) is positive definite if F

has an absolute minimum as a function of E.

In connection with this it may be noted that an extensive research,
though along different lines, on systems of this general type with ferro-
magnetic separable interactions has been carried out by N.N. Bogoliubov jr.
(see ref. 2 end especially ref. 3 for a detailed review). It seems that the
general nature of his approach has not been appreciated sufficiently in the
literature, a possible reason being Bogoliubov's emphasis on systems with a
BCS-type of Hamiltonian, cf. chapter III for references.

Recently applications to several other physical systems have been given

8),9)

in a number of Dubna preprints , ef. also 10). In the framework of our

approach systems with a BCS-type of Hamiltonian can be dealt with in a
simpler way following the line of reasoning used by Mihlschlegel 33). In

ref.33 use is made of the simple inequality (II. 75) in terms of imaginary
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rotation operators with spin 3. This inequality can be proved by elementary
methods. For the more general case, however, use must be made of the Hdlder
inequality together with the necessary and sufficient conditions for the
equality sign to hold.

In Bogoliubov's treatment of the ferromagnetic case the construction of
an upper bound to the free energy per particle in the thermodynamic limit
proceeds in the same way as in our approach using the Bogoliubov-Peierls
inequality. For the lower bound, on the other hand, Bogoliubov jr. uses a
number of subtle inequalities and an ingenious integration over complex

variables in order to show that in the thermodynamic limit the free energy

differs from the free energy of the model Hamiltonian 3NEZ + T - E'V by a

power of N which is smaller than 1. As a consequence, however, Bogoliubov's
method does not seem to be very well suited, if one is interested in the
evaluation of e.g. the volume-independent corrections to the total free
energy of large systems.

These corrections can be investigated by a direct calculation. We have
followed in chapters III and IV an approach which is familiar in statistical
mechanics by using an integral representation for the partition function and
Laplace's method. In addition, in section B8 of chapter III we have dis-
cussed a link between the presence of divergencies due to second derivatives
and the occurrence of phase transitions.

In the case that also antiferromagnetic quadratic operators are present,
Bogoliubov's treatment is restricted to a subclass of the systems described
by the Hamiltonian (IV. 1), viz. essentially those with generalized BCS-type
of interactions. At this stage it may be mentioned that the generalization
to an arbitrary operator T in the case of ferromagnetic interactions can be
used as an important tool in the construction of a simplified derivation of
the free energy per particle corresponding to the Hamiltonian (IV. 1) con-

taining & one-particle operator I T(k) and separable interactions both of the

ferromagnetic and antiferromagnet?c type. In this way some of the rather
complicated considerations on the convergence of the matrix of second
derivatives in chapter IV, although of interest for the purpose of
investigating the Laplace method and the contributions to the free energy due
to terms independent of the volume, can be bypassed. However, in the
presence of antiferromagnetic interactions the generalization to an arbitrary
operator T is in general not correct; the validity of the derivation is

restricted to the cases, in which T is a one-particle operator. These recent
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developments can be found in a forthcoming paper 7).

Generalized interactions

In this section we shall consider a slightly generalized form of the
quadratic-interaction part of the Hamiltonian. We shall show that the free
energy may be calculated in an obvious way by introducing parameters
corresponding to the operators that occur in this more general form.

Consider the Hamiltonian

) Ay XX,
sJ=1

where T, Xi’ i=1, ..., n are hermitean one-particle operators, i.e.

-3¢ Tt 3
T=1I_,Tk), X = kai(k)’z
Without loss of generality A can be taken to be symmetric and we suppose

and the matrix X with elements A.. is real.
1J

for the moment that its inverse exists. fe e
We denote by g the orthogonal matrix that diagonalizes K, S0 6_128 is

diagonal, and by Ai the eigenvalues of ﬁ. Now the eigenvalues Ay, ..., )n

can be positive or negative. We assume that the first p eigenvalues are

positive and the remaining n-p = q eigenvalues negative, i.e.

for: L& 15, evesia and kp+a <0, fora=1,

define new operators

J

The Hamiltonian can now be written as

a
: -1
=10 3IN f vz dnmh w2
> g a
£=1 a=1

which has the form that we have treated before.

The free energy is then given by

f = min max f£(&,n)
> >

g n




Ko(3,3>=%ﬂ(§ £3.= % ng) e § EV, + f v, - (14)
=1 a=1 =1 a=1
In eq. (12) the parameters nj, ..., n_ are chosen for each value of £ in
such & way that N-1F[Mb(g,;)] = f(E,;) is maximal. Next the parameters
Eh I Ep are determined so that N—1F[Mb(€,;mf(g))] is minimal. In view of
e.g. section 2 of IV, the parameters £1;5 «++5 Ep, Nis s++s nq are those

solutions of the molecular-field equations

af(E,n)/3¢ =0 , af(E,n)/3n =0 (15)

> > .
that lead to the lowest value of f(&,nmr(ﬂ)).
The molecular-field equations (15) cen be written as

-1

= ) -+ =], . 1
e =N Wl 2 ) » f s P (16)
-1
= (W) TR . 1
ﬂa N Wa Mb(g,ﬁ) A 3 s Q (17)
Define now parameters Tys 1 =1 Jovy 0= pEg by
i ¥ o
Bp i 4p .Z Or3%; K182
J=1
3§ -
- T s 19
na I>\n+a.] j£1 Op+a,JCJ (19)

-+

Since the inverse of the matrix A exists (i.e. none of the eigenvalues Ai is

zero), this transformation is one-to-one. Obviously, we have the identity

% (E.0) = (1)) (20)

where

H({g;}) =38 T A ¢

Construct the free energy per particle corresponding to this Hamiltonian

J('()({t;i}) and consider the equations
af[Mb({Ci}) Y/ Bci =0 s (22)
or equivalently
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=
P ({399

Now it is clear that if cg, i=1, ..., n, is a solution of (23),
corresponding parameters 52, £ =1, cevs Py 804 ng, Oa g 188 vty
solutions of (16) and (17). We have the identity Kb(z ,; ) = Kb({cg))
£(29,70) = f({cg}), where f((cg}) = lim N_1F|Mb({cg})] . Due to the one-
to-one correspondence between Ef, n& N;: the one hand and Ci on the other,
also the inverse statement is true: if gg, £oa 4, suas Py and nz, a=1,
.ees Q, satisfy (16) and (17), then ;g, Fumi 1y esidy N, satisfy (23)
Hence the free energies calculated with either of the two sets of parameters
are equal. As a result we can conclude that the free energy f of the system

described by the Hamiltonian (1) is equal to

= Lim ¥ 'FOG({E ) ] (2h)
N-»oo

where
n
Ho({z.}) =T - Y dis
0
1 i,3=1 1 1373

n
+ 38N ] g.A..g (25)

e L
Here the parameters Ci should be chosen as those solutions of the molecular-

field equations

=1
t; = N (xj )“o((ii}) (26)

that lead to the lowest value of the free energy. -

- . - . 7 - .
Finally we remark that the restriction to matrices A with non-zero eigen-
values is not necessary
Suppose that the inverse of the matrix of coefficients A does not exist.

+
Then, for sufficiently small positive values of e, i(E) = A -l has no

eigenvalues zero. We write the Hamiltonian as

-1 2

E
£ X.
i=1 *

e () 1
Y whl X e AN
=1 1] Ty

Considering first only the last term with ferromagnetic guadratic inter-

actions, we know from eq. (4) that the free energy is given by

lim N-1

N->eo

PIC_T




&rd 2 1y (e) 3
e sAm oy wmednT AKX e € oK
i i,3 i

Here the parameters Pss i=1, ..., n are those solutions of

(30)

that lead to the lowest value of the free energy given in (28). The averages
in (29) are taken with respect to He . Applying now the result obtained
earlier in this section, as well as eq. (28), we find that the free energy

per particle corresponding to the Hamiltonian ¥, is given by

lim F[3G ) (31)
N>

where

%G =} 2 = Ay 43 s R
g = 3N g p3ss T iZ_ g ALK, + AN .Z_ eihy5ts Z p; X,
sd 1,J 1

The parameters ;i, i=1, ..., n are the solutions of

that result in the lowest value for the free energy (31). Note that the
averages in (33) are taken with respect to N%, as defined in (32), and not
with respect to the Hamiltonian M; (ef. (30) ). The parameters p; of course
still satisfy (30).

If we now let € go to zero, we see from (30) that the parameters CH

become zero, and the result given by (31), (%2) and (33) reduces to the

previous result for the case that the matrix A has no zero eigenvalues.
Obviously, if we had applied & molecular-field approximation to the
Hamiltonian (7) we would have arrived at the same result. That is to say,
for the class of systems described by the Hamiltonian (7) the molecular-field
approximation leads to & rigorous expression for the free energy per particle

in the thermodynamic limit.

4. Bragg-Williams formulation

For the purpose of describing molecular-field type approximations often a

different formulation is used: the so-called Bragg-Williams formulation1)’12)




Here too an effective one-particle Hamiltonian is considered which contains
a number of parameters that have to be chosen in such a way that the free
energy calculated with the one-particle Hamiltonian is minimal. The set of
parameters chosen in the B.W.-formulation is, however, different: viz. it
consists of the occupation numbers of the eigenstates of the one-particle
Hamiltonian. Such a formulation may be of use in dealing with the eguations
governing the physical behaviour of the systems under consideration.

Therefore we show that the free energy per particle can easily be trans-
formed into an expression of the Bragg-Williams type.

Consider a system of N identical "particles" described by the Hamiltonian

ijxixj - (34)

++s» N are hermitean one-particle operators, i.e.
N o
Zk=1T(k), X, = Zk=1xi(k)'

Since the particles are identicel we see from (2L4)-(26) that the free

energy per particle in the thermodynamic limit is given by

174375

n
f=rh(c))1+3 | cA ¢
i,3=1

where

h((;i}) = o= z.A (36)

3By X

i,g=1 MY

Here we have denoted operators for one particle by h, t and X O 1
so we have, e.g. T(k) = t for all k. The parameters %; should be chosen as

those solutions of the molecular-field equations

Bf/aci =0 or qi = <xi) h({Cj}) (37)

that lead to the lowest free energy.
Denote the eigenstates of the one-particle Hamiltonian (36) by |lo) ,
1 «+.5 m, &and its corresponding eigenvalues by €y then we can define
occupation numbers Py by
-Be Be

0y 2 % / Z e- o (38)
g

From (37) we have
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Gy g x.(o)o, (39)

where xi(o) is the diagonal element (0 lxil o). Using (38) it is easy to

show that
7 -8n({z;}) 7 :
-8 " In tr e =7 ep, +8 ) Py In P - (ko)
g o
From (39) and (40) it then follows that
. 1
a3 1 = = L
g FoA. b Ay %4 (0)xs(0 )}oooc. tlep, +8" Jo_ 1n o, (k1)
g, o' L1i,3=1 o (o]
Using the relation
n
= = x. L2
e, = t(o) Z' ‘ Z_ A% (at)xs(0) (k2)
g’ 1,3=1
we can write (L41) also as
o 1
= .1 ' = )
f=-3 ] { o Aijxi(o)xj(o Roo. * ) t(o)o_ +8 ) pyInp_ . (3)
o,0' { 1,3=1 o o

If one uses the condition Eopc = 1 to express, say, P in terms of the

independent variables py, ..., p it is not difficult to show from (43)

m-1°
and (38) that the P, are such that

af / p_ =0, 0=1, ..., m1. (Lk)

From (43) and (L4) one easily recovers the formulation of section 3. Define

parameters Bis NN PR B
g =L x (o) . (45)
o
From the condition af/Bog = 0 for the parameters Pys O = Vs we'ey H=14 10

which f is expressed, one finds

-Be0 —Beo,
p. = e d Z e = (46)
g 1
g
Then, of course, the free energy as written down in (43), is identical to
f({ci)), cf. (35), and the condition g, = oni(c)pO = (xi) is equivalent
to
af({ci}) / 3 =0 . (47)

Eq. (41) in conjunction with (42), or eq. (43), expresses the free energy in
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terms of the occupation numbers Py» O = 15 +e.y M. Together with (44) this
constitutes what may be called the Bragg-Williams formulation for the
molecular-field approximation. Given a set of one-particle states one uses
in the description of the free energy as parameters the occupation numbers of
the states. In particular one can calculate the free energy at fixed values
of B v Pn’ Onie is then led to a free energy function of the type (L3).
The actual values of the parameters oc, 0 =1, +s.5 m, are now determined to
be such that this expression for the free energy is minimal; in particular
the parameters should satisfy (U4k).

The relation to the Hartree-Fock approximation is obvious: there one
expresses the free energy in terms of the occupation numbers of a basis of
one-particle states. First these states are determined by the condition that
the free energy is minimal for fixed occupation numbers. Then the matrix-
elements of the effective one-particle Hamiltonian obey Hartree-Fock
equations. *) Afterwards the occupation numbers of the one-particle levels

are found by requiring the free energy to be minimal.

5. Short-range and long-range interactions

In the case of ferromagnetic quadratic interactions, the generalization
given in section 2 shows that it is possible to study the simultaneous
occurrence of short-range interactions and of long-range interactions of the
separable type. Of course, the practical applicability of this result is

restricted to cases where the free energy of the model Hamiltonian Hb((z))

N—»Z i ey e N s .
> E- + M; - £+*V can be found for arbitrary £. Since the quadratic inter-

actions can be replaced by an effective field, this means that the free
energy of the system with short-range interactions only, must be known in
arbitrary field.

We consider two such systems. First the linear Ising chain, and second-
ly the linear XY chain, both with nearest neighbour interactions of either
ferromagnetic or antiferromagnetic type. To both Hamiltonians we add a long-
range quadratic ferromagnetic interaction between the spins.

Consider a system of N spins 3 with Hamiltonian

®) These equations are equivalent to the condition that the effective one-

particle Hamiltonian should be diagonal with respect to the basis of one- -
particle states.
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J] N s
=3 (H) -— I s/s; ! Jy >0 , (48)
= oN i,3=1 * 9
where
¥ 22 B oa
o R = L
¥, (H) I Y 88 ~E ]uBs (L9)
= i=1
(S;+1 = Sf) 3 J may be positive or negative.

Using the formulation of section 3, we cobtain the free energy from the

following effective Hamiltonian

g% =
1

"=

N
Holz) =3 Jiz2 + J('IS(H) - Jd1z

o=

J182 + X (B + o) . (50)
i
Now the free energy per particle for the Ising chain in field H is given by 13)

-

BT BH . o BH  -8J}®
fIs(H)_-h-s ln[cosh2 + {sinn 5 *e }:I . (51)

Then the free energy per particle for the system described by the Hamiltonian
(48) is

£ = min {% chz - %‘— B_1 1n [}osh g-(H + J1z7) +
4

+ {sinn? % (H + Ji8) - e—BJ}iJ } 2 (52)

The parameter 7 can be found from the implicit equation

sinh g— (H+J17)
g =13 z -y (53)
{sinn? > (H+J1Z) + e }2

and if this equation has more than one solution we must select the sclution
that leads to the lowest free energy per particle. This model has been
considered before by Suzuki 2) and by Nagle 3). Suzuki argues that the
effect of a quadratic ferromagnetic interaction is an extra field in addition
to the external field H. In ref. 3 the free energy is obtained from the
maximum term in the partition function, taking into account the appropriate
combinatorial factors.

For a discussion of the various phase transitions and the critical
behaviour we refer to ref. 3.

The second model is described by the Hamiltonian
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Jy N A
¥’ =3 (H) - — ¥ 8i8; » N1>20 (54)
2N i,j=1
where
N o ' N
Hy(H) = =7 :L {(1ey)sisy,, + (1-y)sis;,,} - H 121 8 » (55)
> s o . -
(s =8;) 3vY, =1 <y <1, is the anisotropy parameter.

N+1
The effective Hamiltonian is % lez “ Mky(H + Jl;) , and we use the well-

known expression for the free energy per spin in the thermodynamic limit for

c : N
the XY-chain, viz. L2/

o 2%
-1
5 B 1
Loy(B) = = o l d$ 1n 2 cosh 3BA(¢) , (56)
with
A($) = {(H + J cosh ¢)2 + Jzyzsin2¢}é . (57)

For the free energy corresponding to (54) we find

2n
e B N -1 1 ( - g%
f=min {3715 - B on | d$ In 2 cosh sz(¢)} > (58)
& 0
where
1
Ag) ={ (H + J1C + T cos ¢)2 + J2y2 sin? ¢}% ,. (59)

The parameter ¢ satisfies

2w
1 H+ J1Z + J cos ¢
Ti“
4T

A(4)

Ad tanh 38A(¢) . (60)
The expressions for the isotropic case (yY=0) are given by Suzuki 2).
However, there are some inaccuracies in his paper. Gibberd obtained the
eqs. (58)-(60) by noting that the familiar transformations to fermion
creation and annihilation operators (i.e. a Jordan-Wigner and a running wave

14),15)

transformation bring the long-range interaction intc a form

analogous to the interaction part in the so-called reduced Hamiltonian in the
BCS-theory of superconductivity 16). Since the XY-part is transformed into
an expression bilinear in the fermion operators, the resulting Hamiltonian

can be diagonalized by technigues used in the theory of superconductivity.




6. Dipolar and guadrupolar ordering

Consider a system of N spins of magnitude S. We suppose that the

Hamiltonian is given by

S X z\2 J - 2.z K . Z\2,,.2,2
= - - O . o W ST . C‘- .
% .z Si L .Z (Si) 2N . Z Slsg eN - .Z (Sl) (QJ) (61)
i=1 1=1 1,3=1 1,J=1

The sign of the constants J, K and L is arbitrary.

The first term is a Zeeman-term; H is the magnetic field. The second
term represents a zero-field splitting: the symmetry of the electrostatic
crystal field can remove the degeneracy that a given level would have in the
case of zero field. In the case of axial symmetry such an effect can be
described by a term -LZi(Si)Z. The third term is an exchange interaction of
the usual type, viz. bilinear in the spin operators. The last term is called

By
a gquadrupolar )

interaction. There may be different physical reasons for
taking into account such a term.

The two interaction parts of the Hamiltonian haye both been taken to be
of the separable type. One then obtains the same results that one would get
by applying a molecular-field approximation to interactions of the type

2 2 . g .
ol B T B8 and) sk Bk aalEs) (s2) respectively. The interaction

iJ 13 1) 119 1 J

constants J and K are J(0) =

EjJij and K(0) = EjKij respectively.

Applying our general formalism we are able to write down immediately the
free energy for systems described by Hamiltonians of the class (61). After
doing so, we will identify a number of special cases that have been dis-
cussed in the literature. Note that we include only the z-components of the
spin operators; i.e. we restrict ourselves to Ising-like Hamiltonians. For
a discussion of the different types of ordering and transitions in more
general systems with dipolar and quadrupolar interactions, within the frame-
work of a molecular-field approximation, see ref. 17.

Introducing two order parameters f; and I, we obtain from (2L4) and (25)
the following expression for the free energy per particle in the thermodynamic
limit

£ = 3(Jc2 - ked) - 67" 1n tr exp[:B(H + Jgy)s” + B(L + K{z)(Sz)z] . {62)

The parameters g; and g, are those solutions of

#) The terms "dipolar" and "quadrupolar" should not be interpreted in terms

of magnetic dipoles or electric quadrupoles.
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g = (SZ)

for which the free energy is minimal.

Here the averages are taken with respect to the Hamiltonian

2 2

ho(Z1,82) = = (H + J5;)8% - (L + Kgp)(8%)

We shall give the explicit results for S = 1 and S = 3/2. For higher
spinvalues S8 > 2 the expressions become more complicated. In the case S = 3

the terms in (61) involving K and L reduce to c-numbers. This particular
\

Ising model has been treated by Miuhlschlegel and Zittartz 8)

e 19 . . - 8
meijer 7). A lattice gas model equivalent to this has been proposed by
20)

, and Nie-

o 2 : 21) §
Husimi and Temperley and has also been studied by Katsura ’. Define

x = B(H + Jzg,) and ¥ = B(L + Kgp) . (64)

-1

= 87" In() + 2¢¥

cosh x)
where L1, Tz are the solutions of the equations
2e¥ sinh x
v
+ 2e° cosh x
2ey cosh x

+ 2ey cosh x

that lead to the lowest free energy.

free energy per spin is

2 2 17 ¥ 2~
1 + 2Kz - (L + Kgp) -

Again Zys Gy are those solutions of
3x

sinh E—

2y

! X
sinh = 3e
[

51

2(cosh = + eZy cosh gi)




2y 3x
> cosh >

G2 = =
2(cosh = + e~ cosh s_x)

X
cosh 5 + Oe

for which the free energy is minimal.

In connection with the class defined by (61) we mention a spin 1 model
with nearest neighbour exchange coupling and zero-field splitting that has
been introduced by Capel 22). The Hamiltonian is

It
% ) i
where (1i,j) denotes a pair of neighbours i and j.

In ref. 22 use has been made of the Bragg-Williams approximation and as
a result implicit equations are obtained which reduce to (66) and (67) in the
special case that K = 0. One merely needs to make the following replacement
(we shall always give first our parameters) H by uH, L by -D, J by zJ
(z is the number of nearest neighbours), 1 by 03 5, does not occur, since

= 0 . (Also a constant -D must be added to the free energy). For details
on the occurrence of first-order and second-order phase transitions we refer

to ref. 22. A very similar model has been treated by Blume 23).

k)

Furthermore,
Blume and Watson = have shown that in the case of eguivalent-neighbour
interaction, which can be considered as an example of (6.1), the molecular-
field approximation is exact.

As a second example we mention the spin g version of the same Hamiltonian,
discussed by Taggart and Tahir-Kheli 25). They use a Green functions
technique and apply & decoupling procedure equivalent to the Hartree-Fock
approximation. Their expressions for the free energy and the molecular-
field equations can be found from (68) and (69) by replacing H by -uH, L by
D, J by 2J(0) and g; by 0. Again K = 0, so f, does not occur (In their
expression for the free energy a factor 2 in the logarithm is missing).

A model with both order parameters f; and Z; different from O has been

26)

investigated by Sivardisre and Blume in order to explain the phase

transitions observed in DyVOy. Their Hamiltonian reads (8 = %)

1

®=-njsi- ] 3. s%- i{j K; [(s.z)2 - %s(sn)].':(sz)z- %S(SH)].

i s Sty

(12)
Their results, obtained by a molecular-field approximation, can be found

from (68), (69) and (70) by replacing H by h, J by 2J(0), K by 2K(0),




%K(O), Z; by M and g, by Q +% . Besides there is a constant

== K(0) added to the free energy.
As a final example we mention a spin 1 Ising model that has been

27) to discuss the A transition and

constructed by Blume, Emery and Griffiths
phase separation in He3-He" mixtures. The Hamiltonian is, apart from e
constant

2 2

X=-J 7} sis?-x ¥ (sz)z(sz.) (13)

+ 4 J(s?)
(f3)~ (i j) J s
Their results (again obtained using a molecular-field approximation) follow
from (65), (66) and (67) by replacing L by -A, J by zJ, K by zK, g; by M
and £, by 1-x. Here the parameter M plays the role of the superfluid order
parameter, and x is a parameter reflecting the possibility of phase

separation.

T. A model for antiferromagnetism

28)

In 1956 Gorter and van Peski-Tinbergen considered the problem of ob-
taining a qualitative explanation for the phase diagram of ordinary anti-
ferromagnets. Using a molecular-field approximation on a two-sublattice
model they discussed various solutions of the resulting molecular-field
equations in the case of orthorombic symmetry and identified the different
phases, viz. the antiferromagnetic, the paramagnetic and the so-called spin
flop phase. Several special cases of their model have been reconsidered
later and have been analyzed in some detail, cf. e.g. Vertogen, de Vries,

29) 30). In order to discuss a model

Kraak and Bidaux, Carrara, Vivet
belonging to our general class of systems treated in chapter IV, which gives
the same results as the model in ref. 28 in the molecular-field approximation,
we consider two magnetic lattices, each containing N spins §i, and %i
respectively, i =1, ..., N, of magnitude S and T. The Hamiltonian contains
interactions between spins in each lattice and between spins of different

lattices, It is given by

358k
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The magnetic field has only a z component. A
. . . . . >
Here we have introduced for the sake of notation interaction matrices J;,
-
> + . ¢ 2 1
J2 and J3 which are diagonal. The diagonal elements can be taken to be

different. Following the formulation of section 3, we introduce parameters

> X y z + 7 . . A . :
m; = (m), mj, m;) and my . The effective one-particle Hemiltonian is then
given by
- >
o N - > > > -+ > W -> -> -»> > > >
:Kr)(ml,mz) = l,z (ml'Jl'mz + mp*drmy - cml'J3'm2) - D 'E Si - E 'X Ti, (75)

e

. . 3 > - . 1 . 1
where we introduced the effective fields D and E acting on the spins of the
sublattices 1 and 2, respectively

e e

> +> > -+ > >

D=H+med), -myJd; (76)
-

- > > e

E=H+mJ; -mJz . (77)

The free energy is then given by

=4 59 - sinh B(S+3)D
1> .2 = 1> = > > P> -+ -1
f = z2me Jdy°*m +3mp*Jdpo°my - my*Jdz*my - 8 In|—————| =
sinh 28D
_y  (sinh B(T+3)E
- B ln\-—————————-‘ s (78)
sinh 1BE
and the parameters El and ;2 are those solutions of
- 1 -
m =g <§ §i ) 3, = SBg(8SD)d (79)
> 1 >
= - = R Qu
mp =3 <§ Ti )xo TB,( BTE)e (80)
that lead to the lowest value of the free energy. Here d and e are unit
vectors such that
i E
- -
d = > and e=s 3 (81)
and the Brillouin function Bs(x) is defined by
_ 25+#1 28+1 A s
Bs(x) = 5§ coth S5z x - == coth 5= . (82)
Defining
SBS(BSD) TBT(BTE)
A= and y = . (83)
D E
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we can rewrite the molecular-field equations as

X
m) = A(m}J] - myd3 )
o = A(n{o{ - ads} ) (84)
Z 2
m; = A(m{J] - myJ; + H) ,

and

X XX
mp; = U(szz - m1J3 )

m¥ = u(ngg - m{Jg ) (85)
7 2.7 Z.2
m, = u(myJ, - m,J; + H)

A large variety of ordered phases, transitions and critical points can be
obtained from the solutions of these equations and a more complete
investigation may be of interest. Such an investigation, however, falls out-
side the scope of this thesis. Using a C*—algebra approach Vertogen, de
Vries and Kraak 29) have evaluated the free energy corresponding to (T4) in
the isotropic case, i.e. 31 = Jli, ?2 = Jl%, and J3 = J3I, where % is
the unit matrix, for H = 0. From (8L4) and (85) it is seen that the
molecular-field equations in that case reduce to
m = A(Jymy - Jamp)

(86)

-+

- -
my; = U(szz -~ Jaml) ’

and it follows that the two magnetizations, El and Ez, are parallel or anti-
parallel. Hence we need only two scalar order parameters m) and mp
satisfying
-1
my = (Jymy - J3m2)'S’BS[BS(J1m1 - J3m2)](J1m1 - J3m2)

-1

1]

my (szg - J3m])'T'BT[ BT(J2m2 - ngz)l(szz - J3m2)

The free energy per particle is
2 2 o /sinh[B(S+§)(J1m1- J3m2)]
f= %Jlml +§J2m2 - J3m1m2— B in -
sinh 38(Jymy - Ja3mp)

ﬁinh[B(T+5)(sz2"J3m3)]

-8 "1
\ sinh %B(Jz!ﬂz -J3m3) /
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Another special case has been investigated by Bidaux, Carrara and

30). They considered the completely anisotropic case (i.e. the Ising

Vivet
version): J? =5 = J? = Jg - J§ = J% = 0, J% = J% for spin § = T = 3. Of
course in such a case the possibility of a flop phase is absent. However, in
spite of its simplicity the model contains a number of interesting phase

transitions. Their implicit equations follow immediately from (87).

8. Ferromagnetism and superconductivity

A simple model for the coexistence of superconductivity and ferro-

31)

magnetism has been given by Smit, Vertogen and Krask Their model

consists of a system of conduction electrons with spin 3 and & set of
magnetic impurities of spin S. Besides a kinetic energy there are two inter-

actions present, both of the separable type. First an interaction of the

16)

well-known BCS-type between the conduction electrons, and secondly an

32)

interaction of the Zener s-d type between the itinerant conduction

electron spins and the localized impurity spins. From considerations on this
kind of models one can get a first impression on the dependence of the
occurrence of ferromagnetism and superconductivity on the parameters (e.2.
temperature, interaction strenghts) of the model.

The Hamiltonian is

k PO 2d

= . (88)

C
J 8%

=5 (e, -u)n, +n, )~ % ) N ) ;
k

a a a Z
> k+ ke > 3 pb =K+ B¢ 14 o
K k.2

=Y

Here K labels the N electron states (e.g. Bloch states); for each E there
are two spin directions. The second term is the BCS interaction with
strength V, and the third term represents a Zener s-d interaction of strength
J; ¢ is the concentration of magnetic impurities. Only a zz interaction is
taken into account. The BCS-part can be rewritten in a menifestly separable
form, cf. e.g. chapter III, section 2; some disgonal terms of order 1 are
neglected.

We introduce parameters p;, pss G and E corresponding to the operators

-1 F ot et + "
N5l e’ ta_ e ), w'IGla’ e e ), (a7 ]8]
4 kt -k¥ -k+ kt K kt ~k+¥ -k+ k+t m
and N § 82 , respectively .
¥ k
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The linearized Hamiltonian from which the free energy has to be calculated,
reads

o = 2NIeE + 1 [o]2 - 20¢ | g2 + 6", (89)
m

LS
i Gy T R B
T T e
Here the parameter p is defined as p; + ip,

In the free energy per particle corresponding to Hy, the term —2J£Zm8;
gives & contribution
o sinh 2B8JE(S+3)
-8" ¢ 1n —_— (91)
sinh RJE /

The Hamiltonian h(k), being bilinear in the operators a;* hal Copde

k+
&Y s o » can easily be diagonalized, leading to eigenvalues

and *Jr + (e»-u) . (92)
k

Then one finds for the free energy per particle corresponding to the

Hamiltonian (88)

v - sinh 2RJE(S+%)
£ =2J05 + ¢ |2 =87 ¢ In [ —m—r -

sinh BJE

( 2 v2 3
In | 2 cosh B[%e+-u) L0 [e|2]" + 2 cosh BJE].
k

(93)
Calculating the derivatives of the right-hand side of (93) we find that the

parameters |p|, z, £ satisfy the equations




Y
n

cSBS(ZBJES)

2 3
E = %ﬁ Z sinh RJz * Jcosh BJL + cosh 8[(e+-u)2 + %— |o|2]
4 ¥ (94)

1

-2
lo| = gﬁ |o] Z Be+—u)2 B !ihlti] sinh BJg
k

> 4
k

[ VZ ; -2
. {cosh RJZ + cosh 8[(e+—u)2 o |012}

X

In the case that these equations allow more solutions, that solution leading
to the lowest free energy must be chosen.
- 2 La2 J

By replacing ]o| by ;7 s, E by Mand ¢ by cS i we see that the
equations (93) and (94) reduce to the expressions obtained by Smit, Vertogen
and Kraak. (Note that S here is not the magnitude of the impurity spins).
These authors considered these equations in two cases: the so-called limit
of strong coupling, or of narrow bands (e» = ¢£) and the case of a constant

. : & X - X &
density of states in the conduction band. For detalls about this numerical

work we refer to ref. 31.
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SAMENVATTING

Een centraal probleem in de statistische mechanica is de berekening van
thermodynamische grootheden, in het bijzonder de vrije energie, uitgaande
van de microskopische interacties. Bijna altijd zijn de interacties zo ge-
compliceerd dat een exacte berekening onmogelijk is. Men neemt dan zijn toe-
vlucht tot benaderingen, en een veel gebruikte en in kwalitatief opzicht
succesvolle benadering is de moleculaire-veldbenadering. Daarbij worden de
fluctuaties in het instantane veld dat op een gegeven deeltje werkt ten ge-
volge van zijn wisselwerking met de andere deeltjes, geheel verwaarloosd. De
mate waarin deze fluctuaties van belang zijn, zal bepalend zijn voor de be-
trouwbaarheid van de moleculaire-veldbenadering. In het bijzonder zal zo'n
benadering betere resultaten geven naarmate meer deeltjes effectief in wis-
selwerking zijn met een gegeven deeltje, d.w.z. naarmate de dracht van de
wisselwerking langer is.

Men kan nu twee wegen inslaan om deze relatie nader te bestuderen. Ener-
zijnds kan men interacties van lange, maar eindige dracht beschouwen, waarbij
men pas né het nemen van de thermodynamische limiet de dracht naar oneindig
laat gaan. Anderzijds kan men de situatie bekijken waarin de dracht gekop-
peld is aan de afmetingen van het systeem. Een voorbeeld dé&rven vormen de
separabele interacties die in dit proefschrift bestudeerd zullen worden. Bij
een separabele interactie kan men voor alle paren van deeltjes de operator
die de interactie tussen twee deeltjes voorstelt, schrijven als het produkt
van twee operatoren, voor elk deeltje &én. Er kunnen twee soorten separabele
interacties onderscheiden worden, die men naasr analogie met de situatie van
magnetische ordening kan aanduiden als "ferromagnetische" en "antiferromagne-
tische" interacties. In dit proefschrift zal een exacte berekening van de
vrije energie gegeven worden voor een algemene Hamiltoniaan die naast een

€én-deeltjesstuk (corresponderend met een kinetische-energieterm of een

veldterm), een willekeurig, eindig, aasntal van beide soorten separabele

interacties bevat. Het resultaat is dat de eigenschappen van een dergelijk
systeem beschreven worden met een effectieve &én-deeltjes Hamiltonisan, die
een zeker aantal zogenaamde ordeparameters bevat. Voor systemen met inter-
acties die niet van het separabele type zijn, bieden de hier weergegeven
onderzoekingen de mogelijkheid tot een €énduidige formulering van de molecu-
laire-veldbenadering. Daarnaast kunnen modellen voor geheel verschillende
fysische situaties, maar met eenzelfde mathematische structuur, met elkaar

in verband gebracht worden.




De methode die bij het bewijs gebruikt zal worden, sluit aan bij een

aanpak die in de statistische mechanica gebruikelijk is: men probeert de

toestandssom te schrijven als een integraal van het type Ie—NG, die men met

behulp van de methode van Laplace berekent als een asymptotische reeks in
N-j. De vrije energie per deeltje wordt dan in essentie bepaald door het
absolute minimum van G, terwijl de hogere-ordetermen correcties kunnen
geven, die van belang zijn voor eindige systemen.

In het quantummechanische geval waarin men te maken heeft met niet-
commuterende operatoren, treden complicaties op bij het gebruik van de me-
thode van Laplace. Men ziet dan namelijk dat in feite het aantal integra-
tievariabelen oneindig groot wordt, hetgeen zijn weerslag heeft zowel op het
bepalen van het absolute minimum van de functie G (of zijn regle gedeelte),
als op het santonen dat de correcties ten gevolge van de hogere-ordetermen
te verwaarlozen zijn. Voor het eerste probleem blijkt een uitbreiding van
de HOlder-ongelijkheid tot operatoren noodzakelijk, terwijl het tweede
zeer zorgvuldige afschattingen vereist, in het bijzonder als "antiferromag-
netische" separabele operatoren aanwezig zijn.

Na een inleidend hoofdstuk vindt men in hoofdstuk II een algemene onge-
lijkheid voor het spoor van een produkt van matrices. Als €&n van de toe-
passingen van deze ongelijkheid wordt de HSlder-ongelijkheid voor operatoren
afgeleid die in hoofdstuk III en IV gebruikt wordt bij het berekenen van de
vrije energie van systemen met in hoofdstuk III alleen "ferromagnetische",
separabele interacties, terwijl in hoofdstuk IV ook "antiferromagnetische”
interacties worden toegelaten. In hoofdstuk V tenslotte worden na enkele
algemenere beschouwingen, diverse modellen die in de literatuur te vinden

zijn, vanuit het hier gegeven algemene standpunt bekeken.
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1971 als wetenschappelijk medewerker in dienst van de
Stichting F.0.M. en werkzaam in de werkgroep Vaste
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