TWO INVESTIGATIONS ON HELIUM
AT LOW TEMPERATURES

H. H. TIERKSTRA







TWO INVESTIGATIONS ON HELIUM
AT LOW TEMPERATURES

PROEFSCHRIF
TER VERKRIJGING VAN DE GRAAD VAN
DOCTOR IN DE WIS- EN NATUURKUNDE
AAN DE RIJKSUNIVERSITEIT TE LEIDEN, OP
GEZAG VAN DE RECTOR MAGNIFICUS
MR J. M. VAN BEMMELEN, HOOGLERAAR IN
DE FACULTEIT DER RECHTSGELEERDHEID
PUBLIEK TE VERDEDIGEN OP WOENSDAG

24 FEBRUARI 1954 TE 15 UUR

DOOR

HENRI HEIN TJERKSTRA

GEBOREN TE MENADO IN 1910

O“'se!drul(keri) Dorsman -~ Scheveningen - Leiden




1)‘ 4
0Nl
190
) )
R ) (
I
F
’ I R '
l (‘
3l
)R
I'l
R




AAN MIJN OUDERS
AAN MIJN VROUW







INTRODUCTION

Liquid 2lle displays a number of remarkable properties which are
presumably due to exceptionally large quantum effects. As the most
fundamental property we mention that two different states of the
liquid exist which pass into each other at a certain temperature,
called the lambda-temperature. The latter is 2.186 K at ‘the pressure
of the saturated vapour and decreases slightly when the pressure
is raised. Above this temperature the liquid, called He I, behaves
in many respects like other liquids, but below 2.186 % the behaviour
of liquid helium, called Ile IT, is quite anomalous. Some peculiar
phenomena which can be observed in He II are the following:

A solid surface in contact with the liquid is covered with a
very thick, mobile, film. Under the influence of gravity or of a
temperature gradient this film will ‘creep’ along the surface,
reaching velocities which are of the order of 20 cm/sec.

The flow of the liquid through a capillary, or a narrow slit,
is governed by the temperature gradient along the capillary as
well as by the gradient of the pressure. In the case that the
Lemperature gradient is given, the flow of the liquid will tend
to be such as to cause a pressure gradient proportional to the
gradient of the temperature and having the same sense as the latter.
This phenomenon is called the fountain effect. The inverse effect,
called mechano caloric effect, has also been observed.

The heat conductivity of the bulk Iiquid is anomalously large,
This explains, for instance, the well-known fact that He II cannot
be made to boil. No temperature difference can be maintained
between the inside of the liquid and the surface.

Temperature waves can be propagated without appreciable at-
tenuation. This phenomenon is called second sound as distinguished
from ordinary, or first, sound. Second sound waves are not ac-
companied by variations of the density.

The internal friction of Ile II appears to be associated only
with a certain part of the liquid, as can be demonstrated by the
following experiment:

A set of parallel horizontal vanes suspended by means of a fine
torsion thread are allowed to oscillate in He II. The gaps between




the vanes and the frequency of oscillation are both so small
that normally one would have expected all the liquid in the gaps
to cling to the vanes. When, however, the mass of the oscillating
liguid is computed from the period of the oscillations, it 1is
found that only part of the liquid clings to the vanes. The re-
maining part seems to have no detectable viscosity,

The above phenomena can be described in terms of a two fluid
model, as suggested by Tisza 5 According to this model helium II
can be formally divided into two interpenetrating fluids, which
possess separate velocity fields. One of these fluids has practic-
ally no viscosity and is therefore called the ‘superfluid’ while
the other has a viscosity of about the same magnitude as that for
lle I and is called the ‘normal fluid’; the concentration of the
fluids is a function of the temperature. At zero temperature
helium II is pure superfluid but the concentration of the latter
falls with temperature and at the lambda-point no superfluid is
left.

Landau 2) has proposed another theory. He suggests that two
elementary types of motion of the liquid may be distinguished
which he calls ‘phonons’ and ‘rotons’. Phonons are taken to be
quanta of longitudinal compressional waves, i.e. sound waves,
but the nature of the rotons is not well understood. The above
theories have to a large extent a phenomenological character.
Recently, however, attempts have been ?a%f to construct 2 theory
of lle II on a more fundamental basis.”’*

In one of these recent theories _’ the idea that theA transition
in liquid helium can be regarded as a Bose - Einstein condensation
phenomenon has been re-examined from the point of view that the
interaction of the particles in the liquid is strong. This leads
to a confirmation of the results obtained by London in an earlier
treatment _’, which was based on the assumption that liquid helium
may to a first approximation be treated as an ideal gas.

In the present thesis two investigations are described which
may shed some light on certain aspects of the helium problem. In
the first one the transport of momentum in the liquid is studied
in the temperature region above the transition point, so in
helium I. In the second one the adsorption of the vapour on a
solid surface is investigated.at temperatures below 2.186 %K

In chapter I we have discussed some theories of momentum transfer,
whereas in chapter II a description is given of an experimental
determination of the viscosity of helium I at higher densities.
In the end section of chapter II we have discussed the significance




of the experimental data, in particular of those which correspond
with temperatures inthe immediate neighbourhood of the A-transition.
In the first section of chapter III we have considered some theories
regarding multilayer adsorption, whereas in the second section
a description is given of an experimental investigation on the
adsorption of helium gas at relative pressures close to saturation
and at temperatures below the A-temperature. The experimental
results have been discussed in the final section of chapter III.




CHAPTER |

VISCOSITY OF DENSE FLUIDS

1. Transfer of momentum. The definition of the viscosity of a
fluid canbe obtained from a consideration of a fluid layer, infinite
in extent, in which exist the macroscopic velocities u = z du/dz,
v =0, w=0 in the x, y and z direction, du/dz being a uniform
velocity gradient.

The viscosity is then equal to the transport of the x component
of momentum in the z direction per unit time, per unit surface
area and per unit velocity gradient.

In gases of low densities the transport of momentum is due to
di ffusion, since a molecule carries momentum with itself when
moving through empty space between collisions. At higher densities,
on the other hand, the momentum transport is to a large extent
due to the forces between the molecules. In the following we shall
suppose that the molecules are spherically symmetrical and that
the action of the intermolecular forces is confined to nearest
neighbours. We shall distinguish between tw types of molecular
interaction. Let r be the distance between two given molecules
M, and M,, a the average molecular distance and ¢ the minimum
distance. According to our assumptions there exists a certain
distance r = ¢ + Ao beyond which the forces between M, and M, may
be ignored. The first type of interaction then occurs when Ao 1is
small in comparison with @ - ¢ , whereas the second type of inter-
action occurs when Ao is of the same order as a - 0.

When the interaction is of the first type, a given molecule may
for most of the time be regarded as a free particle and the in-
teraction between two, or more, molecules at a given moment can
be considered as a collision which is characterized by the respective
initial and final velocities. The transfer of momentum is caused
by the following processes:

a. Molecule centres, such as My, pass the xy plane (see fig. 1),
in which case the momentum carried by them is transferred in the
z direction.

b. Momentum is exchanged at binary and multiple collisions, which
are such that one part of the molecule centres is situated in the

upper hal fspace whereas the other part is in the lower halfspace.




In fig. 1 we have represented a binary collision; the centre of
the molecule M, lies on the sphere of closest approach around M.

Fig. 1 Transfer of momentum

At high densities, where the free path of the molecules is of
the same order as the diameter o, the transfer of momentum is
mainly due to collisions. When a dense gas consists of rigid
elastic spheres the number of multiple collisions may be ignored
against the number of binary collisions and the following expression
can be derived for the viscosity (Enskog).

n=10 { 1K + 0.8000 b/V + 0,7614 (b/VY K} ]

where Mo = 5/160° (mkT/n)" 2
is the viscosity of the gas of low density,
b =2/3 nNo® is the excluded volume of the molecules,
V is the volume of the gas and
K is the ratio between the local density of molecule centres M,
at the surface of the collision sphere of a given molecule M; and
the average density N/V. K is equal to unity at low densities
of the gas and increases when the density increases.

An analysis of the derivation of eq. 1 shows that each of the
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three terms of the right hand member has an independent physical
meaning. The first term, 70/K , gives the transfer of momentum by
diffusion which also takes place in the gas of low density. The
factor 1/K which appears here takes account of the fact that the
length of free path is inversely proportional to the concentration
of the colliding molecules. The third term accounts for the
transfer of momentum by collisions; if dS be a surface element
of the xy plane, we can write

0,7614 75(2)%K 4S9 . 0,5887(aso)) (62) (K (ET)%4(mer S ) 3
V dz vV V' m dz

The meaning of most of the bracketed factors is self-evident;
apart from numerical factors we find that (dS0 ) represents the
volume of space in which molecules such as M; can be found, (N/V)
the molecular concentration (¢°) the collision cross sectioni.e. the
effective surface of the collision sphere, (KN/V) the local density
of molecule centres M,, (kT/m)"% the average thermal velocity and
(mo du/dz) the difference in momentum of flow between colliding
molecules.

The second term in (1) arises from the fact that the molecules,
at the moment of collision, have travelled a certain mean free
path, with the result that the difference in flow velocity between
them is actually larger than would follow from the position of
their centres. The extra difference is proportional to the average
free path, hence inversely proportional to KN/V which means that
the second term depends on the average density only.

When the assumption that the molecules are impenetrable spheres
is dropped,we can no longer ignore the number of multiple collisions
in comparison with the number of binary collisions. As a first
approximation, however, a ternary collision ¢an be regarded as two
coinciding binary collisions, so that the former has to be taken
into account only when the average result of such a collision,
differs from the average result of two binary collisions. An
analogous argument ma\;be applied to the other multiple collisions
(van Wyk and Seeder) ’. The probability of a multiple collision
between a given molecule !l; and j neighbours M, will be proportional
to (KN/V)J so that we obtain an equation of the following character for
the viscosity of a gas consisting of slightly compressible spheres:

*) Van Wijk, W.R. and Seeder, W.A. Physica 4 (1937) 1073
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M

n= 2 ¢ (N/V)I+1 K

J:-

¥ is the maximum number of neighbours that M; can possess; the
coefficients ¢; are functions of the average thermal velocity and
the molecular diameter. From what has been remarked before with
respect to multiple collisions, it follows that also in the case
of slightly compressible spheres the terms containing j > 3 may
be small, hence we obtain ultimately an expression which is of the
same form as equation 1. Though the interaction between the
molecules in a liquid is not, generally speaking, of the type which
we have just considered, equation 1 has been employed with remark-
able success in the case of liquid carbon dioxyde near the critical
temperature. We shall now consider the second type of interaction,
which is of the kind that occurs in most liquids. When Ac =a -©
a given molecule is accelerated by its neighbours during most, or
all, of the time, so we can no longer distinguish between separate
collisions. Owing to the latter circumstance, the mathematical
treatment of the above case becomes very complicated. There may,
however, be perceived some analogy between the motion of a molecule
of a dense -fluid which gradually pushes away, as it were, the
surrounding molecules and the Brownian motion of a small solid
sphere in a*viscous fluid ®). We can then assume that the inter-
action between a given molecule M and the neighbouring molecules
may, in the case that the liquid is in equilibrium, be characterized
by a friction constant { (as in the case of Brownian motion),
which depends on the nature of the liquid as well as on the tem-
perature and the density of the latter. The friction constant &
of the Brownian motion can be computed from the self-diffusion
constant D of the fluid, according to Einstein’s relation

D = kT/C

We see therefore that the relation between the viscosity, which
we can expect to be directly proportional to &, and the diffusion
constant is quite different from that which is found in the case
of a dilute gas.

Till now we have supposed that the viscosity of the fluid 1is
entirely due to the forces between the molecules, represented by
the coefficient { . In reality the transfer of momentum by diffusion
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of the molecules must also be taken into account. We may write
therefore

m=7n +n 3

where 7' represents the transfer of momentum by diffusion, which
is directly proportional to the self-diffusion coefficient D,
whereas 7' represents the transfer of momentum by the inter-
molecular forces.

Attempts to establish a rigorous theory of transport phenomena
in liquids have been made by Born and Green ') and by Kirkwood °).

The part of the viscous force which is due to the molecular
interaction is now interpreted as the tangential component of the
average force excerted by the molecules M, in the upper halfspace
on the molecules M; in the lower halfspace across a surface element
dS of the xy plane (see fig. 1). (The forces between a pair of
molecules may be said to ‘act across dS’ when the line joining
the centres, 73,, is intersected by the surface element.) The
partial viscous force is then given by the following expression

ZyoXyp OE
— g(x32,¥12,212) dx;odys0dzy g
r?g ar1?

7' g_: ds = 1/2 /vy dsJfJ

where €(r,,) denotes the potential energy of a pair of molecules and
g(x45,¥12,212) the ratio between the local density and the average
density in the fluid. The value of the integral differs from zero
because g(r) isno longer spherically symmetrical, as would be the case
when the fluid is in equilibrium. The amount of distortion of g(r)
is proportional to the gradient of the flow and inversely pro-
portional to the friction constant [ . In the case of short range
forces, which we are considering here, only the first maximum of
the local distribution function g(r) contributes appreciably to
the value of the integral, so to %

The value of ' can be computed when the velocity distribution
of the molecules is known.

Kirkwood has formulated the hypothesis that, for a given liquid,
there exists a characteristic time 7 , which is such that the
forces which act on a molecule at the times t and t' are statistic-
ally independent, provided that t' — t > 7 ., On account of this
hypothesis Kirkwood has been able to show that the theory of
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Brownian movement actually applies to individual molecules, and
to pairs of molecules. With the aid of the latter theory one can
derive the probability distributions which are necessary for th

calculation of the viscous stress. Kirkwood, Buff and Green °

have in this way computed a numerical value for the viscosity
of liquid argon, at the normal boiling point. They found 1.27 C.g:.8.,
whereas the experimental value is 2.39 c.g.s.; the agreement may
be called reasonable, in view of the large number of approximations
which is needed. The empirical data on which the calculation was
based, were derived from the X-ray diffraction pattern and from
the potential of molecular interaction. In contrast to the case
of liquid argon, quantum effects will considerably influence the
motion of the atoms in liquid helium, even at temperatures above
the A-point. This is for instance shown by the unusually low
density of the liquid which is a consequence of the repulsion of
the atoms caused by their large zero-point motion. The quantum
theory of transport phenomena in liquids *® (Born and Green,
Eisenschitz, Irving and Zwanzig) is as yet only in an initial
stage, however, and for this reason we have made no attempt at
an detailed calculation of the viscosity coefficient of He I. Instead
we shall confine ourselves to a discussion of the viscosity on
the basis of a model, according to which the liquid is treated
as an assembly of hard spheres. The diameter, o , of the spheres
can be taken to represent the repulsive forces between the atoms
and so will depend on the temperature and perhaps also on the
density. Because He I is a simple monoatomic liquid we may assume
a simple relation to exist between O and the specific volume
of, for instance, the solidifying liquid. When © 1is known, the
viscosity of the liquid can be estimated according to eq. 1,
provided that the local density factor K, which affects the pro-
bability of a collision is given as a function of ¢ and of the
average density.

2. The local density factor K. In the case of a gas of hard
elastic spheres with given diameter © , the local density factor
can be obtained from the equation of state (Enskog) through the
relation,

pV/NET = 1 + bK/V 4



Boltzmann has already derived an approximate expression for
the left hand member of 4 1in the case of moderate densities,
which i1s the following,

pV/NRT = 1 + b/V + 5/8 (b/V)% ....... 5

The same expression has been obtained by Ursell by means of a
more general method which in principle could be so extended as
to yield the complete series. In the case of high concentrations
however, the necessary computations become extremely difficult
and have not actually been carried out. Other approximations have
been given by Tonks and by Rice *), Tonks has based his treatment
on the theory of the equation of state of a one-dimensional gas.
This theory can be extended to a three-dimensional gas provided
that the latter is very dense, because then each molecule may be
thought of as being confined to a separate cell, the shape of
which can be reasonably defined.

Let us consider a set of N impenetrable molecules, which are
confined to a line segment with the length l. The force f exerted
by a given particle on each of its neighbours is then equal to

f=kT/l(1-6 ; 0<6¢<1 6

where 1, = I/N is the length per molecule and & = No/l 1is the
fraction of the line occupied by the particles. The guantity
l,(1 — 8) may be regarded as the free length per molecule. In
the case of a three-dimensional gas of high deasity an exact
expression for the equation of state might be given if the molecules
were arranged in a simple cubical array since in this case the gas
might be considered as consisting of linear rows of molecules
The length a per molecule in each row would be equal to a = (V/N) %A
and the free length per molecule would be equal to a (1 - Eym )
where 6, denotes the fractional occupation number so b = /a
Hence the thrus exerted by a single row on the wall of the vessel
containing the gas would be given by the expression

f = kT/a (1 - 6/°)

so, taking into account the number of parallel rows per unit
surface, the equation of state becomes

pV/NET = 1/Q1 = 6°) 7

14




Actually the configuration of the molecules will be either face-
centered cubic or hexagonal in the case of high concentrations.
It is probable however that 7 vemains a good approximation to
the equation of state in this case when the fractional occupation

. n 3 3 .
number €, is replaced by & = ¢ /a” where a again denotes the
average gistance between the atoms, so

a- (V2 VMY .
Considering that b/V = 2,962 6, the Boltzmann approximation can

be written in terms of the fractional close packing in the follow-
ing manner,

pV/NET = 1 + 2,962 0 + 5.483 6° +

Se s

This approximation has been graphically represented by curve a
| in fig. 2.

100

Qs0 \\\
\

o] 25 Q50 075 100

Fig. 2 The equation of state of a gas of hard spheres
Curve a drawn according to eq. 5
Curve b drawn according to eq. 7
Curve ¢ drawn according to eq. 8



By combining the above expression with 7, represented by curve b
in fig, 2, the following relation has been obtained by Tonks,

pV 1+ 29626+ 5.483 6
NeT 1 - 0.8517 6°-0.1483 6°

The above relation, represented by curve c, can be expected to
give a reasonable approximation to the equation of state in the
whole range of 6 . By a combination of the expressions 4 and 8
we may then arrive at the following approximation to the value
of the local density factor K,

g L+1.851 64+ 0,287 6 5
- 1-0.8517 6 -0.1483 6°

In fig. 3 we have plotted K as a function of the fractional

cccupation number.

(¢) 025 (o110} 075 1.0

Fig. 3 The local density factor K as a function of the
fractional occupation number 6.
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3. Dependence of the molecular arrangement on specific volume
and temperature. When, as a first approximation, the molecules
in a body are treated as hard spheres, there is found a smallest
volume V', which corresponds to a close-packed cubic or hexagonal
lattice, each particle being in contact with twelve neighbours.
With increase of the difference V - V' a gradual increase of
disorder in the arrangement of the molecules becomes possible.
We must expect, however, that as long as V = V' remains small
in comparison with.V', the extra volume cannot be distributed
continuously in the body, but only in the form of individual
holes, which are of the size of a molecule, so the lattice does
not vanish. A breakdown of the crystal lattice can take place
only when the number of holes reaches a certain not very small
fraction, a few per cent, say, of the number of particles (Kirkwood,
Frenkel) 12). Thus complete absence of long range order is possible
only when the volume is larger than a certain volume V'. From
experiments conducted with glass spheres, Nice concludes that
V'/Vv® = 0.87 . V' will not depend on temperature, as long as
the molecules are regarded as rigid spheres, but in reality the
compressibility of the molecules has to be allowed for. When the
temperature is raised, a given molecule will be able to penetrate
to a growing extent into the force field of an adjacent molecule,
so V" will become accordingly smaller. It is no longer possible
to define the volume V', except in a formal way, when we introduce
again an effective hard sphere diameter ¢ which now depends on
temperature. We shall now make the simple assumption that along
the melting line ¢ varies with temperature in such a way that a
constant fractional occupation number &' = V'/V" can be associated
with the specific volume of the solidifying liquid. The value
of this constant will not be far from 0.87.




CHAPTER II

INFLUENCE OF PRESSURE ON THE VISCOSITY OF He I

1. Introduction. We have already mentioned that the peculiar
properties of lle Il lead us to consider the latter liquid as
consisting of two fluids, called normal fluid and superfluid.
The fact that the viscosity of the superfluid is zero is particular-
ly intriguing, since at first sight it would seem that the atoms
in Ile II fail to exchange momentum in spite of the fact that
the average distance between adjacent atoms is of the same mag-
nitude as their diameter. It seemed to us that some information
with respect to the interaction of the atoms might be obtained
through an investigation of the transfer of momentum in liquid
helium at temperatures where quantum effects are strong without,
however, being dominant to such an extent as to prevent a comparison
with other liquids. For our purpose the Ile I region seemed very
suitable because experimental evidence seems to indicate that
from the boiling point down to about 3 °K Ile I can be regarded
as a comparatively normal liquid whereas from 3 °k down to the
A~ temperature quantum effects become increasingly important. It
may further be noted that the variation of the viscosity-coef-
ficient with the temperature appears to be gradual even at the
A-transition, as can be seen from fig. 4. In liquid helium at
the pressure of the saturated vapour the zero-point motion of
the atoms is large whereas the attractive forces are comparatively
weak. The results in a low molecular concentration of the liquid
and in connection with the latter circumstance the opinion has
sometimes been expressed that the transfer of momentum would
be due to the diffusion of the atoms as in the case of a dilute
gas. The latter circumstance would then be the cause of the positive
value of d7n/dT in the case of He I. In the present chapter, on
the other hand, arguments will be presented to the effect that
the momentum transport in lle I is in the main caused by the inter-
actions between the atoms, which are, at ordinary pressures, only
slightly weaker than in other liquids. In the case of compressed
He I we have found that the viscosity varies with the temperature
in essentially the same manner as in the case of other liquids,
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Fig. 4 Variation of the viscositg
> . - . 1
of liquid helium with temperature )

provided that the temperature is not close to the transition
temperature; so the viscosity decreases with increasing temperature,
In the case of temperatures and pressures in the neighbeurhood of
those corresponding with the transition line, on the other hand,
we have found that d7/dT remains positive even at the highest
pressures compatible with'the liquid state. In behalf of a comparison
between liquid helium and other liquids we have determined a few
values of the viscosity coefficient corresponding with temperatures
and pressures close to the melting line. Our data appear to be
in fair agreement with the values which can be calculated from
the atomic mass, the interatomic distance is the liguid andthe
Debye temperature of solid helium through an equation which has
been given by Andrade. **




2. Experimental arrangement. The viscosity of liquids at high
pressures has been frequently measured but in the present case
the usual methods cannot be applied. A falling body method, for
instance, would not work because the internal friction of liquid
helium is extremely low. The oscillating disk method, on the other
hand, cannot easily be adapted to the use of higher pressures.

Fig. 5 Viscosimeter




We decided therefore to employ a method which is to a certain

extent analogous to the transpiration method used by Michels and

Gibson '®) in their determination of the viscosity of nitrogen

at high pressures.

The viscosimeter which is diagrammatically represented in fig. 5
consisted of a capillary C immersed in the helium bath inside the
Dewar, a U-shaped differential gauge U which is filled with mercury
and connected with the ends of the capillary through the lines L,
and a high-pressure gauge M.

Before an experiment was made, the system was filled with helium
by opening the valves S; and S,. The pressure was then adjusted
to the desired value which always exceeded 3,0 kg/ch. Because
the critical pressure of helium is only 2.5 kg/cm’ the variation
of the density of the fluid along the tubes L will be gradual.
In order to obtain a pressure gradient along the capillary C the
valve S, which connects the two ends of the differential gauge
was closed after which some gas was blown off through the valve
Ss. The capillary then forms the only connection between the right
and the left half of the viscosimeter and the liquid flows through
the capillary under the influence of the pressure difference which
can be read from the U-gauge as a function of time. The viscosity
coefficient of the liquid can then be found,provided that the
following conditions are fulfilled:

1. The two halves of the viscosimeter must be symmetrical. The

tubes L were therefore of identical construction. So as to

ensure good thermal contact the tubes were soldered together
over their whole length as indicated ¥n fig. 5 by So.

The variation of the average pressure in the apparatus during

the course of a single run should be small. These variations

are caused by the lowering of the bath level and by fluctuations
in the temperature of the helium vapour in the Dewar. It can
be shown that the influence of the above temperature fluctuations
on h, the deviation of the mercury levels from their zero-

position 0 - 0 , is directly proportional to the value of A

itself, provided that condition 1 is fulfilled.

3. The gas flow through the lines L which occurs during a run
should be kept small, because this flow results in the tem-
perature distribution of the gas not being the same as in
the case of equilibrium. In order to detect a possible in-
fluence of the above effect on our results, runs were made with
tubes and capillaries of widely different diameters. The flow
velocity was also widely varied. No significant change was

0o
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observed in the results of the measurements, however. Moreover
it can be shown that actually no correction for the gas flow
will be necessary provided that the latter is kept sufficiently
small.

4, The flow resistance of the connecting lines L must be small
in comparison with the resistance of the capillary C.

Ve shall now derive some formulae concerning the viscosimeter.

We write for the mass of fluid in the system, using the subscripts
1 and 2 for the right and the left half:

G, = J p(T,py)dv, - plﬂrQh/RT‘

Gy = J p(T,py)dv, + pamirh/RT*

where p i1s the density in g/cmﬁ, p is the pressure in dyne/cnﬁ,
R 1is the gas constant in dyne cm/g deg. K, T* is room temperature
in deg. K and r is the radius of the U-tube.

The integration is performed over the volume in T and in U,
including the volume in each leg up to 0 - 0. In this notation
we have taken into account that the density p is a single-valued
function of the temperature and pressure if either one or the
other exceeds its critical value. We define the mean pressure
p = %(py + po) and shall use the subscript 0 when the deviation h
is zero. In order to find the variation in the mean pressure
associated with h, we write, assuming a stationary temperature
distribution:

-

G, = J p(T,po)dvy + [p - h/a - pol (3/3po) J p(T,po)dvy -

- (p - h/a)7nr*h/RT*

G, = J.o(T,po)dve + [p + h/a = pol (3/3pg) J (T, po)dve +

+ (p + h/a)mr’h/RT*

where 1/a - p;ercuryg, g being the gravity acceleration and the
asterisk denoting room temperaturé:
Introducing
Gy = J P(T,po)dvy Goo = J P(T,po)dv,




and observing that G; + G, = G;o + Gyo , because the total mass

does not depend on h, and that 09G0/ppy = %G ,0/%0 which we
shall abbreviate to 9G,/9p, we obtain:

P = po - Wr?h?/(aR7“ 3G,/ %po)
so:

h 3G 7r’h nrth®

- 10
a 3, RT* * aR°T*73G,/opq

One obtains for the flow, by differentiating (10) with respect
to time:

dG, [ pomr: 3Gy /9po 37 r*h? ] dh
dt .- ppe T FEENS aR’T*%3G,/Opo ~ dt

hence, for laminar flow,

2 Ve
/‘ollquld 77842}1 ; [ PoT7ir g ﬂ(ro/g«po ] d_h. 11
8nla RT* a dt

where s is the radius of the capillary C, L its length, and 7 the
viscosity coefficient of the liquid.

Deriving (11) we have neglected the difference in hydrostatic
pressure of the gas, the flow resistance of T and in the right
hand member the term 3772r4h7[a[1’?'f‘?ﬁ*(,'0/3pn]'1 which is about
one thousandth of the two remaining terms. The deviation h is
given by: :

-l

y - 4
AP T LA VHT G 271s log e
log h = log hy - Eaat l:q“‘d L o O Wbl
M. Paas Poa %o 8L
11bis
where hi and t  are integration constants and P;as = po/RT* is

the density of the gas in the U-gauge.
In this derivation it is assumed that the temperature distribution




remains stationary; actually, however, it varies systematically
owing to

1°. the lowering of the bath level

2°. the variation of the gas flow in the connecting tubes L.
When equation (10) is varied with the consition that G; is constant,
we find for a slight deviation of the temperature distribution
the following expressions:

. % 13 = G %
0. = J Tﬁi 5T1dv1 — Sk [ < (o] " PoTr ] i 5Po [ o r h ]
oT a 3po RT* BPO RT+
12
0= -fz 8T,dv, + Oh [ STl Poir Judas 8po [ 7_3 g mr ]
oT a 9po RT* po RT*

Ad 1°. In this case is 8T, = 8T, and we obtain from the above

equations:
<1

Shy = -8pomr h[(RT*/a)3Gs/3po + perr-] 13

The correction 8h, for the lowering of the bath level can thus
easily be found from the corresponding change in the equilibrium
pressure dpg-

The connection between the latter and the variation of the
temperature distribution is given by the expression:

5 J (3p/3T) 8T dv >
0 =
=5 (BGO/BPO)

Ad 2°. As a result of the gas flow the average temperature in a
given cross section of a connecting tube will differ from its
equilibrium value and to a first approximation 1is: Ti= Ty ¥ 8T, 00"
T, + 8T, ; 8T, = -8T,4 for the gas, while at the wall T = Ty =5 5
T,. From the equations (12) it follows that now: 8po = 0, thus we
obtain the following correction oh,,

-l

Sh, = [RT* | \3p/3)8T dv]. [(RT*/a)(%0o/3po) + porr”] 15
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If there were no heat flow to the wall, the variation with time
of the temperature in a cross section would be: oT/dt = w oT/ %,
where w is the velocity of the gas and x is the distance along
the tube. This corresponds with a heat source along the axis
i e WU?WPCP OT/%x where o is the radius of the tube and ¢ the
specific heat of the gas. Actually H is compensated by the con-
duction to the wall. When we assume that the time necessary for
the latter process to attain a steady state is small compared to
the time constant of the U-gauge, the resulting temperature dif-
ference 6T will be proportional to H and therefore to w, or 6h = fh
from (11) and (15); f is a proportionality factor not dependent
on h. So h' = (1 + f)h, which shows that the log h, t-curve is
displaced parallel to itself. Consequently no correction for the
gasflow is required. The situation in a connecting tube may ap-
proximatively be represented by a cylindrical ring of helium with
the outer surface (radius ©) at the temperature T and the inner
surface (radius O/Qé)at.the temperature T’ = T + 8T. The coefficient
of heat conductivity is A. A heat current H is flowing radially
through the ring. The temperature distribution along the tube is
approximated Qy taking 97/% = constant. We then find, for ¢ =0.035
cm, A = 6.10°" cal/deg cm sec, ¢p = 0.5 cal/g deg, p = 0.15 g/cm,
considering the heat capacity and themal resistance of the ring,
that the time in which the heat conduction to the wall becomes
stationary is of the order of a few seconds. The time constant
of the U-gauge was, as found experimentally, about four minutes
and consequently the assumption, mentioned before, seems to be
Justified. Estimating 8T for a run at p = 5 kg/ch and a temper-
ature of the helium bath T = 4 °k we obtain 8T = 0,02 °K. The
variation Sh is then approximatively 8h = 0,01 h.

3. Experiments and results. In order to check the accuracy of
our method we have repeated the determination of certain values
of the viscosity coefficient several times. In fig. 6 log h 1is
represented as a function of the time t — t, for a temperature
T=4.07°K and for pressures of 10,20 and 30 kg/cm”. The correction
term RT* 9G,/3y, was determined in the following manner:

The calibrated volume Vear. of the high-pressure gauge M completed
with a section of the attached connecting line were filled with
gas up to a pressure p' whereas the pressure in the viscosimeter
had the slightly different value p”. When the valve S; was opened
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kg/cm:2 run on 5-4-'51

p

4+ p= 9.8 kg/ch run on 25-4-'51
® p = 19.5 kg/ch run on 5-4-'51
& p = 19.8 kg/cm? run on 25-4-'51
O p=29.8 kg/cm? run on 5-4-'51
% p = 30.0 kg/ch run on 6-6-'51

the pressures in the gauge and in the viscosimeter became equal
to p”, (the valve S, remained open during the determination).
The following relation then exists between p', p' and p",

' " v
(v" -p ) Vv o (XIO
" RT* gal rZae )

The values of 2RT* 2G,/%po thus obtained have been plotted as a
function of pressure in fig. 7. The uncertainty of the determination
is about ten percent which is not serious because RT* oG,/0po is
only a correction. We did not find any dependence on the temperature
of the bath; this is to be expected because only those parts of
the fluid are of importance for the value of the correction term

(pllr - p”)
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where the temperature is in the neighbourhood of the critical

temperature. The dependence on the pressure, on the other hand,
1s very marked as can be seen from fig. 7. The rapid increase of
the correction term which occurs at lower pressures can be easily
understood if one considers that in those parts of the fluid
where the temperature is in the neighbourhood of the critical
temperature,high values of 30/9, occur when the pressure approaches
the critical pressure; the latter values give an appreciable
contribution to the correction term, which can be written as:

RT* | 3p/3po (T,ro)dv

In order to calibrate the capillary C we made some runs at the
normal boilin% point of liquid oxygen. The pressure of the gas
was 10.0 kg/em”, The viscosity of liquid helium was then obtained
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from the ratio 7/7,,;, where 7_,; = 91.0 uP. The results hav
been assembled in table T and figs. 8 and 9.

AO‘ 1%
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e
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Fig. 8 The viscosity of liquid helium I as a function of the temper-

ature at constant pressure.
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————————————— NDrawn according to the measurements of Bowers and
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TABLE I

Viscosity of He I as a function of temperature at constant pressure
P T P n P T P n
kg/cm? °K g/cm3 wP kg/cm2 K g/cms uP
10.2 2.09 | 0.161 44 29.8 2.27 | 0.179 94
10.5 2.19 0.161 48 29.9 3.07 | 0.177 89
10.0 2.27 | 0.159 54 30.0 4.07 | 0.172 81
10.0 2.94 | 0.158 57
10.5 3.08 | 0.157 58
9.8 4.07 0.151 55 34.9 2.00 | 0.183 109
35.0 2.43 | 0.182 103
20.2 1.89 | 0.172 ) 34.9 2.97 | 0.180 95
20.0 2.01 | 0.172 70
20.0 2.09 | 0,172 73
19.8 2+19 | 0.172 77 40.0 2.19 | 0.186 122
19.8 3.08 | 0.168 74 39.8 2.50 0.185 115
19.8 4,07 | 0.164 70 39.8 3.50 0.183 96
19.9 4.07 | 0.164 70 39.6 4.03 | 0.181 88
30.0 1.78 | 0.179 90
30.0 2.00 | 0.179 98 50.0 2.45 | 0.191 131
30.0 2.09 [ 0.179 97 50.0 3.33 | 0.189 112
30.0 2.19 | 0.179 97 50.0 4.03 | 0.187 98
*) No definite value can be given owing to the anomalous behaviour
of the flow.

The Reynolds number never exceeded a value of about 45 in our
experiments, from which it can be concluded that the flow was
laminar in all cases. The capillary used in most experiments
had an effective radius of 5.8¢ , which is so small compared
with the radius of a connecting tube (0.03 cm) that the flow
resistance of the latter can be ignored. So as to check the ful-
fillment of the first condition (see page 21 ) the position of
the mercury levels was observed for some time after the valveS,
had been closed, before applying a pressure difference. The ful-
fillment of the second condition was checked by observing the

29




pressure in the viscosimeter, during a time which was equal to
that needed for a single run. In most cases the pressure variation
caused by the lowering of the bath level was found to be less
than 0.07 kg/ch which causes only a negligible correction.

4. Discussion. With regard to ths viscosity of mono-atomic
liquids at the melting point Andrade *4) has proposed the following
formula

14

a

7)) =

w|i>

In this expression is v a frequency characteristic for the
molecular motion in the liquid, m the molecular mass and a the
average intermolecular distance. When it is assumed that the
frequency v is approximately the same in the liquid as in the
solid at the melting point, we can write V = (k/h)6p where 6 is
Debye’s characteristic temperature. The relation is then found
to apply in the case of several liquids, having viscosities of
widely varying magnitude. In the case of helium at pressures and
temperatures in the neighbourhood of the melting line, the agree-
ment is good, as can be seen from Table II.

TABLE II

Viscosity of He I in the neighbourhood of the melting line

" % e € e X "
2 ° oM. oL calc. exp.

kg/cm ] K K K P P
35 2.00 1.88 23 115 109
40 2.19 2.08 24 120 114
50




The values of &) have been obtained by sligpéfy extrapolating the
data given by W.H. Keesom and A.P. Keesom , which are in good
agreement with those obtained by Simon %) et.al. We may conclude
therefore,that at the pressures and temperatures considered above,
helium behaves like a normal liquid. So as to obtain a rough picture
of the transfer of momentum in He I we shall discuss our experimental
data on the basis of a hard sphere model, as considered in Ch. 1.
It will be supposed that the effective diameter of the atoms
does not depend on the density of the liquid and that the fractional
close packing corresponding with the solidifying liquid is constant
along the melting line. Good agreement between the experimental
values of the viscosity and those yielded by the model can be
obtained if we choose 8" = 0,735, which is not far from 6" = 0.87.
The estimated values have been tabulated along with the experimental
values inTable III, whereas in fig. we have plotted the experimental
values divided by the corresponding quantity 7o, The full line
represents the quantity 7)/7 according to eq. 1.

120 pp—p——— —
no ~3
H=0.186
100 ! ~J
P ——
Zf/ B Y
90 |— — R\
p=0180
80 —
'p.on1
70
‘ ©=0.161
60 T —
|
2 i P=0145
/
40
n —
! |
30 //
| 20 i
6 2 3 4%

Fig. 9 The viscosity of liquid helium I as a function of the
temperature at constant density.
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TABLE III

Viscosity of He I as a function of temperature and pressure
¥ P o o Test. Texp .
o 2
K kg/cm P P P
4.00 0.83 0.434 10. 60 43 30

08 10.5 0.770 ‘ 8.95 64 58
4.07 9.8 0.726 10.64 59 55
3.08 19.8 0.600 8.95 77 74
4.07 | 19.9 0.549 10.64 74 70
2527 29.8 0.692 7.35 95 94
3.07 29.9 0.641 8.89 85 89
4.07 30.0 0.588 10.64 Bl 81
2.00 34.9 0.727 6.7 110 109
2.43 35.0 0.700 7.65 103 103
2.97 34.9 0.657 8.83 94 95
2.19 39.8 0.727 7.18 114 114
2.50 39.8 0.691 7.82 107 107
3. 50 39.8 0.645 9.65 98 98
4.03 39.6 0.620 10.56 92 92
2.45 50.0 0.720 7.70 122 131
3.33 50.0 0.673 9.42 110 112
4.03 50.0 0.642 10.54 102 98

In table IIT as well as in fig. 10 we have omitted those values of
the viscosity which correspond with temperatures and pressures close
to the A-line. The hard sphere diameter o= 3.2 A corresponding with
5" = 0.735 is somewhat larger than the diameter which can be
associated with the Lennard-Jones potential field of two inter-
acting helium atoms, 91 _j = 9 6 A. So as to estimate the re -

lative importance of the diffusion and of the intermolecular
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forces we put, ' = 7Mo/K. and ' = 7 [4/5 b/V + 0.7614 (b/V)?K1.
It is then found that in the neighbourhood of the melting line
n' = 0.02 7 whereas 1" = 0.98 7. At ordinary pressures we find
n' = 0.157 and 7" = 0.85 7 so we are led to the conclusion
that even in this case, in spite of the low density of the liquid
the viscosity is mainly due to the intermolecular forces. This
means that the decrease of the viscosity at temperatures close
to the A-temperature with decreasing temperaturel|cannot be ascribed
to the variation of the molecular velocity, but that it must
sooner be interpreted as a decrease of the collision probability
when we speak in terms of the hard sphere model.

In the case of lle II we seem to encounter a somewhat similar
phenomenon with respect to the collisions of the excited molecules
which constitute the ‘normal fluid’. Experimental evidence, such
as the low density of the ‘normal fluid’, th% large diffusion
coefficient of ;He in He IT (Taconis c.s.) *’’ and the Knudsen
effects '°) which occur when He II flows through very narrow
slits, suggests that He II can in many respects be treated as
a dilute gas. The variation with temperature of the viscosity
of lle II, at low temperatures, seems to contradict this picture,
however, unless it is assumed that the collision probability of
the ‘excited atoms’ diminishes with decreasing temperature. Within
the frame of the Landau theory, detailed considerations with
respect to the viscosity of He II have been given by Landau and

Khalatnikov °7.
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CuAapTER 111

ADSORPTION OF HELIUM ON GLASS AT TEMPERATURES
BELOW THE A-POINT

1. Introduction. In 1936 it was discovered that a thick film
is formed on a solid surface, which is in contact with liquid
helium II or with its vapour (Rollin, Kikoin and Lasarev) Os,
which film shows very remarkable transport properties (Daunt,

21 : : : :
Mendelssohn . Estimates of its thickness vary from fifty to
a hundred and fifty mono-atomic layers. Recently it was found
(Long and Meyer) 22) that also in the comparatively thin film,
which is adsorbed at pressures well below the saturated vapour
pressure, superfluidity sets in below the A-temperature. The
superflow remains, however, very small even at relative pressures
of 0,95, where it is still less than 10 per cent of the flow of
the saturated film (Mendelssohn). In order to decide whether this
large variation of the superflow with the relative pressure is
caused simply by a variation of the film thickness or by other
factors, such as for instance the creep velocity of the film,
the adsorption isotherm must beknown with some accuracy, particular-
ly in the region of high relative pressures. The latter pressure
region is of interest for still another reason: it may yield
information with respect to the question whether quantum effects
are, or are not, of primary importance as regards the origin of
the helium film. Unfortunately there is some disaﬁreement between
the results of different workers. Kistemaker ~ ' estimates from
his experiments a thickness of thirty layers but a re-evaluation
of his data indicates a multiple of this number at a relative
pressure of 0.99. Long and Meyer find that the film is about eight
layers thick, when the temperature is above 2.19 degrees: at
lower temperatures, however, the adsorption was found to be
anomalously high when the relative pressure rose above 0.90.
Close to the saturation pressure, but still definitely below it,
an adsorption corresponding with a hundred and sixty layers was
claimed. Optical determinations, by Jackson and co-workers, of
the thickness of the saturated film indicate, on the other hand,
thicknesses which are only a third of those found by Long and Meyer
and these results are in reasonable agreement with the very recent
determinations of Bowers 2%) and of Brewer and Mendelssohn e
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In this chapter we shall describe an experimental determination
of the adsorption isotherm on a glass surface according to a method
which is in principle the same as that employed by Kistemaker.
Because of the nature and the shape of the adsorbing surface,
the influence of capillary condensation is reduced to a minimum.
A number of modifications in the method were introduced in order
to improve the accuracy. A description has also been given of a
new differential gauge which has a sensitivity of about 0.1 micyons
llg differential pressure at a mean pressure of a few mm. Ilg. A,

As a result of our measurements and those of other workers we
conclude that quantum effects are probably of secondary importance
with respect to the origin of the helium film.

A brief survey of some theories of adsorption will now be given.

The theory of mu}tilayer adsorption developed by Brunauer,
Emmett and Teller , has met with considerable success in dealing
with the characteristics of many adsorption isotherms. Moreover,
the surface areas that can be obtained by applying the B.E.T.
theory to adsorption measurements in the region of one mono-
layer are consistent with those found by means of quite different
methods. It has been recognized nevertheless, that the B.E.T.
isotherm, when it is fitted to the experimental data in the region
of one monolayer deviates appreciably both above and below that
region. In figure 11 we have represented the experimental isotherm
in a typical case along with the theoretical one. The discrepancy
at low relative pressures is usually ascribed to surface in-
homogeneity of the adsorbent, an effect that is not taken into
account by the original B.E.T.-theory. The disagreement at high
relative pressures is of a more fundamental nature and is due
to oversimplification in the assumptions of the B.E.T. theory.
These assumptions are:

1. The number of molecules adsorbed on a given site is independent
of the number adsorbed on adjacent sites.
2. The adsorption energy in all layers except the first is equal to
the energy of liquefaction £,
According to the first assumption the thickness of the adsorbed
phase may show large fluctuations from site to site; this cannot
correspond to reality, for in the actual case this would be opposed
by the surface tension. Mc Millan and Teller ??) have shown that
when the surface tension is taken into account without altering
the second assumption the predicted adsorption becomes less than
that found experimentally. This is a consequence of the insufficiency
of assumption 2 which in itself gives too low an adsorption.



Halsey 29) pointed out that in the absence of cooperative effects
no new layer is likely to be formed before the underlying layer
is complete: according to this view, then, multilayer gas ad-
sorption is due to the fact that long range forces emanating from
the adsorbent influence the energy of adsorption also in layers
higher than the first, so-in most cases the energy of adsorption
in these layers will be larger than Eliq. This circumstance
favours a larger adsorption and so the decrease in adsorption
which is due to the surface tension is partly compensated.

M1l *°? has considered the action of the van der Waals forces
between the adsorbent and the adsorbed phase. In order to show
clearly the assumptions involved, we shall briefly indicate his
calculation of the isotherm.

Let the adsorbed film be considered as a plane slab of liquid
with surface area S, uniform thickness h, and uniform number density
02, of the molecules; the number density of the molecules in the
adsorbent will be denoted by @2,. It will be assumed that p; and
the usual molecular distribution function g(r) are the same in the
slab as in the hulk liquid. Let F be the llelmholtz free energy of
the slabin its equilibrium position in the presence of the adsorbent
and let Fy refer to the slab imbedded in the bulk liquid. F - Fo
is then the reversible isothermal work done on the system in
1) breaking a column of liquid of area S at z = 0 and removing the

Z < h (W,);
2) breaking the remaining liquid at z = h and removing the part
z'>'h (W)

3) bringing the slab 0 < z < h up to its equilibrium position next
to the adsorbent (Ws);

4) rejoining the parts z<0 and z > h of the bulk liquid (Ws).

By equating the molecular free energies of the vapour and the

adsorbate we find:

kT In p/po = B(Wy* Wo) /N

While the calculation of W, is straightforward, that of Wy will
depend on the suppositions made with respect to the nature of the
adsorbent. A very simple assumption is that the adsorbent 1is
structureless and that it does not perturb g(r).

As regards the first layers, the latter assumption is certainly
very crude but owing to the long range of the forces the influence
of the higher layers, for which the assumption may be justified,
will be quite comparable with that of the first.
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When we write for the interaction energy between two molecules
of the liquid:

L R ST T R TN ¢ O

and for that between a molecule of the liquid and a molecule of
the adsorbent,

uyo(r) = Ely{dxy/r)l? =2 €1Q(d:?/r)a

the following expression is found for the adsorption isotherm 1in
the case that the thickness of the adsorbed layer is at least
several molecules,

- In p/po = 7V3k7'(ﬁqdii€11 = p?ﬁedfgexv]

Introducing the molecular cross section @, the number of adsorbed
layers n and taking into account that approximatively £, = P, and
dyy = dy» we obtain the relation,

€ - €
4,8 3 €11 12
~ ln p/po = /3 p1d;10, == lm
n

kT

which 1s of the form,

- In p/ps = K/nP

€ - €4
4.8 3 €14 12
where K = 77/3 p,d 0y ———— and p=3

kT

he power of n, nP, which appears in the formula, is a direct
consequence of the dependence on the distance of the attractive
forces between the adsorbate and the adsorbent (p = g - 3, where
q = 6 in the case of van der Waals forces). A similar power wita
law, p = 2.6, had previously been found empirically, by llalsey.

McMillan and Teller have shown that K is of the order of
(Ey - E, . )/RT where E, is tle energy of adsorption of the first

layer, E,lq is the energy of liquefaction and B the gas constant.
The quantity (E - El:q )/ET appears also in the B.E.T. equation,
which reads )

m Cp

;: ? (po - pY1 + (C - 1)p/po)
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where m 1is the adsorbed mass at the given pressure p, and temperature,
Po the pressure of the saturated vapour m; the mass of the first
adsorbed layer and C an energy constant which 1s approximately
f)q})al l‘,(). G = ‘exp.([‘,l - hll )/H[ :
The film thickness at refatlve pressures close to saturation
is according to the B.E.T. formula,
Rpipiy, ol LIAD
- Iln p/pc

where A 1s the ratio between the density of the first adsorbed
layer and that of the higher layers, so 4 = 1. The I}ill formula,
on the other hand, yields,

} h
DL e
Al [)/[,,,

where K1/° = 1. It is seen that ng p ¢ 1is considerably larger
than ng:1p which is due to the neglect of the surface tension
by the B.E.T. theory. When the surface tension is allowed for in
the latter theory, the number of adsorbed layers becomes according
to McMillan and Teller

B

"y.T. e e =—
- In p/po

where B = kT/187med”, € being the surface energy per unit surface
of the semi-infinite liquid and d being the intermolecular distance.
Because approximately B*/?= 0.1 the number of adsorbed layers
according to the above equation is much less than that predicted
by the Hill formula which latter has been well confirmed by
experiment (Bowers). In the case that the gas is adsorbed on
a vertical surface, we may account for the influence of gravity
by putting,

p = po exp.(-Mgz/RT)

where M is the molecular weight, R the gas constant and z the
height of an element of the adsorbing surface above the surface
of the liquid. Thus the following expression is obtained,

39




K‘
n= /s the value of the constant being, K* =
z
We see therefore that in the case of adsorption by London-van
der Waals forces, which is, for the rest, treated without specific-
ally taking into account such effects as Bose-Einstein condensation
or the zero-point energy, the thickness varies as the cybic root
of the height above the level of the liquid (Schiff) e
Treatments which take explicit account of the influence of
the statistics or the zero-point energy have been given by Bijl,
de Boer and Michels, Band and Temperley o . They generally obtain
another dependence on the height z than that given above.

KRTy1/2
(Mg)

2. Experimental arrangement. As is well known there is some ad-
vantage in using a drawn glass surface; because of the absence
of small cracks and fissures it is possible:

1. to identify the active surface area with the macroscopical one,
2. to avoid capillary effects, even at high percentages of the

saturation.
Our apparatus comprised (see fig. 11):
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Fig., 11 Adsorption isotherm in a typical case.
experimental curve
B.E.T. curve




1. two vesselsCwhich had approximately equal volumes but different
internal surface areas. They were surrounded by a radiation
shield R.

2. an oil differential gauge, G,, which served to measure the
pressure inside the apparatus relative to the pressure of the
bath,

3. a highly sensitive differential gauge, G,, which was connected
with the adsorption cells C by means of glass tubes.

Fig. 12 Differential gauge and adsorption apparatus

As one will see from fig. 12, this device consisted essentially
of two ilac Leod gauges of identical construction, which we shall
indicate by a and b. Each of the small volumes at the top was
connected with either side of an oil differential gauge, G,. A
small pressure difference could be amplified in this way. Differ-
entiating the relation p* = p(1 + V/v) with respect to p, where
p is the(mean) pressure, p* is the amplified pressure and V and
v are the large respectively the small volume of each Mac Leod
gauge, we find for the amplification factor:
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In this expression the factor fﬁ =1 + V/v gives the amplification
of the mean pressure: s__ . and s,;; are the specific densities
of mercury and oil and dv/dp is the volume increment as a conse-
quence of a differential pressure. In order to ensure dependable
readings the temperature difference between both halves of the
gauge should be kept as small as possible. The bulk of the volumes
v was therefore contained in two cylindrical bores in a copper
block which formed the upper part of the gauge. The glass bulbs V
were surrounded by a heavy copper casing.

At the beginning of a measurement the apparatus was filled with
helium gas up to a certain pressure p. The stopcock S, connecting
the two volumes was left open for some time and then closed,
after which the pressures were checked. If the difference was
found to be sufficiently small the temperature of the bath was
changed from T to T'. From the resulting pressure difference the
difference in adsorption at these temperatures can be calculated.

A correction dp_, ., has to be applied for the change in pressure
which is a consequence of the redistribution of the gas over the
different temperature regions in the apparatus, accompanying a
change in the bath temperature.

This redistribution depends on the volume ratios which are of
course slightly different inthe two halves a and b of the apparatus.

In order to find dp_, _ we write for the pressures:

: Var Vaz Vas Vaz Vaz Vas -2
PLepP (= 4—— 4 )t —+—)

TR i ek Tl RS

Vay is the geometrical volume at room temperature T,

Vaz is the volume of an adsorption cell at the temperature of
the bath, T, respectively T5,

Vas is the volume of the connecting tube at an ‘effective’
temperature Ts, respectively T; and

Pa and p, are the pressures corresponding with T, respectively
T,.

The analogous expression holds for p;. Assuming a constant
temperature gradient along the connecting lines, we write:
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(Pis Tlln Ty = Tt

and introducing the volume ratios:

V V V V
a=2 p=2 airda="2, f4ghe >
Vas Va1 Vos Voa
we obtain
2
1 a SR da S X a 5
dpcorr = Pul— + = + =) =+ Eﬁ)(—— e e I

3 ol ol el | a
G T T

which may be approximated by:

7r. 2 da 1/ 1
dp I v S 17
corr L T1 /i G i
In our case we had: a = 0.97, £= 0,01, do = 0.01 and d- =-0.001.

In order to simplify the calculation of the adsorption we shall
in first approximation ignore the dependence on temperature of
the adsorption isotherm. The error which is introduced in this
way will be small and may if necessary be corrected afterwards.
Representing the isotherm as a function ®(s) where s = p/pg
is the reduced vapour pressure and taking into account that
s, = s, = s for the temperature T(T;), we obtain for the partial
pressure difference due to the different adsorption at T and T':

dpads . {Aa@(s;) = Abm(sé) - (4, - Ah)@(s)}RY'fl

where? is the mass of the adsorbed gas per unit surface, V=V, ~V,,
A, and A, are the adsorbing surface areas and R is the gas constant.

Introducing the differential surface area A = A, - A, and con-
sidering that p, - p, = dp ., + dp_ _ we find:

% dpyg, + & . R

o i e T —corr , Alolsy) - 0(s"))} 5

ads = '\ a ?E

dp
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When the slope of the isotherm is comparatively small we may omit
the terms containing 3/3s in the expression for dp L gs-

3. Results. The calibration of the differential gauge yielded
the following data:

fm = 15.0 (approximatively V =~ 100 em’ and v~ 7 cm’)

fq = 14.2 for p=0.13 cm llg,

11.1 for p=0.90 cm llg.

For ‘any other pressure f; may then be found from formula (16).
Readings scattered about 0.1 x Jlg at a mean pressure of 0.1 cm llg
and about 0.3 & lig at 1 om lig. y

The large volume was approximately 100 cm’, while the small
volume was 7 cm . The diameter of the K-gauge G, was 0.1 cm; it
was filled with butylphtalate.

In order to adjust the dead space in the differential gauge
to that of the adsorption cells the volume v  _ was varied by
means of filling part of it with mercury. The quantities @, f,
da, df were then determined by means of separate runs at room
temperature respectively at the boiling temperature of liquid
hydrogen. The correction dp_ __ calculated from formula (2) is
of the order of a few microns ﬁg: In order to avoid the possibly
large uncertainties in the calculation of dpads as indicated by
(3), the detemminations at high saturation percentages were carried
out. by means of desorption measurements: s' was then always situated
in the saturation range where corrections for the slope of the
isotherm may be neglected. In plotting the isotherm it was assumed
that the adsorption at the lowest saturation, s = 0.03, was 0.07
em'S.T.P./m°, which value was obtained by averaging the results
of various investigators “*)*.No appreciable error will be involved,
because
a) the adsorption at such a low relative pressure is very small,
b) capillary effects will not have much influence, even in the

case of porous adsorbents.
As in the earlier measurements the differential surface area
was 300 cm°. The results have been plotted in fig. 12. The cor-
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responding temperatures, saturations and differential pressures
(dp ,;.) have been assembled in table IV. The curve represents
all adsorption isotherms in the temperature range from 2,19 °K
to 1.54 °K, because no temperature dependence could be detected
within the limits of accuracy.

TABLE IV
The differential pressure, dpads' as a function of T, T', s and s
!
T T dp

4 ads
K °K : ’ u Hg
1.69 | B 0.99 0.72 4.4
1.54 1.9 0.97 0.42 4.3
1.54 1.78 0.97 0.43 3.8
Yl 2.0 0.98 0.42 6.3
3.98 v ik | 0.03 0.30 -6.6
3.98 1.78 0.03 0.68 -6.0
1.54 2¥T 0.99 0.15 7.6
3.73 1.54 0.03 0.16 -0.7
3.73 1583 0.03 0.43 -2.0

4. Discussion. We have indicated the number n of adsorbed
statistical layers on the axis at right in fig. 12. With respect
to the density of adsorbed helium we assumed that:

1. its value is in the first layer about four times the value of the
bulk liquid,

2. its value is equal to that of the bulk liquid in the other
layers; the latter assumption has a somewhat arbitrary character
but has the advantage of being simple.

As will be seen, the number of adsorbed layers remains comparative-
ly small even at a saturation nf 0.99. This is in general agreement
with the recent results of Brewer and Mendelssohn and of Bowers

and in disagreement with those of Long and Meyer.‘ﬂg may also
compare our results with those of Durge and Jackson =’ who used
an optical method. They found that the thickness d of the Rollin

film at a height z above the liquid level could be represented by:
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z = Const./d

in which expression j varied from 2.5 tc 3.5 as a function of
temperature. This value suggests that the thickness of the film
varied roughly as the cubic root of the height, according to
the eq. given by Hill. The corresponding constant K has then
approximately the value K ~ 2. Assuming the Ilill relation to be
valid in our case, we find approximately K ~ 5, which is less
than the value given by Bowers, according to whom K ~ 10; he uses,
however, aluminium as an adsorbent. When the results of gas
adsorption measurements are compared with those obtained with
the optical method for temperatures above the A-temperature an
appreciable discrepancy is found. One would sooner have expected
the classical relation 2 to fit the experiments in this region
better than below 2.186 °K. A plausible explanation seems to be that
in those optical determinations where no mobile film was present
a small temperature difference existed between the mirror and
the liquid. A few thousandths of a degree K would be sufficient
to reduce the relative pressure at the surface of the mirror
to a value consistent with 2. An analogous argument might apply
to the measurements of Long and Meyer in which they observed
a very thick adsorbed film even at relative pressures p/po < 1,
when the temperature was below the A-point. This large adsorption
might be explained by the occurrence of capillary condensation,
a possibility, which taking into consideration their experimental
arrangement cannot be ruled out.

30cnt STH 2 .
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Fig. 13 A and © haye been used to indicate points obtained by

adsorption, respectively desorption measurements.




SAMENVATTING

In dit proefschrift worden de resultaten beschreven van:

le. Een onderzoek naar de invloed van dichtheid en temperatuur
op het impulstransport in lle I.

2e. Een onderzoek naar de adsorptie van helium op glas bij tem-
peraturen beneden het A-punt.

llet doel van het eerste onderzoek was, gegevens te verkrijgen
betreffende het impulstransport in vloeibaar helium bij temperaturen
waar de invloed van quantumeffecten aanzienlijk is, maar niet zo
overwegend dat een vergelijking met normale vlceistoffen zijn
betekenis verliest. (Uit de merkwaardige verschijnselen, die in
e I1 optreden, kan men de conclusie trekken, dat juist het impuls-
transport sterk beinvloed wordt door de A-transitie.)

In het eerste hoofdstuk wordt een kort overzicht gegeven van
enige theorieén betreffende de viscositeit van dichte gassen en
vlioeistoffen.

In het tweede hoofdstuk wordt een methode °2’ beschreven volgens
welke de viscositeit van lle I werd gemeten bij drukken varierende
van 10 tot 50 kg per em . De gevonden waarden zijn geinterpreteerd
met behulp van een eenvoudig model, waarbij de moleculen worden
beschouwd als harde bollen met een van de temperatuur afhankelijke
straal. Op grond van dit model blijkt, dat lle I wat zijn viscositeit
betreft niet kan worden beschouwd als een verdund gas. llet is
bij gevolg niet mogelijk de sterke daling van de viscositeit in
de nabijheid van de f-transitie op eenvoudige wijze te verklaren,
Deze daling suggereert, dat de ‘vrije weglengte’' van de deeltjes
(bij gelijkblijvende concentratie) toeneemt, naarmate hun thermische
snelheid afneemt, (m.a.w. hun ‘botsingsdoorsnede’ wordt kleiner).
Een soortgelijk verschijnsel schijnt op te treden in He II, zoals
gesuggereerd wordt door de met dalende temperatuur toenemende
viscositeit van het ‘normale deel’ bij temperaturen beneden 1.5 °K
(zie fig. 4).

In het derde hoofdstuk wordt een manometrische methode beschre-
ven -° , waarmee de adsorptie van helium werd bepaald bij tempe-
raturen beneden het A-punt. Deze methode is in principe gelijk
aan die welke gebruikt werd door Kistemaker bij zijn oriénterende
metingen. Verschillende verfijningen stelden ons echter in staat
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een grotere nauwkeurigheid te bereiken. Zo werd een differentiaal
manometer ontwikkeld met een gevoeligheid van 0.01 micron Hg bij
een totale druk in het adsorptie-toestel van de orde van 1 mm Hg.

Als resultaat van onze metingen vonden wij o.a., dat de geadsor-

beerde laag een dikte had van 8 atoomdiameters bij een relatieve
(o] \]

druk van 0.99, in redelijke overeenstemming met de uitkomsten van

recente metingen, verricht door Brewer en Mendelssohn en door Bowers.
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en mag aannemen, dat in de nabijheid van het punt, de zelf
diffusie coefficient van lle I toeneemt bij dalende temperatuur.

Dit proefschraft p. 3
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Volgens de verklaring, die Daniels en Kurti hiervan geven. zou de
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Een verklaring is mogelijk, indien men rekening houdt met de wijze
waarop de susceptibiliteit van het meetveld afhangt.

De Klerk D.,K Steenland M.J.. Gorter. C.J. Physica 15(1949)
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VIIX

Het onderscheid dat Moller maakt tussen roosterwater en anion-water
is overbodig
Therald Méller. Inorganic.Chemistry (New-York: John Wiley)
p. 498

IX

Een gecoordineerd systematisch onderzoek zou aan te bevelen zijn
in de Nederlandse en Buitenlandse archieven en bibliotheken, ten
einde een beter inzicht te krijgen in het Nederlandse muziekleven
van vroeger.

X

llet is aan te bevelen bij de toelating van leerlingen tot de
Middelbare Scholen in ruimere mate gebruik te maken van psycho
technisch onderzoek, dan thans het geval 1is.
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