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GENERAL INTRODUCTION

The mechanism of plastic deformation of crystalline solids depends
prim arily on the behaviour of lattice defects, such as dislocations, vacancies
and in terstitia l atoms. The m otion of dislocations gives rise to  the well-
known phenomenon of glide or slip in metals. In  order to  explain the large
plastic deformation of metals under the influence of m oderate stresses, not
only the m otion b u t also the form ation of large numbers of dislocations by
the action of the stress m ust be understood. Motion of dislocations in  im per
fect crystals is accompanied by  the form ation of vacancies and interstitials.
Thus in  a plastically strained m etal all three kinds of defects are present.
They affect appreciably the physical properties of the m aterial, such as the
electrical resistivity, the thermo-electric power and the magnetoresistance,
as well as the X -ray  diffraction pattern , the  density, etc.

To study the mechanism of plastic deformation of m etals, i t  is therefore
useful to  direct atten tion  not only to  the mechanical properties affected,
or to  the surface phenomena such as slip line pattern , deform ation bands,
etc., b u t also to  the  general physical properties of the metal.

In  this paper the change of electrical resistivity and of m agnetoresistivity,
caused by plastic deformation, of the m onovalent metals copper, silver and
gold will be studied, from a theoretical as well as from an experim ental
point of view. From  this study several conclusions will be drawn as to  the
concentrations, the diffusive properties and the  electric scattering power of
the  various defects formed.

The first chapter is devoted to  a discussion of current ideas about the
fundam ental properties of the defects mentioned and of their occurrence
in well-annealed metals. In  chapter 2 the  behaviour of the defects under
stresses exceeding the elastic lim it of the m etal are discussed and a simple
model theory describing the  situation in  plastically deformed metals is
proposed. Theoretical relations are derived between the  am ount of deforma
tion and the concentrations of the  various defects present in the lattice after
the  deformation. In  chapter 3 the change of electrical resistivity of a m etal
during plastic deformation is discussed and related to  the form ation of
defects. Various experiments are described and their results compared to
the  theoretical deductions. Chapter 4 deals w ith the change of resistance of
plastically strained metals in a transverse m agnetic field. From  theoretical
considerations it  follows th a t  under these circumstances the dislocations
can be studied independent of o ther defects. Chapter 5 is devoted to  the
study  of the therm al recovery phenomena of the electrical properties of
deformed metals. Similar recovery phenomena in irradiated  and rapidly
quenched metals are also considered. Chapter 6 summarizes the conclusions
th a t can be drawn from our investigations.
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1. PROPERTIES OF LATTICE DEFECTS

1.1. Dislocations

A complete review of the properties of dislocations cannot be given in
this paper; only those aspects to  be used in  the  la ter sections will be dealt
w ith. For instance, the  elastic and dynam ic properties of dislocations will
no t be discussed a t all. Detailed accounts on the structure and elementary
properties of dislocations can be found in the  book of W .T. R ead x); a fairly
complete discussion of the  effects of dislocations on the  mechanical proper
ties of metals is given by A. H . Cottrell in  his m onograph 2), while the
m athem atical theory  of dislocations has been extensively presented by
F. R. N. N abarro 3). Recently, nearly all these aspects of the dislocation
problem  have been discussed anew by A. Seeger 4).

1.1.1. Structure of dislocations

Dislocations were originally introduced into the formal theory  of elastici
ty  5) by  considering a m ultiply connected body, in which a cut has been
m ade to  render it  simply connected. By displacing the  two cut surfaces,
possibly adding or removing some m aterial, and finally joining the surfaces
again, a state  of strain  is obtained which was called a dislocation. In  order
to  ensure everywhere finite and differentiable strains, the  relative displace
m ent of the cu t surfaces should be compatible w ith the displacements of a
rigid body 5). According to  this condition, the relative displacement of
neighbouring points on either side of the cu t is given by an expression of the
form:

dui =  bi +  2  dij x j ,  (1.1)
j

where xj denote the coordinates of the point, the three constants 6; specify
the  relative translation of the cut surface and the three constants
dij ( =  — dji) specify the relative rotation.

A general dislocation is thus described by  six constants, or, i t  can be
considered th a t a general dislocation is in fact built up out of six elementary
dislocations, each of them  characterized by  only one constant, the other
five being zero. These elem entary dislocations can be illustrated as follows
(fig. 1). Consider a hollow cylinder w ith a cut in its m antle parallel to  the
axis. A dislocation is formed by  displacing the cut surfaces w ith respect to
each other. The six types can be divided into three classes:
(1) Only a translation  is present norm al to  the length direction of the cut.
These dislocations are called edge dislocations (b, c).
(2) Only a translation is present parallel to  the length direction of the cut.
These dislocations are called screw dislocations (d).
(3) Only a relative rotation of the cut surfaces has been applied. These
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dislocations give rise to  finite strains a t infinity, and do no t occur in  the
ordinary theory of plasticity (e, f ,  g).

This general concept of dislocations has been applied by J .  M. Burgers 6)
to  the case of glide in solids. He considers an isotropic solid, from which a
th in  filament of m atte r in the form of a closed loop has been removed (corre
sponding to  the hole in the cylinders in fig. 1). By displacing the two surfaces
of a cap whose edge is formed by the loop, over an am ount b a dislocation is
created, viz. of type (1) or type (2) or a m ixture of the two. The strains are
largely concentrated around the loop; this is called the  dislocation line.

Fig. 1. The six types of elastic dislocation, (a) Original cylinder containing a cut parallel to
its axis; (b) and (c) edge dislocations; (d) screw dislocation; (e), (f) and (g) rotational
dislocations. (After F. R. N. Nabarro 3).)

The vector b is nam ed the Burgers vector of the  dislocation. I t  can be
shown 6) th a t  the strain  a t any point in the m aterial depends only on the
vector b and the position of the  dislocation line; i t  is independent of the
form of the cap.

F rank  7) introduced the dislocation concept in a way especially suited to
crystalline solids built on a spatial lattice. In  an ideal crystal, the atoms
are situated a t places

In  reality, ideal crystals do not exist, and (1.2) describes the positions of the
atoms only approxim ately; there are internal vibrations, and various atoms
are missing, others occupy in terstitia l sites, etc. However, comparing
actual and ideal crystals, one can try  to  establish a one to  one correspon-

5  - e - 8 7 9 7 3

r  =  la -(- mb -f- n c . ( 1.2)
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dence betw een th e  a tom s in  b o th  crysta ls. Regions in  th e  ac tu a l c rysta l
w here th is  is possible are called good regions; regions w here such a correspon
dence can  n o t be unam biguously  established are nam ed  bad regions. Con
sider a closed circu it (B urgers circu it) in  th e  real crysta l. I t  is always
possible to  define an  associated  circu it in  th e  ideal crysta l, w hich, how ever,
is n o t necessarily closed. W hen i t  is n o t closed, th e  B urgers circu it is said
to  encircle one or m ore dislocations (fig. 2). W hen th e  B urgers circuit runs
en tire ly  th ro u g h  good crysta l, th e  associated  circuit, if  n o t closed, has
necessarily  a closing failure w hich is equal to  a la ttice  vector. One th en
speaks of a perfect d islocation, w ith  a B urgers v ec to r equal to  th a t  closing
failure. O therw ise th e  closing failure m ay  differ from  a la ttice  vecto r, and
th e  Burgers c ircu it encircles an  imperfect dislocation. B y uniquely  defining
th e  d irection  along w hich th e  B urgers c ircu it is trav ersed , one can assign a
sign to  a dislocation. Two dislocations w ith  B urgers vectors equal in
m agnitude  b u t  of opposite d irections of th e  closing failure are called dis
locations of opposite sign.

The B urgers c ircu it can  be continuously  displaced th ro u g h  good crysta l
w ith o u t change of th e  Burgers vector. The circu it m ay  be sh ru n k  as fa r
as possible to  its  cen tra l core of b ad  crysta l, th a t  is to  th e  im m ediate
neighbourhood of th e  d islocation hne.

A n im p o rta n t deduction  from  th is  is th e  following: Since th e  B urgers
circu it can  be continuously  displaced along th e  dislocation hne w ithou t
change in  Burgers vecto r, a d islocation hne  canno t te rm in a te  w ith in  the
crysta l.

8 7 9 7 4

Fig. 2. Idea l (a ) and real (b ) crystal. T he la t te r  contains a  dislocation. The Burgers circuit
encircling i t  has an  associated c ircu it in  th e  ideal c ry sta l w ith  a closing failure equal to  th e
B urgers v ecto r o f th is  dislocation. Corresponding in tersections of th e  c ircu it w ith  la ttice
planes have  been  denoted  b y  corresponding figures.
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A dislocation line can b ranch . T aking  th e  Burgers circu it th ro u g h  good
cry sta l and  large enough to  encircle th e  b ranches, its  B urgers v ec to r
rem ains co n stan t as th e  circu it is displaced p a s t th e  b ranchpo in t. Thus
th e  vecto r sum  of th e  Burgers vectors of th e  branches is equal to  th e  B urgers
vec to r of th e  unb ranched  dislocation. A long an  unb ranched  dislocation th e
Burgers vecto r has everyw here th e  sam e m odulus and  d irection .

F rom  th e  above general considerations i t  follows th a t  dislocations in
crysta ls are linear defects characterized  b y  tw o vecto r q u an tities, nam ely  a
u n it vec to r denoting  th e  local d irection  of th e  d islocation line and  the
B urgers vector, w hich m easures th e  re su ltan t d isplacem ents of th e  atom s.

In  th e  th eo ry  of p lastic  deform ation , one is only in te rested  in  la ttice
defects w hich cause a s tra in  th a t  ten d s to  zero a t  in fin ity , and therefore only
typ es (1) an d  (2) of page 4 (or a m ix tu re  of th e  tw o) have  to  be considered.
These tw o p rincipal types of d islocation are illu stra ted  in  figs 3 and  4 for
th e  case of a sim ple cubic s tru c tu re . The edge dislocation has its Burgers
v ec to r perpend icu lar to  its  axis. I ts  significance fo r th e  th eo ry  of p lastic
deform ation  follows from  fig. 3, as i t  can  be considered as th e  boun d ary
line betw een a region of th e  cry sta l th a t  has slipped and  a region w hich has
n o t y e t slipped. Slip can  be p ropaga ted  th ro u g h  th e  c ry sta l b y  m oving th e
dislocation along its  slip p lane.

A screw dislocation (fig. 4) has its  B urgers vec to r parallel to  its  axis. I t
can  also be regarded  as th e  b o u n d ary  line betw een slipped and  unslipped
regions. In  b o th  cases th e  slip v ec to r is equal to  th e  Burgers vector.

As will be clear from  th e  foregoing, a d islocation line needs n o t necessarily
be stra ig h t; due to  th e  constancy  o f its  Burgers vec to r a curved  dislocation
changes its  ty p e  along its  axis, as depicted  in  fig. 5. F o r m ost o f its  length
i t  is o f m ixed edge-screw ch aracter.

■-V~ >------C

Fig. 3. Perspective diagram of an edge dislocation th a t has progressed halfway through
a crystal. The dotted line d is the dislocation axis; the drawn lines represent atomic planes.
The Burgers vector b is perpendicular to the axis. To complete the shear, the dislocation
m ust move along the slip plane g in the direction of b.
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a
Fig. 4. Perspective diagram of a screw dislocation th a t has progressed halfway through
the crystal. The letters have the same meaning as in  fig. 3. To complete slip, the dislocation
has to  move over the slip plane g perpendicular to  its Burgers vector h.

Fig. 5. Closed dislocation loop, b is the Burgers vector, th a t is constant along the loop.
Only the parts E  and S are of pure edge and screw character respectively.

1.1.2. Energy and free energy of a stationary dislocation

W hen the stresses <ry and strains relating to  a dislocation are known,
its strain  energy can be found. Cottrell 2) derives the formula:

for the energy per un it length of a straight dislocation in a simple cubic
lattice w ith atomic spacing b. For an edge dislocation, a =  1 — v, for a
screw dislocation a =  1, where v is Poisson’s ratio; G is the shear modulus.
Additional term s arising from the  finite dimensions of the m aterial are left
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out of account here; r4 denotes the extent of the strain  field of the dis
location, r0 the radius of a cylindrical region around the axis of the dis
location w ithin which the strains become so large th a t Hooke’s law is no
longer valid. I f  we p u t r0 equal to one atomic distance, the strains a t the
surface of the inner cylinder are already of the order x/4, which are much
to large for ordinary elasticity theory to  be applicable. We shall therefore
take r0 =  10 7 cm. In  an ordinary crystal one m ay take r4 to  be of the order
of 1 cm, thus one has

for the energy per un it length. In  copper, this energy works out to  5.10“4
erg/cm, or about 8 eV per atomic plane perpendicular to  its axis for an edge
dislocation, and about 5 eV for a screw dislocation.

Various authors have tried to determine somewhat more accurately the
energy of dislocations of arb itrary  type in various crystal structures.
The m ost recent results have been obtained by  Forem an 8); they  confirm
the values quoted above. The difference in energy between the various
types are relatively small, and no conclusion is possible as to  w hat kind of
dislocation m ay be expected to  be most probable. The uncertain ty  is largely
due to  the unknown energy contained in  the dislocation core.

Cottrell 2) has estim ated the am ount of energy concentrated within r0,
and finds this to  am ount approxim ately to  »/, G P per atomic plane, which
is of the order of 1 eV and thus no t very small compared to  the strain  energy
outside r0 (therefore it  plays an im portan t p a rt when the distinction between
two kinds of dislocations is studied). I t  is an interesting property of a dis
location th a t about half of its strain  energy arises from regions outside 10“4
cm from the dislocation line.

The presence of a dislocation increases the disorder of the crystal.
On the  other hand a dislocation can be arranged in  the crystal in various
ways. Cottrell 2) has com puted the change in entropy corresponding to  the
introduction of a dislocation in a crystal of un it volume, finding A S  to  be
minus a few times R  per mole. This means th a t the entropy contribution
to  the free energy of a dislocation am ounts to  about 1% of the strain
energy a t room tem perature, and can, even a t tem peratures of the order
of the m elting point of m ost m etals, be completely neglected.

Thus the free energy is practically equal to  the strain  energy which is
positive and large. Hence dislocations cannot exist as therm odynam ically
stable lattice defects.

1.1.3. Motion of dislocations

Slip is based on the motion of dislocations. The above discussion already
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yields som e insigh t in to  th e  k inem atical p roperties of dislocations. Following
F ra n k  7), we consider a Burgers circu it anyw here in  th e  (actual) c ry sta l and
le t a d islocation line m ove from  outside to  inside th e  c ircuit. T he closing
failure of th e  associated  p a th , w hich m ay  originally  have been zero or finite,
is th e n  changed b y  th e  Burgers vec to r b of th e  dislocation. Two ad jacen t
ions on th e  circu it betw een w hich th e  d islocation has passed are th u s  dis
placed b y  an  am o u n t app rox im ate ly  equal to  b re la tive  to  each o th e r (the
d isp lacem ent is m easured  in  th e  ac tu a l c ry sta l and  needs th u s  n o t be
exactly  equal to  b).

L e t n  be th e  u n it vecto r norm al to  th e  p lan a r area th a t  has been sw ept
b y  an  infin itesim al segm ent du  of th e  dislocation line. T hen  w ith  th is
m ovem ent a change of volum e occurs w hich, p er u n it area sw ept, is equal
to  (b.n). I f  th e  m ovem ent is such th a t  th is  p ro d u c t is zero, th e re  is no

Fig. 6. The dislocation line d can glide into any position on the cylindrical surface containing
itself and the direction of the Burgers vector b. The screw part S can glide on any plane
through its axis, e.g. the plane ABCD.
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volume change and the dislocation is said to  glide. Glide motions thus
occur when the dislocation line moves in a surface containing itself and its
Burgers vector (fig. 6), this is term ed its glide surface or slip surface. I t  is
easily seen th a t all motions of pure screw dislocations are pure glide
motions.

For dislocations w ith some edge character, however, glide motion can
occur only on a definite glide plane. From  fig. 6 it  follows th a t  glide
motions are characterized by  the property  th a t the projection of the dis
location line on a plane perpendicular to  the Burgers vector is invarian t in
area and shape.

All motions no t satisfying this condition necessitate the production of
vacancies resp. the transfer of in terstitia l atbm s to  lattice sites when (b.n)
is positive, or the production of in terstitia l atoms resp. the removal of
vacancies when (b.n) is negative. Such motions, when occurring a t not
too high tem peratures, bring about an appreciable change in the free energy
of the crystal and are therefore only possible under appreciable forces. They
are called climb motions. Glide motions on the contrary  take place already
under very slight forces. J

Forces on dislocations

In  this study we are not concerned w ith the elastic and dynamic properties of dislocations.
Nevertheless, the concept of the force on a dislocation should be touched upon, as i t  arises
in several connections later on. The force exerted on a dislocation by an  elastic stress field
P can be introduced as follows. I f  a line element da  of a dislocation moves so as to sweep a
p anar element of area dn -  da  X dx, than  the traction  on the element is n. P, and the work
done by the field m this motion is (n .p ) .b =  (b.p ) . n .=  (b .P ).(da x  dx) =  [(b.P) x  dal.dx
be defined a f v )  7  ^  ^  P ° n the e W n t  d(T of the dislocation can thus

dF =  (b.P) x  d a .

seen Ï t  “  ^  ^  ^  direction of the Burgers vector, i t  is easily

per u n it length. 0*^)

We shall now discuss the motion of dislocations in more detail.

1 .1 .3 .1 . Glide motion

In  the presence of an elastic stress field, the com ponent of the force on
a dislocation th a t  is acting in  the plane tends to  move the dislocation in
th a t  plane. Such a m otion is a glide motion, no volume changes are
connected with it. However, still a small force is needed, as naturally  in a
crystal, when a dislocation is displaced from a sym m etrical position to  an
unsym m etrical one, this displacement is opposed by  a force. This force is
due to  the fact th a t  the atoms near to  the slip plane are no longer in equi
valent positions on opposite sides of the dislocation. Its  m agnitude depends
on the variation, w ith the position of the dislocation, of the energy of
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misfit between the faces of the slip plane. Following Peierls 9) we assume
in a simple cubic lattice w ith lattice spacing 6 a sinusoidal relation to
exist between the shear stresses acting on the atoms on both  sides of the
slip plane and the deviations u of these atoms from their symmetrical
positions:

t =  —— sin • (M )
2 n  b

The to ta l energy of misfit of a row of atoms of un it length parallel to  the
dislocation is

E m =  ƒ b r d u .  '(1-6)

Thus:
Gb

u
r 4ot Gb2 4 nu
/ s in -----du = — 1 4- cos --

4 n J b 8 b
u=6/4

(1.7)

Let the distance of the centre of the dislocation to  the  nearest position
of sym m etry be ab, where a is variable. Then we can describe the relative
positions of the atom s on both  sides of the  slip plane approxim ately by

b x
u =  —  arc tan  — »

2 n  £

where x =  (a +  '/2n)b; » =  0, ±  1, ±  2.......... . and £ =  qb/2(1 -  v), where
q is a factor depending on the  exact form of the law of force (1.5) between
the atoms. I t  is un ity  for a pure sinusoidal law, and m ay be 5 m  actual
cases; £ is a measure for the  width of the dislocation. Summing (1.7) over
all these positions, the misfit energy can be shown to  depend on a as 3)

p  — -------— -------- e~*n^b cos 4na. (1-®)
m  2 n ( l - v )

By differentiating (1.8) we find for the force on a dislocation preventing
its m ovem ent:

p  _  ^  . e-*"tlh gin 47ia. (1-9)
1  —  v

According to  (1.4) the theoretical critical shear stress acting in the glide
plane needed to  move the dislocation is

^max 2G (1.10)
Itr = T T /  *

The m agnitude of this stress depends very sensitively on the  w idth of
the dislocation and thus on the exact form of the shear stress function (1.5)
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and on the crystal structure. In  actual crystal lattices f  can be decreased
in the ratio: lattice spacing in a direction perpendicular to  the slipplane to
lattice spacing in the glide direction ( =  Burgers vector). This can give an
appreciable effect in rcr, especially when slip occurs on close-packed planes.
I t  has not yet been possible to  make a reliable estim ate of f  (see e.g. Fore
m an, Jaswon and Wood 10) ) and hence the theoretical critical shear stress
to  move a dislocation cannot be com puted even to  the order of magnitude.
However, i t  is certainly several orders of m agnitudes smaller th an  the
theoretical critical shear stress óf a perfect crystal, which is of the order of
G/10 u ).

I t  is this property  of dislocations, viz. the low theoretical value of the
shear stress needed to  move them  across their glide plane, which makes these
lattice defects so im portan t in plastic flow. The observed critical shear stress
for plastic deformation of actual m etal single crystals is of the  order of
10~5 to  KT3 G, thus m uch smaller th an  the  theoretical critical shear stress
of a perfect crystal. Polycrystalline m aterials show a higher critical shear
stress, yet always much smaller th an  this theoretical value (except in some
cases of especially hardened m aterials). This discrepancy can only be
explained by  the fundam ental assum ption th a t slip takes place by glide
m otion of dislocations.

In  actual cases, the  m otion of dislocation is no t only hindered by  the
“fundam ental” Peierls force discussed above, b u t to  a large extent by the
presence of other lattice defects in the  crystal. As Seeger I2) has pointed out,
the Peierls force m ay nearly always be neglected compared to  these other
influences, except m aybe a t very low tem peratures. Leibfried ls) has indi
cated however, th a t  even then  the Peierls force is easily overcome by  the
therm al vibrations and the  zero point vibrations of the lattice.

However, the  conclusion th a t  dislocations are relatively very mobile
lattice defects remains valid, also when the influence of other lattice defects
is taken  into account (see also chapter 2).

During glide motion a dislocation can reach considerable velocities. The ultim ate velocity
lim it is th a t of sound in  the metal, bu t dislocations cannot reach this lim it because of the
large energy dissipation th a t occurs by reason of the interaction w ith the lattice vibrations
(generation of heat or sound waves). An exact treatm en t of th is problem has not yet been
possible. Associated w ith a moving dislocation is a kinetic energy, arising from the
atomic motions constituting the dislocation motion. This energy increases w ith the dis
location velocity, particularly because the w idth of the dislocation decreases. This decrease
in w idth is similar to  the relativistic contraction of a  yard stick, the w idth tending to  zero
as the velocity approaches its  upper lim it. The k inetic energy becomes comparable to  the
elastic energy of a stationary dislocation a t speeds of the order of one ten th  of the velocity
of sound, which will therefore be the order of m agnitude of the actual velocity lim it of
dislocations.

1.1.3.2. Climb motion

Motion of a dislocation out of its  glide plane necessitates a change of
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volume, as explained above. Such m otion is illustrated in  fig. 7. W ith a
dislocation of not pure screw character (for a pure screw dislocation each
lattice plane through its axis is a glide plane) is associated an extra half-plane
of atoms, as can also be seen from fig. 3. The motion of the dislocation
outside its glide plane is accompanied by a change of the dimensions of this
half plane. T hat is to  say, some of the atoms belonging to  the half plane have
to  disappear somewhere in  the  lattice, or new atoms have to  be added to  it.
The transport of atoms through the  lattice has to  take place by  diffusion.

77981 B B1

Fig. 7. fltimh motion of a dislocation of not pure screw character (axis perpendicular to
the plane of drawing). When the dislocation axis moves from A  to A', the extra half-plane
BA becomes 1304', that is, it becomes shorter. Some atoms have therefore to diffuse away.
(After A. H. Cottrell2).)

This does no t seriously impede climb as a possible form of motion, if the
tem perature of the crystal is high enough for diffusion to  take place as
rapidly as is needed to  m aintain the  structure during the motion. However,
for m ost metals a t room tem perature or below, diffusion is a slow process
and the  climbing dislocation leaves in  its wake a sheet of vacancies or
in terstitia l atoms. W ith climb of dislocations therefore an activation energy
is associated, either for diffusion or for form ation of defects, or for both.

The reverse process is the  absorption of vacancies or in terstitia l atoms
a t dislocations, thereby causing the dislocation to  climb. This process also
occurs only appreciably a t fairly high tem peratures, and is m anifested e.g.
in the phenomenon of polygonization.

Consider a segment do of a dislocation line. Let the distance travelled by
the  dislocation be dx. The change of volume associated w ith this motion is
equal to

A V  =  b . (dn X d x ),

which can also be w ritten  as:

A V  =  d x . (b X d<r). (1-12)

s
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From  these formulae it can be inferred th a t the change of volume, th a t  is to
say the num ber of vacancies or in terstitia l atoms left in the wake of a
dislocation of un it length, per un it area travelled is proportional to

b sin a cos /3, (1.13)

where a is the angle between Burgers vector and dislocation line and fi is
the angle between the direction of m otion and the norm al to  the glide plane.

The climb motion, or as it  is also called the unconservative motion of
dislocations does occur not only when absorption of vacancies or in tersti
tials takes place, b u t also after two dislocations on different glideplanes
have intersected each other. Then in each of the two dislocations a
jog  is formed, the  m agnitude and direction of each being given by the
Burgers vector of the other dislocation (see for a detailed trea tm ent the
book x) of Read). This jog can be considered as a short piece of dislocation.
According to  the  theorem  of the  conservation of the  Burgers vector (section
1.1.1) the Burgers vector of the jog is the same as th a t of the dislocation in
which i t  occurs. Suppose now th a t one of the  crossing dislocations (Burgers
vector bjJ undergoes a glide m otion (for instance under the action of a shear
stress), and the other dislocation (Burgers vector b2) is fixed. Then, after
crossing, the jog formed in  the  moving dislocation will have to  move to 
gether w ith the dislocation to  which it  belongs. In  general i t  will then  per
form an unconservative type of motion. The glide plane of the jog is defined
as the plane through its axis, th a t  is a fine parallel to  the Burgers vector b2
of the fixed dislocation, and its own Burgers vector, th a t  is the  Burgers
vector bx of the moving dislocation. The direction of motion, given by the
vector dx, is such th a t  for the element (considered straight) of the moving
dislocation dux in  which the  jog occurs, the  condition:

dx . (bj X dffj) =  dffj. (dx X bt ) =  0 (1-14)

is fulfilled. The condition for glide m otion of the jog reads however:

d x . (bx X b2) =  b2. (dx x  bj) =  0 . (1.15)

The second edition can be fulfilled together w ith the first one when either
dx X bx =  0, th a t  is when the moving dislocation has pure edge character,
or when b2 lies in  the glide plane of the moving dislocation. In  general,
however, b2 has a component norm al to  the glide plane of the moving disloc
ation and the  la tte r has not pure edge character; the  jog will then  leave a
trail of vacancies or in terstitia l atoms.

Thus, for example, two crossing screw dislocations (dx X bx is a
maximum) th a t  are m utually perpendicular acquire jogs which on further
movement leave a tra il of vacancies or interstitials th a t  are spaced only one
atomic distance from each other (maximum efficiency of jog form ation).
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In  the  general case of two dislocations of arb itrary  character crossing
under an arb itrary  angle, the efficiency of vacancy form ation (or in terstitia l
form ation) of the jogs formed can be found as follows. According to  (1.12) the
volume change due to  the  m otion of the*jog in the moving dislocation is
given by

AVj  =  bt . ( d x X  bx) .  (1.16)

Now dx can be taken  perpendicular to  dtr1, for the only physically in terest
ing component of m otion of the  dislocation fine is th a t  perpendicular to
itself, the component parallel to  the fine being of no interest. Thus it  is
found from (1.16) th a t  the  efficiency of defect form ation is given by

e ~  (bx. d o j  X (b2.nx) , (I*17)

where nx stands for the unit vector norm al to  the glide plane of the moving
dislocation. This formula confirms the conclusions already reached in the
discussion above: jogs in  moving edge dislocations (b1.d<r1 =  0) produce
no defects, and the crossing dislocation m ust have a Burgers vector with
com ponent perpendicular to  the  glide plane of the moving dislocation. For
two perpendicularly crossing screws e =  1; this defines the scale of the
efficiency factor. I t  corresponds to  the  production of a close packed row
of defects. For arb itrary  orientations the spacing of the defects is 1/e lattice
param eters.

The possibility m ust no t be ruled out th a t  the jog formed in the moving
dislocation will, on further movem ent of the la tte r, displace itself so as to
reduce the  defect production. No defects are produced a t all by  the jog
when i t  moves purely by  glide, th a t  is parallel to  the Burgers vector of the
moving dislocation. The character of the la tte r  determines in how far the
jog can actually  perform  such a favourable motion. A jog in a pure screw
dislocation has to  move along the dislocation axis. In  view of the lim it set
to  the  possible dislocation velocity, this seems impossible. No accurate
com putation has been m ade as to  the actual m otion of a jog. I t  seems plaus
ible however to  deduce th a t the efficiency as given in  (1.17) will be less in
practice, due to  the sidewise m otion of the jog. To take this into account,
another factor (bx.dux) could perhaps be added to  the efficiency formula.

1.1.4. Formation of dislocations
In  order to  explain the phenomenon of plastic flow as being effected by

the m otion of dislocations on their glide planes, one has to  assume th a t
in undeformed crystals dislocations are already present in appreciable
num bers. Dislocations not being therm odynam ically stable lattice defects,
there m ust he some mechanism or another by  which they  come into
existence during the growth of the crystal.
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U p till now, only hypotheses ex ist to  th e  n a tu re  of th e  m echanism s
responsible for dislocation form ation . As po in ted  ou t b y  F ra n k  14), c rysta l
grow th from  sligh tly  su p ersa tu ra ted  v apour is g rea tly  aided b y  th e  presence
of screw dislocations. These dislocations produce a step  on th e  surface of
th e  cry sta l a t  w hich new  atom s are p referen tia lly  absorbed, and  w hich does
n o t d isappear on fu rth e r  grow th, as no rm al surface irregularities do. B y  th e
aid of dislocation steps th e  ra te  of g row th  can easily be enhanced b y  a fac to r
of 100 (spiral g ro w th 15) ). In  th e  growing c ry sta l th e  d islocation grow ths
w ith  it. Therefore v ap o u r grow n crystals will p resum ably  con ta in  d is
locations, as those nuclei a lready  contain ing  th em  will grow m uch fa s te r
th a n  those w ith o u t dislocations. A n analogous m echanism  p ro b ab ly  holds
for grow th from  d ilu ted  solutions. The existence of dislocations in  th e  origin
al nuclei p resen ts an o th e r problem . R ecen t experim ents b y  H ollom on 16)
show  th a t  th e y  are p robab ly  form ed in  sm all num bers w hen tw o nuclei
encoun ter each o th e r acciden tally  an d  stresses are se t up . These can be
relieved b y  th e  fo rm ation  of dislocations in  th e  v e ry  sm all and  th in  nuclei.

H ow ever, m e ta l crystals do p resum ab ly  con tain  m ore dislocations th en
can be understood  in  th is  w ay; various experim ents 17) yield dislocation
densities o f 106 - 108 cm-2 in  carefully  p repared  m eta l crysta ls. (In  o th e r
solids these  densities m ay  be m uch less, e.g. i t  is s ta te d  th a t  v e ry  carefully
prepared  germ anium  crystals w ould only con ta in  as few as 102-104
dislocations p er cm 2 *). W e shall n o t go in to  th e  exp lanation  of these dif
ferences here.) A pprox im ately  th e  sam e densities are found in  sublim ized
and  m elt-grow n crystals. A  possible hypothesis as to  th e  fo rm ation  of so
m any  dislocations in  m eta l crystals grown from  th e  m elt, has been advanced
b y  Teghtsoonian  and  Chalm ers 19), on th e  basis of experim en tal evidence
of so called striations in  tin  crystals grow n from  a seeded m elt. The th eo ry
has been fu rth e r  developed b y  F ra n k  20), b u t  as y e t only qua lita tive ly .
I t  is based  on th e  assum ption  th a t  th e  vacancies p resen t in  large num bers
in  th e rm a l equilibrium  in  th e  h igh tem p era tu re  zone n ea r th e  solid-liquid
in terface will, as th e  tem p era tu re  falls, condense progressively in to  flat
disks perpendicu lar to  th e  in terface. W hen th e  tem p era tu re  drops fu rth e r,
these  disks collapse and  elongated  dislocation loops m ore or less parallel
to  th e  g row th  d irection are form ed, th a t  grow on as th e  solidification
proceeds. Excess vacancies th a t  rem ain  in  th e  cooler p a rts  of th e  m ateria l,
hav ing  escaped th e  elim ination  process described above, will p resum ably
collapse in  th e ir  tu rn  in to  sm aller and  m ore a rb itra rily  orien ted  dislocation
loops, b y  reason of th e  lesser diffusivity . B y  th e  action  of th e  th e rm a l stresses

* ) These numbers are based on countings of etch pits by Vogel, Pfann and their collaborators
a t the Bell Laboratories. I t  seems, however, th a t the observed numbers depend greatly
on the m ethod of attack: Ellis 18) finds dislocation densities in  Ge of 107 to  10s cm-2.
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these loops rearrange themselves and form a dislocation network, the
presence of which has already been discussed. By several m ethods it  has
been dem onstrated th a t  the  probable maze w idth of this network should ly
in between 1(T3 and 10~4 cm (see e.g. section 1.1.6.2). The corresponding
limiting density of 106 to  108 cm-2 is presum ably intim ately connected with
the unavoidable presence of small traces of im purities in  even the  purest
metals —  zone-refined metals possibly excepted; no t m uch is known about
the  dislocation density in these metals a t the mom ent — . Basing ourselves
on the  available evidence, we shall accept the presence of a dislocation
network of the dimensions m entioned in well-annealed m etal crystals. I ts
existence seems fairly well established.

The stability  conditions for such a network have been studied by Thom p
son 22), F rank  23) and others. In  face centered cubic metals a stable arrange
m ent of the dislocations seems to  be such th a t  each tim e three dislocations
m eet a t so called nodes, and hexagonal cells are formed. A t each node the
vector sum of the Burgers vectors of the three dislocations is equal to zero,
as required by the  theory. Cells of this type have indeed been observed
by Hedges and Mitchell 24) in  single crystals of silver bromide.

Such a spatial network is relatively immobile under the action of a stress.
T h at is to  say, a given network element acted upon by a suitable shear
stress tending to  m ake it  glide, cannot move in  its glide plane as when its
end points were free, b u t is anchored a t the  nodes th a t form its end points.
I t  will however bend out, somewhat like an elastic wire. F rank  and Read 25)
have shown th a t  if the  shear stress becomes large enough, such an anchored
dislocation element can act as a source of an indefinite num ber of dislocation
loops. The source starts to  work if the  shear stress component along the
Burgers vector becomes equal to

Tl = ^ ,  (1-18)

where a is a numerical factor depending on the elastic constants of the
m aterial and slightly on the  type of the  dislocation, i t  is of order unity;
I is the  length of the  network element. Figure 8 shows the mechanism of
a so-called Frank-R ead source in  detail.

Fisher 26) pointed out th a t  a dislocation element ending on the surface of
the  crystal and on a node in the  interior could already act as a source at
one-half of the  stress needed for a double-ended source. H art 27) discussed
the case of Frank-Read sources no t anchored by  other dislocations b u t by
foreign solute atoms, and derived the result th a t  such sources could also
be activated by  stresses considerably lower th an  th a t given by formula
(1.18).

S uzuki28) and B ilb y 29) studied the  action of Frank-Read sources
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anchored a t nodes in connection w ith the  special properties of the crystalline
structure in  closed-packed m etals, and pointed out th a t  there are in principle
various kinds of sources possible. W hereas th a t  originally proposed by
F rank  and R ead emits its loops all in the same atomic plane, their work
shows th a t  sources th a t em it loops on successive atomic planes are much
more probable.

Fig. 8. Frank-Read source. A-dislocation element 1 of length I and Burgers vector b is
anchored at two points. When a shear stress is applied along b, the dislocation bends out
and takes the forms 1 , 2 , 3 ...... At a certain stress the critical half-circle-form 3 has been
reached. A further slight increase of the stress causes a spontaneous expansion 4 , __  6.
In the latter situation the two near lying screw parts eliminate each other, and the closed
loop 7 is formed together with the original piece of dislocation 1.

W hatever the  detailed mechanism m ay be, the  existence of dislocation
sources of some kind or another seems to  be clearly established. One inherent
difficulty of the dislocation theory  of plastic flow is herewith overcome:
not only can the  dislocations move easily b u t they  are easily formed, too,
under the influence of the deforming stresses themselves.

The num ber of loops em itted by  a source will in practice always be
lim ited by secundary phenomena, such as the action of the  stresses set up
by the loops themselves, the interaction of the  sources and the effect of the
formation of jogs and other lattice defects as mentioned in the foregoing
section. We shall re tu rn  to  this point below. In  general, the observed sur
face displacements in the so-called slip lines of between 10 and 2000 atomic
distances on one slip plane, can in principle be easily understood from the
action of dislocation sources.
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1.1.5. Dislocations in  special crystal structures

In  a given crystal lattice there is an infinity of possible Burgers vectors,
viz. any lattice vector. However, no t all the corresponding dislocations are
stable. The energy of a dislocation is proportional to  the  square of its
Burgers vector (this follows from a consideration of the stresses and strains
around the dislocation), when small term s arising from crystal anisotropy
and type of the dislocation are neglected. Therefore, only those dislocations
are stable th a t cannot split up into two dislocations w ith Burgers vectors
b and b2 (of which the  vectorsum  is of course equal to  th a t  of the original
dislocation, b), so th a t

b * > b l  +  b \. (1-19)

F rank  and Nicholas 30) have, on the  basis of this principle, worked out the
possible Burgersvectors for several often occurring crystal structures. As
our present interest lies prim arily w ith simple cubic and close-packed cubic
crystals, we give here only their results for these structures.

Simple cubic lattice Close-packed cubic lattice
I: 6 vectors [1,0,0] etc, b2 =  1 I: 12 vectors [0,-J,^] etc, b2

II : 12 vectors [1,1,0] etc, b2 =  2 II: 6 vectors [1,0,0] etc, b2 =  1
II I :  8 vectors [1,1,1] etc, b2 =  3

All further combinations of prim itive vectors are unstable. Even the
stability  of type I I  in  the  simple cubic lattice against dissociation into
pairs of type I, of type I I I  in this structure into two dislocations of type I
and II , or into three of type I, or of type I I  in the  close-packed lattice into
a pair of type I  is a m atter of doubt. The sum  of the squares of the Burgers
vectors is invarian t against these dissociations, so o ther factors m ay play
a deciding role.

Dislocations w ith  the  Burgers vectors discussed here are all perfect
dislocations. The Burgers vectors are lattice vectors, thus the displacements
of the  atom s occurring when a dislocation passes through the lattice are
such th a t  the  lattice is transform ed into itself. The definition of a dislocation,
as given in section 1.1.1 is, however, of a wider scope; the  Burgers vector
need not be a lattice vector. In  the  la tte r case one is concerned w ith an
im perfect dislocation. In  the theory of plastic flow only such imperfect
dislocations p lay a role th a t transform  the crystal lattice into a structure
th a t  is directly related to  it, viz. into a translation twin. A simple cubic
lattice has no translation twins th a t  can be constructed in  this way, and
therefore no im perfect dislocations can exist in this structure.

The close-packed cubic structure (face-centred cubic structure) can be
regarded as built of close-packed layers of atoms in ) l l l |  planes. The projec
tions of these layers along the  [111] axis occupy three different sets of
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positions, and  th e  layers can be labelled a, b, c. In  th e  perfect la ttice  the
layers follow upon  each o th e r in  th e  sequence a, b, c, a, b, c, a , ................... .
Now suppose in  th is sequence layer a is rem oved and  th e  gap i 3 closed by
bring ing  th e  neighbouring c and  b layers in to  co n tac t b y  a displacem ent
norm al to  (111). T hen  th e  sequence i s ------- a, b, c, b, c, a, b, c, a , ................,
and  a tran s la tio n  tw in  is form ed, of th e  k ind  called in trinsic  tw in
A no ther w ay of form ing a tran sla tio n  tw in , a so-called extrinsic tw in , is to
in sert a p lane of a tom s, say  b, betw een c and a in  th e  sequence. T hen  the
sequence reads: a, b, c, b, a, b, c , ..............

I f  in  a cry sta l only p a r t  o f a layer is rem oved or added , th en  one m ust
have im perfect dislocations a t  th e  boundaries (figs 9 and  10). Several

Fl c l  (a ) Ha1^ dislocation of screw ty p e  in  th e  f.c.c. stru c tu re  according to  H eidenreich
and  bhockley. T he dislocation line  d runs along th e  d irection  of th e  B urgers vector, th a t  is
along [112J. T he dislocation is view ed perpendicu lar to  its  (111) glide p lane; a tom s in  th e
P‘an ® oi draw ing are denoted  by  open circles, atom s one lay er above i t  by  dots.
(b ) On b o th  sides o f th e  dislocation th e  stack ing  is different; if  th a t  on th e  le ft han d  side
is norm al (abcabc------), th a t  on  th e  r ig h t han d  side o f th e  d islocation has become
(abcbca. . . .) and a stacking fau lt is produced.
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types of im perfect dislocations can be distinguished, according to  the type
of tw in and to  the boundary considered. The geometry of the  possible
imperfect dislocations is ra ther complex, we refer for fu rther particulars
to  the paper of F rank  and Nicholas » ) . Special types of imperfect disloca
tions have been discovered before a general theory  existed, such as the so-
called half-dislocations of Heidenreich and Shockley»*), ^ u s t ta te d  in
fig. 9 and the sessile dislocation of F ra n k 7), illustrated in fig. 10. Halt-
dislocations have a Burgers vector of the type [£, £ , - £ ] ,  which rePrese“^
a displacement from a lattice point to  the  nearest tw in position in the (111)
plane F rank’s sessile dislocation is characterized by a Burgers vector
of the type [ - £ , - £ , - £ ]  norm al to  a (111) plane, and is directly associated
w ith the  form ation of an intrinsic twin. I t  is called sessile, as any glide

8 7 9 7 7

partial removal of a lattice plane a.
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m otion of such a dislocation according to  th e  definition of section 1.1.3
is im possible.

The existence of im perfect dislocations im plies th a t  stab le  perfect
dislocations in  some orien ta tions can becom e u n stab le  since th e y  can
dissociate in to  tw o im perfect dislocations. In  such a dissociation an  area of
tran sla tio n  tw in  is generated  betw een th e  tw o im perfect dislocations th a t
is called a stacking fau lt (the  te rm  th u s being used in  a ra th e r  narrow
sense). The com bination  of tw o im perfect dislocations and  th e  associated
stack ing  fau lt betw een th em  is denoted  as an  extended dislocation. A n
extended  dislocation can  e.g. be b u ilt up o u t of tw o half-dislocations,
dissociation p roduc ts of a perfect d islocation of th e  ty p e  I  in  face-centred
cubic la ttices. D issociation o f perfect dislocations in to  ex tended  dislocations
is possible in  m an y  w ays 30). W hether i t  occurs in  ac tu a l crysta ls is d e te r
m ined b y  th e  gain of elastic energy associated w ith  th is  process. T he energy
of an  ex tended  dislocation is m ade up  of four p a rts : th e  energies of th e  tw o
im perfect dislocations, th e  in te rac tio n  energy of these  tw o, w hich can be
show n to  be  usually  positive (the  dislocations repel each o ther) an d  th e
energy of th e  stack ing  fau lt itself. I t  is generally  assum ed th a t  a disso
c iation  of th e  k ind  described above will indeed  tak e  place in  f.c.c. m etals.
C om putations b y  Seeger 33 4 ) have show n considerable d istinc tions to
exist betw een th e  form  andebehaviour of such ex tended  dislocations in
various m etals. In  copper th  stack ing  fau lt energy is v e ry  sm all, w hereas
in  alum inium  fo r instance  i t  is large. The separa tion  of th e  ha lf
dislocations in  A1 is p ro b ab ly  sm aller th a n  7 A, w hereas th a t  in  Cu, Au,
Ag etc. is m uch larger, g rea te r th e n  20 A.

F or th e  th eo ry  of plastic  flow i t  is o f im portance  th a t  th e  dissociation of
a perfect d islocation in to  an  ex tended  one m ay  influence considerably  its
m obility  in  th e  glide p lane. B o th  p a rts  of an  ex tended  dislocation, like th a t
of H eidenreich  and  Shockley, are confined to  th e  plane of th e  stack ing  fau lt,
and  th e  fo rm ation  of jogs therefore becom es a process for w hich an  add itional
ac tiv a tio n  energy is needed, nam ely  th a t  to  b rin g  th e  tw o half-dislocations
together, to  form  a sm all piece of perfect dislocation a t  th e  site  o f th e  jog.
This ac tiv a tio n  energy is according to  Seeger 33, 34) of th e  order of 0-5 eV
in  th e  case o f Cu, and  of th e  order of a few h u n d red th s  of an  eV in  th e  case
of alum inium .

1.1.6. Physical properties o f  dislocations

1.1.6.1. Influence on electrical resistivity

One of th e  m ost im p o rta n t p roperties of dislocations, in  add ition  to  th e ir
effect on th e  m echanical s tren g th  o f m ateria ls, is th e ir  influence on th e
electrical resistiv ity . D islocations are p e rtu rb a tio n s of th e  perfect la ttice
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and  therefo re  a c t as sca tte re rs for th e  conduction  electrons. Confining our
selves to  m etals fo r w hich th e  descrip tion  of th e  conduction  electrons b y
an  effective m ass can  be regarded  as a reasonable approx im ation  (such
as Cu for exam ple), th e  sca tte rin g  m a trix  elem ent of a d islocation can  be
com puted  in  th e  following w a y 35’36). T he region of th e  la ttic e  surrounding
th e  d islocation  is in  a s ta te  of stra in . Therefore th e  energy spectrum  of th e
conduction  electrons, w hich in  a perfect cubic la ttice  is given by:

fl2k2
£ <b >= E - + s r  (1'20)

m ust be supp lem ented  b y  a n um ber of te rm s depending on th e  s tra in
tensor. In  (1.20) k  is th e  w ave v ec to r of an  electron, h is P lanck ’s co nstan t
d iv ided  b y  2n  and  m1 is th e  effective m ass of th e  electrons. The influence
of th e  s tra in s on th e  (originally) periodic la ttice  p o ten tia l can in  first
instance  be expressed as a po ten tia l, viz. a deform ation  po ten tia l. This
deform ation  po ten tia l depends p rim arily  on the  d ila ta tio n  of th e  la ttice .

Consider a m e ta l c ry sta l w here th e  ions are perfectly  screened, th u s where
th e  electron  d ensity  will closely follow th e  ion density . In  an  energy b an d  of
s ta n d a rd  form , th e  w id th  of th e  filled p o rtion  of th e  conduction  b an d  is given

by :
h2 2 /

E0 =  - —  (3 Ji2n) \
Znt^

w here n s tan d s for th e  num ber of conduction  electrons p er u n it volum e.
W hen  th e  ionic d ensity  varies, so does th e  electronic density  and  th u s  E0.
Owing to  th e  constancy  of th e  F erm i energy, a v a ria tio n  dE0 is necessarily
associated  w ith  an  opposite v a ria tio n  of th e  b o tto m  of th e  conduction  band ,
dE. I t  is easily seen th a t

w here d n /n =  A is th e  re la tive  density  v aria tio n , th u s th e  d ila ta tio n  of the
la ttice . Therefore, th e  conduction  electrons can be regarded  as m oving in
an  ad d itiona l e lec trostatic  p o ten tia l V =  § EJe-A.  This p o ten tia l is tak en
as th e  sca tte rin g  p o ten tia l b y  L andauer 35) an d  D ex ter 3e). O f course (1.21)
only presen ts a first approx im ation , w here effects of th e  s tra in  on th e  effec
tiv e  m ass of th e  electrons or d irec tly  on th e  shape of th e  b an d  edge have
been neglected. These have been considered in  d e ta il b y  H u n te r  and
N abarro  37). F u rth erm o re , th e  screening is never perfect and  all varia tions
of th e  b an d  edge energy are accom panied b y  sm all charge shifts to  fla tten
th e  F erm i surface again. The corrections to  (1.21) due to  th is  are only

sm all, how ever.
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As th e  d ila ta tions around  a su itab ly  orien ted  screw dislocation in  a cubic
cry sta l are zero, such a d islocation is expected to  sc a tte r  b u t  slightly , a t
lea s t in  m etals w here th e  electrons are nearly  free. The la t te r  assum ption  is
best realized in  th e  alkali m etals and  H u n te r  and  N abarro  37) indeed find
th a t  in  these m etals screw  dislocations only produce very  sm all sca ttering .
In  th e  noble m etals such as copper, th e  co n tribu tion  to  th e  sca tte rin g  arising
from  th e  o ther causes m entioned  is a lready  com parable to  th a t  arising from
th e  d ila ta tio n  associated w ith  an  edge d islocation, and  screw  dislocations
produce th u s  also appreciable scattering .

Once th e  deform ation  p o ten tia l has been com puted , th e  sca tte rin g  m a trix
elem ent o f a dislocation can be derived and  from  i t  th e  change in  th e  d is tri
bu tio n  function  ƒ  (k )dk  caused b y  th e  sca tte rin g  b y  such a defect. A different
w ay to  describe th e  d isto rtion  of th e  la ttice  is to  tak e  as th e  sca tte ring
p o ten tia l th e  difference of th e  sum s of th e  screened ionic p o ten tia ls  before
and  a fte r th e  d isto rtion . This has been done originally  b y  Sondheim er and
M ackenzie 38). D ex te r 37) has show n th a t  th e  results of b o th  w ays of a tta c k
differ b u t  sligh tly  in  th e  case o f good screening.

W e shall assum e in  th e  following th a t  M atth iesen’s ru le applies, th a t  is,
th a t  th e  sca tte rin g  b y  th e  dislocations is independen t of th e  th e rm al
scattering . E xp erim en t has confirm ed th e  approx im ate  correctness of th is
hypothesis. U nder th e  influence o f an  electric field th e  equilibrium  shape
of th e  d is tribu tion  function  is th e n  governed b y  th e  “B oltzm ann  eq u a tio n ”

V
dr

m +(v\ +
Vdt 'la ttice \ d l  VÖt /,

lattice
can be derived  from  th e  th e rm a l resis tiv ity  w hen i t  is assum ed

th a t  th e  th e rm al fluctuations can  be described b y  a single re laxa tion  tim e
/ d f  \

t; th e  te rm  —  also yields no difficulties. O nly th e  th ird  te rm  needs
0 1  'fie ld

to  be considered here.
I t  is easily seen th a t  a s tra ig h t d islocation fine can n o t induce a change in

th e  com ponent of k  parallel to  it. T hus such a d islocation does n o t produce
a resistiv ity  change in  th e  d irection of its  axis. A dislocation w ith  n o t pure
screw ch arac ter produces non-sym m etric stra ins; th e  re sis tiv ity  tenso r thus
depends on th e  d islocation o rien ta tion . In  a la ttice  w ith  cubic sy m m etry  th e
resis tiv ity  tenso r of a s tra ig h t dislocation has only th ree  com ponents. The
com ponent along its  axis being fu rtherm ore  zero, th e re  are only tw o com 
ponen ts to  consider, in  th e  glide p lane perpend icu lar to  th e  dislocation
line and  g2 perpend icu lar to  th e  glide p lane. The resu lt of th e  calculations b y
H u n te r  and  N abarro  38) are th e  following:
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For parallel straight edge dislocations of densitity N , w ith Burgers vector b :

e - - a a V ‘( ^  *
3 tt2 N f t b 2

p2e =  —  ——r" (a +  p) ) •
80 fye2

(1.22)

(1.23)

For a set of straight screw dislocations of density IV, w ith Burgers vector b:

(1.24)
=  e i * =  * * - - § 0  fe /e2 / •

Here fcr is the m agnitude of the wave vector of the conduction electrons at
the Ferm i level and e is the electronic charge. As is well known, k f  depends
on the  num ber n  of conduction electrons per un it volume according to

kf =  (3.t 2/i )Vi; (1-25)

a and B are constants of order un ity  which depend only on the  value of
Poisson’s ratio, and ƒ  is a factor in which the dependence of the  scattering
on the  exact form of the periodic lattice potential is expressed, ƒ  is equal to
zero for perfectly free electrons; i t  is of order un ity  in  the  case of the noble

^ T h e  resistivity of an  edge dislocation perpendicular to  its glide plane is
thus three times th a t in  the  glide direction; the ratio  between the  resistivi
ties caused by an edge and a screw dislocation respectively « co m p le te ly
governed by  the  m agnitude of f .  Numerical values for copper (dislocations

• of type I w ith Burgers vector along [110]) have been given by H unter and

Nabarro:

Resistivity in glide d ic t io n  of one edge 1

perpendicular to  glide plane of dislocation > (1-26)
”  F V Q2e =  1-32.10~14 pOcm, \

of screw dislocation g* =  0 -2 6 .1 0 ^  pflcm .

The resistivity produced by an edge dislocation in  an arb itrary  direction
can be com puted according to  the tensor rule (fig. 11). Let r be the direction
along which the resistivity is to  be computed. Then

Qe(r) =  Qie cos2 (xr) +  p2e cos2 (y r ) . (1-27)

Introduction of the  polar angles <p and 0  w ith respect to  the dislocation axis

yield8' ge =  sin2 0  (eie cos2 cp +  Qie sin2 <p) ■ (L28)
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The resistivity produced by a screw dislocation in an arbitrary direction
follows from (1.28) by replacing gle and g2e both by qs, thus

p*(0) =  ps sin2©. (1.29)

Z

disloc. axis

8 7 9 7 8

Fig. 11. On the derivation of the angular dependence of the dislocation resistivity.

A random arrangement of N  edge and screw dislocations per cm2 in
copper gives rise to a resistivity of

+  {?2e +  2qs) =  0-38.10~14 N  [xQcm.

A circular loop of dislocation of radius unity and with coplanar Burgers
vector has an anisotropic resistivity that can be computed as follows (fig. 12).
A line element ds can be regarded as the superposition of a short piece
of edge dislocation with Burgers vector b cos (p directed normal to ds, and a

---------

*92

8 7 9 7 9

Fig. 12. On the derivation of the resistivity of a dislocation loop.
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piece of screw dislocation of Burgers vector b sin <p directed along ds. The
resistivity dQgl in the glide direction (that of b) of this element of dislocation
is according to (1.28) and (1.29) and noting that the resistances depend
quadratically on the lengths of the effective Burgers vectors (formulae
(1.22) to (1.24)):

dggl =  (gie cos4 <p +  qs sin2 <p cos2 <p) d<p. (1.30)

The resistivity dgg2 in the glide plane perpendicular to the glide direction
of the element is given by:

dog2 =  (pie sin2 fp cos2 (p +  pssin4 <p) dtp. (1-31)

The resistivity normal to the glide plane is found to be:

dQn =  (p2e cos2 <p + QS sin2 <p) d<p. (1-32)

Averaging over tlie whole loop, one has.

Qgl =  iQle + i Qs>

Qg 2 — leie + Ï é?s » (1.33)

Qn — i?2e + •
In the case of copper one finds for the resistivity caused by the presence

of one loop of radius R  per cm3 of the metal:

ggl =  0-40.10~14 R  pOcm,

eg2 == 0-31.10“14 R  pücm, (1-34)

en =  0-79.10"14 R  p.ücm.

There remains thus an anisotropy of the resistivity of about 2 : 1 for the
resistivity perpendicular to the glide plane with respect to that in the glide
plane. The anisotropy in the glide plane itself has practically disappeared.

In the computation of the dislocation resistivity use has been made of
the expressions for the displacements of the atoms as they follow from
ordinary linear elasticity theory. However, near to the dislocation lines these
expressions are no longer valid. As to the atomic structure in the dislocation
core, only tentative assumptions can be made. Read 39) has pointed out that
one could in principle distinguish between two extreme types of edge dis
locations, so called open and closed dislocations. In the first case the lattice
is extended perpendicular to the slip plane, in the second case it is not,
but voids appear between the atoms (compare fig. 13). The actual state will
depend on the “softness” of the atoms. In order to estimate the influence of
the core of a dislocation on the resistivity, one might compare a dislocation
with a row of vacancies. According to computations of Jongenburger 40),
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one row of leng th  1 cm  p er cm 3 w ould co n tribu te  in  th e  m ean  1-5.10~14
fi.Qcm to  th e  resistiv ity ; th is  is ab o u t 4 tim es as m uch as an  average d is
location. E v id en tly  th is  com parison is a gross overestim ate  of th e  im p o rt
ance of th e  core; th u s we can p u t w ith  safe ty  th a t  th e  influence of th e  core
canno t a lte r th e  resu lts of th e  calculation b y  m ore th a n  a fac to r 4, and  is
probab ly  m uch less im p o rtan t. *)

'GC&6%.^CC

87837

■■■■■■■Im Ê ÊÊÊÊ/KÊÊÊÊ
ÉSÊÊÈM mimmÊM

Fig. 13. (a) Closed dislocation (soft atoms), (e) open dislocation (hard atoms), (6) inter
mediate case. The atomic interaction in copper corresponds to a bubble size between (6) and
(c). From photographs of the bubble model by W. L. Bragg and J. F. Nye, Proc. roy. Soc.
A 190, 474, 1947.

The dissociation of a d islocation in to  tw o im perfect ones gives rise to  an
increase of sca ttering , m ostly  due to  th e  influence of th e  stack ing  fau lt.
K lem ens 41) has estim ated  th e  effect o f such a fau lt. H e finds th a t  th e  s tack 
ing fau lt has an  effective reflection coefficient of ab o u t 1/2, th a t  is th e  sam e
as th a t  of a p lane of vacancies according to  Jongenburger’s com puta tions 40).
A stack ing  fau lt of 10 a tom  spacings w id th  m igh t therefore be responsible
for no t less th a n  ab o u t 40 tim es as m uch add itiona l resis tiv ity  as a perfect

*) Note added in proof. Recent calculations by A. Seeger (unpublished) gave the
result that the effect of the core on the resistivity is about the same as that of
the extended strain field, thus confirming Jongenburger’s estimate.
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dislocation. In  Chapters 3, 4, and 5 various experim ental evidence is dis
cussed th a t actually the effective scattering cross-section of dislocations is
larger by  this order of m agnitude th an  th a t obtained by  H unter and Nabarro.

1.1.6.2. X -ray scattering by dislocations

The X -ray scattering of a single dislocation can in principle be determined
from the  theoretical expressions for the displacements associated w ith it.
The la tte r have been derived by  several authors 2’3) for a continuous
medium. For a crystal the atomic displacements can be com puted from them
w ith sufficient accuracy. Consider e.g. a straight screw dislocation along the
axis of a crystal of cylindrical cross-section. In  a perfect crystal the  atoms
are situated  a t positions

rj  =  J ia  +  J2b +  Js® • (1.35)

W hen the dislocation is assumed to  lie along the  c-axis, i t  follows from the
theory th a t the  atoms are now situated  at

rj. =  r i + | V Cf (L36)

where rp is an angle measured from some fixed direction perpendicular to
c, and tic is the Burgers vector of the dislocation (n is generally um ty).

Let
S  —  8 0

8 " - /

denote the  vector difference between the normals to  the wavefronts of the
incident and the  reflected beams divided by the wavelength A of the
monochromatic radiation. Then the  am plitude of diffraction is given by:

Q = 0  S  exp (2jw S . r j ) , 0 - ^ )

where 0  depends on the  nature of the crystal. In  a perfect crystal where the
positions of the lattice points are given by  (1.35) (r' =  r), the  sum only
differs appreciably from zero when

S.a =  h ,

S.b =  k ,

S.c =  1,

and h, k, I, are integers. In  the dislocated crystal only the  last condition
S.c =  I retains its validity, owing to  the independence of y> on j 3 in  (1.36).
T hat is, any spreading of the  regions of strong diffraction in reciprocal space
is perpendicular to  the  dislocation axis 42); an obvious result if one remembers
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the infinite repetition of the crystal pa tte rn  in the axial direction. The
sum m ation of formula (1.37) over and j 2 cannot be performed exactly.
By replacing it  by  an integration over the cross-section of the cylinder, it
is found th a t the am plitude of reflection is no longer large in the points of
integral h, k, I, b u t on loops lying in integral /-planes w ith these points as
centres and w ith radii th a t  increase about linearly w ith I. Only for I — 0
the diffraction pa tte rn  remains unaffected by the presence of the dislocation.
In  all other planes the in tensity  of diffraction is exactly zero in the points
of integral h and k. F rank  43) has pointed out th a t  these results follow from
the facts th a t  the screw dislocation displaces no atom s out of planes through
the dislocation axis, and displaces atoms out of planes intersecting this axis
by  am ounts ranging continually and uniformly from 0 to  nc. The expressions
th a t can be derived 42) for the integrated intensities are very complicated
and have presum ably little  practical use.

In  a perfect crystal of not too small dimensions the so-called dynamical
theory of X -ray diffraction should hold. In  this theory, the effects of
multiple scattering and interference among the waves reflected from all
planes in  the crystal are taken  into account. The result can be expressed as
follows: the  crystal is completely transparent for X-rays except in very
small regions of reflection angle, corresponding to  the ordinary Bragg-
reflections, where total reflection occurs. The w idth of these regions (of the
order of seconds of arc) is proportional to  the  structure factor F(h, k, I)
th a t  depends on the positions of the atom s and on the reflection considered.
The integrated in tensity  of the diffracted radiation is in each reflection
region proportional to  F  (due to  the fact th a t  to ta l reflection occurs).

In  practice it  is found th a t the  integrated intensities are ra ther better
proportional to  F 2. Such a result is obtained theoretically in the  much
simpler kinem atical theory  of diffraction. In  this theory  multiple scattering
is neglected, and the in tensity  of the  incident radiation is assumed to  be
constant throughout the m aterial. Then no to ta l reflection, b u t a smoothed-
out in tensity  profile occurs for each reflection.

I t  is generally assumed th a t  the dynam ical theory does no t apply in  most
crystals because of local deviations of the crystal perfection, th a t  destroy
the very sensitive phase relations necessary for the considerations of the
dynam ical theory to  hold. W hen for instance the distance between two
successive lattice planes deviates locally from the  “perfect”  value by a
relative am ount th a t corresponds to  a variation of reflection angle of more
th an  the very narrow width of the reflection, the  dynam ical theory breaks
down. The a t first sight ra ther amazing applicability of the kinem atical
theory is thus explained by  the natu ra l imperfectness of m ost crystals.
However, in most natu ral or carefully prepared synthetic crystals traces of
the effects of m ultiple scattering and interference remain. They appear most
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conspiciously in  th e  strong  reflections. T he la t te r  are b road  (in th e  dynam ical
th eo ry  w id th  and  in ten s ity  are proportional) and  sm all d isto rtions of th e
cry sta l do in  general therefore  n o t com pletely destroy  th e  in terference
conditions. F o r w eak reflections how ever, th e  effect of m ultip le  sca ttering
can  usually  be com pletely  neglected. T he resu lt is th a t ,  s ta rtin g  from  th e
kinem atica l th eo ry , th e  w eak reflections are usually  observed w ith  abou t
th e  “correct”  in teg ra ted  in ten sity , w hereas th e  strong  reflections are
affected b y  b acksca tte ring , and  are  observed too w eak. This is called
prim ary extinction, i t  is th e  m ore ap p a ren t if  th e  cry sta l is m ore perfect.

In  o rder th a t  th e  dynam ical th eo ry  should p a rtia lly  b reak  dow n, th e
local d isto rtions of th e  cry sta l should be a t  least so n ear to  each o ther
th a t  now here perfec t regions occur, large enough for th e  considerations
of th is  th eo ry  to  app ly  in  full. D arw in  44) has therefore  proposed th a t  in
n a tu ra l c rystals th e  s tru c tu re  is perfect only over regions of dim ensions
of th e  order of 10~4 cm  or less. E ach  cry sta l should be regarded  as b u ilt up
ou t of perfect blocks of th is  dim ension, th a t  differ slightly  from  each o ther
in  o rien ta tion  (mosaic structure). B ragg 45) has po in ted  ou t th a t  in  such a
stru c tu re , a lthough  th e  p rim ary  ex tinc tion  is lim ited , an o th er cause of
ex tinc tion  occurs, th e  so-called secondary extinction. This is due to  th e  fac t
th a t  th e  in ten s ity  inc iden t on a p a rticu la r m osaic block will n o t be equal
to  th e  in te n s ity  inc iden t on th e  surface of th e  cry sta l (as originally assum ed
in  th e  k inem atica l th eo ry ); th e  u p p er blocks differing b u t  slightly  from  it  in
o rien ta tio n  m ay  reflect p a r t  of th e  in ten s ity  responsible fo r reflection, and
sim ilarly  th e  outgoing reflected beam  m ay  be p a r tly  reflected backw ards on
its  w ay  ou t b y  m osaic blocks of ab o u t th e  sam e se tting . E ven  if  no p rim ary
ex tinc tion  w here p resen t (blocks n o t exac tly  perfect), th is  secondary
ex tinc tion  w ould appear. H all an d  W illiam son 46) have  show n th a t  b y  a
careful s tu d y  of th e  in teg ra ted  in ten s ity  of th e  various lines i t  is possible
to  separa te  th e  effects of p rim ary  and  secondary  ex tinction . T hey  found th a t
in  cold-w orked as well as in  annealed m etals only secondary  ex tinction
appears. T hey  could fu r th e r  determ ine th e  ap p a ren t partic le  size of th e
corresponding m osaic s tru c tu re  from  th e  w id th  of th e  lines: i t  is o f th e
order of 10"~4 cm  in  m ost annealed  m etals.

I t  has been proposed th a t  th e  hypo th e tica l m osaic s tru c tu re  should be
identified  w ith  th e  presence of a netw ork  of dislocations. F rom  W ilsons
considerations discussed above, i t  is possible to  derive, be i t  in  an  approx i
m ate  w ay, th e  secondary ex tinc tion  associated w ith  th e  presence of a given
density  of paralle l dislocations. The effect of th e  dislocations is th a t  th e
lines becom e in  first in stance  broadened , th u s th e  sam e as th a t  o f mosaic
blocks of a certa in  average size. This “ap p a ren t partic le  size”  associated
w ith  th e  presence of dislocations is ab o u t equal to  th e  average distance
betw een  th em . A n observed m ean  partic le  size of 10 4 cm th u s corresponds
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to  a d ensity  of parallel dislocations of 108 cm-2. T he iden tification  of th e
m osaic s tru c tu re  w ith  th e  presence of a dislocation netw ork  seems therefore
well w arran ted , a lthough  a de te rm ina tion  of th e  characteristics of th is  n e t
w ork from  X -ray  d a ta  is n o t y e t possible. Also th e  observation  of H all and
W illiam son th a t  no p rim ary  ex tinc tion  occurs, can now  be explained:
th e  “blocks”  in  betw een th e  dislocations are n o t exac tly  perfect, due to  th e
long-range stra ins of th e  dislocations. Therefore th e  very  sensitive phase
relations necessary  for p rim ary  ex tinc tion  are no t obeyed and  consequently
only secondary  ex tinc tion  occurs.

The results of these and  m an y  o th e r investigations 47,48) are th e n  th a t
presum ably  in  w ell-annealed m etals a netw ork  of dislocations is p resen t
w ith  a m ean  m aze-w idth  of ab o u t 10~4 cm . A ssum ing th e  dislocations to  be
random ly  d is trib u ted  as to  th e  possible crysta llographic  orien ta tions of
line and  B urgers vector, th is  corresponds to  a d ensity  of 108 dislocations
p er cm 2, in  accordance w ith  th e  assum ptions m ade in  section 1.1.4. H ow 
ever, th e  “random ness”  of th e  d islocation d is trib u tio n  m ay  be fa r  from
realized (Seeger 12) ); and th u s th is  num ber m igh t easily be w rong b y  a
fac to r 10.

The presence of stack ing  fau lts  also influences th e  d iffraction im age.
The effect has been s tud ied  theo re tica lly  b y  P a te rso n  49): stack ing  fau lts
on one parallel se t of j l l l j  p lanes in  an  f.c.c. la ttice  resu lt in  b ro ad en 
ing and displacem ent of those lines fo r w hich th e  sum  of th e  indices
h -)- k I =  3n 1, w here n is an  in teger or zero. T he displacem ent
is tow ards larger Bragg-angles w hen th e  -f- sign applies and  to  sm aller
angles w hen th e  — sign applies. T he o th e r fines rem ain  sharp . I t  is
possible to  d istinguish  th e  stack ing  fa u lt b roaden ing  from  th a t  due to
o th e r causes by  perform ing a F ourier analysis of th e  fine shapes, as
has been proposed b y  W arren  and  A v e rb a c h 50). No reliable observational
d a ta  have as y e t been published.

1.2. Vacancies and interstitial atoms in metal crystals

Vacancies and  in te rs titia l a tom s, in  th e  following to g e th e r to  be called
point-defects, are presum ably  p resen t in  large num bers in  m ateria ls  de
form ed p lastically  a t  a tem p era tu re  low enough to  p rev en t diffusion. T heir
presence, as has been explained in  section 1.1.3.2, is caused b y  th e  m otion
of dislocations th a t  necessarily con ta in  jogs. These defects have  an  appreci
able effect on th e  physical p roperties of th e  m ateria ls: m oreover, th e y
influence th e  m echanical p roperties, a lthough  in  a lesser degree. I t  is th e re 
fore re levan t to  s tu d y  th e  po int-defects here  som ew hat in  deta il. W e shall
confine ourselves to  th e  physical properties of point-defects in  face-centered
cubic m etals.
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1.2.1. Energy and free energy of point-defects in  metals

W hereas the energy necessary to  form a dislocation is practically comple
tely  an  elastic energy, and can be estim ated once the displacements around
the  dislocations are known (in Cu for example a dislocation of mixed
character represents an energy of about 6 eV per atomic plane 51), see also
section 1.1.2), the  energy of form ation of a vacancy is largely an electronic
energy. This is partly  due to  the  fact th a t  the  elastic strains around a vacan
cy are so small th a t  for all practical purposes they  can be neglected, and also
due to  the  im portan t charge disturbance caused by  the removal of a positive
ly  charged m etal ion from the  lattice. The same holds true  for an in ter
stitial, although then  the elastic strains are not entirely negligible. The
energy of form ation of vacancies in  m onovalent metals has been calculated
by H untington and Seitz 52) and very recently by  Fum i 53). As the results
of the  la tte r  au thor seem the  m ost reliable, we shall discuss them  here.
Fum i considered the  energy change of the  electron gas in  a m etal sphere
when a positively charged ion is removed from the  centre and its charge
distributed over the surface. The electrons were considered to  be perfectly
free. In  order to  com pute the  perturbed wavefunctions in the Born approx
im ation, i t  is no t necessary to  know the exact shape of repulsive potential
around the  vacancy, if a rule first proposed by  Friedel M) is used. This rule
relates the phase shifts of the perturbed wavefunctions of the electrons to
the  effective charge due to  the vacancy, th a t  is — e in m onovalent metals.
The change in  electronic energy can then  be directly related to  their Ferm i
energy EF ( =  7*2 eV in Cu)^ Fum i finds AEgj =  |  EF. From  this m ust be
subtracted  the  contribution to  the energy m ade by  the  positive charge
smeared out on the  surface, viz. 2/5 EF. There remains then  4/15 EF as
the  electronic energy needed to  form a vacancy. In  a better approxim ation
for the  s-wave functions the  Born approxim ation is replaced by the exact
com putation of the  phase-shifts, and the to ta l electronic energy is found to
be somewhat smaller, viz. 1/6 EF. In  the noble metals there is another con
tribu tion  to  the energy of a vacancy th a t arises from the closed-shell ion-ion
repulsion. According to  earlier calculations by  H untington 52) and Hunting-
ton and Seitz 51), th is energy am ounts to  about — 0-3 eV in copper and gold.

Thus it  is found th a t  the energies of form ation of a vacancy in  the noble
metals have the  following theoretical values:

Up
Cu 0-87 eV
Ag 0*62 eV
Au 0-62 e V .

From  an analysis of the  calculation 66) it  seems plausible th a t  these values
have an uncertain ty  of about 0-1 eV.



—  35 —

No exact calculations exist for the  case of an in terstitia l in the noble
metals. Even the structure of such a defect is not accurately known. As
Lomer and Cottrell *•) have pointed out, i t  is possible th a t  in terstitia l
atoms have a one-dimensionally extended structure, presumably along
[111]-directions, of several atoms length. Such a structure has been term ed
crotodion by  P aneth  57). I t  is due to  the  relatively large strains th a t are
caused by an in terstitia l atom  (displacements of nearest neighbours of
20% are present in  the  Cu lattice 58) ) ,  which can be relieved by the extension
into a crowdion. One m ight suppose th a t the electrostatic contribution
to the  energy of form ation of an in terstitia l or crowdion is again of the order
of 1 eV in Cu, T hat due to  the  elastic strains m ay easily am ount to  about
4 eV. We shall therefore take E F =  5 eV as a plausible value for the  energy
of form ation of an in terstitia l in  copper, silver or gold. An estim ate of
this order is in agreem ent w ith experim ental determ inations to  which we
retu rn  in  following sections *).

Introduction of vacancies and interstitials produces a large increase of
the configurational entropy of the  crystal 59). In  an ideal crystal th a t  con
tains N atoms, the introduction of n vacancies (th a t is, the removal of n
atoms) can be realized in

(N  — n )!n !

ways. The increase in  entropy resulting from this is

S  =  k  log m  «a kn  j log -----1- 1 ̂ ,
( n  >

which is proportional to  the  volume of the crystal, as m ust be. Thus per
additional vacancy the entropy increases w ith the am ount

A SConf '■ , , Nk  log — ■ k  log p t (1.38)

where p vac stands for the vacancy concentration.
An increase of the entropy of the same order is associated w ith the in tro

duction of an in terstitia l atom. A part from these contributions to  the
configurational entropy, there exists a contribution arising from the  change
of the vibrational frequencies of the atoms near the  point-defect. In  an
Einstein solid (frequency vE) the vibrational entropy between room tem 
perature and the melting point (kT~^>hvE for the m onovalent metals)
is given by:

Svibf ** 3 N k  lo g ------.

) Note added in proof: A. Seeger has estim ated the effect of the relaxation of the
electron gas around the interstitial. He arrives a t the much lower value of 2 eV for
the to ta l energy of formation (unpublished).
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Assuming th a t  only the nearest neighbours (12 in  an f.c.c. lattice) change
their vibrational frequency by  an am ount Av, the  change in  vibrational
entropy associated w ith  the  removal of one atom  am ounts to

In  the case of a vacancy Av is negative and presumably \Av\ <C vE; as
kTa =  lo g ------ is of order un ity  in the  tem perature region between room
hvE

tem perature and the m elting point,

Seeger 34) derives A S vJ£r =  3-4 k in copper, from an analysis of recovery
experiments of the electrical resistivity. As we shall see below, the equili
brium  vacancy concentration in  copper is generally so small (e.g. 10 15 a t
room tem perature) th a t  the  contribution of the vibrational entropy is
relatively insignificant. Only near the  m elting point, where p vac approaches
1(T3, the  configurational entropy becomes of some significance.

For an in terstitia l atom  the change of the vibrational frequency is
Av

presum ably m uch greater and positive, i t  m ay easily am ount to  ^  0*1.

Furtherm ore, not only nearest neighbours change their frequency, also next
nearest neighbours do so appreciably and the to ta l change in vibrational
entropy m ay become of the  order

This large value of A S W  is comparable to  the configurational entropy
for all practically encountered in terstitia l concentrations. In  the alkali-
m etals, where moreover the energy of form ation of these defects is very
small, the v ibrational entropy plays therefore an im portan t role in deter
mining the  equilibrium concentrations. This is no t so in  Cu, Ag and Au, as
the equilibrium concentrations of interstitials are there always immeasurably
small. These are obtained by  minimizing the  change of free energy of the
crystal due to  the introduction of the defects. One has:

where Uvac and Uint stand for the  energies of formation, and a

(1.39)

3 a )k  sa k

A S ^ l  « - 3 0 L (1.40)

n =  a N  e~Uvaclkr for vacancies,

n =  P N  e~Uin,lkT for in te rstitia ls ,

(1.41)

(1.42)

e x p |z !S ^ 'V ^ (  is a factor slightly larger th an  unity , /? — exp a
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fac to r of order 0-1 to  0 01. D ue to  th e  large value of Uint, even a t  th e  m elting
p o in t th e  th e rm al equilibrium  concen tra tion  in  th e  noble m etals of in te r
stitia ls  is com pletely  negligible. (In  th e  alkali m etals th is  is n o t so.)
Vacancies, how ever, can occur in  appreciable concentrations a t  reasonably
high tem p era tu res . F o r copper one finds fo r th e  atom ic concen tration
Pvaci if  a  =  1:

T 300° K 600° K 900° K 1200° K 1356° K

Pvac 10~15 3 X 10-8 10~5 1-7 x  10-4 4-5 x  10~4

A t th e  m elting  p o in t th e  concen tra tion  of vacancies is th u s of th e  order of
o-i%.

1.2.2. Diffusion o f point-defects

The diffusion of po in t-defects is governed b y  a diffusion co nstan t D
w hich depends on th e  tem p era tu re  in  th e  usual way:

D  =  D 0 e~QlkT, (1.43)

w here Q is th e  ac tiv a tio n  energy for diffusion. D0 is in  good approx im ation
given b y  an  expression of th e  form

D0 =  v0 a2 eASDlk, (1.44)

w here v0 is th e  m ean  frequency  o f v ib ra tio n  of th e  atom s (ss 1013 sec-1),
a is th e  la ttice  co n stan t and  A S D th e  change in  en tro p y  associated w ith  th e
elem entary  vacancy  or in te rs titia l diffusion process, th a t  is, th e  change of
en tro p y  in  m oving an  a tom  from  a la ttice  site to  th e  p o ten tia l ba rrie r
separa ting  i t  from  th e  neighbouring vacancy , or in  m oving an in te r 
s titia l over th e  neighbouring po ten tia l barriers 51,52,60,61). The reason for
th e  occurrence of an  en tropy  of ac tiv a tio n  is th a t  in  stu d y in g  th e  energy
of a diffusing a tom  a t  th e  saddle p o in t separa ting  tw o equilibrium  sites,
one should ac tua lly  consider th e  free energy, as th is  m axium  po ten tia l
depends on tem p era tu re  th ro u g h  th e  elastic constan ts  and  th e  density ,
and th e  diffusion can be regarded  as an  iso therm al process. The value of
A S d can  be derived from  th e  tem p era tu re  v a ria tio n  of th e  la t te r  quan tities;
i t  follows from  LeClaire’s 61) com putations th a t  for vacancies in  copper
A SD/k  «a 6, i.e. fo r vacancies, D0 is of o rder u n ity . The estim ate  is rough,
how ever, so in  p rac tice  D0 m ay  v a ry  betw een 0-l  and  10 cm 2/sec, in  agree
m en t w ith  experim en tal determ inations 62). F o r in te rs titia ls  A S D is p ro b ab 
ly  abou t 5 tim es as g rea t, and  D0 thu s  abou t 100 tim es as large as for
vacancies.
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By far the  most im portan t quan tity  in  (1.43) is Q. A few theoretical
attem pts, based on m uch the same ideas as those used in  the com putation
of the form ation energy, have been m ade to  calculate the  activation energy
for m igration of vacancies and interstitials. H untington and Seitz 51) and
H u n tin g to n 52) obtained approxim ately 1 eV for Qvac in  copper; H u n t
in g to n 60) found the  diffusion energy of interstitials to  be very small:
Qint 0-25 eV or even less. Seeger has recalculated the height of the poten
tial barrier for in terstitia l diffusion in the noble metals, and finds the
m uch larger value 0-6 eV for Qint (to be published shortly). F u m i53)
also derived more or less approxim ate values of Q for vacancy diffusion,
he found Qvac =  1 2  eV  in copper.

The determ ination of the  value of Qvac is directly connected to  th a t of
the  energy of formation. This is so in  theory as well as in experiment,
as m ost determ inations relate to  the coefficient of self-diffusion in metals,
th a t  is assumed to  follow a vacancy mechanism. The self-diffusion coefficient
is the product of the fractional concentration of vacancies as given by (1.41)
and the diffusion coefficient of these vacancies as given by  (1.43). In  the
final expression for the  self-diffusion coefficient an activation energy thus
appears which is equal to  the  sum of Uvac and Qvac•

Qself — UVac +  Qvac • (1.45)

As seen above, i t  follows from theory  th a t in  copper bo th  are of the  order
1 eV. Indeed the  activation energy for self-diffusion in  Cu is found to  be.
2-03 e V 63). The same conclusion holds true for all noble metals; even
num erically very m uch the same values apply.

Le Claire 61) has studied the  kinetics of the  self-diffusion process more
in detail and has derived the  values Qvac =  1'24 eV and thus UVac ® ^9
eV in copper, in  fair agreem ent w ith Fum i’s com puted value of Uvac,
although th is com putation follows completely different fines.

As will become clear in  the following, a precise knowledge of Uvac and
Qvac is of the  u tm ost im portance for the in terpretation of the recovery
phenomena displayed by deformed metals and thus for a precise under
standing of the mechanism of plastic deformation. As shown above,
theoretical arguments point ra ther unambiguously to  the conclusion th a t
in the  noble metals copper and gold the energy of form ation of vacancies is
appreciably smaller th an  the  energy of m igration. The m ost probable
values are, for copper: Uvac — 0-85 ±  0-05 eV, Qvac — 1 2 ±  0 0 e ,
for gold: Uvac =  0-8 ±  0 1  eV, Qvac =  1 3  ±  0 1  eV. The theory is not
sufficiently accurate for these values to  be regarded as final.

The case of interstitials is still less satisfactory. Except for the recovery
experiments to  be discussed in Chapter 5, no effects directly related to  the
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fo rm ation  or m igration  of in te rs titia ls  in  th e  noble m etals can  be stud ied
experim entally . W e are  therefore obliged to  use th e  very  rough theore tica l
values quo ted  above, viz. b o th  in  copper and gold: Uint =  5 eV, Qint =
0-25-0-6 eV.

1.2.3. Experimental determination of activation energies of formation and
migration of vacancies in the noble metals

The available evidence to  th e  values of Qvac and  Uvac in  th e  noble m etals
has been review ed b y  Jongenburger 64). There exist in  principle th ree  classes
of experim ent, called in  th e  following respectively  h igh-tem pera tu re , low-
tem p era tu re  and  recovery  experim ents. To th e  la t te r  category, th a t  yields
resu lts th a t  are m ost difficult to  in te rp re t, we shall re tu rn  in  ch ap te r 5.
In  th e  h igh -tem pera tu re  experim ents th e  deviations a t  h igh tem pera tu res
from  th e  th eo re tica l tem p era tu re  dependence of a physical q u a n tity  are
stud ied  and  in te rp re ted  as being caused b y  th e  presence of appreciable
num bers of vacancies in  th e rm al equilibrium  a t  these  tem p era tu res . F rom  a
s tu d y  of th e  electrical resistiv ity  M eechan and  Eggleston 65) found for
copper Uvac — 0-90 ±  0-05 eV. Jongenburger 64) analyzed d a ta  in  l ite ra tu 
re on th e  tem p era tu re  coefficient of th e rm al expansion of copper and  gold,
and  derived from  th em  values of Uvac in  copper betw een 0-7 and  0-9 eV, in  gold
betw een 0-6 and  0-8 eY . These are all in  excellent agreem ent w ith  th e  th eo 
re tica l d a ta  quo ted  above. W hereas th e  recovery  experim ents also yield
resu lts th a t  can be in te rp re ted  in  accordance herew ith , th e  experim ents of
th e  low -tem peratu re  category  yield qu ite  different resu lts. In  these  experi
m en ts a m eta l w ire is qu en ch ed . very  rap id ly  from  a high tem p era tu re ,
and  its  electrical resistance a t a very  low tem p era tu re  is com pared  w ith  th a t
of an  unquenched  wire. T he (positive) difference is a ttr ib u te d  to  quenched-
in  vacancies, and  th e  dependence of th is  difference on th e  quenching
tem p era tu re  yields again  a value for Uvac. K auffm an and  K o e h le r66)
quenched th in  gold wires in  a helium  b la s t and  found Uvac =  1-28 eV,
a value very  m uch larger th a n  th a t  expected theoretically . Jo n g en b u rg er64)
has reanalyzed  th e  published d a ta  of K auffm an and  K oehler and  found
th e  sligh tly  sm aller value of 1-1 eV for Uvac in  gold, w hich is, how ever,
still ve ry  large. L azarev  and  O vcharenko 67) perform ed essentially  th e  sam e
experim ent, b u t  used low er quenching tem p era tu res  and  lower quenching
ra tes. T hey  found 0-7 eV for Uvac in  gold, in  d isagreem ent w ith  K auffm an
and  K oehler. T hey  also recovered th e  quenched wires, and  observed a
m igration  energy of th e  defects of only 0-5 eV!

Still m ore discrepancies arise w hen one com pares th e  absolute densities
of vacancies e.g. ex trap o la ted  to  th e  m elting  p o in t as th e y  follow from
these  results. T hen  i t  appears th a t  th e  high tem p era tu re  results yield
absolu te densities th a t  are  in  good agreem ent w ith  th e  theo ry , w hereas th e
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low -tem perature  experim ents yield densities th a t  are too low b y  a t  leas t a
fac to r of 20. I t  seems to  th e  a u th o r th a t  th e  quenching experim ents do no t
yield reliable resu lts, as th e  underly ing  assum ption  th a t  p rac tica lly  all
defects are frozen in  during  th e  quench, is p robab ly  incorrect. E ven  when
cooling in  a helium  b la s t (d T /d t =  — 104 °C/sec), th e  vacancies still carry
ou t 107 ju m p s. Diffusion of vacancies, resu lting  in  th e  possible fo rm ation  of
vacancy pairs, w hich in  th e ir  tu rn  can m ove very  rap id ly  to  dislocations,
m u st th e n  surely  be ta k e n  in to  account (com pare also B a rtle tt  and
Dienes 68) ).

P re lim inary  experim en tal evidence on these  phenom ena has been
published  b y  M addin  and  C ottrell 69), who observed a rise in  th e  critical
shear stress of A1 single crystals a fte r quenching from  a h igh tem p era tu re ,
and  b y  L evy and  M etzger 70), who n o ted  a decrease in  in te rn a l fric tion  under
th e  sam e conditions. These effects m u st be in te rp re ted  as caused b y  a
condensation  of quenched-in  vacancies or pairs a t dislocations, w hich
process a lready  s ta rts  a t  an  appreciable ra te  during  th e  quench. W e shall
n o t discuss th e  th eo ry  of th e  quenching-in of vacancies m ore in  deta il here,
th e  m a th em atica l difficulties th a t  arise are ra th e r  forbidding, and  a dis
cussion w ould lead  us too  fa r a s tra y  *).

1.2.4. Electrical resistivity caused by vacancies and interstitials in metals
Two factors co n trib u te  to  th e  sca tte ring  m atrix -e lem ent of a point-defect:

one takes in to  account th e  elastic s tra in s of th e  la ttice  in  th e  neighbourhood
of th e  defect, and  an o th e r describes th e  influence of th e  rem oval or add ition
of an  e x tra  positive charge. D ex te r 71) m ade an  estim ation  of th e  relative
im portance  of th e  first fac to r and  found i t  to  lie negligible in  f.c.c. m etals
fo r b o th  vacancies and  in te rs titia ls . This conclusion is doubtless correct for
th e  case of vacancies th a t  produce only very  sm all sh o rt range stram s;
for an  in te rs titia l, how ever, th e  s tra in s are m uch larger. A recen t estim ate
b y  Jongenburger 72), based  on a (necessarily crude) com parison betw een th e
deviations of th e  atom s from  th e ir  equilibrium  places caused b y  th e
presence of an  in te rs titia l and  those caused b y  th e rm a l v ib ra tions, yields a
ra th e r  appreciable value for th e  influence of th e  stra ins; in te rp re ted  in
te rm s of re sistiv ity , th e  s tra in  around  an  in te rs titia l in  copper con tribu tes
as m uch, possibly even 2 or 3 tim es as m uch as th e  (screened) e x tra  positive
charge associated  w ith  i t .  A pplying th e  sam e argum en t to  estim ate  th e
resis tiv ity  of a dislocation, he finds a value th a t  com pares v e ry  well w ith
th a t  derived  on a firm er theo re tica l basis. The sam e holds tru e  for quite

») In a recent study by Friedel (to be published shortly) the possibility of the
formation of “dislocation tunnels” by absorbed vacancies is advanced. This process,
when occurring during quenching, could be responsible for a very rapid decrease
of the vacancy concentration.
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an o th er case, viz. th e  resis tiv ity  caused b y  solute carbon atom s in  a-iron.
In  D ex ter’s tre a tm e n t, th e  sum m ation  over th e  d isp lacem ent o f th e  neigh

bouring atom s is replaced b y  an  in teg ra tion . I t  is suggested th a t  th is
explains th e  difference betw een th e  resu lts o f Jongenburger and  D exter.
The ind iv idual p e rtu rb a tio n s of th e  la ttice  p o ten tia l b y  th e  displaced atom s
are sm eared ou t in  D ex ter’s com pu ta tion , and  th e ir  influence on th e  electron
ic sca tte ring  is low ered b y  ab o u t a fac to r of 10. M oreover, for th e  atom ic
displacem ents D ex ter uses too  sm all values; according to  th e  m ost recent
com puta tions b y  H u n tin g to n 58), th e  values used b y  D ex ter m u st be
m ultip lied  b y  a t  least a fac to r tw o, resu lting  in  an  increase of th e  sca ttering
m a trix  elem ent b y  a fac to r 4. This, to g e th e r w ith  th e  fac to r 10 d ea lt w ith
before, is enough to  in valida te  D ex te r’s e stim ate  and  to  m ake th a t  o f
Jongenburger fa irly  plausible.

B l a t t 73) recen tly  rediscussed th is question and  arrives a t  th e  opposite
conclusion, viz. th a t  th e  influence of th e  s tra in s around  an  in te rs titia l in
copper on th e  resis tiv ity  can be neglected. N either his argum ents, how ever,
can be regarded  as conclusive, as he h im self is aw are. In  view  of these facts,
we accept in  th e  following Jongenburger’s resu lt as being th e  m ost probable
one.

T he influence of th e  e x tra  positive or negative charge has been tre a te d
b y  Jo n g e n b u rg e r72’74), b y  Abeles (for vacancies o n ly )75), and  b y  B la tt
(for in te rs titia ls  only) 73). T hey  tak e  account o f th e  red is trib u tio n  of th e
electrons b y  using a screened H artree  po ten tia l, and  norm alize th is  in  such
a w ay th a t  certa in  phase rela tions derived  b y  F r ie d e l76) are  obeyed.
These relations are  so s trin g en t th a t  th e  ex ac t form  of th e  sca ttering
p o ten tia l becom es u n im p o rtan t 77), and  Jongenburger 74) has show n th a t
th e  use of a sim ple square  well po ten tia l, su itab ly  ad ap ted , works equally
well. All investiga to rs agree th a t ,  for vacancies and  for in te rs titia ls , th e
influence of th e  ex tra  charge is ab o u t th e  sam e, viz. 1-3-1-4 (i.Qcm per
atom ic percen t o f defects in  copper and  gold. R ecen t (unpublished)
calculations b y  Seeger re su lt in  th e  sligh tly  larger value 1-67 (iDcm
in  Cu. F o r th e  to ta l resis tiv ity  caused b y  poin t-defects in  copper we
shall adop t here th e  resu lts of Jongenburger’s com putations:
R esistiv ity  increase caused b y  one vacancy  p er cm 3: 1-53.10~21 a£2cm;
R esistiv ity  increase caused b y  one in te rs titia l p er cm 3: 5-7.1(T21 (iDcm.
The la t te r  value is b u ilt up  o f l-5.Hr21 (xDcm due to  th e  charge and
4-2.1(T21 [xQcm due to  th e  stra ins.

The experim ental evidence as to  th e  resistiv ity  caused b y  point-defects
has been review ed b y  B la tt 73). The m ost d irect resu lts can be derived  from
m easurem ents of th e  release on heating  of th e  stored  energy in  low -tem pe
ra tu re  irrad ia ted  m etals and  o f th e  sim ultaneous decrease of th e  electrical
resistiv ity . O verhauser 78) th u s  found (accepting Jongenburger’s value
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for the  vacancy resistance) for the resistivity of interstitials about 10 20
fiOcm/cm"3, if it was further assumed th a t the  energy of formation of
a vacancy-interstitial pair is 5 eV, another uncertain value. I f  this la tte r
value were actually smaller (as is probable), the resistivity caused by in ter
stitials should be smaller too. The results seem to indicate, however, th a t
the influence of the  strains can certainly not be neglected. E xact
determ inations of the  resistivities caused by  vacancies and interstitials
have not yet been carried out. For vacancies the  theory can, however, be
regarded as ra ther accurate; for interstitials this is not the  case.

1.3. Summary of the results of chapter 1.
In  the following table I the m ost im portant numerical d ata  discussed in

this chapter have been compiled. All numerical values refer to  pure copper
and are to  be considered as m ost plausible estim ates. For gold about the
same num erical values apply.

The da ta  referring to  vacancy pairs are based on the considerations ol
B artle tt and Dienes 68) and on very  recent calculations by Seeger (un
published). The energy of association of two vacancies was calculated
by  the  la tte r au thor to  be 0-3 eV, the energy of m igration was estim ated by
the former investigators to  be about »/■ ^ a t  of a single vacancy. The
resistivity produced by a vacancy pair does no t differ appreciably of th a t
of two single vacancies 7®).

TABLE I

Physical properties of lattice defects in copper.

Defect
Energy of

defect
M igration

energy
Electrical resistivity

. edgeDislocation screw
^ 8 e V )  Per.> atomic
^ 5  ; plane

2eV (climb) |  0-4 — 3.10~10 lV(j.Qcm

Vacancies 0-85 1-2 1-53.KT21 nv p.Qcm

Interstitials 5 0-25 ? 5-7.KT21 n; [illcm

Vacancy pairs 1-5 &  0-6 s» 3.KT21 np  [iDcm
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2. PLASTIC DEFORMATION OF METALS

2.1. Action of dislocation sources

The facts and theories compiled in chapter 1 lead us to  the following
schematic outline of the atomic mechanism of plastic deform ation in simple
f.c.c. metals, of which copper m ay be taken as an example 80’81,82,83). The
trea tm ent applies only a t very low tem peratures, where no therm al activa
tion takes place.

Consider a m etal crystal containing a network of dislocations. In  well-
annealed m etals the density d0 of dislocations is probably 10® — 108 cm“a
(section 1.1.6.2). Supposing th a t the  elements are homogeneously d istribu t
ed in the lattice and th a t  in each node three elements meet, the mean length
of the elements is 7=  1(T* to  1(T4 cm, and their to ta l num ber am ounts to
N  =  10® 1012 cm 3. Most of these dislocations have presum ably Burgers
vectors of the type [0,£,£] (section 1.1.5), of which 12 possible orientations
can occur. Given a stress component along one [110] axis, only 1/6 of the
network elements can therefore in principle act as sources (Frank-Read
sources of a more general kind). Most of the dislocations are presumably
split up into partia l dislocations; however, this does not affect in an appreci
able way their activ ity  as sources. One m ay thus assume th a t  one ten th  or
less of the network elements can act in principle as sources under a given
shear stress, th a t  is N e <  1011 per cm3. Consider a network-element of
length I w ith Burgers vector parallel to  the  shear stress r. W hen r  reaches
the critical value (1.18):

ri =  aGbjl, (2.1)

the source starts to  work. Let the  num ber of em itted loops be n, and the
mean area covered by  them  be A. Each loop has crossed in  the mean d0A
dislocation elements and has formed d0A  jogs. Suppose th a t each loop has
a circular shape (fig. 14). The jogs in  the loops have each run  a certain
distance (we assume th a t every jog  retains its place in the loop, compare
section 1.1.3.2). According to  formula (1.17), the efficiency w ith which the
jogs have formed vacancies or interstitials depends on the orientation of the
Burgers vectors b of the crossing dislocations w ith respect to  the glide plane
and on the azim uth of the site of the jog in the expanding loop (fig. 14).

Consider an element of the loop (radius R) w ith azim uth between <p and
<p +  dtp. The efficiency w ith which this element forms point-defects is
according to  (1.17) given by

-------------- b '

e <P =  sin (p  ■ (b'.v) (2.2)

where the bar means averaging over all possible orientations of b' and v
denotes the un it vector perpendicular to  the plane of the loop. W hen we
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assume th a t  the Burgers vectors b' are indeed all oriented according to
[110] directions, ____ b,

(b'v) =  * V3
and thus

e<p =  £ /3  sin <p. (2-3)

The loop of radius R  contains 7iR2d0 jogs, the element in question has
therefore 1/2R 2d0d(p jogs and on expansion of the radius to  R  +  dR  (leaving
out second order term s), the num ber of point-defects formed is

Jt/2  D q j

d / ~ 4  f  d ? .£ i? 2d0~ e < p  =  f } ' 3 - ^ d R .  (2.4)

Fig. 14. On the formation of vacancies and interstitials by expanding dislocation loops.

A loop th a t has reached an ultim ate area A  has thus formed

=  (2-5)

point-defects. This holds for circular loops; in  general, owing to  the larger
drag excerted by  the defect form ation on the screw parts, the loop will
assume an elliptical shape. However, as pointed out by M ott 84), the axial
ratio  will probably u ltim ately reach a constant value, say V„, and formula
(2.5) can be w ritten  approxim ately as:

ƒ(^4) s* 0-04 y  A '1'.  (2-6)

The energy stored in the  m etal due to  this expansion is given by the sum

of three terms:
E  =  E 1 +  E2 +  E 3. (2-7)
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(1) The energy of form ation of the to ta l length of dislocation of the loop.
Calling the m ean energy of a dislocation per atomic plane crossing its
axis Ud (about 6 eV, section 1.1.2), we have:

_  -

E i  ** 4 U d  (2.8)

(the numerical factors in this and the following formulae depend on the
shape of the loop).
(2) The energy of form ation of the to ta l num ber of jogs. Denoting the mean
energy of a jog by  Uj (of the  order of Ud, as a jog is an element of dislo
cation of length b), we have:

E 2 =  A d0Uj.  (2.9)

(3) The energy of form ation of the defects. Denoting the m ean energy of
form ation of a defect by  Uf, then  we have

E 3 =  0-04 y  A '1' Uf.  (2.10)

U f is 0-85 eV for a vacancy and between 2 and 5 eV for an in terstitia l
(table I). Presum ably interstitials are formed in lesser am ounts then
vacancies, due to  their high energy, and we shall therefore take as a
weighted m ean U f =  1 eV.

The energy supplied by  the applied stress is simply

E x = r A b ,  (2 .H )

where r  stands for the local shear stress component parallel to  b in  the
vicinity of the loop.

W ith the expansion of dislocation loops is associated a dissipation of
energy in the form of vibrations of the lattice, resulting from the  atomic
m otion coupled w ith the  propagation of a dislocation 2). To take account of
this we p u t the available energy for defect production equal to  XEr, where
A is a numerical factor smaller th an  unity: A denotes the fraction of the strain
energy th a t  is used for defect form ation. I ts  m agnitude depends very sensiti
vely on the velocity of the  dislocations; A is presum ably of order unity.

The energy balance thus reads:

XrAb =  4 y -  A'1' +  d0UjA  +  0-04 V fA %  (2.12)

The mean source length is 10~4 cm, thus A  is larger th an  10~8 cm2.
In  th a t  case i t  is easily found by  inserting the numerical values quoted
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above, th a t  the second term  a t the  right hand side of (2.12) is completely
negligible compared to  the  first and th ird  term s; this means th a t  the form a
tion of jogs only cannot enhinder the expansion of dislocation loops a t all.
Solving (2.12) for A ,  therew ith leaving out this second term , the result is:

A  =
t A62r  / 1 / 0-64 d0Uf U d\ f

<0-08doUf \ + V  A W  J S ‘
(2.13)

Of course the formula is only valid when the root occurring in  i t  is real, thus when

r  >  Vo-64 d0UfUd/A2b*. (2.14)

An imaginary root simply means th a t the source has not been activated a t all. This gives
rise to  the following conclusion: by reason of the necessary formation of point-defects
there exists, apart from th e  fundam ental condition (2.1) for the activation of a source,
still another condition, viz. (2.14). The la tte r  becomes of im portance when:

aGb/l <  Vo-64 doü/üd/A^4. (2-15)

P utting  U i s» Gb3 (compare (1.3a) ), (2.15) goes over into

I >  AI„ =  aV«2G63/0-64 d0U j. (2-16)

This means th a t for sources of length I >  Al0 ordinary activation a t the critical shear strength
T =  aGbll will not take place, the formation of point-defects preventing this. Only a t
appreciably higher stresses can the critical circular shape of the source dislocation be reached,
and even then  probably no source action will occur, th a t is, the  segment will expand bu t
none or only a  few new segments will be formed subsequently. l0 stands thus for an upper
lim it to  the length of the sources th a t can be activated. For copper I0 is about 4 x 1 0  cm.

The em itted loops produce a back-stress a t the site of the source. The
com ponent of this stress th a t  opposes the local activating shear stress is
given by

n-ŷ r< 2 - 1 7 >

where y  is a numerical factor of order 0-1, depending on the value of
Poisson’s ratio  and on the  shape of the  loops. For A  in (2.17) one m ust read
the m ean area covered by the  loops; in  view of the uncertainties inherent
to  the theory one m ay simply assign the  same value of A  to  all loops.
Even if the  loops run  w ith a velocity of only 0-01 or 0-001 of th a t  of sound,
the tim e for a loop to  a tta in  its final area is of the order of 10 7 to  10 8 sec. In
this tim e the local shear stress has (under norm al experim ental conditions)
not changed appreciably and we m ay insert in (2.17) the m om entary value
of A  following from (2.13). We then  find:

0*08 yGd0U f n  1 ^

T ƒ  (*) ’n  = b
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where

ƒ ( r) =  A |l  +  Vl — 0-64 d0Ü f Ud/X2b*r2\.

The source will be activated again when the shear stress a t the site of the
source, r  — r j ,  attains anew the  value t15 thus when:

0-08 yGdgUf n  1

6 T f ( r )

aGb
(2.19)

According to  a hypothesis of Fisher, H art and P ry  85, 86), a source, once
activated, can continue em itting dislocation loops until the resu ltan t stress
a t the source has dropped to  a value as low as r j p ,  where p  is about 3.
This dynam ic generation of loops will occur when the dislocations move with
approxim ately the velocity of sound in the m aterial, so th a t their kinetic
energy becomes comparable to  the  potential energy of the  source. In  the
case th a t this presum ption is not realized (static generation), the loops are
em itted one a t a time. Then in formula (2.19) n  takes as a value successively
all positive whole num bers, whereas, should the  hypothesis of dynamic
generation hold, n  jum ps in am ounts appreciably larger th an  unity . Solving
the discontinuous equation (2.19) for n, one gets thus a function displaying
a large num ber of small jum ps, or a function characterized by  a smaller
num ber of larger jum ps. However, as will be shown below, in practice the
to ta l num ber of loops em itted already attains very quickly ra ther large
values, of the order of 100, and we m ay safely replace the discontinuous
solution by  a continuous one in  the  former case. As the num ber of loops
em itted per burst in  the  dynam ic case is of the order of 10, also in  this
case this replacem ent is allowed. One finds, using (2.1) and the definition
of l0 (2.16):

8 In (/ T \ 8 T )

y T i )
(2.20)

2.2. Form ation of defects by plastic strain

2.2.1. Single glide

Suppose there are N e sources per cm3 working under the  influence of
a local stress r.
These contribute to  the to ta l strain  the  amount:

e =  N e n b A .  (2.21)

The to ta l num ber of defects formed by these sources is according to  (2.6)

F  =  N e n  X 0-04 —  A '1',
b (2 .22)
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whereas the  to ta l length of dislocation formed is:

D — N en X 4A \  (2.23)

The dependence on r  is governed by  the  expressions (2.13) and (2.20) and
by  an unknown relation, if i t  exists, between N e and r . Presum ably, N e
will increase w ith the stress as successively shorter sources will be activated.
The function N e(r) depends on the distribution of stress in  the m aterial and
on the  distribution of source lengths. As both  are completely unknown,
we shall take N e simply constant. As m ost of the strain  is contributed
to by  sources th a t have been activated from the  beginning and the activa
tion  of new sources will probably be strongly hindered by  the  action of the
stress fields of the sources already activated, the error m ade in this approxi
m ation will no t be too serious.

The quan tity  t describes the local stress in  the im mediate vicinity of
the  source. I t  is related in an in tricate way to  the applied stress; explicit
determ ination of r  would require knowledge of the  work-hardening charac
teristics of the m aterial. We assume th a t  on the  average r  scatters not very
m uch from source to  source and can therefore be eliminated from (2.21),
(2.22) and (2.23). W hen t/tx is a t least so m uch larger th an  un ity  th a t  it
can be considered negligible compared to  (t/ t̂ )2 in  (2.20), and when we take
f (x)  =  1, as is indeed practically true, this elimination yields:

I*/ yXGdl „
F  — 0-06 1/ '  * « /.; (2.24)

r b«UfNe

D  -  2-4 \ / dolJf Ne e'U. (2.25)
r yXGb6

These formulae no longer depend on I. A fu rther advantageous property of
these expressions is th a t  they  contain the  param eters y, A, Uf and N e under
the  fourth  power root sign; the uncertainties in  the values of these param eters
do therefore affect the accuracy of the  result b u t slightly.

T ak in g  y  =  0-1, A =  1, G =  4.1011 dyn/cm 2, b =  2-5.10“8 cm and
Uf — 1-2.10“12 erg, values pertaining to  copper as well as to  silver and
gold, one finds:

F  =  7.1016 djf* N e u e u cm"3; (2.24a)

D =  1-4.10s d‘l‘ N'J‘ e u cm"3. (2.25a)

2.2.2. Multiple glide

The formulae (2.24) and (2.25) have been derived under the  assumption
th a t d0, the  density of intersecting dislocations, does no t change during the
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slip process. This assum ption is realized in the case of single glide; in multiple
glide, however, the “forest” of dislocations crossed by a given loop thickens
continually. This effect can be taken into account schematically as follows.

Suppose there are g active slip systems. The to ta l num ber of activated
sources being again Ne, the density of sources on a given glide plane,
belonging to  slip system  i, is then

Ai =  —  s (2.26)
8

sources per cm2, where s is the  m ean spacing between successive glide planes.
Suppose all dislocation zones are circular, w ith the  same radius R  on all
slip systems. Consider an activated source surrounded by its loops on an
intersecting glideplane belonging to  system  j .  The length of the intersection
of this zone w ith a given glide plane of system  i be L; then  the average
num ber of zones on the  la tte r glide plane th a t  intersect the  first zone is
(fig. 15):

Ni =  Ai (2RL  +  nR2) . (2.27)

Ni is of course a num ber m uch smaller th an  unity . A given dislocation
zone on system  j  intersects in the mean R/s glide planes of system i. The
average length L  am ounts to  4Rjn, thus the to ta l num ber of sources on
system  i intersected by a given source on system j  is:

6 7 9 8 1

Fig. 15. On the computation of the mean number of dislocation zones on a given glide
plane, cut through by a dislocation zone on an intersecting glide plane.
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As there are g — 1 intersecting glide systems, we find for N a, using (2.26):

N a -- — (— +  Ne R* «  Ne A '1'. (2.28)
g \ n  F

Suppose th a t each source has em itted n loops. Then in addition to  the
density of originally present crossing dislocations d0, the effective density
N enA 'I' of newly formed dislocations m ust be counted. T hat is, instead of
d0 one should write in the  case of m ultiple glide:

d =  d0 +  N en A \  (2.29)

E quation (2.12) describing the energy balance of an expanding source now
becomes:

lx  Ah =  —  A '!' +  0-04 ^  UfA'1, +  0-04 nA 2; (2.30)

and when N en A '^ ^ d 0 the  sta te  of affairs is completely changed. We shall
consider here only the lim iting case th a t

N e nA 'l'^> d0. (2.31)

In  this case the first term  on the righ t hand  side of (2.30) can also be neglect
ed and we have

IrA b  0-04 — nA 2,
b

from which it  follows th a t

Irb2
nA  = ----------— . (2.32)

0-04 N eUf
As in this case we also have:

d NenA'l',

we get according to  (2.21) and (2.22):

W
e = ------ = -  r  (2.33)

0-04 Uf
and

(NenA )2 l 2b3 .
F  =  0-04 v , ’ = -------=  t2. (2.34)

b 0-04 U f

From  this it follows th a t instead of (2.24) for single glide, we are left w ith
the  simple relation

F = 0 - 0 4 { - * * t
bA

(2.35)
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in  the case of multiple glide. Numerically one has for the noble metals:

F s* 2-5.1021 e2. (2.35a)

In  this theory  the interaction of dislocations other th an  th a t of a purely
geometrical nature has been neglected. In  m ultiple glide the change of
elastic interaction energy w ith the distance between dislocations m ay appre
ciably influence the  energy balance. E quation (2.35) m ust therefore be
considered w ith care.
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3. ELECTRICAL RESISTIVITY OF PLASTICALLY STRAINED METALS

3.1. Introduction

The theory  discussed in chapter 2 has prim arily been developed to  study
the defect concentrations in  plastically deformed m etals; i t  is not suited to
describe e.g. the work-hardening of a m etal. The defect concentrations can
also be studied experim entally, viz. by  m easuring physical quantities th a t
depend on them . One of the quantities m ost suited for this is the electrical
resistivity. This increases appreciably by  plastic strain , due to  the scattering
of the conduction electrons by the  defects introduced during the deformation.
In  this chapter we shall discuss the  available experim ental d ata  on the sub
jec t of the electrical resistivity of deformed metals, and compare them  to the
theory.

The relative changte of resistivity on deform ation of a m etal is very
sensitive to  purity  and tem perature. For obvious reasons it  is advisable, in
order to  obtain an insight into the  fundam entals of the effect, to  study very
pure metals and to  measure their resistance a t very low tem peratures. Also
to avoid unw anted effects due to  diffusion phenom ena the tem perature
of deform ation should be very low. Only a small p a rt of the literature
th a t  exists on the subject 87,88) conforms to  these restrictions, and even there
really system atic observations are ra ther scarce. The metals studied most
accurately are the  noble metals Cu, Ag and Au. These metals are easily
deformable a t low tem peratures and also easy to  obtain in a pure state
(im purity content less th an  0-01%). We have therefore also chosen these
metals, especially copper and silver, as the subject of out investigations. I t
should be m entioned here, however, th a t  a study  of other metals, e.g. of those
w ith different crystal structure such as iron and the  alkalis, is badly needed.

3.2. Resistivity measurements on noble metals deformed at very low tem
peratures

3.2.1. Extension and torsion experiments

The first system atic observations of the resistivity changes of deformed
m etals were carried out in Delft by  Druyvesteyn and his collaborators
Molenaar and A arts 89). They measured resistivity and stress as a function
of plastic strain  on wires of polycrystalline copper, silver and gold (and
aluminium) stretched a t the  tem perature of liquid nitrogen. These experi
m ents have been repeated by  M anintveld 90). The present author showed 80)
th a t  the observed resistivity-strain relations could all be represented re
m arkably accurately by the  relation:

Aq/q =  c(Al/l)\ (3.1)
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in  w hich Aljl s tands fo r th e  elongation, Aq/q for th e  re la tive  increase of
resistiv ity . T he coefficient c, of o rder u n ity , varies a little  betw een th e
various experim ents.

In  o rder to  check th e  v a lid ity  of th is  re la tion , th e  o ther available d a ta
on poly crystalline copper deform ed a t  a low tem p era tu re  were analyzed.
The results are given in  fig. 16. I t  was found th a t  an  exact 3 /2-exponent has
n o t been observed b y  o th e r au tho rs, a lthough  th e  deviations are b u t  slight.

f/iflcm
0-015

0-010

0-005

0
0 5 10 15 f 20 25

►£(%) 6 7 9 6 2

Fig. 16. Observed resistivity-strain relations of extended polycrystalline copper wires.
P lotted is the absolute amount of additional resistivity against the mean shear strain
according to (3.3), measured a t 78 °K or less. (1) Observations by Molenaar and Aarts;
(2) by Druyvesteyn and Manintveld; (3) by Berghout; (4) by A arts and Jarvis; (5) by
Pry and Hennig (extrapolated); (6) by Jongenburger and the author (mean of 9 series
of measurement, see fig. 17).

The resu lts o f all experim ents can be described b y  th e  m ore general form ula:

Aq — aep (3.2)

w here e is th e  m ean  shear s tra in  th a t  can  be defined as

Be — 2 -24 Al/J (3.3)

in  fine-grained polycrystalline wires th a t  are s tre tch ed  91), and  app rox im ate
ly  as

(3.4)
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in wires th a t  are tw isted. Here 0  is the angle of tw ist and r and I are radius
and length of the  wire. Expressing A q in  the coefficient a lies be
tween 0-04 to  0-16 jxOcm, and p  varies between 1-3 and 1*5.

The observations used to  construct fig. 16 are as follows. They all refer to
copper, the other metals have been studied far less and no reliable compari
son is possible. The curves denoted 1 and 2 represent measurements of
M olenaar and Aarts g9), and of Druyvesteyn and M anintveld 90) respecti
vely, and are described in detail in M anintveld’s thesis 92). Curve 3 has
been obtained also in Delft by  C. W. Berghout; these measurements have
no t been published. Curve 4 represents observations by A arts and Jarvis 93).
All these observations are on OFHC copper (99-98% ) annealed in vacuum
for a t least one hour a t 550° C, and extended a t 78 °K. As has been shown
by M anintveld 92), careful annealing is necessary to  remove all traces of
former trea tm ent. An annealing tem perature of at least 400 °C is needed
for copper. This condition was not m et in the work of P ry  and Hennig 94),
who annealed their wires a t 250° C. Furtherm ore, they  measured resistance
a t 78 °K after 5 minutes anneal a t room tem perature. I t  is possible, by
m aking use of other inform ation contained in  their paper, to  “correct”
their m easurem ents in  such a way th a t  they  can be compared to  those of
other investigations, and it  is these “corrected” observations th a t are
represented by curve 5.

Curve 6 represents m ean data  obtained by Jongenburger and the author 95);
the  individual measurem ents are represented in  fig. 17.

fjflcm

0.005

--------- ^  C  I fOl 87983

Fig. 17. Resistivity-strain relation of polycrystalline copper wires extended at the tempera
ture of liquid nitrogen or hydrogen. The figures near the curves correspond to the specimen
numbers of table II.
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Polycrystalline copper (of tw o grades of p u rity )  an d  silver wires were
annealed  fo r one ho u r a t  650 °C in  vacuum  and  deform ed a t  78 °K  (liquid
N 2) or 20 °K  (liquid H 2). The ap p ara tu s  consists of a sm all tensile m achine
driven  b y  a synchronous m otor and provided w ith  a to rsion  head , in  order
th a t  b o th  tw isting  and  extension experim ents can be carried  ou t. The
specim en, in  th e  form  of a 0-5 m m  wire, is im m ersed in  liquid  hydrogen  or
n itrogen , to g e th e r w ith  a com parison wire. Copper p o ten tia l leads were
soldered to  th e  w ire a t  a sufficient d istance from  th e  clam ps and  resistances
are com pared in  a D iesselhorst com pensator. E longation  is m easured
by  a sim ple s tra in  gauge, and  a rough m easure of th e  stress can  be
ob ta ined  b y  m easuring th e  ex tension  of a helical spring m oun ted  in  th e
loading rod.

The values of th e  coefficients and  exponents p e rta in ing  to  th e  various
observations are  given in  tab le  II.

F o r copper, except in  one case, viz. specim en 3, th e  exponents all lie
betw een 1-3 and  1-55, w ith  th e  m ean  value 1-45. The exception (no t used in
th e  com pu ta tion  of th e  m ean) is p ro b ab ly  caused b y  im purities p resen t in
th e  O FH C  copper th a t  m ake th e ir  presence know n in  th e  resistance a t  very
low tem p era tu res . A system atic  dependence o fp  on tem p era tu re  of deform a
tio n  or on p u rity  could n o t be detected . On th e  co n tra ry , th e  coefficient a
seems to  be appreciab ly  la rger a t  78 °K  (m ean value 0 08 pQ cm ) th a n  a t
20 °K  (m ean value 0-05 (xQcm). This effect can  also be expressed as follows:
w hereas th e  average resis tiv ity  increase of copper w ire ex tended  10%  a t
20 °K is 0-004 ji.Ocm, th e  sam e extension a t  78 °K  results in  a resistiv ity
increase of ab o u t 0-007 pQ cm .

As to  silver, too  few experim ents have  been perform ed to  reach  m ore th a n
one conclusion, th a t  p  seems to  be appreciab ly  less th a n  in  copper, viz.
ab o u t 1-2. The one tw isting  experim ent carried  ou t so fa r yields essentially
th e  sam e resu lt (w hen s tra in s are com pared according to  (3.3) and  (3.4) ).

Those observations of o th e r au tho rs th a t  have  been published  in  a suffi
ciently  extensive form  can also be analyzed in  th e  w ay described, a lthough
unknow n differences in  th e  experim en ta l conditions, p u rity , p re -trea tm en t
etc. m ake th e  com parison considerably  less accura te . T able III  lists th e
re lev an t d a ta .

The conclusion can be d raw n th a t  th e  o th e r au tho rs have ob tained  results
th a t  do n o t fu n d am en ta lly  dev ia te  from  our own. The sc a tte r  betw een
th e  various d a ta  in  tab le  III, especially in  a, is too  large to  allow fu rth e r
inference to  be draw n.

3.2.2. Combined deformation methods

As we have seen in  tab le  II, th e  dependence of th e  ad d itiona l resistiv ity
on plastic  s tra in  is roughly  th e  sam e in  extension and  in  tw isting  experim ents.
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TABLE I I

Observed constants in power-law expressions (3.2) of copper and silver

Wire
No.

Metal and tem perature
of deformation

a
((xQcm) P

1 OFHC Cu, 78° K 0-073 1-52
2 ibid. 0-056 1-45
3 OFHC Cu, 20° K 0-073 1-7
4 99-998% Cu, 20 °K 0-048 1-40
5 ibid. 0-051 1-47
6 ibid.. 0-052 1-55
7 ibid. 0-048 1-50
8 99-998% Cu, 78 °K 0-100 1-41
9 ibid. 0-091 1-32

m ean value Cu 0-065 1-45

10 99-99% Ag, 20° K 0-052 1-25
11 99-99% Ag, 78° K 0-055 1-15
12 99-99% Ag, 20° K

(torsion)
0-040 1-21

m ean value Ag 0-052 1-20

TABLE I I I

Constants a and p  of powerlaw (3.2) by  other authors

A uthor
Metal and tem perature

of deformation
a

((i.Qcm) P

M anintveld 92) OFHC Cu, 78 °K 0-138 1-51
Berghout, unpubl. ibid. 0-16 1-43
M olenaar-Aarts 89) ibid.? 0-09 1-3
A arts-Jarvis 93) ibid. 0-1 1-4
M anintveld 92) 99.98% Ag, 78 °K 0-140 1-53
Aarts-Jarv is 93) 99.99% Ag, 78 °K 0-1 1-4
M anintveld 92) 99.98% A u? 78 °K 0-129 1-52
A arts-Jarvis 93) 99.99% Au 78 °K 0-07 1-4
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This is w hat m ight have been expected in polycrystalline metals. As the
spatial distribution and the type of dislocation produced will presum ably
differ between the two m ethods of straining (but not the to ta l num ber), it
was thought th a t  particular effects m ight possibly be observed when the
two ways of deform ation were applied one after the other. The results
obtained are presented in fig. 18. The curve in this diagram  refers to  a
polycrystalline 99-99% Ag wire first tw isted (a t 20 °K) to  a “m ean torsional
strain” (equation (3.4) ) of 21% (part OA), then  tw isted in the opposite
sense by 7%  (A B ); afterwards stretched by an am ount corresponding to
31% strain  (BC), then  tw isted again in the original sense by 14% (CD) and
ultim ately stretched to  fracture (DE). After each change of deform ation a
slight stand-still of the  resistivity increase was observed. This is probably
due to  the influence of the elastic p a rt of the deform ation and to  the  dead
range of the torsion head, and not to  some kind of “Bauschinger” effect.
In  the  further parts of the curve nothing peculiar was observed; twisting
and stretching produced about equal changes of resistivity, although a
power law could not be fitted to  the la ter parts of the curve.

Ag 20 °K

0 20 40 60 80 100
►£(’% ) 87984

Fig. 18. Relative resistivity increase of a polycrystalline silver wire extended and tw isted
alternatively a t 20 °K. OA tw ist 21% ; AB tw ist — 7% ; BC extension 31%; CD tw ist 14%;
DE  extension to  fracture. All strains are expressed as mean shear strains according
to (3.3) and (3.4).
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A more detailed study of the effect of combined deformations was under
taken 95), bearing the following idea in mind. An interm ediate tw ist given
during a stretching trea tm ent produces naturally  dislocations w ith orienta
tions different from those of the dislocations formed during the stretching
itself. On further stretching the la tte r dislocations have to  cut through the
newly formed “torsion” dislocations, in addition to  through those already
present before the tw ist. The efficiency of formation of point-defects will
therefore be increased by a “m ultiplication factor” th a t is some function
of the ratio  between the density of intersecting dislocations after the
tw ist and before it:

m=sf{Dî Dy <3-5>

where D, is the  density before the tw ist and AD stands for the  effective
density of the “torsion” dislocations.

The experim ental evidence is presented in fig. 19. W hen the second p art
of the (logarithmically plotted) elongation curve is compared to  the extra
polated first part, w ith  the effect of the  tw ist simply added to  it, (thin
curves in  fig. 19), differences are observed in  the  case of silver. These are
thought to  arise in  the  m anner explained above. The m ultiplication-
factors derived by  this procedure are presented in  table IV.

In  the  case of copper no such analysis was possible, as the  two curves
coincided w ithin the  errors of m easurement.

TABLE IV

Effect of interm ediate tw ist on resistivity-extension curve of silver

Tem perature
of deform ation

Extension
before tw ist

(% )

Mean
torsional

strain  (% )
m AD

cm-2 cm-2

aOO

19 7 +  ( - 7 ) 1-2 ~ 3 .1 0 8 10*
20 °K 38 7 1 0 1-7.108 >  1010

00 o 19 7 1-2 1-7.108 6.108

A further point of in terest is the definite occurrence of a “Bauschinger” -
effect on deform ation a t 78 °K, after reversion of the  tw ist direction as well
as in the beginning of the second stretching region. W ith wires deformed at
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20 °K the effect is so small that it cannot be separated from the unavoidable
effects of the machine (compare the discussion of fig. 18). A t the temperature
of liquid nitrogen, however, an appreciable drop in the resistivity occurs
on changing the method or direction of deformation.

100%

— Ag

4 8 72 16 20 3 0  40%
£  07985

Fig. 19. Effect of an interm ediate tw ist (vertical portions of the curves) on the relative
resistivity-extension relation of Cu and Ag a t  20 °K and 78 °K. Strains are again mean
shear strains according to  (3.3) and (3.4). The th in  curves are extrapolations of the prim ary
extension parts, based on the assumption of additiv ity  of the effects of torsion and exten
sion.
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3.3. Interpretation of the observations

3.3.1. Resistivity-strain relation

The observed values of a and p  (tables I I  and I I I )  in  the empirical re
lation (3.2) can be directly compared to  the theoretical formulae (2.24a),
(2.25a) and (2.35a), bearing in mind th a t the resistivity increase on
straining is caused by  the form ation of lattice defects. The averaged results
of the observations can, according to  table II , be w ritten a s :

For copper:
A q — 0-065 e1'45 [xOcm (3-6)

and for silver:
A q =  0-052 e1'20 p ilcm . (3-7)

The d a ta  of table I I I  are in reasonable agreement herewith.
Comparing these expressions w ith the theory, i t  is clear th a t  the exponents

agree ra ther well (especially in  the case of'silver) w ith the assum ption of
“ easy glide” . In  th a t  case, depending on the relative influences of dislocations
and point-defects, an exponent between 0-75 and 1-25 m ust be expected. In
the range of strains investigated by us (less th an  40% ) the effect of multiple
glide on the vacancy formation is ra ther small. I t  seems to  be notably
present in copper, however, as the exponent there is larger th an  1-25.

I t  m ay be rem arked here th a t Blewitt, Coltman and R edm an 96) have
strained copper single crystals by  more th an  100% and found a quadratic
dependence of resistivity on strain , as is expected in multiple glide. The
absolute am ount of resistance increase was m uch smaller th an  th a t predicted
by equation (2.35a), however. Polycrystalline wires cannot be stretched by
more th an  about 40% , so th a t no check has been possible in  this respect.

Assuming for the m om ent th a t the exponents do agree, we can compare
the coefficients w ith the theoretical expectations. According to  the simple
theory outlined in chapter 2, vacancies and interstitials should occur in
about equal numbers. However, the energy of form ation of interstitials
being m uch larger th an  th a t  of vacancies, i t  is very probable th a t the geo
m etry of the jog m otion is changed in such a way as to  reduce as far as
possible the form ation of interstitials. Therefore, most point-defects formed
will be vacancies (a similar argum ent was used to  estim ate the energy of
form ation of point-defects in chapter 2). To translate densities of point-
defects into resistivities, we thus take as a yardstick a value in between those
relating to  vacancies and in terstitials, b u t closer to  the  former, viz. 3.10~21
(ificm/cm3 (compare table 1). As to  dislocations, as explained in section
(1.1.6.1) the mean resistivity caused by  these defects m ust be described
by a factor a X 10~14 pQcm/cm2, where theory predicts th a t  a  «a 1, b u t
various experiments (see below and chapters 4 and 5) indicate a to  be
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of order 10. From  formulae (2.24a) and (2.25a) one obtains then  for the
theoretically expected resistivity increase caused by point-defects and
dislocations:

Comparing w ith (3.6) and (3.7) numerical agreement (a t least to  order of
magnitude) is obtained when we p u t dj*/lVe fits 10u  c m t  Remember-
ing th a t d0 m ust be about 108 cm-2, one arrives a t the  set of values
d0 fits 108 cm"2, N e fits 1010 cm '3, which gives satisfactory agreem ent w ith
experim ent and also w ith a priori expectation.

As we shall see later, evidence exists th a t  dislocations cause about as
much of the additional resistivity as point-defects. Assuming both  contri
butions to  be equal a t a strain  of 20% we can estim ate a and find a =  26.

Of course all these values can only be regarded as estim ates, the assump
tion of easy glide and other simplifying suppositions do no t allow a more
exact comparison. The combined deformation experiments provide a means
for checking these assumptions.

3.3.2. Effect of intermediate torsion

According to  Pax ton  and Cottrell 97) one can estim ate the am ount of
dislocations formed during the tw ist of a circular wire from the formula:

From  this and the observed m ultiplication factors in table IY  one can
estim ate the  density of dislocations Dx, active as intersecting dislocations
before the tw ist, according to  formula (3.5). W hen formula (2.25) is assumed
to  hold, (3.5) can be w ritten  in the  more definite form:

From  this one finds the  values of D 1 th a t  are entered (together w ith AD)
in table IY. D 1 is found to  be about 109 c m '2 after 20%  strain. This can be
compared to  the to ta l density as given by  formula (2.25a), using the values
for d0 and N e derived above. One finds after 20%  stra in : D =  1-5 x  1010
cm_2» which means th a t the increase of the dislocation density on the active
glide systems has indeed been m uch larger th an  th a t on other systems,
and th a t the assum ption of single glide is more or less justified, a t least in
the case of silver deformed less th an  20% . This is no t true  in  copper, where
the effect of torsion is practically completely additive. I t  is interesting to
compare this difference in  behaviour between the two metals w ith the

^  =  2-1'l r s © ' +  l ‘2 a .l0 '8 (d0N e)'/* e'b fxQcm. (3.8)

AD  =  0 /b l =  f  E,/rb. (3.9)

Dx +  A D \I‘
(3.5a)
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observed difference in  the  value of the  component p  (section 3.2.2). W here
as in  silver p  is fairly well in  accord w ith theory  for single glide as far
as the  form ation of vacancies is concerned, in  copper it  is obviously
too high. One m ust conclude th a t the assum ption a t all allowed of single
glide is no t in  copper. This same conclusion holds, as follows from the
d a ta  of table IV, for silver extended by  40% .

Summarizing, one can conclude th a t  the  observational evidence on the
change of resistivity by  deform ation seems to  agree a t least sem i-quantitati-
vely w ith the assum ption th a t point-defects and dislocations produced in
the way described in chapters 1 and 2, are bo th  responsible for the increase
of the  resistivity. A second conclusion is th a t  the original density of
dislocations in well-annealed copper and silver is about 108 cm 2, th a t
about 1010 sources per cm3 are activated during plastic strain, and th a t in
poly crystalline silver deformed less th an  say 30% the state  of deformation
w ith regard to  the defect production resembles somewhat th a t  of easy glide
as observed in  single crystals. In  copper this is no t so, or in a much lesser
degree.

As to  the observed tem perature dependent phenomena, such as the
system atic variation of the  coefficient a and the  “Bauschinger effect, a
theory th a t  takes the effect of tem perature into account is needed, as are
more detailed experiments. A theory  th a t  does take account of tem perature
effects has been recently published by Seeger 33’34). The observed differences
between the results of deform ation a t 20 °K and 78 °K cannot, however, be
easily explained by  his theory.
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4. MAGNETORESISTTVITY OF PLASTICALLY STRAINED METALS

4.1. Introduction

The resistivity experiments described in  the  foregoing chapter render
inform ation on the effects of all kinds of lattice defects simultaneously. I t
is of great im portance to  know the relative contributions to  the resistivity
of dislocations on the one hand and of point-defects on the other. I t  then
becomes possible to  study  the dependence on strain  of the  concentrations
of the various defects separately.

The series of observations on the  effect of combined deformations was
carried out originally w ith this purpose in mind; however, the accuracy
obtained was no t high enough to  distinguish definitively between disloca
tions and point-defects. A nother way of separating the influence of point-
and line-defects is to  study the recovery behaviour of deformed metals. We
shall discuss this in the following chapter, b u t i t  should be rem arked here
already th a t the  conclusions reached from such a study  alone, contain in 
form ation only as to  the concentrations of the  defects after complete or
partia l recovery, not on the  concentrations directly after the  deformation.
I t  is no t a priori certain th a t  a tem perature trea tm ent does not change these
concentrations in  an uncontrollable way.

Dislocations differ from point-defects in  th a t they  scatter the conduction
electrons anisotropically (compare section 1.1.6.1). This is prim arily due
to  the  fact th a t  they  are line-defects, and in  the case of edge or mixed
dislocations also to  the  anisotropic strains around them . Repeated attem pts
have been made to  detect this anisotropy in  the resistivity of deformed
m etal wires. So far, no definite results have been obtained.

Theoretically, i t  is no t certain th a t a finite anisotropy would indeed occur in  stretched
polycrystalline wires. W hen i t  is assumed th a t th e  deformation is caused by edge disloca
tions w ith their axes perpendicular to  the wire axis and w ith Burgers vectors under 45°
to th a t axis, and further th a t dislocations produce a fraction y  of the to ta l additional
resistivity in  the length direction of the wire, i t  can easily be computed from the formulae of
section (1.1.6.1) th a t the ratio  between the resistivities in the wire direction and perpendi
cular thereto should be 2/(2 — y). Pu tting  y  =  (see chapter 5) th is ratio becomes 4/3.
The dislocation arrangem ent chosen is optim al in the following respect: should only screw
dislocations under 45° w ith the axis be present, the ratio  would become 2/(2 +  y)  =  4/5.
The real dislocation arrangem ent in  actual m etals m ight very well be such th a t no resultant
anisotropy of measurable magnitude were present.

The presence of anisotropic scatterers should show up also in  the magneto
resistivity of deformed metals. As is well-known, vacancies as well as
interstitials are essentially isotropic scatterers and will therefore (at least
in  cubic m etals) diminish only the m ean free p a th  of the  conduction electrons
b u t will no t change the  distribution over the  directions in mom entum  space.
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They diminish only the absolute m agnitude of the magnetoresistance, b u t
their presence remains undetected in a socalled reduced or Kohler diagram.
In  such a diagram  the  relative increase of resistivity due to  the  magnetic
field is plo tted  (preferably logarithmically) against the fieldstrength H
divided by the  resistivity q(0) in  field zero. I ts  significance was first stressed
by  Kohler 98) who showed th a t, if  i t  is assumed th a t the  collisions of the
electrons w ith the lattice can be described by  one single isotropic relaxation
tim e r ,  A q/q(0) will quite generally be a function of H/o(0)  only. The in tro
duction of isotropic scatterers such as vacancies or im purity  atoms only
causes an isotropic decrease of the relaxation tim e, and therefore leaves
the  form of this functional dependence unaltered. T hat is, metals w ith
and w ithout additional isotropic scatterers will confirm to  the same
Kohler curve. This curve is thus a characteristic of the m etal, it being
fairly independent of the im purity  content. Only by  destroying the
isotropy of r ,  or by  introducing other features into the model th a t  depend
on the  direction of the m om entum  vector, deviations from the Kohler
curve are obtained.

The applicability of the Kohler diagram  can be defended also in  more
intricate theoretical models of the electronic situation in metals, when
certain fu rther conditions are m et with. In  the so-called two-band m odel" ) ,
in  which it  is assumed th a t  the  current is carried by two kinds of carriers
each characterized by its own relaxation tim e and effective mass (e.g.
electrons of the s-band and holes of the  d-band in copper), a general relation
of the kind A q/q(0) — f  (H/q(0)) will apply if  and only if  the ratio  of the
partia l conductivities produced by  bo th  kinds of carriers does not depend
on these conductivities 10°). T hat means th a t in this case the  presence of
additional isotropic scatterers will only then  not affect the shape of the
Kohler curve, when the relative effect of these scatterers is the same in both
hands. I t  can be shown th a t  this condition also determines the applicability
of M atthiesen’s rule.

There is m uch experim ental evidence 10°) th a t  indeed, a t least in the mono
valen t m etals, Kohler’s deductions apply. Thus it  can be expected th a t the
presence of vacancies and in terstitia l atoms will have only a very slight
effect (if any) on the  Kohler curve of copper and gold. This is confirmed by
our own experiments, as described below. Dislocations as anisotropic
scatterers, however, m ight have an appreciable and essential influence
on the m agnetoresistance. I t  was therefore thought th a t  by  studying the
(transverse) m agnetoresistance of deformed m etal wires a t very low tem 
peratures the  presence of dislocations m ight possibly be detected. This
expectation was indeed confirmed. In  the following section we shall discuss
the  theoretical background of the  magnetoresistance effects caused by
dislocations. The observations will be described in  section 4.3.
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4.2. Theory of the magnetoresistivity of dislocated metals

Lattice defects can affect the magnetoresistance as plotted in the reduced
diagram in three ways. They can (1) scatter the  charge carriers anisotropical-
ly, (2) deform the Fermi-surface by the elastic strains around them , or,
lastly, they  m ay, when present in more or less ordered arrays, produce
so-called size-effects 101). I t  is im probable th a t  point-defects can make
their presence known in either way, as they  scatter isotropically, produce
only short-range strains and cannot m ake up efficiently reflecting layers
when present in  the densities as encountered in  practice. The same holds
true for chemical im purities in  disordered alloys and experim ent confirms
this (see sections 4.3 and 5.2.2).

Dislocations, however, produce appreciably anisotropic scattering. More
over, they  have long-range strains associated w ith them  and they  often occur
in ordered arrays (sub-boundaries).

I t  is quite possible th a t  a t low tem peratures size effects m ight be associat
ed w ith the presence of dislocation walls, as the la tte r need to  be separated
for this only by  distances of the  order of the  m ean free pa th  or less, th a t  is
10”3 cm or less in  pure copper a t 20 °K. However, the dependence of the
m agnetoresistance on the fieldstrêngth would then  be expected to  be quite
typical, and the observations, to  be discussed in the next section, seem to
rule out this possibility.

To estim ate the effect of the dislocation strains on the  shape of the  Fermi-
surface, the m ethod of H unter and N abarro 38) could, in  principle, be follow
ed. In  view of the huge theoretical differences th a t  then  arise and of the
inherent incertainties of their trea tm ent as shown by  the poor agreement
w ith experim ent, we have refrained from a theoretical investigation of
this effect. The only phenomenon th a t  yields to  sem i-quantitative trea tm ent
is the  influence of the anisotropic scattering. We shall deal only w ith th a t
here 102).

Consider a m etal wire in a transverse m agnetic field H, containing N
parallel edge dislocations per cm2. W hen the  current j  runs in an arb itrary
direction w ith respect to  th is set, the  resistivity due to  dislocations is
given by  (compare (1.27) ).

^gdisl =  ATgi cos2(b .j) +  N q2 cos2( n . j ) , (4.1)

where b is the Burgers vector and n  the un it vector norm al to  the glide plane
of each dislocation. In  order to  simplify the derivation, we shall restric t the
possible orientations of the dislocations as follows (fig. 20). We take the
angle between glide planes and wire axis to  be 45° and assign the same value
to  the angle between the Burgers vector (slip direction) and wire axis. In
polycrystalline wires of small grain size these seem plausible assumptions.
We can specify the orientation of the dislocation set by  one angle y, viz. the
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angle between the axes of the  dislocations and a given direction perpendicu
lar to  the wire axis, for which we take the direction of H. Introducing
rectangular coordinates x along H, y  perpendicular to  H and to  the wire
tx is and z along this axis and defining the current direction w ith respect to
ahis system by the polar angles 0  and 99 (the 2 -axis being taken as polar
axis), equation (4.1) becomes:

A (pdisl — N  | COs2 0  -f- sin2  0  cos2  (9 9  — y )| -f-

+  JV(gi — g2) sin 0  cos 0  cos (9 9  —• y ) . (4.2)

Z

- J s  /

Fig. 20. Geometry of the configuration of dislocations with respect to the magnetic field and
the wire dimensions, as adopted in section 4.2.
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This formula for the anisotropy of the dislocation resistance has been derived
by considering the scattering m atrix  element of a dislocation, w ithout any
im plication such as the supposition of the existence of a relaxation tim e etc.
Assuming M atthiesen’s rule to  hold (this assumption reaches far deeper),
the resistivity of the dislocated m etal is given by:

Q =  Po +  ^gdisl» (4-3)
where p0 is the resistivity of the undeformed wire. The contribution to  the
resistivity caused by  dislocations will be supposed to  be small, so th a t in
term s of the conductivity (4.3) can be w ritten  as

(1 .3 .)
Qo >

The resistivity of a m etal can be found by  solving the so called Boltzmann
equation th a t governs the equilibrium shape of the distribution function
ƒ (k) in m om entum  space of the  conduction electrons. An often used
approxim ation to  facilitate the solution is to  describe the  effect of the
collisions of the electrons w ith the lattice by  a relaxation time r. The
Boltzm ann equation then  takes the simple form

~ l ( F +  r - v kE x H ) v k / + ^ = ^  =  0 - (4-4)n \ nc 1 r

Here E (k) is the energy of the  electrons w ith wavevector k , F  and H  are
the electric and m agnetic field strengths and f 0 is the undisturbed distribu
tion function. The equation holds only when

eHx
me <  l; (4.5)

otherwise the deviations of the electrons from their p a th  due to  the magnetic
field become comparable to  the m ean free p a th  and quantum  effects come
in.

The current j  is given by

j  =  f j j  V k E . f . d k x dky  dkz , (4.6)

where the integration is over the whole of m om entum  space.
The introduction of r  can be defended rigorously only in very simplified

models where r  is essentially independent of k.

Quite generally we can write for the distribution function:

/ - A +  § ( • * ■ + B v ‘ £ x h ) - ' -
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where 1 is a kind of generalized mean free p a th  vector th a t m ay depend on k. Then, if
Pkk- denotes the transition probability for dislocation scattering from wave vector k  to  k ',
i t  is easily found by counting the numbers of electrons entering and leaving a un it volume
of k-space because of collisions, th a t the following integral equation holds:

where the integration is over the Ferm i surface in k'-space. Now, the introduction of a
relaxation tim e means the replacem ent of this equation by the much simpler one

VkE = * ^ t rr(k )
This is only allowed when always I is parallel to  V * E, which need not be a t all true for
arbitrary  Pkk'* I t  is of course allowed when Pn* does only depend on Jk—k l ,

We now m ake the fundam ental assum ption th a t equation (4.4) will
describe, a t least to  a first approxim ation, also the  sta te  of affairs in a dis
located m etal. Due to  the anisotropy of the  resistance, r  m ust now necessari
ly depend on k, and the use of such a r  in B oltzm ann’s equation is thus open
to  criticism. However, we m ay expect th a t  the  results of this assumption
will give us a t least some insight in the problem  under consideration. An
exact trea tm en t w ith the aid of anisotropic transition  probabilities leads
to  considerable m athem atical difficulties.

The relaxation tim e m ust be chosen in  such a way th a t  on computing
the current in the direction of the applied electric field from (4.4) and (4.6),
the  correct anisotropic resistance (4.2) is obtained. We shall write

r = r 0 — r ^ k ) ,  (4.7)

where r 0 applies to  the  undislocated m etal (and is thus independent of k).
Denoting the polar coordinates of k  in the  coordinate system defined before
by  O' and q>\ we try  the assum ption th a t  x1 can be expanded in  term s of
spherical harmonics of orders zero and two. The coefficients of the expansion
can th an  be determ ined by  the  procedure mentioned above, viz. by
comparing the ordinary resistivity according to  (4.2) w ith the expression
resulting from (4.4) and (4.6) th a t  contains these coefficients.

This comparison can only be m ade when the  dependence of E  on k  is
known. This dependence m ust be such th a t: (a) the undeformed metal,
w ith  its  presumed isotropic relaxation tim e, shows a finite m agnetoresistivi
ty , of the order of m agnitude as th a t  observed in  the noble m etals, and (b)
the  introduction of isotropic scatterers in  the  m etal m ust no t change the
reduced m agnetoresistivity as measured in  a Kohler diagram. The la tte r
condition follows from the experim ental results: neither the im purity  con
te n t of copper nor the presence of point-defects affects the  Kohler curve
(sections 4.3 and 5.2.2). Condition (a) implies th a t  the simple assum ption of
one spherical energy surface is no t allowed. The simplest model th a t  can be
adapted in  such a way th a t  also the second condition is obeyed, is the
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previously  discussed tw o-band  m odel 89), in  w hich i t  is assum ed th a t  the
cu rren t is carried  b o th  b y  electrons and  holes, characterized  b y  th e  con
cen tra tions Tij and  ra2 and  th e  effective m asses twj and  m2 respectively .
W e assum e th a t  in  each b an d  r  can  be w ritten  in  th e  form  (4 .7), w here the
anisotropic p a r t  can be expanded  in  spherical harm onics. L im iting  th e
expansion to  second o rder harm onics, we have

r (,) =  4 °  |« (i) — 6(i) COS2© ' — c(i) cos2 (<p' —  y)  sin2© ' —

— d(,) sin (<p' —  y)  cos (<p' —  y)  sin2 © ' — e(<> cos (<p' — y)  sin © ' cos ©' —

— / (l) sin (99'  —  y)  sin © ' cos 0 ' | .  (4.8)

for each b an d  (the bands are deno ted  b y  th e  superscrip t i).
M aking use of th e  special p roperties of m etals, viz. th a t  a well defined

F erm i surface E =  E0  exists and  th a t  to  th e  in teg ra l (4 .6) only those
electrons possessing an  energy very  n ea r to  E 0 con trib u te , we can w rite
(com pare 99) ) :

<r(0, 95) =
e2

n h 2

2n + y  n

? ƒ ƒ
V 0

T« (vk£<%. sin O'A&'dcp',
K

(4 .9)

w here 0(0,99) s tands for th e  co n duc tiv ity  of th e  m eta l (in th e  absence of
a m agnetic field) w hen th e  cu rren t runs in  th e  d irection  The in tegrals
in  b o th  (spherical) bands can be evaluated ; th e  re su lt is:

0(0 ,99) =  e2 2

-f- sin (99 — y)

6(<)- f  c(i) 2 ...
—^ ------ h g- )6' ,' cos20 - | - c*,*cos2(9)—V) sin20-(-

(99 y) sin2 0  cos (99 — y) sin©  cos© -(-

+  / (,) 8in  {<p—• y) sin 0  cos 0   ̂ . (4 .10)

T he am sotropic sca tte ring  b y  dislocations follows th e  sam e rule, as expressed
b y  (4 .2), in  b o th  bands. H ow ever, th e  expression (4 .2) m ust be m odified in
accordance w ith  th e  adop tion  of th e  tw o b an d  m odel. T he effect o f disloca
tions will now  be described b y  adding  to  th e  resis tiv ity  in  each band an
anisotropic te rm  of th e  form  (4 .2), w here 6l and  g2 need n o t be th e  sam e in
th e  tw o bands. W ith  th e  aid of form ula (4 .3a) we th u s arrive  a t  th e  following
form ula fo r a ( 0 ,  99) th a t  includes th e  effect o f dislocations (com pare " ) ) :

a ( 0 ,  99) =  e2 S 1 - i V
(ei‘) 4- pW
]"■ 2 (i)—  (cos20 +  sin2© cos2(99— y)) +

# - #+ -7s — sin 0  cos 0  005(99 —■ y)? • (4 .11)
? o ' V
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The comparison of (4.10) and (4.11) yields no unambiguous result for the
coefficients a ''\ F1’ etc. However, there is no priori reason to  prefer one
solution for the 12 constants to  another, and we thus take the simplest one,
by equating the coefficients in (4.10) and (4.11) to  each other in each band
separately. The result are the following completely analogous expressions
for r 1' in bo th  bands:

1 +  2Vg(r + e'2
2 ^

.0) 5 0«  4- o(i)
-  N  - — Ts--— ^cos2 0 '  +  sin2 0 '  cos2 (9/ — y)j

è P
5 o(0 _  o(0

— ■ —  N  ——... 2 sin 0 '  cos 0 '  cos (w' — y)
2 <><•>

,(*'== 1,2). (4.12)

We shall use these expressions, however formally derived, in the
following discussion.

We are interested in  the  change of resistance by a transverse magnetic
field when the  current flows in  the direction of the wire axis ( 0  =  0) and
the  only existing field components are H x, F y  and F z . A similar problem has
been studied by  Davis los), and his results can be directly applied here. We
can carry through the  com putation for each band separately. For the  co
efficient of transverse m agnetoresistivity the following expression holds:

/ e \2 [/̂>+/<j>] • [ip+jj2)] - nr
\ h 2c)  "

D e(H)-e( o)
" t  ------ --------------“ v “ t j 2 -------

e(o )H 2 [ I '1» +  i i 2)] • [i{1] + 1{2)]
(4.13)

where q(H) and p(0) stand for the resistivities of the  dislocated m etal in
fields H  and zero respectively, and I[l\  . . . ,  1 $  are integrals, to  be evaluat
ed in each band, th a t  are defined as:

if*

i p

i f *

i p

IIJ
• ö / o  / d E

d E  \d k
d kx dky d k

e2 ff(o)»

—  r  (---- ) d kx dky dkz ;
dE \dkyj y \

• ö / o  d E  /  d E  \  „  „  1 (<)
0 t Q I t —— ) Akx dky dkz ;

(4.14)

d E  dkz

Ü
d E  dkz (

n,y/

dkz
dkx dky dkz

The operator 12 is in each band defined as:

ö £ (i> ö ö £ (<) ö . . . . .Q = ------------------------------- (4.15)
d ky  dkz dkz dky

Making use of the  fact th a t  d f J d E  only differs appreciably from zero near
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the Fermi surface E(k) — E0, the integrals can be evaluated exactly (in the
spherical bands adopted).

Putting t(i)
eP

, we find, up to linear terms in t*‘), the follow

ing general expression for the coefficient of transverse magnetoresistivity:

^  +  t<2> i

B , e2 n(1)n(2M 1M,)
til) r<2> >2 <

+ - (1 + cos2y)
c2 m**W2)

+ J ( lfc “  y>— i— (m

. s K ) *(1)-» (2)
iW 'V  \7n(2V ) 2jgjy /n (1)r<2Y ;  / ^

4

+  0 ; (4.16)

0  stands for the higher order terms.
When only one spherical energy band exists (n(2) =  ,0), all linear terms in
t^  vanish and only quadratic and higher order terms remain. That means
that in the simple model of one spherical energy surface the influence of
dislocations is in first approximation proportional to the square of the
dislocation density. This peculiar result arises from the special manner in
which we have described the dislocation scattering, viz. by adding an aniso
tropic term to the relaxation time.

This can be illustrated in  th e  following very schematic manner. W hen an electric field F
is applied, the momentum vectors of the conduction electrons are changed by the (tim e)
averaged amount:

(4.17)

if  the tim e of averaging is long compared to  the m ean free tim e between two collisions with
the lattice, th a t is, long compared to  the relaxation tim e r . A magnetic field H  a t right
angles to  F  produces on the i th electron a force G; directed perpendicular to H  and to the
instantaneous m om entum  k:

Gi =  — H x k i .  (4.18)

Averaging over a sufficiently large num ber of collisions, between which th e  k, change in
such a  way as to  leave only the resultant mom entum (4.17), the resultant Lorentz force
becomes simply:

H  x  dk (4.19)

This mean force is compensated by the Hall field and no current flows perpendicular to F
when all electrons undergo the same change of mom entum (4.17). I f  the la tte r  condition is
not fulfilled, there results on a given electron a net force (averaged again over many
collisions):

G; =  —  H  x  (dkf— < 3 k > ) .  (4.20)
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Here the <  >  sign stands for averaging over all electrons, thus over k-space (the sign
denotes time averaging).

Deviations from the mean momentum <  <5k> occur when (5k as given by (4.17) is a
function of k, either through the occurrence of an anisotropic term in r  or through a
departure from spherical symmetry of the energy surface, that is through the occurrence of
an anisotropic term in the effective mass. If we put quite generally r  =  T0 -{- » 1/m =
l/m0 +  1/m,, where z1 and m1 are these anisotropic contributions, we have

—  f i l l  If —  ( ;  <  <5k >m1 ’i .£ FIt m„ (4.21)

Thus there occurs an average component of momentum perpendicular to the applied
field which to a first approximation (assuming — and —  <C 1) is given by:

T0 ml

(5^ki ^ — H X F j —  +  — im0 " m0 'i
(4.22)

for ith electron. The mean value of the momentum of all electrons in the direction of
the applied field is thus diminished in the ratio

V ( d k ) a -<<&i>*l\Sk\ «  ( 4 - 2 3 )
Ttl q C '  TBi T q *

The coefficient of magnetoresistivity is thus given by

( - ) ’i  < ) -  +  — (’ > .  (4-24)\m0cl f r0

where the averaging is over k-space.
When the energy surfaces are spherical (ml =  oo), the effect of the magnetic field on

the resistivity is proportional to <Ti2> . In general the magnitude of Bt will be governed
bv the averaged product < — • — > ,  and will thus depend on the correlation between

”h  T„
the anisotropy of the effective mass tensor and that of r.

As discussed in  section 4.1, in order to  fulfill condition (b) of page 68, it
is necessary to  assume th a t  isotropic scatterers affect the conductivities in
bo th  bands by  relatively the same am ount. This can easily be verified by
investigating the form of (4.16) when only an isotropic contribution to  r  is
present. Also experim ent points strongly to  this conclusion (validity of
M atthiesen’s rule). We shall extend its field of applicability to  the case of
dislocations in  the following (although in fact no theoretical basis is present
for this assumption) and write therefore:

ei1* +  021’ ei2) +  P22) Qi  +  f?2 (4.25)
qP  ~ ^ 2) (?o

Assuming as before

JVe‘ +  e , < l . (4.26)

i.e. th a t  the relative influence of dislocations in both  bands is small, we have
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_  e2
* c2

$ J*P , J?V
t p, +  rf-„ i

^ 2 ^ r *  J l~ è ( l  +  COS2y)iV— — -  +  0 j ,

i ml1) ml*) > (4.27)

where O stands for the higher order term s.
The ordinary conductivity in the  direction of the wire axis can, when

(4.26) is fulfilled, be w ritten in the form

cr(0) =  e2 '
ml1) n»(j) s c  eo V (4.28)

W hat we are interested in, is the relative increase, caused by  dislocations,
of the ordinates of the Kohler curve a t a constant value of H /q(0). T hat is,
we are interested in the quantity

o )g«g2(°)^~)gte2(o)(,
|* V (0 ) (0

(4.29)

where the subscript N  denotes the dislocated state , the subscript 0 the
undeformed state. From  (4.27) and (4.28) it follows th a t, when (4.26) is
fulfilled, the  very simple relation applies:

0  =  ï  sin2y N  gl +  Pg +  O'. (4.30)
^0

O' contains term s of higher order in  N  th a t  depend in an intricate way on
the band constants. Only by a very detailed study of the anisotropy of the
undeformed m etal this dependence could be checked experim entally. In
this study we shall restric t ourselves to  the linear term  only.

The following conclusions can be drawn from (4.30).
1. The effect of dislocations on the m agnetoresistivity disappears when

the dislocations are parallel to  H  and is m axim um  when they  are
perpendicular to  the  field.

2. In  the  linear approxim ation the effect does not depend on the aniso
tropy  of the resistance perpendicular to  the dislocation axis; the result
therefore applies to  dislocations of arb itra ry  character.

3. W hen the orientations are arbitrarily  d istributed except for the condi
tions imposed on them  in the beginning of this section, one obtains by
averaging:

/ ? =  +  (4.31)
Qo

a result th a t  should apply to  polycrystalline metals. The relative effect of
dislocations on the ordinary resistivity follows from (4.28) to  be
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f?i +  É?2 (4.32)

and  th u s

/?/« =  V. (4.33)
in  th e  m odel used.

4.3. Observations of the magnetoresistivity of deformed copper wires

The th eo re tica l resu lts of th e  foregoing section have been derived  under
various sim plifying assum ptions, tw o of w hich im pose restric tions on th e
experim en ta l conditions. The first is th a t  expressed b y  (4.5) and  can also
be w ritten  as:

T he second one is th e  supposition  th a t  th e  d islocation resistiv ity  is re la tively
sm all ((4.26)). B o th  assum ptions are verified in  th e  case of copper s tra ined
less th a n  10%  and  observed in  fields n o t stronger th a n  10000 Oe, a t  th e
tem p era tu re  of liqu id  hydrogen.

W e have  carried  ou t experim ents on 99-998%  pure polycrystalline wires
0-5 m m  th ick , in  th e  ap p a ra tu s  described in  ch ap te r 3. T he m agnetic  field
w as produced  b y  an  e lectrom agnet w ith  pole d iam eter of 9 cm. All wires
were first annealed  fo r tw o hours a t  550 °C in  vacuum . A fte r extension b y
0, 5, 10%  etc . respectively  th e  resistance of th e  wires was m easured  to 
gether w ith  th a t  of a very  m uch less pu re  dum m y wire, in  th e  m agnetic
field. The field s tre n g th  was varied  in  steps from  zero to  19000 Oe. The
resu lts, p lo tted  in  a K ohler d iag ram , are  show n in  figs. 21 an d  22.

I t  is seen th a t  th e  im p u rity  co n ten t of th e  w ire has indeed  no effect a t
all on th e  reduced  m agneto resistiv ity , as th e  sam e curve applies to  th e
undeform ed pu re  m eta l an d  to  th e  m uch  less pu re  com parison wire.

P lastic  s tra in  resu lts  in  appreciable deviations from  th is  cu rv e : th e
re la tive  m agneto resistiv ity  increases w ith  th e  s tra in , and  in  n o t too  strong
m agnetic  fields th e  re la tive  increase is p rim arily  proportional to the strain
and  fa irly  independent of the field strength.

A t higher field s treng ths th e  effect of th e  s tra in  dim inishes and  even seems
to  disappear.

The lack  of influence of im purities, to g e th er w ith  th e  absence of any
effect of an  annealing  tre a tm e n t below 200 °C on th e  m agneto resistiv ity ,
as will be discussed in  ch ap te r 5, have  lead  us to  conclude th a t  th e  add itional
m agneto resistiv ity  is indeed caused b y  dislocations only, in  agreem ent w ith
th e  theo re tica l argum ents o f section  4.2.

To com pare th e  observed m agneto resistiv ity  increase w ith  th e  increase of
th e  o rd inary  resistiv ity , th e  re la tive  effect o f dislocations on th e  la tte r

H/ q(o) <  nec. (4.5a)
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m ust be known. I t  follows from a combined analysis of the m agnetic and
the recovery experiments, to  be presented in the next chapter, th a t  the
effect of dislocations on the ordinary resistivity of copper can be found by
annealing the wire a t a tem perature of about 200 °C. In  table V the com par
ison is made, a and /? denoting, as in  section 4.2, the relative increase of
ordinary and m agnetoresistivity due to  dislocations.

---- Oé = 0
CX comparison^

-—  a  £=o.4

4.99x10 SL cm
5I.2X10'9 n
9.85x 10'9 „
2 2 .1 x1 0 „

u I 1-5 2x10 kOe/nficm
-----0) \  '  '  8 7 9 8 7

Fig. 21. Relative magnetoresistivity d p /g (0) of polycrystalline copper a t 20 °K as a function
of the reduced fieldstrength H / q ( 0). Plastic strain results in  an observable increase of the
magnetoresistance, impurities have no effect.

The quantity  a was m easured as the relative increase a t 20 °K in resistivity,
after deformation a t 20 °K and annealing a t 225 °C. /S was derived from the
individual Kohler curves a t the constant value H / q(0) =  300 kOe/pQcm,
th a t is in  th a t region of the diagram  where the observations are most re
liable; brackets denote uncertain measures. I t  is seen th a t the observed
values of /S/ot are indeed of the order of the theoretical value 0-5. The best
agreem ent is obtained w ith wires deformed 10%. This can be easily
explained: more heavily strained wires do no longer follow the simple
theory, and less deformed wires do allow b u t very inaccurate measuring.
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TABLE V
Observed increase of resistivity (a) and magnetoresistivity (/S) at H/q(0) =
300 kOe/pQcm and critical reduced field strength [JJ/p(0)]cr, of polycrystal
line copper deformed at 20 °K.

ExtensionWite no

450 kOe/jxQcm
350
500
350
400
350

o £=0
(^comparison wire

A £ = 5 .2 %  1 Strained at
20°K

v drawn at 20 °C from
0.5 fo 0.2mm<t>

Fig. 22. Analogous to  fig. 21, bu t now on a logarithmic scale.
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B etter fit w ith theory can hardly  be expected, as the various approxim ations
introduced in  the theory, especially the use of an anisotropic relaxation
tim e in the com putation, m ay have influenced appreciably the  value of
/?/a. Also the specific orientation chosen for the dislocations is no t realized
in practice, m any dislocations w ith screw character being present.

A certain critical reduced field strength  [fï/g(0)]cr could be estim ated
from our experiments. A t this field strength  the relative effect of disloca
tions begins to  abate. As is also dem onstrated in table V, this critical
reduced field strength  is found to be fairly independent of the resistivity
in field zero, and equal to  about 400 kOe/pQcm. This constancy gives rise
to  the obvious conclusion th a t  the existence of a critical field strength  is
closely associated w ith the condition expressed in equations (4.5) and (4.5a).
Expressed numerically in  the  units used, (4.5a) becomes

H /q{0) <  512 kOe/pQcm,

and is therefore indeed in  fair num erical agreem ent w ith the observed
critical field strength. A completely different theoretical trea tm ent is
necessary, however, to  explain the  influence of dislocations in  high fields.
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5. RECOVERY OF ADDITIONAL RESISTIVITY AND MAGNETO
RESISTIVITY CAUSED BY PLASTIC DEFORMATION

5.1. Introduction

Up till now we have only discussed the physical properties of metals de
formed a t very  low tem peratures. A part from the obvious reason th a t  the
specific consequences of the deform ation show up most conspiciously under
these circumstances, another reason compelled us to  this restriction. At
tem peratures higher th an  th a t  of liquid hydrogen, the possibility of diffu
sion of the lattice defects over appreciable distances in  the tim e of the experi
m ent, cannot be ruled out. I t  is indeed observed th a t on heating a low-
tem perature-deform ed m etal to  e.g. room tem perature, an  appreciable
decrease of the additional resistivity takes place. This m ust be a ttribu ted
to  the  diffusion of the lattice defects, originated by  the deformation, out of
the m etal or to  sites where their influence is less. I t  is of great interest to
study this and related recovery phenomena. Due to  their different diffusive
properties, the  relative concentrations of the various kinds of lattice defects
vary  during recovery, and the  possibility exists th a t  in  this way more can
be learned of the  influences of these defects separately.

Lattice defects are formed in a m etal no t only by  plastic deformation bu t
also by  irradiation w ith neutrons, deuterons or a-particles, and even w ith
very fast electrons. We shall no t discuss the theory  of form ation of lattice
defects by  irradiation here, as extensive discussions on this subject can be
found elsew here104). We only m ention the  im portan t result th a t  by
irradiation preponderantly vacancies and interstitials are produced, in
equal quantities (the m etal atoms being knocked off their sites). For
instance, irradiation by  1017 deuterons/cm 2 a t a sufficiently low tem pe
ra tu re  produces about as m uch vacancies and interstitials as deformation
by  say 10%.

J . A. B rinkm an los) has drawn atten tion  to  the  possibility of a completely
different effect caused by the impinging particles. Whereas it  is usually
supposed th a t the  vacancies and interstitials originally produced along
the  p a th  of the particle, rem ain in the  m aterial in  this form during the
so-called “therm al spike” also associated w ith the  la tter, Brinkm an has
discussed the  possibility of local annealing, resulting in the formation of
“displacement spikes”  containing, for example, dislocation loops instead
of m any of the  point-defects. He concludes on sem i-quantitative arguments
th a t  this mechanism will indeed take place in  nearly all, except the very fight
metals. Only experim ent can decide whether this conclusion is allowable.
The observations now available, to  be discussed in the  next section, seem
to  point to  the  conclusion th a t if  indeed dislocations are produced a t all,
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then only in densities very m uch less th an  those encountered in  deformed
metals.

There is a th ird  way in  which defects can be introduced into a m etal, th a t
is by quenching rapidly from a high tem perature. This process has already
been discussed in section 1.2.3. One can be reasonably sure th a t  under
careful experim ental conditions only excess vacancies are retained in the
m etal, by  reason of their low energy of form ation, and th a t the accidental
formation of dislocations by the  in ternal stresses set up during the quench
does no t occur in appreciable measure in the noble metals.

In  order to  have a t our disposal as m any experim ental d ata  as possible,
we shall discuss the recovery characteristics of cold-worked, irradiated  and
quenched materials simultaneously. We confine ourselves again to  the
noble metals, especially copper and gold. As we have seen in section 1.2.3,
the differences between the diffusion characteristics of these metals are so
slight th a t  they  can safely be used in  the same comparison.

In  table V I the salient distinctions between the differently treated  metals
are reviewed; it  will be shown th a t  these distinctions, together w ith the
differences in  recovery behaviour, allow interesting conclusions to  be drawn.

TABLE VI

Lattice defects produced by  cold-work, irradiation and quenching of metals

T reatm ent Dislocations Vacancies Interstitials

Cold-work m any m any ra ther m any, b u t less
th an  vacancies *)

Irradiation very few or none m any m any

Quenching few or none m any none

*) See sections 2.1 and 3.3.1.

5.2. Review of data on recovery

5.2.1. Recovery of electrical resistivity of copper and gold

The results of the recovery experiments on quenched, irradiated  and cold-
worked copper and gold th a t we were able to  find in  littera tu re  *), together
w ith some results of our own, are summarized in  table V II. The recovery
phenomena can be characterized by three quantities, viz. the activation
energy Q associated w ith them  (if any), the temperature region T  in which
they  can be observed w ithin a reasonable time, and the percentage dimuni-

) up to the end of 1955.



TABLE VII

Recovery of resistivity in copper and gold

Treatm ent

Cu, cold-work
a t 78 °K or
20 °K

Cu, cold-work
room temp.

A uthor

Manintveld
light work

Manintveld
heavy work

Berghout
light work

v. Bueren &
J ongenburge

light work

Eggleston
heavy work

Bowen e t al.
heavy work

Sm art e t al.
heavy work

Tammann et
al.

heavy work

Step I

A T
°C

Q p
«V %

Step II

A T
°C

Q
eV

— 130
to

-  60

< —70

0-20

0-25

P
%

1 0 10

10»

Step I I I

A T
°C

-  30
to

+  50
—70

to
0

<?
eV

0-88

0-82 10-1

together p  =  30 to  40%, depending on
tem perature of deformation

— 140
to

—70
0-44 10s

-  50
to
0

0-67 10s

Step IV

A T
°C

100
to

200
150
to

220

<?
eV

P
%

100
to

250
100
to

250

1-25

1-1

10»

103

«*50

10s

Step V

A T
°C

Q
eV

290

300

P
%

^ 2 50

? 50

10“2

10“ »

> 250

R efer
ence

108

109

30
to io-J

110

112

Au, cold-work
a t 78 °K

Manintveld
light work

— 120
to

— 30
0-29 19 10»

-  10
to

+  50
0-69 12 10» 92

Cu, irradia
tion  a t  78 °K
or less

Eggleston
e t al. < — 80 9 25 9

-  65
to

— 20
0-72 50 1 > 250 2-1 25 10“» 113

99 Overhauser ^ —180 0-2 50 1010
-  110

to
— 40

0-4
to
0-6

50 10s 114

„ Idem > - 5 0 0-68 25 10 no t observed 114

99 Marx e t al. < - 8 0
015
to
0-2

20 <«1010 30 0-9 ? 10 115

99 Meechan and
Brinkm an

— 190
to

— 40
30 + 2 0 0-60 50 10» a c trration ene

from  1
rgy
to 2-

varies cont
L eV; p  =

nuou
25

sly 116

99 Cooper e t al. - 2 3 0 0-1 40 10s s»—80 20 9 > —50 9 30 9 ««200 ? 5 9 117

99 Me. Reynolds
e t al.

— 60
to
0

? 9 9 slo w con
deer

tinuo
ease

US > 300 ? 9 9 118

Au, irrad ia
tion a t 78 °K
or less

Marx et al.
^ 1 5 0

0-15
to
0-2

2 0 10» +  20 0-9 9 10 115

Au,
quenching

Kauffman et
al.

Lazarev e t al.

0
0

0-68

0-5

50

> 5 0

10s

107 200?

> 300 2-2 9 10“2 66

67

C u 3A u ,
quenching

Brinkm an et
al. ^  150 1-2 30 10s 119

00o
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tion of the  resistivity, p ,  which th ey  represent. As Lomer and C o ttre ll106)
and Nowick 107) have shown, it  is of in terest to  com pute formally a fourth
quantity , n, from Q, the m ean recovery tim e t and the tem perature T, by
means of the formula

n =  vt exp (— Q /kT ) , (5-1)

where v is the  atomic v ibration frequency T =  0 (ca. 1013 sec-1). The formal
m eaning of n  is the num ber of atomic jum ps m ade by the  defect, w hatever
it  m ay be. The uncertain ty  in  n is very  large, viz. a factor 10 to  100, due
to  the  inaccuracy in  Q in  m ost determ inations. Possible dependence of the
additional resistance on tem perature by reason of the invalidity  of M atthie-
sen’s rule has n o t been considered a t all; if  present, i t  is presum ably very
small (p  <  1% ), as i t  has no t been detected in specially designed experi
m ents.

I t  has been possible 82) to  classify the  various d a ta  in  five groups, corres
ponding to  five recovery steps. These steps have been num bered I  to  V.'
From  a close inspection of table Y II the  following characteristics for each
step can be deduced.

Step I .  A ctivation energy 0-1 eV, occurs a t about 40 °K only in irradiated
m etals, where a 40%  decrease of the  additional resistivity is observed.
The step has been observed only once b u t very  accurately; i t  is certain th a t
i t  does not occur in deformed metals. Mean num ber of jum ps is 103.

Step I I .  A ctivation energy between 0T5 and 0-4 eV, w ith a m ean value
a t 0-2 eV. Occurs a t about — 100 °C in  irradiated  and in  deformed metals,
and is associated w ith  a 20% resistivity decrease. I t  has no t yet been observ
ed in quenched m etals, although a recovery step of 0-4 eV seems once to  have
been noticed by  Kauffm an and K oeh ler120). This observation has not
been confirmed, however 66). The m ean num ber of jum ps is 10® — 1010.
The observation of R. R . Eggleston 109) of this recovery step forms an
exception as to  the  values of Q and n. Possibly this observation applies
really to  the  th ird  step.

Step I I I .  Activation energy between 0-5 and 0*9 eV, w ith  a m ean value a t
0-72 eV. Occurs a t about 0 °C and produces between 20 and 40%  resistivity
decrease, depending on the  m ethod of treatm ent. The step seems to  appear
relatively stronger in  irradiated  and quenched metals th an  in  deformed
m etals. I t  is no t possible to  define a m ean num ber of jum ps, as the relevant
figure varies between 1 and 107.

Step IV .  Activation energy about 1-2 eV. Has not been found in irradiated
m etals. The percentage decrease of additional resistivity associated w ith it
seems to  depend sensitively on the  tem perature of the previous deformation
procedure. In  room tem perature deformed metals p  is about 40% , in  metals
worked a t m uch lower tem peratures i t  am ounts only to  10%.
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A dependence of the recovery phenomenon on tem perature of deformation seems to  be
detectable already when copper wires deformed a t 20 °K and 78 K. are compared. This is
shown by the following observations by  Jongenburger and the author (dashes mean no
observations available):

Percentage recovery
of steps I I  and I I I

Percentage recovery
of step IV

Cu deformed e =  10% 37-7% —
a t 20° K £ =  20% 43-2 8-9

Cu deformed e =  10% 24-7 —
at 78° K £ -  20% 34-5 10-5

We shall not discuss this interesting effect further, nor the possible dependence of the
recoverable fraction on pre-strain, as is also suggested by the above observations.

The recovery step has only once been observed in  a quenched metal,
viz. the  alloy Cu3Au, although from a detailed study of the original ob
servations of Lazarev and Ovcharenko one is tem pted to  believe th a t  i t  is
present in  quenched gold also. I t  would occur there a t a tem perature of
about 200 °C, quite comparable to  the observed recovery tem perature of
step IV  in all other cases. The value of n associated w ith this step am ounts
to  about 103.

Step V. A ctivation energy about 2-1 eV. This step a t about 300 °C com
pletes the  recovery of the resistivity. I t  seems to  be less conspicuous in
irradiated  or quenched metals th an  in  cold-worked metals. The num ber of
jum ps associated w ith  it  has the  impossible value 10 2.

These observations are summarized in  table V III  and fig. 23.

TABLE V III

Characteristics of recovery steps in  copper and gold

Step I I I I l l IV V

Tem perature (°C) — 230 — 100 0 200 300

Activation energy (eV) 0 1 0-2 0-7 1-2 2 1

“N um ber of jum ps” 10s 109-1010 . . . 103 —

Percentage de-
crease of addi-

Cold-work 0 20 20 10-50*) 50

Irradiation 40 20 30-40 . . . 10
tional resistivity Quenching no obs. 0? 50 30? 20?

*) The la tter value refers to  room -tem perature deformed m etals, in  which steps I I
and I I I  are obviously absent.
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I t  should be borne in m ind th a t  the numerical da ta  contained in table
V III  only represent rough averages.

100%
—  cold-work
—  irradiation

______ quenching

0  0 .10.2  0.5 0 .7  1.0 1.2 J.5 2.0 2.1 eV
8 7 9 8 9

Fig. 23. Schematic representation of the recovery of the resistivity of cold-worked, irradiated
and quenched copper and gold. The five recovery steps I , . . .  . ,  V, are characterized by
more or less well defined energies of activation Q. The hatched regions denote the limits
within which Q varies according to  different observators.

5.2.2. Recovery of the magnetoresistivity of cold-worked copper

The recovery of the  additional m agnetoresistivity of polycrystalline
copper deformed a t 20 °K follows a m uch simpler pattern . As is illustrated
in fig. 24, heating the wires up to  a tem perature of 175 °C (th a t is including
step IV  in the scheme of section 5.2.1) produces no decrease at all of the
additional m agnetoresistivity. Even a slight increase of this quan tity  can
be observed, possibly caused by  experim ental errors, however. Only by
heating above 300 °C does the m agnetoresistivity re tu rn  to  its original
value pertaining to  the undeformed wire. I t  is thus found th a t the recovery of
the m agnetoresistivity is characterized by  only one recovery step, viz. step V.

5.3. Interpretation of the recovery phenomena

The in terpretation  of the  complex recovery behaviour of deformed,
irradiated  or quenched m etals in  term s of diffusion-like processes of the
lattice defects contained in  them , is in tim ately  tied  up w ith the determ ina
tion of the  physical properties of these defects, such as their contribution
to  the electrical resistivity and the m agnetoresistivity, and the activation
energies of form ation and m igration. As we have seen in this and the pre-
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ceding chapters, the numerical description of these properties is still very
uncertain, and therefore the in terpretation cannot yet be unambiguous.
However, by  comparing the inform ation contained in table I (chapter 1)
on the physical properties of lattice defects, w ith the  evidence presented
in chapters 3 and 4 and the contents of tables V I and V III, the following
explanation of the origin of the various recovery steps emerges.

We sta rt w ith recovery step V. I t  occurs in th a t tem perature region in
the  noble metals where also the well-known phenomenon of mechanical re
covery takes place. In  fact, mechanical hardness decreases together w ith

Cu20°K

— o—e=o
—O— 5=40%
—-X—  recovery 20°C
— -|—  »  175CC
— 4—  600°C

0  0.5 1 1.5 2x10s
87990 "~H'p(0) kOefracm

Fig. 24. Recovery of the magnetoresistivity of deformed poly crystalline copper, measured
at 20 °K. Heating to 20 °C and 175 °C produces no decrease of the magnetoresistance
(maybe even a slight increase can be observed; this has not been confirmed in later ex
periments). By heating above the mechanical recovery temperature, however, complete
recovery is obtained.
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electrical resistivity during step V 121). The recovery is associated w ith an
activation energy th a t  is comparable to  th a t of self-diffusion, th a t  is, to  the
simultaneous form ation and m igration of vacancies. From  these argu
m ents it  seems plausible to  assume th a t  the fifth recovery step is closely
related to  the climb-motion of dislocations, (section 1.1.3.2), resulting in
the form ation of “polygonized” dislocation walls etc. and associated w ith
an appreciable reduction in num ber of these lattice defects, hence in resisti
v ity  and in hardness.

This conclusion is strengthened by  the  observations discussed in  the
preceding section, viz. th a t  the m agnetoresistivity recovers in this step only.
Only one recovery step presum ably means only one kind of defects re
sponsible for the  additional m agnetoresistivity, and we have seen in  chapter
4 th a t  this kind of defect is very probably the dislocation. One thus obtains
complete m utual agreem ent between theory and experim ent when associat
ing w ith step V the  therm ally activated motion, th a t  is the climb motion, of
dislocations. I t  is now also clear why the fifth step occurs m ost conspicuously
in cold-worked m etals; these contain by  far the most dislocations. T hat also
in irradiated  and quenched metals step V has been traced can be under
stood when it  is realized th a t  quenching and irradiation m ay also
introduce a few dislocations into the  m etal and th a t, when self-diffusion
becomes possible, all kinds of more complex faults of the lattice, possible
consequences of earlier diffusion stages, or caused by  the trea tm ent itself,
can be removed.

The evidence on the recovery of the m agnetoresistivity allows another
conclusion to  be drawn, viz. th a t, this effect being presum ably caused by
dislocations only, also m uch or all of the  additional ordinary resistivity
remaining in the noble metals after recovery a t 200 °C, th a t  is about 50% of
the  to ta l resistivity increase, is due to  the  dislocations. T hat is, dislocations
are probably responsible for half o f the additional resistivity caused by
cold-work a t very low tem peratures. Of this conclusion we have already
repeatedly m ade use.

The la tte r  conclusion rests on the tac it assumption th a t no lattice defects of a more
complex kind th an  dislocations have been introduced by cold-work. There are no reasons,
however, to  believe in  the production of complex defects in  any appreciable amounts under
these circumstances.

The absence of any recovery of m agnetoresistivity below 300 °C allows us
to  be reasonably certain th a t none of the other recovery steps is due to  the
m otion of dislocations, except perhaps the first step, th a t  occurs only in
irradiated  m etals. As we have seen in section 5.1, i t  has been proposed th a t
displacement spikes exist a t the  end of the p a th  of each impinging particle.
These spikes m ust be considered as molten zones th a t  have rapidly solidified.
N aturally  the lattice in  such zones is highly disturbed and unstable. Only
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small energy barriers have to  be overcome to produce a more stable situa
tion, e.g. by  the condensation of m any vacancies into a few dislocation loops,
a process already discussed in section 1.1.4. Such processes, requiring only a
very small activation energy of the order of 0-1 eV, m ight very well be
responsible for the first recovery step in irradiated  metals. This has been
originally proposed by B rinkm an h im self105), and is supported by  Seeger
122). I t  is yet ra ther difficult to  understand why this step should be so
narrow, as m any processes occur simultaneously, w ith different energy.
Recently, Meechan and Brinkm an u6) have proposed th a t  step I  should
be caused by the annihilation of close pairs of vacancies and interstitials
formed during the  bom bardm ent w ith heavy particles. A t present i t  is
not possible to  decide between the  various possibilities.

The remaining three recovery steps m ust be explained in  term s of the
diffusion of vacancies and interstitials. I t  seems a t first sight quite a plausible
assumption th a t  the second step is caused by the  diffusion of interstitials, as it
has not been observed in quenched noble metals where no interstitials are
present. Moreover, the activation energy for in terstitia l m igration, 0-25 eV
according to  H untington’s calculations (section 1.2.2), agrees very well with
the  observed activation energy for the  second recovery step, viz. 0-2 eV.

A similar comparison between the activation energy for diffusion of
vacancies (1-2 eV according to  chapter 1) and the  observed activation
energy for recovery leads to  the  identification of step IV  w ith vacancy
d if fu s io n .  A problem arises then  in  the explanation of the inconspicuousness
of step IV  in irradiated  metals, where vacancies have been formed in great
numbers. This difficulty can be more or less explained, when it  is remembered
th a t vacancies and interstitials are presum ably formed in about equal
numbers, and th a t the  diffusion of interstitials, in step I I  (and I? ) , has
already led to  appreciable interstitial-vacancy recombination. Presum ably
not all the vacancies have disappeared by this mechanism, as p a rt of the
interstitials will have diffused to  dislocations, grain boundaries, etc. before
m eeting w ith a vacancy. Possibly the  remaining vacancies diffuse to
dislocations or form clusters in the third recovery step, not as single
vacancies, b u t as vacancy pairs. We have already discussed the possible
form ation of vacancy pairs in section 1.2.3. An estim ate by B artle tt
and Dienes 68) of the energy of m igration of vacancy pairs yields 0-6 eV
in copper, in good agreement w ith the  observed recovery energy of 0-7 eV
of the th ird  step.

I t  is now clear why the fourth  step is less difficult to  observe in deformed
metals and occurs quite strongly in quenched metals. By the  processes
m entioned above, presum ably nearly all vacancies have been used up already
in irradiated metals where interstitials and vacancies have been formed
in about equal numbers and close together in located regions, viz. where
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the  impinging particles have passed. In  cold-worked metals the interstitial
concentration is appreciably smaller th an  th a t  of vacancies, and moreover
vacancies and interstitials are formed a t more arbitrarily  distributed sites
in  the lattice. The m utual elimination is therefore not complete, and some
single vacancies remain. In  quenched metals there are no interstitials a t all,
and vacancies are formed quite irregularly, thus the fourth  step occurs
relatively strongly.

The five recovery steps of the  resistivity in  the noble metals can thus
be explained w ithout the  ad hoc introduction of any new concepts. Table IX
reviews the results of this section.

TABLE IX

Processes responsible for the recovery of resistivity in  copper and gold.

Step I i i h i IV V

R earrangem ent of
the lattice in  dis
placem ent spikes,
resulting in  the
formation of
small dislocation
loops, or
annihilation of
close interstitial-
vacancy pairs

Diffusion of in
terstitia l atoms
resulting e.g. in
in terstitial-va
cancy recombi
nation.

Diffusion of
pairs of va
cancies.

Diffusion of
remaining
single vacan
cies.

Climb motion
of
dislocations;
self-diffusion.

5.4. Other theories of the recovery phenomena

There exist m any other theoretical explanations of the recovery phenome
na discussed. However, m ost of these theories consider only one or two
recovery steps in  the  light of a particular kind of experim ent. This is a very
dangerous procedure, as one is then  easily tem pted to  reject other evidence
on different recovery steps, not agreeing w ith ones own theory. Only two
discussions on a more general basis have been published. Lomer and
C o ttre llloe) have based themselves on the com puted values of n, the “num 
ber of jum ps” . By applying ra ther strong corrections to  the values of n  as
they  follow directly from the  observations (but th a t  m ight yet fall within
the  experim ental errors), they  were able to  show th a t step I I  is characteriz
ed by a m ean value of n of about 10® to 10®, and step I I I  and IV  both by  a
m ean value of about 1-102. As is seen from our table V II, this is a ra ther
rigorous schematization. The authors deduced from it  th a t  steps I I I  and IV
are really identical, b u t th a t  the activation energy for recovery is a func-



—  89 —

tion of tem perature. They could explain a behaviour of this kind by assum 
ing the presence of im purities in the m aterial th a t act as traps for vacancies.
The second recovery step would then  be connected w ith the diffusion
of vacancies to  the traps. On increasing the tem perature between 0 °C and
200 °C the traps continually release the vacancies, which then diffuse to
e.g. the dislocations. This represents a continual recovery. The tem perature
dependence of the overall concentration of free vacancies can then  indeed
be described by a varying energy of activation.

We have advanced arguments in chapter 1 to  show th a t probably the
energy of m igration of vacancies is much too large (1-2 eV), th a t  diffusion
a t — 100 °C (step II )  could take place. Furtherm ore, i t  seems p re tty  clear
(and has been found experim entally, for example, by  B erg h o u t108) and by
Jongenburger and the author) th a t  thère exists a d istinct separation between
the  steps I I I  and IV. Lastly, the distinctions between the recovery be
haviour of differently trea ted  metals rem ain unexplained. Therefore, and
in view of the uncertainties in re, i t  seems im probable to  us th a t  the theory
of Lomer and Cottrell presents a completely sufficient explanation of
the observed phenomena. However, these authors brought to  light one
peculiar difficulty in our own explanation, viz. the low value of re in step IV.
B ut now, the same difficulties apply to  the other recovery steps. Whereas
w ith steps I  and V obviously re has no meaning, in  the  other steps a definite
meaning m ight be assigned to  re. One would expect a t first instance th a t  re
would be about equal to  the  square of the num ber of atomic distances to  be
travelled by  the defects to  the sites where they  are recovered. I f  these sites are
dislocations, the  observed num bers deviate appreciably from expectations,
and moreover re would be expected to  depend sensitively on the m ethod of
treatm ent. This has no t been observed. Possibly p a rt of the trapping sites
are thus indeed im purity  atoms. I t  is no t possible to  say more on these
problems a t the mom ent w ith any degree of certainty.

One might associate the value of re in  step I I  w ith the square of the mean distances
between interstitials and dislocations and between vacancies and in terstitials. This dis
tance would then  have to  be of the order of a few tim es 104 atomic distances, which is
ra ther large. The value of re in  step I I I  might have no real meaning as the formation of pairs
comes in, and for step IV  no reasonable explanation can be found a t all.

A nother theory, differing b u t slightly from our own and also based on the
presence of five discrete recovery steps, has been advanced by  Seeger 122)
and is seconded by  Meechan and Brinkm an lle) . The energy of in terstitia l
m igration has been recalculated by Seeger122); he found Qmt'=0-75 eV
in copper. The authors m entioned therefore associate step I I I  w ith
in terstitia l diffusion and step I I  w ith  the  diffusion of vacancy-pairs,
the m igration energy of which is of course no t very well known either and
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m ight indeed be as small as a few ten ths of an eV. The other steps are
explained as in this paper. The occurrence of “ step I I I ” in quenched metals
is explained by Seeger as the result of the  low density of trapping
centres (dislocations) in these metals. Then step I I  would occur a t tem 
peratures about 100 °C higher th an  normal, th a t  is, in the region of
tem perature where norm ally step I I I  occurs.

I t  should be m entioned here th a t  the m any difficulties in the in terp reta
tion of the recovery phenomenon th a t  have arisen and still arise, are caused
by the fundam ental disagreement th a t  exists in littera tu re  as to  the values
of the energies of form ation and of m igration of vacancies and interstitials
in  the  noble metals. Once this disagreement has been removed, the natu ral
explanation of the various recovery phenomena will follow suit. More
experim ents are needed, however, to  realize this zeal.
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6. CONCLUSIONS AND SUMMARY

From  the work presented in this thesis the following conclusions can be
drawn.
(1) The increase of the electrical resistivity of copper, silver and gold on
plastic deformation a t very low tem peratures is caused in about equal parts
by  dislocations and by  point-defects.
(2) According to  the observations, the scattering cross-section of disloca
tions m ust be larger by a factor of about 25 th an  th a t  derived from theory.
This m ight be due to  the effect of stacking faults.
(3) The dependence of the additional resistivity on strain  in polycrystalline
materials is, a t low strains, in satisfactory agreement w ith the results of a
simple theory th a t  is based on energy considerations and th a t describes the
form ation of the various kinds of defects in a purely geometrical m anner
only. The existence of several tem perature dependent phenomena in the
observations point, however, to  the need for a theory  in which also the effect
of tem perature is included.
(4) Dislocations can be studied independently by observing the m agneto
resistivity of deformed metals; the relevant observations are in good
agreement w ith the results of a theoretical study of this effect.
(5) On annealing the deformed m etals, first the point-defects diffuse out of
the m etal or to  sites where they  have less influence (dislocations), and after
heating a t about 200 °C only dislocations are left w ithin these metals. A
comparison of the recovery phenom ena displayed by irradiated, quenched
and deformed metals yields interesting evidence on the  diffusion of vacancies,
vacancy-pairs and interstitials in  metals. In  to ta l five discrete recovery
steps can be observed. Only one of them  occurs in  the recovery of the
m agnetoresistivity; four steps (but not all of them  the same) have been
observed in  the resistivity of deformed and irradiated  m etals, and three in
quenched m etals. An explanation of this complex recovery, w ithout making
any ad hoc assumptions, is possible, although not yet unambiguously.

These conclusions have been reached by  the  following route. F irst a
detailed study was m ade of the physical properties of dislocations, vacancies
and interstitials; i t  was based on the numerous da ta  available on these prop
erties in litterature . The results of this study are represented by table I.

The behaviour of the electrical resistivity of plastically deformed copper
and other noble metals was then  studied experim entally as well as theoretic
ally. The results of our own experiments and those of others are represented
in tables I I  and I I I .  I t  appears th a t  the additional resistivity can be repre
sented rem arkably accurately by  a simple power law w ith exponent
between 1-2 and 1-5. Such a relation could also be derived on purely
theoretical grounds, assuming dislocations to  be formed by  Frank-Read
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sources under the action of the applied stress, and point-defects by the
m utual intersection of dislocations (formulae (2.24), (2.25) and (2.35)).

The comparison of these formulae w ith the observations leads to  satisfac
to ry  agreem ent when it  is assumed th a t 108 dislocations per cm2 are present
in the undeformed m aterial and th a t about 101® Frank-H ead sources per
cm3 can be activated by the stress. However, i t  is no t possible to  deduce
from them  the relative influences of dislocations and point-defects. Even by
applying combined deform ation m ethods this distinction does not become
possible, although interesting phenomena, like a tem perature dependent
“Bauschinger” -effect and the existence of a m ultiplication factor in com
bined extension-twist experim ents emerge.

Theory yields, to  a first approxim ation, very simple expressions for the
effect of dislocations on the reduced m agnetoresistivity as illustrated in a
Kohler diagram  (formulae (4.30) and (4.33) ), whereas vacancies and in ter
stitials should have no influence a t all on this. The observations (table Y)
confirm this conclusion very well: indeed an additional reduced m agneto
resistivity is observed in cold-worked metals th a t  is of the right order of
m agnitude. I t  does no t decrease on any annealing trea tm ent below 200 °C
and is therefore indeed caused by dislocations only (fig. 24).

From  a study of d a ta  published in literature on the  recovery of cold-
worked, irradiated  and quenched metals, the  existence of five discrete
recovery steps emerges, characterized by different activation energies and
occurring a t different tem peratures. They are presented in table V III  and
fig. 23. A discussion of these recovery steps based on the assumption
th a t the  different recovery stages are associated w ith distinct diffusion
processes of the  various lattice defects, is presented in chapter 5 and sum
m arized in  table IX .
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SAMENVATTING

H et eerste hoofdstuk van dit proefschrift bevat een korte beschrijving
van  de voornaam ste eigenschappen van  dislocaties in metalen. De nadruk
wordt hierbij gelegd op de fysische eigenschappen, zoals de invloed op het
elektrisch geleidingsvermogen. De lite ra tuur op dit gebied w ordt aan een
kritisch onderzoek onderworpen, evenals die over de fysische eigenschappen
van vacatures en interstitiële atom en in metalen. De resultaten van  deze
beschouwingen zijn, voor zover zij op de m etalen koper en goud betrekking
hebben, sam engevat in tabel I. Vervolgens worden in het tweede hoofdstuk
de elementaire processen welke zich afspelen bij de plastische deformatie van
kubische m etalen aan een studie onderworpen. Met opzet worden problemen
die verband houden m et het verschijnsel der versteviging vermeden, en
w ordt de aandacht geheel gericht op de berekening van het aan ta l rooster-
fouten van  verschillende soort dat tijdens de deformatie on tstaat. In  het
door ons beschouwde geval van zeer lage tem peraturen hlijkt het mogelijk,
door het toepassen van  een energiebeschouwing, deze concentraties u it te
drukken in de plastische rek, zoals door de formules (2.24), (2.25) en (2.35)
w ordt aangegeven. In  hoofdstuk 3 worden deze theoretische uitdrukkingen
vergeleken m et het experim ent. De waarnemingen van  diverse onderzoekers
alsmede onze eigen observaties van het gedrag van de elektrische weerstand
van  koper, zilver en goud tijdens plastische deformatie bij stikstof- en
w aterstoftem peratuur worden besproken en proefondervindelijke u it
drukkingen worden geponeerd betreffende het verband tussen de additionele
weerstand en de plastische rek (formules (3.6) en (3 .7)). Deze uitdrukkingen
kunnen zonder moeite in  overeenstemming worden gebracht m et de hier
boven genoemde theoretische, indien bepaalde numerieke waarden aan de
concentratie van dislocatiebronnen en aan de dislocatiedichtheid in goed
uitgegloeide m etalen worden toegekend; waarden, die goed overeenstemmen
m et die welke men langs andere weg heeft verkregen (pag. 61). H et is niet
mogelijk gebleken uit dit onderzoek alleen eenduidig vast te  stellen welke
de relatieve bijdrage is van dislocaties enerzijds en puntdefecten anderzijds
op de additionele weerstand. De studie van de invloed van gecombineerde
deformatiemethodes leverde geen betrouwbare nieuwe gezichtspunten
hierom trent. Teneinde op dit belangrijke pun t meer klaarheid te  verschaffen
werd de magnetische weerstandsverandering, veroorzaakt door het plastisch
vervormen van koper bij w aterstoftem peratuur, zowel experimenteel als
theoretisch onderzocht (hoofdstuk 4). U it theoretische beschouwingen blijkt
dat dislocaties deze grootheid op zeer speciale wijze zullen beïnvloeden dank
zij hun anisotrope verstrooiende eigenschappen. Door de relatieve m agneti
sche weerstandsverandering als functie van de zg. gereduceerde magnetische
veldsterkte te  beschouwen (Kohlerdiagram), kan men de invloed van punt-
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fouten vrijwel volledig elimineren, terwijl de gevolgen van  de aanwezigheid
van dislocaties zich zullen uiten als een toeneming van  de relatieve m ag
netische weerstand. In  eerste benadering zal deze toeneming, wederom in
relatieve m aat u itgedrukt, de helft m oeten bedragen van de toeneming van
de normale weerstand veroorzaakt door dislocaties (formule (4.33) ). Deze
conclusies blijken door onze experim enten zeer goed te  worden bevestigd
(tabel V).

De onderzoekingen over de magnetische weerstandsverandering krijgen
pas hun volle betekenis indien zij worden gecombineerd m et experim enten
over het therm isch herstel hiervan en van de elektrische weerstand, in bij
zeer lage tem peraturen vervormde m etalen. Deze experim enten worden in
hoofdstuk 5 gediscussieerd. U it een kritische beschouwing van de in de
lite ra tuur bekende resultaten, aangevuld m et enkele van onszelf, blijkt dat
in koud vervormde m etalen vier herstelstappen optreden. B etrekt men ook
m et nucleonen bestraalde en afgeschrikte m etalen in de discussie, dan blij
ken er in to taal zelfs vijf herstelstappen aanwezig te  zijn. Deze herstel
stappen worden verklaard als diffusieprocessen van de tijdens de behandeling
gevormde roosterfouten. De associatie tussen de diverse mogelijke diffusie-
processen en de vijf herstelstappen is nog niet geheel eenduidig. De resulta
ten  van herstelm etingen van de magnetische weerstand m aken het echter
vrijwel to t zekerheid dat diffusieprocessen waarbij het aan ta l dislocaties
verm indert alleen bij hoge tem peraturen optreden (polygonisatie, mecha
nisch herstel). Een tweede conclusie die u it de combinatie van beide soorten
metingen m et zeer grote waarschijnlijkheid valt a f te  leiden, is, da t dis
locaties relatief evenveel to t  de weerstandstoeneming van plastisch ver
vorm d koper bijdragen als puntvorm ige roosterfouten. U it herstelproeven
alléén kon deze conclusie niet getrokken worden. Zij heeft grote betekenis,
daar een theoretische behandeling van de dislocatieverstrooiing aanleiding
gaf to t de verwachting dat dislocaties slechts ten  hoogste 10% van  de
weerstandstoeneming zouden veroorzaken. De discrepantie moet w aar
schijnlijk aan het bestaan van stapelfouten worden geweten.

D it onderzoek werd uitgevoerd in het N atuurkundig Laboratorium  van
de N.Y. Philips’ Gloeilampenfabrieken te Eindhoven. Mijn dank gaat u it
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lemmerd werd door een langdurige ziekte. H et experimentele gedeelte van
het onderzoek is slechts mogelijk geworden dank zij de deskundige mede
werking van mijn collega Ir. P . Jongenburger, die ik  daarvoor hierbij
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