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STELLINGEN

JIf De toepasbaarheid van de bestaande nauwkeurige TDR-technieken moet uit te
breiden zijn tot relaxatiefrekwenties lager dan 107 Hz. In kombinatie met
de door Hyde ontwikkelde lTaagfrekwent responsieapparatuur (werkend van
10_4 tot 106 Hz) bestaat hierdoor de mogelijkheid om op snelle wijze die-
lektrisch spektroskopisch onderzoek te verrichten voor frekwenties tussen
10°% en 2 1010 2.

P.J. Hyde, Proc. IEE, 117, 1819, (1970).

'

2 De mogelijkheid om uit de snijhoeken van het Cole-Cole plot en de ='-as
konklusies te kunnen trekken betreffende het asymptotisch gedrag van ver-
schillende representaties van de dielektrische relaxatie in het tijdsdo-
mein, vergroot de waarde van het Cole-Cole plot als grafische weergave van

het dielektrische gedrag in het frekwentiedomein.

Dit proefschrift, sektie 2.2.

34 De Kramers-Kronig relaties zijn een niet triviale konsekwentie van een

fysisch schijnbaar triviale aanname.

4, De door Pichamuthu, Hassler en Coleman afgeleide relatie voor de opbouw
van de stralingsdichtheid in een gepulste waterdamplaser, is door hen ten
onrechte gebruikt om de gemeten afname van het laservermogen te interpre-
teren.

J.P. Pichamuthu, J.C. Hassler, P.D. Coleman, Appl. Phys. Lett., 19,
510, (1971). s

5. Bij theoretische studies betreffende spinheidsverdelingen ten gevolge van
symmetrieverstorende substituenten in aromatische radikalen, dienen de in-
vloeden van geometrische veranderingen van het molekuul in de beschouwingen

te worden betrokken.




10.

Ten onrechte nemen Hammond en Gallo in hun beschouwingen over de koncen-
tratieafname van Hg(63P1)-atomen in de afterglow van een Hg-Ar ontlading
aan, dat de invloed van superelastische botsingen tussen elektronen en
deze atomen verwaarloosd kan worden.

T.J. Hammond, C.F. Gallo, Appl. Optics, 11, 729, (1972).
J. Polman, P.C. Drop, J. Appl. Phys., 43, 1577, (1972).

De aanwijzingen dat de reflektiekoefficient van gewassen voor kortgolvige
radargolven voornamelijk bepaald wordt door het zich boven de grond in de
bladeren bevindende water, suggereert de mogelijkheid om op grote schaal
met behulp van "Side Looking Radar" biomassa bepalingen te verrichten.

G.P. de Loor, AGARD conference proceedings No 90: Propagation
limitations in remote sensing (1971), paper 12.
W.P. Waite, R.C. MacDonald, IEEE Trans., GE-19, 147, (1971).

De aanwezigheid van een defibrillator in een voetbalstadion is slechts dan
zinvol wanneer eveneens de mogelijkheid is geschapen om een door ventrikel-
fibrillatie getroffen toeschouwer in leven te houden tot het moment dat hij
met de defibrillator doeltreffender behandeld kan worden.

Wanneer Elizabethaanse luitmuziek op een moderne gitaar gespeeld wordt, is
het aan te bevelen de g-snaar naar fis te verstemmen.

Het is te verwachten dat in het Nederlandse leger het rendement van de werk-
uren na de middagpauze zal toenemen indien de bar voor, tijdens en na de
lunch gesloten zou blijven.

M.J.C. van Gemert, mei 1972
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LIST OF SYMBOLS

frequency factor appearing in the Arrhenius equation, in Hz (Chapter 4)

A parameter appearing in the non-ideal step function (Chapter 3)

3 118 fy (®),(section 2.2)

a_ lim f_ (w),(section 2.2)

C distributed capacitance in Farad m -

E(t) error voltage involved in Vo(t) due to the unwanted step voltage
(Chapter 3)

EA energy of activation appearing in the Arrhenius equation, in Kcal.
mo1 > (Chapter 4)

e(t) error signal involved in R(t) due to the unwanted step voltage

(Chapter 3)

F(s) Laplace transform of the input voltage

fo(s) complex function appearing in the asymptotic behaviour of =(s) for
s*0 (section 2.2)

f_(s) complex function appearing in the asymptotic behaviour of £(s) for
s»*= (section 2.2)

f'(w) real part of f(iw) (section 2.2)

' (w) imaginary part of f(iw) (section 2.2)

G distributed parallel conductance in 9~ m™ >

G(s) Laplace transform of the output voltage

H(iw) transfer function of a linear and causal system

h(t) system response to a delta function

I current flowing through the conductors in Ampére m-2

IL current flowing into a load impedance in Ampére m'2

In(x) modi fied Bessel function of the n-th order of argument x

I+ current at the origin of the z-coordinate for the harmonic wave travell-
ing into positive respectively negative direction, in Ampére m 2

i imaginary unit, i = v~ 1

L distributed inductance in Henry m L

£ Laplace transform operator, defined by
SIF(t)) = [ dte st 1))

E'l inverse Laplace transform operator, defined by
g7l f(s) | = —l— .FT1 ds eSt | f(s) |

27 C=iw
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total number of samples involved in Vo(t)

total number of samples involved in R(t)

order symbols used in the theory of asymptotic expansions (section 2.2)
time domain reflectometry response to a heaviside step function

-1 1 (chapter 4)
1

universal gas constant, in cal. mol
distributed series impedance in om’
time domain reflectometry response to a non-ideal step function
frequency dependent amplitude of a complex function

response to Ve(t)

radii of the outer and inner cylindrical conductors of a coaxial line,
inm

variable in the complex frequency plane defined by s = vy + iw, v is
real and w is the radial frequency

temperature, in Ok

Time Domain Reflectometry

time, in sec (or picosec)

actual time of the n-th sample

time reference

translated heaviside step function

voltage between conductors, in Volts

total voltage at the air-dielectric interface, in Volts

voltage at the origin of the z-coordinate for the harmonic wave travell-
ing in positive respectively in negative direction, in Volts

incident voltage, in Volts

characteristic impedance of a dispersive coaxial line, in @
characteristic impedance of an empty coaxial line, Z0 =50 Q

empirical parameter appearing in the Cole-Cole relation, O<a< 1
empirical parameter appearing in the Davidson-Cole relation, 0<B< 1
gamma function for argument X - ®<X<«

propagation constant of frequency w

real axis of the complex frequency s-plane, defined by s =y + iw

error in the time reference procedure, in picosec (Chapter 3)
accidental part of a, in picosec (Chapter 3)

systematic part of 4, in picosec (Chapter 3)

delay between the input voltage Vo(t) and the output voltage R(t),
in sec (Chapter 1)

phase error of the reflection coefficient, in Deg/GHz

Dirac delta function

dimensionless complex dielectric permittivity, e(iw) = €'(w) - ie"(w)




o(w)

p(iw)
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real part of e(iw)

negative imaginary part of e(iw)

permittivity of the vacuum, in Farad m :

low-frequency dielectric permittivity

high-frequency dielectric permittivity

parameter denoting the low-frequency angle of the Cole-Cole plot

with the ¢' - axis, in units of n/2; 0<z<2 (section 2.2)

parameter, denoting the high-frequency angle of the Cole-Cole plot
with the ' - axis, in units of n/2; 0<n<2 (section 2.2)

frequency dependent phase of a complex quantity, in radians or degrees
relative magnetic permeability of a material

magnetic permeability of the vacuum, in Henry m—1

frequency, in Hz

relaxation frequency denoted by vaoro =1, in Hz
frequency 1imit, defined by R(v) = 0, N2V in Hz
complex reflection coefficient

real part of po(iw)

imaginary part of p(iw)

Lim o (1a)

Tim p (iw)

w0

- 1/ [/ + /)2

low-frequency conductivity, in a”1 gl

conductance of the material of the conductors, in o~} m™ !
transmission coefficient (section 1,2,3)

time distance between two samples, in picosec

rise time of the non-ideal step function defined by VO(Tr) =1
(Chapter 3)

dielectric relaxation time

angular frequency, in sec™!
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INTRODUCTION

The experimental investigation of dielectric relaxation phenomena is one of
the oldest spectroscopic techniques, originating from the last decades of the former
centuryl. Usually it is the aim of this type of spectroscopy to study the behaviour
of electric dipoles in terms of absorption and dispersion from interactions of the
material with an applied electro-magnetic field. Two properties are characteristic
for dielectric spectroscopy in comparison to other spectroscopic methods. First,
this spectroscopic method can generally be studied by classical physical methods,
and second, it covers an unusually large frequency range, from about 10'4 Hz up to
about 1011 Hz. Due to this enormous range, the evaluation of the dielectric permit-
tivity of a polar medium, denoted by ¢(iw) = e'(w) - ic"(u), requires a number of
laborious frequency domain techniques, each of them demanding a specialized know-
ledge in electrical engineering.

In general, dielectric permittivity is measured by determining, for all fre-
quencies of interest, the impedance of a capacitor, or for high-frequencies, the im-
pedance of a transmission line, filled with the dielectric material. For very low-
frequencies, an alternative method is known2’3, studying the transient response of
a filled capacitor, in terms of its charge decay, to a step voltage excitation.

The extension of this “"time domain" method to the microwave region has in re-
cent years been enabled by the development of modern tunnel diodes and wide band
sampling systems. In electronic and communication engineering a technique called
"Time Domain Reflectometry" (TDR)4
succesfully applied to the qualitative analysis of transmission line systems. The

is in use since the early sixties and has been

TDR-method has also been used for the quantitative measurement of electric circuit
parameters5 (network analysis).

In such a method a step voltage, which simultaneously contains all frequen-
cies of interest, will be propagated in a low loss coaxial line. The shape of the
step voltage remains constant as long as the transmission characteristic impedance
and the propagation constant are unchanged. When the transmission line contains a
section with a different characteristic impedance (for instance a section filled
with a polar medium), part of the step voltage will be reflected at, and part of it
will be transmitted through the discontinuity. The location of the discontinuity is
then determined by the time difference between the incident and reflected pulses.
When the discontinuity posesses a frequency dependent characteristic impedance, i.e.
it is dispersive, the shape of the reflected pulse (and also of the transmitted pulse)
is changed. The quantitative behaviour of the discontinuity, in terms of its fre-
quency dependence, can then be determined by Fourier analysis of the incident and

reflected voltages.
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The possibility of applying time domain reflectometry to the quantitative
study of dielectric permittivity was first indicated by Fe]]ner—Fe]deggG’7, al-
though other workers have independently reported in this field as wells'lo. The in-
terpretation and accuracy of TDR-measurements have recently been improved by
Whittingham11 and especially by Suggett, Quickenden-MacNess, Loeb and Younglz’la.

It should be noted that for measuring polar liquids, this technique has ad-
vantages above the point-by-point frequency domain methods, especially in the micro-
wave region where savings in time and equipment are considerable. It also serves as
an important technique to fill the measurement gap of about 108 -3 109 Hz which
exists in the frequency domain. This gap is more basically present for special po-
lar media, such as pasta's and granular substances14 (where an electrode system can-
not be placed inside the material), than for polar liquids. However, two remarks
should be made in this connection. The first is that one needs a fast digital compu-
ter and the second is that, in general, the accuracy of time domain methods is less,
compared with frequency domain techniques. However, the computer has become a com-
mon piece of equipment nowadays, and in the microwave region the time domain tech-
nique is not necessarily inferior to the frequency domain method.

In this thesis the evaluation of the dielectric permittivity, from TDR-expe-
riments, is discussed both theoretically and experimentally. Time domain reflectome-
try is essentially a method which:

(1) uses propagation characteristics (such as the characteristic impedance) as the
object of the measurement and

(2) is based on the equivalence of the "time domain", and the "frequency domain"
description of a linear and causal system.

Therefore introductions are given in Chapter 1 to the theory of transmission line

propagation and to linear response theory.

In Chapter 2, the TDR-response is studied in the case of an ideal step func-
tion, for dielectrics with known characteristics in the frequency domain. First, nu-
merical results are presented for a number of current descriptions of dielectric be-
haviour. Afterwards, the asymptotic behaviour of the TDR-step response has been re-
lated to the asymptotic behaviour of the permittivity in the Cole-Cole plot represen
tation.

In Chapter 3 the experimental measurement procedure is outlined. It is shown
how Fourier analysis of the actual output and input voltages (the input voltage con-
sists of the response against a short circuit) may give the correct values of the die-
lectric parameters. Some deficiencies of the TDR-equipment and of the method of ana-
lysis are discussed. An analysis of the uncertanties involved in the experimental

determination of the dielectric parameters, due to errors in the incident and re-
flected voltages, is also presented. The results of this analysis are that the un-
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certanties in €q* Ew and % are about 5%, 20% and 7.5% respectively.

In Chapter 4 a number of experimental results are given. First, test experi-
ments on some of the mono-alcohols are presented, which confirm the accuracy and ap-
plicability of the TDR-method. Since accurate dielectric measurements for propanol-1
are lacking for temperatures above 0° C, this alcohol is studied in more detail. The
results agree very well with data available for low-frequencies at lower temperatu-
res. In the last part of Chapter 4, a study is presented of dielectric measurements
on mixtures of some mono alcohols with carbon tetrachloride. Besides the influence
of the carbon tetrachloride on the relaxation time characterizing the main disper-

sion range of the alcohols, the influence on the activation energy is discussed.
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CHAPTER 1

DERIVATION OF THE RELATION BETWEEN THE TIME DOMAIN REFLECTOMETRY RESPONSE AND THE
DIELECTRIC PERMITTIVITY

1.1 INTRODUCTION TO TIME DOMAIN REFLECTOMETRY

The time domain reflectometry system, as used in the determination of dielec-
tric properties, is shown schematically in Figure 1.1. It consists of a step genera-
tor, producing a fast rise time step (about 35 10_12 sec), a sampling system detect-
ing the signal voltage between the coaxial conductors and transforming this high-
frequency signal into a low-frequency output, an oscilloscope on which the low-fre-
quency signal is displayed and the measuring cell consisting of a coaxial line fil-

led with a polar liquid. The length of this cell is considered to be infinite for

convenience. 3
= & ]
' & L1

] 4] dielectric
e I
voltage coax coax air-dielectric

interface

generator V(%)

e

oscilloscope

Figure 1.1 The experimental TDR-system.

The voltage step from the step generator is propagated along the coaxial Tine.
The sum of the fast rise time step and the reflected voltage from the air-dielectric
interface is detected and sampled by the sampling system and displayed on the oscil-
loscope. The total voltage, V(t), is then given by:

V(t) = Vg(t) + R(t)
where V(t) is the totally displayed voltage, Vo(t) the voltage of the fast rise time
step and R(t) the reflected voltage from the air-dielectric interface. A typical sha-
pe of V(t) is given in Figure 1.2, together with a reconstruction in terms of Vo(t)

and R(t). Because the behaviour of the system is studied in reflection, the signal

detector is placed between the step generator and the cell, introducing a time delay
A between the input Vo(t) and the output R(t). For theoretical and practical rea-
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sons, however, the situation shown in Figure 1.3 is to be used.

v(s) '
|
|

=

-

1

I

v, (1) :
[

}

e

|

-
l(t)‘ A R(t) t

v (¢)

-

454
|
|

Figure 1.2 Typical wave form of V(t) and its Figure 1.3 Response R(t) to input Vo(t) when
reconstruction in terms of Vo(t) the response theory is to be used.
and R(t).

In the next sections, the relation between the reflected voltage in the time
domain, R(t), and the dielectric permittivity e(iw) = e'(w) - €"(w) in the frequency
domain will be derived. This will be done by first discussing, in section 1.2, the
propagation of a harmonic wave of frequency w along a coaxial line. Then the reflec-
tion of the harmonic wave, against some dispersive discontinuity (the air-dielectric
interface), will be discussed and the corresponding reflection coefficient will be
expressed as a function of the Tumped circuit elements. In section 1.3 an introduc-
tion to linear response theory is given, discussing the integral relation between
the system's transfer function in the frequency domain and the pulse response in the
time domain. In particular it is shown how the transfer function can be obtained
from the system's response, in the time domain, to some arbitrary input function. In
section 1.4 the results from the foregoing discussions are applied to the determina-
tion of dielectric permittivity from TDR-experiments.

1.2 THEORY OF COAXIAL TRANSMISSION LINES
1.2,1 INTRODUCTION

In general a transmission line consists of two conductors separated by a die-
lectric material. Transmission of an electro-magnetic field is coupled with a voltage
difference between and current flowing through the conductors. When measured at a

transverse plane, the total currents in both conductors are of equal magnitude and of
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opposite direction.

Although the conductors may be of any geometry and conducting material, the
only Tine considered in this work is a coaxial line, consisting of an outer cylin-
drical conductor with radius o and an inner cylindrical conductor with radius Pis
separated by some material (for instance air or a dielectric medium). In Figure 1.4,
the geometry and sign conventions for voltage and current are indicated.

Figure 1.4 Geometry and sign conventions for

voltage and current in a coaxial

transmission line,

In the following section the propagation of a time periodic wave in a coaxial

line will be treated, using the concept of circuit analysis.
1.2,2 A COAXIAL LINE DESCRIBED BY CIRCUIT PARAMETERS

The propagation of an electro-magnetic field along a coaxial line filled with
a dielectric medium will be described by the distribution of voltage and current
along the line. The behaviour of the dielectric medium is represented by the dielec-
tric permittivity e(iw) and the low-frequency conductivity o, i.e. by the quantity
€(iw) - io/w. The coaxial line is divided into infinitesimal parts of length dz. The
voltage and current changes across a length dz are then represented by the voltage
and current changes across a linear passive network, described by the usual parame-
ters R (2 m'l), C (Farad m'l), L (Henry m"l) and 6 (o7} mgl) representing the dis-
tributed series resistance-, capacitance-, inductance- and parallel conductance per
unith Tength of the coaxial line.
At a certain fixed frequency the values of the parameters R, C, L and G,
which are constants everywhere along the line, are determined by geometry, dimension,
material of the conductors and the dielectric medium only.
An infinitesimal part, length dz, of the line can then be represented as is
shown in Figure 1.5. The voltage change across this length dz is:
aV 3l
Voltage change = dz=-Rdz I - L dz —
vz at
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Similarly, the current change is given by:

31 aV
Current change = ——dz = - Gdz V - C dz ——
32 ot
| ds . |
(1 =~ |
o J sl rdl o
11 \ [
- -
‘ bl gy
| " T
;i:EiJ%NT77447#
'I | :4.+ ?4. “ v%n
Lk 3 ] ot iy + . Figure 1.5 An infinitesimal part of a coaxial

r— Ty line and its circuit equivalence.

Dividing by dz gives the following equations which are known as the "telegraphy equa-

tions":
aV 31
—==R I ~-L— (1:1)
3z at
—==6GYV-C— (1.2)
32 5t

To obtain an equation containing voltage only, equation (1.1) is differentiated with
respect to z and equation (1.2) with respect to t. By similar manipulations an equa-

tion containing current only is obtained. The results are:

)V

9* V - o V
__V— = LC

+GR YV (1.3)

+ (L6 + RC)

3t2 3t

321 321 a1
LC

+RG I (1.4)

|

+ (LG + RC)

5t2 vt

It is very difficult to give a general solution of equations (1.3) and (1.4) if none
of the circuit parameters L, C, R and G can be neg]ectedls. However, when time periodic
fields are involved, differentation with respect to time equals multiplication by iw.
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The quantity w is the radial frequency of the wave. Equations (1.1) = (1.4) can then
be written as:

== (R + dul) I (1.5)

"

= (6 + duC) ¥ (1.6)

(R + iwl) (6 + IuC) V (1.7)

"

(R + iwl) (6 + iuC) I (1.8)

V and I are now complex functions of z only. Using the following abbreviation:

v2 = (R+ iul) (6 + iuC) (1.9)

the mathematical solutions of equations (1.7) and (1.8) yield:

V=V, ey er? (1.10)

I=1, e7"%41e? (1.11)
V+ denotes the voltage at z = 0 for the harmonic wave travelling in a positive direc-
tion, while V_ is the voltage at z = 0 for the harmonic wave travelling in the oppo-

site direction. Combining equations (1.11) and (1.6) the following result is obtained:

V=2z(Ie "% - 1_e?) (1.12)

R + iwplL
Z=yY———— (1.13)
G + iuC

The quantity Z, as defined by equation (1.13), is called the characteristic impedance
of the Tine. It is defined as the ratio of voltage to current for the positively tra-
velling wave and of voltage to minus current for the negatively travelling wave at
any point of the transmission line. The characteristic impedance is in general com-
plex, indicating that the line filled with a polar medium is dispersive. For an empty
coaxial line G = 0 holds, while in practice R can be neglected with respect to wlL
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indicating that an empty transmission line can often be considered as non-disper-

sive.
From transmission 1ine theory, the following relation for the series impedan-
ce R(w) can be derived16’17:
Yo \/L’J_—E_ 1 1
R(a) = —(—+— (1.18)
2n \/cc l’i l"o

where y is the magnetic permeability of vacuum, u the relative magnetic permeability
of the conductors (which are presumed not to be ferro-magnetic, i.e. y =1, L the
conductivity of the conductor material and Fis Ty the radii of the inner- and outer

conductors respectively. For L, C and G the calculations yie]d16’17:
'Y
L= In (ro/ri) (1.15)
2%
2ne.
€ = ———— €(iw) (1.16)
In (ro/r1)
2na
B e —— (1.17)
In (ro/ri)

where ¢ is the dielectric permittivity of vacuum.
For an empty (commercially) coaxial line, i.e. a General Radio 50 q preci-
sion line, the values of the circuit elements are calculated, using the characteris-

tics:

3.075 107> m

-
"

r

5 = 7.075 1073 m

The conductors are made of messing, coated with silver. Due to the "skin-effect", the
current through the conductors is flowing through the silver layer only. The conduc-
tance of silver is given by:

0, = 6.17 10/ o1 m!

Inserting these values into equations (1.14) and (1.16) and using

1
y = 4n 10”7 Henry W e 10°2 Farad m™

= — 36r

1
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The following results are calculated:

R(w) = 1.06 107° /& am (1.18)
. = -1

L = 1.67 10 Henry m (1.19)
y -11 i

C =6.67 10 Farad m (1.20)

G=0 o) ml (1.21)

10

For the frequency band of interest, which is roughly 106 - 107" Hz, the series

impedance can be neglected with respect to wL, as can be inferred from Table 1.1.
From the results of this Table, it is clear that, for all frequencies of interest,
one has:

R(w) << ol (1.22)

TABLE 1.1

THE INFLUENCE OF R(w) IN COMPARISON WITH wl

R(w) oL R(w) /ol
2x. 10° 2.65 1072 1.05 2.5 1072
2. 1010 2.65 1.05 10° 2.5 107

Combining this result with equation (1.13), the characteristic impedance Z is given

by:
L
Z = Z0 = _E_ (1.23)

1.2,3 REFLECTION AND TRANSMISSION AT AN IMPEDANCE DISCONTINUITY

When a transmission line contains an impedance change, part of the wave is re-
flected and the other part is transmitted. Across the discontinuity, which is first
considered to be a load impedance ZL’ Kirchhoff's law requires that total voltage and
current must be continuous. At the discontinuity, for which the coordinate z = 0 is
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chosen, the total voltage consists of voltages from waves travelling in positive and
negative directions, these voltages are denoted by V+ and V_ respectively. The sum
of V+ and V_ must be equal to the total voltage VL across the impedance ZL:

+V_=V (1.24)

Similarly the total current IL flowing into the load is equal to the sum of the cur-
rents from both waves:

(1.25)

equation (1.25) becomes:

v VL

Zy 4

Defining the reflection coefficient transmission coefficient t as:

(1.28)

(1.29)

Using the results given by equations (1.16) and (1.17) the characteristic impedance
can be written as

(1.30)
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where the property
G
== gfe (1.31)
C

is used. Equation (1.30) is generally written as

Z, = (1.32)
v £
[e(io) + &3
or, using the convention that the quantity (o/ciw) is implicitly involved in e(iw),
the relation between ZL and Z0 becomes:
Z
0
I, = — (1.33)
b Velia)
The reflection coefficient p(iw) is now easily calculated from equations (1.26)
and (1.33)

1 - Ve(in)
1 # @ VelAs)

It is noted that in derivation of equation (1.34) it is assumed that the dielec-

o(iw) = (1.34)

tric material has a magnetic permeability y = 1. For paramagnetic substances, however,
the inductance per unit Tength is given by u(iw)L, and after similar arguments as
given above, equation (1.34) becomes:
!’_. ,_-
Vu(ie) = Ve(iw)
p(iw) = — - - (1.35)
\/‘J(iw)"’ \/E(]Lu)

1.3 LINEAR RESPONSE THEORY

1.3,1 INTRODUCTION

Knowledge of the dynamic behaviour of a physical system can be obtained by
studying the system's response to a disturbance of the equilibrium situation. This
can be done for instance by switching on a time periodic~, pulse-, step-, noise-,
or any other input function. This is schematically indicated in Figure 1.6 using the
symbols f(t), g(t) for respectively input and output. The quantity S is used to de-
note the system's behaviour, transforming f(t) into g(t).



(s 1(1:)

Figure 1.6 System S and its response g(t) to input f(t).

Two aifferent response methods can be distinguished:
(1) The frequency domain method:
the input f(t), which is time periodic in this case, is applied adiabatically
(which means that no transient behaviour is involved in g(t)at t = - =. The
system's response can then be studied at any time.
(2) The time domain method:
the input f(t), which is in general aperiodic in this case (although not necessa-
rily, as for instance a rectangular periodic function) is switched on non adia-
batically at some time ty The time domain method then studies the system's tran-
sient response for t > tC until equilibrium is reached. Examples of this method
are pulse- and step response measurements.
Both methods determine the behaviour of the system completely (in a formal sense) and
it is the aim of this section to discuss this similarity together with the 1link exis-
ting between the frequency and time domain methods.
The system S is assumed to be linear and causal, which means the following:
linear: the input f(t), consisting of the sum of any functions fl(t) and fz(t), re-
sults in an output g(t) which consists of the two independent responses 9,(t)
to fl(t) and gz(t) to fz( ).
causal: the input f(t), switched on at t = 0 cannot cause an output g(t) for t < 0.
This causality condition, which seems rather trivial, leads to the Kramers-Kronig

relations 820

, (see Appendix A).
1.3,2 INTEGRAL RELATION BETWEEN PULSE RESPONSE AND TRANSFER FUNCTION

The response of a linear causal system to a time periodic function is another
time periodic function with the same period but (in general) different amplitude and
phase. The following input is chosen first:

f(t) = cos ut

The output is then given by, see Figure 1.7:
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g(t) = R(w) cos [wt +o(w) ]

cos ,t ) R(,: cos [ut+0(u)}

Figure 1.7 Response to a time periodic input.

The amplitude of the output, R(y), and the phase difference between output and input,
o(w)s are both functions of the radial frequency u.
Now the following input is chosen:

it

f(t) = cos ot + i sin ot =e (1.36)
Using the Tinearity of the system, the following output is obtained:
9(t) = R(w) cos[wt +o(w)] + 1 R(w) sin[ wt + o(w)]
which can be written as
. iut
g(t) = H iw) e (1.37)
o) B i (u_“) 1.38
Hiw) = R(w) e (1.38)

The complex function H(iw) is called the "transfer function" or "system function". By
definition it is the response to an exponential excitation, Figure 1.8

iwt H (10) oi¥t

E___.._____‘

Figure 1.8 Definition of the transfer function H(iw).
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The next input to be chosen consists of the sum of an infinite number of expo-
nentials, representing the Dirac pulse g(t):

1

R € (1.39)

27~

f(t) =

Again because of the linearity condition, the response is given by the integral of the
individual responses:
1 o0

[ H(iw) et dy = n(t) (1.40)

27x —o

g(t) =

The symbol h(t) is used to indicate the system's response to the unit pulse g t).
Mathematically, h(t) is defined by equation (1.40) for all times - w<t<eo but
due to the causality condition this reduces to O<t<~ , see Figure 1.9

s —; l i‘“).“". .(t-t! h‘g.v)
- s

| | ; |

a(®) n(t) T =

= =] s R T ff(‘I 8(t-3)ds ‘f(x] n(t-t)dr
s

Figure 1.9 System response to a unit &8-function. Figure 1.10 Input f(t) and output g(t) in terms
of convolution with respectively
8(t) and h(t).

When equation (1.40) is to be inversed, difficulties may arise because of the
requirements of H( iw) and g(t) for convergence of the Fourier transform. These diffi-
culties are easily omitted, however, by extending the transfer function over the
whole complex frequency plane, defining the complex frequencies by

s=y+ iw, vy is real (1.41)

This means that Laplace transforms can be used instead of Fourier transform methods.

Equation (1.40) and its inverse are then given by21’22:
1 ct+ie E
ht) =——f  H(s)etds = £ H(s) ) (1.42)

271 C-iw
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dt = £ {h(t)} (1.43)

It is noted that:

(1) the causality condition is automatically included in Laplace transforms and thus
in equation (1.42)

(2) the transfer function H(i,) can always be found from H(s) (the reverse statement
is not that general) by:

H(iw) = Tim H(s) (1.44)
y-+0
(3) the mathematical conditions to which H(s) and h(t) must obey to ensure the exis-
tence of the integrals (1.42) and (1.43) are fulfilled for all functions used in
this work.
Details can be found in textbooks on Laplace transform523’24.

It can be concluded, from equations (1.42) and (1.43) and using (1.44) when
necessary, that a linear causal system can be determined by means of the two respon-
se methods:

(1) the frequency domain method, by determination of H(iw) for all u.

(2) the time domain method, by determining h(t) for all t> 0.

1.3,3 RESPONSE TO A GENERAL FUNCTION

The response g(t) to some general input fl(t) is now calculated using the mathe-
matical relations existing between f(t) and g(t).

Any function f(t) can be written in terms of a convolution with the function

d t)21,

f{t)=] fl) &t~ 1) ds (1.45)

In fact equation (1.45) is used as a definition of & t). The response g(t) is then
given by:

ot) =] flz) Wt=-r1)de (1.46)

as is shown in Figure 1.10. laplace transformation of equations ( 1.45) and ( 1.46)
results into:

F(s) =F(s).1
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G(s) = F(s). H(s)

where F(s) = £ {f(t)} and G(s) = £{g(t)!.
Introducing the causality condition, equation (1.46) becomes:
t t
[ f{z) (t=-<)dt=] f(t=-r1)hz)dr=flt)zNt) (1.48)
0 0
where it is noted that equation (1.47) is not changed by applying the causality con-
tition. For completeness of this section it is noted that the equations (1.46) and
(1.47) are integral equations of the convolution type and the Wiener-Hopf type res-
pectively.
It can be concluded that
(1) equation (1.48) describes the linear time domain response g(t) to a general in-
put f(t) in terms of a convolution of f(t) and h(t). It is important to note
that it is not possible by simple methods, to find h(t) when g(t) is known.
(2) equation (1.47) describes the analogous situation in the frequency domain. Here
it is very easy to find H(s) when G(s) and F(s) are known:

(1.49)

Fs)

and applying equation (1.49) one finds:

H(iw) =

1.3,4 APPLICATION TO TIME DOMAIN REFLECTOMETRY

The results of the former section can now be applied to TDR. Then, the transfer
function is given by p(iw), the reflection coefficient of the system, where the sys-
tem is defined as the air-dielectric interface involved in the coaxial line. Denoting
the incident voltage by Vo(t) and the reflected voltage by R(t), as shown in Figure
1.1, the relations between the time domain and the frequency domain response, as
given for the general situation by equations (1.47) and (1.48), yield

t - 1) h(t)dr (1.51)
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with
G(s) = £{R(t)| ; F(s) = £ :VO(t); 3 p(s) = £{h(t)}

It is instructive to consider the case of a heaviside step input. Then Vo(t) is defi-
ned as

j i t>0
Vo(t) - { 3, t=0 (1.53)
. t<0
Equations (1.51) and (1.52) then become:
t
R(t) = Vo,‘ h(t)dr = VOP(t) (1.54)
0
1
G(s) = V0 p(s) (1.55)
s
1
P(t) is the response to a unit heaviside step, for which the Laplace transform is —.
The total displayed voltage V(t) is in this case: -
V(t) = V0 - V0 P(t) (1.56)
The response P(t) can be here interpreted as a reflection coefficient in the time
domain. The unit step response P(t) is then related to o(s) by:
..1 1
P(t) = ¢ — p(s) (1.57)
3
When Vo(t) is an experimental step, possessing a finite rise time, equation
(1.47) remains unchanged but equation (1.48) cannot be simplified anymore:
"
R(t) = | Vo(t - 1) h(r)dr
0
This equation can be written in terms of a convolution between Vo(t) and P(t) as
follows:
dP
R(t) = Vo(t) X — (1.58)
dt

The total voltage V(t) in terms of Vo(t) and P(t) is then given by:
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dP
V(t) = V,(t Va(t _— 1.59
(£) = Vo(t) + Vo(t) * — (1.59)

and the time domain response R(t) is related to o(s) by:

R(t) = €711 F(s) o(s) | (1.60)
6(s)
o(s) = (1.61)
F(s)
Using equations (1.34) and (1.61), the dielectric permittivity can be found from the
equation
| 1 - p(ia) \ 2
e(in) =|l————
1+ p(iw)
or

Fin) - Blin) \*
e(iw) :( : ) (1.62)
Fiw) + G(iuw)




ERRATUM

t The direct determination of ¢_, as suggested by Fellner-Feldegg, is not based upon an exact

mathematical method, resulting into large errors.

*See Appendix A where the Cole-Cole equation is discussed in connection with causality.







CHAPTER 2

CALCULATIONS OF THE TDR-RESPONSE TO A HEAVISIDE STEP FUNCTION FOR DIELECTRICS WITH
KNOWN CHARACTERISTICS IN THE FREQUENCY DOMAIN

2.1 NUMERICAL CALCULATIONSZ®

2.1,1 INTRODUCTION

In the first paper on TDR, Fe]lner—Fe1d9996 obtained the dielectric permittivi-
ty, from the experimental results, by assuming the TDR-decay to be the Laplace trans-
form of the dielectric permittivity ( in a qualitative sense). For a Debye permittivi-
ty relation, defined by26

(2.1)

1+STO

where €_, €g are the high- and the low-frequency limits of e(s), and ) is the relaxa-
tion time involved, the step response P(t) is then assumed to be of the following form

1= /¢ T TR TR,
P(t) = B [ 0o 2 J e t/7g (2.2)

1+ /‘Zb 1+/¢ I+ 6,

0
where T is again the dielectric relaxation time. It was pointed out by Nhittinghamll,
however, that equation (2.2) does not represent the correct TDR-response, because P(t)
is the step response of the reflection coefficient p(iw) instead of the dielectric
permittivity e (i,). This is confirmed by Figure 2.1 where the Argand diagram of p(iy)
(for a Debye dispersion) is shown. Very clearly this diagram is not a semicircle. Then
in a second paper with Barnett, Fellner-Feldegg27 calculated P(t) numerically for a
Debye permittivity relation and suggested that T should be determined by means of
graphs,to be used when the values of e_ and Eg are known (in his first paper, Fellner-
Feldegg showed how €9 and el can be found directly from a TDR-curve). Such graphs, for
a Debye permittivity, were given in their paper.

It will be shown in the following sections, where the work of Fellner-Feldegg
and Barnett is extended, that the dielectric parameters of a polar medium should not
be estimated in the time domain, but instead in the frequency domain.The extension

of the work of Fellner-Feldegg and Barnett will consist of a numerical calculation

of the step responses P(t) for a dielectric material behaving according to the permit-
tivity relations of Cole and Colezs, defined by’:
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€0 ~ fw
e(s) = ¢, +——1— , Ocacl (2.3)
1+ (510) 2
and of Davidson and Co1929’30, defined by:
eV i A, _
e(s) =g, + — , 0O<g<l (2.4)
(1+ Sro)n
02 g
e
iy 015
—001
—0.05
0
-07
Figure 2.1 Argand diagram of p(iw) for a Debye dispersion, £ = 20 and ¢ = 4.

Apart from proving the impossibility of a direct evaluation of the dielectric
parameters in the time domain, such calculations also provide qualitative information
about accuracy, general behaviour and trends in TDR-experiments. In fact, some of the
results obtained gave rise to a more systematic analysis of the asymptotic behaviour
of P(t) in connection with the asymptotic behaviour of € (iw) in the Cole-Cole plot
representation.

2.1,2 RELATIONS FROM ANALYTICAL CALCULATIONS

The general purpose of this section is the calculation of the step response
P(t), defined by equation (1.57):

p(t) = £} 3—1— o(5)§ (1.57)
S
o(s) = _l_;_i:EI:I;_ (1.34)
1+ v‘/.i_'zss

for the three relations (2.1), (2.3) and (2.4) describing the frequency behaviour of

e(s). An analytical evaluation of equation (1.57), by means of contour integration is
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extremely difficult because p(s) is a very complicated function in s. However, due to
standard boundary value conditions, existing for Laplace transforms, it is possible
to calculate P(t) and its derivative with respect to time, at t = 0 and t = «, The
calculations are based upon the following theorems:

lim P(t) = 1im s £ {P(t)} (2.5)
t40 S0
1im P(t) = 1im s £ {P(t)} (2.6)
Lo s-+0

Using equations (1.57) and (1.34) the following boundary value conditions are obtained
for any dielectric permittivity e(s):

l-Vem
P(0) = p(a) & —m=mererme (2.7)
1+'Em
l'VEO
P(«) = p(0) = —— , 0 =0 (2.8)
1+ ve
0
P(») = p(0) = =1, o #0 (2.9)

In principle, equations (2.7) and (2.8) show the possibility of a direct
determination of ¢_and (when o = 0) of £ When the low-frequency conductivity ¢ is
not negligible, the static permittivity cannot be determined by straightforward
methods in the time domain (however, this is also true in the frequency domain).

It is also possible to calculate the derivative of P(t), at t = 0, using
equation (2.5) again, now written as:

- = 1im sii (2.10)

tH dt  sow dt

£;—di'— = s £{ P(t)} - P(0) (2.11)
dt

Equation (2.11) follows immediately from Laplace transform theory. Combination of
equations (2.10) and (2.11) gives:

(ﬂ) =1im  s{ p(s) = p(w) } (2.12)
dt t=g S
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Using the equations (1.34) and (2.1), (2.3) and (2.4) respectively, the following
results are obtained:

(EO - Em) + 070/5

(1) Debye > (2.13)

TO v/;:m (1 + /{a )

(2) Cole-Cole = (2.14)

(3)Davidson-Cole (93-) «aly (2.15)
dt /=0

2.1,3 NON-CONDUCTING DIELECTRIC MATERIALS

In this section the results from the calculations of P(t) will be presented
assuming the behaviour of the permittivity in the frequency domain to be according to
the equations (2.1), (2.3) and (2.4). The calculations are carried out assuming:

(1) a heaviside step input and

(2) an infinitely long dielectric sample enclosed in a perfectly conducting coaxial
line.

In Appendix B some details are given on the numerical evaluation of the inverse

Laplace transform; equation (1.57).

DEBYE DIELECTRIC PERMITTIVITY. Fellner-Feldegg and Barnett?’

P(t) for various combinations of :Oand e, and they have given graphs from which the

have calculated

corresponding values of Tp Can be determined when €0 and ¢ are known.

When the time derivative of P(t) at t = 0 can be found, the relaxation time r,
can also be calculated from equation (2.13) with o = 0, but this procedure cannot be
very accurate in practice because it is related to the behaviour of P(t) for very small
values of t and this part of the step response cannot be found very well experiment-
ally due to the finite rise time of the voltage step”.

However, when it is known that a dielectric material behaves according to a
Debye dispersion, the parameters €0* €a and 1 can be found in the time domain. This
is demonstrated in Figure 2.2 where some of the results are shown together with the
corresponding Cole-Cole plots and the Argand diagrams of p(iw). The tangents (dP/dt)
at t = 0 are calculated from equation (2.13) with o = 0.

.This procedure may be applied experimentally when i) is very large.
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Figure 2.2

A. TDR-step responses for the Debye equation.
B. The corresponding Argand diagrams of o(iw).
C. The corresponding Cole-Cole plots of :(im).’“

COLE-COLE DIELECTRIC PERMITTIVITY. For a number of combinations of £Q* . and
a, the step response P(t) is calculated. Some of the results are shown in Figure 2.3.
It is not very useful to follow Fellner-Feldegg and Barnett in their procedure of the
determination of 9 since not only £ and €0 must then be known but also the value
of the empirical parameter a. No criterion in the time domain can be found from which
the value of « can be deduced, as can be seen from the graphs of Figure 2.3.

The shape of P(t) for a dielectric material behaving according to the Cole-Cole

equation, differs significantly in two ways from that of a Debye material:

(1) the tavgent at t = 0 is finite when a Debye permittivity 1s involved and minus

infinite for a Cole-Cole dielectric material.

(2) the decay to the asymptote at t = = is much slower than for a Debye behaviour.
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The two deviations from the Debye behaviour have the following practical conse-
quences, first, it is impossible to determine the value of ) in the time domain when
t/r0 is not very large and second, the value of T cannot be related to a measurement
of (dP/dt) at t = 0.

The theoretical conclusion can be drawn that, when an ideal heaviside voltage
step is applied to an infinitely long sample, the values of ¢_ and so'can be found in
the time domain, e_ less accurate than for a Debye behaviour and €9 for large values
of t/r0 only. Because the value of a cannot be estimated in the time domain, the

value of €0 cannot be found either.
a

b GI e e [ e e e = T T T T TTII0T T T TTTTI0T T T TTriT

~ % c
© l
T 2 1t
| 1-2:0.8 | |
20 /‘r \
//K x 10505 \ \
" ,,/—r”’T""" ~. \\ =
l | 1-040,2 \
R s
|‘a 20 30 40 %0 & 20 0
— £/

Figure 2.3

A. TDR-step responses for the Cole-Cole equation,
g = 80 and ¢_ = 8.

1 1=a=1
2 ; 4 S B. The corresponding Argand diagrams of ¢(iw).
= =0y
C. The corresponding Cole-Cole plots of e(iw).
3 1~-a=0.5
B 1= g =02
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DAVIDSON-COLE DIELECTRIC PERMITTIVITY. Again, P(t) has been calculated for
various combinations of €* fw and 8. Some typical results are shown in Figure 2.4.
Also for this behaviour of the permittivity the value of g has to be known when 0
has to be found in the time domain from similar plots as given by Fellner-Feldegg
and Barnett, and analogous to a Cole-Cole permittivity behaviour, no criterion exists
in the time domain from which the value of 8 can be deduced.

The shape of the step response differs again in two ways from that of a Debye
material:

(1) the tangent at t = 0 is minus infinity instead of finite for a Debye behaviour
(2) the decay to the asymptote at t = = seems to be even faster than for a Debye behav-
iour.

The consequences from the two deviations are: first, the value of €, can
(theoretically) be found less accurate than for a Debye behaviour (but with the same
accuracy as for a Cole-Cole permittivity) and second, the value of T cannot be found
in the domain since the value of g8 cannot be found and third, the value of € can be
found for smaller values of t/v.0 than for a Debye permittivity behaviour.

Again, the theoretical conclusion can be drawn that e, and e5 can be found

directly in the time domain but not the value of o when an ideal voltage step is

applied to an infinitely long dielectric sample,

Figure 2.4

TDR-step responses for the Davidson-Cole
equation,

The corresponding Argand diagrams of o(iw).
The corresponding Cole-Cole plots of e(iw).




2.1,4 CONDUCTING DIELECTRIC MATERIALS

When the low-frequency conductivity o cannot be neglected, i.e., when

Or, using wig = 1, when:

(2.17)

the shape of P(t) changes significantly. However, the Cole-Cole plot in the frequency
domain changes as well, vide Figure 2.5.

Figure 2.5

Change of the shape of the Cole-Cole

plots due to the parameter :vo/ %

e

For two arbitrary combinations of £0 and £_ and many values of er/gJ the

time domain step response P(t) is calculated for 10'4<t/10<106. In Figures 2.6,

2.7 and 2.8 graphs of P(t) are given for dielectric materials behaving according to
the formulae of Debye, Cole and Cole and of Davidson and Cole. From these graphs, it
is concluded that even dielectric systems with very large conductivities such as

;= 100 9 tm? (1 a1 cm_l) can be studied with TDR-experiments.




Figure 2.6 TDR-step response for the Debye equation including low-frequency conductivity;

. =8 *'O/; is used as parameter., For t/'D 1 a logarithmic scale is

Figure 2.7 TDR-step response for the Cole-Cole equation including low-frequency conductivity;

e = 80, e, =8,1-a=0.8and 0.2, or,/c is used as parameter. For t/?o>1 a

0
logarithmic scale is used.

0




Figure 2.8 TDR-step response for the Davidson-Cole equation including low-frequency
conductivity; €9 = 80, €, =8, 8 = 0.8 and 0.2, c’n/i is used as parameter.

For t/TO"l a logarithmic scale is used.

When the low-frequency conductivity is predominant, i.e. when:

otgle > ——— (2.18)

31

an analytic relation for P(t) can be derived”". The reflection coefficient p(s) then

becomes:

7e1”

14+ [E(S)

[e(s) + = o/e )}
1 .
<

p—

Vs = Vs + g/e

Vs + Vs +ole
From this approximate result, the following relation for P(t) is obtained
P(t) = -1 + e *¥ [1,(xt) + I (xt)] (2.20)

3/2e (2.21)

In this equation, IO’ I1 are modified Bessel functions. The behaviour of P(t), accord-

ing to equation (2.15) is for very small and very large times respectively:




41

lim P(t) = 0 Tim P(t) = -1 (2.22)

t+0 to
The value for P(=) is correct, but the value for P(0), which should be p(=) is not,
due to the complete neglect of =(s) in equation (2.19). In Figure 2.9 two curves of
P(t), calculated according to equation (2.20), are compared with exact curves, obtain-
ed numerically. From inspection of this Figure it is clear that for t>ro both curves
are similar. In the next section this result will be derived, using asymptotic tech-
niques.

It is noted that the results of equation (2.20) cannot be used to measure the
value of o, by using the relation of the derivative of P(t) at t = 0, as was suggested
by Fel]ner-Fe]degg6’7. A curve-fitting procedure would probably work for this determi-
nation.

-0}

0.5 1 1.5
— Time (arbitrary units)

Figure 2.9 Some curves of the TDR-step response for a very large value of o/c.
1. P(t) calculated from equation (2.20)
2. P(t) for a Debye equation, € = 20, ¢, =10

3. P(t) for a Debye equation, €y = 80, £ =8

®
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2.2 ASYMPTOTICAL CALCULATIONS32
2.2,1 INTRODUCTION

In section 2.1 some results of P(t), from numerical calculations, were presen-
ted, using three current, partly empirical relations to represent the behaviour of di-
electric material. One of the interesting features is that the behaviour of P(t), for
t+=0, is similar for the permittivity relations of Cole and Cole and of Davidson and
Cole, while the behaviour of P(t) for t*= is similar for the relations of Debye and
of Davidson and Cole, as is shown in Figure 2.10.

Figure 2.10 TDR-step response P(t)

-0.2
1. Debye, £ = 20, ¢_=4
ba 2. Cole-Cole, £ = 20, e_=4,1-0=0.6
-~ »
45 \ 3. Davidson-Cole, ¢, = 20, ¢ =4, 8 =0.6
-0.4 —
1
-0.5 3 — i =
Sl
0.6 ——
Db \1
|
-0.7 % b A A A
1 L

These similarities in the time domain are to be compared with the corresponding simi-
larities in the frequency domain, i.e. the shape of the corresponding Cole-Cole plots
for the relations of Cole and Cole and of Davidson and Cole are similar for high-fre-
quencies while the geometrical form of the Cole-Cole plot for the relations of Debye
and of Davidson and Cole are similar for low-frequencies.

These similarities between the asymptotic behaviour of P(t) and the (geometric-
al) asymptotic behaviour of e(iw) in the Cole-Cole plot representation, for three spe-
cific dielectric permittivity equations, suggest the possibility that for any dielec-
tric permittivity the asymptotic behaviour of P(t) may yield information about the
asymptotic behaviour of e(iw) in terms of the geometry in the Cole-Cole plot repre-
sentation and vice versa.

It must be noted, that knowledge about these features is rather formal a priori,

although it can serve as useful theoretical background knowledge. It will be shown,
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however, that under some circumstances it gives information about the accuracy of di-
electric parameters obained from TDR-experiments.

In this section the mathematical relations existing between the asymptotic
behaviour of the time domain step response P(t) and the asymptotic behaviour of the
complex dielectric permittivity e(s) are derived, in section 2.2,2 for the low-fre-
quency conductivity being negligible, and in section 2.2,3 for this conductivity
being considerable.

By definition, P(t) and =(iw) are related by equations (1.57) and (1.34)

P(t) = £'1{%p(s)} (1.57)

o(s) = (1.34)

s+ V5 ¢(s) +oale

The problem will be approached by an analytic calculation of P(t) for t+0 and tow,
from power series expansions of equation (1.34), obtained from expressions of ¢(iw)
for w+0 and >« respectively.

2.2,2 NON-CONDUCTING DIELECTRIC MATERIALS
ASYMPTOTIC BEHAVIOUR OF ¢(s). Any mathematical equation, representing the com-

plex dielectric permittivity e(s) of a non-conducting material, must have real and
Timiting values for w+~ and w>0:

l,lm e(iw) = €2 1 (2.23)
l\lg’ e(iw) = €0”€q (2.24)

Further more one always has:
we"(w)>0 (2.25)

The Cole-Cole plot gives the graph for £"(w) as a function of ¢'(w). If the
angles made by this plot with the ¢'-axis at the high- and the low-frequency ends are
denoted by ¢, = 4 and 99 = 272 respectively, one has:

e" (w)

Lim -21733___?:7 = tg 3mn , Ogn<2 (2.26)



a0

Tim
wro e - g'(w)

0
The restrictions on n and ¢ are derived from the restriction we"(w)>O0.

= tg ing, 0<z<2 (2.27)

Without loss of generality =(s) can formally be written in two forms33:
e(s) = e, +5s "f(s) (2.28)
and
e(s) = g = S°fy(s) (2.29)

In the following, equation (2.28) will be used for s+« and equation (2.29) for s-0.

Equation (2.28) gives for ¢' and &":
e'(w) = et o "[f(w) cos 3mn + f(w) sin 3] (2.30)
e"(0) = w "[fl(w) sin dmn = Fo(w) coS dmn] (2.31)

where f!(w) and f"(w) denote the real and imaginary parts of fm(iw). Substituting
these expressions in equation (2.26) one obtains
f;(w) sin éﬂq - f:(w) cosS éﬁn

]im = tg énﬂ (2.32)
wreo f;(w) cos éﬂﬂ + f:(w) sin i”n

Analogously, for w»0 is found:

fo(w) sin dnz = fj(u) cos iz

Tim = tg inz (2.33)
w+0 fé(w) cos 3ng + fa(w) sin irg
From equations(2.32) and (2.33) it follows that:
i)
Tim———=0 (2.34)
wro  fl(w)
(o)
1im —— =10 (2.35)
w0 fé(m)

The causality condition requires further that ¢(s), and thus also f_(s) and fo(s) are
analytic functions for the right hand side of the complex frequency plane, i.e. for

Re[s]>0.
In general, three kinds of asymptotic behaviour of f(iw) may be distinguished.
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These cases will be discussed for f_(iw):

(1) Tim f!(w) = a_ (2.36)

where a_ is a finite real number. It then follows from equation (2.34)
Tim f:(m) =0 (2.37)
W

and equation (2.28) can be written in the form:

efs)=¢c_+a_s"+o0[s"], s+ (2.38)

where the order symbol o has been used. From equation (2.25) it follows that
a_>0 (2.39)
(2) Tim f!(w) = = (2.40)

W

In this case equation (2.34) implies the restriction that f_(s) must go to infini-
ty with a slower rate than any power of s:

f (s)=ol s*] , s+=, for any A>0 (2.41)

where f_(s) may for instance be a lTogarithmic Tike function, such as log s , log
log s, etc.

(3) lim f'(w) = 0 (2.42)

wre

or limRe [ ——| = (2.43)
e f (iu)

we now use the property that equation (2.34) is equivalent with

Im [ 1/f (iw)]
Tim = =0 (2.44)
L™ e | 1/f _(iw)]

This relation is obeyed when

-1
[f (s)] =o0[s?], s+=, for any 250 (2.45)

w

=1

e.g. when [f (s)] ° goes to infinity as logs, log log s, etc.
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For liw fo(s) the same three cases can be distinguished as for ;ig f_(s). The condi-
tions obtained for fo(s) are then:

s for any 2>0 (2.46)
s+0 , for any 2>0 (2.47)

ASYMPTOTIC BEHAVIOUR OF p(s). Because the function p(e), defined by equation
(1.34) with o = 0, is analytic for all e(iw), a Taylor expansion around some specific

value € is possible:
o(e) = ole,) =pyle,) (e - )+ o[ (c-e)] (2.48)

——
l1-Ae
0

(2.49)

== ———y (2.50)
\/Ew(l‘*v‘:})

w

Combination of equation (2.48) with equations (2.28) and (2.29) leads to:

ol(em)s—n f (s)+o TR (=) ]

o

p(s0) = o( gg) = = py(eq)s” fyls) + o | sifo(s)]
For the cases gim f (s) = a_, and ;iw fO(s) = ag, one obtains:

p(s+=) = o(e,) = pyle,) a5 +o | 57 (2.53)

0(s+0) - p(e 3 Dl(eo)aosE +0[s*] (2.54)

It is interesting to note, that, since both Ql(sm) and ol(ao) will always be finite,
it follows from comparison of equations (2.51) and (2.52) with equations (2.28) and
(2.29) that the Argand diagram of p(iw) = o'(w) + ip"(w) intersects the negative part
of the p'-axis under the same angles imn and inz as the Cole-Cole plot of e(iw). This
property can be observed from Figures (2.2b), (2.3b) and (2.4b).

ASYMPTOTIC BEHAVIOUR OF P(t). For t = 0, the behaviour of P(t) is given by
equation (2.7):
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P(0) = o (=) (2.7)

To find the relation with the asymptotic behaviour of the dielectric permittivity
the time derivative of P(t) at t = 0 is considered, which is given by equation (2.12):

({ﬁ})t_o = lims [o(s) = 0(=)] (2.12)

Applying equation (2.51) one obtains:

({ﬁ}) ramch 04(c.) Lim ' £ (s) (2.55)

Using the restrictions on f_(s), as given by equations (2.41) and (2.45), it is found
that (dP/dt) = 0 at t = 0, for n>1, and (dP/dt)= - = for n<1 (the minus sign is invol-
ved because ol<0 ). Forn =1, i.e. when the Cole-Cole plot intersects the ¢'-axis per-
pendicularly at the high-frequency side, the value of (dP/dt) at t = O depends on

f_(s) for s»=, If this limiting value is finite, (dP/dt) at t = 0 will also be finite,
and equal to

({?ﬁf T (2.56)
t)t=o Ve {1 + v”—:)z .

For lig f_(s) == or lig f_(s) = 0 respectively, the derivative at t = 0 will also
become infinite or zero.

For t+~ the behaviour of P(t) can be derived from the Tow-frequency behaviour
of £{P(t)}. First we consider the case of equation (2.54) i.e. the case of Tim fO(s) =

2 - s-+0
= ao.
-1 °(2o) t-1 z-1

E(P(t)} = s p(s) = —— - oy(gg)ags” " +o0[s°°] , 0 (2.57)

From this fo]lows34:
P1(5g)3g
P(t) = p(gg) ~————t +o0 [t ] , te=
r(l - ¢)
a5 - e
= p(gg) + tc+0 [ t7%], t (2.58)
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From the sign of the gamma function35, it follows that for 0O<z<l the step response
P(t) will approach its limiting value P(=) = o(eo) from the positive side, for

1<z<2 from the negative side. In the cases z = 1 and 7z = 2, when the Tow-frequency
side of the Cole-Cole plot respectively intersects the e'-axis perpendicularly and
touches the ¢'-axis, the term in t™° in the series development of P(t) - P(=) vanishes

because of the result>® 11

(=n) = 0 = . The series development will than
be dominated by the next term, which can be either positive or negative. When the
series development for e(s+0) contains only integer powers of s, all terms in the
corresponding series of P(t) - P(=) will vanish, and P(t) will approach its asympto-

tic value faster than any power of t-l. Consider now 1im fO(s) is zero or infinite:
s=+0

c-1

p(eq) X
g vlio lfo(s) s>

t)} = r——— ol(eo) fo(s) s I 5 s20 (2.59)
The function P(t) - P(=), t»=, is now dominated by the term -ol(eo) £'1{f0(s) 55'1},

From the restrictions on fo(s), i.e. equations (2.46) and (2.47), it follows that for
z=1-A =141 150
3

(the value of A cannot be zero, since then a logarithmic function for fO(s) is not pos-

and slower than any s

s+0, fy(s) sl goes to zero faster than any s

sible), Now it is known36, that the asymptotic expansion of a function for t+= corres-
ponds to an asymptotic expansion of its Laplace transform at a finite point where the
transformed function has a singularity. Thus the rate by which the step response P(t)
approaches its asymptotic value in the case of equation (2.59), will be faster than
any t™5**, and slower than any t °7*, 150, as long as ¢ is a fractional number. If g
is an integer, P(t) can only be derived in this way to go to its asymptotic value for

t™5** . The results are summarized in Table 2.1.

t»>= faster than any
TABLE 2.1

ASYMPTOTIC BEHAVIOUR OF P(t) - P(e) FOR t =

P(t) - P(x) goes to zero sign of the

faster than slower than dominating term

t-?\

R
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For non-conducting materials, the asymptotic behaviour of P(t) appears to be
comparable with the asymptotic behaviour of the "after-effect"* function, as is dis-
cussed by Bordewijk and Van Gemert33. This is due to the fact that the asymptotic
behaviours of ¢(s) and p(s) are similar.

APPLICATIONS. Because many experiments are analyzed in terms of the analytic
relations proposed by Debye, Cole and Cole and Davidson and Co1e37'40, in this section
the results of the calculations given above will be applied to these relations. It
appears that the three relations can be expanded into power series of s and of 5'1, S0

that the relations derived for ;13 fo(s) =2, and li@ f.(s) = a_ can be used. The
values of the relevant parameters are summarized in Table 2.2.

TABLE 2.2

PARAMETERS CHARACTERIZING THE ASYMPTOTIC BEHAVIOUR IN THE FREQUENCY DOMAIN

FOR THE CASES OF DEBYE, COLE-COLE AND DAVIDSON-COLE

expression for «(im) N a 7

o / %0

S -1 -

Debye e} = 1 (eg™ )TO 1 ('O' )
fuwt
0

. ’ %0 .« 1 o v. =(1-a) . s
Cole-Cole -‘*ﬁ_—l 1-a (0’,)0 I-a (O )o
+ (1,-0)
Davidson-Cole + 9 ;

Using the results from this Table and inserting the parameters into equations (2.55)
and (2.56), exact agreement is obtained with the results given by equations (2.13) -
{2.15),

For t-=, it is clear that the dominating term in P(t) - P(=) is positive for a
Cole~Cole relation, and goes to zero as fast as t'(l'“). For the relations of Debye
and Davidson-Cole, the subsequent terms in the series expansion of e(s) become impor-
tant. For the Debye relation the expansion is given by

e(s40) - ¢y = (g = &) T (- s10)“ (2.60)

aMs

1

. do(t) _ ~1fels) - e,
The after-effect function, ¢(t), is defined by the following equation: - " £

CO-Cm
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for the Davidson-Cole relation, it is given by:

X . B(B+1)(B+2)...(8+n=-1)
g(s»0) - € = (eo = E“’)Z

n=1
Because all powers are integer, this is also true for the expansion of p(s+0). There-
fore in the case of Debye and Davidson-Cole, P(t) will go to its limiting value P(»)
faster than any power of ¢l
The rate of which P(t) goes to P(«) in the cases of Debye and Davidson-Cole,

can be obtained by developing the expression 5-1[ o(s) - o(eo)] around the point

(= s79)" (2.61)

n!

where it has a singularity, i.e. around the point $5 i l/ro:

s o(s) = oleg)] =

-B
L[ 1-Ve b (g me) Me st 1-5g
3 1 +—v@m - (eo =Res )T sro)'B 1 +y/5q

2 \/e_o - 2\/&:“, + (eo =) 1% STO)-B
s(1 + V&) [1 + \/;m L N 510)-6J

2,512 Ve (8 - 500 - yf{eg - o) T e’ (s < 5
s(1 +/&j) TOB/Z(S - sO)B/2 +4fleg - &) + e 1B(s - 54)B

Now the following property is used:

F(s) = F(sg) + [ F(s) = F(sq)]

where F(s) = 5'1[ p(s) - pleg)] and sg = - 161.

The result is
2T
b S L
1 +V/EO
B B B B
e Mgy i P2 [1 + e = To(s - so)l + 1o(s - so) Ve =6 + £.70°(5 = 5p)
s(1 + \/5_0) [TOB/Z (s - 50)8/2 +(“30 “Cw +€mTOB(S i 0)B ]
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which can be written as:

21, 3 108/2 (1+ /%) (s - so)s/%-O[ (s - 50)6/212
1+ /Ea' l/r0 (1 + /26) Veo S ol1]
1+8/2
21 21
s e (s - 50)8/2 +of (s~ 50)8/21 % h&ab2)
1+ /a; Veo =rEe

It follows that the asymptotic behaviour of P(t) - P(w) is given by34:

T
\ ”
P(t) - P(=) = DR S (t/2g) (1188) o txg 4 o[ &7t £7(38 * 1)} (5 63
VCO = Ecc

where the result r'l(- B/2) = r(% g) sin % g is used. For the Debye relation one has
8 = 1, and equation (2.63) becomes

P(t) - P(=) = —Ee— (t/1) 2 e s 0l t 2] (2.60)
2Vnieo = Em;

2.2,3 DIELECTRIC MATERIALS WITH LARGE CONDUCTIVITY

When the conductivity of the material is considerable, the quantity in the
frequency domain obtained experimentally is e(iw) + o/eiw , and a Cole-Cole plot can
be obtained by plotting the negative imaginary part of this quantity against the real
part. According to equation (1.34), the asymptotic behaviour of P(t) for t+0 will now
be determined by the high-frequency side of the Cole-Cole plot obtained in this way,
and the same cases can be distinguished as in the case of non-conducting materials.
The results are similar to the results obtained for the special cases of Debye, Cole-
Cole and Davidson-Cole as given in section 2.1.

The low-frequency side of the Cole-Cole plot now does not intersect the real

axis, however, since e(iw) + 24& has a pole for s = 0. The quantity s'l[o(s) -o(eo)]
can now be developed around s = 0 in the following way, using o(eo) == 1,0 # 0:

Vs = /s £(5) + o/e ]
+ 1]=

e = oleg)) =%[ A+ /5@ role J
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vl 2 [ 27s ]:
8 Vs + Vs g(s) + o/e.
=2 /efsa +0 [s2] , s+0 (2.65)

Then it follows:

P(t) = P(») —2—‘/3+ o [t7}] , e
r(3) Vto
zf};— t2io[t?] , b= (2.66)

For the case =(s) = 1, in section 2.1,4 it was found that

p(t) =-=1 +e Xt [ Io(xt) + I;(xt)] (2.20)

where x = o/2¢ and IO and I1 are modified Bessel functions. Taking the asymptotic
developments for these modified Bessel functions41, the following series development
for P(t) is obtained:

t t
P(t) -1+e"‘t[_ei_(1+L+....)+ e (1-—3—+....)]

Y 2wxt 8xt v 2mxt 8xt

-1+2Jijo t2ioltl] , tee (2.67)

which is in agreement with equation (2.66)

2.3 DISCUSSION AND CONCLUSIONS

In section 2.1 of this Chapter, the step response P(t) is calculated numerically
for dielectric materials behaving according to the relations of Debye, Cole and Cole

and of Davidson and Cole.
The main conclusion is that a direct evaluation of the dielectric parameters
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in the time domain (except €0 in most cases) as proposed by Fellner-Feldegg and
Barnett27, is in general impossible, since the shape of the TDR-response does not

show enough characteristic features from which the value of certain parameters can be
estimated (for instance the value of 1 - « or 8 in the permittivity relations of Cole-
Cole and Davidson-Cole). Instead, Fourier analysis of the time domain results is neces-
sary for the evaluation of Tge @ Or g and € .

When low-frequency conductivity is involved, it is shown that Eq Can be deter-
mined when ot,/e <0.1. The evaluation of o from the derivative of P(t) at t = 0 is
impossible, even in the situation that the low-frequency conductivity is predominant.
It is suggested, however, that a determination of o , from TDR-experiments, may be
possible by curve-fitting methods, although it is noted that the value of o can be
very easily obtained from standard techniques.

In section 2.2 of this Chapter the asymptotic behaviour of the step response
P(t) is compared with the asymptotic behaviour of the complex permittivity, where the
relation with the angles of intersection in the Cole-Cole plot is emphasized.

For t+0, the point of interest is the derivative (dP/dt) at t = 0. It appears
that if the value of this derivative is finite, the angle of intersection at the
high-frequency side of the Cole-Cole plot will be n/2. If the derivative is zero, the
angle of intersection will be greater than, or equal to n/2. If the derivative is in-
finite, it will be smaller than or equal to =/2. These results are of importance, ex-
perimentally, in terms of accuracy of TDR-experiments, because in an experimental si-
tuation for which the value of (dP/dt) at t = 0 is infinite, the accuracy of the high-
frequency points of e(iw) is less than for situations where (dP/dt) at t = 0 is fi-
nite.

For t>= , the first question of interest is, if there is a considerable low-
frequency conductivity. If this conductivity may be neglected, the lTimiting value of
P(t) amounts to P(x) = o(so), and the rate by which this Timiting value is approached,
is related to the angle of intersection at the low-frequency side of the Cole-Cole
plot. An exponential rate may be found if the angle of intersection is n/2 or if the
Cole-Cole plot grazes the e'-axis. If the asymptotic value is approached as fast as
C. 0<z<1, it follows that the angle of intersection at the low-frequency side of
the Cole-Cole plot amounts to 3wz. In these respects the asymptotic behaviour of P(t)
for non-conducting materials appears to be comparable with the asymptotic behaviour of
the after-effect function33.

If the low-frequency conductivity is considerable, one has P(=) = -1, and this
value is approached as fast as t-!. Instead of using a curve-fitting technique, the
low-frequency conductivity can also be determined from the coefficient of the term in
t'é, for instance by plotting P(t) against 73
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An important consequence is that for compounds with a considerable low-frequen-

cy conductivity, and for compounds where the low-frequency side of the Cole-Cole plot
cuts the £'-axis non-perpendicularly, as for instance in the case of the Cole-Cole
equation, it will be difficult to obtain a complete TDR-response, since in these cases.
the asymptotic value is approached at a relatively slow rate. This introduces the risk:
of large errors, when in these cases the TDR-signal is Fourier transformed to obtain
values of ' and ¢" in the frequency domain.
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CHAPTER 3
EXPERIMENTAL PROCEDURE
3.1 EXPERIMENTAL EQUIPMENT

A schematic representation of the experimental equipment was given in Figure
1.1. In Figure 3.1 the experimental equipment as used in this work is shown. It incor-
porates the Hewlett-Packard 180 B Time Domain Reflectometry system (12.4 GHz), consist-
ing of the 180 C mainframe, the 1815 B Plug-in-unit, the 1817 A picosec Sampling Head
and the 1106 A 20 picosec Tunnel Diode Mount. Part of the coaxial lines are of 7 mm
precision lines as delivered by Hewlett-Packard, connected together with Amphenol
APC-7 type connectors. The other part, including the measurement cell, is made of 14 mm
precision coaxial line from General Radio (GR-900 system). The equipment used for
thermostatic purposes consists of a dewar placed around the measurement cell, filled
with water at the desired temperature. The temperature of the dielectric liquid under
test was measured directly as it was enclosed in the coaxial t}ine.

Figure 3.1 A

The experimental equipment.
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Figure 3.1 B

The experimental equipment.

The TDR-equipment operates as follows. A slow voltage ramp is propagated via the
coaxial cable to the tunnel diode. This ramp will then open the tunnel diode from
which a very fast step voltage (rise time about 35.10"12 sec) arises. This voltage is
propagated again via the sampling system, to the air-dielectric interface where part
of it will be reflected and the other part will be transmitted into the dielectric
material. A short circuit is placed at the end of the cell which means that the vol-
tage between the inner- and the outher conductor will only change its sign at that
point and is propagated back through the interface to the sampling gate. In this
thesis, the first reflection against the air-dielectric interface is analysed only,
which means that the TDR-decay is assumed to be finished before the second reflec-
tion reaches the interface as well (infinite line). This gives a limitation, to lower
frequencies, of the dielectric relaxation phenomena which can be studied by TDR. Using
a cell length of about 0.33 meter and assuming a dielectric material with ¢ = 3, the
maximum decay time is about 3.8 nanosec. Using the fact that the TDR-decay is finished,
with sufficient accuracy, after 310, the maximum relaxation time measurable with the
TDR-equipment is then about 1.3 nanosec or the minimum relaxation frequency, is about
12 = 0.12 GHz. For reasons discussed later, however, the TDR-system is used with a
maximum decay time of about 1.8 nanosec, giving rise to a minimum relaxation frequency
of about 0.26 GHz.

The limitation at the higher frequency end is caused, in principle, by the
finite rise time of the step function only. In practice, however, this is not the only
limitation as will be discussed in section 3.3.
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The measurement ce]]. used for the experiments is shown in Figure 3.2. It con-
sists of a General Radio precision coaxial line (GR-900 system) with a thin mica bead
(about 0.3 mm thick) to hold the 1iquid and at the end a short circuit which can be
removed in order to fill the cell. Because the TDR-equipment from Hewlett-Packard is
constructed for amphenol coaxial lines, an adapter has to be used to 1link the two co-
axial systems.

13, it is suggested that minimum trouble from unwan-

In the paper by Loeb et al
ted reflections against discontinuities (connectors, sampler, tunnel diode) will arise
during the decay of the TDR-response when about 0.6 m coax is placed between tunnel
diode and sampling system and also about 0.3 m (without connectors) between sampling
system and the air-dielectric interface. All experiments , described in this thesis,

have been carried out using the above improvement of the TDR-system.

Figure 3.2 The measurement cell.

-
The cell and mica beads are constructed by P. Leemans.



3.2 MEASUREMENT PROCEDURE

In section 1.4 it is concluded that the dielectric permittivity can be calcu-
lated from the Fourier transforms of the incident and reflected voltages, by the re-
lation

F(iw) - G(iw)
F(ig) + 6(iw)

e(iv) =

@

= lim fvo(t) g (v + i)t 4

y+0 &

o

G(iw) = Vim fR(t) e (Y + 1)t 4

0 ¢

and Vo(t) and R(t) are the incident and reflected voltages respectively.

The measurement procedure of the reflected voltage R(t) is straightforward by
recording the TDR-response on a XY-recorder. The incident voltage, Vo(t) is not meas-
ured directly as it passes the sampling gate, but instead, the response to a short
circuit, placed at the same distance from the sampling gate as the dielectric inter-
face is taken as the incident voltages‘7’12’13.

It is important to note that the above method of determining the incident and
reflected voltages by separate measurements, requires an accurate time referencing of
the two voltages. Suggett and co]leagueslz'13 have solved this problem by using a
time marker system giving a sharp spike waveform at some reference point in the time
domain. They also corrected their reflection data by results from transmission measure=
ments. This system is succesfully used for the measurement of high-frequency relaxa-
tion phenomena up to about 15 GHz (water at 5° C, Loeb et 3113). They suggested, how-
ever, that for relaxation phenomena up to about 1 GHz a simpler method will suffice.
This reference method is shown in Figure 3.3. The shape of the reflected voltage
(against the short circuit as well as against the dielectric interface) is then extra-
polated to the top of the pulse. This position in time is used as the time reference
t = tr’ for both voltages. A1l experiments described in this thesis have been carried
out using the above reference procedure. It will be discussed in more detail in section

3.3
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In their paper, Loeb et a113 have payed much attention to unwanted reflections
against connectors etc. resulting into a procedure of minimizing these reflections
during the decay of the reflected voltage (see also section 3.1). As is shown in Figure
3.4, however, an extra step of about 5% is observed when the short circuit is applied.
The occurence of such an extra step seems to depend on the sampling system used. The
step found for our equipment can be explained by means of a reflection of the step vol-
tage against the sampler-coaxial junctions, where it is assumed that the sampler sys-
tem has a characteristic impedance which is about 10% larger than the characteristic
impedance of the coaxial line. The resulting wave form is constructed in Figure 3.4 B,
using the "distance-time" graph as is previously used by Loeb et 3113. It appears that
the main features of the extra voltage, for the case of the short circuit, can be ex-
plained in this way; the place where the extra step is found agrees very well with the
dimensions of the sampling system.

An important feature of this extra step is, that the wave front has reflected
only once against the short circuit. Therefore, if the short circuit is replaced by
the air-dielectric interface, that part of the reflected voltage due to the extra step,
depends only on one single reflection against the air-dielectric interface. Such a
reflection is called a first order reflection since it has an amplitude which is (to
an excellent degree of approximation) proportional to P(t). Second order reflections,
with an amplitude proportional to P(tl) P(t2) will also be present, but they occur at
rather large times due to the 0.3 m coaxial line between the sampling system and the
air-dielectric interface. It can be proved, however, that the occurence of a first
order reflection does not affect the validity of equation (3.1) on which our measure-

ment procedure is based (vide Figure 3.5).

Re

t
N E(t)

S ( Figure 3.5

Definition of some symbols.
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By definition one has:

' = V. (t) + 3.4
R(t) = R (t) + e(t)
e
where V. (t) is the reflected voltage against a short circuit, V_(t) is the

S
pulse (without unwanted reflections), E(t) is the error voltage due to the

step, R(t) the reflected voltage against the dielectric interface, R_(t) the exact re

ponse to Je{t} and e(t) is the error signal involved in R(t). The Laplace transform
of equations (3.4) and (3.5) yields:
F(s) = 1§V _(t + £{E(t) 3.6)
{Ve(t)} + £{E(t)} 6
G(s) = .{Re<t)} + fe(t)} 3.7)
It is also known (e.g. equation (1.74)), that
R (t) = [+ dpP I 8
p\* = .e\’_)l 1;: LI
and by virtue of the superposition principle one has
dP
e(t) = E(t) % °E3 (3.9

where it is thus assumed that e(t) is the response to E(t), which is only correct

when no multiple reflections against the short circuit and air-dielectric interface

are present in E(t) and e(t) respectively. Taking the Laplace transform of equations
(3.8) and (3.9) one finds

Combination of egquations (3.6), (3.7), (3.10) and (3.11) finally gives

G(s) = [sfve(t)} + x‘{E(t)}] (s) = F(s) <(s)
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°(s) = P (3.12)

[t is thus shown by equation (3.12), that the dielectric permittivity is obtained by
calculating the Fourier transforms of the reflected pulses against the air-dielectric
interface and the short circuit, even when a first order reflection against the inter-
face is present.

It is clear from the discussion given above that the total length of the TDR-
decay may not exceed the total length of the unwanted first order step, since other-

wise the response R(t) is not the exact response to the step voltage V.(t) anymore and

errors may be involved (see also the discussion in the next section abgut the errors
in that situation).

The evaluation of the real and negative imaginary parts of the dielectric per-
mittivity from the incident and reflected TDR-curves occurs as follows".The shapes of
the voltages are recorded on a XY-recorder and sampled (by hand). The time reference
procedure is carried out as indicated in Figure 3.3, Then the actual times of all sam-

ples, using t = tr for the two reference points are calculated by:
t(n) =nt + £(1) - t (3.13)
where t(n) is the actual time of the n-th sample, t is the difference in time between

two samples, t(1) is the actual time of the first sample and tr is the reference time,
see Figure 3.6.

XY - RECORDING
. XY - RECOR

t (n) l

Figure 3.6 Definition of the symbols used for the calculation of the actual time tin).

*This procedure has been suggested to the author by Mrs. P.A. Quickenden and Dr. A. Suggett
during a short stay at their Laboratory (Unilever Research Laboratories, Sharnbrook, England).




After punching the data on cards the Fourier transform of the data is calcu]ated12
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using Samulon's "™ modification of Shannon's43 sampling theorem

N
Flin) = l_T-iTnZ;[f("T + 1) = f(n)] e (0T + 1) (3.14)
Ry

where N is the number of samples used (which is about 300 for this work). Then the
permittivity is calculated directly from equation (3.1) and the dielectric parameters
are evaluated from the Cole-Cole plot of " versus ¢',

The calibration of the TDR-traces in terms of actual time versus distance on
the XY-recording (i.e. determination of 7 ) has been carried out by using the calibra-
tion lines on the oscilloscope. This is a fairly accurate proceduredd. Due to the
Jitter, no other method seemed to be more accurate ( a brief discussion of the jitter
phenomenon is given in section 3.3).

The computer programs, as used by the author, are given in Appendices B and C.

3.3 ERROR ANALYSIS
3.3,1 INTRODUCTION

In the subsequent steps of evaluating the real and imaginary parts of the di-
electric permittivity from TDR-measurements, as discussed in the former section,
several errors may be involved. Due to these errors uncertanties arise in the parame-

ters characterizing the dielectric relaxation behaviour, e.g. in e, and 7, for

~ ’
a single relaxation time (Debye behaviour). :

It is the purpose of this section to discuss the uncertanties involved in the
determined parameters
and Vo(t). Due to the complexity of the problem, it will not be possible to give a

detailed mathematical analysis. In most cases, however, an order of magnitude can be

€., €_ and 7, in connection with inaccuracies involved in R(t
0’ "« 0

estimated.
In this section, the important error sources potentially present in Vo(t) and

R(t) will be defined and in section 3.3,2 their influences upon the values of

and "o will be discussed. i

In Figure 3.7 a schematic graph of Vo(t) and R(t) is shown (for a better under-
standing of the purposes of this section, both curves are distorted). It is assumed
that the XY-recorded curves run from C to E for R(t) and from D to F for Vo(t). Very
clearly the curve Vo(t), as drawn in Figure 3.7, should have been recorded from point
G instead of D.




XY- RECORDING

Figure 3.7 Definition of some possible uncertainties involved in XY-recorded TDR-curves.

In this graph, the time reference procedure is carried out, resulting in the reference
points A and B for R(t) and VO(t) respectively. Because the total response curves are
drawn, the two points H, which coincide on the two input ramp voltages, can be conside-
red as exact time references, and it is therefore clear that the actual times of points
A and B are not equal. This time difference, indicated by 4 , is the timing error which
is potentially involved in the time reference procedure.

It is already noted, that the point D is not the best point to represent the
first sample of curve Vo(t). It is assumed, however, that the experimental conditions
are such that on the XY-recording the point Vo(l) corresponds to point D. Therefore
this value of VO(I) is in error. The last point of Vo(t),i.e. VO(N:) corresponds to
point F. It can be observed from Figure 3.7 that the value of VO(Nr) is in error as
well, since F is chosen, for instance, on the top of a little "bubble" (these bubbles

originate from unwanted reflections against connectors, sampler, tunnel diode etc).
The possible errors in Vo(l) and VO(NT) result into a possible error in o(0). It must
be mentioned that, in principle, the same uncertanties are present in the curve R(t),
but their influence upon p(0) is considerably smaller. However, in section 3.3,2 an
“overall" error in p(0) is discussed and the origin of this error is not of importance
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in that discussion.

So far, two sources of errors are mentioned, both of which may influence the
whole shape of the Cole-Cole plot and thus the values of all parameters to be ob-
tained. However, there are at least three other potential errors. The first may appear
in the situation that the dielectric material under test posesses such a large relaxa-
tion time that the curve R(t) has not reached its equilibrium value at t = Nt , as is
also shown in Figure 3.7, In that case, the value of ©(0) and thus of 0 is in error
and very certainly the value of Tn a8 well (but not the value of £_). The second may
be due to the sampled representation of the steepest part of Vo(t) which consists of
, the
question may then arise wether this discrete representation of V_(t) is sufficiently
complete to give accurate values for the high-frequency part of the Fourier spectrum
of Vo(t). The third potential error consists of horizontal jitter of the TDR-curve as
it is displayed on the oscilloscope screen. This jitter consists of uncontrollable

about ten points in an actual recording. Refering to Shannon's sampling theorem43

and unpredictable horizontal movements of the signal which, unfortunately, are inher-
ent to the use of sampling-oscilloscopes. Since the scan time of the XY-recording takes
one minute, and during this scan time the displayed curve cannot be observed, it is
clear that the jitter may be a rather hidden source of error.

Summarizing, the most important errors, to be discussed in the next section,
are
(1) a time reference error
(2) an error in o(0)
(3) a not completed TDR-decay

(4) failure of Shannon's sampling theorem for the steepest part of Vo(t)?
(5) horizontal jitter of the TDR-curves
3.3,2 DISCUSSION OF THE ERRORS
The basis equations, to be used in this discussion are:
R(t) = €71 {F(s) o(s)} (3.15)

> R(nt + 1) = R(ne)] e telnT + %)

o(iw) = - (3.16)

\—m[vo(m? A VO(mT)] e'ﬂ‘(mT +.1)
2

1 - p(iw)
e (fw) = (*_) (3.17)
1+ p(iw)
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When possible, the consequences of the errors involved in R(t) and Vo(t) are directly
translated into their eguivalences in the frequency domain, i.e. into errors involved
in e(iw) or p(iw), but unfortunately this procedure cannot be carried out for all

cases of interest. An alternative approach is then the construction of the Cole-Cole
plot of e(iw) from simulated and Fourier transformed curves Vo(t) and R(t). The para-
meters €0* % and i) are then evaluated in the usual way. For those simulations, the
application of a heaviside step function is not very useful, but the following non-

ideal step function suffice:

sin (At + ¢) _
A t A cotg ¢

sin ¢

where 4 = 0.785. The values for A have been chosen in such a way that the rise time
Ths defined by VO(Tr) = 1, is equal to

9 for A = 2.357

0.1 &) for A = 23.57

The Laplace transform of equation (3.18) yields

2A cotg ¢ + s
2

F(s) = = -

2

(s + Acotg ¢)" + A

A graph of equation (3.18), together with the corresponding response R(t) for a Debye
dispersion is given in Figure 3.8.

For some of the discussions, it is necessary to compare results obtained from
theoretical curves, such as Figure 3.8, with the corresponding results for experimen-
tal curves, such as Figure 3.9. To do so, it is assumed, from comparison of Figures
3.8 and 3.9 that the theoretical rise time T corresponds approximately to 60 picosec
experimentally.

In the following parts the influences upon the values of €025 and T of the
errors involved in R(t) and Vo(t), are discussed.

(1) A TIME REFERENCE ERROR. When a timing error A is involved, the reflection
coefficient, o'(iw), is given by




' Vo (t)

0 T,

— Time

Figure 3.8 Curves Vo(t) and the response R(t) for a Debye equation,

D B

L\—\’\’\/\M F
i

e

Tr=60 picosec

Figure 3.9 Experimental curves VO(t) and R(t) for methanol, T = 22 °C
< =5 v © 3 GHz (:0 = 53 picosec).
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;[R(nr + 1) - R(nr)] e-iw(m’ + 1T 4 4)
zm[vo("” 250 B Vo(mr)] e lw(mT + 1)

p'(iw) = -

o' () = p(iw) e 142

Writing » in terms of amplitude R(w) and phase 8(w), this becomes:

o' (jw) = R(w) ei [B(w) - wA]

(3.20)
From this equation it is clear that a timing error 4 results into a phase error with a
value proportional to 4 and w. Expressing v in GHz and & in picosec, the phase error
is denoted by

phase error = 2mv A 1073
or, expressing this error in "Degrees/GHz", the result is:
46= 0,36 & Deg/GHz (3.21)

It is the purpose of the following part, to estimate the absolute value of & ,
expressed in picosec, as a function of the dielectric relaxation time i) (note that
the steepest part of R(t) is different, in principle, for materials with different
values of TO). Further more one has to distinguish between a systematic and an acci-
dental part involved in 4, respectively denoted by AS and Aa'

A direct estimation of the systematic part as dependent upon the value of o
is not very well possible from experimental curves. Instead, simulated results will be
used. It must be noted that, although the shape of the theoretical step as such differs
in some respect from the shape of an experimental step voltage, the correspondence
between the theoretical and experimental situation is such that results obtained from
theoretical curves are also relevant for the experimental situation.

In Figure 3.10 a graph of VO(t) and the corresponding response R(t) is given
for T =Ty = 60 picosec (using A = 2.357). By hand the tangents are constructed and
it is observed that a systematic timing error is involved. The value of AS is esti-
mated, from this graph as

g = 2.5 picosec (TO = 60 picosec)




T

Figure 3.10 Figure 3.11

Time reference procedure for the curves Vo(t) and Time reference procedure for the curves Vo(t) and
R(t); From a Debye equation, €0 = 20, £ =4 and R(t); From a Debye equation, £ = 20, £, =4 and

r 0 T '.O/IO.

The same procedure has been carried out, as is shown in Figure 3.11, for graphs of
Vo(t) and R(t) with T = 101r = 600 picosec (A = 23.57).From this Figure it can be ob-
served that the systematic timing error is at least very small. From these results it
can be concluded that there is some evidence that the value of the systematic part of
A is decreasing for increasing values of o
Apart from a systematic error, an accidental error is also present, The value
of this error depends upon the time scale of the XY-recorded TDR-curves and also upon
the fact whether or not the steepest parts of Vo(t) and R(t) can be represented by

straight Tines. However, this error has to be estimated, and a value of

Aa = 1.5 picosec

is chosen (this value corresponds to 0.25 mm in an actual XY-recorded curve).
From the foregoing results, it can be concluded that the total possible error

in the time reference procedure is of the order of 4 picosec for % © 60 picosec




and about 1.5 picosec for 0 = 600 picosec. For convenience, however, it will be
assumed that the total timing error equals 4 picosec for all values of 0 Thus

A = AS - Aa = 4 picosec for all %
This corresponds to a phase error of
a8 = 1.5 Deg/GHz (3.22)

Knowing the total uncertainty in &, it is relatively easy to estimate the total uncer-
tainties in £_ and 0 (the static permittivity € is not affected by a timing error),
as a function of 0 This has been done by combining equations (3.20) and (3.17). From|
the constructed Cole-Cole plots the values of 9 and ¢ were estimated. In Figures

3.12 and 3.13 the final results are given.
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(2) AN INCORRECT ESTIMATION OF o(0). When the value of o(0), given by

2 {R(nt + 1) - R(n7) } R(Nt) - R(7)

}n;;{vo(mf + 1) = V(o)) Vy(Me) - V()

p(0) = -
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or

p(0) = -R(w = 0)

is estimated incorrectly, a direct error in the value of the static permittivity €

0
will occur. This error can be calculated by means of the following results:
1-0(0)\2 /1 +R(0)\?2
€n % i Tere—— sl (3.23)
1 +p(0) 1 - R(0)
Ae AR(0) de R(0)
3= ( 0 ) (3.24)
€ R(0) dr(0) £
Evaluation of deo/dR(O), by means of equation (3.23) results into:
be, 4 R(0) AR(0)
- Vi (3.25)
% 1 - R(0) R(0)

In Figure 3.14, the multiplication factor 4 R(0)/[1 - R(O)z]is plotted versus R(0)
(and also versus eo). From this graph it is clear that some uncertainty in R(0)

causes a considerable larger uncertainty in €0 (for €y © 20 and 4R(0)/R(0) = 1% it
follows that de./e. = 4%),
0°0
2
§
g
2 10 b L A=
2
Figure 3.14
—=R(0) 2
0 : oA L O  0F k0  Graph of the multiplication factor 4R(0)/ {1-R(0)%} .
1 2 5 0 2 000 b




The uncertainty in 0 due to an error in p(0) cannot be calculated very easily
for the general situation that this error is caused by uncertainties in the first and

last samples of V_.(t) and R(t). This problem can perhaps be solved by means of simula-

tions, but this rgsearch has not been carried out yet. It is possible, however, to
give an order of magnitude for the uncertainty in 0 due to an uncertainty in the last
samples only. In that case, the measured reflection coefficient o'(iw), may consist of
the exact p(iw) and an error term 4p(iw) which can be approximated by the Fourier
transform of a step function with amplitude 40 (0), starting at the actual time T of

the last samples, i.e.

do(iw) = 1im £ 180 (0) u(t - T) (3.26)
y+0

where u(t - T) is the translated heaviside step, defined by:

Then po(iw) is given by

(3.28)

It should be noted that equation (3.28) is only correct for w>>0, because Ap(iw)*=i=
when w+0 instead of 4&p(iw)>4s(). However, using equation (3.28) the new reflection co-
efficient becomes:

-jwT

e
p'(iw) = p(iw) + 4p(0) —— (3.29)

iw
From inspection of equation (3.29), it is clear that the reflection coefficient o' (iw)
will contain oscillations, due to the term (iﬂ)-l exp(- iwT) = “°1 sin wT - ix-l cos wl
The oscillations as such can be smoothed, but unfortunately they are superimposed upon
an average error which has the value 4p(0)/w for w>>0 and for w = 0 the value 40(0).

The uncertainty in the value of Tgs @S resulting from the incorrect reflection

coefficient o'(iw) has been estimated from the Cole-Cole plot, constructed by using
equation (3.17). It is assumed, that the total uncertainty in o(0), as resulting from
incorrect values of the samples of Vo(t) and R(t), is about 0.5%. Then, the error in

the value of t, is about 5% (for €y = 20, c_=4and T =5 TO). Thus:

0
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bt 0(0)
D O —— 0,68
T 0(0)
Further more the total inaccuracy of ¢(0) is estimated to be
°(0)
= 1%
0(0)

heq 4 R(0) R(0)
— = 1
: T
o 1 - R(0) R(0)
or
Ae 1 -
SR 1%] (3.30)
0 "0

In Figure 3.15 the result is plotted (Figure 3.15 is the same as Figure 3.14, but
with a linear scale in rc).
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Figure 3.15 Procentual error in €0 due to an error in o(0).

The influence of an error in the first samples (see Figure 3.7) has some effect upon
the possible error in €_. This error in €_ is than also given by Figure 3.14. Using
€ = 3 and AR(®) = 0.5%, the error involved in ¢_will be of the order of 0.5%. This
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is negligible compared with errors involved in e_ from other sources (for instance a

timing error).

(3) A NOT COMPLETED DECAY, The influence upon the values of €y and %
when a not completed TDR-decay is Fourier analysed is very easily studied by means of
simulated graphs. In Figures 3.16 and 3.17 the results are presented for the errors
in £y and Tgasa function of the total decay time (expressed in units of ro). It is
noted that the point t = 0 for the simulated TDR-curves is rather close to the time
reference point used experimentally. The results from the simulations are therefore
representative for experimental purposes.

w
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Figure 3.16

Procentual error in £g 35 depending upon the length T

: £
of the total decay time. ——=Total decoy time
Figure 3.17

Positive procentual error in Y0 (or ro) as depending
upon the length of the total decay time.

(4) FAILURE OF SHANNON'S SAMPLING THEOREM FOR THE STEEPEST PART OF Vo(t)? The
steepest part of Vo(t) is under experimental conditions determined by about ten sam-
ples, at a distance of T = 6 picosec. Shannon's sampling theorem43 states that the
complete curve is exactly determined by discrete samples at intervals t when the
Fourier spectrum of the signal is zero above some maximum frequency Vo where v and T

are related by

1
2T

or, using 7= 6 10°12,




According to this value of Vo it is assumed that Shannon's criterion is sufficiently
obeyed. Nevertheless a simulation is carried out with t = T thus t = 60 picosec for
experimental conditions (the steepest part of Vo(t) is then represented by only one
sample). The resulting Cole-Cole plot is presented in Figure 3.18, from which it can
be seen that the value of 1 is about 0.8% lower and the value of £_ is about 5% lar-
ger. Compared with the extreme large value of the interval t, it can be stated that no
difficulties are to be expected from deviations of Shannon's theorem.

---- Exact
' Simulated
o £,&" for somew

Figure 3.18 Resulting Cole-Cole plot for = 60 picosec, compared with the exact
e =4,

o

plot for the Debye equation, <

(5) HORIZONTAL JITTER OF THE TDR-CURVES. Sometimes (for instance after a change
of the room temperature) a considerable amount of jitter was observed for the TDR-equip-
ment at the Physics Laboratory TNO. Since no jitter parameters can be predicted a
priori, an error analysis cannot be carried out for this unwanted phenomenon. It is
certain, however, that it has influence, when present, upon the accuracy of at least
s especially when jitter occurs during the XY-recording of the steepest part of the
TDR-curve (then the time reference procedure can for instance be disturbed). A proce-

dure to minimize this jitter has not been applied in the present work45’lo but the

TDR-measurements were recorded in a thermostatically controlled room and after each
scan the position of the TDR-curve was compared with respect to its original position
and when the difference was too large, a new curve was recorded. Nevertheless, some
slight movements had to be accepted sometimes.

It is important to note, that this unwanted jitter is the reason that, when a
XY-recording method is used (with a scan time of one minute) the more advanced method
of time referencing, using a delay line which produces a sharp spike, does not give
better results than the reference method described in this thesis44. This is of course




not true when a C.A.T. data logging system is available since very fast scan times (of
about 1/30 sec) can then be used.

3.3,3 DISCUSSION OF THE RESULTS

From the foregoing analysis it is clear that at least two sources of error are
of importance in the TDR-experiments:
(1) a timing error between the short circuit response curve relative to the dielectric

response curve and

(2) the error involved in the evaluation of ¢(0)
The latter causes an approximate error of about 5% in the value of ) and about 5% in
the value of 0 while the former causes a considerable error in tO (depending upon the
value of T itself) and an error in £_ which may be more than 20%. In Figure 3.19 the
total possible error in fg 25 @ function of 0 is shown, as resulting from the two
mentioned error sources. Roughly, as a rule of thumb, the uncertainty in & is about

7.5%, while the uncertainties in 0 and £_ are assumed to be 5% and 20% respectively.

40 | T

—— AT, in picosec

, ‘

i | J
300 500 600
—— T, in picosec

Figure 3.19 Total error in 1, as depending upon 1 for a timing error and an error

0 0*
in 0(0).

Apart from the possible errors in €0 and ¢_which are slightly larger than from

frequency domain experiments, the total error in 0 is of the same order.

The two error mechanisms, mentioned above, sometimes give rise to a necessary
correction of the originally constructed Cole-Cole plot. When very obviously a timing
error is involved, the reflection coefficient p(iw) = R(w) exp (i®) has to be corrected
Because a timing error does not affect the amplitude R, the phase &(v) is corrected by
A6 Degrees/GHz, until the Cole-Cole plot has a more acceptable shape. This procedure




is correct when the value of =_ is known (as for instance for the results given in the
paper by Suggett et a112 and in some of the test experiments described in the next
Chapter) or when one or more high-frequency points in the Cole-Cole plot are knownlz.
When, however, no high-frequency data is present, this correction procedure is rather
arbitrary. It must be noted, however, that the procedure as such has an exact mathe-
matical basis and also that it is necessary when the time reference method, as de-
scribed in this work, is used (because of the jitter in combination with the large

scan time of one minute, this is very obviously the only time reference method possible
when a XY-recorder is used). Very fortunately, as will described in the next Chapter,

a phase correction was only necessay for a few experiments, indicating that this method
gives very good results.

More often, it was observed that the amplitude- and the phase curves were
oscillating, sometimes rather heavily, for larger values of the frequency (in general
for v>2 ’O)' this phenomenon being attributed to an error in 2(0) (and very probably
also due to uncertainties in all samples of Vo(t) and R(t), see the paper by Loeb et
3113). This phenomenon was corrected by smoothing the amplitude and the phase curves,
by hand, and constructing a new Cole-Cole plot. It must be mentioned that a correct
value of o (0) would minimize these oscillations. As was suggested earTierzS, a meas-
urement of €0 in the frequency domain would be very helpful. This is not a restriction
of the TDR-method since, in contrary to high-frequency measurements, a determination
of €0 is standard and takes very little time.

The fact that a small error in 0(0) generates considerable errors in 0 and 0
is the reason that the curves Vo(t) and R(t) cannot be used at actual times t larger
than the maximum time of the first order unwanted step, since then errors in o(0) of
the order of 5% may appear and very obviously this would lead to a complete distorted
shape of the Cole-Cole plot. It is relatively easy,however, to change the equipment
for a measurement of relaxation times larger than about 600 picosec ( 0/0.25 GHz ), by
lengthening the coaxial line between sampler and air-dielectric interface, since the
unwanted step has the same Tength in time as the step voltage itself, see Figure 3.4.

Although the error analysis given in this Chapter is by no means complete, it
nevertheless gives some idea of the accuracy to be expected in the values of the di-
electric parameters obtained from TDR-experiments.

It should also be noted that the use of reflection and transmission methods

and a C.A.T. a very accurate time referencing, to 0.1 picosecaa, can be obtained. An
accurate value of o (0), within about 0.2%, is than also possible,

Finally, to end this Chapter an example of the method of analysis is given. In
Figure 3.20 the experimental TDR-curves of a 1:1 volume mixture of Heptanol-1 and
carbon tetrachloride (see section 4.3) are shown. After sampling (by hand) and Fourier
transforming the data, the Cole-Cole plot shown in Figure 3.21 is obtained. From this
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plot it is clear that at least oscillations are involved. The amplitude and phase
curves are then constructed, as shown in Figure 3.22. In this Figure the smoothed
curves and the phase curve resulting from A8 = -1 Deg/GHz are also shown. From these
curves, the final Cole-Cole plot is obtained which is shown in Figure 3.23.

Figure 3.20 Experimental TDR-curves for 1:1 volume mixture of heptanol-1 and carbon
tetrachloride, T =

~—o Amplitude

Figure 3.21 0.25

0

S

1 X
~—a Freg.(GHz)

Direct obtained Cole-Cole plot without Fiaure 3.22
- . &

any corrections.
Amplitude and phase curves.

original curves
— — — smoothed curves
— « — corrected phase curve a8 = -1 Deg/GHz.

Figure 3.23 Corrected Cole-Cole plot, smoothed and ag = -1 Deg/GHz.
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CHAPTER 4

TDR-MEASUREMENTS ON SOME NORMAL ALCOHOLS AND ON SOLUTIONS OF NORMAL ALCOHOLS IN
CARBON TETRACHLORIDE

4.1 INTRODUCTION

Studies by various physico-chemical methods (e.g. IR, NMR, dielectric spertros-
copy) of the molecular motions in polar 1iquids have indicated the significance of hy-
drogen bonding in these systems. From such studies one might hope to obtain information
concerning the energy and average lifetime of the hydrogen bond and its influence upon
the structure of the polar liquid.

Two types of hydrogen bonds may be distinguished: the intramolecular and the
intermolecular bonds, the latter being the only relevant type in our case,

Intermolecular hydrogen bonds can occur between identical molecules, leading to
association and between different molecules, leading to complex formation. In the case
of association a second distinction can be made between
(1) compounds where only one group in each molecule can act as a hydrogen bond donor or

acceptor, leading to associates with a restricted number of molecules (multimers),
and
(2) compounds where more than one group can occur as a hydrogen bond donor or acceptor,
leading to a three-dimensional network involving the whole liquid.
If the association is restricted to multimers of a limited size, the structure may be
characterized by means of the various types of multimer structure and by the equili-
brium constants. Examples are the carboxylic acids, hydrogen cianide and the mono alco-
hols.
For the mono alcohols no general agreement has yet been obtained concerning the struc-

ture of the mu]timers‘r’l’52

, despite investigations carried out with a great number of
techniques. Dieletric relaxation is one such techniques by which many experiments have
been reported. For the normal alcohols it has been shown that (at least) three relaxa-

tion range552'54

are involved of which the low-frequency range is the dominant one.
This range can be characterized, within measurement accuracy, by one single relaxation
time, which varies with temperature as in a rate process. The activation energy depends
strongly on the number of carbon atoms, the structure of the carbon skeleton55 and the
location of the hydroxyl group in the carbon chain56’57. A further interesting feature
is that mixtures of alcohols with strongly different activation energies also show a
main dispersion range characterized by one single relaxation timesa.

Another possible variation of the system, which may for instance influence the

activation energy, is a dilution of the alcohol by a non-polar solvent. One reason for
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a dielectric investigation of such mixtures may be the interest in the high-frequency
dispersion ranges of the alcoho]ssg'Gl. In that case the alcohols are diluted by a
polar solvent to such a degree that the Tow-frequency dispersion range vanishes. It is
also of interest to carry out a systematic investigation on the influence of non-polar
solvents to the value of the main relaxation time. Here, only a few data are available.

Moriamez62

found an increase of the activation energy for dilution of 2-ethyl-
hexanol-1 with paraffin. An analogous result was found by Saga163 for mixtures of etha-
nol and cyclohexane. From the measurements of Denney and Rings4, however, it follows
that mixtures of propanol-1 and 2-methylpentane show a decrease in activation energy51.
Very recently, Van den Ber965 studied mixtures of butanol with carbon tetrachloride
and with hexane, the former leading to an increase in activation energy and frequency
factor (see the next section), while for the latter mixture the values of these quan-
tities do not change significantly.

A systematic investigation on this subject may therefore be of great importance.
A study should then be made of a great number of alcohols diluted into a variety of
non-polar solvents. Such experiments, carried out with the conventional frequency do-
main’methods, require much work and time. With the aid of time domain reflectometry,
however, it is possible to perform the experiments within a reasonable timescale.

In section 4.2 the results of test measurements on some of the mono alcohols
are presented, while in section 4.3 the results are given of measurements on alcohol/
carbon tetrachloride mixtures.

4.2 TEST MEASUREMENTS ON SOME NORMAL ALCOHOLS

12,13 have chosen the nor-

Since both FeHner-Fe]degg6 and Suggett and colleagues
mal alcohols as test specimens for their TDR-experiments, we have used the same com-
pounds for this purpose.

The alcohols were obtained from Merck N.V. The 1liquids were dried on CaSO4
(about 24 hours) and distilled shortly before the measurements. The boiling points pro-
ved to be in agreement with literature va]ues47.

In Table 4.1 the results from measurements on ethanol, propanol, butanol and
heptanol are summarized. Some experiments were carried out at the "Unilever Research
Laboratories" in England. They are labelled with an "E", while the experiments carrried
out at the "Physisch Laboratorium TNO" in Den Haag are labelled with an "H". The meas-

urement procedure, used in the former experimentslz’13

differs slightly from the pro-
cedure described in Chapter 3: the TDR-curves were recorded with a C.A.T. and the meas”
uring cell consisted of an Amphenol coaxial 1ine of 20 cm length. Table 4.1 also indic~
ates when smoothing (see section 3.3) has been necessary (denoted by a +). When the

phase had to be corrected, the value for A8 is also given. In Appendix D some of the



Cole-Cole plots are shown.

TABLE

4.1

TDR-MEASUREMENTS ON THE

MONO ALCOHOLS

Compound T £ €, Y H/E smoothed Lt
Ethano] 2.0 28.3 4.7 0.48 332 H + 2
24.0 24.75 4.55  0.902 176 H + o1
Propanol 4.5 23.22 4.23 0.263 605 H
19.8 21.3  4.22  0.394 404 H .
25.9 20.6 4.25 0,495 322 H
44.5 18.9 4.7  0.78 204 H +
51.5 18.95 4.78 1.16 137 H + -0.5
69.5 15.5 4.3 1.90 84 H +
Butanol 19.2 17,1 3.3  0.293 543 E + -1
22,5 17.4 3.3  0.31 513 et + al
2.5 17.2 2.8  0.336 474
30.0 16.7 3.3  0.42 379 H
46.5 15.8 2.35 0.65 245 + +2
Heptanol 30.5 10.9 2.85 0.195 816 H
41.8 9.95 2.65 0.31 513 H
77.0 1.2 4.0 1.25 127 H

t  XY-recorded TDR-curves

In Figures 4.1 - 4.4 the results of the TDR-measurements are compared with fre-
quency domain measurements referred to the literature. The results of Fellner-Feldegg
and Suggett et al are also shown. From these Figures it can be concluded that the re-
sults obtained from TDR-experiments, using the procedure indicated in Chapter 3, are in
excellent agreement with those from frequency domain measurements. This is consistent
with the conclusion of Suggett and colleagues. The results obtained by Fellner-Feldegg
are less consistent (except his values for zo) as is to be expected considering his less
acceptable method of analysis.
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Although for most normal alcohols rather accurate values for the dielectric

63

permittivity are known at room temperatures (methanol by Barbenzass, ethanol by Sagal
butanol by Saga163 57),
this seems not to be the case with n-propanol. Therefore, this alcohol has been meas-

and Van den Berges, and heptanol by Bordewijk and MiddelhoekSI’

ured with greater detail (the measurements carried out by Garg and Smyth67 are over
such a small frequency range that their relaxation time values are not sufficiently
accurate56).

In order to apply the theory of rate processes68 to the results of the measure-
ments, we use Arrhenius' equation, given by

o Ea/RT

= A (4.1)

‘0
in which Y0 is the dielectric relaxation frequency, A the frequency factor (in Hz), EA
the activation energy (in Kcal/mole), R the universal gas constant (in cal/mole °K) and

T the absolute temperature (in OK). When a plot of log v, versus T-1 is constructed,

the derivative of this function (assuming the Arrhenius gquation to hold) yields the
activation energy while the frequency factor can be found from the value of Tlog Vo for
T = »

In Table 4.2 the values for EA and A, mainly from Titerature results, are given
for the normal alcohols used in this work. For propanol and heptanol, results obtained

from TDR-measurements have been incorporated.

TABLE 4.2

ACTIVATION ENERGY AND FREQUENCY FACTOR FOR THE MONO ALCOHOLS

Compound Temperature range Eg) Kcal/mole A 10'12 d)
66
Methanol 5/55 3.4 1.0
Ethano1®3 -5/50 5.0 4.0
. 30,a)
Propanol -113/70 6.0 11.3
Butano1®3:65:0) -100/50 7.2 57.0
Heptanol1+57+3) -33/77 8.6 262.0

a) This work. b) W. Dannhauser, R.H. Cole, J. Chem. Phys., 23, 1762, (1955)
c) Inaccuracy about 5%. d) Inaccuracy about 50%.
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4.3 MEASUREMENTS ON SOME NORMAL ALCOHOLS DILUTED WITH CARBON TETRACHLORIDE
4.3,1 EXPERIMENTAL RESULTS

TDR- measurements are carried out for 1:1 volume mixtures of methanol, ethanol,
propanol, butanol and heptanol with carbon tetrachloride. The alcohols were obtained
and purified in the same way as described in section 4.2, Carbon tetrachloride was ob-
tained from Merck N.V. and purified by distillation.

Within measurement accuracy, it is found that the main dispersion range of these
mixtures can be characterized by one single relaxation frequency, in accordance with

the findings of Moriamez62 63 65

» Sagal and Van den Berg ~. Some typical Cole-Cole plots
are shown in Appendix D. In Table 4.3 the results of the measurements are summarized.

The results are also graphically presented in Figures 4.5 - 4.9. Figures 4.5 A
- 4.9 A give the obtained values of €p @s @ function of temperature. When possible
these results are compared with literature values obtained from the work of Huyskens
and co-workers69. As was to be expected, our values show some scatter, but no syste-
matic deviation is found from the results of low-frequency measurements.

Figures 4.5 C - 4.8 C and 4.9 B show Arrhenius plots of the obtained values of
Vor together with the rate plots of the corresponding mono alcohols. The scatter,
which appears to be somewhat larger for the measurements of the mixtures than those for
the pure compounds, increases with increasing length of the carbon chain. This can be
explained from the decrease of the amplitude of the main dispersion range with increas-
ing chain length of the alcohols, leading to a rather low value of ¢ (*) - ¢ (0) for the
mixture heptanol with carbon tetrachloride.

It appears from Figures 4.5 B - 4.9 B that in the temperature range of the
measurements, which varies from -15/40 °C for the methanol mixture to 31/64 °C for the
heptanol mixtures, dilution by carbon tetrachloride leads to a decrease of the relaxa-
tion frequency for methanol and ethanol, and to an increase for heptanol. For the mixt-
ures of propanol and butanol, it is found that the Arrhenius plot intersects the cor-
responding plot for the pure compounds within the temperature range of the measurements.
This behaviour can be illustrated by plotting at one temperature (for which 30 ¢ is
chosen) the values of 2 (log °0 ) against the number of carbon atoms of the alcohol
chain, where 4 ( log ‘0 ) is the difference between the interpolated values of Y0

the pure compound and for the mixture. The resulting graph is given in Figure 4.10. It

for

appears that 4 (log Yo ) decreases monotonically from positive to negative values.
The values of the activation energies and the frequency factors, as determined
from the results of Figures 4.5 - 4.9, are given in Table 4.4. It must be mentioned
that some of these values are less accurate than those for the pure alcohols, due to
the larger scatter of the results and due to the fact that the relaxation frequencies
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of some of the materials are determined over a smaller temperature range.

TABLE 4.3
TDR-MEASUREMENTS ON 1:1 VOLUME MIXTURES OF ALCOHOL-CC]4

Compound £, > T H/E smoothed

Methano?-CCl4

} =
tthanol ~C14

~n

propannI-CC’l4

- O O O O O O O©
X £ XX X X X X
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B
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Heptanol—CC]4
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TABLE 4.4

ACTIVATION ENERGY AND FREQUENCY FACTOR FOR THE ALCOHOLS AND THE MIXTURES WITH CC]‘z

Pure Compound Mixture with CC14

Alcohol Temperature 7 Temperature EAa)
Range Range

Methanol 5/55 -15/40 5.0

Ethanol -5/50 3 1/39 6.0

Propanol -113/70 5/64 7.0

Butanol ~100/50 : -24/48°) 8.2

Heptanol -33/77 3 31/64 8.5

a) Inaccuracy about 10%. b) Inaccuracy about 50%. c¢) J.F. van den Berg, -24/15, and
this work 16/48.

Figure 4.11

Values of the energy of activation and the
frequency factor for the mixtures and for
the pure alcohols.

©, Mixtures ; @, pure Alcohols.




For the butanol/carbon tetrachloride mixture the results of Van den ‘Berg have
been incorporated in Figures 4.8, As can be seen from these Figures, and especially
from Figure 4.8 C, the two results are in excellent agreement with each other.

As a general trend it appears from Table 4.4 that the values found for the ac-
tivation energy and the frequency factor increase for dilution with carbon tetrachlo-
ride, except for heptanol where no significant differences can be found (within meas-
urement accuracy). This trend is shown in Figures 4.11.

In Figures 4.5 A - 4.9 A the values found for ¢_ are given in dependence on tem-
perature. These results are compared with the values of £_ found for the pure alcohols.
It appears that ¢_ decreases for dilution with carbon tetrachloride, in accordance
with the results on ethanol/cyclohexane mixtures studied by Saga163, on butanol/hexane
mixtures studied by Van den Berg, on 2-ethylhexanol-1/paraffin mixtures studied by

Moriamez62 and on propanol/2-methylpentane mixtures studied by Denney and R1n964.

4.3,2 DISCUSSION

Although there is general agreement that H-bonding in the Tiquid mono alcohols
is having a strong influence on the observed dielectric relaxation behaviour, alter-
native, and some of them at present equally acceptable, hypotheses exist concerning
the Tikely relaxation mechanisms.

10-78 41 which it is assumed

A theory has been developed by Bauer, Magat and Brot
that the alcohols associate to linear multimers, The main dispersion range then arises
from reorientation of individual molecules, for which breaking of the hydrogen bond is
the rate determining step. In that case the activation energy would be of the order of
the energy of formation of the hydrogen bond. It was found by Middelhoek57 and by
Dannhauser75, however, that the activation energy is strongly dependent on the struc-
ture of the carbon skeleton and on the location of the hydroxyl group in this chain ™.
The possibility that these diverging activation energies are due to diverging values
of the heat of formation of the hydrogen bond is excluded by the fact that mixtures
of alcohols with strongly differing activation energies show only one main dispersion
range51. To explain these phenomena, two different hypotheses have been introduced un-

til now.

Dannhauser55 maintained the assumption of linear association, and modified the

theory of Bauer, Magat and Brot in the sense that the breaking of the hydrogen bond
is not the rate determining step for the reorientation of the alcohol molecule, but
only prerequisite. In this model it is assumed that a particular hydrogen bond breaks
and reforms many times without reorientation of the molecules involved. The reorienta-

% Values of the activation energy, for many of the mono alcohols, are given by Bordewijk51 page 43.




tion depends not only on the breaking of the hydrogen bond but also on the whole of
interactions of a molecule with respect of its surroundings, and is thus a cooperative
process. The degree of cooperativity for reorientation of a molecule then increases
with increasing length and branching of the carbon chain, and also with increasing ste-
rical hindrance of the hydroxyl group. In the case of methanol the reorientation after
breaking of the hydrogen bond would be so easy that breaking of this bond remains the
rate-determining step, whereas the influence of the alkyl group on the reorientation
would become important for the higher alcohols.

In contrast to this theory, Bordewijk51 assumes that the association of the nor-

mal alcohols in the pure state is dominated by cyclic multimers of one size which have,
despite their cyclic structure, a high dipole moment because the oxygen and the hydro-
gen atoms are presumed not to lie in one plane. It is then suggested that the dielec-
tric relaxation is due to the movements of a multimer and its surroundings whereas
Dannhauser assumes that it is due to the cooperative movements of a single molecule

and its surroundings. Again, the necessary amount of cooperation increases with in-
creasing length and branching of the carbon chains.

In both views, the influence of the carbon tetrachloride on the dielectric re-
laxation frequency is caused by the influence of the CC14 molecule on the amount of co=
ordination between the molecular movements in the liquid.

The results of the present work do not support some of the assumptions of Dann-
hauser since he states that for methanol the reorientation depends on the breaking of
the hydrogen bond only and not on the surroundings of the molecule. For this compound
we found, however, that the addition of carbon tetrachloride leads to a significant
increase of the energy of activation.

With respect to the influence of carbon tetrachloride on the amount of coordina=
tion in the liquid, the following properties of the CClq-molecule are of importance:
(1) the CC14-molecu1e is rigid
(2) the CC14-molecu1e does not form associates
(3) the molar volume of CCI4 is 96.5 cm3/mole whereas the molar volumes for methanol,

ethanol, propanol, butanol and heptanol are 40.5, 58.4,77.1, 91.4 and 141.4

cm3/mole respectively.
The result of the measurements, as presented in Table 4.4 and in Figure 4.11, show the
general trend that the energy of activation and the frequency factor increase when the
alcohols are diluted by carbon tetrachloride. This trend is most evident for methanol,
ethanol, propanol and butanol whereas it seems to disappear for heptanol. The observa-
tions can be explained from the assumption that addition of carbon tetrachloride tends
to a higher degree of coordination in the 1iquid when the molar volume of CCl4 is large
with respect to the molar volumes of these alcohols. The inverse statement may also
hold as is presumably the case for heptanol.




95

Although the results of the measurements, described in this work, cannot give a
final conclusion concerning the dielectric relaxation mechanism for the mono alcohols,
it shows in principle that an extension of this investigation to a greater temperature
range, also applied to other alcohols and other non-polar solvents76, would give valu-
able information. For these applications TDR-measurements are particularly useful
because of the relatively small amount of time necessary for the determination of the
relaxation frequencies,




CHAPTER 5
GENERAL DISCUSSION ON TDR-MEASUREMENTS AND SUGGESTIONS FOR FURTHER WORK

In this thesis, the time domain reflectometry technique is considered as a pos-
sible method to examine dielectric relaxation phenomena in polar liquids. The first
measurements, by Fellner-Feldegg, were not sufficiently accurate but due to the intro-
duction of "know how" from the field of network analysis, rather accurate results have
now been obtained by Suggett, Quickenden, Loeb and Youn912’13.

One important remark has to be made at this stage. The TDR-equipment, as deli-
vered by Hewlett-Packard has not been constructed for the examination of dielectric
relaxation phenomena. Two features of the equipment are a consequence of this. First,
in many TDR-equipments (but not for all) the characteristic impedance of the sampling
system is larger than 50 @ resulting in  the unwanted step voltage, which determines
the lTow-frequency limit of the measurement technique. Second, the time base of the os-
cilloscope is non-linear. The latter property is of great importance when automatic
data processing aquisition is available. A correction for this non-linearity is then

necessary44.

The high-frequency limit is at the present state of art determined by the time
reference procedure. This procedure, as discussed in Chapter 3, is disputable since it
is not based upon a mathematical exact relation; but as can be inferred from the error
analysis, and also from the experimental results, it is a surprisingly good approxima-
tion.

Although the experimental results confirm that the TDR-method is a very promis-
ing one, a disadvantage of the method should be mentioned as well. This disadvantage
refers mainly to the present situation and it is believed that it can be solved with-
in reasonable time.

Due to the deficiencies of TDR (jitter, internal reflections, different charac-
teristic impedance of the sampling system, time reference procedure, uncertanties in
the last samples) the constructed Cole-Cole plot may not have a satisfactorily shape a
priori and subsequently the curves R(w) and 8(w) may contain oscillations, while 6(w)
may also need a phase correction. When frequency domain results are established, as forl
instance the normal alcohols, the corrections are known to be necessary. When, however,
the shape of the Cole-Cole plot is not known, the corrections may not be necessary and
therefore the possibility exists that a "correct but strange-looking" Cole-Cole plot
is corrected into an "incorrect but good-looking" Cole-Cole plot. Such a situation may
for instance occur when two separate dispersion ranges with the same amplitudes are
present.

As a suggestion for further work, it should therefore be pointed out that one
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of the first things to work on, in TDR-experiments, is the improvement of the equipment

(if possible) and of the method of analysis in order to be certain that the final,

Fourier transformed, results do not need further corrections. It is then necessary that

(1) the time reference method, as discussed in Chapter 3, is replaced by a mathematical
correct procedure (for instance by Suggett's pulse reference method or, alternati-
vely, by recording the full TDR-curves and using the points H of Figure 3.7 as the
reference points.

XY-recording of the data is replaced by an automatic data processing method. Then,
12,13
’

very fast scan times can be used which minimize the influence of the jitter
while also the full TDR-curves can be recorded with still a sufficient number of
samples per unit time.
the TDR-curves have to be very smooth (eventually after computer corrections),
which means that the unwanted reflections have to be removed. This can be obtained
by an improvement of the TDR-equipment itself, constructing it for the special pur-
poses of dielectric measurements (this should be done by Hewlett-Packard of course),
and/or correcting the TDR-traces for all types of all possible reflections. This
latter procedure requires a detailed quantitative knowledge of the TDR-equipment.
Some first remarks in this field have been given by Loeb et a113.
When these suggestions for further work have been carried out, the accuracy of dielec-
tric measurements, by TDR-experiments, will certainly be improved with respect to the
TDR-measurements described in this work. The low-frequency 1imit may then be extended
to vy = 107 or 106 Hz by for instance using the spiral coaxial 1ine (length about 20 m)
as discussed by Fellner-Feldegg and also by Bagozzia’9 or using the "thin-cell" method
(or a variant) as has recently been proposed by Fe]]ner—Feldegg46’45. The high-fre-
quency limit may in that situation be extended to the natural Timit caused by the fini-
te rise time of the step voltage.

It is recalled, however, that dielectric measurements, even when they are car-
ried out with a TDR-technique as described in this work, are approximately as accurate
as measurements performed with the present frequency domain techniques. This refers
especially to the determination of the relaxation frequency in the range

et < Vo < 3 GHz
To finish this Chapter, a comparison is made between the TDR-method in the pre-

sent state of development and the present frequency domain techniques for measurements
in the frequency range 5 106 <y < 1010 Hz.




TDR- MEASUREMENTS

Not expensive equipment (apart from
computer and C.A.T., about $ 4000,--
in 1972)

Measurements not time consuming for
microwave frequencies (apart from
sampling by hand and computer time,
about 5 minutes)

Accuracy comparable with frequency
domain methods

Works very good for O.2<uo<2 GHz

Indirect estimation of €' and " from
Fourier analysis

Computer is necessary

No absolute certainty about the ob-
tained Cole-Cole plot

The influence of any error, involved
in the measurement, is spread out over
all frequencies

High-frequency Timit, in principle
due to the finite rise time of the
step voltage, but at this stage, due
to the time reference method

FREQUENCY DOMAIN-MEASUREMENTS

Expensive equipment

Time consuming experiments for microwave
frequencies

Very difficult to obtain data for 0.2<v<l
GHz

Direct measurement of €' and ¢

Computer not necessary a priori

Within measurement accuracy in €', €" (=5%)
absolutely certain about the shape of the
Cole-Cole plot obtained

Any error involved in the measurement gives
an error in €' and €" for one frequency
only (provided that the error is not syste-
matic)

No high-frequency Timit a priori
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Low-frequency limit due to the necess- No low-frequency limit a priori
ity to obtain a "complete" TDR-curve

(This Timit can be extended by using

methods analogous to Fellner-

Feldegg's thin cell technique)



APPENDIX A

SOME REMARKS ON THE COLE-COLE EQUATION IN CONNECTION WITH CAUSALITY77
INTRODUCTION

In 1941, Cole and Cole published equation (2.3), for the present purposes writ-
ten as

‘ e(iw) - e 1
Y(iw) = = = 5 0<as<l (A.1)

This function, which has a branch point at the origin, is important for experimental
purposes since many dielectric experiments are analysed in terms of values of e
TO and @,

Without proof, Cole and Cole stated explicitely that the real and negative ima-

0’ Eos

ginary parts of equation (A.1) satisfy the Kramers-Kronig relations, which is necessary
if e(iw) is to be used to describe the behaviour of a causal system78.
In 1956, in an important paper on integral relations of linear systems, MacDonald
22 stated that equation (A.1) is not an analytic function for O<a<l and
therefore the ¢'(w) and e¢"(w) functions would not represent a causal system. They also
stated, however, that the situation may be saved by putting in the necessary |w| and
sign (w) factors to force them to have the proper parity. But then, the resulting e'(w)

and Brachman

and €"(w) are not the real and negative inmaginary parts from e(iw) as given by equa-
tion (A.1). Unfortunately they did not give the corrected relations.

When dielectric permittivity is studied by transient methods, as for instance
in this thesis, the corresponding transient behaviour of a Cole-Cole dielectric mate-
rial is calculated by using equation (A.1) and not the "corrected functions" as is sug-
gested by MacDonald and Brachman. It is therefore clear that when the Cole-Cole equa-
tion would not represent a causal system, large deviations may be expected between the
calculated and observed transient behaviour. Since the deviating asymptotic behaviour
of P(t), as predicted in Chapter 2, has not (yet) been observed experimentally for
Cole-Cole materials, it will be shown in this Appendix that this feature will indeed
be observed (when dielectric materials exist behaving exactly according to equation
(A.1), since equation (A.1) does represent a causal system albeit with 1imitations in
terms of the branch to be used.

THE KRAMERS-KRONIG RELATIONS. Consider the function



¥(s) - O<ac<1
T ol

of the complex variable s. The quantity s* is defined as
s% = |s]® '@ AI(S) _rcarg(s)er (A.3)

Due to the definition of s” on the branch -mn<arg(s)<n,u(s) defines a single valued
function, It also defines an analytic function since the poles of equation (A.3),
given by |s| = 1 and arg(s) = (v + k 2n)/a for'k = 0,+ 1,.... ,are outside the branch.
It is therefore clear that the Cole-Cole equation, extended over the entire
complex s-plane, defines a single valued and analytic function for -w<arg(s)<m, For
our purposes, however, it is sufficient that y(s) is analytic for Re(s)>0 since this
is necessary (but not sufficient) for any equation to represent a causal system78-80
In order to prove the existence of the Kramers-Kronig relations for the real and
negative imaginary parts of equation (A.2), for the line Re(s) = 0, Cauchy's integral

relation, defined by81:

s~¢C

1 LL’(S) " \‘,(SO) SO(C
Y T5 B ds
9 = SO -
C 0

is applied to v(s), for s on the contour C shown in Figure A,l.
o

Definition of the contour C. The quantity s0 is given by s0 =Yy
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The avaluation of equation (A.4), for r+0 and R+, is standard mathematics, resulting
into:

(A.5)

where P denotes the principal value of the integral. The second integral on the right

hand side of equation (A.5) vanishes sinceBZ:

¥(s) y(Re'?)
1im ds € lim Max -

s - s R
0
2

Rsoo

2nR

= 1im i 7 T
Re= Min|1+R e = ||Re'" -uw

Taking the 1imit of w(YO B imo) for VO»O, equation (A.5) can be written as

o0

(A.7)

Separating ;(iuo) and ¥(iw) into their real and negative imaginary parts, the Kramers-
Kronig relations are obtained:

o0
" (wy) Y (w
V' (ug) = ¢ O da 3 wh(ug) =1 (A.8)

g D
It is thus proved that the Kramers-Kronig relations are valid for the real and nega-
tive imaginary parts of equation (A.1).

CONCLUSIONS. It has been shown in the foregoing section that the permittivity equation
of Cole and Cole satisfies the requirements for a causal (and hence physically realiz-
able) system of a dielectric material, when the complex frequency plane is defined on

the branch -m<arg(s)s<w only. It is therefore proved that the behaviour of P(t) for t>=
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as given in Chapter 2 for a Cole-Cole dielectric material, cannot be attributed to the
use of the non-causal character of equation (A.1)

APPENDIX B
NUMERICAL EVALUATION OF THE INVERSE LAPLACE TRANSFORM

Evaluation of the inverse Laplace transform, i.e. calculating f(t) for Ostse
from known analytical behaviour of F(s), is not always an easy task. Recently, how-
ever, numerical techniques have been developed by Bellman, Kalaba and Lockett83,
Zakian®* ™88 stenfest®
cussed in this thesis, have been calculated by the procedure XLAPLINV written by
De Graan according to the algorithm of Stehfest. This algorithm is given below.

The functions f(t) and F(s) are given by the equation

and Singhal and Vlach88. A1l inverse Laplace transforms, dis-

This equation can be approximated by

N
1n2 . 1n2
f(e) =123 v F 182
1=

where N has to be even and Vi is given by

X

i+N/2 :
= (_1)1+N/2 ZN k (2k).. . i)
=l - )kt (k -1) (i - k)t (2K -1)!

X = Min (i, % ) (8.4)

For the CDC 3200 computer, on which all calculations are performed, N = 12 is advis-
89. The results of f(t) are in general better than 0.1% (when f(t) does not con-
tain very high-frequency components).
For all applications described in this work F(s) is given by

Vs — Vs eisi-bo/i)
Vs + /s e(s) + o/e

F(s) = o(s) o(s) = '9(5)(
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where ?(s) is given by 1/s when a heaviside input is considered or by equation (3.19)

for a non-ideal step function. For the actual calculations equation (B.1) is rewritten

as (using #(s) = 1/s for convenience)

e(s) * o/e st
f(t) = g—*

e " ds =
S + S e(S + 0 E
cHim
rg - fStg elstg) *+ 0tp/e \ ot/
2—* ST e d(STO)
/ST + /STO (Sro) + 010/5

Choosing ST as a new variable of integration, the final result can be written as

f(t/ro)

. /s - /5 E(S,TO = 1) +cro/£
S

(B.6)

/5 + /s e(Sytg = 1) +otp/e

The algorithm, written in FORTRAN is as follows:

iz Ns) NDOODOHOOOOOOHOOOOHD

(2]

a0

S FORTRAN (4.0)/MS0S 15/09/70
FUNCTTON XLAPLINV (PeNeTeJ)
PHRPN&E

COMPUTF APPUOXIMATE IMVERSFE LAPLACFE TRANSFORM OT FUNCTION P(S)
AT TIME=INSTANT T

TRANSLATED FROM ALGOL ALGORITHM NO. 368 COMM, A,C.M,

VOL 13 » NDO. 1 s JANUARY 1970 PAGES 47 = 49

N IS THE NUMRER OF TERMS (ISEN IN APPROXIMATING THE INVERSF OF P(S)

N MIST RE EVEN

FOR THE CDC-3200 N = 12 IS ADVISED FOR OPTIMUM ACCURACY

ACCURACY WILL IN GENERAL RBF RETTER THAN 0,1 PERCENT

COMPUTING TIME EQUALS N TIMES COMPUTING TIME OF P(S) + S = LN(2)el/T

ON THF FIRST CALL A TARLE VIN) IS CONSTRUCTED

DIMENSTON V(N)e HIN/2)y G(Nel)

DIMENSION V(16)+G(17)e4(B)

H AND 6 ARE NEEDED ONLY DURING THE FORMATION OF TABLE V

TYPF DFP(3) DUMyFB

INTEGFR SNeM

DATA (M==1)

ERROR CHECK ON N

IF( NoLTe 2 40OR. N.GT. 16) STOP
TF (N NE,28(N/2)) STOP

CHECK IF TABLE V MUST RE CALCULATED
IF(M=N) le6el

FORMATION OF TARLE V
G(1)=0LDG=1. % NH=N/2
NK=NH+1

Nl=N+]

N0 2 1=2«N1
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?2 GLI)=0LNG={[=1)20LDG
H{1)=2./6G(NH)
NO 3 T=2+NH
NL=NK~=1
3 H(l):flﬂﬂTFlI)°°Nd°G(?°l01\/(G(NL)°G(l’l)°ﬁ(l))
NHX=NH=(NH/2) 22
SN=1
IF (NHX FA, 0) SN=-SN
NO S I=1«N
D=0,
KSTART=(1+1)/2
KEND=T
IF(T.GF« NH) KFND=NH
PO & K=KSTARTKEND
[K=]=Ks] § KI=K=]Ks+2
4 NUM=NUM+H(X) Z{GIIK)#GIKT) )
IF(SN) 1045415
10 VIT)==DUM

GOTO 5§
15 viI)=DUM
S SN==SN
R=AL0G(2.)
M=N
c
c N
C COMPITE A;ﬁunxydnr; INVERSF OF P(S) = SUM V(T eP( LN(2)21/T )
[ I=1
¢

& FR=N. $ A=/}
N0 9 T=1+N
Al=A®]
PUM=P (AT« J)BVIT)
9 FH=FR+DUM
XLAPL INV=A®FR
RETURN
FrD

FORTRAN NTAGNOSTIC ©ESULTS FOR XLAPLINV
NO ERRORS

LOANGSS
PUNSNM

APPENDIX C
COMPUTER PROGRAM SHANTDR
In this Appendix the 1istning of the computer program used for the calculations

of ¢'(w) and £"(w) from VO(m) and R(n) is given. It is based on the equations (3.14),
(3.12) and (3.1).

SEOUENCE +045 ees MSOS V4.2 ENITION=10 DATE=20/12/71.
SFOVENC

JOR.2090+GFME VAN GEMERT 361y 4 NN

FETOVOTNO«SURROUT INEPACK +500+00+0000+0000

OPENL10

AUXe10

FORTRANsL» ¥




NO ERRORS

MS FORTRAN (4,2)/MSOS 20712771

PROGRAM SHANTDR

COMMON IMEET(1024)+PHIE(101)9AMPE(101)

COMMON IBEGINGIEIND

COMMON T(1024)

COMMON TAU

REAL NUsNUNUL

REAL IMEET

NUNUL=0.05

TIMEFAC=0,0593472

INDEX=1

IBEGIN=1

PI=3,14159265

TAU=TIMEFAC#0.1

READ 2sN

FORMAT(IS)

IEIND=IBEGIN+N~1

READ 34DIST.ZEROD

FORMAT (2F10)

PRINT 4sNoDIST+ZERODs TIMEFAC

FORMAT (X915+3F15.5)

TREF=DIST#TIMEFAC

TZERO=ZEROD#TIMEFAC

DO 15 I=IBEGINsIEIND

T(I)=1#TAU-TREF+TZERO

CONTINUE

READ 10s (IMEET(I)+I=1+IETND)

FORMAT (BF10.6)

ITOT=100

DO 100 J=141TOT

NU=NUNUL#J

JJ=J

CALL SHANNON(AMPsPHIsNI))

IF (INDEX.EQ.2) GOTO 101l

AMPE (J)=AMP $ PHIE (J)=PHI

GOTO 100

CALL EPSILON(EPSR+EPSIMesAMPsPHI »JJ)

QUOT=AMP/AMPE (J)

PHASE=(PHI=-PHIE(J))#(180./P1)

PRINT 200sNUsEPSRsFPSIMeAMPE (J) sPHIE (J) s AMPsPHI ¢ QUOT s PHASFE

FORMAT (X93(F15.5)+6(E15.5))

CONTINUE

INDEX=INDEX+1

IF (INDEX,.GT«2) GOTO 105
GOTO 1

105 END

FORTRAN DIAGNOSTIC RESULTS FOR SHANTDR
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MS FORTRAN (4,.2)/MS0OS 20712771

SUBROUTINE SHANNON (AMP <PHT «NU)

COMMON IMEET (1024) +PHTF (101) «AMPE(101)
COMMON IBEGIN, TEIND

COMMON T(1024)

COMMON TAU

REAL IMEET

REAL NU

TYPE COMPLEX (4) Cl1+CGsCSOMCMPLX 9 CEXP +CSHAN
INTEGER EIND

PI=3.14159265

CI=CMPLX(D,e1,)

OMEGA=2#P1#NU
CG=1+/(1e=CEXP(~CI#OMFGA®TAL))
CSOM=CMPLX(0s40.)

EIND=IE IND=-1

DO 10 I=IREGINSEIND
CSOM=CSOM0(IMFFT(I‘l)-!MFfT(I))°CEXP(-CI°T(I¢1)°OMEGA)
CONTINUE

CSHAN=TAU®CG*®CSOM

RE=REAL (CSHAN)

XIM=AIMAG (CSHAN)

AMP=SQRTF (RE##2+ X [M##2)

PHI=ATANF (XIM/RE)

RETURN
END
FORTRAN. DIAGNOSTIC RESULTS FOR SHANNON
NO FRRORS
4S FORTRAN (4,2)/MSOS 20/12/7)

SUBROUTINE EPSTLON(EPSP+EPSIMyAMP4PHI « JJ)
COMMON IMEET (1024) «PHTF(101) sAMPE(101)
COMMON IBEGINs IEIND

COMMON T(1024)

REAL IMEET

TYPE COMPLEX(4) C1+CMPI_XsCEXPsCRE+CRT+CEPS
J=JJ

CI=CMPLX(0s91,)
CRE=AMPE (J) #CEXP(CI®#PHTE()))

CRE==1.%CRE

CRT=AMP#CEXP(CI#®#PHT)

CEPS=( (CRE=CRT) /(CRE+CRT) ) ##2

EPSR=REAL (CEPS)

EPSIM=AIMAG (CEPS)

RETURN

END

FORTRAN DIAGNOSTIC RESULTS FOR EPSILON

NO FRRORS
LOAD+56
RUN+S




APPENDIX D

Some Cole-Cole plots of the TDR-measurements. Indicated frequencies are in GHz.

ETHANOL

IT\TT

TR L

e
o

[T

PROPANOL




E"

109

o 77°C

HEPTAN

METHANOL —

ETHANOL-CCl,




PROPANOL-CC1,, 1:1

BUTANOL - TETRA

lllll

D - i R=D 1 1

_>€




REFERENCES

. Drude, Z. Phys. Chem., 23, 267, (1897).

.W. Davidson, R.P. Auty, R.H. Cole, Rev. Sci. Instr., 22, 678, (1951).

.J. Hyde, Proc. IEE, 117, 1891, (1970).

.M. Oliver, Hewlett-Packard Journal, 15, No 6, (1964).

. Davis, H.W. Loeb, Proc IEEE, 53, 1649, (1965).

. Fellner-Feldegg, J. Phys. Chem., 73, 616, (1969).

. Fellner-Feldegg, Hewlett-Packard Application Note No 118, (1970).

.P. Bagozzi, MS Thesis, University of Colorado, June (1969).

.P. Bagozzi, W.R. Ives, N.S. Nahman, Progress in Radio Science 1966-1969, 2, 257,
(1971).

.M. Nicolson, G.F. Ross, IEEE transactions on Instrument.Measurement, IM-19, 377,
(1970).

.A. Whittingham, J. Phys. Chem., 74, 1824, (1970).

. Suggett, P.A. Mackness, M.J. Tait, H.W. Loeb, G.M. Young, Nature, 228, 456, (1970).

.W. Loeb, G.M. Young, P.A. Quickenden, A. Suggett, Ber. Bunsenges. Phys. Chem. ,
75, 1155, (1971).

.C. Harvey, Thesis, Dartmouth College, June (1971).

W 0 N O v & W N =

. Doetsch, Theorie und Anwendung der Laplace Transformation, Dover Publications,
New York, (1943), page 373.

. Ramo, J.R. Whinnery, T. van Duzer, Fields and Waves in Communication Electronics,
John Wiley, New York, (1965), page 292.

.A. Chipman, Theory and Problems of Transmission Lines, Schaum's Outline Series,
Mc Graw Hill, New York, (1968), page 77.

JA. Kramers, Phys. Z., 30, 522, (1929).

. Kronig, J. Opt. Soc. Am., 12, 547, (1926).

.G. van Kampen, Ned. T. Natuurkunde, 24, 1, (1958).

. Papoulis, The Fourier Integral and its Applications, Mc Graw Hill, New York,
(1962).

.R. Mac Donald, M.K. Brachman, Rev. Mod. Phys., 28, 393, (1956).

.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford University
Press, 2nd ed., Oxford, (1948).

.V. Widder, The Laplace Transform, Princeton University Press, Princeton, (1946).
.J.C. van Gemert, J.G. de Graan, Appl. Sci. Res., 26, No 1, May (1972).

.J.W. Debye, Polar Molecules, Dover Publications, New York, (1929).

. Fellner-Feldegg, E.F. Barnett, J. Phys. Chem., 74, 1962, (1970).

.S. Cole, R.H. Cole, J. Chem. Phys., 9, 341, (1941).




112

.W. Davidson, R.H. Cole, J. Chem. Phys., 18, 1417, (1951).
.W. Davidson, R.H. Cole, J. Chem. Phys., 19, 1481, (1952).
.J.C. van Gemert, J. Phys. Chem., 75, 13235 (1971).
.J.C. van Gemert, P. Bordewijk, Appl. Sci. Res., to be published,
. Bordewijk, M.J.C. van Gemert, Advances in Molecular Relaxation Processes, in
the press (1972).
.P. Schouten, Operatorenrechnung, Springer Verlag, Berlin, (1961), page 152,
M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, N.B.S., (1964),
page 255,
. Doetsch, Guide to the Application of Laplace Transforms, Van Nostrand, (1961),
page 210.
.J.F. Bottcher, Theory of Electric Polarisation, Elsevier, Amsterdam, (1952).
.P. Smyth, Dielectric Behaviour and Structure, Mc Graw Hi1l, New York, (1955).
.V. Daniel, Dielectric Relaxation, Academic Press, London, (1967).
.E. Hill, W.E. Vaughan, A.H. Price, M. Davies, Dielectric Properties and Molecular
Behaviour, Van Nostrand Reinhold, London, (1969).
. Reference 35 page 377.
. H.A. Samulon, Proc. IRE, 39, 175, (1951).
. C. Shannon, Proc. IRE, 37, 10, (1949).
. P.A. Quickenden , A. Suggett, Private communication.
. A. Suggett, Chem. Soc. Specialist Periodical Reports, 31, (1972).
. H. Fellner-Feldegg, Hewlett-Packard Application Note, 153, (1972).
. Handbook of Chemistry and Physics, 49th ed, The Chemical Rubber Co., (1968).
. D. Hadzi, Hydrogen Bonding (Papers presented at the Symposium on Hydrogen Bonding
held at Ljubljana, 29 July - 3 August 1957), Pergamon, (1959).
.C. Pimentel, A.L. McClellan, The Hydrogen Bond, W.H. Freeman, (1960).
.N. Vinogradov, R.H. Linell, Hydrogen Bonding, Van Nostrand Reinhold, (1971).
. Bordewijk, Thesis, Leiden, (1968).
. Crossley, Adv. Mol. Rel. Proc., 2, 69, (1970).
.H. Cole, D.W. Davidson, J. Chem, Phys., 20, 1389, (1952).
. Brot, Ann. de Phys., 13-2, 714, (1957).
. Dannhauser, A.F. Flueckinger, Phys. Chem. Liquids, 2, 37, (1970).
. Middelhoek, C.J.F. Bottcher, Molecular Relaxation Processes, Chem. Soc. Spec.
Publ., 20, 69, (1966).
. Middelhoek, Thesis, Leiden, (1967).
. Bordewijk, F. Gransch, C.J.F. Bottcher, J. Phys. Chem., 73, 3255, (1969).
. Crossley, J. Phys. Chem., 75, 1790, (1971).
. Crossley, Can. J. Chem., 49, 712, (1971).
. Crossley, L. Glaser, C.P. Smyth, J. Chem. Phys., 55, 2197, (1971).




. Moriamez, Thesis, Lille, (1959).
. Sagal, J. Chem. Phys., 36, 2437, (1962).
. Denney, J.W. Ring, J. Chem. Phys., 39, 1268, (1963).
. van den Berg, Thesis, Amsterdam, (1972).
. Barbenza, J. Chim. Phys., 65, 906, (1968).
.K. Garg, C.P. Smyth, J. Phys, Chem., 69, 1294, (1965).
. Glastone, K.J. Laidler, H. Eyring, The Theory of Rate Processes, Mc Graw Hill,
(1941).
. Huyskens, G. Gillerot, Th, Zeegers- Huyskens, Bull. Soc. Chim. Belg., 72, 666,
(1963).
. Bauer, Cah. de Phys., 20, 1, (1944).
. Bauer, Cah. de Phys., 21, 21, (1944),
. Bauer, M, Magat, Bull. Soc. Chim. F., D341, (1949).
. Brot, M. Magat, L. Reinisch, Koll. Zs., 134, 101, (1953).
. Brot, M. Magat, J. Chem. Phys., 39, 841, (1963).
. Dannhauser, J. Chem. Phys., 48, 1918, (1968).
.J.C. van Gemert, G.P. de Loor, P. Bordewijk, P.A. Quickenden, A. Suggett, in
preparation,
.J.C. van Gemert, Chem. Phys.Lett., to be published, (1972).
. Gross, Nuovo Cimento Suppl. III, series X, 235, (1956).
.S. Toll, Phys. Rev., 104, 1760, (1956).
. Reference 23 page 128,
. F. Sommer, Mathematics Applied to Physics, E. Roubine ed., Springer Verlag, Berlin,
(1970).
. E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, 4th ed., Cambridge, (1962).
. R.E. Bellman, R.E. Kaleba, J. Lockett, Numerical Inversion of the Laplace Trans-
form, American Elsevier, New York, (1966).
V. Zakian, Electron. Lett., 5, 120, (1969).
V. Zakian, Electron. Lett., 6, 677, (1970).
. V. Zakian, D.R. Gannon, Electron. Lett., 7, 70, (1971).
H. Stehfest, Comm. of the ACM, 13, 47, (1970).
K.
J.

Singhal, J. Vlach, Electron. Lett. 7, 413, (1971).
G. de Graan, unpublished results, (1970).




SUMMARY

In this thesis, the use of Time Domain Reflectometry (TDR) is discussed as a
technique for measuring the permittivity of polar liquids. Originating from the field
of electronics and communication engineering (1960) this method has been applied to
dielectric spectroscopy by Fellner-Feldegg (1968). Improvements in terms of the meas-
uring technique and the mathematical analysis have been introduced by Suggett,
Quickenden-Mackness, Tait, Loeb and Young (1969-1971), Due to these improvements, a
rather accurate measurement technique is available now.

After an introduction to transmission line theory and linear system theory, in
Chapter 1, some theoretical results are presented in Chapter 2. These results refer to
the case of an ideal step function. In section 2.1 the TDR-step response is calculated
numerically for three current descriptions of dielectric permittivity, including low-
frequency conductivity. It is concluded that an evaluation of the dielectric parameters
in the time domain, as was suggested in the early papers on TDR, is not possible since
the response curves do not show enough characteristic features which enables such a
time domain evaluation.

In section 2.2, an investigation has been carried out to the similarity of the
asymptotic behaviour of the TDR-step response (in the time domain) and to the asymp-
totic behaviour of the permittivity, represented by a Cole-Cole plot, in the frequency
domain. One of the main conclusions is that for dielectric materials of which the low-
frequency side of the Cole-Cole plot does not cut the '-axis perpendicularly, as for
instance for a Cole-Cole type of material, the TDR-decay is extremely slow in reaching
its asymptotic value at t = =. This means that, in general, a material with a Cole-Cole
behaviour cannot successfully be examined by means of the TDR-method described in this
work. The results of the asymptotic calculations for t+0 suggest the possibility to
determine the value of To» in the case of a single relaxation time, from the derivative
of the step response at t = 0. This method may be applicable when materials with very
large values of Tq are involved (it will not be a very accurate one). The results of
the asymptotic calculations for t+= suggest the possibility to determine the Tow-fre-
quency conductivity, when this quantity is very large compared with dipolar losses.

In Chapter 3 an error analysis is presented, based upon TDR-measurements by
means of an XY-recording system and the use of the time reference procedure as described
in this thesis. The result is that the inaccuracy in the values of €9* Cw and T, (or
v 0) is approximately
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In Chapter 4 the results of the experiments are presented. Dielectric measure-
ments, by TDR, have been carried out for the mono alcohols ethanol, propanol-1, buta-
nol-1 and heptanol-1. These measurements, although intended as a test procedure to con-
firm the applicability and accuracy of TDR-measurements, contain some new data for
propanol-1, at room temperatures, and for heptanol-1, at temperatures above 40° C.

In section 4.3 the results of measurements on 1:1 volume mixtures of the mono
alcohols with carbon tetrachloride are presented. Although the values found for the
activation energy and the frequency factor are not very accurate (which is also true
for frequency domain measurements), the results show that the values of EA and of A
for the mixtures tend to be larger than for the pure compounds. This effect is most
pronounced for methanol, while it decreases (in percentages) with increasing length
of the carbon chain. From the results of heptanol-1/carbon tetrachloride it seems that
the values for EA and A tend to be smaller than those of the pure compounds when the
length of the chain is large.

The changes in the relaxation frequency, energy of activation and the frequency
factor, after dilution of the pure alcohol by carbon tetrachloride are discussed in
terms of a change in the amount of coordination in the polar 1iquid when an alcohol
volume is replaced by the same non-polar CC]4 volume.

The results on methanol are in contradiction to the statement of Dannhauser
that for this compound breaking of the hydrogen bond would still be the rate determin-
ing step for the reorientation.

Finally, in Chapter 5, a general discussion of the TDR-method is presented, in-
corporating suggestions for further work.




SAMENVATTING

Dit proefschrift is gewijd aan de toepassing van Time Domain Reflectometry
(TDR) voor het meten van dielektrische eigenschappen van polaire vioeistoffen. Deze
methode, die afkomstig is uit het vakgebied van de kommunikatie techniek, is het eerst
toegepast op dielektrische spectroskopie door Fellner-Feldegg (1968). Verbeteringen
van de meettechniek en van de mathematische verwerking, door Suggett, Quickenden-Mackness;
Tait, Loeb en Young (1969-1971), hebben ertoe geleid dat nu een tamelijk nauwkeurige
meetmethode beschikbaar is.

Na een inleiding in transmissie 1ijn theorie en lineaire systeem theorie, in
Hoofdstuk 1, worden in Hoofdstuk 2 de resultaten besproken van responsie berekeningen
voor een ideale stap funktie. In sektie 2.1 wordt de TDR-stap responsie numeriek bere-
kend voor drie veel gebruikte beschrijvingen van de dielektrische permittiviteit, waar-
bij ook laag frequent geleiding in rekening wordt gebracht. De konklusie is dat een be-
paling van de dielektrische parameters in het tijdsdomein, zoals was voorgesteld in de
eerste artikelen over TDR, onmogelijk is omdat de responsie curven te weinig kenmerken
bevatten voor zo'n bepaling.

In sektie 2.2 is een studie gemaakt van de overeenkomsten in het asymptotisch
gedrag van de TDR-stap responsie (in het tijdsdomein) en de permittiviteit, in de Cole-
Cole plot representatie (in het frequentie domein). Een van de belangrijkste konklu-
sies is dat voor een dielektrisch materiaal waarvan de laagfrequent kant van het Cole-
Cole plot de ='-as niet loodrecht snijdt, zoals b.v. voor een "Cole-Cole materiaal",
de TDR-decay extreem langzaam is in het bereiken van de asymptotische waarde op t = w.
Dit betekent dat een dielektrisch materiaal met een "Cole-Cole gedrag" met de hier be-
schreven TDR-techniek in het algemeen niet onderzocht kan worden. De resultaten van de
asymptotische berekeningen voor t+0 suggereren de mogelijkheid om voor een Debye disper-
sie de waarde van 0 te bepalen uit de afgeleide van de stap responsie op t = 0. Deze

methode zou toegepast kunnen worden wanneer de waarde van T erg groot is, maar het zal

geen erg nauwkeurige methode zijn. De resultaten van de asymptotische berekeningen voor
t+= suggereren de mogelijkheid om de laagfrequent geleiding te bepalen, wanneer deze
veel groter is dan de dipolaire verliezen.

In Hoofdstuk 3 wordt een fouten analyse gegeven welke geheel gebaseerd is op
de TDR-techniek zoals hier beschreven, dus op het gebruik van een XY-rekorder en de
besproken tijd referentie procedure. Het resultaat is dat de onnauwkeurigheden in de
waarden van €g* £, &N vy (of ro) globaal gegeven worden door
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In Hoofstuk 4 worden de resultaten van de metingen gegeven. Dielektrische
metingen m.b.v. TDR zijn verricht aan ethanol, propanol-1, butanol-1 en heptanol-1.
Hoewel deze metingen bedoeld zijn als een test procedure ter bevestiging van de toe-
pasbaarheid en nauwkeurigheid van TDR-experimenten, bevatten zij nieuwe gegevens voor
propanol-1 bij kamertemperatuur en voor heptanol-1 bij temperaturen boven 40°¢.

In sektie 4.3 zijn de resultaten weergegeven van metingen aan 1:1 volume
mengsels van de mono alkoholen met tetrachloorkoolstof. Hoewel de gevonden waarden
voor de aktiveringsenergie en de frequentie faktor niet zeer nauwkeurig zijn (dit is
echter eveneens het geval voor frequentie domein metingen) , tonen de resultaten aan
dat de waarden voor EA en A groter zijn voor de mengsels dan voor de pure alkoholen.
Dit effekt is het duidelijkst voor methanol terwijl het afneemt (procentueel) bij toe-
nemende lengte van de koolstof keten, Uit de resultaten aan heptanol—l/CC]4 kan ech-
ter de trend worden afgeleid dat de waarden voor EA en A kleiner worden dan die van de
pure alkoholen wanneer de koolstof keten erg lang is.

De verandering in de relaxatie frequentie, aktiverings energie en frequentie
faktor, wanneer de alkoholen met CC]4 worden verdund, worden besproken door de veran-
deringen die optreden in de hoeveelheid koordinatie in de polaire vloeistof wanneer een

volume eenheid van een alkohol wordt vervangen door een gelijke volume eenheid CC14.

De resultaten aan methanol zijn in tegenspraak met de aanname van Dannhauser
dat voor deze vloeistof het breken van de waterstof binding de snelheidsbepalende stap
is voor reorientatie.

Tot slot is in Hoofdstuk 5 een algemene diskussie gegeven over de TDR-metho-
de, waarbij ook suggesties voor voortgezet onderzoek zijn opgenomen.




118

!
!
|
|

Dit proefschrift zou niet tot stand gekomen zijn zonder de bijdragen van anderen,

In de eerste plaats geldt dit Dr. Ir. G.P. de Loor, die de TDR-methode heeft
geintroduceerd op het Physisch Laboratorium TNO en die het werk in alle stadia op een
plezierige en zeer intensieve manier heeft begeleid en gestimuleerd. Behalve het oplos-
sen van wetenschappelijke problemen heeft hij ook vele buiten ons om gegenereerde (min-
der wetenschappelijke) problemen tot een oplossing weten te brengen. Ook Dr. P. Bordewijk
heeft tot het ontstaan van dit proefschrift op vele manieren een wezenlijke bijdrage
geleverd, waaronder het suggereren van het in Hoofdstuk 4 beschreven onderzoek en z'n
bijdragen aan de asymptotische berekeningen. H. Gravesteijn heeft door vele diskussies
over signaal verwerking en Fourier analyse, en door een deel van het komputerwerk voor
z'n rekening te nemen eveneens belangrijk bijgedragen. Wat betreft het numerieke werk
hebben Ir. J.G. de Graan en J. de Vries belangrijk werk verricht. Een deel van de test-
experimenten zijn uitgevoerd door D.L.A. Osseman en de experimenten beschreven in
Hoofdstuk 4 zijn uitgevoerd door A.J. van der Lugt, die voor dit doel enige maanden in
ons groepje heeft meegewerkt. De gegevens van de experimenten werden geponst door Mej.
E.M. Bouman (40 keer 600 punten) terwijl de destillaties van de vloeistoffen door Mej.
J. Kouwenhoven werden verricht. Met elektronika problemen werd ik geholpen door
J.F.C. Baesjou, J. van Reenen en J. de Stigter, terwijl de mechanische problemen door
P. Leemans werden opgelost. De tekeningen van de Hoofdstukken 1 en 2 zijn vervaardigd
door de tekenkamer van hetPhysisch Laboratorium TNO terwijl de tekeningen van de Hoofd-
stukken 3 en 4 door de heer P. Vissers (Philips Natuurkundig Laboratorium) gemaakt zijn.

Aan de direktie van het Physisch Laboratorium TNO betuig ik mijn dank voor het
feit dat ik na mijn militaire dienst nog drie maanden lang in de gelegenheid bengesteld
(wetenschappelijk en financieel) dit werk af te ronden, waarbij verder het bekostigen
van het werkbezoek aan Dr. A. Suggett en Mevr. P.A. Quickenden van zeer grote invloed
is geweest.

De direktie van het Philips Natuurkundig Laboratorium ben ik zeer erkente-
1ijk voor het feit dat zij mij na mijn militaire dienst nog drie maanden verlof heeft
gegeven om het hier beschreven werk af te maken. Verder wil ik gaarne memoreren dat zij
het mij financieel mogelijk heeft gemaakt om tijdens mijn militaire diensttijd de in
Oxford gehoudenAdvanced Summer School in Theoretical Chemistry, o.1.v. Prof. C.A. Coulsons
bij te wonen; en dat zij de kosten, verbonden aan het offset drukken van dit proef-
schrift, voor haar rekening heeft genomen.

1 am very indepted to Dr. A Suggett and to Mrs. P.A. Quickenden for their
hospitality and quidence during my stay at the Unilever Research Laboratories. This
stay has been of great importance for learning how to work out TDR-experiments. The
numerous discussionsduring this stay and also before and afterwards, by telephone, have
contributed much to my knowledge.
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I am also very grateful to Mr. and Mrs. R.E. Turvey for their hospitality
during all my visits to England and to Mr. Turvey for his careful reading of the entire

manuscript.

Ik ben mijn vrouw zeer dankbaar voor het vele werk dat zij voor mij gedaan
heeft, waaronder het uittypen van het manuscript en het (gezamenlijk) digitaliseren van
ca. dertig XY-curven.

Na het behalen van het einddiploma HBS-B, aan de Gemeentelijk HBS te Delft
in 1962, werd datzelfde jaar begonnen met de Natuurkunde studie aan de Technische
Hogeschool te Delft. Het P2 examen werd in 1966 behaald. Het vierdejaars werk (een
onderzoek naar de ESR-spektra van instabiele fenoxy radikalen) en het vijfdejaars werk
(een ESR-studie naar lijnbreedte effekten en temperatuurafhankelijkheid van koppelings-
konstanten van enige fenoxy radikalen) werd verricht in de werkgroep Magnetische Reso-
nantie o.1.v, Prof. Dr. Ir. J. Smidt. In het vierde studiejaar bezocht ik bovendien de
Summer School in Theoretical Chemistry, o.1.v. Prof. C.A. Coulson te Oxford, hiebij fi-
nanciel gesteund door het Delftse Lipkensfonds. Na het afstuderen op 24 juni 1969 bleef
ik nog tot 5 januari 1970 bij de werkgroep M.R. Vanaf 16 januari 1970 ben ik verbonden
aan het Natuurkundig Laboratorium van de N.V. Philips' Gloeilampen Fabrieken.

Mijn militaire dienst periode, welke 5 januari 1970 aanving, heb ik vanaf
maart 1970 doorgebracht op het Physisch Laboratorium TNO te Den Haag, in de groep van
Dr. Ir. G.P. de Loor. Het daar verrichte onderzoek aan TDR is in dit proefschrift vast-
gelegd. In september 1971 werd ik in de gelegenheid gesteld om drie dagen op het Uni-
Tever Research Laboratorium te werken bij Mevr. P.A. Quickenden en Dr, A. Suggett, In
juli 1971 bezocht ik opnieuw de cursus Advanced Summer School in Theoretical Chemistry

in Oxford, 0.1.v. Prof. C.A Coulson, nu financieel gesteund door de N.V. Philips.

Sinds januari 1972 ben ik daadwerkelijk verbonden aan het Philips Natuurkun-
dig Laboratorium, in de groep Gasontladingen.













