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STELLINGEN

1. De toepasbaarheid van de bestaande nauwkeurige TDR-technieken moet u i t  te
breiden z i jn  to t  re laxa tie fre kw en ties  lager dan 10^ Hz. In kombinatie met
de door Hyde ontw ikkelde laagfrekwent responsieapparatuur (werkend van

-4 610 to t  10 Hz) bestaat h ie rdoor de m ogelijkhe id  om op sn e lle  w ijze  d ie -
le k tr is c h  spektroskopisch onderzoek te  ve rr ich te n  voor frekw enties tussen
10 '4 en 2 1010 Hz.

P.J. Hyde, Proc. IEE, m ,  1819, (1970).

2. De m ogelijkhe id  om u i t  de snijhoeken van het Cole-Cole p lo t en de e '-as
konklusies te  kunnen trekken betreffende het asymptotisch gedrag van ver
sch illende  represen ta ties van de d ie le k tr is c h e  re la x a tie  in  het t i jd s d o 
mein, vergroot de waarde van het Cole-Cole p lo t a ls  g ra fische  weergave van
het d ie le k tr is c h e  gedrag in  het frekwentiedomein.

D it  p ro e fs c h r if t ,  se k tie  2 .2.

3. De Kramers-Kronig re la t ie s  z i jn  een n ie t  t r i v ia le  konsekwentie van een
fys isch  sch ijnbaar t r iv ia le  aanname.

4. De door Pichamuthu, Hassler en Coleman a fge le ide  re la t ie  voor de opbouw
van de s tra lin g s d ic h th e id  in  een gepulste waterdamplaser, is  door hen ten
onrechte geb ru ik t om de gemeten afname van het laservermogen te  in te rp re 
te ren .

J.P . Pichamuthu, J.C. Hassler, P.D. Coleman, Appl. Phys. L e t t . ,  19,
510, (1971). —

5. B ij theore tische  studies betreffende spinheidsverdelingen ten gevolge van
symmetrieverstorende substituenten in  aromatische rad ika len , dienen de in 
vloeden van geometrische veranderingen van het molekuul in  de beschouwingen
te  worden betrokken.



6. Ten onrechte nemen Hammond en Gallo in hun beschouwingen over de koncen-3
tratieafname van Hg(6 Pj)-atomen in de afterglow van een Hg-Ar ontlading
aan, dat de invloed van superelastische botsingen tussen elektronen en
deze atomen verwaarloosd kan worden.

T.J. Hammond, C.F. Gallo, Appl. Opties, 11, 729, (1972).
J. Polman, P.C. Drop, J. Appl. Phys., 43, 1577, (1972).

7. De aanwijzingen dat de reflektiekoefficient van gewassen voor kortgolvige
radargolven voornamelijk bepaald wordt door het zich boven de grond in de
bladeren bevindende water, suggereert de mogelijkheid om op grote schaal
met behulp van "Side Looking Radar" biomassa bepalingen te verrichten.

G.P. de Loor, AGARD conference proceedings No 90: Propagation
limitations in remote sensing (1971), paper 12.
W.P. Waite, R.C. MacDonald, IEEE Trans., GE-19, 147, (1971).

8. De aanwezigheid van een d e fib r i l la to r  in een voetbalstadion is slechts dan
zinvol wanneer eveneens de mogelijkheid is geschapen om een door ventri kei-
f ib r i l l a t i e  getroffen toeschouwer in leven te houden to t  het moment dat hij
met de d e f ib r i l la to r  doeltreffender behandeld kan worden.

9. Wanneer Elizabethaanse luitmuziek op een moderne gitaar gespeeld wordt, is
het aan te bevelen de g-snaar naar f is  te verstemmen.

10. Het is te verwachten dat in het Nederlandse leger het rendement van de werk
uren na de middagpauze zal toenemen indien de bar voor, tijdens en na de
lunch gesloten zou blijven.

M.J.C. van Gemert, mei 1972
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LIST OF SYMBOLS

A frequency factor appearing in the Arrhenius equation, in Hz (Chapter 4)
A parameter appearing in the non-ideal step function (Chapter 3)
a0 ^  (“ ) , (section 2.2)

Ur+O

a„ l i "> (» ) , (section 2.2)
Wr+co

C distributed capacitance in Farad m"1
E(t) error voltage involved in VQ(t) due to the unwanted step voltage

(Chapter 3)
energy of activation appearing in the Arrhenius equation, in Kcal.
mol"* (Chapter 4)

e(t) error signal involved in R(t) due to the unwanted step voltage
(Chapter 3)

F(s) Laplace transform of the input voltage
complex function appearing in the asymptotic behaviour of e(s) for
s-K) (section 2.2)

f„(s) complex function appearing in the asymptotic behaviour of e(s) for
s-*° (section 2.2)

f ' ( “) real part of f(iio) (section 2.2)
f"(“) imaginary part of f(io>) (section 2.2)
G distributed parallel conductance in nf*
G(s) Laplace transform of the output voltage
H( i “) transfer function of a linear and causal system
h ( t) system response to a delta function
I current flowing through the conductors in Ampère m"̂

current flowing into a load impedance in Ampère m”^
Ip(x) modified Bessel function of the n-th order of argument x

current at the origin of the z-coordinate for the harmonic wave traveil
ing into positive respectively negative direction, in Ampère m”^

i imaginary unit, i = /-  1
L distributed inductance in Henry m"*
£ Laplace transform operator, defined by

£ 1f (t )} = ƒ dt e"s t  < f ( t )  }
6

£ * inverse Laplace transform operator, defined by

-1  1 c + i ”

£ f f(s) I = ----  ƒ ds es t  { f(s) }
2*i c-i®



10

M
N
0,o
P(t)
R
R

R(t)
R(«)

Re(t)
V  r i

T
TDR
t
t(n )

t r
u ( t -  T)
V
V (t)

Vi

W )
Z ( iu)

Z0
a

3
r(x )

y ( “ )

y

A

Aa
As
At

AS

6(t)
e ( iu )

to ta l number o f samples involved in  VQ( t )
to ta l number o f samples involved in  R (t)
order symbols used in  the theory o f asymptotic expansions (section 2.2)
time domain re f1ectometry response to  a heaviside step function
universal gas constant, in  ca l. mol . K (Chapter 4)
d is tr ib u te d  series impedance in  Om
time domain re f1ectometry response to  a non-ideal step function
frequency dependent amplitude o f a complex function
response to  V ( t )
ra d ii o f the outer and inner cy lin d r ic a l conductors o f a coaxial l in e ,

in  m
variab le in  the complex frequency plane defined by s = y + i<o, y is
real and u is  the rad ia l frequency
temperature, in  °K
Time Domain Reflectometry
time, in  sec (or picosec)
actual time o f the n-th sample
time reference
transla ted heaviside step function
voltage between conductors, in  Volts
to ta l voltage a t the a ir -d ie le c tr ic  in te rface , in  Volts
voltage a t the o r ig in  o f the z-coordinate fo r  the harmonic wave t ra v e l l
ing in  pos itive  respectively in  negative d ire c tio n , in  Volts

inc ident voltage, in  Volts
ch a ra c te ris tic  impedance o f a dispersive coaxial l in e ,  in  a

cha rac te ris tic  impedance o f an empty coaxial l in e ,  Zg = 50 fl
empirical parameter appearing in  the Cole-Cole re la t io n , 0<a< 1
empirical parameter appearing in  the Davidson-Cole re la tio n , 0<8< 1
gamma function fo r  argument x; -  »<x<“
propagation constant o f frequency o
real axis o f the complex frequency s-plane, defined by s -y  + iu
e rro r in  the time reference procedure, in  picosec (Chapter 3)
accidental part o f A ,  in  picosec (Chapter 3)
systematic part o f A ,  in  picosec (Chapter 3)
delay between the input voltage Vg(t) and the output voltage R (t) ,

in  sec (Chapter 1)
phase e rro r o f the re fle c tio n  c o e ffic ie n t, in  Deg/GHz
Dirac delta function
dimensionless complex d ie le c tr ic  p e rm it t iv ity ,  e(iw) = e'(ui) - 1e"(«)



11

* '(»)
e »
e.

e0
e

00

c

n

e(u)
y(i(ü)
H.
V

v0
vm
p( iw)
p 1 (io)

P" (« )

p ( ” ) * P ( e„ )
P (0) = p ( e0 )

dp
P i ( 0  ■ (— )

1 de

c

(1)

real part of e(iu)
negative imaginary part of e(iw)
permittivity of the vacuum, in Farad m”*
low-frequency d ielectric  permittivity
high-frequency dielectric  permittivity
parameter denoting the low-frequency angle of the Cole-Cole plot
with the e 1 - axis, in units of ir/2; 0<rJ<2 (section 2.2)
parameter, denoting the high-frequency angle of the Cole-Cole plot
with the e ' - axis, in units of ir/2; 0<ni2 (section 2.2)
frequency dependent phase of a complex quantity, in radians or degrees
relative magnetic permeability of a material
magnetic permeability of the vacuum, in Henry m
frequency, in Hz
relaxation frequency denoted by 2itvqTq = 1, in Hz
frequency lim it, defined by R(v) = 0, v>v ; in Hz
complex reflection coefficient
real part of p(iw)
imaginary part of p(iw)
lim p(iu)uy*<x> K ' '
lim p(iu>)
o)-*0
- 1/ [ /F ( l  + J Z ) z  ]

low-frequency conductivity, in n"* m"*
conductance of the material of the conductors, in m
transmission coefficient (section 1.2,3)
time distance between two samples, in pi cosec
rise time of the non-ideal step function defined by Vq(t ) = 1
(Chapter 3)
dielectric  relaxation time
angular frequency, in sec"



12

INTRODUCTION

The experimental investigation of dielectric  relaxation phenomena is one of
the oldest spectroscopic techniques, originating from the la s t decades of the former
century1. Usually i t  is the aim of th is type of spectroscopy to study the behaviour
of e lectric  dipoles in terms of absorption and dispersion from interactions of the
material with an applied electro-magnetic fie ld . Two properties are characteristic
for d ielectric  spectroscopy in comparison to other spectroscopic methods. F irs t,
this spectroscopic method can generally be studied by classical physical methods,
and second, i t  covers an unusually large frequency range, from about 10 Hz up to
about 1011 Hz. Due to th is enormous range, the evaluation of the dielectric  permit
tiv ity  of a polar medium, denoted by e( iuj) = e'(ü>) ■ ieM(u>)» requires a number of
laborious frequency domain techniques, each of them demanding a specialized know
ledge in electrical engineering.

In general, d ie lectric  permittivity is measured by determining, for all fre 
quencies of in terest, the impedance of a capacitor, or for high-frequencies, the im
pedance of a transmission line, f illed  with the d ielectric  material. For very low-
frequencies, an alternative method is  known2,3, studying the transient response of
a f illed  capacitor, in.terms of i t s  charge decay, to a step voltage excitation.

The extension of th is "time domain" method to the microwave region has in re
cent years been enabled by the development of modern tunnel diodes and wide band
sampling systems. In electronic and communication engineering a technique called
"Time Domain Reflectometry" (TDR)4 is in use since the early six ties and has been
succesfully applied to the qualitative analysis of transmission line systems. The
TDR-method has also been used for the quantitative measurement of e lectric  circu it
parameters^ (network analysis).

In such a method a step voltage, which simultaneously contains all frequen
cies of in te rest, will be propagated in a low loss coaxial line. The shape of the
step voltage remains constant as long as the transmission characteristic impedance
and the propagation constant are unchanged. When the transmission line contains a
section with a different characteristic impedance (for instance a section filled
with a polar medium), part of the step voltage will be reflected a t , and part of i t
will be transmitted through the discontinuity. The location of the discontinuity is
then determined by the time difference between the incident and reflected pulses.
When the discontinuity posesses a frequency dependent characteristic impedance, i .e .
i t  is  dispersive,the shape of the reflected pulse (and also of the transmitted pulse)
is changed. The quantitative behaviour of the discontinuity, in terms of i ts  fre 
quency dependence, can then be determined by Fourier analysis of the incident and
reflected voltages.
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The possibility  of applying time domain ref1ectometry to the quantitative
study of d ielectric  permittivity was f i r s t  indicated by Fellner-Feldegg8 , a l
though other workers have independently reported in this field  as well8-10. The in
terpretation and accuracy of TDR-measurements have recently been improved by
Whittingham^ and especially by Suggett, Quickenden-MacNess, Loeb and Young*8’*8.

I t should be noted that for measuring polar liquids, this technique has ad
vantages above the point-by-point frequency domain methods, especially in the micro-
wave region where savings in time and equipment are considerable. I t  also serves as
an important technique to f i l l  the measurement gap of about 108 - 3 109 Hz which
exists in the frequency domain. This gap is more basically present for special po
lar media, such as pasta's and granular substances (where an electrode system can
not be placed inside the material), than for polar liquids. However, two remarks
should be made in this connection. The f i r s t  is  that one needs a fas t digital compu
ter and the second is tha t, in general, the accuracy of time domain methods is less,
compared with frequency domain techniques. However, the computer has become a com
mon piece of equipment nowadays, and in the microwave region the time domain tech
nique is not necessarily inferior to the frequency domain method.

In this thesis the evaluation of the dielectric  perm ittivity, from TDR-expe-
riments, is discussed both theoretically and experimentally. Time domain reflectome-
try is essentially a method which:
(1) uses propagation characteristics (such as the characteristic impedance) as the

object of the measurement and
(2) is based on the equivalence of the "time domain", and the "frequency domain"

description of a linear and causal system.
Therefore introductions are given in Chapter 1 to the theory of transmission line
propagation and to linear response theory.

In Chapter 2, the TDR-response is studied in the case of an ideal step func
tion, for d ielectrics with known characteristics in the frequency domain. F irs t, nu
merical results are presented for a number of current descriptions of d ielectric  be
haviour. Afterwards, the asymptotic behaviour of the TDR-step response has been re
lated to the asymptotic behaviour of the permittivity in the Cole-Cole plot represen
tation.

In Chapter 3 the experimental measurement procedure is outlined. I t  is  shown
how Fourier analysis of the actual output and input voltages (the input voltage con
sists of the response against a short c ircu it) may give the correct values of the die
lec tric  parameters. Some deficiencies of the TDR-equipment and of the method of ana
lysis are discussed. An analysis of the uncertanties involved in the experimental
determination of the d ielectric  parameters, due to errors in the incident and re
flected voltages, is also presented. The results of this analysis are that the un-
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certanties in e , e and t are about 5%,  20% and 7.5% respectively.o O \ a
In Chapter 4 a number o f experimental results are given. F irs t, test experi

ments on some of the mono-alcohols are presented, which confirm the accuracy and ap
p lic a b il ity  o f the TDR-method. Since accurate d ie lec tric  measurements fo r propanol-1
are lacking fo r temperatures above 0° C, th is  alcohol is  studied in  more d e ta il. The
results agree very well with data available fo r low-frequencies at lower temperatu
res. In the la s t part of Chapter 4, a study is presented of d ie lec tric  measurements
on mixtures of some mono alcohols with carbon tetrachloride. Besides the influence
of the carbon tetrachloride on the relaxation time characterizing the main disper
sion range o f the alcohols, the influence on the activation energy is discussed.
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CHAPTER 1

DERIVATION OF THE RELATION BETWEEN THE TIME DOMAIN REFLECTOMETRY RESPONSE AND THE
DIELECTRIC PERMITTIVITY

1.1 INTRODUCTION TO TIME DOMAIN REFLECTOMETRY

The time domain re fle c tom e try  system, as used in  the determ ination o f d ie le c 
t r i c  p ro p e rtie s , is  shown schem atica lly in  Figure 1.1. I t  consists o f  a step genera
to r ,  producing a fa s t r is e  time step (about 35 1 0 '12 sec), a sampling system d e te c t
ing the signal vo ltage between the coaxial conductors and transform ing th is  h igh-
frequency signal in to  a low-frequency o u tpu t, an osc illoscope  on which the lo w -fre 
quency signal is  displayed and the measuring c e ll cons is ting  o f  a coaxial l in e  f i l 
led w ith  a po la r l iq u id .  The length o f th is  c e ll is  considered to  be in f in i t e  fo r
convenience.

*ir-di«l«etrie
interface

oscilloscope

Figure 1.1 The experimental TDR-system.

The voltage step from the step generator is  propagated along the coaxia l l in e .
The sum o f the fa s t r is e  time step and the re fle c te d  vo ltage from the a ir - d ie le c t r ic
in te rfa c e  is  detected and sampled by the sampling system and d isplayed on the o s c i l 
loscope. The to ta l vo ltage, V ( t ) ,  is  then given by:

V( t ) = VQ( t )  + R (t)

where V(t )  is  the to ta l ly  displayed vo ltage , Vg(t) the vo ltage o f the fa s t r is e  time
step and R (t) the re fle c te d  vo ltage from the a ir - d ie le c t r ic  in te r fa c e . A ty p ic a l sha
pe o f  V( t ) is  given in  Figure 1 .2 , together w ith  a reconstruc tion  in  terms o f VQ( t )
and R ( t ) . Because the behaviour o f  the system is  studied in  re f le c t io n ,  the signal
de tecto r is  placed between the step generator and the c e l l ,  in troduc ing  a time delay

between the inpu t V g (t) and the output R (t) . For th e o re tic a l and p ra c tic a l rea-
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sons,however, the s itu a tio n  shown in Figure 1.3 is  to be used.

T(*)l

J
i

r "T^ --------------------------

»(»)

|-------

H—
i

L 4* .

| V
i

F igure 1.2 Typical wave form o f V(t) and i t s
reconstruction  in  terms o f Vg(t)
and R ( t ) .

•< t)

t

Figure 1 .3  Response R (t)  to  input V » (t)  when
the response theory is  to  be used.

In the next sections, the re la tio n  between the re flected  voltage in  the time
domain, R (t) , and the d ie le c tr ic  p e rm itt iv ity  e (iu ) = e'(u>) -  e " ( u ) in the frequency
domain w i l l  be derived. This w i l l  be done by f i r s t  discussing, in  section 1.2, the
propagation o f a harmonic wave o f frequency w along a coaxial l in e . Then the re fle c 
tio n  o f the harmonic wave, against some dispersive d iscon tinu ity  (the a ir -d ie le c tr ic
in te rfa ce ), w i l l  be discussed and the corresponding re fle c tio n  c o e ffic ie n t w il l  be
expressed as a function o f the lumped c ir c u it  elements. In section 1.3 an introduc
tio n  to lin e a r response theory is  given, discussing the in tegra l re la tio n  between
the system's trans fe r function in the frequency domain and the pulse response in  the
time domain. In p a rticu la r i t  is  shown how the trans fe r function can be obtained
from the system's response, in  the time domain, to  some a rb itra ry  input function . In
section 1.4 the resu lts  from the foregoing discussions are applied to  the determina
tio n  o f d ie le c tr ic  p e rm itt iv ity  from TDR-experiments.

1.2 THEORY OF COAXIAL TRANSMISSION LINES

1.2,1 INTRODUCTION

In general a transmission lin e  consists o f two conductors separated by a d ie 

le c tr ic  m ateria l. Transmission o f an electro-magnetic f ie ld  is  coupled w ith a voltage

d ifference between and current flowing through the conductors. When measured a t a

transverse plane, the to ta l currents in  both conductors are o f equal magnitude and of
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opposite direction.

Although the conductors may be of any geometry and conducting m ateria l, the
only lin e  considered in th is  work is a coaxial lin e , consisting of an outer cy lin 
drical conductor with radius rQ and an inner cylindrical conductor, with radius r . ,
separated by some material (fo r instance a ir  or a d ie le c tr ic  medium). In Figure 1 .4 ,
the geometry and sign conventions for voltage and current are indicated.

In the following section the propagation of a time periodic wave in a coaxial
lin e  w ill be treated, using the concept o f c irc u it  analysis.

1.2,2 A COAXIAL LINE DESCRIBED BY CIRCUIT PARAMETERS

The propagation of an electro-magnetic f ie ld  along a coaxial lin e  f i l le d  with
a d ie le c tr ic  medium w ill be described by the d istribution  of voltage and current
along the lin e . The behaviour of the d ie lec tric  medium is represented by the d ie lec
t r ic  p erm ittiv ity  e(iaj) and the low-frequency conductivity a, i .e .  by the quantity
e(iüi) -  io /u . The coaxial lin e  is divided into in fin itesim al parts of length dz. The
voltage and current changes across a length dz are then represented by the voltage
and current changes across a lin ear passive network, described by the usual parame
ters R (n m ) ,  C (Farad m * ) ,  L (Henry m *)  and G (n * m * )  representing the dis
tributed series resistance-, capacitance-, inductance- and para lle l conductance per
unith length of the coaxial lin e .

At a certain fixed frequency the values of the parameters R, C, L and G,
which are constants everywhere along the lin e , are determined by geometry, dimension,
material of the conductors and the d ie le c tr ic  medium only.

An in fin itesim al part, length dz, of the lin e  can then be represented as is
shown in Figure 1.5. The voltage change across this length dz is:

Figure 1.4 Geometry and sign conventions for
voltage and current in a coaxial
transmission line.

Voltage change = dz = -  R dz I -  L dz
3t
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Similarly, the current change is given by:

31 3 V
Current change = -----  dz = - G dz V - C dz -----

3t

1 _L ['•K'

I 1 ^  H dt Ld{>---D -^ HI— •
Figure 1.5 An infinitesimal part of a coaxial

line and i ts  circuit equivalence.

Dividing by dz gives the following equations which are known as the "telegraphy equa
tions":

31

3 I

R I - L

- G V

(1.1)

( 1. 2)
3Z 3 1

To obtain an equation containing voltage only, equation (1.1) is differentiated with
respect to z and equation (1.2) with respect to t. By similar manipulations an equa
tion containing current only is obtained. The results are:

32V 32V 3V
-----  = LC----- + (LG + RC) ------ + GR V
3Z2 3t2 3t

32 I 32 1 3 1
----- -- LC ----- + (LG + RC) ------ + RG I
3Z2 3t2 3t

(1.3)

(1.4)

It is very difficult to give a general solution of equations (1.3) and (1.4) if  none
of the circuit parameters L, C, R and G can be neglected^. However, when time periodic
fields are involved, differentation with respect to time equals multiplication by iu.
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The quantity u is the radial frequency of the wave. Equations (1.1) - (1.4) can then
be written as:

dV
-------- - (R + i«)L) I (1.5)

dz

dl
------ = - (G + 1WC) V (1.6)

dz

d2V
— = (R + iu)L) (G + IuC) V (1.7)
dz

d2I
■- '2' = (R + iuL) (G + iwC) I (1.8)
dz4,

V and I are now complex functions of z only. Using the following abbreviation:

Y2 * (R + i j . )  (G + iuC) (1.9)

the mathematical solutions of equations (1.7) and (1.8) yield:

V = V+ e*YZ + V_eyZ (1.10)

I = I  e ~Yz  + i_eyZ (1.11)

V+ denotes the voltage a t z = 0 for the harmonic wave travelling in a positive direc
tion, while V_ is the voltage a t  z = 0 for the harmonic wave travelling in the oppo
s i te  direction. Combining equations (1.11) and (1.6) the following resu lt  is  obtained:

V = Z(I+e”yZ -

Z
R + iaiL

G + iwC

I_eYZ) ( 1. 12)

(1.13)

The quantity Z, as defined by equation (1.13), is called the characteris tic  impedance
of the line. I t  is  defined as the ra t io  of voltage to current for the positively t r a 
velling wave and of voltage to minus current for the negatively travelling wave at
any point of the transmission line. The characteris tic  impedance is  in general com
plex, indicating that the line f i l le d  with a polar medium is dispersive. For an empty
coaxial line G = 0 holds, while in practice R can be neglected with respect to UL
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ind ica ting  tha t an empty transmission lin e  can often be considered as non-disper-

sive.
From transmission lin e  theory, the fo llow ing re la tio n  fo r  the series impedan

ce R(w) can be derived*®’ *7:

R(«)
vw

\ f ic  ' r i  r o /

(1.14)

where p is  the magnetic perm eability o f vacuum, y the re la tiv e  magnetic permeability
o f the conductors (which are presumed not to be ferro-magnetic, i .e .  y = 1 ,  aQ the
conductiv ity  o f the conductor material and r ^ , r 0 the ra d ii o f the inner- and outer
conductors respective ly. For L, C and G the ca lcu lations y ie ld  ’ :

v p
L = ------- in  ( r 0/ r . ) (1.15)

In (rQ/r.j)

2 *0

E(i<u) (1.16)

(1.17)

1n (ro/r î
where e. is  the d ie le c tr ic  p e rm itt iv ity  o f vacuum.

For an empty (commercially) coaxial lin e , i .e .  a General Radio 50 n p rec i
sion l in e ,  the values o f the c ir c u it  elements are calculated, using the characteris

t ic s :

r .  = 3.075 10‘ 3 m

r  * 7.075 10'3 m0

The conductors are made o f messing, coated w ith s ilv e r .  Due to  the "s k in -e ffe c t" , the
current through the conductors is  flow ing through the s ilv e r  layer only. The conduc

tance o f s ilv e r  is  given by:

o = 6.17 107 n '1 m'1

Inserting these values in to  equations (1.14) and (1.16) and using

1
£  = 4ir 10"7 Henry m "* ,  e_

36w
10~® Farad m~*
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The fo llow ing resu lts  are calculated:

R(u>) = 1.06 10"5 /ÏT n m 1 (1.18)

L = 1.67 10"7 Henry m"* (1.19)

C = 6.67 10 '11 Farad n f* (1.20)

G = 0 n "1 m"1 (1.21)

For the frequency band o f in te re s t, which is  roughly 106 - 1010 Hz, the series
impedance can be neglected w ith respect to  UL, as can be in fe rred  from Table 1.1.
From the resu lts  o f th is  Table, i t  is  c lear th a t, fo r  a l l  frequencies o f in te re s t,
one has:

R(u>) «  <i>L (1.22)

TABLE 1.1

THE INFLUENCE OF R(o>) IN COMPARISON WITH o>l

(1) ■<«•) u>L R ( Cl)  ) /  b)L

2 K. 106 2.65 10-2 1.05 2.5 10‘ 2
2 t . 1010 2.65 1.05 104 2.5 10’ 4

Combining th is  re s u lt w ith equation (1 .13), the cha rac te ris tic  impedance Z is  given
by:

1 8 z° =Y T  (1,23)

1.2,3 REFLECTION AND TRANSMISSION AT AN IMPEDANCE DISCONTINUITY

When a transmission lin e  contains an impedance change, part o f the wave is  re 
flec ted  and the other part is  transm itted. Across the d isco n tin u ity , which is  f i r s t
considered to  be a load impedance Z^, K irchho ff's  law requires tha t to ta l voltage and
current must be continuous. At the d isco n tin u ity , fo r  which the coordinate z = 0 is
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chosen, the total voltage consists of voltages from waves travelling in positive and
negative directions, these voltages are denoted by V+ and V_ respectively. The sum
of V and V_ must be equal to the total voltage VL across the impedance

V+ + V. = v L ( I - 2 4 )

Similarly the total current IL flowing into the load is equal to the sum of the cur
rents from both waves:

I+ + I . = IL (I*25)

Using

V_
Z0 •

equation (1.25) becomes:

V.

^0 *0 %
Defining the reflection coefficient p and the transmission coefficient t as:

V

(1.26)

(1.27a)

1 + p (1.27b)

and combining equations (1.24) and (1.26), the following results are obtained:

Z, - Z„

ZL + Z0
(1.28)

ZL + Z0
(1.29)

Using the results given by equations (1.16) and^1.17) the characteristic impedance
can be written as

HT Vî
 ̂ » C [iuj e(iw) + o/e_]^

(1.30)
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G
—  -  (1.31)

is used. Equation (1.30) is generally written as

1 i * w
(1.32)

or, using the convention tha t the quantity (o/elu)  is im plicitly  involved in e(ioü),
the rela tion  between and Zg becomes:

z - Zo
^ \Zc(i(i))

(1.33)

The reflection  coefficien t p(iu) is  now easily  calculated from equations (1.26)
and (1.33)

1 “ VeYiiu)
p(ioj) = ----------- —----

1 + Ve(iii))
(1.34)

I t  is  noted tha t in derivation of equation (1.34) i t  is  assumed that the d ielec
t r ic  material has a magnetic permeability y = 1. For paramagnetic substances, however,
the inductance per unit length is given by y(i<ii)L, and a fte r  sim ilar arguments as
given above, equation (1.34) becomes:

V ^iw ) - Veiiw)
p (M  ------- T=------------ —----  (1.35)

V u(M  + Ve(iw)

1.3 LINEAR RESPONSE THEORY

1.3,1 INTRODUCTION

Knowledge of the dynamic behaviour of a physical system can be obtained by
studying the system's response to a disturbance of the equilibrium situa tion . This
can be done for instance by switching on a time periodic-, pulse-, step-, noise-,
or any other input function. This is schematically indicated in Figure 1.6 using the
symbols f ( t ) ,  g (t)  for respectively input and output. The quantity S is  used to de
note the system's behaviour, transforming f ( t )  into g ( t) .
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Figure 1.6 System S and its  response g (t )  to input f ( t ) .

Two d iffe re n t response methods can be distinguished:
(1) The frequency domain method: .

the input f ( t ) ,  which is  time periodic in  th is  case, is  applied ad iaba tica lly
(which means tha t no trans ien t behaviour is  involved in  g (t)) a t t  *  -  ». The
system's response can then be studied a t any time.

(2) The time domain method:
the input f ( t ) ,  which is  in general aperiodic in  th is  case (although not necessa
r i l y ,  as fo r  instance a rectangular periodic function) is  switched on non adia-
b a tic a lly  a t some time t Q. The time domain method then studies the system's tran 
s ien t response fo r  t  > tg  u n t il equilibrium  is  reached. Examples o f th is  method
are pulse- and step response measurements.

Both methods determine the behaviour o f the system completely ( in  a formal sense) and
i t  is  the aim o f th is  section to discuss th is  s im ila r ity  together w ith the lin k  exis
tin g  between the frequency and time domain methods.

The system S is  assumed to be lin e a r and causal, which means the fo llow ing:
lin e a r: the input f ( t ) ,  consisting o f the sum o f any functions f j ( t )  and f 2( t ) ,  re

su lts  in  an output g ( t)  which consists o f the two independent responses g^ (t)

to  f j ( t )  and g2( t )  to f 2( t ) .
causal: the input f ( t ) ,  switched on a t t  = 0 cannot cause an output g ( t)  fo r  t  < 0.
This causa lity  cond ition , which seems rather t r i v ia l ,  leads to  the Kramers-Kronig

re la tio n s18" 20, (see Appendix A).

1.3,2 INTEGRAL RELATION BETWEEN PULSE RESPONSE AND TRANSFER FUNCTION

The response o f a lin e a r qausal system to a time periodic function is  another
time periodic function w ith the same period but ( in  general) d iffe re n t amplitude and

phase. The fo llow ing input is  chosen f i r s t :

f ( t )  = cos ut

The output is  then given by, see Figure 1.7:
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g (t) = R(u) cos [ ut  + e(u ) ]

cos

Figure 1.7 Response to a time periodic input.

The amplitude of the output» R(o>)> and the phase difference between output and input»
e(u>)« are both functions o f the radial frequency

Now the following input is  chosen:

f ( t )  ■ cos wt  + 1 sin (jot = eiu t  (1.36)

Using the lin e a r ity  of the system, the following output is  obtained:

g (t) = R(a,) cos [ ut  + e((o)] + i R(w) s in [ ut  + e(u)]

which can be written as

g (t) -  H( i u) eiu t (1.37)

H( i<a) = R(u) eie (1.38)

The complex function H(iu) is  called the "transfer function" or "system function". By
de fin ition  i t  is  the response to an exponential excitation, Figure 1.8

( iu )

Figure 1.8 Definition of the transfer function H(iu).



26

The next input to be chosen consists of the sum of an infinite number of expo
nentials, representing the Dirac pulse ö(t):

1 co
f ( t )  = -----  ƒ e1“t du =6( t )  (1.39)

2 IT -OO

Again because of the linearity condition, the response is given by the integral of the
individual responses:

1 00 i *
g(t) = -----  ƒ H( iu) e1ü)ï dw = h( t) (1.40)

2 TT - “O

The symbol h(t) is used to indicate the system's response to the unit pulse 6(t).
Mathematically, h(t) is defined by equation (1.40) for all times - «°<t<°° but

due to the causality condition this reduces to 0<t<» , see Figure 1.9

Figure 1.9 System response to a unit S-function. Figure 1.10 Input f ( t )  and output g(t) in terms
of convolution with respectively
6(t ) and h(t).

When equation (1.40) is to be inversed, diff iculties may arise because of the
requirements of H( iu) and g( t) for convergence of the Fourier transform. These d i f f i 
culties are easily omitted, however, by extending the transfer function over the
whole complex frequency plane, defining the complex frequencies by

s = y + iu , y is real (1.41)

This means that Laplace transforms can be used instead of Fourier transform methods.
01 00Equation (1.40) and i ts  inverse are then given by ’ :

1 c+i~ , +
— H ( s) esx ds = £ { H(s) 1
2tti' c-i=°

h(t) (1.42)
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H(s) = ƒ h (t)  e 's t d t = £ { h ( t ) } (1.43)
o

I t  is  noted tha t:

(1 ) the causa lity  condition is  autom atically included in  Laplace transforms and thus
in equation (1.42)

(2 ) the transfe r function H(iu ) can always be found from H(s) (th e  reverse statement
is  not tha t general) by:

H( i w) = lim  H(s) (1-44)
y-tO

(3 ) the mathematical conditions to which H(s) and h ( t)  must obey to ensure the exis
tence o f the in teg ra ls  (1.42) and (1.43) are f u l f i l le d  fo r  a l l  functions used in
th is  work.

Details can be found in  textbooks on Laplace tra n s fo rm s^ ’ ^ .
I t  can be concluded, from equations (1.42) and (1 .43) and using (1 .44) when

necessary, tha t a lin e a r causal system can be determined by means o f the two respon
se methods:

(1 ) the frequency domain method, by determination o f H( i u) fo r  a ll
(2 ) the time domain method, by determining h( t )  fo r  a l l  t> 0.

1.3,3 RESPONSE TO A GENERAL FUNCTION

The response g ( t)  to some general input f( t )  is  now calculated using the mathe
matical re la tions  ex is ting  between f ( t )  and g ( t) .

Any function f( , t )  can be w ritte n  in  terms o f a convolution w ith the function

In fa c t equation (1.45) is  used as a d e fin it io n  o f <$(t). The response g( t )  is  then
given by:

as is  shown in Figure 1.10. Laplace transformation o f equations (1 .45) and (1.46)
resu lts  in to :

f ( t )  = ƒ f ( T) S it  -  T) dT (1.45)

9( t )  = ƒ f ( x )  h( t  -  x) dx (1.46)

F (s) = F( s ) . l
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G(s) = F(s). H(s) (1 .4 7 )

where F( s) = £ I f(  t ) } and G( s) = £ { g( t ) }.
In troduc ing  the c a u s a lity  c o n d it io n , equation (1 .4 6 ) becomes:

t  t
g( t )  = ƒ f( x) h( t  -  x) dx = ƒ f( t  -  x) h( x) dx s f( t )  *  h( t )

0 0
(1 .4 8 )

where i t  is  noted th a t equation (1 .4 7 ) is  not changed by applying the c a u s a lity  con-
t i t i o n .  For completeness o f th is  section i t  is  noted th a t the equations (1 .4 6 ) and
(1 .4 7 ) are in te g ra l equations o f the convo lu tion  type and the Wiener-Hopf type res

p e c tiv e ly .
I t  can be concluded th a t
(1) equation (1 .48) describes the l in e a r  time domain response g ( t )  to  a general in 

put f ( t )  in  terms o f a convo lu tion  o f f ( t )  and h ( t ) .  I t  is  im portant to  note

th a t i t  is  not possib le  by simple methods, to  f in d  h ( t )  when g ( t )  is  known.
(2) equation (1.47) describes the analogous s itu a tio n  in  the frequency domain. Here

i t  is  very easy to  f in d  H(s) when G(s) and F(s) are known:

H(s)
G(s)

F(s)

and applying equation (1.49) one f in d s :

H(iw)
G(ito)

F(i«)

(1.49)

(1.50)

1.3,4  APPLICATION TO TIME DOMAIN REFLECTOMETRY

The re s u lts  o f  the former section  can now be applied to  TDR. Then, the tra n s fe r
fu nc tio n  is  given by p(iu>), the re f le c t io n  c o e ff ic ie n t o f the system, where the sys
tem is  defined as the a ir - d ie le c t r ic  in te rfa c e  involved in  the coaxia l l in e .  Denoting

the in c id e n t vo ltage by V g (t) and the re fle c te d  vo ltage by R ( t ) ,  as shown in  Figure

1 .1 , the re la t io n s  between the time domain and the frequency domain response, as

given fo r  the general s itu a t io n  by equations (1.47) and (1 .4 8 ), y ie ld

t
R (t) = ƒ VQ( t  -  x) h(x)dx (1.51)

o

and

G(s) = F (s ). p( s ) (1.52)
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with

G(s) = £ i R(t)} ; F(s) = £ { VQ(t)} ; p(s) = £ 1 h(t) |

ned as
consider the case of a heaviside step input. Then Vp(t) is defi-

, 1, t  > 0
Vq( ^ ) = |  I t  t  * 0 (1.53)

' 0 ,  t  < 0

(1.52) then become:

t
R(t) ■ VQ ƒ h(x)dT = VnP(t) (1.54)

0
1

G(s) =  V q  ----  P(S) (1.55)

P(t) is the response to a unit heaviside step, for which the Laplace transform is —
The total displayed voltage V(t) is in this case: s

v(t ) = V0 + V0 P(t) (1.56)

The response P(t) can be here interpreted as a reflection coefficient in the time
domain. The unit step response P(t) is then related to p(s) by:

P(t) = £ 1-H (1.57)

When VQ(t) is an experimental step, possessing a f in ite  rise time, equation
(1.47) remains unchanged but equation (1.48) cannot be simplified anymore:

R(t) -  ƒ VQ(t - T) h(T)dT
o

This equation can be written in terms of a convolution between Vg(t) and P(t) as
follows:

R(t) = Vn(t)  *

The total voltage V(t ) in terms of Vq(t ) and P(t) is then given by:

(1.58)



30

V(t) = Vn( t )  + vn(t )  *

and the time domain response R(t) is  related to p(s) by:

R(t) = £-1 { F(s) p(s)

G(s)
p(s)

F(s)

Using equations (1.34) and (1.61), the d ie le c tr ic  p e rm ittiv ity  can be found
equation

/ i  - p (iu ) \  2
e(1<i>)

/ i  - p(M V
A i + p(i«) /

« (M
/  F(ii») - G(1«.) \ 2

\  F(iu) + G(icu) /

(1.59)

(1.60)

(1.61)

from the

(1.62)



ERRATUM

tThe d irect determination of e^, as suggested by Fellner-Feldegg, is  not based upon an exact
mathematical method, resulting in to large errors.

*See Appendix A where the Cole-Cole equation is  discussed in connection with causality.
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CHAPTER 2

CALCULATIONS OF THE TDR-RESPONSE TO A HEAVISIDE STEP FUNCTION FOR DIELECTRICS WITH
KNOWN CHARACTERISTICS IN THE FREQUENCY DOMAIN

2.1 NUMERICAL CALCULATIONS25

2.1.1 INTRODUCTION

In the f i r s t  paper on TDR, Fellner-Feldegg5 obtained the d ie le c t r ic  perm ittiv i
ty ,  from the experimental r e s u l t s ,  by assuming the TDR-decay to  be the Laplace t ra n s 
form of the d ie le c t r ic  perm itt iv ity  ( in a q u a l i ta t iv e  sense). For a Debye perm it t iv i
ty  r e la t io n ,  defined by25

e(s ) =  e
OQ

+  g 0  ~  £ oo

1 + Sxo
( 2 . 1)

where eb , eQ are the high- and the low-frequency l im its  of e ( s ) ,  and tq i s  the re laxa
tion  time involved, the step response P(t)  is  then assumed to be of the following form

P(t) . .i "rr. . n-^o
l  * ^ T0 L i * ^

1 -  /

1 + /  e
e ' t / x 0 ( 2 . 2 )

where xQ is  again the d ie le c t r ic  re laxation  time. I t  was pointed out by Whittingham11,
however, th a t  equation (2.2) does not represent the correc t  TDR-response, because P(t)
is  the step response of the re f lec t io n  co e ff ic ien t  p(iw) instead of the d ie le c t r ic
perm itt iv ity  e ( io>)- This is  confirmed by Figure 2.1 where the Argand diagram of p(ioo)
(for a Debye dispersion) is  shown. Very c lea r ly  th is  diagram is  not a semicircle . Then
in a second paper with Barnett, Fellner-Feldegg27 calculated P(t)  numerically for a
Debye perm itt iv ity  re la t ion  and suggested th a t  tq should be determined by means of
graphs,to be used when the values of eo and eQ are known (in his f i r s t  paper, Fellner-
Feldegg showed how eQ and e* can be found d i re c t ly  from a TDR-curve). Such graphs, for
a Debye p e rm it t iv ity ,  were given in th e i r  paper.

I t  will be shown in the following sec tions ,  where the work of Fellner-Feldegg
and Barnett is  extended, th a t  the d ie le c t r ic  parameters of a polar medium should not
be estimated in the time domain, but instead in the frequency domain.The extension
of the work of Fellner-Feldegg and Barnett will consis t  of a numerical ca lculation
of the step responses P(t)  for a d ie le c t r ic  material behaving according to the permit
t i v i t y  re la t io n s  of Cole and Cole28, defined by*:
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e(s) = e +  ̂ < i 0<o<l (2.3)'  ' 00 . , \1”0
1 + (sv

po on
and of Davidson and Cole ’ , defined by:

e(s) = + —------ ~~JT * °<6<1 (2‘ 4)
(1 + Stq)

-0 0 5

Figure 2.1 Argand diagram of p(iiu) for a Debye dispersion, c0 = 20 and = 4.

Apart from proving the im possib ility  of a d irect evaluation o f the d ie lec tric
parameters in the time domain, such calculations also provide qualita tive  information
about accuracy, general behaviour and trends in TDR-experiments. In fac t, some of the
results obtained gave rise to a more systematic analysis of the asymptotic behaviour
o f P(t) in connection with the asymptotic behaviour o f e(ito) in the Cole-Cole plot

representation.

2.1,2 RELATIONS FROM ANALYTICAL CALCULATIONS

The general purpose of th is  section is  the calculation o f the step response

P (t), defined by equation (1.57):

P(t) = £-1 j - - -  p(s )

p(s ) = i  -
1 + /  e ( S )

(1.57)

(1.34)

fo r the three relations (2 .1), (2.3) and (2.4) describing the frequency behaviour of
e(s). An analytical evaluation of equation (1.57), by means of contour integration is
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extremely d ifficu lt because p(s) is a very complicated function in s. However, due to
standard boundary value conditions, existing for Laplace transforms, i t  is possible
to calculate P(t) and i t s  derivative with respect to time, at t  = 0 and t  = «. The
calculations are based upon the following theorems:

lim P(t) = lim s £ fP(t)} (2.5)
t+0 S“H»

lim P(t) = lim s £ {P(t)> (2.6)
t -*50 S“*0

Using equations (1.57) and (1.34) the following boundary value conditions are obtained
for any dielectric permittivity e(s):

P(0) = p(-) (2.7)

P(-) = p(0)
1 ~ ^

1 + ^
0 ( 2 . 8 )

P(-) = p(0) = -1, a t  0 (2.9)

In principle, equations (2.7) and (2.8) show the possibility of a direct
determination of and (when p = 0) of Cq. When the low-frequency conductivity p is
not negligible, the s ta tic  permittivity cannot be determined by straightforward
methods in the time domain (however, this is also true in the frequency domain).

I t  is also possible to calculate the derivative of P(t), at t  = 0, using
equation (2.5) again, now written as:

lim dP-

a.CHBII (2.10)
t+0 dt S-H» ( dt )

f f - dP I = s £{ P (t)> - P(0) (2.11)
dt )

Equation (2.11) follows immediately from Laplace transform theory. Combination of
equations (2.10) and (2.11) gives:

— lim si p(s) — p(oo) 1
s-x»t=0

( 2 . 12)
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Using the equations (1.34) and (2 .1 ), (2.3) and (2.4) respective ly, the fo llow ing

resu lts  are obtained:

(1) Debye
(Eo '  eJ + OTo/£
T f i  S i (1 + S i ) ^

U 00 * 00

(2.13)

(2) Cole-Cole (2.14)

(3)Davidson-Cole (2.15)

2.1,3 NON-CONDUCTING DIELECTRIC MATERIALS

In th is  section the resu lts  from the ca lcu la tions o f P ( t) w i l l  be presented
assuming the behaviour o f the p e rm itt iv ity  in  the frequency domain to be according to
the equations (2 .1 ), (2.3) and (2 .4 ). The ca lcu la tions are carried out assuming:
(1) a heaviside step input and
(2) an in f in i te ly  long d ie le c tr ic  sample enclosed in  a p e rfec tly  conducting coaxial

l in e .
In Appendix B some de ta ils  are given on the numerical evaluation o f the inverse

Laplace transform; equation (1.57).

27DEBYE DIELECTRIC PERMITTIVITY. Fellner-Feldegg and Barnett have calculated
P (t) fo r  various combinations o f eQand e^ and they have given graphs from which the
corresponding values o f tq can be determined when eq and are known.

When the time deriva tive  o f P (t) a t t  = 0 can be found, the re laxation time tq

can also be calculated from equation (2.13) with a = 0, but th is  procedure cannot be
very accurate in  practice because i t  is  re lated to  the behaviour o f P (t) fo r  very small
values o f t  and th is  part o f the step response cannot be found very well experiment-

£
a lly  due to the f in i te  r ise  time o f the voltage step .

However, when i t  is  known tha t a d ie le c tr ic  material behaves according to a
Debye dispersion, the parameters eq, eo and tq can be found in  the time domain. This
is  demonstrated in  Figure 2.2 where some o f the resu lts  are shown together w ith the
corresponding Cole-Cole p lo ts and the Argand diagrams o f p(iu>). The tangents (dP/dt)
a t t  = 0 are calculated from equation (2.13) w ith a = 0.

This procedure may be applied  experim enta lly  when tq is  very la rg e .



35

—  0-1

«o  • »

£ -  <10 <b ><oo

Figure 2.2

A. TDR-step responses for the Debye equation.
B. The corresponding Argand diagrams of p(iui).
C. 'The corresponding Cole-Cole plots of e(iui).

XOLE-COLE DIELECTRIC PERMITTIVITY. For a number of combinations of en) e and
U 00

a,  the step response P(t) is calculated. Some of the results  are shown in Figure 2.3.
I t  is  not very useful to follow Fellner-Feldegg and Barnett in their  procedure of the
determination of tq, since not only and e_ must then be known but also the value
of the empirical parameter a. No criterion in the time domain can be found from which
the value of a can be deduced, as can be seen from the graphs of Figure 2.3.

The shape of P(t) for a d ie lectr ic  material behaving according to the Cole-Cole
equation, d iffers  significantly  in two ways from that of a Debye material:
(1) the tacgent at t  = 0 is  f in i te  when a Debye permittivity 1s involved and minus

in fin ite  for a Cole-Cole d ie lec tr ic  material.
(2) the decay to the asymptote a t t  = •  is  much slower than for a Debye behaviour.
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The two deviations from the Debye behaviour have the fo llow ing practica l conse
quences, f i r s t ,  i t  is  impossible to determine the value o f eg in  the time domain when
t/Tg is  not very large and second, the value o f Tq cannot be re lated to a measurement
o f (dP/dt) at t  = 0.

The theore tica l conclusion can be drawn th a t, when an ideal heaviside voltage
step is  applied to an in f in i te ly  long sample, the values o f e^ and Eg can be found in
the time domain, less accurate than fo r a Debye behaviour and Eg fo r large values
o f t/Tg only. Because the value o f a cannot be estimated in  the time domain, the
value o f Eg cannot be found e ith e r.

0.5

Figure 2.3

A. TDR-step responses fo r  the Cole-Cole equation,

£ 0  == 80 and
E oo :

1 1 - a = 1
2 1 -  a = 0 . .8
3 1 -  a = 0 . .5
4 1 -  a = 0 , .2

The corresponding Argand diagrams o f p (iiii) .
The corresponding Cole-Cole p lots o f e( i uj).
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DAVIDSON-COLE DIELECTRIC PERMITTIVITY. Again, P ( t)  has been ca lcu la ted  fo r
various combinations o f  eg, es and B. Some ty p ic a l re s u lts  are shown in  Figure 2 .4.
Also fo r  th is  behaviour o f  the p e rm it t iv i ty  the value o f  B has to  be known when tq

has to  be found in  the time domain from s im ila r  p lo ts  as given by Fellner-Feldegg
and B arne tt, and analogous to  a Cole-Cole p e rm it t iv i ty  behaviour, no c r ite r io n  e x is ts
in  the time domain from which the value o f B can be deduced.

The shape o f the step response d if fe r s  again in  two ways from th a t o f  a Debye
m a te r ia l:

(1) the tangent a t t  = 0 is  minus i n f in i t y  instead o f  f i n i t e  fo r  a Debye behaviour

(2) the decay to  the asymptote a t t  = » seems to  be even fa s te r  than fo r  a Debye behav
io u r.

The consequences from the two dev ia tions are : f i r s t ,  the value o f can

( th e o re t ic a lly )  be found less accurate than fo r  a Debye behaviour (bu t w ith  the same
accuracy as fo r  a Cole-Cole p e rm it t iv i ty )  and second, the value o f  tg  cannot be found
in  the domain since the value o f 8 cannot be found and th i r d ,  the value o f eg can be
found fo r  sm aller values o f  t / i g  than fo r  a Debye p e rm it t iv i ty  behaviour.

Again, the th e o re tic a l conclusion can be drawn th a t e and e„ can be found
oo (J

d ir e c t ly  in  the time domain but not the value o f Tg, when an idea l vo ltage step is
app lied to  an in f in i t e ly  long d ie le c t r ic  sample.

. i i . i

JI-0.8

Cn-20

Figure 2.4

A. TDR-step responses fo r the Davidson-Cole
equation.

B. The corresponding Argand diagrams o f p (iu )
C. The corresponding Cole-Cole plots of e (iu )
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2 .1 ,4  CONDUCTING DIELECTRIC MATERIALS

When the low-frequency c o n d u c tiv ity  o cannot be neglected, i . e . ,  when

Or, using wtq = 1, when:

OTo / I "

(2.16)

(2.17)

the shape o f  P (t)  changes s ig n if ic a n t ly .  However, the Cole-Cole p lo t in  the frequency

domain changes as w e ll,  v ide Figure 2 .5.

I I

J -
1 )
•At.

Amy
0 '/ v lAAA2 7

AA Ay A \
A 2 /

f % 1

L¥f
r Mb

2 4 4 a 10 12 14 14 is  20
---------► £ '

Figure 2 .5

Change o f the shape o f the Cole-Cole

p lo ts  due to  the parameter otq/ c .

For two a rb it ra ry  combinations o f e . and and many values o f otq/£ ,  the
time domain step response P (t)  is  ca lcu la ted  fo r  10 ^<t/Tg<10 . In Figures 2 .6 ,
2.7 and 2.8 graphs o f P (t)  are given fo r  d ie le c t r ic  m ate ria ls  behaving according to

the formulae o f Debye, Cole and Cole and o f Davidson and Cole. From these graphs, i t

is  concluded th a t even d ie le c t r ic  systems w ith  very la rge  c o n d u c tiv itie s  such as
a = loo n " ^ ' 1 (1 cm '1) can be studied w ith  TDR-experiments.
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■113000

T I i iTT 111 I I I
100

Figure 2.6 TDR-step response fo r  the Debye equation including low-frequency conductiv ity ;
£q * 80, = 8, is  used as parameter. For t/T«> l a logarithm ic scale is
used.

-------------i*

313000

1130 l

Figure 2.7 TDR-step response fo r  the Cole-Cole equation including low-frequency conductiv ity ;
E0 * 80, = 8, 1 - o = 0.8 and 0 .2 , <jtq/£  is  used as parameter. For t/T«> l a
logarithm ic scale is  used.
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------------- 0 = 0.2

113000

TTTT1--------1— T T
100' ■ i .............. ib ;

Figure 2 .8  TDR-step response fo r the Davidson-Cole equation including low-frequency
conductivity; eQ = 80, £_ = 8, B = 0.8 and 0.2, ot^ e is used as parameter.
For t /iQ > l a logarithmic scale is used.

When the low-frequency c o n d u c tiv ity  is  predominant, i . e .  when:

* oxn/c  »  e°  '  E~ (2.18)
0 -  2

an a n a ly t ic  re la t io n  fo r  P (t)  can be derived31. The re f le c t io n  c o e ff ic ie n t p (s ) then

becomes:

1 - [ e(s) + - -  ° /£  1 *
p(s) -  ------------------------ ----------- 1

1 + [ e (S) + O/ ]

„  ~ + q/s- (2.19)
\/s + \/s + o/ e_

From th is  approximate re s u lt, the fo llow ing re la tion  fo r  P (t) is  obtained

P (t)  = -1 + e 'x t  [ I Q(x t)  + I j ( x t )  1 (2.20)

x = c / 2 e  ' (2.21)

In th is  equation, I Q, I j  are modified Bessel functions. The behaviour o f P ( t) ,  accord
ing to  equation (2.15) is  fo r  very small and very large times respectively:
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Tim P(t) = O lim P(t) = -1 (2.22)
t+O t->»

The value for P(«°) is correct, but the value for P(0), which should be p ( » )  is not,
due to the complete neglect of e(s) in equation (2.19). In Figure 2.9 two curves of
P(t), calculated according to equation (2.20), are compared with exact curves, obtain
ed numerically. From inspection of this Figure i t  is clear that for t>xg both curves
are similar. In the next section this result will be derived, using asymptotic tech
niques.

It is noted that the results of equation (2.20) cannot be used to measure the
value of o, by using the relation of the derivative of P(t) at t  = 0, as was suggested
by FelIner-Feldegg A curve-fitting procedure would probably work for this determi
nation.

Time (arbitrary units)

Figure 2.9 Some curves of the TDR-step response for a very large value of a/<̂ .

1. P(t) calculated from equation (2.20)
2. P(t) for a Debye equation, Eg * 20, c , = 10
3. P(t) for a Debye equation, e.  ■ 80, = 8
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2.2 ASYMPTOTICAL CALCULATIONS32

2.2,1 INTRODUCTION

In section 2.1 some results o f P (t), from numerical calculations, were presen
ted, using three current, partly  empirical relations to represent the behaviour of d i- j
e lec tr ic  material. One of the interesting features is  that the behaviour of P (t), fo r
t-*-0, is  s im ilar fo r the p e rm ittiv ity  relations of Cole and Cole and of Davidson and
Cole, while the behaviour of P(t) fo r t * "  is sim ilar fo r the relations of Debye and
of Davidson and Cole, as is  shown in Figure 2.10.

Figure 2.10 TDR-step response P(t)
1. Debye, eQ = 20, = 4
2. Cole-Cole, e« = 20, = 4, 1 - o = 0.6
3. Davidson-Cole, Eg = 20, e_ = 4, 6 = 0.6

These s im ila ritie s  in the time domain are to be compared with the corresponding simi
la r it ie s  in the frequency domain, i.e .  the shape of the corresponding Cole-Cole plots
fo r the relations of Cole and Cole and of Davidson and Cole are sim ilar fo r h igh-fre
quencies while the geometrical form of the Cole-Cole p lo t fo r the relations of Debye
and of Davidson and Cole are s im ilar fo r low-frequencies.

These s im ila ritie s  between the asymptotic behaviour of P(t) and the (geometric
a l) asymptotic behaviour of e(iu) in the Cole-Cole p lo t representation, fo r three spe
c if ic  d ie lec tric  p e rm ittiv ity  equations, suggest the poss ib ility  that fo r any dielec
t r ic  p e rm ittiv ity  the asymptotic behaviour of P(t) may yie ld  information about the
asymptotic behaviour of e(iu>) in terms of the geometry in the Cole-Cole p lo t repre
sentation and vice versa.

I t  must be noted, that knowledge about these features is rather formal a p r io r i,
although i t  can serve as useful theoretical background knowledge. I t  w il l be shown,

1-4 - 0.6

, 0.6
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however, tha t under some circumstances i t  gives information about the accuracy o f d i
e le c tr ic  parameters obained from TDR-experiments.

In th is  section the mathematical re la tions  ex is ting  between the asymptotic
behaviour o f the time domain step response P (t) and the asymptotic behaviour o f the
complex d ie le c tr ic  p e rm itt iv ity  e(s) are derived, in  section 2.2,2 fo r  the low -fre 
quency conductiv ity  being n e g lig ib le , and in  section 2.2,3 fo r  th is  conductiv ity
being considerable.

By d e f in it io n , P (t) and e(iw) are re lated by equations (1.57) and (1.34)

P(t) = £"1{ - g - p ( s ) |  (1.57)

/ T  -  ✓  S e(s)  + a / t
p ( s ) -------— ------ _ _ _ _ _  (1.34)

v S  + 'f S e(s)  + a/e_

The problem w il l  be approached by an ana ly tic  ca lcu la tion  o f P (t) fo r  t->0 and t-*»,
from power series expansions o f equation (1 .34), obtained from expressions o f e(1 to)
fo r  i# + 0  and u t+ c ° respective ly.

2.2,2 NON-CONDUCTING DIELECTRIC MATERIALS

ASYMPTOTIC BEHAVIOUR OF e(s). Any mathematical equation, representing the com
plex d ie le c tr ic  p e rm itt iv ity  e(s) o f a non-conducting m ateria l, must have real and
lim it in g  values fo r  u-+<» and u>+0:

l im  e( iin) ■ t  )  1
Q J-H »  '  oo (2.23)

l im  e(iiü) = eft>e
df+o 0  <»

Further more one always has:

(2.24)

u e"(u>)> 0 (2.25)

The Cole-Cole p lo t gives the graph fo r  e"(w)  as a function o f e ' ( u ) .  I f  the
angles made by th is  p lo t w ith the e '-a x is  a t the high- and the low-frequency ends are
denoted by ^  = Jirn and <|>q = Jirc respective ly, one has:

Uffl E1»
e‘ (W) - e „

tg  Jirn , 0«:n«2 (2.26)
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l im ----- e (?)---- = tg Jir;, 0$c$2 (2.27)
(ü-h» Eq - e ' (ai)

The restrictions on n and e are derived from the restriction iDeM(üi)>0.
33Without loss of generality e(s) can formally be written in two forms :

e(s) - + *"nf.(* i (2-28)

and

e(s) = eQ - s?f0(s) (2.29)

In the following, equation (2.28) will be used for s-*» and equation (2.29) for s->0.
Equation (2.28) gives for e' and e":

e ‘ (w) * 6̂ + ai  ̂[^(u) cos Jim + f^(u) sin inn] (2.30)

e“(u) = ui"n[r(w) Sin iirn - f »  cos Jirn ] (2.31)

where f ' fu)  and f U )  denote the real and imaginary parts of f  ( iu).
00* '  00* * oo

these expressions in equation (2.26) one obtains

f' (w) sin Jirn -  f"(w) cos Jirn
lim — -------------------- =------- --------- tg iwn
w-x» f (̂a>) cos Jun + f̂ (<ii) sin Jirn

Analogously, for <d->0 is found:

f i (u )  Sin Jirc - f«(t») COS J-irC
lim — -------------------- ---------------= tg i-irc
u-K) fq(iii) cos |ir? + fg(w) sin Jnc

From equations(2.32) and (2.33) i t  follows that:

Substituting

(2.32)

(2.33)

f > )
lim — = 0  (2.34)
(D-*» f 1 (lo )oo * '

l l m J Ü l l L - o  (2-35)
O1-+0 f Q (ü) )

The causality condition requires further that e(s) ,  and thus also f ^ s )  and fg(s) are
analytic functions for the right hand side of the complex frequency plane, i .e .  for
Re [s]>0.

In general, three kinds of asymptotic behaviour of f(iw) may be distinguished.
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These cases w i l l  be discussed fo r  f „ ( i “ ):

(1) lim  f ; ( w) « a ,
GO-*oo

where a^ is  a f in i t e  real number. I t  then fo llows from equation (2.34)

lim  f"(<i>) = 0
00* 'Ü)-H»

and equation (2.28) can be w ritten  in  the form:

e(s) = e + a s "n + o [ s "n ] , s-*»
OO OO 7 ^

where the order symbol o has been used. From equation (2.25) i t  follows

a >0
oo

(2) lim  r ( u )  = »
OJ-H»

In th is  case equation (2.34) implies the re s tr ic t io n  tha t f ^ s )  must go
ty  w ith a slower rate than any power o f s:

f j s )  ■ o [ sx ] , s-*», fo r  any x>0

where f w(s) may fo r instance be a logarithm ic l ik e  function , such as log
log s, e tc.

(3)

or

we now use the

lim  f'(o>) = 0oo* 'GO-*®

lim  Re
GO"*0 [— 1L f „ ( M  J

property tha t equation (2.34) is  equivalent w ith

Im [ 1 / f  (1« )]
lim
ÜJ-XO

l / f j i w ) ]

This re la tio n  is  obeyed when

[ f „ ( s ) 1 = o [ s x ],  S-K» , fo r  any x>0

e.g. when t f j s ) ]  1 goes to  in f in i t y  as logs, log log s, e tc.

(2.36)

(2.37)

(2.38)

tha t

(2.39)

(2.40)

to in f in i -

(2.41)

s , log

(2.42)

(2.43)

(2.44)

(2.45)



46

For fg (s ) the same three cases can be distinguished as fo r ]im  f j s ) .  The condi

tions obtained fo r  fg (s )  are then:

f_ (s ) » o [ s"x ] , s-*0 , fo r  any X>0 (2 .4 6 )

-1  \
[ fg ( s ) ] = 0 [ s ] , s-0 , fo r  any x>0 (2 .4 7 )

ASYMPTOTIC BEHAVIOUR OF p (s ) . Because the function p (e ) ,  defined by equation

(1 .3 4 ) w ith  a = 0 , is  a n a ly tic  fo r  a l l  e (i(u ), a Taylor expansion around some sp ec ific

value e is  possible:0) r

p (E) -  P ( e J  = P i ( eu ) ( e " eu ) + 0 I ( e "eJ ]  ^2 ' 48^

1 -  /  E
p(e ) ------------- = - -  (2 .49 )

“  1  +  J T

Combination o f equation (2 .4 8 ) with equations (2 .2 8 ) and (2 .2 9 ) leads to :

p ( s  - *» ) •  P ( * J = P i ( e» ) s ’ n * . ( * )  + 0  [ s ' n. f . ( s ) ] ( 2 . 5 1 )

p ( s - * 0 ) -  p (  e 0 ) = -  P i ( e o ) s? f 0 <»> '► 0 [ SCf g ( S ) ] ( 2 . 5 2 )

1 f  ( s )
)  00'  '

= a and
00 u ?  f o ( s )  = a o * one

o b t a i n s :

p (S -*“ ) -  p ( e )  !'  oo' = P l ( £o.) aooS n +  0  I s “ n l ( 2 . 5 3 )

p (s ^ O ) ■ p ( e o )  :■ -  P i ( e o ) a Os? + 0 f s c ] ( 2 . 5 4 )

I t  is  in te re s tin g  to  note, th a t ,  since both P1(e„) and p j ( cq) w i l l  always be f i n i t e ,

i t  fo llow s from comparison o f equations (2 .5 1 ) and (2 .5 2 ) w ith equations (2 .2 8 ) and

(2 .2 9 ) th a t the Argand diagram o f p ( iu )  = p'(o>) + ip “ (i») in tersects  the negative part

o f the p '-a x is  under the same angles Jim and Jit? as the Cole-Cole p lo t o f e (iio ). This

property can be observed from Figures (2 .2 b ) , (2 .3 b ) and (2 .4 b ).

ASYMPTOTIC BEHAVIOUR OF P ( t ) .  For t  = 0 , the behaviour o f P (t )  is  given by

equation (2 .7 ) :
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P(0) = p (») (2.7)

To find the relation with the asymptotic behaviour of the dielectric permittivity
the time derivative of P(t) at t  = 0 is considered, which is given by equation (2.12):

(-ar)t=0 = JJf s " p(“}3
Applying equation (2.51) one obtains:

(
dP \

C* 7

I n
pi(e. )  i i s  s fJ s )

( 2 . 12)

(2.55)

Using the restrictions on f j s ) ,  as given by equations (2.41) and (2.45), i t  is found
that (dP/dt) = 0 at t  = 0, fo rn> l ,  and (dP/dt) = - •  for n<l (the minus sign is invol
ved because p.<0 ). For n = 1, i .e .  when the Cole-Cole plot intersects th e e '-ax is  per
pendicularly at the high-frequency side, the value of (dP/dt) at t  = 0 depends on
fw(s) for s-K». If this limiting value is f in i te ,  (dP/dt) at t  = 0 will also be fin i te ,
and equal to

/  dP \
( i  +

(2.56)

For l|m f<x>(s ) = <» or l^m fM(s) = 0 respectively, the derivative at t  = 0 will also
become infinite or zero.

For t-*» the behaviour of P(t) can be derived from the low-frequency behaviour
of £{P(t)}. First we consider the case of equation (2.54) i .e .  the case of lim fn(s)

s-0 u
= a0:

£{P(t)} = s ' 1 p(s)

From this follows^:

P ( En)  r _ i  . r - 1
— s2 -------- P i ( e0 ) aos + 0 [ s s-»0 (2.57)

pi ( eo>ao
P(t) = p(en) ------------------t  c+ o [ t " c ] , t-*»

0 r(i - C)

= P ( en )  +
r ( l  - c ) /■ £  (1 +>r ^ ) ‘

t" c + o [ t" ? ] , t-K» (2.58)
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From the sign o f the gamma function3 , i t  follows tha t fo r  0<c<l the step response
P (t) w i l l  approach i t s  l im it in g  value P(“ ) = p(eq) from the pos itive  side, fo r
1<C<2 from the negative side. In the cases t, -  1 and e = 2, when the low-frequency
side o f the Cole-Cole p lo t respectively in tersects the e '-a x is  perpendicularly and
touches the e '-a x is , the term in  t  5 in  the series development o f P (t) -  P(«) vanishes j
because o f the re s u lt35 r -1 (-n ) = 0, n = 0 ,1 ............ The series development w i l l  than
be dominated by the next term, which can be e ith e r pos itive  or negative. When the
series development fo r  e(s^O) contains only integer powers o f s, a ll terms in  the
corresponding series o f P (t) - P(«) w i l l  vanish, and P (t) w i l l  approach i t s  asympto
t ic  value fas te r than any power o f t  . Consider now lim  f~ (s ) is  zero or in f in i te :

s-*0 u

£{P(t)} -  -  -  P j(c0 ) fQ(s) s6"1 + o I f Q(s) sc - lJ , s-0 (2.59)

The function P (t) -  P(«), t-*», is  now dominated by the term -p ^e g ) £ l { f 0(s)
From the re s tr ic tio n s  on f» (s ) ,  i .e .  equations (2.46) and (2 .47), i t  fo llows tha t fo r  j
s-K), fQ(s ) s5* 1 goes to zero fa s te r than any s?" i-A  and slower than any s5" , x>0
(the value o f X cannot be zero, since then a logarithm ic function fo r  fg (s ) is  not pos
s ib le ) . Now i t  is  known36, tha t the asymptotic expansion o f a function fo r  t-+~ co rre s -j
ponds to an asymptotic expansion o f i t s  Laplace transform a t a f in i te  po in t where the I
transformed function has a s in g u la r ity . Thus the rate by which the step response P (t)
approaches i t s  asymptotic value in  the case o f equation (2 .59), w i l l  be fas te r than
any t " ?+x, and slower than any t “ c’ x , X>0, as long as x, is  a fra c tio n a l number. I f  c
is  an in teger, P (t) can only be derived in  th is  way to go to i t s  asymptotic value fo r j
t-*° fa s te r than any t ” c+X. The resu lts  are summarized in  Table 2.1.

TABLE 2.1

ASYMPTOTIC BEHAVIOUR OF P (t) - P(oo) FOR t-a o

P (t) -  P(oo)

faster than

qoes to zero

slower than

sign of the
dominating term

C = 0 t ‘ x +

O A A

t - c+x t -C-X +

ï = 1 t -l+x +

1 < C < 2 t -c+x t - ?- x -

C = 2
t -2+x +
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For non-conducting m ateria ls, the asymptotic behaviour o f P (t) appears to be
comparable w ith the asymptotic behaviour o f the "a fte r -e ffe c t" *  function , as is  d is 
cussed by Bordewijk and Van Gemert33. This is  due to the fa c t tha t the asymptotic
behaviours o f e(s) and p(s) are s im ila r.

APPLICATIONS. Because many experiments are analyzed in  terms o f the ana ly tic
re la tions  proposed by Debye, Cole and Cole and Davidson and Cole37-40, in  th is  section
the resu lts  o f the ca lcu lations given above w i l l  be applied to  these re la tio n s . I t
appears tha t the three re la tions  can be expanded in to  power series o f s and o f s s o
tha t the re la tions  derived fo r  fg (s ) = ag and f „ ( s )  = a , can be used. The
values o f the relevant parameters are summarized in  Table 2.2.

TABLE 2.2

PARAMETERS CHARACTERIZING THE ASYMPTOTIC BEHAVIOUR IN THE FREQUENCY DOMAIN

FOR THE CASES OF DEBYE, COLE-COLE AND DAVIDSON-COLE

expression fo r 1 a oo I *0

Debye
c «* + E0 •  E.

1 + 1w t q
1 1 <Eo * e- )T0

Cole-Cole c ~ + Eo '  E-
1 ,* (Iu t q )1 3

1-a <Eo ' E- ) To’ (1 " o ) 1*0 I V O V ’ 1

Davidson-Cole |  e + E0 * E.
(1 + 1u t 0 )8

6 (Eo ' t - , , o * 1 8<E0 'EJ T0

Using the resu lts  from th is  Table and inse rting  the parameters in to  equations (2.55)
and (2 .56), exact agreement is  obtained w ith the resu lts  given by equations (2.13) -
(2.15).

For t-*», 1t 1s c lear tha t the dominating term in  P (t) -  P(-») is  pos itive  fo r  a
Cole-Cole re la tio n , and goes to zero as fa s t as t ' 1" 01). For the re la tions  o f Debye
and Davidson-Cole, the subsequent terms in  the series expansion o f e(s) become impor
ta n t. For the Debye re la tio n  the expansion is  given by

e(s"*0) -  e0 = (e0 -  O  sx0)n (2.60)

The after-effect function, * ( t ) ,  is defined by the following equation: - d^ t ) = __ J 1 '

< e 0  *  e -  J
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fo r  the Davidson-Cole re la t io n ,  i t  is  given by:

e(s^O) -  eQ ( e r
® B(S + 1) (6 + 2 ) . .  .(B + n - 1)

n=l

(2 .61)

Because a l l  powers are in teger, th is  is  also true fo r  the expansion o f p(s-+0). There
fore in the case o f Debye and Davidson-Cole, P(t) w i l l  go to i t s  l im i t in g  value P(°°)
fas te r than any power o f  t

The rate o f which P(t) goes to P(») in the cases o f Debye and Davidson-Cole,
can be obtained by developing the expression s 1 [ p(s) - p ( e q ) ]  around the point
where i t  has a s in g u la r i ty ,  i . e .  around the point sQ = - 1/ tq:

s ' 1 [  p ( s ) -  p (eQ) ]  =

1 !  -  ^  + (eQ -  e j  (1 + Stq ) B 1 ~ \/^ö~

S _ 1 +V/eoo + (eQ -  e j  (1  + Stq ) b 1 + x/ eq" .

2 V T q -  2 y /e^  + ( eQ -  e j  ( 1 + Stq ) ^

S(1 + [ l  + + (e0 -  e j  ( 1 + St q )

S(1 +

v^o ( s -  sq ) B/2 ~ V(£o " £J  + g°°TQ ^ S ~ sq ) ^

tob/ 2 ( s " so )B/2 + V ( e0 '  eJ  + e~T06(s " S0 )B .

Now the following property is  used:

F(s) = F( sq ) + [ F(s) - F(sq ) ]

where F(s) = s "1 ( P(s) - P(e0) ] and s 0  =  -
-1

To •

The resu lt  is

2T« .
1 +v ^ 0

2’ 0W2( s - *0 )6/2 f 1 + V ^ -  V s - s0 )_ + t0(s - sQ) V^o - e» + e^ o ^ s ■ s0 ) 3 .
+

s( 1 + V^0 ) [ Toe/2 (s -  s0)6/2 eQ - E " +ecoT0e(s ‘  S q)0 ]  -•
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which can be written as:

2*o_____ tq6/2 (1 + (s - s0)e/2+o[ (s - s0)e/2]

1 + 1 /tq (1 + / c^) /e Q - + 0 [ 1 ]

= 2tQ

1 + ^

2t 1+3/2_2_ _
Sen - e

U 00

s0)S/2 + 0 [ (s - s0)6/2] s-*s0

It follows that the asymptotic behaviour of P(t) - P(a>) is given by3̂ :

(2.62)

P(t) - P(«) r(^ > Sl" ir t ( t / , , ,) - !1**») . - V t ,  . o l e ' 1 ,*<»• * » J  (2.63)
/e0 '  e-

where the result r 1(- b/ 2) = r(^- b) sin £ b is used. For the Debye relation one has
6 = 1 ,  and equation (2.63) becomes

P(t) - P(«) = 1 ( t /TQ) ' 3/2 e"t/To + o [ e- t  t ‘ 3/2 ] (2.64)
2 / i r ( e 0 -  eJ

2.2,3 DIELECTRIC MATERIALS WITH LARGE CONDUCTIVITY

When the conductivity of the m aterial-is considerable, the quantity in the
frequency domain obtained experimentally is E(iu) + o/eioo , and a Cole-Cole plot can
be obtained by plotting the negative imaginary part of this quantity against the real
part. According to equation (1.34), the asymptotic behaviour of P(t) for t+O will now
be determined by the high-frequency side of the Cole-Cole plot obtained in this way,
and the same cases can be distinguished as in the case of non-conducting materials.
The results are similar to the results obtained for the special cases of Debye, Cole-
Cole and Davidson-Cole as given in section 2.1.

The low-frequency side of the Cole-Cole plot now does not intersect the real
axis, however, since E(iw) + has a pole for s = 0. The quantity s (s ) - p (eq)]
can now be developed around s = 0 in the following way, using p (eq) = - l ,o  t  0:

S_ 1 [ P (S )  -  P ( Eq ) ]
Ss - ✓  s e ( s ) + <j/£

/ s  + /  S e (S)  + cj/ e_
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1_
s

=  2

r . — ï
L Ss + /S e(s) + o /e j

/e / s a  + 0 [ S  ̂ ] , S-*0
(2.65)

Then i t  follows:

P(t) - P(»)
r(i)

* / —  + o [ t ‘ * ] ,
f t  a

t-x»

2■4/---- t ”  ̂ + o [ t ”  ̂ ] , t-*»
yf ito

( 2 . 66)

For the case e(s) = 1, in section 2.1,4 i t  was found that

P(t) *= -1 + e~xt [ IQ(xt) + I j(x t) ]  (2.20)

where x ■ <j/ 2£ and IQ and I j  are modified Bessel functions. Taking the asymptotic
developments for these modified Bessel functions41, the following series development
for P(t) is  obtained:

P(t) ■1 + e-xt LXt 1 ex*e - - - 1 \ . e__  { 1 + - L  + ....) + ~ r  (1
2irxt 8xt /2irxt

- l + 2 J---- t‘ l  ♦ o [ t ’ * ] . t-«°^ TTO
(2.67)

which is  in agreement with equation (2.66)

2.3 DISCUSSION AND CONCLUSIONS

In section 2.1 of th is  Chapter, the step response P(t) is  calculated numerically
for d ie lec tric  m aterials behaving according to the relations of Debye, Cole and Cole

and of Davidson and Cole.
The main conclusion is  tha t a d irec t evaluation of the d ie lec tric  parameters



I in the time domain (except eQ in most cases) as proposed by Fellner-Feldegg and
B arne tt^ , is in general impossible, since the shape of the TDR-response does not

I show enough characteristic features from which the value o f certain parameters can be
estimated (fo r instance the value o f 1 - o or 6 in the p e rm ittiv ity  relations o f Cole-

!  Cole and Davidson-Cole). Instead, Fourier analysis o f the time domain results is  neces-
I sary fo r the evaluation o f Tq, a or 6 and ex .

When low-frequency conductivity is  involved, i t  is  shown that Eq can be deter-
I mined when otq/£ < 0.1. The evaluation o f o from the derivative o f P(t) at t  = 0 is
I impossible, even in the s ituation that the low-frequency conductivity is  predominant.
) I t  is  suggested, however, that a determination o f a , from TDR-experiments, may be
I  possible by cu rve -fitting  methods, although i t  is  noted that the value o f a can be
I very easily obtained from standard techniques.^

In section 2.2 o f th is  Chapter the asymptotic behaviour o f the step response
P(t) is  compared with the asymptotic behaviour o f the complex p e rm ittiv ity , where the

I re la tion with the angles o f intersection in the Cole-Cole p lo t is  emphasized.
For t-*0, the point of in terest is  the derivative (dP/dt) at t  = 0. I t  appears

I that i f  the value of th is  derivative is  f in ite ,  the angle of intersection at the
I high-frequency side o f the Cole-Cole p lo t w il l be n/2. I f  the derivative is  zero, the

angle of intersection w il l be greater than, or equal to ir/2. I f  the derivative is  in -
[ f in i te ,  i t  w il l be smaller than or equal to ir/2. These results are of importance, ex-
| perimentally, in terms of accuracy o f TDR-experiments, because in an experimental s i

tuation fo r which the value o f (dP/dt) at t  * 0 is in f in ite ,  the accuracy of the high-
( frequency points o f e(iw) is  less than fo r situations where (dP/dt) at t  = 0 is  f i -
I n ite .

For t-*» , the f i r s t  question o f in terest is ,  i f  there is  a considerable low-
[ frequency conductivity. I f  th is  conductivity may be neglected, the lim itin g  value of
1 P(t) amounts to P(~) = p ( e Q) ,  and the rate by which th is  lim itin g  value is  approached,
[ i s  related to the angle of intersection at the low-frequency side o f the Cole-Cole
I p lo t. An exponential rate may be found i f  the angle o f intersection is  ir/2 or i f  the

Cole-Cole p lo t grazes the e '-ax is . I f  the asymptotic value is approached as fast as
I t ” 0<;<1, i t  follows that the angle of intersection at the low-frequency side of

the Cole-Cole p lo t amounts to Jirc. In these respects the asymptotic behaviour of P(t)
| fo r non-conducting materials appears to be comparable with the asymptotic behaviour of
; the a fte r-e ffec t fun c tio n^ .

I f  the low-frequency conductivity is  considerable, one has P(~) = -1, and th is
value is  approached as fast as t  Instead o f using a cu rve -fitting  technique, the
low-frequency conductivity can also be determined from the coeffic ien t o f the term in
t" ^ ,  fo r instance by p lo tting  P(t) against t  **

53
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An important consequence is  that for compounds with a considerable low-frequen-
cy conductivity, and for compounds where the low-frequency side of the Cole-Cole plot
cuts the e '-axis non-perpendicularly, as for instance in the case of the Cole-Cole
equation, i t  will be d ifficu lt to obtain a complete TDR-response, since in these cases
the asymptotic value is approached at a relatively slow rate. This introduces the risk
of large errors, when in these cases the TDR-signal is Fourier transformed to obtain
values of e‘ and e" in the frequency domain.
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CHAPTER 3

EXPERIMENTAL PROCEDURE

3.1  EXPERIMENTAL EQUIPMENT

A schematic re p re s e n ta tio n  o f  the  experim enta l equipment was g iven in  F igu re

1 .1 . In  F igu re  3 .1  the  experim enta l equipment as used in  th is  work is  shown. I t  in c o r 

porates the  H ew lett-Packard 180 B Time Domain R e flec tom e try  system (12 .4  GHz), c o n s is t

ing  o f  the  180 C mainframe, the  1815 B P lu g - in -u n i t ,  the  1817 A p icosec Sampling Head

and the  1106 A 20 p icosec Tunnel Diode Mount. P a rt o f  the  co a x ia l l in e s  are o f  7 mm

p re c is io n  l in e s  as d e liv e re d  by H ew le tt-P ackard , connected to g e th e r w ith  Amphenol

APC-7 type connecto rs . The o th e r p a r t ,  in c lu d in g  the  measurement c e l l ,  is  made o f  14 mm

p re c is io n  co a x ia l l in e  from  General Radio (GR-900 system ). The equipment used fo r

th e rm o s ta tic  purposes c o n s is ts o f a dewar p laced around the  measurement c e l l ,  f i l l e d

w ith  w ater a t  the  des ired  tem pera ture . The tem perature o f  the  d ie le c t r ic  l iq u id  under

te s t  was measured d i r e c t ly  as i t  was enclosed in  the  co a x ia l l in e .

M .®
• 0 A < *

• - • iP

\ ..

Figure 3.1 A

The experimental equipment.
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XY
Recorder

• — Sample

---------E -3

Sampling
oscilloscope

Sampler

Figure 3.1 B

The experimental equipment.

The TDR-equipment operates as follows. A slow voltage ramp is propagated via the
coaxial cable to the tunnel diode. This ramp w ill then open the tunnel diode from

-12which a very fast step voltage (rise  time about 35.10 sec) arises. This voltage is
propagated again via the sampling system, to the a ir-d ie le c tr ic  interface where part
of i t  w il l be reflected and the other part w il l be transmitted into the d ie lec tric
material. A short c irc u it  is placed at the end of the ce ll which means that the vo l
tage between the inner- and the outher conductor w ill only change its  sign at that
point and is propagated back through the interface to the sampling gate. In th is
thesis, the f i r s t  re flection  against the a ir-d ie le c tr ic  interface is analysed only,
which means that the TDR-decay is assumed to be finished before the second re flec 
tion reaches the interface as well ( in f in ite  lin e ). This gives a lim ita tio n , to lower
frequencies, of the d ie lec tric  relaxation phenomena which can be studied by TDR. Using
a ce ll length of about 0.33 meter and assuming a d ie lec tric  material with Era= 3, the
maximum decay time is about 3.8 nanosec. Using the fact that the TDR-decay is finished,
with su ffic ien t accuracy, a fte r 3t^, the maximum relaxation time measurable with the
TDR-equipment is then about 1.3 nanosec or the minimum relaxation frequency, is  about
Vg = 0.12 GHz. For reasons discussed la te r, however, the TDR-system is used with a
maximum decay time of about 1.8 nanosec, giving rise to a minimum relaxation frequency
of about 0.26 GHz.

The lim ita tio n  at the higher frequency end is caused, in p rinc ip le , by the
f in ite  rise time of the step function only. In practice, however, th is  is not the only
lim ita tio n  as w ill be discussed in section 3.3.
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The measurement ce ll used fo r  the experiments is  shown in  Figure 3.2. I t  con
s is ts  o f a General Radio precision coaxial lin e  (GR-900 system) w ith a th in  mica bead
(about 0.3 mm th ick ) to  hold the liq u id  and a t the end a short c ir c u it  which can be
removed in  order to f i l l  the c e l l .  Because the TDR-equipment from Hewlett-Packard is
constructed fo r amphenol coaxial lin e s , an adapter has to be used to l in k  the two co
axial systems.

13In the paper by Loeb e t al , i t  is  suggested tha t minimum trouble from unwan
ted re fle c tio n s  against d iscon tinu itie s  (connectors, sampler, tunnel diode) w il l  arise
during the decay o f the TDR-response when about 0.6 m coax is  placed between tunnel
diode and sampling system and also about 0.3 m (w ithout connectors) between sampling
system and the a ir -d ie le c tr ic  in te rface . A ll experiments , described in  th is  thes is ,
have been carried out using the above improvement o f the TDR-system.

Figure 3 .2  The measurement c e l l .

#

The c e ll and mica beads are constructed by P. Leemans.
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3.2 MEASUREMENT PROCEDURE

In section 1.4 i t  is  concluded tha t the d ie lec tric  perm ittivity  can be calcu
lated from the Fourier transforms of the incident and reflected voltages, by the re
lation

e ( iw ) *
F(ioo) - G(ia>)

F(ioj) + G(iu)
(3.1)

where

*

oo

F(iw) = lim f v  ( t)  e ' (r  + iu ) t  d t (3.2)
o

00

G(1u) * lim fR (t) e '* Y + ^  dt (3.3)

and Vg(t) and R(t) are the incident and reflected voltages respectively.
The measurement procedure of the reflected  voltage R(t) is  straightforward by

recording the TDR-response on a XY-recorder. The incident voltage, Vg(t) is  not meas- 1
ured d irec tly  as i t  passes the sampling gate, but instead, the response to a short
c irc u it , placed a t the same distance from the sampling gate as the d ie lec tric  in te r
face is  taken as the incident voltage6 ’^’12, .

I t  is  important to note that the above method of determining the incident and
reflected  voltages by separate measurements, requires an accurate time referencing of j
the two voltages. Suggett and colleagues12,13 have solved th is  problem by using a
time marker system giving a sharp spike waveform at some reference point in the time
domain. They also corrected th e ir  reflection  data by resu lts  from transmission measure-j
ments. This system is succesfully used for the measurement of high-frequency relaxa
tion phenomena up to about 15 GHz (water a t 5° C, Loeb e t a l13). They suggested, how- I
ever, tha t for relaxation phenomena up to about 1 GHz a simpler method will suffice.
This reference method is  shown in Figure 3.3. The shape of the reflected voltage
(against the short c irc u it as well as against the d ie lec tric  in terface) is  then extra-1
polated to the top of the pulse. This position in time is  used as the time reference
t  = t  , for both voltages. All experiments described in th is  thesis have been carried j
out using the above reference procedure. I t  will be discussed in more detail in section
3.3.
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t = t r
I

Figure 3.3 Definition of the time reference point t « t r -

Figure 3.4

f Sampling

Distance

TDR-response against a short circuit,
showing the unwanted step voltage.
Distance-time graph of the response
against a short circuit,  using 50 n
for the coaxial lines and 55 n for the
sampling system.
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1 3In the ir paper, Loeb et aI have payed much attention to unwanted reflections
against connectors etc. resulting into a procedure of minimizing these reflections
during the decay of the reflected voltage (see also section 3.1). As is shown in Figure
3.4, however, an extra step of about 5% is observed when the short c irc u it  is applied.
The occurence of such an extra step seems to depend on the sampling system used. The
step found for our equipment can be explained by means of a reflection of the step vol
tage against the sampler-coaxial junctions, where i t  is assumed that the sampler sys
tem has a characteristic impedance which is about 10% larger than the characteristic
impedance of the coaxial l ine. The resulting wave form is constructed in Figure 3.4 B,

13using the "distance-time" graph as is previously used by Loeb et al . I t  appears that
the main features of the extra voltage, for the case of the short c i rc u i t ,  can be ex
plained in this way; the place where the extra step is found agrees very well with the
dimensions of the sampling system.

An important feature of this extra step is ,  that the wave front has reflected
only once against the short c irc u it .  Therefore, i f  the short c irc u it  is replaced by
the a ir -d ie le c tr ic  interface, that part of the reflected voltage due to the extra step,
depends only on one single reflection against the a ir -d ie le c tr ic  interface. Such a
reflection is called a f i r s t  order reflection since i t  has an amplitude which is (to
an excellent degree of approximation) proportional to P(t). Second order reflections,
with an amplitude proportional to P(tx) P(t2) w il l  also be present, but they occur at
rather large times due to the 0.3 m coaxial l ine between the sampling system and the
a ir -d ie le c tr ic  interface. I t  can be proved, however, that the occurence of a f i r s t
order reflection does not affect the va l id ity  of equation (3.1) on which our measure
ment procedure is based (vide Figure 3.5).

Figure 3.5

D efin it ion  of some symbols.



61

By de f in i t io n  one has:

V0( t ) -=  Ve( t )  + E(t) (3.4)

R(t) = Re( t )  + e ( t ) (3.5)

where Vg(t) is  the reflected voltage against a short c i r c u i t ,  V ( t )  is  the incident
pulse (without unwanted re f le c t io n s ) ,  E(t) is  the error voltage due to the unwanted
step, R(t) the reflected voltage against the d ie le c t r ic  in terface, R ( t )  the exact res
ponse to V ( t )  and e ( t )  is  the error signal involved in R(t).  The Laplace transform
of equations (3.4) and (3.5) y ie lds:

E(s) = £{Ve( t ) }  + £{E(t)} (3.6)

G(s) = £{Re( t ) }  + £ {e ( t) } (3.7)

I t  is  also known (e.g. equation (1 .74)), that

»e( t )  ■ * e( t j  ,  ^ (3.8)

and by-virtue o f the superposition pr inc ip le  one has

e ( t )  = E(t) *  g - (3.9)

where i t  is  thus assumed that e ( t )  is  the response to E ( t) ,  which is  only correct
when no multip le re f lec t ions  against the short c i r c u i t  and a i r -d ie le c t r ic  interface
are present in E(t) and e ( t )  respectively. Taking the Laplace transform of equations
(3.8) and (3.9) one finds

Mytob £{ve(t)} ;(s) (3.io)

£{e(t)J= £ {E ( t ) |  ; ( S) (3.11)

Combination o f equations (3 .6 ),  (3 .7 ),  (3.10) and (3.11) f in a l l y  gives

G(s) =

or

[ £{ y t ) }  + £ {E ( t ) } ]  C(s) = F(s) c(s)
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I t  is  thus shown by equation (3.12), that the d ie lec tric  pe rm ittiv ity  is  obtained by I
calculating the Fourier transforms of the reflected pulses against the a ir-d ie le c tr ic
interface and the short c irc u it ,  even when a f i r s t  order re flection  against the in te r- I
face is  present.

I t  is clear from the discussion given above that the to ta l length of the TDR-
decay may not exceed the to ta l length of the unwanted f i r s t  order step, since other
wise the response R(t) is not the exact response to the step voltage V .(t) apymore and I
errors may be involved (see also the discussion in the next section about the errors
in that s itua tion ).

The evaluation of the real and negative imaginary parts of the d ie lec tric  per- -
m it t iv ity  from the incident and reflected TDR-curves occurs as follows .The shapes of
the voltages are recorded on a XY-recorder and sampled (by hand). The time reference
procedure is carried out as indicated in Figure 3.3. Then the actual times o f a ll sam- I
pies, using t  = t  fo r the two reference points are calculated by:

t(n ) = nx + t (1) - t  (3.13)11

where t(n ) is the actual time of the n-th sample, x is the difference in time between
two samples, t ( l )  is the actual time of the f i r s t  sample and t  is  the reference time, I
see Figure 3.6.

XY-RECORDING

n-th sample

Figure 3.6 D efin ition  of the symbols used fo r the calculation o f the actual time t (n ) .

*This procedure has been suggested to the author by Mrs. P.A. Quickenden and Dr. A. Suggett
during a short stay at th e ir  Laboratory (Unilever Research Laboratories, Sharnbrook, England).
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lp
A fter punching the data on cards the Fourier transform of the data is calculated

42 43using Samulon's modification of Shannon's sampling theorem

N

F ( M  “ — * = & y > < n r  ♦ t ) -  f (n x )]  e’ , - <nt + T>
1 -  e n?1

(3 .14)

where N is the number of samples used (which is  about 300 for th is  work). Then the
p erm ittiv ity  is calculated d ire c tly  from equation (3 .1 ) and the d ie le c tr ic  parameters
are evaluated from the Cole-Cole plot of e" versus e 1.

The calibration  of the TDR-traces in terms of actual time versus distance on
the XY-recording ( i .e .  determination of t  ) has been carried out by using the ca lib ra 
tion lines on the oscilloscope. This is a f a ir ly  accurate procedure . Due to the
j i t t e r ,  no other method seemed to be more accurate ( a b r ie f discussion of the j i t t e r
phenomenon is given in section 3 .3 ).

The computer programs, as used by the author, are given in Appendices B and C.

3.3 ERROR ANALYSIS

3.3,1  INTRODUCTION

In the subsequent steps of evaluating the real and imaginary parts of the d i
e le c tr ic  p erm ittiv ity  from TDR-measurements, as discussed in the former section,
several errors may be involved. Due to these errors uncertanties arise in the parame
ters characterizing the d ie lec tric  relaxation behaviour, e .g . in eq , e^ and t «, for
a single relaxation time ( Debye„behaviour).

I t  is the purpose of this section to discuss the uncertanties involved in the
determined parameters Eg, and t _ in connection with inaccuracies involved in R (t)
and V g (t). Due to the complexity of the problem, i t  w ill not be possible to give a
detailed mathematical analysis. In most cases, however, an order of magnitude can be
estimated.

In th is  section, the important error sources po ten tia lly  present in Vg(t) and
R (t) w ill be defined and in section 3.3,2  th e ir  influences upon the values o f Eg, ex

and t q w ill be discussed.

In Figure 3.7 a schematic graph of VQ( t )  and R (t) is shown (fo r a better under
standing of the purposes of this section, both curves are d is to rted ). I t  is assumed
that the XY-recorded curves run from C to E fo r R (t) and from D to F fo r V ..(t) . Very
c learly  the curve V ^ t ) ,  as drawn in Figure 3 .7 , should have been recorded from point
G instead of D.
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XY-RECORDING I

Figure 3.7 Definition of some possible uncertainties involved in XY-recorded TDR-curves.

In th is  graph, the time reference procedure is carried out, resulting in the reference!
points A and B fo r R(t) and VQ( t ) respectively. Because the to ta l response curves are I
drawn, the two points H, which coincide on the two input ramp voltages, can be conside-j
red as exact time references, and i t  is therefore clear that the actual times of points)
A and B are not equal. This time difference, indicated by A , is the timing error which
is  po tentia lly  involved in the time reference procedure.

I t  is already noted, that the point D is  not the best point to represent the
f i r s t  sample of curve VQ( t ) .  I t  is  assumed, however, that the experimental conditions I
are such that on the XY-recording the point VQ(1) corresponds to point D. Therefore
th is  value of VQ(1) is  in error. The la s t point of VQ( t ) , i . e .  Vq(Nt) corresponds to
point F. I t  can be observed from Figure 3.7 that the value of Vg(Nx) is  in error as
w ell, since F is  chosen, fo r instance, on the top of a l i t t l e  "bubble" (these bubbles I
originate from unwanted reflections against connectors, sampler, tunnel diode etc).
The possible errors in V_(1). and Vq(Nt ) result into a possible error in p(0). I t  must I
be mentioned tha t, in p rinc ip le , the same uncertanties are present in the curve R (t), I
but th e ir influence upon p(0) is  considerably smaller. However, in section 3.3,2 an
"overall" error in p(0) is  discussed and the orig in  of th is  error is not of importance I
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in that discussion.
So far ,  two sources of errors are mentioned, both of which may influence the

whole shape of the Cole-Cole plot and thus the values of all parameters to be ob
tained. However, there are at least  three other potential errors. The f i r s t  may appear
in the situation that the d ielectr ic  material under te s t  posesses such a large relaxa
tion time that the curve R(t) has not reached i t s  equilibrium value a t t  = Nx , as is
also shown in Figure 3.7. In that case, the value of p (0) and thus of e_ is  in error
and very certainly the value of as well (but not the value of e j .  The second may
be due to the sampled representation of the steepest part of Vn( t)  which consists of
about ten points in an actual recording. Refering to Shannon's sampling theorem , the
question may then arise wether this discrete representation of Vg(t) is sufficiently
complete to give accurate values for the high-frequency part of the Fourier spectrum
of V_(t). The third potential error consists of horizontal j i t t e r  of the TDR-curve as
i t  is displayed on the oscilloscope screen. This j i t t e r  consists of uncontrollable
and unpredictable horizontal movements of the signal which, unfortunately, are inher
ent to the use of sampling-oscilloscopes. Since the scan time of the XY-recording takes
one minute, and during this scan time the displayed curve cannot be observed, i t  is
clear that the j i t t e r  may be a rather hidden source of error.

Summarizing, the most important drrors, to be discussed in the next section,
are
(1) a time reference error
(2) an error in p(0)
(3) a not completed TDR-decay
(4) failure  of Shannon's sampling theorem for the steepest part of VQ(t)?
(5) horizontal j i t t e r  of the TDR-curves

3.3,2 DISCUSSION OF THE ERRORS

The basis equations, to be used in this discussion are:

r - 1R(t) = £ 1 (F(s) p (s )} (3.15)

p(iu)
^  [R(nx + x) - R(nx)] e •iin(nx + x)

I  [V0(mx + x) - VQ(mx)] e-1w(mx + .x)

(iu.)
/ I - p(iw) \ 2

\  1 + p ( io>) /

(3.16)

(3.17)
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When possible, the consequences of the errors involved in R(t) and Vg(t) are d irec tly
translated in to th e ir equivalences in the frequency domain, i.e .  into errors involved
in e(iu) or p(iu>), but unfortunately th is  procedure cannot be carried out fo r a ll
cases of in te rest. An a lternative approach is then the construction o f the Cole-Cole
p lo t o f e( iui) from simulated and Fourier transformed curves Vg(t) and R (t). The para
meters e „ , e  and are then evaluated in the usual way. For those simulations, the0 “  0
application of a heaviside step function is  not very useful, but the following non
ideal step function su ffice :

vn(t )  .  1 -  S<" (At * A  ‘  ♦ (3.18)
0 sin ♦

where <f> = 0.785. The values fo r A have been chosen in such a way that the rise time
t  , defined by Vg(Tr ) = 1, is  equal to

t = x_ fo r A = 2.357r  0

t = 0.1 t g  fo r A = 23.57

The Laplace transform of equation (3.18) yields

F(s)
j  2A cotg <l> + s

(s + A cotg 4>)Z + A1 2
(3.19)

A graph o f equation (3.18), together with the corresponding response R(t) fo r a Debye
dispersion is  given in Figure 3.8.

For some of the discussions, i t  is  necessary to compare results obtained from
theoretical curves, such as Figure 3.8, with the corresponding results fo r experimen
ta l curves, such as Figure 3.9. To do so, i t  is  assumed, from comparison of Figures
3.8 and 3.9 that the theoretical rise time t r  corresponds approximately to 60 picosec
experimentally.

In the following parts the influences upon the values of eg>e„  and Tg> ° f  the
errors involved in R(t) and Vg(t), are discussed.

(1) A TIME REFERENCE ERROR. When a timing error a is  involved, the re flection
coe ffic ien t, p ' ( i u ) ) ,  is  given by
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-----►Time
Figure 3.8 Curves VQ( t )  and the response R (t) fo r  a Debye equation, cQ = 20, eb

6 0 0  picosec

T r = 6 0  picosec

Figure 3.9 Experimental curves VQ( t )  and R (t) fo r  methanol, T * 22 °C, eq * 33,
E« * 5. vg * 3 GHz ( tq * 53 picosec).
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p ' ( i w ) 5lFr ( itit  +  t )  -  R ( n T ) J e
- i w ( n x  +  t  +  A )

SI[ v 0 ( m t  +  t )  - V 0 ( m x ) J e - i w ( H i T  +  t )

, .. , . . .  -iwAor p (i<*>) * p(i“>) e

Writing p in terms of amplitude R(w) and phase 9(io), th is  becomes:

p ' (iw) = R(u)  ̂ (3.20)1

From th is equation i t  is clear that a timing error A results into a phase error with a
value proportional to A and u>. Expressing v in GHz and A in pi cosec, the phase error
is denoted by

-3
phase error = 2™ A 10

or, expressing this error in "Degrees/GHz", the result is :

A6= 0.36 A Deg/GHz (3.21) |

It is the purpose of the following part, to estimate the absolute value of a , 1
expressed in picosec, as a function of the dielectric relaxation time (note that
the steepest part of R(t) is d ifferent, in principle, for materials with different
values of tq). Further more one has to distinguish between a systematic and an acci
dental part involved in a, respectively denoted by Ag and A .

A direct estimation of the systematic part as dependent upon the value of tq,
is not very well possible from experimental curves. Instead, simulated results will bej
used. I t  must be noted that, although the shape of the theoretical step as such differ!
in some respect from the shape of an experimental step voltage, the correspondence
between the theoretical and experimental situation is such that results obtained from I
theoretical curves are also relevant for the experimental situation.

In Figure 3.10 a graph of VQ(t) and the corresponding response R(t) is  given
for t = t = 60 picosec (using A = 2.357). By hand the tangents are constructed and
i t  is observed that a systematic timing error is involved. The value of Ag is e s t i
mated, from this graph as

Ag “ 2.5 picosec (Tq = 60 picosec)
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60picosec

60picosec

Figure 3.10

Time reference procedure fo r the curves VQ( t)  and
R (t); From a Debye equation, eQ = 20, = 4 and

Tr  * T0‘

60 picosec

Figure 3.11

Time reference procedure fo r the curves V»(t) and
R (t); From a Debye equation, = 20, = 4 and

Tr  " V 10-

The same procedure has been carried out, as is  shown in Figure 3.11, fo r graphs of
Vq ( t ) and R(t) with = 10t^ = 600 picosec (A = 23.57). From th is  Figure i t  can be ob
served that the systematic timing error is  at least very small. From these results i t
can be concluded that there is some evidence that the value o f the systematic part of
A is  decreasing fo r increasing values o f t^.

Apart from a systematic e rro r, an accidental e rror is  also present. The value
of th is  error depends upon the time scale o f the XY-recorded TDR-curves and also upon
the fact whether or not the steepest parts o f VQ( t )  and R(t) can be represented by
stra ight lines. However, th is  error has to be estimated, and a value of

A. = 1.5 picosec
d

is  chosen (th is  value corresponds to 0.25 mm in an actual XY-recorded curve).
From the foregoing resu lts, i t  can be concluded that the to ta l possible error

in the time reference procedure is  of the order o f 4 picosec fo r *g = 60 picosec
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and about 1.5 pi cosec fo r  tg “  600 picosec. For convenience, however, i t  w i l l  be
assumed tha t the to ta l tim ing e rro r equals 4 picosec fo r a ll values o f t Thus

A = A + A “ 4 picosec fo r  a ll
S 3  U

This corresponds to a phase e rro r o f

A6 *  1.5 Deg/GHz (3.22)

Knowing the to ta l uncertainty in  A, i t  is  re la t iv e ly  easy to  estimate the to ta l uncer
ta in tie s  in  £„ and tq (the s ta t ic  p e rm itt iv ity  is  not affected by a tim ing e rro r) ,
as a function o f tq . This has been done by combining equations (3.20) and (3.17). From
the constructed Cole-Cole p lo ts the values o f and e were estimated. In Figures
3.12 and 3.13 the f in a l resu lts  are given.

Figure 3.12

Procentual e rro r in  or Uq as depending on
due to  a time reference e rro r.

1*0 in picosK

Figure 3.13

Procentual e rro r in  as depending on x.., due
to a time reference e rro r.

(2) AN INCORRECT ESTIMATION OF p(0). When the value o f p (0 ), given by

I {R(nt + t ) -  R(nT) } R(Nt ) -  R(t )
p(0) -------------------------------------------- -- ---------------------------

I { V 0(mT + t ) -  V0(nrr)f Vq(Mt ) -  Vq(t )
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or

p(0) = -R(u) = 0)

is  estimated incorrectly , a d irect error in the value o f the s ta tic  p e rm ittiv ity  eQ
w ill occur. This error can be calculated by means o f the following results:

(1  -  p(0)>i c 1'1 + R(0) \  c
eo = I ■ ( --------— (3.23)

\1  + p(0)> A - R(0) /

4e0 4R(0) if  den 'V R(0)
I ) ------ (3.24)

E0 R(0) }IdR(O),f  E0

Evaluation o f de0/dR(0), by means o f equation (3.23) results in to :

*e0 I- 4 R(0) I

£q Ll -  R(0)z J
In Figure 3.14, the m u ltip lica tion  factor 4 R(0)/ [ 1 -  R(0)2] is  plotted versus R(0)
(and also versus £q). From th is  graph i t  is  clear that some uncertainty in R(0)
causes a considerable larger uncertainty in eQ (fo r eQ = 20 and aR(0)/R(0) “  IX i t
follows that AEq/Eq * 4%)l.

AR(0)
-------- (3.25)

R(0)

Figure 3.14

Graph of the multiplication factor 4R(0)/ (l-R(O)^} .
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The uncertainty in due to an error in p (0) cannot be calculated very easily
for the general situation that this error is caused by uncertainties in the f i r s t  and
last samples of V»(t) and R(t). This problem can perhaps be solved by means of simula
tions, but this research has not been carried out yet. It is possible, however, to
give an order of magnitude for the uncertainty in due to an uncertainty in the last
samples only. In that case, the measured reflection coefficient p'(ioo), may consist of
the exact p(iw) and an error term ap(iu>) which can be approximated by the Fourier
transform of a step function with amplitude Ap(0), starting at the actual time T of
the last samples, i .e .

Ap(iu) = lim £‘ 1{Ap(0) u(t - T)J (3.26)
r*0

where u(t - T) is the translated heaviside step, defined by:

1 t  > T
0.5 t  = T (3.27)
0 t  < T

Then p(ico) is given by

-iioT
Ap(id)) = Ap(0) - ------  (3.28)

i d )

It should be noted that equation (3.28) is only correct for d»>0, because Ap(id))-»-i“

when d>-+0 instead of Ap(id))-*-Ap()). However, using equation (3.28) the new reflection co-J
efficient becomes:

-idrre
p1 (id)) = p(io)) + Ap(0) ------- (3.29) I

i ui

From inspection of equation (3.29), i t  is clear that the reflection coefficient p 1 (it»)j
will contain oscillations, due to the term (id))  ̂ exp(- iwT) = id sin idT - id> cos m)1
The oscillations as such can be smoothed, but unfortunately they are superimposed upon]
an average error which has the value Ap (0) / id for id>>0 and for id = 0 the value Ap(0).

The uncertainty in the value of tq , as resulting from the incorrect reflection I
coefficient p'(id)) has been estimated from the Cole-Cole plot, constructed by using
equation (3.17).  It is assumed, that the total uncertainty in p(0) ,  as resulting from I
incorrect values of the samples of V_(t) and R(t), is about 0.5%. Then, the error in
the value of tg is about 5% (for Eg = 20, ê  = 4 and T = 5 Tq). Thus:
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At A p ( 0 )
—Ü » 5* fo r -------  “  0.5%

T0 - °(°)
Further more the to ta l inaccuracy of p(0) is  estimated to be

Ap ( 0  j
----------------------  »  1%

p(0)

resulting into an error in as given by equation (3.25) with AR(0)/R(0) = 1%:

Ae 4 R (0p  Aft(O)

c0 -1 - R(0)Z ’ R(0) l%

or

(3.30)

In Figure 3.15 the resu lt is  plotted (Figure 3.15 is  the same as Figure 3.14, but
with a_linear scale in e -).

Figure 3.15 Procentual error in t -  due to an error in p(0).

The influence of an error in the f i r s t  samples (see Figure 3.7) has some e ffect upon
the possible error in £ „. This error in is than also given by Figure 3.14. Using
Eoo “  3 and a r ( « )  = 0.5%, the error involved in w ill be of the order of 0.5%. This
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is  neg lig ib le  compared with e rro rs  involved in from other sources (fo r instance a
timing e r ro r ) .

(3) A NOT COMPLETED DECAY. The influence upon the values of e £„, and t

when a not completed TDR-decay is  Fourier analysed is  very ea s ily  studied by means of
simulated graphs. In Figures 3.16 and 3.17 the re su lts  are presented fo r the erro rs
in £q and as a function of the to ta l decay time (expressed in u n its  of t^ ). i t  is
noted th a t the point t  = 0 fo r the simulated TDR-curves is  ra th e r close to the time
reference point used experim entally. The re su lts  from the sim ulations are therefore
rep resen ta tiv e  fo r experimental purposes.

3*o
• Total decay time

Figure 3.16

Procentual error in c. as depending upon the length
of the total decay time. 3t> «i - sii

•Total decay time

Figure 3.17

Positive procentual error in Vg (or t_)  as depending
upon the length of the total decay time.

(4) FAILURE OF SHANNON'S SAMPLING THEOREM FOR THE STEEPEST PART OF VQ(t)?  The
s teep est p a rt of V_(t) is  under experimental conditions determined by about ten sam-

0 43
p ie s , a t  a d istance of t  »  6  pi cosec. Shannon's sampling theorem s ta te s  th a t the
complete curve is  exactly  determined by d isc re te  samples a t in te rv a ls  t  when the
Fourier spectrum of the signal is  zero above some maximum frequency where v and t

are re la ted  by

o r, using 6 10"J

vm
1

= 77

v = 80 GHzm

(3.31)

(3.32)
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According to th is  value o f v ^ , i t  is  assumed tha t Shannon's c r ite r io n  is  s u ff ic ie n t ly
obeyed. Nevertheless a simulation is  carried out w ith t = t  , thus x = 60 picosec fo r
experimental conditions (the steepest part o f Vg(t) is  then represented by only one
sample). The resu lting  Cole-Cole p lo t is  presented in  Figure 3.18, from which i t  can
be seen tha t the value o f x„ is  about 0.8% lower and the value o f e is  about 5% la r -

u  00

ger. Compared w ith the extreme large value o f the in te rva l x, i t  can be stated tha t no
d if f ic u l t ie s  are to be expected from deviations o f Shannon's theorem.

-------E xact
------- Simulated
o for some oo

Figure 3.18 Resulting Cole-Cole plot for t * t  • 60 picosec, compared with the exact
plot for the Debye equation, = 20, « 4.

(5) HORIZONTAL JITTER OF THE TDR-CURVES. Sometimes ( fo r  instance a fte r  a change
o f the room temperature) a considerable amount o f j i t t e r  was observed fo r the TDR-equip-
ment a t the Physics Laboratory TNO. Since no j i t t e r  parameters can be predicted a
p r io r i ,  an e rro r analysis cannot be carried out fo r  th is  unwanted phenomenon. I t  is
ce rta in , however, tha t i t  has influence, when present, upon the accuracy o f a t least
Tg, especia lly when j i t t e r  occurs during the XY-recording o f the steepest part o f the
TDR-curve (then the time reference procedure can fo r instance be disturbed). A proce
dure to minimize th is  j i t t e r  has not been applied in  the present work*®**® but the
TDR-measurements were recorded in  a therm osta tica lly  contro lled  room and a fte r  each
scan the position  o f the TDR-curve was compared w ith respect to i t s  o rig in a l position
and when the d ifference was too large, a new curve was recorded. Nevertheless, some
s lig h t movements had to be accepted sometimes.

I t  is  important to note, tha t th is  unwanted j i t t e r  is  the reason th a t, when a
XY-recording method is  used (w ith a scan time o f one minute) the more advanced method
o f time referencing, using a delay lin e  which produces a sharp spike, does not give
bette r resu lts  than the reference method described in  th is  th e s is ^ .  This is  o f course
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not true when a C.A.T. data logging system is  available since very fa s t scan times (o f
about 1/30 sec) can then be used.

3.3,3 DISCUSSION OF THE RESULTS

From the foregoing analysis i t  is  clear tha t at least- two sources o f e rro r are
o f importance in  the TDR-experiments:
(1) a tim ing e rro r between the short c ir c u it  response curve re la tiv e  to the d ie le c tr ic

response curve and
(2) the e rro r involved in  the evaluation o f p(0)
The la t te r  causes an approximate e rro r o f about 5% in  the value o f Tq and about 5% in
the value o f Eq while the former causes a considerable e rro r in Tq (depending upon the
value o f Tq i t s e l f )  and an e rro r in  which may be more than 20%. In Figure 3.19 the
to ta l possible e rro r in  tg  as a function o f tq is  shown, as resu lting  from the two
mentioned e rro r sources. Roughly, as a ru le  o f thumb, the uncertainty in  Tq is  about
7.5%, while the uncerta inties in  e and e„ are assumed to be 5% and 20% respective ly.

X0 in picosec

Figure 3.19 Total error in t q as depending upon tq , for a timing error and an error
in d(0).

Apart from the possible errors in Eg and which are s l ig h t ly  la rger than from j
frequency domain experiments, the to ta l e rro r in Tq is  o f the same order.

The two e rro r mechanisms, mentioned above, sometimes give r ise  to a necessary
correction o f the o r ig in a lly  constructed Cole-Cole p lo t. When very obviously a tim ing I
e rro r is  involved, the re fle c tio n  c o e ffic ie n t p(iu>) = R(io) exp ( is )  has to be corrected
Because a tim ing e rro r does not a ffe c t the amplitude R, the phase e ( v )  is  corrected by j
AS Degrees/GHz, u n til the Cole-Cole p lo t has a more acceptable shape. This procedure
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is  correct when the value o f e is  known (as fo r instance fo r the resu lts  given in  the
12paper by Suggett e t al and in some of the te s t experiments described in the next

Chapter) or when one or more high-frequency points in  the Cole-Cole p lo t are known13.
When, however, no high-frequency data is  present, th is  correction procedure is  rather
a rb itra ry . I t  must be noted, however, tha t the procedure as such has an exact mathe
matical basis and also tha t i t  is  necessary when the time reference method, as de
scribed in  th is  work, is  used (because o f the j i t t e r  in combination w ith the large
scan time o f one minute, th is  is  very obviously the only time reference method possible
when a XY-recorder is  used). Very fo rtuna te ly , as w il l  described in the next Chapter,
a phase correction was only necessay fo r a few-experiments, ind ica ting  tha t th is  method
gives very good resu lts ,XJ

More o ften , i t  was observed tha t the amplitude- and the phase curves were
o s c illa t in g , sometimes rather heavily, fo r  la rger values o f the frequency (in  general
fo r  v>2 vQ),' th is  phenomenon being a ttr ibu ted  to an e rro r in  p(0) (and very probably
also due to uncerta inties in  a ll samples o f VQ( t )  and R (t) , see the paper by Loeb et
al ). This phenomenon was corrected by smoothing the amplitude and the phase curves,
by hand, and constructing a new Cole-Cole p lo t. I t  must be mentioned tha t a correct
value o f p (0) would minimize these o s c illa tio n s . As was suggested e a r lie r25, a meas
urement o f eq in the frequency domain would be very he lp fu l. This is  not a re s tr ic t io n
o f the TDR-method,since, in  contrary to high-frequency measurements, a determination
o f e is  standard and takes very l i t t l e  time.

The fa c t tha t a small e rro r in  p (0) generates considerable errors in  and t

is  the reason th a t the curves VQ( t )  and R(t) cannot be used a t actual times t  la rger
than the maximum time o f the f i r s t  order unwanted step, since then errors in  p ( 0 )  o f
the order o f St may appear and very obviously th is  would lead to a complete d is to rted
shape o f the Cole-Cole p lo t. I t  is  re la t iv e ly  easy,however, to change the equipment
fo r  a measurement o f re laxation times la rger than about 600 picosec (vg<0.25 GHz), by
lengthening the coaxial lin e  between sampler and a ir -d ie le c tr ic  in te rface , since the
unwanted step has the same length in  time as the step voltage i t s e l f ,  see Figure 3.4.

Although the e rro r analysis given in  th is  Chapter is  by no means complete, i t
nevertheless gives some idea o f the accuracy to be expected in the values o f the d i
e le c tr ic  parameters obtained from TDR-experiments.

I t  should also be noted tha t the use o f re fle c tio n  and transmission methods
and a C.A.T. a very accurate time referencing, to 0.1 picosec44, can be obtained. An
accurate value o f p ( 0 ) ,  w ith in  about 0.2%, is  than also possible.

F in a lly , to end th is  Chapter an example o f the method o f analysis is  given. In
Figure 3.20 the experimental TDR-curves o f a 1:1 volume mixture o f Heptanol-1 and
carbon te trach lo ride  (see section 4.3) are shown. A fte r sampling (by hand) and Fourier
transforming the data, the Cole-Cole p lo t shown in  Figure 3.21 is  obtained. From th is
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plot i t  is clear that at least oscillations are involved. The amplitude and phase
curves are then constructed, as shown in.Figure 3.22. In this Figure the smoothed
curves and the phase curve resulting from as = -1 Deg/GHz are also shown. From these
curves, the fin a l Cole-Cole plot is obtained which is shown in Figure 3.23.

Figure 3.20 Experimental 10R-curves fo r  1:1 volume m ixture o f heptanol-1 and carbon

te tra c h lo r id e ,  T = 33 °C.

0.5 -

. .*47. I

Figure 3.21

D ire c t obtained Cole-Cole p lo t  w ithou t

any c o rre c tio n s .

■ ■ i . ■

Figure 3.22

Amplitude and.phase curves.

---------o r ig in a l curves
--------- smoothed curves

-  • -  corrected phase curve ae * -1 Deg/GHz.

9 aQ =0
B  a Q  = - t  d^ / gh»

Figure 3.23 Corrected Cole-Cole p lo t ,  smoothed and ae » -1 Deg/GHz.
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CHAPTER 4

TDR-MEASUREMENTS ON SOME NORMAL ALCOHOLS AND ON SOLUTIONS OF NORMAL ALCOHOLS IN

CARBON TETRACHLORIDE

4.1 INTRODUCTION

Studies by various physico-chemical methods (e .g . IR, NMR, d ie le c t r ic  spe rtros -
copy) o f  the molecular motions in  po la r l iq u id s  have ind ica ted  the s ig n ifica n ce  o f hy
drogen bonding in  these systems. From such studies one might hope to  obta in  in fo rm ation

concerning the energy and average l i fe t im e  o f the hydrogen bond and i t s  in fluence  upon

the s tru c tu re  o f  the p o la r l iq u id .
Two types o f hydrogen bonds may be d is tin gu ishe d : the in tram o lecu la r and the

in te rm o lecu la r bonds, the la t t e r  being the on ly re levan t type in  our case.
In te rm olecu lar hydrogen bonds can occur between id e n tic a l m olecules, leading to

associa tion  and between d if fe re n t  molecules, leading to  complex fo rm ation . In the case

o f associa tion  a second d is t in c t io n  can be made between
(1) compounds where on ly  one group in  each molecule can act as a hydrogen bond donor or

acceptor, leading to  associates w ith  a re s tr ic te d  number o f molecules (m u ltim ers),

and
(2) compounds where more than one group can occur as a hydrogen bond donor o r acceptor,

leading to  a three-dim ensional network in v o lv in g  the whole l iq u id .
I f  the associa tion  is  re s tr ic te d  to  multimers o f a lim ite d  s iz e , the s tru c tu re  may be
characterized by means o f  the various types o f m ultim er s tru c tu re  and by the e q u i l i 
brium constants. Examples are the ca rb oxy lic  ac ids , hydrogen c ian ide  and the mono a lco 

ho ls.
For the mono a lcohols no general agreement has ye t been obtained concerning the s tru c -

51 52tu re  o f the multimers ’ , despite  in ve s tig a tio n s  ca rr ie d  out w ith  a g reat number o f
techniques. D ie le t r ic  re la xa tio n  is  one such techniques by which many experiments have

been reported. For the normal a lcohols i t  has been shown th a t (a t le a s t)  three re laxa 
t io n  ranges - are involved o f which the low-frequency range is  the dominant one.
This range can be characte rized , w ith in  measurement accuracy, by one s in g le  re la xa tio n
tim e, which va ries w ith  temperature as in  a ra te  process. The a c tiv a tio n  energy depends

55s tro n g ly  on the number o f carbon atoms, the s tru c tu re  o f  the carbon skeleton and the
56 57lo ca tio n  o f the hydroxyl group in  the carbon chain * . A fu r th e r  in te re s tin g  fea ture

is  th a t m ixtures o f a lcoho ls w ith  s tro n g ly  d if fe re n t  a c tiv a tio n  energies also show a
58main d ispers ion  range characterized by one s ing le  re la xa tio n  time .

Another possib le  v a r ia t io n  o f the system, which may fo r  instance in fluence  the
a c tiv a tio n  energy, is  a d ilu t io n  o f  the alcohol by a non-polar so lven t. One reason fo r



80

a d ie le c tr ic  investiga tion  o f such mixtures may be the in te re s t in  the high-frequency
dispersion ranges o f the alcohols59 51. In that case the alcohols are d ilu ted  by a
polar solvent to such a degree tha t the low-frequency dispersion range vanishes. I t  is
also o f in te re s t to carry out a systematic investiga tion  on the influence o f non-polar
solvents to the value o f the main re laxation time. Here, only a few data are ava ilab le .

62Moriamez found an increase o f the ac tiva tion  energy fo r d ilu t io n  o f 2 -e thy l-
c o

hexanol-1 with p a ra ffin . An analogous re su lt was found by Saga! fo r  mixtures o f etha
nol and cyclohexane. From the measurements o f Denney and Ring6^, however, i t  follows
tha t mixtures o f propanol-1 and 2-methyl pentane show a decrease in ac tiva tion  energy51.

65Very recently , Van den Berg studied mixtures o f butanol w ith carbon te trach lo ride
and with hexane, the former leading to an increase in ac tiva tion  energy and frequency
fac to r (see the next section), while fo r the la t te r  mixture the values o f these quan
t i t ie s  do not change s ig n if ic a n t ly .

A systematic investiga tion  on th is  subject may therefore be o f great importance.
A study should then be made o f a great number o f alcohols d ilu ted  in to  a va rie ty  of
non-polar solvents. Such experiments, carried out w ith the conventional frequency do
main methods, require much work and time. With the aid o f time domain reflectom etry,
however, i t  is  possible to perform the experiments w ith in  a reasonable timescale.

In section 4.2 the resu lts  o f te s t measurements on some o f the mono alcohols
are presented, while in section 4.3 the resu lts  are given o f measurements on a lcohol/
carbon te trach lo ride  mixtures.

4.2 TEST MEASUREMENTS ON SOME NORMAL ALCOHOLS

Since both Fellner-Feldegg and Suggett and col 1e a g u e s h a v e  chosen the nor
mal alcohols as te s t specimens fo r  th e ir  TDR-experiments, we have used the same com
pounds fo r th is  purpose.

The alcohols were obtained from Merck N.V. The liq u id s  were dried on CaSÔ
(about 24 hours) and d is t i l le d  sho rtly  before the measurements. The b o ilin g  points pro
ved to be in agreement with lite ra tu re  va lues^ .

In Table 4.1 the resu lts  from measurements on ethanol, propanol, butanol and
heptanol are summarized. Some experiments were carried out at the "Unilever Research
Laboratories" in England. They are labe lled  w ith an "E", while the experiments carrried
out at the "Physisch Laboratorium TNO" in Den Haag are labe lled  w ith an "H". The meas
urement procedure, used in the former experiments12,13 d if fe rs  s l ig h t ly  from the pro
cedure described in Chapter 3: the TDR-curves were recorded w ith a C.A.T. and the meas
uring c e ll consisted o f an Amphenol coaxial lin e  o f 20 cm length. Table 4.1 also in d ic 
ates when smoothing (see section 3.3) has been necessary (denoted by a +). When the
phase had to be corrected, the value fo r Ae is  also given. In Appendix D some o f the
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Cole-Cole plots are shown.

TABLE 4.1

TDR-MEASUREMENTS ON THE MONO ALCOHOLS

Compound T V  *b *. vo To H/E smoothed 46

Ethanol 2.0 28.3 4.7"i 0.48 332 H + -2
24.0 24.75 4.55 0.902 176 H -1

Propanol 4.5 23.22 4.23 0.263 605 H
19.8 21.3 4.22 0.394 404 H ♦
25.9 20.6 4.25 0.495 322 H
44.5 18.9 4.7 0.78 204 H +
51.5 18.95 4.78 1.16 137 H + -0.5
69.5 15.5 4.3 1.90 84 H +

Butanol 19.2 17.1 3.3 0.293 543 E + -1
22.5 17.4 3.3 0.31 513 E* + -1
26.5 17.2 2.8 0.336 474 H
30.0 16.7 3.3 0.42 379 H
46.5 15.8 2.35 0.65 245 H + +2

Heptanol 30.5 10.9 2.85 0.195 816 H
41.8 9.95 2.65 0.31 513 H
77.0 7.2 4.0 1»25 127 H

t XY-recorded TDR-curves

In Figures 4.1 - 4.4 the results of the TDR-measurements are compared with fre
quency domain measurements referred to the literature. The results of Fellner-Feldegg
and Suggett et al are also shown. From these Figures it can be concluded that the re
sults obtained from TDR-experiments, using the procedure indicated in Chapter 3, are in
excellent agreement with those from frequency domain measurements. This is consistent
with the conclusion of Suggett and colleagues. The results obtained by Fellner-Feldegg
are less consistent (except his values for eg) as is to be expected considering his less
acceptable method of analysis.
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ETHANOLETHANOL

~X) 40 90 60
Tamp. ("C)

Tamp-fC)

Figure 4.1

Values o f  cn , c and vn as depending on temperature fo r  e thano l.U ®  U C Q

--------- M.W. Sagal J ; --------- P. Huyskens e t a l ; *  . E.H. G rant, Proc. Phys. Soc.,
B70, 937, (1957) ; 0 ,  This work ; ® , A. Suggett e t  a l12,13 ; A ,H . Fe llne r-Fe ldegg6 .

PROPANOLPROPANOL

-60  -5 0 -4 0  -30 -30 HO O X) »  30 40 50 80

Figure 4.2 Values o f £Q. £_ and vQ as depending on temperature fo r  propanol-1.
_____  D.W. Davidson, R.H. Cole29 ; ---------P. Huyskens e t a l69 ; Q .T h is  work ;

®, A. Suggett e t a l12,13 ; a , H. Fe llne r-Fe ldegg6 .
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BUTANOL
BUTANOL

Figure 4.3

Values o f  £q, e^  and Vg as depending on temperature fo r  bu tano l-1 .
_____  M.W. Sagal®3 ; — 0—  W. Dannhauser, R.H. Cole, J . Chem. Phys., 23, 1762, (1955) 5
__+   H. A. R izk , N. Youssef, Z. Phys. Chem. N .F ., 58, 100, (1968) ; V , J .F . v .d . Berg ;

Q, This work, H, and © .T h is  work, E45 ; ® . A .  Suggett e t a l12,13 ; 1  . H. Fe llne r-Fe ldegg .

HFPTANQLHEPTANOL

Temp. PC)

Figure 4.4

Values o f  £», e^  and Vg as depending on temperature fo r  heptano l-1 .
_____  J . Middellhoek57 and P. Bordew ijk51 ; X , J . Middel hoek57 ; + .P . Bordewijk ;

Q , This work.
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Although for most normal alcohols rather accurate values for the dielectric
C C  C O

permittivity are known at room temperatures (methanol by Barbenza , ethanol by Sagal >
butanol by Saga!63 and Van den Berg66, and heptanol by Bordewijk and Mi ddel hoek51 ,67),
this seems not to be the case with n-propanol. Therefore, this alcohol has been meas
ured with greater detail (the measurements carried out by Garg and Smyth67 are over
such a small frequency range that their relaxation time values are not sufficiently
accurate66).

In order to apply the theory of rate processes
ments, we use Arrhenius' equation, given by

68 to the results of the measure-

A e- ea/RT (4.1)

in which is the dielectric relaxation frequency, A the frequency factor (in Hz), Ê
the activation energy (in Kcal/mole), R the universal gas constant (in cal/mole °K) and

T the absolute temperature (in °K). When a plot of log Vq versus T"1 is constructed,
the derivative of this function (assuming the Arrhenius equation to hold) yields the
activation energy while the frequency factor can be found from the value of log Vq for
T =  o o .

In Table 4.2 the values for Ê  and A, mainly from li terature results,  are given
for the normal alcohols used in this work. For propanol and heptanol, results obtained
from TDR-measurements have been incorporated.

TABLE 4.2

ACTIVATION ENERGY AND FREQUENCY FACTOR FOR THE MONO ALCOHOLS

Compound Temperature range
ea) Kcal/mole A 1 0 '12 d>

Methanol66 5/55 3.4 1.0
Ethanol63 -5/50 5.0 4.0
Propanol313’3 ) -113/70 6.0 11.3
Butanol63' 65’6 ^ -100/50 7.2 57.0
Heptanol51’b / , a ) -33/77 8.6 262.0

a) This work, b) W. Dannhauser, R.H. Cole, J. Chem. Phys., 2L3, 1762, (1955)
c) Inaccuracy about 5%. d) Inaccuracy about 50%.
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4.3 MEASUREMENTS ON SOME NORMAL ALCOHOLS DILUTED WITH CARBON TETRACHLORIDE-

4.3,1 EXPERIMENTAL RESULTS

TDR- measurements are carried out fo r 1:1 volume mixtures o f methanol, ethanol,
propanol , butanol and heptanol w ith carbon te trach lo ride . The alcohols were obtained
and p u rifie d  in  the same way as described in  section 4.2. Carbon te trach lo ride  was ob
tained from Merck N.V. and p u r ifie d  by d is t i l la t io n .

Within measurement accuracy, i t  is. found tha t the main dispersion range o f these
mixtures can be characterized by one single re laxation frequency, in  accordance with
the find ings o f Moriamez , Sagal^ and Van den Berg®^. Some typ ica l Cole-Cole p lots
are shown in  Appendix D. In Table 4.3 the resu lts  o f the measurements are summarized.

The resu lts  are also g raph ica lly  presented in  Figures 4.5 - 4.9. Figures 4.5 A
- 4.9 A give the obtained values o f £ q as a function o f temperature. When possible
these resu lts  are compared w ith l ite ra tu re  values obtained from the work o f Huyskens

69
and co-workers . As was to be expected, our values show some sca tte r, but no syste
matic deviation is  found from the resu lts  o f low-frequency measurements.

Figures 4.5 C - 4.8 C and 4.9 B show Arrhenius p lo ts o f the obtained values o f
Vg, together with the rate p lots o f the corresponding mono alcohols. The sca tte r,
which appears to be somewhat la rge r fo r  the measurements o f the mixtures than those fo r
the pure compounds, increases w ith increasing length o f the carbon chain. This can be
explained from the decrease o f the amplitude o f the main dispersion range w ith increas
ing chain length o f the alcohols, leading to a rather low value o f p (°°) - c (0) fo r  the
mixture heptanol w ith carbon te trach lo ride .

I t  appears from Figures 4.5 B - 4.9 B tha t in the temperature range o f the
.measurements, which varies from -15/40 °C fo r  theomethanol mixture to 31/64 °C fo r  the
heptanol m ixtures, d ilu t io n  by carbon te trach lo ride  leads to a decrease o f the relaxa
tion  frequency fo r  -methanol and ethanol, and to an increase fo r  heptanol. For the m ixt
ures o f propanol and butanol, i t . i s  found tha t the Arrhenius p lo t in tersects the cor
responding p lo t fo r  the pure compounds w ith in  the temperature range o f the measurements.
This behaviour can be il lu s tra te d  by p lo ttin g  a t one temperature ( fo r  which 30 °C is
chosen) the values o f 4 ( l og v j against the number o f carbon atoms o f the alcohol
chain, where 4 ( l og ) i s the d ifference between the interpolated values o f v_ fo r
the pure compound and fo r the mixture. The resu lting  graph is  given in Figure 4.10. I t
appears that 4 ( l og v ) decreases monotonically from pos itive  to negative values.

The values o f the ac tiva tion  energies and the frequency fac to rs , as determined
from the resu lts  o f Figures 4.5 - 4.9,  are given in  Table 4.4. I t  must be mentioned
tha t some o f these values are less accurate than those fo r the pure alcohols, due to
the la rger sca tte r o f the resu lts  and due to the fa c t tha t the re laxation frequencies
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of some of the materials are determined over a smaller temperature range.

TABLE 4.3
TOR-MEASUREMENTS ON 1:1 VOLUME MIXTURES OF ALC0H0L-CC14

Compound T e . v q  t q  H/E smoothed 46

Methanol-CC1. -15
30.5
40.0

Ethanol-CCl̂  1.0
19.5
26.0
34.0
39.0

Propanol-CC1. 5.0
15.0
20.0
22.3
41.0
42.0
46.0
64.0

Butanol-CC1. 16.04
17.0
20.0
32.0
48.0

Heptanol-CCl. 31.0
33.0
40.5
49.0
50.0
63.5

23.1 4.6 0.355 475
15.3 5.3 1.51 105
16.0 4.5 2.0 80

15.5 4.8 0.27 589
11.8 3.6 0.515 309
12.65 3.2 0.61 261
11.7 3.6 0.75 212
10.4 3.5 1.13 141

11.7 3.4 0.2 796
9.95 3.15 0.28 568
10.4 3.9 0.36 442
11.05 3.45 0.41 388
9.0 3.53 0.85 187
7.95 3.05 0.94 169
7.75 3.4 0.9 177
7.12 3.75 1.66 96

7.85 3.35 0.233 683
7.86 2.95 0.248 642
8.58 2.8 0.29 549
6.5 3.15 0.57 279
5.85 2.8 0.87 183

3.96 2.78 0.355 448
4.24 2.85 0.334 477
3.83 2.85 0.67 238
3.88 2.9 0.73 218
3.75 2.81 0.95 167
3'. 67 2.88 1.25 127

H
H +
H +

H +
H
H
H
H ♦

H
H
H
H +
H +
H +
H
H +

H + -0.5
H
H
H
H +

H
H +
H +
H
H + +1
H +
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METHANOL-CCl

-30 -20 -10 O O 20 30 40 50 60
-30 -20 - »

METHANOL-CCl,
Figure 4.5

Values o f  en , c and vn as depending on
u  on U

temperature fo r  1:1 volume m ixtures o f methanol/CC1..

0  ,T h is  work.

A. --------- P. Huyskens e t al®® in te rp o la te d  values

o f  eq .
66 u--------- G. H. B a r b e n z a , values o f fo r  pure

methanol
B. --------- G.H. Barbenza®®, values o f  v .  fo r  pure

methanol.
+ E.H. G rant, Proc. Phys. Soc., B70, 937,

(1957).
66C. —  + —  G.H. Barbenza00, fo r  pure methanol

*  E.H. Grant, fo r  pure methanol.
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ETHANOL -C C l

K) 20 30 40 50
.... .. Temp. (°C)

ETHANOL-CCl,

13 53 IS 15  16  37 34

ETHANOL-CCl/,

10 —

10 20 30 40 50
----- •> Temp. fC )

-20  -X)

Figure 4.6

Values o f  £q , and Vg as depending on
temperature fo r  1:1 volume m ixtures o f e thano l/C C l.

B ,T h is  work.
A .  -------- P. Huyskens e t a l” , in te rp o la te d

values e
63 ®--------- M.W. Sagal , values o f  £ „ fo r  pure

ethanol

B. --------- M.W. Sagal63, values o f  vQ fo r  pue
ethanol

C. — + —  M.W. Sagal63, fo r  pure e thano l.
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PRQPANQL-CCl^

■Temp. (°C)

PR O PA N O L-C C U

T«mp. pc)

PROR4NOL-CCU

lö 33 Ï2 33 3J 15 Ï6 17 3»

Figure 4.7

Values o f Cq, Ea and v. as depending on
temperature fo r  1:1 volume mixtures o f
propanol-1/CC1. .

o , This work
69A. --------  P. Huyskens e t al , in terpo la ted

values o f
--------  cm fo r  pure propanol-1 , th is  work

B. —  + —  vjj fo r  pure propanol-1 , th is  work
C. —  + —  resu lts  fo r  propanol-1 , th is  work
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f
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5

<•
t

—50 -40 “30 -3D - t )  0  0  X  30 40 SO (0
— ►Temp.f’C)

BUTANOL-CCU

* * * * — i— f

.................................
BUTANOL -CC1.]

B  20 5  SÖ 50 60
— ► Temp. C°C)

BUTANOL—CC1:

Figure 4.8

Values of tg , e,  and Vg as depending on
temperature for 1:1 volume mixtures of
butanol-1/CCl..

a,This work
A. -------  P. Huyskens e t  al® , interpolated

valus of e
C C  w

V , J.F. v.d. Berg , interpolated values
of e

63 u-------  M.W. Sagal , values of e for pure
butanol-1

63B. -------  M.W. Sagal , values of vg for pure
butanol*1

ASC. V ,  J.F. v.d. Berg , interpolated
values of Vg

-------  M.W. Sagal®^, results for butanol-1.
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HEPTAN0L-CC1| HEPTANOL-CCl̂

HEPTANOL-1

HEPTANOL

ftPTANOL-1

Tem p. fC )

Figure 4.9

Values o f Eq, e^ and Vg as depending on temperature fo r  1:1 volume mixtures o f heptanol-1/CC1.

A. --------  J. M iddelhoek^ and P. Bordewijk^^, B. --------  J. Middelhoek"^, P. Bordewijk®^,
resu lts  fo r  heptanol-1 This work, resu lts  fo r  heptanol-1.

Number o f carbon atom s

Figure 4.10 Values fo r  A(log v») fo r  the mono alcohols d ilu ted  w ith carbon te tra ch lo ride .
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TABLE 4 .4

ACTIVATION ENERGY AND FREQUENCY FACTOR FOR THE ALCOHOLS AND THE MIXTURES WITH CC1.

Pure Compound M ix tu re  w ith c c i4

Alcoho l Temperature
Range ea

A 10‘ IZ Temperature
Range EA8 ) A 10*12 b >

Methanol 5/55 3.4 1 -15 /40 5 .0 6 .3

Ethanol -5 /5 0 5 .0 4 1/39 6 .0 16

Propanol -113 /70 6 .0 11.3 5/64 7 .0 57

Butanol -100 /50 7.2 57 -2 4 /4 8 c ) 8 .2 320

Heptanol -33 /77 8 .6 262 31/64 8 .5 420

a) Inaccuracy about 10%. b ) Inaccuracy about 50%. c )  J .F . van den Berg, -2 4 /1 5 , and

th is  work 16 /48.

10

t ;
r»l i I I I I____I____L .

Me Et Pro But R5t

Me Et Pro But

F ig u re  4.11

Values o f  the  energy o f  a c t iv a t io n  and the

frequency fa c to r  fo r  the  m ix tu re s  and fo r

th e  pure a lc o h o ls ,

o ,  M ix tu re s  ; •  , pure A lc o h o ls .
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For the butanol/carbon te trach lo ride  mixture the resu lts  o f Van den Berg have
been incorporated in  Figures 4.8. As can be seen from these Figures, and especia lly
from Figure 4.8 C, the two resu lts  are in  excellent agreement w ith each other.

As a generaT trend i t  appears from Table 4.4 tha t the values found fo r  the ac
tiv a tio n  energy and the frequency fac to r increase fo r d ilu tio n  w ith carbon te trach lo 
r id e , except fo r heptanol where no s ig n if ic a n t differences can be found (w ith in  meas
urement accuracy). This trend is  shown in  Figures 4.11.

In Figures 4.5 A - 4.9 A the values found fo r  e„ are given in dependence on tem
perature. These resu lts  are compared w ith the values o f found fo r the pure alcohols.
I t  appears tha t ex  decreases fo r  d ilu t io n  with- carbon te tra ch lo rid e , in  accordance

r  *j

with the resu lts  on ethanol/cyclohexane mixtures studied by Sagal0 , on butanol/hexane
mixtures studied by Van den Berg, on 2-ethylhexanol-1/paraffin  mixtures studied by
Moriamez^ and on propanol/2-methylpentane mixtures studied by Denney and R ing^.

4.3,2 DISCUSSION

Although there Is generaT agreement tha t H-bonding in  the liq u id  mono alcohols
is  having a strong influence on the observed d ie le c tr ic  re laxation behaviour, a lte r 
native, and some o f them at present equally acceptable, hypotheses e x is t concerning
the l ik e ly  re laxation mechanisms.

A theory has been developed by Bauer, Magat and B r o t ^ " ^  in which i t  is  assumed
tha t the alcohols associate to lin e a r multimers. The main dispersion range then arises
from reorien ta tion  o f ind iv idua l molecules, fo r  which breaking o f the hydrogen bond is
the rate determining step. In tha t case the ac tiva tion  energy would be o f the order o f

57the energy o f formation o f the hydrogen bond. I t  was found by Middel hoek and by
75Dannhauser , however, tha t the ac tiva tion  energy is  strongly dependent on the s truc

ture o f the carbon skeleton and on the location o f the hydroxyl group in  th is  chain*.
The p o s s ib ility  tha t these diverging ac tiva tion  energies are due to diverging values
o f the heat o f formation o f the hydrogen bond is  excluded by the fa c t tha t mixtures
o f alcohols w ith strongly d if fe r in g  ac tiva tion  energies show only one main dispersion

51range . To explain these phenomena, two d iffe re n t hypotheses have been introduced un
t i l  now.

55Dannhauser maintained the assumption o f lin e a r association, and modified the
theory o f Bauer, Magat and Brot in  the sense tha t the breaking o f the hydrogen bond
is  not the rate determining step fo r  the reorien ta tion  o f the alcohol molecule, but
only prerequ is ite . In th is  model i t  is  assumed tha t a p a rticu la r hydrogen bond breaks
and reforms many times w ithout reorien ta tion  o f the molecules involved. The reorienta-

X C l
Values of the activation energy, fo r many of the mono alcohols, are given by Bordewijk3 page 43.
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tion depends not only on the breaking of the hydrogen bond but also on the whole of
interactions of a molecule with respect of its  surroundings, and is thus a cooperative
process. The degree of cooperativity for reorientation of a molecule then increases
with increasing length and branching of the carbon chain, and also with increasing ste-
rical hindrance of the hydroxyl group. In the case of methanol the reorientation after
breaking of the hydrogen bond would be so easy that breaking of this bond remains the
rate-determining step, whereas the influence of the alkyl group on the reorientation
would become important for the higher alcohols.

51In contrast to this theory, Bordewijk assumes that the association of the nor
mal alcohols in the pure state is dominated by cyclic multimers of one size which have,
despite their cyclic structure, a high dipole moment because the oxygen and the hydro-!
gen atoms are presumed not to l ie  in one plane. It is then suggested that the dielec
tr ic  relaxation is due to the movements of a multimer and i ts  surroundings whereas
Dannhauser assumes that i t  is due to the cooperative movements of a single molecule
and i ts  surroundings. Again, the necessary amount of cooperation increases with in
creasing length and branching of the carbon chains.

In both views, the influence of the carbon tetrachloride on the dielectric re
laxation frequency is caused by the influence of the CCl  ̂ molecule on the amount of co
ordination between the molecular movements in the liquid.

The results of the present work do not support some of the assumptions of Dann-j
hauser since he states that for methanol the reorientation depends on the breaking of I
the hydrogen bond only and not on the surroundings of the molecule. For this compound
we found, however, that the addition of carbon tetrachloride leads to a significant
increase of the energy of activation.

With respect to the influence of carbon tetrachloride on the amount of coordina-1
tion in the liquid, the following properties of the CC1.-molecule are of importance:
(1) the CC1 .-molecule is rigid
(2) the CC1.-molecule does not form associates

^  O(3) the molar volume of CC1. is 96.5 cm /mole whereas the molar volumes for methanol, I
ethanol, propanol, butanol and heptanol are 40.5, 58.4, 77.1, 91.4 and 141.4

3
cm /mole respectively.

The result of the measurements, as presented in Table 4.4 and in Figure 4.11, show the
general trend that the energy of activation and the frequency factor increase when the I
alcohols are diluted by carbon tetrachloride. This trend is most evident for methanol,I
ethanol, propanol and butanol whereas i t  seems to disappear for heptanol. The observa-j
tions can be explained from the assumption that addition of carbon tetrachloride tends!
to a higher degree of coordination in the liquid when the molar volume of CCl  ̂ is large'
with respect to the molar volumes of these alcohols. The inverse statement may also
hold as is presumably the case for heptanol.
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Although the results of the measurements, described in this work, cannot give a
final conclusion concerning the dielectric relaxation mechanism for the mono alcohols,
i t  shows in principle that an extension of this investigation to a greater temperature
range, also applied to other alcohols and other non-polar solvents^, would give valu
able information. For these applications TDR-measurements are particularly useful
because of the relatively small amount of time necessary for the determination of the
relaxation frequencies.
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CHAPTER 5

GENERAL DISCUSSION ON TDR-MEASUREMENTS AND SUGGESTIONS FOR FURTHER WORK

In th is  thes is ,  the time domain reflectometry technique is  considered as a pos-■
sible method to examine d ie lec tr ic  relaxation phenomena in polar liquids. The f i r s t
measurements, by Fellner-Feldegg, were not sufficiently  accurate but due to the in tro
duction of "know how" from the f ie ld  of network analysis, rather accurate results  have

12 13now been obtained by Suggett, Quickenden, Loeb and Young * .
One important remark has to be made at th is  stage. The TDR-equipment, as de li-  ]

vered by Hewlett-Packard has not been constructed for the examination of d ie lectric
relaxation phenomena. Two features of the equipment are a consequence of th is .  F irs t ,
in many TDR-equipments (but not for a l l )  the characteris tic  impedance of the sampling
system is larger than 50 n resulting in the unwanted step voltage, which determines 1
the low-frequency limit of the measurement technique. Second, the time base of the os-I
cilloscope is  non-linear. The la t te r  property is  of great importance when automatic
data processing aquisition is available. A correction for th is  non-linearity is  then

44necessary .
The high-frequency limit is  a t  the present s ta te  of a r t  determined by the time

reference procedure. This procedure, as discussed in Chapter 3, is disputable since i t ]
is  not based upon a mathematical exact relation; but as can be inferred from the error]
analysis, and also from the experimental resu lts ,  i t  is  a surprisingly good approxima-j
tion.

Although the experimental results  confirm that the TDR-method is  a very promis-j
ing one, a disadvantage of the method should be mentioned as well. This disadvantage
refers mainly to the present situation and i t  is believed that i t  can be solved with- I
in reasonable time.

Due to the deficiencies of TDR ( j i t t e r ,  internal reflections, d ifferent charac-l
t e r i s t i c  impedance of the sampling system, time reference procedure, uncertanties in
the la s t  samples) the constructed Cole-Cole plot may not have a sa tis fac to r ily  shape a]
priori and subsequently the curves R(io) and e(a>) may contain osc illa tions , while 6(w) I
may also need a phase correction. When frequency domain results  are established, as fori
instance the normal alcohols, the corrections are known to be necessary. When, however*:
the shape of the Cole-Cole plot is not known, the corrections may not be necessary and!
therefore the possib ili ty  exists that a "correct but strange-1ooking" Cole-Cole plot
is  corrected into an "incorrect but good-looking" Cole-Cole plot. Such a situation may!
for instance occur when two separate dispersion ranges with the same amplitudes are
present.

As a suggestion for further work, i t  should therefore be pointed out that one
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o f the f i r s t  things to work on, in  TDR-experiments, is  the improvement o f the equipment
( i f  possible) and o f the method o f analysis in  order to  be certa in  tha t the f in a l ,
Fourier transformed, resu lts  do not need fu rth e r corrections. I t  is  then necessary tha t
(1) the time reference method, as discussed in  Chapter 3, is  replaced by a mathematical

correct procedure ( fo r  instance by Suggett's pulse reference method o r, a lte rn a t i
ve ly , by recording the f u l l  TDR-curves and using the points H o f Figure 3.7 as the
reference points.

(2) XY-recording o f the data is  replaced by an automatic data processing method. Then,
12 13very fa s t scan times can be used which minimize the influence o f the j i t t e r  * ,

while also the f u l l  TDR-curves can be recorded w ith s t i l l  a s u ff ic ie n t number o f
samples per u n it time.

(3) the TDR-curves have to be very smooth (eventually a fte r  computer co rrec tions),
which means tha t the unwanted re flec tions  have to be removed. This can be obtained
by an improvement o f the TDR-equipment i t s e l f ,  constructing i t  fo r  the special pur
poses o f d ie le c tr ic  measurements ( th is  should be done by Hewlett-Packard o f course),
and/or correcting the TDR-traces fo r  a ll types o f a l l possible re fle c tio n s . This
la t te r  proceduré requires a deta iled quan tita tive  knowledge o f the TDR-equipment.

13Some f i r s t  remarks in  th is  f ie ld  have been given by Loeb e t al .
When these suggestions fo r  fu rth e r work have been carried out, the accuracy o f d ie lec 
t r i c  measurements, by TDR-experiments, w i l l  c e rta in ly  be improved w ith respect to the
TDR-measurements described in  th is  work. The low-frequency l im i t  may then be extended
to vn = 10 or 10 Hz by fo r  instance using the sp ira l coaxial lin e  (length about 20 m)

• 8 9as discussed by Fellner-Feldegg and also by Bagozzi ’ or using the " th in -c e ll"  method
(or a va rian t) as has recently been proposed by Fellner-Feldegg^®’ ^ .  The h ig h -fre 
quency l im i t  may in  tha t s itu a tio n  be extended to  the natural l im i t  caused by the f i n i 
te rise  time o f the step voltage.

I t  is  reca lled , however, tha t d ie le c tr ic  measurements, even when they are car
ried out w ith a TDR-technique as described in  th is  work, are approximately as accurate
as measurements performed w ith the present frequency domain techniques. This refers
especia lly to the determination o f the re laxation frequency in  the range

0.2 < vQ < 3 GHz

To f in is h  th is  Chapter, a comparison is  made between the TDR-method in  the pre
sent state o f development and the present frequency domain techniques fo r  measurements
in  the frequency range 5 10® < v < 10*® Hz.
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TDR- MEASUREMENTS FREQUENCY DOMAIN-MEASUREMENTS

Not expensive equipment (apart from
computer and C.A.T., about $ 4000,--
in  1972)

Expensive equipment

Measurements not time consuming fo r
microwave frequencies (apart from
sampling by hand and computer time,
about 5 minutes)

Time consuming experiments fo r  microwave
frequencies

Accuracy comparable w ith frequency
domain methods

A e _  Ae  A t .

—  * 5% ,  * 20% , —  = 7 .5 X

eo E» To

A e _ A t .

—  “  1 *  ,  —  “  10X ,  —  -  7 .5 X

e0 e« T0

Works very good fo r  0.2<V g<2 GHz Very d i f f i c u l t  to  obtain data fo r 0 . 2 < v < l

GHz

Ind irec t estimation o f e '  and e "  from
Fourier analysis

D irect measurement o f £' and e"

Computer is  necessary Computer not necessary a p r io r i

No absolute ce rta in ty  about the ob
tained Cole-Cole p lo t

Within measurement accuracy in  e ' ,  e" (=5%) 1
absolutely certa in  about the shape o f the
Cole-Cole p lo t obtained

The influence o f any e rro r, involved
in the measurement, is  spread out over
a ll frequencies

Any e rro r involved in  the measurement gives 1
an e rro r in  e ‘ and e "  fo r  one frequency
only (provided tha t the e rro r is  not syste- 1
matic)

High-frequency l im i t ,  in  p rinc ip le
due to the f in i t e  rise  time o f the
step voltage, but a t th is  stage, due
to the time reference method

No high-frequency l im i t  a p r io r i
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Low-frequency l im it  due to the necess
ity  to obtain a "complete" TDR-curve
(This l im it  can be extended by using
methods analogous to Fellner-
Feldegg's th in ce ll technique)

No low-frequency lim it  a p rio ri
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APPENDIX A

SOME REMARKS ON THE COLE-COLE EQUATION IN CONNECTION WITH CAUSALITY77

INTRODUCTION

In 1941, Cole and Cole published equat ion ( 2 . 3 ) ,  f o r  the presen t  purposes w r i t 
ten as

<P (i<»)
e ( i “ ) - _ 1

v eoo 1 + (î 0)“ 0<a<l (A. 1)

This func t ion ,  which has a branch poin t  a t  the o r i g i n ,  i s  important  fo r  experimental
purposes s ince many d i e l e c t r i c  experiments are analysed in terms of  values of  e Q, eb ,
T0 and

Without proof ,  Cole and Cole s ta te d  e x p l i c i t e l y  t h a t  the  real  and negat ive ima
g inary pa r t s  of  equat ion (A.1) s a t i s f y  the Kramers-Kronig r e l a t i o n s ,  which i s  necessary

i f  e(ito) i s  to be used to  describe  the  behaviour of  a causal system7^.
In 1956, in an impor tant  paper on in tegra l  r e l a t i o n s  of  l i n e a r  systems,  MacDonald

22and Brachman s t a t e d  t h a t  equat ion (A.1) i s  not an a n a ly t i c  func t ion  fo r  CKa<l and
th er ef o re  the  e'(oo)  and e"((o) func t ions  would not  represen t  a causal system. They al so
s t a t e d ,  however, t h a t  the s i t u a t i o n  may be saved by put t in g  in the necessary |u | and
sign ( i o )  f a c t o r s  to force  them to have the proper p a r i t y .  But then ,  the r e s u l t i n g  e' ( iu)

and e"(io) are not  the  real and nega t ive  inmaginary p a r t s  from e ( iai) as given by equa
t io n  (A.1).  Unfor tunately they did not give the  cor rec ted  r e l a t i o n s .

When d i e l e c t r i c  p e r m i t t i v i t y  i s  s tud ied  by t r a n s i e n t  methods, as fo r  ins tance
in t h i s  t h e s i s ,  the  corresponding t r a n s i e n t  behaviour of  a Cole-Cole d i e l e c t r i c  mate
r i a l  i s  c a lcu la t ed  by using equation (A.1) and not the "corrected func t ions"  as i s  sug
gested by MacDonald and Brachman. I t  i s  t h e re fo re  c le a r  t h a t  when the Cole-Cole equa
t io n  would not rep re se n t  a causal system, la rge  dev ia t ion s  may be expected between the
ca l cu l a ted  and observed t r a n s i e n t  behaviour.  Since the devia t ing  asymptotic behaviour
of P ( t ) ,  as p red ic ted  in Chapter 2,  has not (ye t )  been observed experimenta l ly  for
Cole-Cole m a t e r i a l s ,  i t  wi ll  be shown in t h i s  Appendix t h a t  t h i s  fe a tu re  wil l  indeed
be observed (when d i e l e c t r i c  ma ter ia l s  e x i s t  behaving exac t ly  according to equation
(A.1),  s ince equat ion (A.1) does re presen t  a causal system a l b e i t  with l i m i t a t i o n s  in
terms of  the branch to be used.

THE KRAMERS-KRONIG RELATIONS. Consider the  func tion
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1 + s“

o f the complex variab le s. The quantity s“  is  defined as

ip(s) ■ ---------  , 0<o<l (A.2)

sa a gia arg(s) , -ir<arg(s)«:w (A.3)

Due to the d e fin it io n  o f sa on the branch -w<arg(s)«ir,ip(s) defines a sing le  valued
function. I t  also defines an ana ly tic  function since the poles o f equation (A.3 ),
given by |s| = 1 and arg(s) = ( it  + k 2n)A» f o r k  * 0,+ 1 , . . . .  ,are outside the branch.

I t  is  therefore c lear tha t the Cole-Cole equation, extended over the en tire
complex s-'plane, defines a single valued and ana ly tic  function fo r  -Ti<arg(s)fir. For
our purposes, however, i t  is  s u ff ic ie n t tha t ip(s) is  ana ly tic  fo r  Re(s)>0 since th is
is  necessary (but not s u ff ic ie n t)  fo r  any equation to represent a causal system^®

In order to prove the existence o f the Kramers-Kronig re la tions  fo r  the real and
negative imaginary parts o f equation (A .2), fo r  the lin e  Re(s) = 0, Cauchy's in tegra l

81re la tio n , defined by ;

* ( * f t)  sntC
(A.4)

is  applied to <f>(s), fo r  s on the contour C shown in  Figure A ,l.

ico0- i r

S0 >C*

Definition of the contour C. The quantity Sg is given by Sg ■ Yg + W .
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The avaluation of equation (A.4), for r+0 and R-*», is standard mathematics, resulting
into:

Y +i°°
p f  0 <I>(y + iw)

M y0 + 1»0) = xn -------- —  d(Y + iu ) +J  1 0 ) «  l ü ) A
Y - i o o  o

1 f  * ( S )
+ l im^n ----------ds (A‘5)R -  J s - sQ

where P denotes the principal value of the integral. The second integral on the right
QO

hand side of equation (A.5) vanishes since :

lim ƒ --------- ds <  lim Max
R-*» J s “ sn R-*»

C1
2irR

1 im ------------------- —j---------rr-------
Min I 1 + R° eia* II Re1* -

♦ ( * ] *(Re1*)
2*R

(A.6)

Taking the limit of ^(Yg + i“g) for Yĝ O, equation (A.5) can be written as

00

p f
♦  0 - 8 )  *  - 7-  ƒ - - - - - - - - - dm ( A . 7 )

iri J o) -  o>~
— 00 ^

Separating ^(iug) and ip(ioo) into their real and negative imaginary parts, the Kramers-
Kronig relations are obtained:

(A.8)

It is thus proved that the Kramers-Kronig relations are valid for the real and nega
tive imaginary parts of equation (A.1).

CONCLUSIONS. It has been shown in the foregoing section that the permittivity equation I
of Cole and Cole satisfies the requirements for a causal (and hence physically realiz- I
able) system of a dielectric material, when the complex frequency plane is defined on
the branch -ir<arg(s)<ir only. It is therefore proved that the behaviour of P(t) for t-*00 ,
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as g iv e n  in  C h ap ter 2 f o r  a C o le -C o le  d ie l e c t r i c  m a t e r ia l ,  cannot be a t t r ib u t e d  to  th e

use o f  th e  n on -causa l c h a r a c te r  o f  e q u a tio n  (A .1 )

APPENDIX B

NUMERICAL EVALUATION OF THE INVERSE LAPLACE TRANSFORM

Evaluation of the inverse Laplace transform, i.e .  calculating f ( t )  fo r 0<t<°°
from known analytical behaviour o f F(s), is  not always an easy task. Recently, how
ever, numerical techniques have been developed by Bellman, Kalaba and Lockett83,
Zakian ^ 88, Stehfest8  ̂ and Singhal and Vlach88. A ll inverse Laplace transforms, d is 
cussed in th is  thesis, have been calculated by the procedure XLAPLINV written by
De Graan according to the algorithm of Stehfest. This algorithm is  given below.

The functions f ( t )  and F(s) are given by the equation

c+i»>

* (* )  = 27TJ "  c*s F(s) eSt = £ ^ ( s ) )  (B. 1)
c-i«°

This equation can be approximated by

f ( t )  * HT £  Vi F(i H T  ] (B.2)

where N has to be even and V. is  given by

V ■ ( - I ) 1* " '2 V - * ------- -------------------------------------- (B.3)
* r f ( 7  - k)! k ! (k - k)! (2k - i ) !k=l c

x = Min ( i ,  £  )  (B.4)

For the CDC 3200 computer, on which a ll calculations are performed, N = 12 is  advis-
89able . The results o f f ( t ) are in general better than 0.1% (when f ( t )  does not con

tain very high-frequency components).
For a ll applications described in th is  work F(s) is  given by

/ J £  -  A  e (s )  + a/e  \
F(s) = *(s) p ( s ) = ®(s)l--------- J (B.5)

\ /s"  + /s  e (s) + a/e /
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where * (s )  is  given by 1/s when a heaviside input is  considered or by equation (3 .1 9 )

fo r a non-ideal step function . For the actual ca lcu lations equation (B . l )  is  rew ritten

as (using * (s )  = 1/s fo r  convenience)

c+i«

f ( t )  = ?

c+i® c' 1”

1 f  1 ( '  /S t0 e(sV  *  qV -  ^ gS-tQ^O
, ST0 \  /S tq + /S tq e (S tg) + 0Tq/ £  /

/ Ï  -  /S e(s) + o/e \  f
— ------ —  ) esx ds =
*S + /S e(s) + a/£ /

d (S x 0 )

Choosing stq as a new variab le  o f in te g ra tio n , the f in a l re s u lt can be w ritten  as :

f ( t /T n) = £'
- l |  \ ( ^  ~ e( s»To = ! )  +OTo/ l '

/S  E ( S , T g  = 1 )  +OTq / £ ,* v s  +
(B .6)

The a lgorithm , w ritte n  in  FORTRAN is  as fo llow s:

vs FORTRAN (4.0> /M S O S  1 S /0 9 /7 0

FUNCTION X L A P L IN V IP .N fT tJ )
C
c PURPOSE
C
C COMPUTF APPROXIMATE INVERSE LAPLACE TRANSFORM OT FUNCTION P (S )
C AT TIM E-INSTANT T.
C
C TRANSLATED from  ALGOL ALGORITHM NO. 368 COMM. A .C .M .
C VOL 13 * NO. .1 * JANUAPY 1970 PAGES 47  -  49
C N IS  THE NUMBER OF TERMS USED IN  APPROXIMATING THE INVERSF OF P (S )
C N MUST BE EVEN
C FOR THE CDC-3200 N *  12 IS  AOVISED FOR OPTIMUM ACCURACY
C ACCURACY WILL IN  GENERAL BF BETTER THAN 0 .1  PERCENT
C COMPUTING TIME EQUALS N TIMES COMPUTING TIME OF P IS ) t  S *  L N ( 2 ) * I /T
C
C ON THE FIRST CALL A TARLE V (N ) IS  CONSTRUCTED
C DIMENSION V (N ) « H (N /2 > . G IN t-l)

DIMENSION V 11 6 ) « G I1 7 ) fH (8 )
C H AND G ARE NEEDED ONLY DUPING THE FORMATION OF TABLE V
C

TYPE D F P I3 ) OUMtFB
INTEGFR SNfM
DATA(M s-1)

C ERROR CHECK ON N
IF !  N .L T . ? .O P . N .G T . 16) STOP
IF (N  .N E .2 * ( N / 2 ) ) STOP

C
C CHECK IF  TABLE V MUST BE CALCULATED

IF IM -N )  1 .6 .1
C
C FORMATION OF TABLE V

1 6 ( 1 ) = O L D G = l• *  NHs N /2
NKs NH+1
N I=N+1
DO 2 I* 2 .N 1
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? G<I)*OLnG*<I-l)*OLDG
HI1)»2./6INH)
00 3 Ï*2*NH
NL=NK-I3 H(I)«FLOATF(I)**NH*G(2*1*1 )/(GCNL)*G <I*1)*G<I> >
NHX*NH-(NH/2)*2
SN=1
IFCNHX *FQ. 0) SNs-SN
00 5 1*1*N
DliMsO.
KSTART*(I*1)/2
KENO*ï
IFfl.GF. NH) KFND*NH
BO 4 KsKSTART*KFND
IK=I-K♦1 % KI=K-ÏK*2

4 OUMsOUM*H(K)/CGCIK)*G(Ki))
ï F(SN) 10*5*15

10 V<ï>*-OUM
'GpTO 5

15 V(I)*DUM
5 SN=-5N
R*AL0G(2.)
M=Nc /tv N

C COMPUTF AFoROXIMaTF ïNVEPSF OF PCS) = SUM V(1> *PI LNC2)*I/T )
C I*1c 6 FB*0* % Aap/’,

f)0 9 1*1 *N
AI*A*IDUMsOCAl*J)*V(I)

9 FB*FB*DUM
XLAPLINV=A*FB
RETURN
ENO

FORTRAN DIAGNOSTIC oESUI.TS FOP XLAPLINV

APPENDIX C

NO ERRORS
LOAD*56PUN«5*NM

COMPUTER PROGRAM SHANTDR

In this Appendix the listning of the computer program used for the calculations
of e'(ü)) and e“(u>) from VQ(m) and R(n) is given. It is based on the equations (3.14),
(3.12) and (3.1).

*** MSOS V4.2 EniTIOM*10 DATE*20/12/71*SEQUENCE*04S
IFOl'ENCJOB*?090*GFM£ VAN GEMERT 361* 4 *Nn
FFT.PVOTNO.SUflROUTINEPACK*500*00*0000*0000OPEN.10
AUK*10
FORTRAN*!.**
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MS FORTRAN (4.2)/MS0S 20/12/71

PROGRAM SHANTDR
COMMON IMEET <1024),PHIE<101>»AMPE(101)
COMMON IBEGIN»IEINO
COMMON T(1024)
COMMON TAU
REAL NU.NUNUL
REAL IMEET
NUNUL*0 «05
TIMEFAC*0.0593472
INOEXsl
IBEGINsl
Pl*3.14159265
TAU*TIMEFAC*0.1

1 READ 2.N
2 FORMAT<IS)

IEIND*IBEGIN*N-1
READ 3.DIST.ZEROD

3 FORMAT(2F10)
PRINT 4.N.DIST.ZFR0D.TTMEFAC

4 FORMAT(X.I5.3F15.5)
tref=oist*timefac
TZERO*ZEROD*TIMEF AC
DO 15 I*I8EGIN»IEInD
T(I)*I*TAU-TREF♦TZERO

15 CONTINUE
READ 10» (IMEET(I).1*1»IEIND>

10 FORMAT(8F10.6)
ITOT»100
DO 100 J*1»ITOT
NU*NUNUL*JJJsJ
CALL SHANNON(AMP.Ph I.Nij)
IF (INDEX.EO.2) GOTO 101
AMPE(J)=AMP $ PHIE(J)=PHI
GOTO 100

101 CALL EPSILON(EPSR»EPSIm »Am p»PHI»JJ)
QUOT*AMP/AMPE(J)
PHASE*(PHI-PHIE(J))*(1RO./Pl)
PRINT 200»NU»EPSR»FPSIM.AMPE(J)»PHIE(J)»AMP»PHI.QUOT.PHASE

200 FORMAT(X»3(F15.5)»6(E15.5))
100 CONTINUE

INDEX*INDEX»1
IF (INDEX.GT.2) GOTO 105

GOTO 1
105 END

FORTRAN DIAGNOSTIC RESULTS FOR SHANTDR
NO ERRORS
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MS FORTRAN ( 4 .2 ) /M S 0 S

10

SUBROUTINE SHANNON( A M P .P HI.N U)
COMMON IM EET( 1 0 2 4 ) ,P H IF (1 0 1 > *A M P E (1 0 1 )
COMMON IB E G IN » IE IN D
COMMON T 11024)
COMMON TAU
REAL IMEET
REAL NU
TYPE COMPLEX( 4 )  CI»CG*CSOM.CMPLX»CEXP»CSHAN
INTEGER EIND
P I = 3 . 14159265
C I * C M P L X ( 0 .« 1 . )
0MEGA=2*PI*NU
C G * I . / ( 1 .-C E X P (-C I*O M E G A *T A U ))
CSOM=CMPLX(0.»0.)
E IN D s IE IN O -1
DO 10 I * IB E G IN ,E IN O
CSOM=CSOM*( IM EET( 1 * 1 ) - IM E E T ( I ) ) *CEXP < - C I * T <I
CONTINUE
CSHAN=TAU*CG*CSOM
RE=REAL(CSHAN)
XIMs AIMAG(CSHAN)
AMPs S O R T F (R E **2 » X I“ * * 2 )
P H IsA T A N F (X IM /R E )

♦ 1 ) *OMEGA)

RETURN
END

FORTRAN DIAGNOSTIC RESULTS FOR SHANNON

NO f r r o r s
MS FORTRAN ( 4 .2 ) /M S 0 S

SUBROUTINE EPSILON(EPSP«EPSlM *AMP»PHl♦J J )
COMMON IM EET( 1 0 2 4 ) ,P H TF < 101> »AMPE(101)
COMMON IB E G IN » IE IN D
COMMON T (1 0 2 4 )
REAL IMEET
TYPE COMPLEX( 4 )  Cl,CMPLX»CEXP»CRE»CRT»CEPS
J a J J
C I= C M P L X (0 .« 1 . )
C R E = A M P E (J ) * C E X P (C I*P H tE (J ) )
C R E=-1 .*C RE
C R T =AM P*C EXP(C I*PH I)
CEPS=( (C RE-C RT)/ (C R E *C P T)) * * 2
EPSR=REAL(CEPS)
EPSIM=AIMAG(CEPS)
RETURN
END

FORTRAN DIAGNOSTIC RESULTS FOR EPSILON

2 0 / 1 2 / 7 1

2 0 /1 2 / 7 1

NO f r r o r s
L0A D *56
RUN» 5
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APPENDIX D

Some Cole-Cole p lo ts  o f the TDR-measurements. Indicated frequencies are in  GHz.

ETHANOL

- 1 0

PROPANOL® 25.9 °C
e 51.5 °C

BUTANOL
o 30 °C
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HEPTANOL
o 77 °C

METHANOL-CC1o -15 °C

ETHANOL-CC1/,
o i°c
® 38 °C 0-5 04

15



110

PRQPANOL-CC1/. 1:1

B U TAN O L-TETRA

HEPTANOL -  CC1* 1:1

63.5 °C
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SUMMARY

In th is  thes is ,  the use of Time Domain Reflectometry (TDR) is  discussed as a
technique for measuring the permittivity of polar liquids. Originating from the field
of electronics and communication engineering (1960) this method has been applied to
d ie lec tr ic  spectroscopy by Fellner-Feldegg (1968). Improvements in terms of the meas
uring technique and the mathematical analysis have been introduced by Suggett,
Quickenden-Mackness, Tait, Loeb and Young (1969-1971). Due to these improvements, a
rather accurate measurement technique is  available now.

After an introduction to transmission line theory and linear system theory, in
Chapter 1, some theoretical results  are presented in Chapter 2. These results  refer to
the case of an ideal step function. In section 2.1 the TDR-step response is calculated
numerically for three current descriptions of d ie lectr ic  permittivity, including low-
frequency conductivity. I t  is  concluded that an evaluation of the d ielectr ic  parameters
in the time domain, as was suggested in the early papers on TDR, is  not possible since
the response curves do not show enough characteris tic  features which enables such a
time domain evaluation.

In section 2.2, an investigation has been carried out to the sim ilarity  of the
asymptotic behaviour of the TDR-step response (in the time domain) and to the asymp
to t ic  behaviour of the permittivity, represented by a Cole-Cole p lot, in the frequency
domain. One of the main conclusions is  that for d ie lec tr ic  materials of which the low-
frequency side of the Cole-Cole plot does not cut the e '-ax is  perpendicularly, as for
instance for a Cole-Cole type of material, the TDR-decay is extremely slow in reaching
i t s  asymptotic value at t  = °°. This means tha t ,  in general, a material with a Cole-Cole
behaviour cannot successfully be examined by means of the TDR-method described in this
work. The results  of the asymptotic calculations for t+O suggest the possib ili ty  to
determine the value of x«, in the case of a single relaxation time, from the derivative
of the step response at t  = 0. This method may be applicable when materials with very
large values of tq are involved ( i t  will not be a very accurate one). The results  of
the asymptotic calculations for t -*» suggest the possib ili ty  to determine the low-fre
quency conductivity, when th is  quantity is  very large compared with dipolar losses.

In Chapter 3 an error analysis is  presented, based upon TDR-measurements by
means of an XY-recording system and the use of the time reference procedure as described
in th is  thesis . The resu lt  is  that the inaccuracy in the values of £«, £„ and (or
v ») is  approximately

Ae_ Ae Av.
—  “ 5* , - f r *  20% , -— =-7.5%

e0 0
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for the relaxation frequency range

0.2 109<v <3 109

In Chapter 4 the results  of the experiments are presented. Dielectric measure
ments, by TDR, have been carried out for the mono alcohols ethanol, propanol-1, buta-
nol-1 and heptanol-1. These measurements, although intended as a t e s t  procedure to con
firm the applicability  and accuracy of TDR-measurements, contain some new data for
propanol-1, a t  room temperatures, and for heptanol-1, a t  temperatures above 40° C.

In section 4.3 the results  of measurements on 1:1 volume mixtures of the mono
alcohols with carbon tetrachloride are presented. Although the values found for the
activation energy and the frequency factor are not very accurate (which is  also true
for frequency domain measurements), the results  show that  the values of E. and of A
for the mixtures tend to be larger than for the pure compounds. This effect is  most
pronounced for methanol, while i t  decreases (in percentages) with increasing length
of the carbon chain. From the results  of heptanol-l/carbon tetrachloride i t  seems that
the values for and A tend to be smaller than those of the pure compounds when the
length of the chain is large.

The changes in the relaxation frequency, energy of activation and the frequency
factor, a f te r  dilution of the pure alcohol by carbon tetrachloride are discussed in
terms of a change in the amount of coordination in the polar liquid when an alcohol
volume is replaced by the same non-polar CC1. volume.

The results  on methanol are in contradiction to the statement of Dannhauser
that for this compound breaking of the hydrogen bond would s t i l l  be the rate determin
ing step for the reorientation.

Finally, in Chapter 5, a general discussion of the TDR-method is  presented, in
corporating suggestions for further work.



116

SAMENVATTING

Dit p ro e fsch r i f t  i s  gewijd aan de toepassing van Time Domain Ref 1 ectometry
(TDR) voor het meten van d ie lek tr ische  eigenschappen van polaire  v loeis to ffen . Deze
methode, die afkomstig is  u i t  het vakgebied van de kommunikatie techniek, is  het ee rs t
toegepast op d ie lek tr ische  spectroskopie door Fellner-Feldegg (1968). Verbeteringen
van de meettechniek en van de mathematische verwerking, door Suggett, Quickenden-Macknessf
T a i t ,  Loeb en Young (1969-1971), hebben ertoe geleid dat nu een tamelijk nauwkeurige
meetmethode beschikbaar i s .

Na een in le id ing  in transmissie l i j n  theorie  en l in ea i re  systeem theo rie ,  in
Hoofdstuk 1, worden in Hoofdstuk 2 de resu lta ten  besproken van responsie berekeningen
voor een ideale stap funktie .  In sek tie  2.1 wordt de TDR-stap responsie numeriek bere
kend voor d rie  veel gebruikte beschrijvingen van de d ie lek trische  p e r m i t t iv i te i t ,  waar
b i j  ook laag frequent geleiding in rekening wordt gebracht. De konklusie is  dat een be
paling van de d ie lek tr ische  parameters in het tijdsdomein, zoals was voorgesteld in de
ee rs te  a r tike len  over TDR, onmogelijk is  omdat de responsie curven te  weinig kenmerken
bevatten voor zo'n bepaling.

In sek tie  2.2 is  een studie gemaakt van de overeenkomsten in het asymptotisch I
gedrag van de TDR-stap responsie (in het tijdsdomein) en de p e r m i t t iv i te i t ,  in de Cole-
Cole p lo t represen ta tie  (in het frequentie domein). Een van de belangrijkste  konklu-
s ies  is  dat voor een d ie lek tr isch  materiaal waarvan de laagfrequent kant van het Cole-
Cole p lo t  de e ' - a s  n ie t  loodrecht s n i jd t ,  zoals b.v. voor een "Cole-Cole materiaal",
de TDR-decay extreem langzaam is  in het bereiken van de asymptotische waarde op t  = ®.
Dit betekent dat een d ie lek tr isch  materiaal met een "Cole-Cole gedrag" met de h ier  be
schreven TDR-techniek in het algemeen n ie t  onderzocht kan worden. De resu lta ten  van de
asymptotische berekeningen voor t-K) suggereren de mogelijkheid om voor een Debye disper- I
s ie  de waarde van t-  t e  bepalen u i t  de afgeleide van de stap responsie op t  = 0. Deze
methode zou toegepast kunnen worden wanneer de waarde van Tg erg groot i s ,  maar het zal
geen erg nauwkeurige methode z i jn .  De resu lta ten  van de asymptotische berekeningen voor
t-*» suggereren de mogelijkheid om de laagfrequent geleiding te  bepalen, wanneer deze
veel g ro te r  is  dan de dipol ai re verliezen.

In Hoofdstuk 3 wordt een fouten analyse gegeven welke geheel gebaseerd is  op
de TDR-techniek zoals h ier  beschreven, dus op het gebruik van een XY-rekorder en de
besproken t i j d  re fe ren t ie  procedure. Het re su lta a t  i s  dat de onnauwkeurigheden in de
waarden van e q , en vq (of t« )  globaal gegeven worden door

A e q

e0

Ae
5% , —  * 20%e

00

7.5%
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in  het re laxa tie  frequentie gebied

0.2 109<vq<3 109

, In Hoofstuk 4 worden de resultaten van de metingen gegeven. D ie lektrische
metingen m.b.v. TDR z ijn  ve rrich t aan ethanol, propanol-1, butanol-1 en heptanol-1.
Hoewel deze metingen bedoeld z ijn  als een te s t procedure te r bevestiging van de toe
pasbaarheid en nauwkeurigheid van TDR-experimenten, bevatten z i j  nieuwe gegevens voor
propanol-1 b i j  kamertemperatuur en voor heptanol-1 b i j  temperaturen boven 40°C.

In sektie 4.3 z i jn  de resultaten weergegeven van metingen aan 1:1 volume
mengsels van de mono alkoholen met te trach loo rko o ls to f. Hoewel de gevonden waarden
voor de aktiveringsenergie en de frequentie fak to r n ie t zeer nauwkeurig z ijn  ( d i t  is
echter eveneens het geval voor frequentie domein metingen) , tonen de resultaten aan
dat de Waarden voor E  ̂ en A gro ter z ijn  voor de mengsels dan voor de pure alkoholen.
D it e ffe k t is  het d u id e lijk s t voor methanol te rw ij l  het afneemt (procentueel) b i j  toe
nemende lengte van de koo ls to f keten. U it de resultaten aan heptanol-1/CC1. kan ech
te r  de trend worden afgele id dat de waarden voor E  ̂ en A k le ine r worden dan die van de
pure alkoholen wanneer de koo ls to f keten erg lang is .

De verandering in de re laxa tie  frequentie , aktiverings energie en frequentie
fa k to r, wanneer de alkoholen met CCl^ worden verdund, worden besproken door de veran
deringen die optreden in  de hoeveelheid koordinatie in  de po la ire  v lo e is to f wanneer een
volume eenheid van een alkohol wordt vervangen door een g e lijk e  volume eenheid CC1..

De resultaten aan methanol z i jn  in  tegenspraak met de aanname van Dannhauser
dat voor deze v lo e is to f het breken van de waterstof binding de snel heidsbepalende stap
is  voor re o rie n ta tie .

Tpt s lo t is  in Hoofdstuk 5 een algemene diskussie gegeven over de TDR-metho-
de, waarbij ook suggesties voor voortgezet onderzoek z i jn  opgenomen.



D it p ro e fsch rift zou n ie t to t  stand gekomen z ijn  zonder de bijdragen van anderen.
In de eerste plaats ge ld t d i t  Dr. I r .  G.P. de Loor, die de TDR-methode heeft

geintroduceerd op het Physisch Laboratorium TNO en die het werk in  a lle  stadia op een
p lez ie rige  en zeer intensieve manier heeft begeleid en gestimuleerd. Behalve het oplos
sen van wetenschappelijke problemen heeft h i j  ook vele buiten ons om gegenereerde (min
der wetenschappelijke) problemen to t  een oplossing weten te brengen. Ook Dr. P. Bordewijk
heeft to t  het ontstaan van d i t  p ro e fs c h rift op vele manieren een wezenlijke bijdrage
geleverd, waaronder het suggereren van het in Hoofdstuk 4 beschreven onderzoek en z'n
bijdragen aan de asymptotische berekeningen. H. Gravesteijn heeft door vele diskussies
over signaal verwerking en Fourier analyse, en door een deel van het komputerwerk voor
z'n rekening te nemen eveneens be lang rijk  bijgedragen. Wat b e tre ft het numerieke werk
hebben I r .  J.G. de Graan en J. de Vries be langrijk  werk v e rr ic h t. Een deel van de te s t-
experimenten z ijn  uitgevoerd door D.L.A. Osseman en de experimenten beschreven in
Hoofdstuk 4 z ijn  uitgevoerd door A.J. van der Lugt, die voor d i t  doel enige maanden in
ons groepje heeft meegewerkt. De gegevens van de experimenten werden geponst door Mej.
E.M. Bouman (40 keer 600 punten) te rw ijl de d e s t il la t ie s  van de v loe is to ffen  door Mej.
J. Kouwenhoven werden v e rr ic h t. Met e lektron ika problemen werd ik  geholpen door
J.F.C. Baesjou, J. van Reenen en J. de S tig te r , te rw ij l  de mechanische problemen door
P. Leemans werden opgelost. De tekeningen van de Hoofdstukken 1 en 2 z ijn  vervaardigd
door de tekenkamer van hetPhysisch Laboratorium TNO te rw ij l  de tekeningen van de Hoofd
stukken 3 en 4 door de heer P. Vissers (P h ilips  Natuurkundig Laboratorium) gemaakt z i jn .

Aan de d ire k tie  van het Physisch Laboratorium TNO betuig ik  mijn dank voor het
f e i t  dat ik  na mijn m il i ta ir e  dienst nog d rie  maanden lang in de gelegenheid bengesteld
(wetenschappelijk en financieel) d i t  werk af te ronden, waarbij verder het bekostigen
van het werkbezoek aan Dr. A. Suggett en Mevr. P.A. Quickenden van zeer grote invloed

is  geweest.
De d ire k tie  van het P h ilips  Natuurkundig Laboratorium ben ik  zeer erkente

l i j k  voor het f e i t  dat z i j  m ij na mijn m il i ta ire  dienst nog d rie  maanden v e rlo f heeft
gegeven om het h ie r beschreven werk a f te maken. Verder w il ik  gaarne memoreren dat z i j
het m ij financiee l mogelijk heeft gemaakt om tijd e n s  mijn m il i ta ire  d ie n s tt ijd  de in
Oxford gehoudenAdvanced Summer School in Theoretical Chemistry, o . l .v .  Prof. C.A. Coulsoni
b i j  te wonen; en dat z i j  de kosten, verbonden aan het o ffse t drukken van d i t  proef
s c h r if t ,  voor haar rekening heeft genomen.

I am very indepted to Dr. A Suggett and to Mrs. P.A. Quickenden fo r th e ir
h o s p ita lity  and quidence during my stay at the Unilever Research Laboratories. This
stay has been o f great importance fo r learning how to work out TDR-experiments. The
numerous discussionsduring th is  stay and also before and afterwards, by telephone, have

contributed much to my knowledge.
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nanciel gesteund door het Delftse Lipkensfonds. Na het afstuderen op 24 juni 1969 bleef
ik nog to t  5 januari 1970 bij de werkgroep M.R. Vanaf 16 januari 1970 ben ik verbonden
aan het Natuurkundig Laboratorium van de N.V. Philips' Gloeilampen Fabrieken.

Mijn m ilita ire  dienst periode, welke 5 januari 1970 aanving, heb ik vanaf
maart 1970 doorgebracht op het Physisch Laboratorium TNO te Den Haag, in de groep van
Dr. Ir. G.P. de Loor. Het daar verrichte onderzoek aan TDR is in d i t  proefschrift vast
gelegd. In september 1971 werd ik in de gelegenheid gesteld om drie dagen op het Uni
lever Research Laboratorium te werken bij Mevr. P.A. Quickenden en Dr. A. Suggett. In
ju li  1971 bezocht ik opnieuw de cursus Advanced Summer School in Theoretical Chemistry
in Oxford, o . l .v .  Prof. C.A Coulson, nu financieel gesteund door de N.V. Philips.

Sinds januari 1972 ben ik daadwerkelijk verbonden aan het Philips Natuurkun
dig Laboratorium, in de groep Gasontladingen.








