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INTRO D U CTIO N

One of the ways to obtain information on the interactions between a pair
of spherical molecules is the study of the transport properties in a dilute
noble gas. In a dilute gas only pair interactions are of importance and for
that case a rather rigourous treatment is available in the Chapm an-
Enskog theory. Transport of a physical quantity is made up from contri
butions of the individual molecular collisions. So a transport coefficient
contains the contributions to the transport of all pairs of colliding mole
cules, averaged over the impact parameters and the relative kinetic energies.
In the Chapm an-Enskog theory this procedure results in collision inte
grals, Q( -a>, occuring in the expressions for the transport coefficients. From
its nature it is clear that a collision integral is not very sensitive to the
detailed form of the potential function for a pair of molecules. This is a
fortunate circumstance since one can use rather simple potential models in
the description of the transport coefficients. For the inverse problem, i.e.
the derivation of the potential from a transport coefficient, the averaging
involved in the collision integrals complicates the situation. Detailed
knowledge about the potential can only result from a variation of the distri
bution of the variables in the collision integrals. The distribution of the
impact parameters cannot be influenced experimentally but that of the
relative kinetic energies can be changed by varying the temperature. There
fore a transport property will only be a source of significant knowledge
about the pair interactions if one can determine accurately the transport
coefficient over a large temperature range. This has been verified in vis
cosity, thermal conductivity and self-diffusion experiments, especially for
gases consisting of monatomic molecules.

Extending the study of a transport property to binary m ixtures of
dilute gases one could in general obtain information about the pair inter
actions that occur between the different species of molecules. Unlike
viscosity and thermal conductivity, the diffusion in a mixture refers almost
completely to the mixed interactions. Therefore the diffusion coefficient
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is one of the best tools to investigate the interactions between unlike
molecules.

The present thesis is devoted to the study of the diffusion coefficient of
binary gaseous mixtures. Although many investigations on diffusion have
been performed during the course of this century, it is surprising that the
accuracy has always been rather poor compared to that of viscosity or
thermal conductivity experiments. This might be due to the fact that in
most cases diffusion measurements are performed in a non-stationary state;
systematic errors may easily appear. Primarily it has been our intention to
improve the accuracy in diffusion experiments by developing a method
which can be shown to be reliable under widely varying conditions. The
purpose of these experiments has been to obtain information about the
mixed interactions. We have restricted ourselves to the study of gases for
which the C hapm an-Enskog theory is applicable using simple potential
models. This is the case for, e.g., the noble gases. Since the attractive forces
between the molecules are more important at lower temperatures the ex
periments have been performed over a temperature range extending mainly
below room temperature. We have carried out an extensive study of the
diffusion coefficient at different concentrations of the species composing the
mixture. The C hapm an-Enskog theory predicts a rather small concen
tration dependence of the diffusion coefficient. So far this has been verified
only in some cases by other investigators.

Chapter I deals with the experimental method used for the determination
of diffusion coefficients. The apparatus has been thoroughly tested for
nitrogen-hydrogen mixtures over a wide temperature and concentration
range. The resulting diffusion coefficients are accurate within 1%. Al
though N2- and H2-molecules are not spherical, the experimental data can
be brought into agreement with the Chapm an-Enskog theory using a
potential like the L ennard -Jones (12-6) potential or the (exp—6) po
tential. The parameters of these potentials belonging to the N2-H 2 inter
actions have been derived.

In chapter II diffusion experiments are reported for all binary mixtures
composed of the noble gases: He, Ne, Ar, Kr and Xe. For mixtures of
widely varying compositions the diffusion coefficients have been determined
between 65°K and 400°K. In general rather accurate values of the potential
parameters have been derived from the experimental data. We have in
vestigated the combination rules with these values, i.e. the relations be
tween the parameters characterizing the pair potentials of like and unlike
molecules in a binary mixture.
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C H A P T E R  I

DETERM INATION OF TH E D IF F U S IO N  C O E FF IC IE N T
OF TH E SYSTEM N2-H 2 AS A FUNCTION OF

TE M P ER A TU R E  AND CONCENTRATION

S y n o p sis

A method for accurate determination of binary diffusion coefficients as a function
of temperature and concentration is described. The apparatus has been thoroughly
checked for the system N2-H 2 between 65° and 300°K. The measured diffusion
coefficients are consistent with the C h a p m a n-E n s k o g theory and allow determination
of the intermolecular potential parameters to an accuracy of 1 % in e and 0.2% in a.
The concentration dependence is also well described by this theory.

1. Introduction. According to the Chapman-Enskog theory1) the
general expression for the diffusion coefficient D12 of a binary gaseous
mixture in m-th approximation is given by

P l 2] m =  [ D u h f ö *  2) (1)

where

3 a/  kT  1
8V *  012&1 V^'CHa) «

or in terms of the pressure

(2)

[£>12] 1 =  —------— 3 r 3 / 2 '“ 12 _L.

fD * takes into account the contribution of higher terms in the Sonine
expansion. In these expressions p, n, T  and /i denote pressure, density,
temperature and reduced mass respectively; k is Boltzmann’s constant;
the subscripts 1 and 2 refer to molecules of species 1 and 2. The inter
molecular potential model, in which the depth of the well is given by e
and the minimum separation for zero energy by a, enters eq. (2) or (3)
through ai2 and with T* =  kT/e^. i2(1,1>* is the diffusion
collision integral, reduced in the usual way2). As the right hand side of
eq. (3) depends only on the properties of mixed interaction, the first
Chapman-Enskog approximation of Z>i2 (in which fD =  1) is very
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suitable for getting information on £ 1 2  and an. This is in contrast to e.g.,
the other transport properties since these contain the parameters of the
pure components as well. To be able to determine £ 1 2  and <ri2 from the
experimental values of D one needs accurate measurements over a large
temperature range because i2(1,1)* depends only slightly on temperature.
Furthermore one has to derive [Z)]i from the measured values of D. The
correction factor fD due to the higher approximations of D differs only
a few percent from unity. It is, however, dependent on concentration.
For this reason one has to measure D as a function of concentration too.

We will describe a method that gives the desired accuracy over a large
enough temperature and concentration range.

2. Apparatus. A schematic diagram of the diffusion cell that is placed
in a cryostat is shown in fig. 1. The apparatus consists of two cylindrical
brass chambers, closed at both ends by brass flanges with indium “o”
ring seals. The chambers are connected by an interchangeable stainless

pump

ITL f t f  rn
U Iu A

N T C f

u

J

n
N T

A
= 2

7 n
IÏ in
Fig. 1. Apparatus

steel capillary that is screwed with a teflon tape seal into the separating
wall. The volumes of the chambers are 100 cm3 each; the capillaries vary
from 2.5 to 10 cm in length and from 0.045 to 0.137 cm in radius. The cell
is connected with the filling system and an oil manometer by a German
silver tube, which can be closed by a stainless steel precision needle valve V ,
operated from the top of the cryostat.

At the start of an experiment the apparatus is filled with a mixture. The
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needle valve V is closed and the gas above V is exchanged for some gas
with a different composition. Then the concentration in the upper vessel
is changed about 5% by opening the needle valve for some time. After
V is closed we wait a few minutes for transient effects to die out and then
the difference in concentration between the upper and lower chamber is
registered. A diffusion measurement consists thus of the determination of
a concentration-time diagram.

The concentration is continuously measured by thermistors, N.T.C.i and
N.T.C.2, using the dependence of the thermal conductivity of a mixture
on composition. At low temperatures we used thermistors from K eystone
Carbon Com pany (St. Marys, Pennsylvania), type L 0904 -  730 TO3),
while at room temperature we used thermistors from S ta n d a rd  Tele
phones and Cables Ltd. (Footscray, Sidcup, Kent), type R 13- 1 PK,
the glass vacuum covers of which were removed. The thermistors are
mounted on the upper and lower flange of the cell using “e lec tro v ac”
seals (Vienna, Austria), type H113A9, for the connecting wires. The
variation of the resistances of the thermistors in the upper and lower
chamber is differentially determined in a W h eatstone  bridge with a
recording milhvoltmeter.

The concentration detection method using thermistors requires very
good temperature stability as one can see from the following example.
In a mixture of 50% N2-H 2 we initially set up a concentration gradient
of say at most 5%. As a result the temperature difference between ther
mistor and walls, which was in most cases not more than 2°C, will change
by about 0.1 °C. For accurate diffusion measurements one requires a
sensitivity of 2.10-3 in the concentration determination. This means a
temperature stability within 2.10-4°C over the time that a diffusion run
takes place. At low temperatures this stability is for the greater part
achieved in the following way. We have surrounded the apparatus (dia
meter 6.5 cm) by a brass jacket (diameter 8.5 cm), closed at the bottom.
The whole system is placed in a wide cryostat (diameter 14 cm) that is
filled with a boiling liquid. A heater at the bottom of the cryostat creates
a fine stream of vapour bubbles around the apparatus. Since the jacket
screens the cell from a vigourous streaming of the cooling liquid, the tempera
ture in the neighbourhood of the cell is stabilized at a value corresponding
to the hydrostatic pressure.

At room temperature we used a commercial water thermostat, constant
to ±  0.01°C, while the same jacket, filled with oil, served as a buffer. The
remaining instability is canceled by using thermistors with equal temper
ature coefficients in the W heatstone  bridge circuit.

The measuring temperatures are derived from the vapour pressure of the
cooling liquids, applying a correction for the height of the liquid column
above the centre of the cell.
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The gases we have used are from laboratory stock and have a purity
better than 99.9%. This has been checked in a thermal diffusion apparatus
with a resolution of about 0.05%.4)

3. Detection of the concentration. The concentration difference in the
chambers will decrease to zero according to the relation

xf — x00 =  «  -  e“l/T (4)

where

T  =  Dl2^ ( l ^ + Fr ) ( 1 + a  (5)

Here x denotes the concentration, V is the volume of a chamber and /oap
and A are the capillary length and cross sectional area. The superscripts
u and 1 denote the upper and lower chamber, while the subscripts t, 0 and oo
describe different times. £ is a correction term that will be discussed in
section 4. Using an equation similar to eq. (4) for the lower chamber we
can write for the difference in concentration Ax, between both chambers

(Ax)t =  (Ax)0 e~tlT. (6)

To determine t we have to measure the variation of Ax as a function of time.
Since the concentration of a mixture is not proportional to, i.a., its thermal
conductivity, the recorded signal can be expected to be nonlinear in the
concentration. We will now show that due to the symmetry in the apparatus
nonlinear effects cancel. Expanding the recorded signal Eu for the upper
chamber alone, we obtain

(  4EU\w - o U - ) +
,' d2Eu \

(!)

If the dependence of E  on x  is the same for both thermistors one gets on
writing eq. (7) for both chambers and subtracting

E f -  E\ =  (*?

*o){#o +  *o — 2xco) (8)

If the chambers are equal in volume, ”1“ *o 2x°a =  an<̂  hence the
nonlinear term disappears. The difference in dE/dx between the thermis
tors under the same surrounding conditions has been kept always smaller
than 5% while the volumes were equal within 0.5%. This means that no
corrections for nonlinearity have to be applied in this apparatus.
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4. Determination of r  and calculation of D. From the slope of a \og\(Ax)t\
vs. time plot (see eq. (6)) one could determine r  graphically. This method,
however, has several drawbacks. The asymptotic value is not known since,
due to the slight inequality of the thermistors, the zero point is shifted after
a run. If one tries to estimate the value of the asymptote from the experi
mental curve, there is a tendency to  give too much weight to  the end of
the curve. This can prove awkward because a constant tem perature drift,
th a t has a negligible effect a t the beginning of the curve, is im portant a t
its asymptotic value. For this reason we prefer the following procedure.

We take as reference the initial situation. From eq. (6) we obtain the
following expression:

(Ax)0 — (Ax)t =  (Ax)0 (1 — e~l,T). (9)

When we plot the experimental data  as log \(Ax)0 — (Ax)t\ vs. log t we
get a curve the form of which is independent of both t and (Ax)q, since
log (1 e ^) is only a function of the ratio  t/r. We compare the curve
so obtained with a plot of log (1 -  e-«) vs. log t. The shape of these curves
should then be identical. From the shifts along the axis, necessary to make

log X

Fig. 2. Determination of

l°9l(AX)0l

both curves coincide, one obtains the values of lo g r  and log \(Ax)q\ (see
fig. 2). Not only does one use in this way the to ta l experimental information
but this m ethod also shows accurately th a t nonexponential perturbation
in a diffusion run does not occur.

W ith eq. (5) one can calculate D from r. The uncertainty in the dimensions
of the apparatus never exceeds 0.2%. The derivation of eqs. (4) and (5)
is made for an idealized situation (C =  0). Under experimental conditions
one has to  take into account the following effects:
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a) The volume of the capillary is not negligible compared to the volumes
of the chambers5).

b) The concentration gradient in the capillary is not linear6).
c) End effects give rise to a difference between the geometrical and the

effective length of the capillary7)8). In our case the corrections for a) and b)
together are always smaller than 0.5%, while the correction for c) varies
from 0.7 to 4.3%. We do not apply corrections for the variation of D with
concentration during an experiment, as these turn out to be negligible.6)
Furthermore the influence of a concentration gradient in the chambers can
be neglected.5) Transient effects are avoided by waiting some time9). For
a full discussion of these effects we refer to the original papers mentioned
above.

5. Results and consistency tests. For reliable results it is obvious that the
measured diffusion curves should be exponential (see section 4). Since also
most disturbances will die out exponentially with nearly the same time
constant, this is, however, not sufficient; other consistency tests are
necessary.

According to eqs. (3) and (5) r  is proportional to p, lcav> and l/A. The
value of Dp, as calculated from r, should therefore be independent of p,
I and A.  Variation of these quantities is restricted by the condition
that the attainable temperature stability requires a measuring time of
one hour at the most. This can be achieved either with short and wide
capillaries or with low measuring pressures. The first possibility leads,
however, to too large a correction £ tor the dimensions of the capillary
(see section 4), while the second introduces corrections for Knudsen
effects. Near the Knudsen  region one expects for the diffusion coefficient
as measured, an approximately linear deviation in / / f cap, where /  signifies
the mean free path. So

in which Ci denotes an unknown constant of the order unity, depending
on the surface of the capillary; Since / i s  proportional to T/p, eq. (10) can
be written as

hence the plot of (Dlzp)%£ vs. 1 lproap is expected to show a straight line
at constant temperature. In figs. 3, 4, 5, 6 and 7, where every symbol
signifies a value averaged over 3 to 5 runs, the validity of eq. (11) is shown.
Only at high values of T\prc&v eq. (11) does no longer hold (see fig. 7).
The values of D12p are obtained by extrapolation to l//>rcap =  0. This

D\2p (  1 ( 10)

Ditp[ 1 ( 11)
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0.075

-  0 .1 3 7 2  cm
.  0 .1 0 0 8  „

0.0453 „

0.065

0.055

0 0  l/P rcai

Fig. 4. Mean free path dependence of (£>i 2 p ) f*P at 77.35°K; *H2 =  0.5.
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Fig. 5. Mean free path dependence of ( D i2 £)gP at 90.2°K; x H2 f= 0.5.
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Fig. 7. Mean free path dependence of (Di2 p ) ^ ^  294.8°K; xjj.2 — 0.5.

was done with the method of least squares, taking a 90% confidence
interval10) for determination of the experimental error. The D12p data are
collected in table I, together with the slopes, indicating the mean free
path dependence. At all temperatures we used at least two different capillary
cross sections which gave overlapping data.

The independence of Dp of capillary length at 77.3 K is illustrated in
fig. 8, where every symbol is a value averaged over all the measurements
with the same capillary. These data are corrected for the K nudsen effect
as measured (see fig. 4).

To compare the consistency of eq. (11) at different temperatures we
plot the slopes of the lines from figs. 3 to 7 (table I, third column) vs. tem
perature in fig. 9. A straight line through the origin is indeed found. The
deviation of the value at 65°K will be considered in the next section.
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T A B L E  I

E xperim en ta l resu lts for th e  system  N j-H s , i h 2 =  0.5

T em peratu re
°K

D 12P
10~2 cm 2 sec-1 a tm

1 d ( D la p)% g

D 12P  d (l//> rcap)
10“6 cm  a tm

65.25 4.70 ±  0.04 +  (0.5 ±  1.1)
77.3= 6.71 ±  0.02 -  (2.7 ±  0.3)
90.2 9.00 ±  0.05 -  (2.9 ±  0.5)

169.3 28.94 ±  0.15 -  (5.6 ±  0.5)
294.8 76.64 ±  0.20 - ( 1 0 .7  ±  0.5)

0 .075

cm2 se c 1 atm

0 .0 7 0

0 .0 6 5

0 .0 6 0
0 .0  l/leff 0.1 0 .2  0.3 0 .4 cm-’ 0.5

Fig. 8. Dependence of ( £ > 1 2  ƒ>)**§ on capillary length at 77.35°K; x h 2 =  0.5.

15

10"6cm atm

5

-5

-15
O T lOO 2 0 0  3 0 0  °K

Fig. 9. Consistency of the mean free path dependence of (Di2 p)gP as a function of
temperature; #h2 =  0.5.

Since the diffusion process is very sensitive to incomplete mixing in the
chambers and convection in the capillary, we have performed some additional
checks. The mixing in the chambers is complete, since neither the magnitude
nor the direction of a concentration variation has any influence on the values
obtained for r. This is due mainly to the absence of dead space and shows

<J> experiment

D,2p d(l/p rcap)
triplcpoint n2

1 I I T

V rcap m 0 .1 3 7 2  cm
□ i f = 0 .1 0 0 8  ,t
A i f m 0 .0 6 9 9  ft
O 1» = 0 .0 4 5 3  ,f

------- ®------ &------- s------ -
tl°/o

J______________|_____________ |______________I
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furthermore that the diffusion resistance in the cell is negligible compared
to the resistance of the capillary. Convection in the chambers, which is
caused mainly by the thermistors, might disturb the diffusion process in
the capillary. Such a disturbance does not occur because the results are
independent of the heating current through the thermistors. The heat
input of the low temperature thermistors has been varied from 1 to 15
milliwatt, while the much smaller ones for room temperature have been
checked with 0.1 and 0.5 mW.

6. Comparison with theory and calculation of the potential parameters. To
compare our results with theory we shall first consider the dependence of
D on concentration. Since the variation of D over the whole concentration
range amounts to only a few percent, only the second approximation of D
has to be taken into account. As shown by M ason11) and Saxen a 12),
K ih a ra 13) has given an approach which is slightly more favourable than
that given by C hapm an and Cow ling1). In this formalism the second
approximation of D, g<>2) (cf- I'd in eT 0 ) )  is bY

g g > = l  + A ’ (12)
where

■ _  (6C*2 -  5)2 x\Pl +  4 P 2 +  *1*2^12 ,j3s
^ 10 x\Q[ +  x\Qz +  X1X2Q12

The quantities P and  Q' are the same as those defined by M ason11). They
are complicated expressions containing different collision integrals i3(1,8)
and the masses of the molecules. C\2 is defined as the ratio of fijfe2) to

since in the case of a N2-H 2 mixture, (g^ — 1) is always smaller
than 10-4 at concentration xHl =  1.0, we can compare experiment with
theory by plotting the experimental values of (D)x/ (D)x=i and the theoretical
function g ^  vs. x in the same graph (see figs. 10 and 11). As one can see

(Di
(D)x.,

O H2-run
A N 2 - run

■ 9^0 ♦o'- L. J .  ( l2 -6  )  -  potential

ta

"h2

Fig. 10. Concentration dependence of D  for the  system  N 2- H 2  a t  77.35 K.
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good agreement between theory and experiment is found. At 294.8°K we
get the best fit of our data  for an exp-6 potential, with a =  14, bu t within
the accuracy of the measurements other potential models: exp-6 (<x =  12,
13 and 15), L e n n a rd -J o n e s  (12-6) are also possible. At 77.3°K the same
good agreement with theory is found but since the concentration dependence
is very small, there is no special potential model preferable. This good

O  H 2 - ru n
A Nj.run

_____ Qq for L J .  (l 2 - 6) -  potential

Oa  O A o

Fig. 11. Concentration dependence of D for the system N2-H 2 at 294.8°K.

agreement allows us to calculate (Z))®^, for concentration xHt = 1 .0 ,  from
the measured values of (D)“ p0.5 using a theoretical estimate of a t
concentration xBt =  0.5. Thus it was not necessary to  measure D as a
function of concentration a t each tem perature. The value of (Z))®*p is now
compared with a theoretical calculation of [Z)]x to  find the potential para
meters, using the so called “ translational” m ethod as introduced by
K e e s o m 14) for the case of second virial coefficients. Defining reduced
quantities as

we get using eq. (3)

IP id* Pit _  [Z>i2]i/> r2 _  3/8\/jr
V f * [  Vk*T*l2m  °12 ~  '

(14)

(15)

We plot the experimental results as log {(Di 2)“ pi j>lVk*T*l2/tl t} vs. log T
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which curve should have the same shape as the theoretical curve of
lo g { P i2] f ^ / V T f |} ,S.lo g r? 2) the latter curve being determined by
ö(i.1)*(7'*2). The shifts in the direction of the abscissa and ordinate determine
log (e/ft)i2 and log a\2 respectively. This procedure (see fig. 12) is
followed using Q-data for the L ennard-Jones (12-6) potential and

0.02 50 0.27 5

0.25 00.02 2 5

0.22 5
0.0200

0.200

0.0175

0.17 5

© experiment
_______ thcor. (cxp_6)_ potential

a .  14

0.0 150

0.15 0

/  I triplepoint N2
0.0125

400200

Fig. 12. Determination of the potential parameters for the system N 2-H 2 .

the exp-6 potential (a =  12, 13, 14 and 15). As the quantum parameter,
A* = h/ai2V2/ui2£i2 2) for the system N2-H 2 amounts to 0.89, quantum
mechanical effects cannot be neglected in the temperature range where
T* <  5. We have obtained the quantum mechanically calculated values
of for the L ennard-Jones (12-6) potential by interpolation of
the tables from Munn e.a.16). For other potential models no quantum
mechanical calculations of have been performed. Since the data
of Munn e.a. for the classical case {A* =  0) deviate not more than 2.5%
from those at A* =  0.89, for T* >  1, we have calculated the fi(1-1> data
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for the other potential models by assuming, that to a good approximation

(16)
\  S,JA * = 0  /L.J.(12-6)

In this way the classical fiu,1)*-data for the exp-6 potential, as tabulated
by M ason17) have been corrected for quantum effects.

Since is mainly determined by C*n (T*2), which depends strongly on
the choice of (e/k) 12, a successive approximation has been made for (e/&)i2
and <rx2 to eliminate the concentration dependence. The final results for
(elk) 12, (rm)i2 and a 12 are given in table II. If one neglects quantum cor
rections a rather big error is made. The values of (e/k) 12 as obtained
classically turn out to be about 5°K lower, while ui2 is increased by about
0.02 A.

TABLE II

Potential param eters for several intermolecular potential models for the sys
tem  N 2- H 2 , derived from the diffusion coefficient.

Potential ( e l k ) 1 2 {fm) 12 012
°K A A

E xp — 6, a  =  12 50.4 ±  0.5 3.954 ±  0.008 3.464 ±  0.008
,, a  =  13 56.0 ±  0.3 3.835 ±  0.005 3.387 ±  0.005
„ a =  14 60.8 ±  0.3 3.747 ±  0.005 3.331 ±  0.005
„ a =  15 65.2 ±  0.3 3.678 ±  0.005 3.289 ±  0.005

L e n n a rd - J o n e s  (12-6) 62.9 ±  0.5 3.687 ±  0.008 3.285 ±  0.008

As in the case of the concentration dependence the experimental results
for [Öi2]i fit the theory for all of the investigated potential models, but the
best agreement is obtained for an exp-6  potential, a. =  13 or 14.

A comparison with the results for (e/&)i2 and 0T2, as obtained from
combination rules2), can be made for the L ennard-Jones (12- 6) potential
parameters. From the values of e/k and a for the pure gases N2 and H2,
as determined from the second virial coefficient measurements of M ichels
e.a.18)19) we get

(e/k) 12 =  V(slk) 11 (e/k) 22 =  59.3°K

1 3.31 A.

Although the combination rules are not very well founded, the agreement
with our results is quite good.

In the preceding considerations we have omitted the low value of D
at T =  65°K since there was some uncertainty in this experimental value.
At this very low temperature one gets easily adsorption of N2, increasing
with increasing pressure. Also this is probably the reason why the value
of (IIDi2p){[_d(Di2p)^]l[d(\lprc&v)]} at 65°K deviates so much from the
trend of the data at higher temperatures (see fig. 9).
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CH APTER II

D ETERM INATION ÓF TH E D IFF U SIO N
COEFFICIENTS OF BINARY MIXTURES OF TH E NOBLE

GASES AS A FUNCTION OF T E M P ER A T U R E
AND CONCENTRATION

The diffusion coefficients, D 1 2 , of the ten binary mixtures of the noble gases: He,
Ne, Ar, Kr and Xe, have been measured as a function of temperature and concentration
using a method similar to the one described in chapter I. In general the diffusion
coefficients are well described by the C hapm an-Enskog theory with the Lennard-
Jon es (12-6) potential or the (exp-6) potential. From the experimental data the
potential parameters, ey and oy, of the mixed interaction have been calculated. Some
combination rules connecting the mixed parameters with those of the pure components
have been tested. Only the rule fy ay =  agrees with the experiments.

1. Introduction. In chapter I 1) we have described a method for an
accurate determination of the diffusion coefficients for binary gaseous
mixtures over a wide range of temperature and concentration. Such measure
ments give rather direct information on the potential between a pair of
unlike molecules. This can be seen from the Chapman-Enskog ex
pression2)3) for the binary diffusion coefficient, D1 2  (mth order):

where

k =  Boltzmann’s constant
T =  temperature
H =  reduced mass
p =  pressure
ö(i*D (T*) =  reduced collision integral3)
T* =  kT/s
s =  depth of the potential well
o — distance at which the interaction energy is zero
fig* =  contribution of the So nine expansion up to mth order

Synopsis

[£)l2]in =  [D12] 1 ƒ<?)(*) 0 )
3 V k 3T 3l2[ii2 1

8V* o\2Q T r (T*2) p (2)
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x =  molar concentration of the lighter component
12 =  subscript indicating a mixture of species 1 and 2.

In the first approximation, [Z)i2]i, only the mixed interaction appears,
but the higher approximations of D u  contain as well the interactions between
like molecules. As fD(x) differs slightly from unity the interactions between
like molecules are always of minor importance. By comparing the èxperi-
mental results with theory one can determine the potential parameters ei2
and (T12- However since is a slowly varying function of temperature
an accurate determination of the potential parameters is only possible from
diffusion coefficients measured over a wide temperature range. Furthermore
one needs measurements of D12 as a function of concentration in order to
derive [£>12] 1 from the experimental data.

We have performed diffusion measurements for a complete set of binary
mixtures composed of the noble gases: He, Ne, Ar, Kr and Xe in the temper
ature range from 65°K to 400°K at pressures below 1 atm. The Chapm an-
Enskog theory in combination with a simple potential like the L ennard-
Jones  (12- 6) potential is expected to be applicable to these gases. This has
been tested both from the temperature and concentration dependence of
£>12- For all mixtures the parameters £12 and 012 have been derived. As the
potential parameters of the pure noble gases are rather well known it is
possible to investigate how the interactions between a pair of unlike molecules
are related to interactions between like molecules.

2. Experimental procedure. For the determination of D12 we have used
a two-chamber diffusion cell which is described in detail in chapter I. The
procedure has been carefully checked for the system N2-H 2. We limit
ourselves here to a schematic survey.

Two chambers, connected by a capillary, are initially filled with the same
mixture. At time t =  0 we set up a concentration difference, (Ax)0, over the
capillary by admitting some pure gas in one of the chambers. Then the
diffusion coefficient is determined from the rate of change of Ax:

In eq. (4) lcap and A denote the capillary length and cross sectional area,
F u and V1 are the volumes of upper and lower chamber and £ is a correction
arising from the volume as well as the end effects of the capillary.

The concentration difference is continuously registered using thermistors,
placed into the apparatus.

Measurements have been performed at different temperatures with a

(Ax)t =  (Ax)0 e </T (3)
where

(1 + 0
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bath of liquid N2, O2, CH4, C2H4 and C3H8 boiling at constant pressure and
with commercial thermostats, filled with water (295°K) or oil (400°K). The
noble gases have the natural isotopic composition. The purity of the gases
is at least 99.9%.

3. Evaluation of the experimental data. a. D e term in a tio n  of D12 a t
x — 0-5 as a func tion  of tem p era tu re . For conditions imposed by
temperature stability and by the nature of the correction £ in eq. (4) this
apparatus is only suitable to measure diffusion coefficients larger than
10 cm2 s-1. Since in most cases D12 at 1 atm is much smaller than 1 cm2 s-1
we are forced to measure at rather low pressures (note D12 ~  l/p). At these
low pressures, however, the mean free path, / ,  is not very small as compared
to the radius of the capillary, rcap. Therefore the diffusion coefficient as
calculated from the eqs. (3) and (4) has to be corrected for the occurrence of

K nudsen” effects. When / ’lrCSLX) is not too large one can describe the
“K nudsen” effect with an expression of the form:

Here (Di2)gJ refers to the apparent diffusion coefficient as calculated from
the measured value of r  (see eq. (4)). ci is a coefficient of the order unity; its
value might depend on the nature of the capillary surface and accommoda
tion coefficient. We can determine its value experimentally. We therefore
rewrite eq. (5), using T\p, as:

where C2 denotes a constant which includes ci.
For a mixture at x =  0.5 we plot (P\2p)^^  as a function of 1 /prcap at

constant temperature (see e.g. fig. 1 of section 4; for simplicity we only use
one symbol to denote the averaged value obtained from four diffusion runs).
The experiments show that eq. (6) holds for a reasonable value of C2. The
true value of (D12p)e*v is determined by extrapolating 1 //>rcap to zero.

A further check on relation (6) is obtained from the slopes of the lines in
fig. 1 in the following way. From eq. (6) we derive:

We plot the left hand side of eq. (7) vs. temperature (see e.g. fig. 2 of section
4). In general eq. (7) is well satisfied. This gives a further justification of the
procedure used.

D ivp  I 1 —  c i

D\ip I 1 — C2

1 d P i2 P)g* _  _
Dizp d( 1 Ipr ca,p)
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b. D e te rm in a tio n  of D12 as a fu n c tio n  of co n cen tra tion .
Since for the determination of £>12 at a fixed concentration a large number
of measurements are needed to obtain an accuracy of say 0.5% in the
extrapolation procedure, we do not follow the method of section 3a for the
other concentrations. In a number of checks the constant C2 in eq. (6)
appeared to be concentration independent. We can therefore use the values
of c2 obtained at x =  0.5 to correct (£>12̂ )13? at all concentrations. Hence
we measure {Dizp)^  as a function of concentration at a fixed pressure and
apply the K nudsen correction as calculated from eq. (6), using for C2 the
value as determined at x =  0.5.

In our method it is only possible to measure diffusion coefficients in the
concentration range, extending from x =  0.10 to x =  0.90. Due to lack of
accuracy in the individual diffusion runs (1-2%) the extrapolation of D12
to the ends of the concentration range, without the help of theory, is rather
questionable. Therefore we consider the concentration dependent part of
eq. (1): fD(x). We restrict ourselves to the second approximation4):= (8,
In this expression CJ2 (ratio of D(12'2)* to ö)12,1)*) is strongly dependent on
the intermolecular potential, but not on x, whereas the function A (x) is
almost completely determined by the molecular weights and concentrations
of the constituents of the mixture. In order to eliminate the influence of the
potential model only the dependence of A on x is used in the extrapolation
of D12 to x =  0 and x =  1. If we write =  1 +  FA{x), the shape of the
curve fn is fixed through A(x) whereas F  may be considered as a scale
factor following from the experimental data. We proceed in the following
way. We plot the experimental values of {D)XI(D)X=0 5 as a function of x and
make a best fit with (1 +  FAX)I( 1 +  FAX=0_5) through an adjustment of
F  by trial and error (see e.g. fig. 3 in section 4; to avoid double subscripts of
.D12 we omit in this case the subscript 12). Now F  can be compared with the
term (6C*2 — 5)2/10, where the potential model appears. This is done in
e.g. fig. 4 of section 4 by plotting (D)X=1I{D)X=0 vs. temperature and the
curve of fêhjf f lo  as calculated for the L.J. (12-6) potential (second K ihara
approximation)4)5). A further discussion is given in section 7.

c. D e te rm in a tio n  of th e  p o te n tia l p aram eters . In order to find
ei2 and tr 12 we fit the measurements to the Chapm an-Enskog expression
[£)la]i (see eq. (2)) in the following way. From (£>i2 )̂®=P0.5 we calculate
{Di2p)'^Fi by using the concentration dependence as determined in section
3b. The advantage of this choice is that at this concentration fD differs no
more than 10-4 from unity, hence one can identify ( D u ) ^ 1 with [£>i2]i.
We now write eq. (2) with reduced quantities (see chapter I, eqs. (14)
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and (15)):
\D\2\XPX1 _  [-Pi2]i P 2 3/8y/n

y /f* l  ~  J&T*l2pi2 12 Q $ iy (Tts) '

By curve shifting we make coincide log{(Z)i2)®*p1 p /\  ^37’3/2Jai2} vs. log T
and log{[Z>i2]f £ i2/v T f|} vs. log T*2. In this way one obtains (e/k)i2 and
ax\. A typical plot as used is shown in fig. 5 for the system Ne-He (L.J.
(12-6) potential). As one can see from the slight curvature it is hardly
possible to derive independently (e/ft)i2 and 0-12. This is illustrated by the
dashed line drawn for a 5°K lower value of (e/k)i2. The accuracy in e/k is
worse than in a (see scales of fig. 5). The best fit with a straight line for log
{(Z>i2)®lPi p l \ ^3T3/2Jai2} as. log T  determines, however, rather accurately
the quantity (e/&)12ffi2. Here n depends on the slope of the line. Without
much loss in accuracy only integral values of n can be used, giving n =  11
in the case of Ne-He. An accurate value of (e/^)i2ffi2 *s still useful for the
comparison with other mixtures in order to test the combination rules. This
will be described in section 7.

We have investigated the L.J. (12-6) potential and the (exp—6) potential
with for a the values: 12, 13, 14 and 15. For the L.J. potential we use the
parameters s and a\ the (exp—6) potential takes its simplest form, however,
with e and rm (distance for minimum energy), so we shall report either a or
rm corresponding to the potential under consideration. In general all potential
models fit the experiments for a suitable choice of e and a. For every model
the best set of e and a is determined. Finally we conclude to the best potential
model from the standard deviation of the experimental data with respect
to the theoretical curve with the optimal values for e and a in e.g. fig. 5.

The procedure is performed using -data from refs. 6 and 7. Quantum
mechanical corrections, especially important for mixtures with He, are
applied in the same way as in the case of N2-H 2 (see chapter I).

4. Results. In this section we shall report the results for all binary
mixtures of the noble gases, obtained in the way as described in section 3.
We shall limit the discussion to remarks that are pertinent only to the system
under consideration. We shall present a comparison with the results of other
sources in the next section (5), while a general discussion of the potential
parameters obtained is postponed to sections 6 and 7. In section 7 also the
concentration dependence of D12 is discussed in general.

System s:
a. N e-H e. For this mixture Z>i2 at x =  0.5 has been measured between

65°K and 295°K. The lower temperature limit is determined by the availabi
lity of a stable cooling liquid. Liquefied neon has not been used since at this
temperature the diffusion coefficient is too small to measure accurately with
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this method. As the determination of the concentration dependence needs
a still better temperature stability (see section 3b), no measurements are
done at 65°K (reduced liquid nitrogen bath).

The results for (Dnfi)x=0.5 as a function of 1 lprc&v are collected in fig. 1.
The influence of the “K nudsen” effect as a function of temperature is
shown in fig. 2. In fig. 3 the concentration dependence is plotted at various
temperatures and in fig. 4 one sees the results as a function of temperature,
together with the curve for the L ennard-Jones (12-6) potential. Although
the concentration dependence has the same form as predicted from theory,
no agreement is found for the absolute value (see section 7).

In table I, second column, we have collected the extrapolated values of
(D\2  p)exxIo .5 from 1 • In the third column we have given the ratio of
(D)x=o. 5  to (D)x= 10  as calculated from the smoothed experimental curve in
fig. 4. In the last column the slopes of the lines in fig. 1 are reported
(“K nudsen” effect).

The results for the potential parameters are collected in table II. For this
mixture we do not use the (exp-6) potential, a =  12 and a =  13, because
these models cannot be fitted to the experimental data. Results are only
reported with a =  14 and a == 15.

From the standard deviation given in the second column of table II the
L ennard-J ones potential is concluded to be the best fitting model (see
also fig. 5). In the last two columns of this table we give the results for
(e/k)i 2  (rm)\\ and (e/£)12 a\l, resp., as calculated from the straight line fitting
procedure.

TABLE I

Experim ental results for the system Ne-He

Tem perature
°K

D 12  p  for x =  0.5
10~2 cm2 s -1 atm

[ D ) x - 0 .5

{ D ) x =1.0

1 d ( D i i P ) ^

D i 2 p  d(l/£fcap)
10~® cm atm

65.35
77.35
90.2

169.3
295.0

8.34 ±  0.08
11.25 dr 0.05
14.58 dr 0.08
42.4 dr 0.2

106.8 dr 0.6

1.018 dr 0.004
1.019 dr 0.004
1.021 dr 0.004
1.027 ±  0.005
1.030 dr 0.005

- (  2.5 dr U )
- (  3.2 dr 0.6)
- (  4.6 dr 0.6)
- (  8.7 dr 0.6)
- (1 3 .4  dr 0.6)

TABLE II

Potential param eters for the system Ne-He, derived from the diffusion coefficient

Potential
Standard
deviation

%

( e /* ) i .
"K

{f'm) 12
A

012
A 10® °K A 11

(e/^)l2°12
10® °K A 11

Exp —6, a =  14 0.7 12.6 dr 4.0 3.20 ±  0.09 4.53 dr 0.03
„ a =  15 0.4 20.5 dr 2.0 3.01 dr 0.03 3.73 dr 0.02

Lennard-Jones
(12-6)

0.3 23.7 rfc 2.0 2.64 dr 0.02 1.03 dr 0.01
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Fig. 7. Mean free path dependence of
the diffusion coefficient as a function

of temperature; x — 0.5.
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Fig. 9. Concentration dependence of
the diffusion coefficient as a function
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Fig. 10. Determination of the potential
parameters for the system Ar—He.
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Although the quantum mechanical influence on the diffusion coefficient
is no more than 3% the effect on e/k and o is large: e/k as obtained classically
turns out to be 7°K lower and a is increased with about 0.07A ;  the value
of however, is rather insensitive to this correction and does not
change more than a few percent.

A r—He. This mixture has been measured at different concentrations
in the temperature range between 90°K and 400°K. The lower temperature
is limited by the triple point of argon. The results are presented in the same
form as in the preceding part of this section. Table III is obtained from the
figs. 6, 7, 8 and 9. Again no agreement with theory is obtained for the
concentration dependence of Z)12 as a function of temperature (see fig. 9).
The values obtained for the potential parameters are given in table IV
(see fig. 10).

The influence of the quantum mechanical corrections is approximately
4°K in (e/k) i2  and 0.03 A in <ri2.

TABLE III

Experimental results for the system Ar-He

Temperature ■Dis p  for *  =  0.5 CD)*-0.5 1 d lflr, p ) f S

•K 10~* cm2 s-1 atm ( D )x=1.0 D l l  p  d (lIPfcmv)
10~* cm atm

90.2 9.48 ±  0.08 1.023 ±  0.004 - (  2.9 ±  0.9)
169.3 28.53 ± 0 .1 5 1.033 ±  0.005 - (  8.1 ±  0.6)
295.0 73.4 ±  0.4 1.039 ±  0.006 - (1 4 .6  ±  0.6)
400.0 123.3 ±  0.6 1.041 ±  0.006 - (2 1 .4  ±  0.7)

TABLE IV

Potential param eters for the system A r-H e, derived from the diffusion coefficient
Standard

Potential deviation (e/k) i 2 (r»)is Cl 2 (e/k)a (rm)$ (e/fc) 12°12
%

°K A A 10* "K A10 10s °K A»®
Exp —6, a = 1 3 0.6 21.0 ±  3.5 3.72 ±  0.06 10.45 ±  0.08

„  a —14 0.1 29.8 ±  4.0 3.51 ±  0.05 8.54 ±  0.06
,i a =  15 0.3 35.7 ±  3.0 3.40 ±  0.03 7.29 ±  0.05

Lennar d- Jones 0.4 40.2 ±  3.0 2.98 ±  0.02 2.23 ±  0.02
(12-6)

c. K r-H e. This mixture is studied at x =  0.5 from 112°K to 400°K. The
lower temperature is limited by the triple point of Kr. The concentration
dependence is measured from 169°K to 400°K. The results are presented
in the figs. 11—15 and the tables V and VI. For the influence of the con
centration on D \ 2  fig. 14 shows the same tendency as obtained in the
earlier parts of this section. The results for the potential parameters are
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O r Cap =  0.0453 cm
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Fig. 13. Concentration dependence of
the diffusion coefficient at different
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Fig. 12. Mean free path dependence
of the diffusion coefficient as a

function of temperature; x — 0.5.
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Fig. 14. Concentration dependence of
the diffusion coefficient as a function
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Ó ex p e rim en t Kr-He

Fig. 15. Determination of the potential
parameters for the system Kr-He.
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less accurate than for the earlier mentioned systems since the curvature of
\og{(Diz)^iPly/k3T3l2fii2} vs. log T  is somewhat less (see fig. 15 and table
VI). Quantum mechanical calculations correct the obtained parameters by
about 4°K in (e/&)i2 and 0.03 A in 0 1 2 -

t a b l e  v
Experim ental results for the system Kr-H e

Temperature
,  °K

D 12 p  for x  =  0.5
10~2 cm2 s-1 atm

[ D ) x = 0 .5
1 d ( f lu  p )g j

D i 2 p  d(l//)fc»p)
10~6 cm atm( D ) * - i . o

111.7 11.97 ±  0.10 1.021 ±  0.004 - (  3.3 ±  1.0)
169.3 24.79 ±  0.15 1.031 ±  0.005 - (  7.3 ±  0.6)
295.0 64.3 ±  0.4 1.044 ±  0.006 -(1 7 .7  ±  0.8)
400.0 105.9 ±  0.6 1.048 ±  0.007 - (1 7 .7  ±  0.8)

TABLE VI

Potential param eters tor the system K r-H e, derived from the diffusion coefficient

Potential
Standard
deviation

%

[ s / k )ia
"K A

012
A

W*)b W  “
10’ “K A10

( e fk ) a o $
10« “K A10

Exp —6, d =  13 0.9 23.6 ±  6.0 3.89 ±  0.10 1.85 ±  0.02
„ a —14 0.3 28.5 ±  5.0 3.74 ±  0.07 1.53 ±  0.02
„ a =  15 0.1 36.2 ±  6.0 3.60 ±  0.06 1.31 db 0.01

Len nard-J ones
(12-6)

0.2 39.0 ±  5.0 3.17 ±  0.04 4.05 ±  0.03

TABLE VII

Experim ental results for the system Xe-He

Temperature
°K

D 12 p  for x  =  0.5
10“2 cm2 s-1 atm

(D )x= 0 .5
1 d ( D u  p ) £ S

D 1 2 P  d(l//>rc*p)
10-6 cm atm{ D )x =1 .0

169.3 21.34 ±  0.15 1.036 ±  0.006 - ( 8.5 ±  0.8)
231.1 35.7 ±  0.2 1.045 ±  0.007 - ( 9.9 ±  0.6)
295.0 54.9 ±  0.3 1.049 ±  0.007 - (1 2 .6  ±  0.6)
400.0 91.8 ± 0 .6 1.053 ±  0.008 -(1 7 .9  ±  0.7)

TABLE V III

Potential param eters for the system Xe-He, derived from the diffusion coefficient

Potential
Standard
deviation

%

(e/*)ia
°K

(fin) 12
A

<T12
A

(e/^) 12(̂ 111) 12
107 °K A 10

(® /I2°’l2
10« °K A 10

Exp —6, a =  14
„ a  =  15

Lennard-Jones
(12-6)

1.2
1.0

41.9 ±  6.0
43.0 ±  7.0
46.5 ±  7.0

3.88 ±  0.05
3.82 ±  0.06

3.37 ±  0.05

3.27 ±  0.03
2.85 ±  0.02

8.83 ±  0.06
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T= 231 .1  °K

0.220
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Fig. 16. Mean free path dependence
of the diffusion coefficient at different

temperatures; x =  0.5.
V reap =  0.1372 cm
□ reap =  0.1008 cm
A reap =  0.0699 cm

T= 2 9 5 .0  °K

Fig. 18. Concentration dependence
of the diffusion coefficient at

different temperatures.
O He-diffusion run
A Xe-diffusion run

X e-H ea tm

D« P  d0 /p rc a p)

°K 4 0 0

Fig. 17. Mean free path dependence
of the diffusion coefficient as a

function of temperature; x =  0.5.

th e o t  L .J (12-6) p o t

4 0 0  °K 5 0 0

Fig. 19. Concentration dependence of
the diffusion coefficient as a function

of temperature.

Fig. 20. Determination of the potential
parameters for the system Xe-He.

0 . 0 2 2 5  - | 4  experim ent Xe-He
___ thcor. L.J. po t.
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d. X e-H e. D n  at all concentrations has been measured from 169°K to
400° K. The triple point of Xe makes the remaining temperature range very
unfavourable for the determination of potential parameters but this mixture
can still be used to obtain an accurate value of (elk)12a^2. The results are
collected in the figs. 16-20 and the tables VII and VIII. Again no agreement
is obtained for the concentration dependence of D n  as a function of temper
ature (see fig. 19).

Even at the rather high temperatures as used for the mixture Xe-He
quantum mechanical influences are still important: 4°K in (e/k)i2 and 0.03 A
in tri2 .

e. A r-N e. D n  at x =  0.5 has been measured from 90°K to 400°K. The
temperature interval corresponds to the range of T* from 1.5 to 7. As the
largest curvature of the 12(1,1 ̂ -function is appearing between T* == 1 and
T* =  5 the mixture Ar-Ne is very suitable to determine uniquely the po
tential parameters.

The concentration dependence of D n  is small, so we only have measured
it from 90°K to 295°K. The agreement with theory is good. The results are
given in the figs. 21-25 and the tables IX and X.

The non-classical behaviour is of minor importance here: 1°K in (e/k)i2
and 0.01 A in an- For the now following mixtures no quantum mechanical
corrections have to be applied anymore.

TABLE i x

E xp er im en ta l resu lts  for th e  sy stem  A r-N e

T em perature
°K

Z>i2 p  for x  =  0 .5
10~a cm 2 s -1 atm

[D)x=0.5

(Z>)x-1.0

1 d ( D l t  P)%£

D i z p  d ( l / £ r Cap)
10~6 cm  atm

90 .2
169.3
295 .0
4 0 0 .0

3.71 ±  0 .02
12.02 ±  0 .07
31 .6  ±  0 .2
5 3 .0  ±  0 .3

1.002 ±  0.001
1.005 ±  0 .002
1.009 ±  0 .003
1.010 ±  0 .003

- (  2 .5  ±  0.8)
- (  5 .9  ±  0.6)
- (  9 .7  ±  0.6)
- ( 1 1 . 2  ±  0.7)

TABLE X

Potential param eters for the system Ar-Ne, derived from the diffusion coefficient

Potential
Standard
deviation

%
(«/*)«

°K
{f'm) 12

A
<T12
A 105 °K A7

(•E/*)l2CT12
10» "K A ’

E x p  —6, a =  12 i.i 42 .8  ±  2 .0 3 .83  ±  0.03 5 .15 ±  0 .04
„  a = 1 3 0.8 49 .8  ± 2 .0 3 .6 8  ±  0 .02 4 .55  ± 0.03
„  a — 14 0.7 55.1 ±  2 .0 3 .58  ±  0 .02 4 .1 7  ±  0.03
,, a =  15 0.4 60 .9  ±  2 .0 3 .5 0  ±  0 .02 3 .87  ±  0 .03

Lennard- J  ones 0 .3 61 .7  ±  2 .0 3.11 ±  0 .02 1.71 ± 0.01
(12 -6 )
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Fig. 21. Mean free path dependence of
the diffusion coefficient at different

temperatures; x =  0.5.
V r Cap =  0.1372 cm
□ rcap =  0.1008 cm
A rCap =  0.0699 cm
O rcap =  0.0453 cm

Fig. 22. Mean free path dependence
of the diffusion coefficient as a

function of temperature; x =  0.5.

■ - th c o r  L.J.(12-6) p o t

Fig. 24. Concentration dependence of
the diffusion coefficient as a function

of temperature.

T = 29S 0 ° K

T = 1 6 9 .3  °K

Fig. 23. Concentration dependence
of the diffusion coefficient at

different temperatures.
O Ne-diffusion run
A Ar-diffusion run

i T<i , 2 . 4  a

4> ex p erim en t Ar-Ne
• L.J. (l 2-6) p o t -
1.7 °K  0.1105 A

°K 4 8 0

Fig. 25. Determination of the potential
parameters for the system Ar-Ne.
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Fig. 26. Mean free path dependence of
the diffusion coefficient at different

temperatures; x =  0.5.
V reap  =  0.1372 cm
□  r cap =  0.1008 cm
A r Cap =  0.0699 cm

T= 4 0 0 - 0  °K

T  = 169 3 °K

0.9 5 . . . > . i ___________ ,____________
pr>  - xNc 0.5 To

Fig. 28. Concentration dependence
of the diffusion coefficient at

different temperatures.
O Ne-diffusion run
A Kr-diffusion run

°K  4 0 0

Fig. 27. Mean free path dependence
of the diffusion coefficient as a

function of temperature; x  - 0.5.

experiment Kr-Nc

4 0 0  °K 5 0 0

Fig. 29. Concentration dependence of
the diffusion coefficient as a function

of temperature.

<|> experiment Kr-Nc
____ th eo r. (e x p .6 ) pot.

•  atS
e/k_72.o°K  0.3.240 X

Fig. 30. Determination of the potential
parameters for the system Kr-Ne.
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/. Kr—Ne. The mixture Kr-Ne is studied at x =  0.5 from 112°K to
400°K; the concentration dependence of Dyi is measured from 169°K to
400°K. The results are reported in the figs. 26-30 and the tables XI and XII.
All measurements are well described by theory.

TABLE XI

Experim ental results for the system Kr-Ne

Tem perature
?K

D12 p for x =  0.5
10~2 cm2 s-1 atm

[ D ) x =0.5
1 d(D i2 p)gg>

D 1 2 P d (l//> fcap )
10 -6  cm atm(jD )x-I.O

m .7 4.43 ±  0.03 1.003 ±  0.001 - (  2.4 ±  0.7)
169.3 9.65 ±  0.05 1.007 ±  0.002 - (  5.1 ±  0.6)
295.0 25.66 ± 0 .1 4 1.013 ±  0.003 - (  6.4 ±  0.8)
400.0 43.8 ±  0.3 1.016 ±  0.004 -(1 2 .3  ±  0.8)

TABLE X II

Potential param eters for the system Kr-N e, derived from the diffusion coefficient

Potential
Standard
deviation

%

{e/k)12
°K

(ffli)is
A

aia
A

(£/^) 12(^m)l2
105 °K A7

(«/*)l2CT12
10» °K A7

Exp —6, a =  12 0.4 52.8 ±  3.5 3.94 ±  0.04 7.76 ±  0.06
,, a =  13 0.4 60.5 ±  3.5 3.80 ±  0.03 6.94 ±  0.05
„ a =  14 0.4 65.8 ±  3.5 3.71 ±  0.03 6.35 ±  0.05
» a = 1 5 0.3 72.0 ±  3.5 3.62 ±  0.03 5.91 ±  0.05

Lennard-J ones
(12-6)

0.4 69.8 ±  3.5 3.24 ±  0.02 2.61 ±  0.02

TABLE X III

Experim ental results for the system Xe—Ne

Temperature
°K

D \ 2  p  for x  =  0.5
10~2 cm2 s-1 atm

(Z))x-0.5
(D)*=i.o

» d (D u  t )  f g
D \ 2 p  d(l//>fcap)

10“8 cm atm
169.3 8.16 ±  0.05 1.011 ±  0.003 - (  5.7 ±  0.7)
231.1 14.16 ±  0.09 1.017 ±  0.004 - (  7.1 ±  0.6)
295.0 21.84 ±  0.12 1.020 ±  0.004 - (  8.7 ±  0.6)
400.0 36.8 ±  0.2 1.024 ±  0.005 -(1 0 .9  ±  0.7)

TABLE XIV

Potential param eters for the system Xe-Ne, derived from the diffusion coefficient

Potential
Standard
deviation

%

(e/A)is
"K

{ ? m )  18

A
<712

A
(£ / ^ )  12(ym)l2

10® °k A«
(£ / ^ ) l 2 ° ’l 2
106 ° k A 8

Exp —6, a =  14 0.2 61.9 ±  5.0 4.01 ±  0.04 4.09 ±  0.03
» a = 1 5 0.2 68.7 ±  5.5 3.91 ±  0.04 3.75 ±  0.03

Lennard-J ones
(12-6)

0.3 69.1 ±  6.0 3.48 ±  0.04 1.48 ±  0.01
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Fig. 31. Mean free path dependence of
the diffusion coefficient at different

temperatures; x =  0.5.
V reap  =  0.1372 cm
□ rC8p - 0.1008 cm
A rCap =  0.0699 cm

O T lO O

Fig. 32. Mean free path dependence of
the diffusion coefficient as a function

of temperature; x  =  0.5.

th c o r  L. J  (12-6) pot

Fig. 34. Concentration dependence of
the diffusion coefficient as a function

of temperature.
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Fig. 33. Concentration dependence
of the diffusion coefficient at

different temperatures.
O Ne-diffusion run
A Xe-diffusion run
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Fig. 35. Determination of the
potential parameters for the system

Xe-Ne.
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g. X e-N e. Z>i2 at all concentrations is measured from 169°K to 400°K.
The results are collected in the figs. 31-35 and the tables XIII and XIV.
Again good agreement with theory is obtained, also for the concentration
dependence of D12.

h. K r-A r. D u  at x =  0.5 is measured in the temperature interval from
169°K to 400°K. The concentration dependence of D12 is very small, so we
have measured it at only two temperatures. All results are in agreement with
theory as can be seen in the figs. 36-40. The data are given in the tables XV
and XVI.

TABLE XV

Experim ental results for the system Kr-Ar

Tem perature
°K

■D12 -plot x  =  0.5
10~i. 2 * * cm2 s-1 atm

(ö)ï-0.5
1 d(-Dia p)%g

D u p  d(l//>rc»p)
10”8 cm atm{D )z-i.o

169.3 4.72 ±  0.03 1.000 ±  0.001 - (3 .6  ±  0.7)
231.1 8.60 ±  0.05 1.001 ±  0.001 - (4 .7  ±  0.6)
295.0 13.58 ±  0.07 1.003 ±  0.002 - (5 .3  ±  0.6)
400.0 23.66 ±  0.13 1.005 ±  0.002 - (6 .8  ±  0.6)

TABLE XVI

Potential param eters for the system Kr-A r, derived from the diffusion coefficient

, Potential
Standard
deviation

• %
(elk)12

°K
(rm) 12

A
<712
A

(e/*)u ('«)i2
10® »k A6 *

(e/*)i2ct12
105 °KA«

E xp — 6, a =  12 0.3 120 ±  7 4.22 ±  0.04 6.80 ±  0.05
„ a =  13 0.1 133 ±  8 4.10 ±  0.04 6.29 ±  0.05
„ a = 1 4 0.1 144 ±  9 4.01 ±  0.04 5.94 ±  0.05
„ a —15 0.1 153 ±  10 3.93 ±  0.04 5.67 ± .0 .04

Lennard-J ones 0.1 145 ±  8 3.53 ±  0.03 2.81 ±  0.02
(12-6)

i. X e-A r. The mixture Xe-Aris studied at* =  0.5 from 169°K to 400°K.
The concentration dependence of D u  is only measured at 295°K. Since the
concentration effect on D12 is both small and in agreement with theory we
have used calculated values for the concentration dependence at the other
temperatures. The results are given in the figs. 41-44 and the tables XVII
and XVIII.

ƒ. X e-K r. D1 2  at * =  0.5 is measured from 169°K to 400°K. At 169°K
the measurements are less accurate in view of the low value of D12. Also for
this mixture the concentration dependence of D\% is only measured at 295°K.
As in the case of Xe-Ar the concentration effect on D12 is both small and
in agreement with theory. The results are presented in the figs. 45-48 and
the tables XIX and XX.
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Fig. 36. Mean free path dependence of
the diffusion coefficient at different

temperatures; x — 0.5.
v reap =  0.1372 cm
□ rc»p =  0.1008 cm
A rCap =  0.0699 cm

Fig. 37. Mean free path dependence of
the diffusion coefficient as a function

of temperature; x — 0.5.

theon I__I. ( l2 -  6) pot.
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Fig. 39. Concentration dependence of
the diffusion coefficient as a function

of temperature.

T =  2 9 5 . 0  °K

Fig. 38. Concentration dependence
of the diffusion coefficient at

different temperatures.
O Ar-diffusion run
A Kr-diffusion run
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Fig. 40. Determination of the potential
parameters for the system Kr-Ar.
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Fig. 42. Mean free path dependence
of the diffusion coefficient as a

function of temperature; x  =  0.5.

Fig. 41. Mean free path dependence of
the diffusion coefficient at different

temperatures; x =  0.5.
V r e a p  =  0.1372 cm
□ rcap =  0.1008 cm
A rcap =  0.0699 cm

<p\
.c

I l %

Fig. 43. Concentration dependence
of the diffusion coefficient at

295.0°K.
O Ar-diffusion run
A Xe-diffusion run

2 0  3 3

$  ex p e rim e n t Xe-Ar
____th c o r  L .J . p o t

€/k=178°K 0=3.654 X
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Fig. 44. Determination of the po tentia
parameters for the system Xe—Ar.

TABLE XVII

Experimental results for the system Xe—Ar

Temperature
°K

Dia p  for x  =  0.5
10-2 cm2 s-1 atm

{D)x=0 .5

(D)»-i.o

I dfD ii * £ •
D i 2 p  d ( \ / p r Cbp)

10~6 cm atm

169.3 3.76 ±  0.03 1.000 ±  0.001 - ( 3 .0  ±  0.7)
231.1 6.91 ±  0.04 1.001 ±  0.001 —(5.1 ±  0.6)
295.0 11.10 ±  0.06 1.003 ±  0.002 - (6 .5  ±  0.6)
400.0 19.54 ±  0.12 1.006 ±  0.003 - ( 9 .3  ±  0.6)
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TABLE X V III

Potential param eters for the system Xe-Ar, derived from the diffusion coefficient

Potential
S tandard
deviation

%
°K A

aie
A

(£M)l2('ym)l2
io* °k A*

(£/ 12°12
10* °k A«

Exp —6, a =  12 0.4 149 ±  5 4.36 ±  0.03 2.34 ±  0.02
„ a= 13 0.3 161 ±  7 4.25 ±  0.04 , 2.23 ±  0.02
» « = 1 4 0.2 175 ±  9 4.15 ±  0.04 2.15 ±  0.02
„ a =  15 0.3 188 d= 14 4.07 ±  0.06 2.10 ±  0.02

Lennard-Jones
(12-6)

0.2 178 ±  12 3.65 ±  0.05 1.16 ±  0.01

cm* r 'o tm

Xe-Kr T= 4 0 0 . 0  °K

0.067_______________,_________ i ___________,
0 .0  0 .2  0 .4  0.6 0 .8

0 .1 2 8

0 115

0 .0 7 9
T - 2 9  5 .0 ° K

0 .0 7 3

T = 231.1 °K
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0 .9  tO4 c m'1 a  tm*’ 1."2

Fig. 45. Mean free path dependence of
the diffusion coefficient at different

temperatures; x  =  0.5.
V reap =  0.1372 cm
□ rcap =  0.1008 cm
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Fig. 47. Concentration dependence
of the diffusion coefficient at

295.0°K.
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Fig. 46. Mean free path dependence
of the diffusion coefficient as a

function of temperature; x  =  0.5.
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Fig. 48. Determination of the potential
parameters for the system Xe-Kr.
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TABLE X IX

Experim ental results for the system X e-K r

Tem perature
°K

D 1 2  p  for x  =  0.5
10-2 cm2 s-1 atm

{D )x =0 . 5
1 d(Dia p ) W

D i 2 p  d(l//>fcap)
10-6 cm atm( D ) x - i .o

169.3 2.51 ±  0.03 1.000 ±  0.000 -(5 .1  ±  1.1)
231.1 4.68 ±  0.04 1.000 ±  0.001 - (5 .0  ±  0.7)
295.0 7.43 ±  0.07 1.001 ±  0.001 - ( 5 .3  ±  0.7)
400.0 13.15 ±  0.12 1.002 ±  0.002 - ( 7 .8  ±  0.7)

TABLE XX

Potential param eters for the system X e-K r, derived from the diffusion coefficient

Potential
Standard
deviation

%

( e /k ) i2
“K

(?flt)l2
A

012
A

( e lk )a (rm )l2
105 orA®

(e/A)i2°i2
105 °k A5

Exp —6, a  =  12 0.8 168 ±  6 4.57 ±  0.03 3.33 ±  0.04
„ a =  13 0.9 181 ±  8 4.46 ±  0.04 3.19 ±  0.04
„ a = 1 4 1.1 199 ±  10 4.34 ±  0.04 3.08 ±  0.04
» <*=>5 1.1 214 ±  14 4.26 ±  0.05 3.01 ±  0.04

Lennard-J ones
(12-6)

1.0 197 ±  10 3.85 ±  0.03 1.66 ±  0.02

5. Comparison with other measurements of D 1 2 . Until now only few
measurements of D12 have been performed over a wide temperature range.
Especially at lower temperatures there are hardly any data. Therefore no
other work on D \2 is reported in section 4.

To make a comparison possible we reduce the existing data to concentra
tion x =  I, using the dependence of D±2 on x as measured in this work.
Obviously in cases where trace amounts of the heavier component are used
this procedure is not necessary. As all our results for D \2 as a function of
temperature can be described fairly well with the L ennard-Jones (12-6)
potential for a comparison with other authors the following procedure has
been adopted. From the data reduced to x =  1 we determine the quantity
(Dn)LiPUlTH  using the parameters as obtained in this work in section 4.
The results are plotted logarithmically vs. log T*2 in fig. 49 together with
the function 3/8^/jrf2(1,1)*(T*) representing in this case our measurements
(see eq. (9)). We use classical tables of f2(1,1)* since the quantum mechanical
influence in the data of other authors appears always to be smaller than 1%.

To facilitate a comparison we also make a survey of other work in table
XXI. For this purpose we have divided the diffusion experiments according
to the experimental procedure into four groups:

a. Loschm idt c e l l8). In this type of apparatus the rate of change in
concentration along a tube is studied. Usually the tube is separated into
two identical parts which can be isolated from each other. In most cases
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Fig. 49. A survey of other work on the diffusion coefficient of the noble gaseous
mixtures. The symbols refer to table XXI. The solid line represents the theory for the
L.J. (12-6) potential (classical). The marks denoting different mixtures refer to
T  =  273°K. The data for the system Ar-He are plotted separately by shifting the

ordinate.

the starting point of a diffusion run is indefinite. Another problem in this
apparatus is to avoid a convection of the gas. From the scatter in the
experiments we estimate the absolute accuracy in general to be 2-5%.

b. Tw o-cham ber d iffusion  cell. This method, introduced by Ney
and A rm is tead 9),is also used in this work. The problems arising have been
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TABLE X X I

A survey of other experiments on the diffusion coefficient of the noble gaseous mixtures

Author

Ref.
to

fig-
49

Mixture
Temper
ature °K

Type of
apparatus Analysis X Details

R. S c h m id t ,
e.a.15)

I Ar-H e 288 Loschmidt
cell

Sampling 0.24-0.73 2 apparatus: Af*a 1.5%

R. A. S tre h -
lo w 11)

II A r-H e 288-418 Loschmidt
cell

Direct
H ot wire

0.5

I. A m d u r,
e.a. ia)

III Ar-X e 195-378 Loschmidt
cell

Direct
Ionization

0.0
At 330° K:
1.0

Systematic deviations
in “ left” and “right”
runs: 2-6%

B. A. I v a k in ,
e.a.13)

IV Ar-H e 287-465 Loschmidt
cell

Direct
Optical

~ 0 .5

J . N. H o lse n ,
e.a. 14)

V Ar-H e 276-346 Loschmidt
cell

Sampling 0.5

J . F re u d e n -
th a l ,  e.a.15)

VI Ar-Ne 321-623 Loschmidt
cell

Sampling 1.0 Concentration gradient
set up by cataphoresis.

K. S c h a fe r ,
e.a.15)

VII Ar-Ne
Kr-A r

90-473
200-473

Two-
chamber
diffusion
cell

Sampling ~ 0 .5 Relative measure
ments. Deviating pres
sure dependence a t
90° K.

B.N. S r iv a s -
ta v a ,  e.a.17)

V III A r-N e; K r-A r;
K r-N e; N e-H e;
K r-H e; Xe-Ne;
A r-H e ; X e-A r;
Xe—He

273-318 Two-
chamber
diffusion
cell

Sampling 0.63

I .F .G o lu b e v ,
e.a. 18)

IX A r-H e 298-363 Two-
chamber
diffusion
cell

Direct
Density

~ 0 .5 High pressure experi
ments.

L. D u rb in ,
e.a.19)

X K r-H e
Kr-A r

308
248-308

Two-
chamber
diffusion
cell

Direct
Ionization
Scintillation

High pressure experi
m ents; 2 apparatus:
absolute and relative.

A. P. M ali-
n a u s k a s 20)

XI A r-H e ; X e-A r;
X e-H e; K r-H e
Kr-A r ;X e-K r

273-394 Two-
chamber
diffusion
cell

Sampling 0.5 Relative and absolute
m easurements:
A s* 2%.

R. E . W al
k e r, ejL.21)

X II Ar-H e 300-1100 Flow
method

Sampling 0.0
At 298° K:
1.0

Point source
technique.

J . C. G id-
d in g s , e.a. 22)

X III A r-H e 296-498 Flow
method

Sampling 1.0 Chromatografic
technique.

B. N. S r iv a s -
ta v a ,  e.a.29)

XIV K r-H e
Kr—Ne; Kr-A r

305
302

Multi-
compo
nent dif
fusion

Direct
Scintillation

1.0 Two-chamber diffu
sion cell.

H. W a t t s 24) XV K r-H e; Kr-N e;
K r-A r; Xe—H e;
X e-N e; X e-A r;
X e-K r

303 Multi-
compo
nent dif
fusion

Direct
Geiger-
Miiller
counter

1.0 Two-chamber diffusion
cell; 2 apparatus:
A «  4%.

S. C. S a x e n a ,
e.a. 25)

XVI A r-H e 251-418 Thermal
diffusion

Direct
Ionization

1.0 Also ordinary dif
fusion ; 2 appara tus:
A & 4% .



described in detail in chapter I. The scatter of the experimental data as
given in table XXI is: 2-5%.

c. Flow m ethod. In a streaming carrier gas the dying out of a sudden
change in concentration is studied. The uncertainties and instabilities in the
velocity profile of the carrier gas can introduce perturbations of the diffusion
process, which are difficult to eliminate. The estimation of the accuracy is
rather difficult since the results are strongly coupled to the experimental
conditions. Furthermore there is few comparable work. We estimate the
absolute error to be 3-5%.

d. In d ire c t m easurem ents. In this group we collect all other ex
periments, e.g. the rate of approach to the steady state in thermal diffusion
or diffusion measurements in multicomponent mixtures. The accuracy is
usually worse than for direct measurements: 3-5%.

Looking over all results we have the impression that in general not enough
attention was paid to a careful investigation of the experimental conditions.
Only few authors have varied the experimental conditions to test the
reliability of their results. In those cases the scatter appears to be often worse
than the apparent error under one condition.

Considering the arguments mentioned the agreement between this work
and other research is reasonable in all cases except for the flow-type measure
ments of R. E. W alker e.a. 21) at higher temperatures.

6. Discussion of the obtained potential parameters. Experimental values
of the parameters corresponding to different potentials are given for all
systems in section 4. It is remarkable that in general our experimental data
satisfy the C hapm an-Enskog theory for the potentials: exp—6 (a =  12,
13, 14 and 15) and L ennard-Jones (12-6). These models are certainly
not equivalent in their prediction of the diffusion coefficient as has been
discussed recently by M. K le in 26). From our experiments, however, it is
impossible to distinguish among these potentials. We therefore conclude that
either the accuracies are still insufficient or the temperature intervals too
small. We are thus able to derive the parameters with respect to more than
one potential.

If one can apply several potential models to describe the experiments of a
particular mixture one expects a definite relation between the obtained
parameters. As a check on our results we shall investigate this aspect in
some detail.

The relation between the parameters for two potentials which are nearly
equivalent in the description of D \ 2  of a mixture is given by the relative
positions of the curves log I2(1-1)* vs. log T* (see eq. (9)). This relation is not
unique, it depends on the intervals in the reduced temperatures for which
the comparison will be made. Let us characterize the intervals in the follow
ing way: for the extension of the interval we take ratio, and for
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( 9  C l  i _  i _  l .  Ca*X X  X x <  x

a  = 15

Fig. 50. The param eter ratios e(exp-6)/e (L.J.) for the diffusion coefficients for
different values of a.

V experim ent, a =  15 □ experiment, a =  14
A experim ent, a =  13 O experim ent, a =  12

the position of the interval: (T*lnT*ax)*. The last choice is suggested by the
fact that in this way corresponds to the mean value of log T*.
For a fixed value of T*ax/ r * ln we have derived the relation between
different potentials as a function of (T*far * ax)* in the following way. At
various values of ( r *iT,r * RJ* we have fitted the curve log fl(1,1)* vs-, log T*
for the L ennard-Jones (12-6) potential to the corresponding curve for
the (exp—6) potential (a =  12, 13, 14 or 15). From the shifts in the axis
necessary to obtain the best agreement of the curves within an interval of
magnitude T*ax/T*in =  2, one derives the ratios of e- and <r(rTO)-values
belonging to both potentials. The same procedures have also been performed
for an extension of the interval T*ax/7* in =  4. The results of these pro
cedures are shown in the figs. 50 and 51; the heavy and dashed lines
correspond to T*nx/ r *,n =  2 and 4, respectively. One notes that the
magnitudes of the reduced temperature interval do not influence the results
too much. As in this work T*nj r *,n for all mixtures vary from 2.5 to 4 a
significant comparison can be made between the curves and the ratios of the
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<2 =  13

1 . 10

Fig. 51. The parameter ratios rm(exp-6)/o (L.J.) for the diffusion coefficients for
different values of a.

V experiment, a =  15 □ experiment, a =  14
A experiment, a =  13 o experiment, a =  12

potential parameters obtained in section 4. The ratios e(exp—6)/e(L.J.) or
rm(exp—6)/or(L.J.) obtained for different mixtures should be in between both
curves in the figs. 50 and 51. Considering the experimental accuracies in
e(~5%) and in a or rra(~ l  %) the data satisfy this condition quite well.
We may therefore conclude that the shifting procedure used in section 4
is self-consistent.

We have restricted these considerations to mixtures behaving almost
classically. The quantum mechanical corrections to be applied to
for the mixtures containing He are determined by the quantum parameter
A* =  A/<ri2V 2^ 12612.̂  For each mixture, corresponding to another value of
A*, different ö (1,1)'(r*)-functions are obtained, so the procedures as
sketched in the figs. 50 and 51 in general lead to different curves for each
mixture. Thus the afore mentioned comparison between mixtuies cannot be
extended for mixtures containing He. In addition we may note that for the
(exp 6) potential (T*) has not been calculated independently as a
function of A*; in section 3 we have therefore assumed that the quantum
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mechanical corrections on i3(1,1)*(T*) as calculated by Munn e.a.6) for the
L.J. (12-6) potential are also applicable in the case of the (exp—6) potential.
Since the effect of the quantum mechanical corrections on the obtained
potential parameters is rather large this assumption is.questionable. This
uncertainty adds up to the already existing inaccuracies in the parameters
for the He-mixtures. Thus it has no sense to perform the ratio test in this
case.

7. Investigation of the combination rules. Before comparing the potential
parameters of the mixtures with those of the pure components we want to
make some restrictive remarks. As it is already known, a two-parameter
potential can only be used as an approximate description of the transport
properties. In a small temperature range one always obtains a set of e and
or that fits the experiments but over a larger temperature interval the values
for the parameters are not unique. This is due to the fact that at different
temperatures different regions of the potential are determining the transport
properties. In comparing various systems corresponding situations occur at
equal reduced temperatures. Our experiments on D u  are performed in a
fixed range from 169°K to 295°K; this does not correspond, however, with
a fixed interval of T* for different mixtures (see fig. 52). This complicates a
comparison of the results obtained for the potential parameters.

Nc-Hc
Ar-He
Kr-He
Xc-Hc
Ar-Ne
Kr-Nc
Xc-Nc
Kr-Ar
Xe-Ar
Xc-Kr

0.5 T,* 1 2 4 8 16

Fig. 52. Temperature ranges reduced with respect to ej.2 (L.J.).

A second remark refers to the deviating concentration dependence of the
mixtures containing He. For these mixtures the concentration dependence
is larger than predicted from theory for the L.J. (12-6) potential, although
the shapes of the curves agree. This is probably not due to the exclusion of
the higher approximations of the diffusion coefficient since the So nine
expansion converges very rapidly. This can be seen from calculations by
E. A. M ason4) in limiting cases such as a L o ren tz ian  and a quasi-
Loren tz ian  gas. We have therefore investigated other potential models.

K

K
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The (exp—6) potential, a. — 12 to 15, predicts, however, an even smaller
concentration dependence compared with the L.J. potential. Also the K ih ara
spherical core potential5) cannot explain at the same time both the con
centration and temperature dependence for He-mixtures.

The fact that the mixture N2-H 2 shows no such difficulties makes
systematic experimental errors related to the large mass difference occurring
in the He-mixtures improbable (see chapter I). The deviating behaviour
of mixtures containing He might be related to the well known fact that it is
in general difficult to describe the transport properties of He over a large
temperature range with one potential (cf. E. A. Mason e.a.27)28)). It is
clear that the potential parameters as obtained for the He-mixtures have
to be treated with some care. The parameters of the mixtures containing
Ne, Ar, Kr and Xe are certainly more reliable.

With the restrictions just mentioned we shall now study the results
obtained for different molecular interactions in some detail. An important
relation of the interaction between a pair of unlike molecules to the inter
actions between like molecules is obtained from the dispersion energy
theory3). For a potential likeLennard-Jones (12-6) or (exp—6) one can
derive that to a good approximation:

eiJffÜ =  {cil0Hejj°Jj}*- (1 0 )

The subscripts i and j  refer to different species of molecules. Usually one
combines the arguments from dispersion forces with the assumption that
the molecular repulsion is fairly well described by regarding the molecules
as hard spheres of diameter a. In this case one gets:

G'iJ =  i ( CTn  +  (11)
As far as different molecules do not differ much in size one obtains from (10)
and (11):

eij =  (enejj)*. (12)

When there are sufficient combinations of mixed parameters available one
can test the combination rules without invoking the knowledge of the
parameters for the pure components in the following way. For all mixtures
containing the gases i, j and k the rules (10), (11) and (12) can be written as:

. _  (13)

O il =  0 ij  +  <Tik —  ffjk (1 4 )

c ije ik
£ ii =  -----------• (1 5 )

ejk

By interchanging the subscripts similar expressions are obtained for the
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TABLE XXII

ON Test of the combination rules of the L.J. (12-6) potential parameters for the mixed interactions of the noble gas atoms
Binary mixture

constituents
potential

parameters
Calculated potential parameters for the pure components from eqs. (13), (14) and (15)

He Ne Ar Kr | Xe
He-Ne-Ar e /k  °K

a  A
(e/A)o« °KA«

15.4 ±  2
2.51 ±  0.04

(4.12 ±  0.26) 10»

36.4 ±  5
2.77 ±  0.04

(1.56 ±  0.10) 10»

105 ±  13
3.45 ±  0.04

(1.94 ±  0.12) 10»
He-Ne-Kr e lk  °K

a  A
(e/ft)<76 °KA6

13.2 ±  2
2.57 ±  0.06

(4.00 ±  0.34) 10»

42.4 ±  7
2.71 ±  0.06

(1.60 ±  0.14) 104

115 ± 2 0
3.77 ±  0.06

(4.05 ±  0.34) 10»
H e-N e-Xe e /k  °K

a  A
{e/k)a6 °KA«

15.9 ±  4
2.53 ±  0.08

(4.48 ±  0.45) 10»

35.2. ±  8
2.75 ±  0.08

(1.43 ±  0.15) 104

136 ±  30
4.21 ±  0.08

(1.04 ±  0.11) 10»
He—Ar—Kr e /k  °K

a  A
{e/k)o6 °k A6

10.8 ±  2
2.62 ±  0.06

(4.05 ±  0.29) 10»

149 ±  25
3.34 ±  0.06

(1.97 ±  0.14) 10»

141 ±  24
3.72 ±  0.06

(3.99 ±  0.29) 10»
He-Ar-Xe e lk  °K

a  A
(e/A)a» °KA«

10.5 ± 2
2.70 ±  0.09

(4.66 ±  0.40) 10»

154 ±  32
3.26 ±  0.09
1.75 ±  0.16) 10»

206 ±  43
4.04 ±  0.09

(1.03 ±  0.09) 10»
H e-K r-Xe e /k  “K

a  A
(elk)o°  “KA»

9.2 ±  3
2.69 ±  0.09

(4.31 ±  0.46) 10»

165 ±  40
3.65 ±  0.09

(3.75 ±  0.40) 10»

235 ±  60
4.05 ±  0.09

(1.08 ±  0.12) 10»
Ne-Ar-Kr (e/k) °K

a  A
(e/A)<j« °KA6

29.7 ±  3
2.82 ±  0.05

(1.58 ±  0.04) 104

128 ± 1 1
3.40 ±  0.05

(1.91 ±  0.05) 10»

164 ±  15
3.66 ±  0.05

(4.11 ±  0.10) 10»
Ne—Ar—Xe e /k  "K

a  A
( e / f t ) < 7 «  °KA«

24.0 ±  4
2.94 ±  0.08

(1.58 ±  0.07) 104

159 ±  23
3.28 ±  0.08

(1.91 ±  0.09) 10»

199 ±  26
4.02 ±  0.08

(0.94 ±  0.04) 10»
Ne-K r-Xe e /k  'K

a  A
(e/A)cr« “KA®

24.5 ±  4
2.87 ±  0.06

(1.54 ±  0.08) 104

199 ±  26
3.61 ±  0.06

(4.20 ±  0.20) 10»

195 ±  25
4.09 ±  0.06

(0.97 ±  0.05) 10»
Ar-Kr-Xe e /k  °K

a  A
(e/ft)<r« °k A«

131 ±  16
3.33 ±  0.08

(1.87 ±  0.07) 10»

161 ±  20
3.73 ±  0.08

(4.22 ±  0.14) 10»

242 ±  30
3.97 ±  0.08

(0.96 ±  0.04) 10»
Mean values {elk)o« °KA« (4.24 ± 0 .1 7 ) 10» (1.56 ±  0.03) 104 (1.90 ±  0.04) 10» (4.10 ±  0.08) 10» (0.98 ±  0.03) 10»
Mean values

from
other sources

e /k  °K
a A
(e/*)<j« °KA«

10.5
2.56
2.95 10»

35.9
2.77
1.62 104

121
3.42
1.93 10»

173
3.63
3.95 10»

218
4.05
0.96 10»



pure gases j and k. As in this work we have utilized five pure gases, cn and
cm are overdetermined, so this method enables a direct test of the combi
nation rules. To see this we arrange the different systems in groups containing
binary mixtures of only three pure gases, e.g. Ne-He, Ar-He and Ar-Ne.
From eqs. (13), (14) and (15) we calculate in each group the parameters of
the pure constituents: He, Ne and Ar in this example. The 5 pure gases
give rise to 10 groups of three binary mixtures, each gas appearing in 6
different groups. So one obtains 6 sets of parameters that have to be constant
when the combination rules hold. Furthermore the resulting values must
agree with the parameters obtained from other sources. The procedure is
worked out in table XXII for the L.J. (12-6) potential. In order to obtain
a maximum of accuracy the values of (e/k) a6 are calculated from the ex
perimental data of (e/k) <rn and a instead of e/k and a. The validity of the
combination rules can be concluded from a comparison of the data along a
column. One sees that only the combination rule for (e/k) a6 (see eq. (10))
holds within the limits of the accuracy.

The mean value of (e/k) a6 for all pure gases is reported in the last but one
row. These values can be compared with the data from other sources. We
therefore have averaged the data from the survey ofHirschfe lder ,  e.a.3)
and from refs. 27 and 29 to 35. The agreement with our results is good in all
cases except for He. The deviating behaviour of He is discussed earlier in
this section. But even if we restrict the comparison of the potential para
meters to the gases Ne, Ar, Kr and Xe the conclusions for the validity of the
combination rules remain the same. Although in this case also the rules
(11) and (12) are satisfied just within the experimental accuracy the
agreement with the data from other sources is too poor.

Similar calculations are performed for the (exp—6) potential, a =  12, 13,
14 and 15, as far as these models fit the experiments. The comparison is
only made at a fixed value of a in order to preserve a two-parameter model.
The rules (10) and (11) are tested with respect to rm i.s.o. a. We also have
tested the following expression that is often used for this potential:

(̂ )u “ 4(̂ 1 (16)
This rule can be derived from the repulsive part of the (exp—6) potential36).
As in the case of the L.J. potential none of the combination rules hold except
the rule (10) for (e/&)(rm)6. We report the final results from this rule in table
XXIII. A comparison with the data of (e/k)(rm)6 from other sources is
somewhat more difficult since different authors use different values of a to
describe their experiments (see refs. 27, 32 and 37 to 44). Treating our
results as a function of a we conclude to a good agreement for all gases with
the exception again of He.
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TABLE X X III

Results from combination rule (13) for the (exp-6) potential

Gas
This work From literature

a (e/k){rm)6 “KA» a (e/*)(rOT)« °k A« Ref.

He 12 — 12.4 8.69 10» E. A. M ason , e.a.27)
13 (7.01 ±  0.80) 10» 12.4 7.96 10» J . E. K i lp a t r i c k ,  e.a.37)
14 (7.54 £  0.35) 10s
15 (7.83 ±  0.30) 10»

Ne 12 (3.90 ±  0.12) 104 13.6 3.70 104 J . C o rn e r88)
13 (3.59 ±  0.12) 104 14.5 3.69 104 E. A. M ason , e.a.27)
14 (3.21 ±  0.07) 104 14.6 3.64 104 K. P. S r i v a s t a v a 39)
15 (3.11 ±  0.06) 104 15 3.21 104 • G. A. N ic h o lso n , e.a.40)

Ar 12 (4.60 ±  0.09) 10» 13.9 4.12 10» J . C o rn e r88)
13 (4.23 ±  0.09) 10» 14 4.12 10» E. A. M ason , ^.a.27)
14 (4.06 ±  0.08) 10» 14 3.67 10» S. C. S a x e n a , e.a. 41)
15 (3.82 ±  0.07) 10» 14 4.12 10» M. P. M a d a n 42)

14.2 3.83 10» K. P. S r iv a s ta v a » » )
15 3.86 10» E. W h a lle y , e.a. 43)
17 3.44 10» R. P a u l, e.a.44)

Kr 12 (1.01 ±  0.02) 10» 12 0.98 10» E. W h a lle y , e.a.*2)
13 (0.94 ±  0.02) 10» 12 0.88 10» M. P. M a d a n 42)
14 (0.88 ±  0.02) 10» 12 0.91 10» E. A. M a so n 82)
15 (0.83 ±  0.02) 10» 13 0.88 10» E. A. M a so n 32)

13.1 0.94 10» K. P. S r i v a s t a v a 39)
13.5 0.87 10» E. A. M a so n 82)
14 0.84 10» E. A. M a so n 32)
15 0.81 10» E. A. M a so n 82)
15 0.71 10» E. W h a lle y , e.a.*2)
16.1 0.83 10» R. P a u l, e.a. 44)

Xe 12 (2.28 ±  0.07) 10» 12 2.38 10» E. W h a lle y , e.a.42)
13 (2.14 ±  0.07) 10» 13 1.76 10» E. A. M ason , e.a.27)
14 (2.06 ±  0.06) 10» 13 2.16 10» K. P. S r i v a s t a v a 89)
15 (1.99 ±  0.05) 10» 14 2.15 10» E. W h a lle y ,^ .» .48)

15 2.12 10* E. W h a lle y , e.a.42)
16 1.88 10» R. P a u l f e.a.44)

For the interaction between helium and the noble gas atoms information
is recently available from molecular beam scattering experiments48).
Although the accuracy in £12 and 012 is rather poor one obtains values for
£12<t®2 that have an accuracy of around 10%. The results for e12crj2 are
systematically 10-20% lower than our values obtained from D i% . This
discrepancy will be related to the rather approximate nature of a simple
potential model like the Lennard-Jones one.

It is surprising that contrary to the rather common opinion only the
combination rule for e12cr®2 (eq. (10)) appears to be valid. Although the
simple rules for 612 and 0 1 2  (eqs. (11) and (12)) cannot strictly be justified on
the basis of theory, they are normally believed to have been proved em
pirically. This paradox can be explained as follows. Due to the lack of
relevant measurements for many systems over a large temperature range
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an intensive test as performed in this work could not be done earlier. So
one usually has treated the problem in the reverse way: one has calculated
D12 or another transport property of a mixture from the corresponding
Chapman-Enskog expression by assuming that the simple combination
rules for £12 and <712 hold. Apart from thermal diffusion the value of a
transport propeity is far more sensitive to a than to e. At a fixed temper
ature a comparatively large variation in £ can easily be compensated by a
small change in a. Furthermore the values of a for pure gases do not differ
much, so the exact form of the combination rule for <r12 is not too important.
As a result the calculation can in general be brought in agreement with the
experiments by making use of the freedom that remains in the choice of £
and a for the pure components. This limits the practical consequences of the
failure of the simple combination rules found in this work.

The fact that the only combination rule that can easily be derived from
theory has been proved to be valid experimentally, is a strong argument in
favour of the physical reality of such simple potential models as the
Lennard-Jones and (exp—6) potential.
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S A M E N V A T T IN G

Uit het gedrag van de transportgrootheden in een binair mengsel van ver
dunde gassen kan men m et behulp van de C h ap m an -E n sk o g th eo rie  in
formatie verkrijgen over de paarinteracties tussen twee ongelijksoortige mo
leculen. In  het algemeen leveren, behalve de paarinteracties tussen ongelijk
soortige moleculen, ook die tussen identieke moleculen een bijdrage to t het
transport inmengsels, maar bij diffusie speelt de laatstgenoemde bijdrage nage
noeg geen rol. De diffusiecoëfficiënt is daarom de meest directe bron van infor
matie over deze „meng”-interacties. In  dit proefschrift is de diffusiecoëffi
ciënt van een aantal binaire mengsels nader bestudeerd. H et onderzoek heeft
zich in hoofdzaak beperkt to t mengsels van edelgassen omdat men hiervoor
kan verwachten dat de C h ap m an-E nskog theo rie  toepasbaar is met ge
bruikmaking van een eenvoudig potentiaalmodel voor de paarinteracties,
zoals de L e n n a rd -J o n e s  (12-6) potentiaal. Gegevens over de paarinter
acties kunnen dan worden verkregen in de vorm van numerieke waarden
voor de karakteristieke parameters van deze potentiaal.

Informatie van betekenis over de potentiaalparameters kan men slechts
verkrijgen indien men beschikt over nauwkeurige metingen van de diffusie
coëfficiënt in een groot en geschikt gekozen temperatuurgebied. Voor experi
menten met edelgasmengsels moet het temperatuurgebied zich voornamelijk
beneden kam ertem peratuur uitstrekken opdat de attracties tussen de mole
culen van voldoende betekenis zijn. Omdat er to t nu toe nagenoeg uitsluitend
diffusieëxperimenten zijn gedaan rondom kam ertem peratuur is in eerste in
stantie getracht de leemte in het lagere temperatuurgebied experimenteel op
te  vullen. Bovendien blijkt in het algemeen de nauwkeurigheid van bestaan
de experimenten dermate teleurstellend te zijn dat het noodzakelijk is der
gelijke metingen ook bij hogere tem peratuur uit te voeren.

In  hoofdstuk I wordt de methode beschreven die het mogelijk gemaakt
heeft nauwkeurige metingen van de diffusiecoëfficiënt te verrichten in het
temperatuurgebied tussen 65 en 295°K. De betrouwbaarheid van het appa
raa t is uitvoerig onderzocht met het mengsel stikstof-waterstof. Zowel de
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afhankelijkheid van de temperatuur als die van de concentratie blijkt zeer
goed beschreven te worden door de Chapman-Enskogtheorie, gebruik
makend van zowel de L ennard-Jones (12-6) potentiaal als de (exp-6)
potentiaal voor de N2-H 2 wisselwerking. Uit de experimenten kan men voor
beide modellen nauwkeurig een stel parameters bepalen.

In hoofdstuk II worden diffusiemetingen beschreven aan alle binaire
mengsels van de edelgassen: He, Ne, Ar, Kr en Xe. De afhankelijkheid van
de diffusiecoëfficiënt van temperatuur en concentratie is bepaald tussen 65
en 400°K. Evenals in hoofdstuk I kunnen in het algemeen de potentiaal-
parameters worden berekend voor diverse potentiaalmodellen. Dergelijke
resultaten voor de meng-interacties heeft men niet eerder kunnen verkrij
gen, noch uit diffusiemetingen noch uit andere bronnen. Alleen over de mo
leculaire wisselwerking in zuivere gassen bestaan voldoende gegevens. Het is
daarom eerst nu goed mogelijk geworden de samenhang te onderzoeken tus
sen de paarinteracties van ongelijksoortige moleculen en die van gelijke mo
leculen in een mengsel. Voor het beschrijven van deze samenhang maakt
men meestal gebruik van enige semi-empirische combinatieregels tussen de
voorkomende potentiaalparameters. Dë geldigheid van deze regels is syste
matisch onderzocht in hoofdstuk II. Het blijkt dat de gebruikelijke combi
natieregels niet voldoen.
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oktober 1959. Sindsdien was ik werkzaam op het K am erlingh  Onnes
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STELLIN G EN

I

De nauwkeurigheid van de algemeen gebruikte combinatieregels tussen de
parameters, die de verschillende soorten paarinteracties in een binair gas
mengsel karakteriseren, is aanzienlijk geringer dan men veelal veronderstelt.

Dit proefschrift, hoofdstuk II.

II

Gezien het onverwachte gedrag van de diffusiecoëfficiënt als functie van de
concentratie van de binaire mengsels van helium met de andere edelgassen is
het interessant voor dezelfde mengsels ook thermodiffusie-experimenten uit
te voeren.

Dit proefschrift, hoofdstuk II.

III

De viscositeitscoëfficiënten van heliumgas, zoals die experimenteel be
paald zijn door Corem ans e.a. bij lage temperaturen en door Jo h n sto n  e.a.
of T rau tz  e.a. bij hogere temperaturen, zijn niet met elkaar in overeenstem
ming te brengen door gebruik te maken van de Chapman-Enskogtheorie
met een realistischer potentiaal dan het (exp-6) model.

J. M. J. Coremans, A. van Itterb eek , J. J. M.
B eenakker, H. F. P. K naap en P. Zandbergen,
Physica 24 (1958) 557.
H. L. J oh n ston  en E. R. G rilly, J. phys. Chem. 46
(1942) 948.
M. T rautz en R. Zink, Ann. Physik 7 (1930) 427.

IV

Volgens H erz fe lden  Li tov i tz  gedraagt de reciproke waarde van de
akoestische relaxatietijd in binaire mengsels van een relaxerend gas met een
edelgas zich lineair in de concentratie. Afwijkingen van dit gedrag kunnen
echter worden verwacht in waterstof-xenon mengsels met lage waterstof
concentratie.

K. F. H erzfe ld  en T. A. L ito v itz , "Absorption and
Dispersion of Ultrasonic Waves” (Academie Press, New
York, 1959).
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H r h bW m m
■

De experimenten van Sahri aan gedeutereerd cobaltchloridehexahydraat
vormen nog geen overtuigend bewijs dat waterstofbruggen een essentiële rol
spelen bij het superexchange-mechanisme in dit kristal.

D. S. Sahri, Phys. Letters 19 (1966) 625.

VI

Bij het berekenen van het maximum veld dat door een condensatorontla-
ding in een pulsmagneet geproduceerd kan worden, is het nodig de opwar
ming van de magneetspoel in aanmerking te nemen.

Y. Allain, F. Varret en A. Miédan-Gros, C.R. 260
(1965) 4677.

VII

Gezien de ervaringen opgedaan bij omgekeerde osmose door poreuze cellu-
lose-acetaatmembranen lijkt het resultaat van M organ e.a., dat totale re
tentie van organische stoffen bij dit proces optreedt, onwaarschijnlijk.

S. Sourirajan, I.&E.C. Product Research and De
velopment 4 (1965) 201.
A. I. Morgan, Jr., E. Lowe, R. L. Merson en E. L.
Durkee, Food Tech. (Dec. 1965) 52 (1790).

VIII

Het principiële verschil in constructie tussen een brander voor aardgas en
een voor stadsgas mag zich slechts uiten in de vlamstabilisatie.

IX

Het heeft weinig zin ter vermijding van staande trillingen in een luid-
sprekerbehuizing langs de wanden geluidsabsorberend materiaal aan te
brengen.

X

Bij het streven naar verkorting van de studieduur aan universiteiten moet
men bedenken dat lijfstraffen eerder een gunstige invloed kunnen hebben
dan een verlichting van de exameneisen.

XI

In vrijwel alle in de fotografie voorkomende gevallen biedt de reflex-
camera belangrijke voordelen boven de meetzoekercamera.

J. J. van H eijningen , 13 oktober 1967.
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