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STELLINGEN

Het bewijs van Morse en Feshbach van de algemene vorm van de Green's

operator behorende bij een niet-Hermitische operator vergelijking is slechts

geldig als geen degeneraties in de eigenwaarden van de niet-Hermitische

operator voorkomen.

P.M. Morse, H,Feshbach, Methods of theoretical physics 1
(Mac Graw Hill, 1953) p. 884
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Ten gevolge van de voorafgaande stelling is de behandeling door Levine van

interne excitatie van moleculen bij botsingen onjuist.

R.D. Levine, Quantum mechanics of Molecular Rate processes,
(Oxford, 1969) p. 187
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De afleiding door Robinson van de waarschijnlijkheid per eenheid van tijd van
een stralingsloze overgang in een geéxciteerd molecuul dat geen interactie
heeft met zijn omgeving is aan bedenkingen onderhevig.

G.W. Robinson, J.Chem, Phys. 47, 1967 (1967)

14"

De conclusie van Baker, Betteridge, Kemp en Kirby uit hun vergelijkend onder-
zoek van de ionizatiepotentialen van furaan, isoxazool, pyrrool en pyrrazool

om de invloed van een stikstof-atoom met een lone-pair op het 7 -electronen-
systeem te bepalen, is slechts dan correct, wanneer het stikstof lone-pair een
grotere attractie ondervindt van een naburig zuurstof atoom dan van een kool -
stof atoom, waaraan een waterstof atoom verbonden is. Het verschil is van de
orde 1.5 eV.

A.D. Baker, D, Betteridge, N.R. Kemp, R.E, Kirby,
Chem. Comm, 286 (1970)
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De argumenten, waarop Joussot-Dubien en Houdard-Pereyre concluderen dat
de photochemische ringopening van pyridine verloopt via een n- #* aangeslagen
toestand zijn niet in overeenstemming met de experimentele resultaten van

Wilzbach.

K. E. Wikbach, D.]. Rausch, J,A.C.S. 92, 2178 (1970)
J. Joussot-Dubien, ]J. Houdard Pereyre,
Bull. Soc, Chim, de France 8, 2619 (1969)

VI

De methode van Anderson voor de nitrering van azuleen met Cu-nitraat in

azijnzuuranhydride heeft meer toepassingsmogelijkheden dan valt af te leiden
uit de opmerkingen van Keller en Heilbronner.

W. Keller-Schierlein in E, Heilbronner en D, Ginsberg,
Non-Benzenoid compounds (1959)
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De opmerking van Vilesov en Akopyan dat bij de ionizatie van benzeen in de
buurt van de ionizatie-drempel sprake is van emissie van een electron, dat
vervolgens weer wordt ingevangen door hetzelfde ion, is op zichzelf niet zinvol.
Het voorkomen hiervan impliceert echter dat interferentie optreedt tussen
directe en auto-ionizatie, wat het door hen gevonden minimum in de photo-ioni-
zatie cross-sectie kan verklaren

F.E. Vilesov, M.E. Akopyan in B,S. Neporent.
Elementary photoprocesses in molecules (consultant-bureau New York 1968)
pag. 31,

VIII

De keuze van het roterende coordinatenstelsel voor de berekening van de energie
van het Hy molecuul van Kolos en Wolniewicz en die voor de berekening van de
verstrooiing van twee atomen aan elkaar van Smith verschillen slechts hierin
dat de hoeken 6 en ¢ van Smith gelijk zijn aan g - 0 en- d’k' waar0kcn¢>kde
hoeken in het poolcoordinatenstelsel zijn van Kolos en Wolniewicz.

W. Kolos, L, Wolniewicz, Rev. Mod. Phys. 35, 473 (1963)
F.T. Smith, Phys. Rev. 179, 111 (1969)
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De berekening van Buckingham, Orr en Sichell over de hoekafhankelijkheid van
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A,D. Buckingham, B.J.Orr, J.M, Sichell, Phil. Trans. Roy. Soc. Lond.
A 268, 147 (1970)

X
Bij het gebruik van verstrekte plastic-folies om het dichroisme van erop aan-
gebrachte moleculen te meten kan men het best eerst de folies verstrekken en
vervolgens de kleurstof op het oppervlak brengen, aangezien dan gecorrigeerd
kan worden op de eigenabsorptie van het folie.
Dit in tegenstelling tot andere hiertoe gebruikte methoden.

F. Dorr, Ang, Chemie 78, 457 (1966)
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Geloof en natuurwetenschap sluiten elkaar niet uit, maar raken elkaar in de
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W, Pauli, C,G. Jung, Naturerklarung and Psyche (Rascher, Ztirich
1952)
B. Russell, Mysticism and Logic (Allen and Unwin 1963)
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CHAPTER I

GENERAL INDRODUCTION

Examples of resonant scattering.

Let us consider an experiment in which a beam of low-energy electrons

(0-20 eV) penetrates into a collision chamber with gaseous molecules of very
low pressure. Most of the electrons will pass the collision chamber undisturbed
but a part will suffer collisions which may lead to a deviation from its original
direction without loosing energy or collisions which lead to energy-transfer to
the molecule.

As a quantity to characterize these collisions one introduces the concept of
cross-section, with dimensions of an area. Studying the cross-section as a
function of the kinetic energy of incoming electrons maxima may appear at
particular energies, which indicate the formation of transient negative ions(1).
One way of thinking about these transient negative ions is to consider them as
the result of the capture of an electron in one of the empty orbitals of the
molecule. The resulting negative ion states will be unstable and decay into a
molecule and an electron.

The negative ion state will only be formed if the energy of the electron before
collision matches the energy of the, nearly discrete, negative ion state. This
makes the strong energy-dependence of the cross-section understandable and
one sees that in addition to the cross-section the decay-time is a second
characteristic.

If energy-conditions are favourable the negative ion-state can be considered

as the capture of the electron by an excited molecule. After the decay of the



negative ion the molecule may remain in its groundstate or in one of its excited
states. Not only electronic states but also vibrational and rotational states may
be excited (2).

All these processes are examples of resonant scattering. One speaks of an
isolated resonance if only one single state of the compound particle formed by
target and scattered particle is involved. If several states of the compound
particle cooperate in the scattering process one speaks of overlapping
resonances. This may occur when several excited states of the negative ion
differ little in energy. They can occur, for instance, when vibrational states
are excited. Extensive experimental work on the scattering of low-energy
electrons by molecules naturally made feel the need of a deeper understanding

the phenomena of resonant scattering. This was the primary aim of this thesis.

Aspects of resonant scattering.

In the case of an isolated resonance the cross-section behaves Lorentzian as a
function of energy and the corresponding decay of compound state is purely
exponential. In the case of overlapping resonances, however, peculiar effects
may occur. The decay can not only be modulated by oscillations but also by
terms linear in powers of the time variable.

In chapter II a theory is presented which treats the corresponding behaviour of
cross-section in detail and also of the third quantity which characterizes the
resonant process the time delay. The time delay is the time between the
instant a particle hits a target and the moment it leaves it. It appeared that no
theory of resonant scattering existed which unified the time-dependent
properties (decay and time delay) and the time-independent one (cross-section).
The treatment, given in chapter II, leads to such an unifying theory and the

existing time-independent and time-dependent theories follow directly from it.

Radiationless transitions.

A nice illustration of the effects of overlapping resonances is provided by the
process of radiationless transitions in organic molecules, which are treated
in chapter III. Here a photon is captured by a molecule and the excited molecular-
state decays. When the possibility of radiationless transitions is present the
resulting excited state of the molecule must be considered as a superposition

of many vibrational states. The effect is a much smaller decay-time than when
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there is no interaction with the vibrations. This can be interpreted as the
dissipation of excitation-energy into vibrational states of the molecule,

The deviations of purely exponential decay which can occur when radiationless
transitions are present and when excitation of more than one state is possible
show the many kinds of time-dependence which can occur in the case of

dbverlapping resonances.
Photoionization.

Absorption of a photon may also lead to the ionization of the molecule.

When the molecule is first excited into a discrete state and an electron is then
emitted the process is called auto-ionization. This is also an example of
resonant scattering and is treated in chapter IL.

When electrons are emitted by photoionization from atoms the angular
distribution behaves as A+Bcos2 X . Here X is the angle between the direction
of polarized incident light and the direction the electron is measured and A and
B are constants. Only dipole transitions are assumed to occur. The reason for
this simple distribution is the spherical symmetry of the atoms. Therefore,
when molecules which have no spherical symmetry are photoionized, deviations
of this distribution may in general be expected. It appears, however, that in a
number of cases the electrons emitted from molecules will have the same kind
of distribution as those emitted from atoms (3). This is when the molecules

can be considered as non-rotating but with an isotropic distribution of their
orientations. Then, in fact, the spherical symmetry is present. In chapter IV
the conditions under which this model will hold are derived. If in the photo-
jonization process rotational excitation is not neglected the selection rules
appear to differ from those which apply to rotational excitation associated with
electronic excitation to discrete states.

The analysis of the photoionization process also yields a clear physical illustra-

tion of the concept of time delay.
References:
1. H,H, Brongersma, thesis Leiden (1968).

2. J.N. Bardsley, F. Mandl, Rep. Progr. Phys. 1968, 471.

3. J.C. Tully, R.S. Berry, B.]J. Dalton, Phys. Rev. 176, 95 (1968).
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CHAPTER 11

ON THE THEORY OF RESONANT SCATTERING

An unified description of the evolution of quantum mechanical systems
in time is still an intriguing goal in the theory of time-dependent phenomena.
An attempt has been made to develop such a theory to provide an explanation
of a variety of physical and chemical processes.

Some examples of such processes are:
an atom emitting light (1), auto-ionization of atoms (2),
the collision of an electron with a molecule and the formation of an inter-
mediate state (3,4), the dissipation of electronic energy by radiationless
transitions in molecules (5), predissociation (6), unimolecular reactions (7)
and last but not least the scattering of molecules by molecules via an
intermediate complex (8,9), an elementary event in a chemical reaction
(10).
Part of these processes can be considered as examples of resonant scattering:
i.e., they proceed via the formation and subsequent breakdown of one or
more transient states. The other processes can be considered as examples
of systems which are prepared in an unstable state which will then decay.
Typical quantities whose behaviour can be used to characterize resonant
scattering are (12):
time delay, which gives the timelapse between asymptotic states (18) and
cross-section, which gives information on the spread in energy of
scattered or emitted particles.
The unstable state is characterized by its

decay-time, which in the case of exponential decay has a simple meaning

12




and equals the inverse of the decay rate.
In this study the time delay is simply the lifetime of a virtual state formed
by the colliding systems and is directly related to the rate of decay of this
state (18). It is therefore possible to describe the two processes within the
same formalism*) as will be shown.

The study of the above mentioned quantities has received a new stimulus

by the development of ingenious novel experimental techniques during the

last twenty years.

The complicated situation of multi-resonance is often seen in molecular
systems. The reason is that it is necessary to consider transitions between
many states rather than just between two. For example, a transition
between two electronic states is practically always modified by simultaneous
transitions between a large number of vibrational and rotational states.
Therefore, emphasis has been placed on the problem of many overlapping

resonances.

The development of the theory has largely profitted from the work of
theoretical physicists, who have demonstrated the power of the concept of
resonant scattering in nuclear physics (13). In studying the extensive
literature it appeared that existing time-independent theories can be traced
to three different resonance theories. One was proposed by Feshbach (14),
an other by Fano (2), and the third by Kapur and Peierls (15). They
concentrated on calculating the cross-section of resonant scattering pro-
cesses. The two first authors use boundary-conditions of the wave function
on an infinite distance from the target. The third theory uses boundary
conditions on a sphere with finite radius around the target. It will be
shown that the two first theories can be formulated as special cases of
a more general theory. This is not possible for Kapur and Peierls' theory,
since there boundary conditions are used on a sphere of finite radius
around the target. This type of boundary conditions is incompatible with the
theory to be presented**). It has been observed that the starting point and
formal results of Feshbach's and Fano's theories are equivalent (9, 17), but
a further analysis reveals important differences.

*) Recently W, Kerles (11) developed a theory on the time-dependence of particles, emphasizing
the scattering character of these processes. This is in concordance with the theory to be
presented here.

*%) Applications of the theory of Kapur and Peierls can be found in ref. (16)




In the development of this theory significant differences in both
theories will occasionally be pointed out. This will provide a key to the
understanding of complications which occur in the case of multi-resonance.
It will appear that the effect of overlapping resonances can be made explicit
using Feshbach's method, whereas in Fano's method these effects are
implicitly dealt with. To study the time-development one can use the eigen-
functions given by the above theories to solve the time-dependent Schridinger

equation.

The derivation is started directly with the time-dependent Schrédinger
equation so as to derive the expression which gives the time-dependence
of the resonant process in a completely general way. The method used is
closely related to the existing time-dependent theories of Heitler (1),
Messiah (12) and Goldberger and Watson (18), designed to study the decay
of an excited state.
The stationary properties of the process are then derived by using the pro-
cedures known from scattering theory to convert the time-dependent theory
to a time-independent one (10).
It is only at this stage of the derivation that the eigenfunctions of the total
Hamiltonian appear.
The conceptual advantage of this method is that it shows the essential part
which the initial condition plays. In addition, the correspondence between
stationary and non-stationary properties becomes very clear and the equations
from which the time-dependence of the processes is to be derived are more
easy to solve than those occurring in the first method. Application of this
very general formalism to the problem of multi-resonance leads to an
important new condition which, when not satisfied, can result in not only
a non-exponential but also to a non-oscillatory time decay. This behaviour

appears to be connected with a time delay which is predicted to be pulsed.

An expression for the auto-ionization in the case of multi-resonance,
which is a generalization of the famous result of Fano (2) for one resonance,
is also presented. A number of known results are shown to follow as a

specialization from the theory giving connections not previously recognized.
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II.1 Ground work

A derivation is proposed which converts the time-dependent non-

relativistic Schrodinger equation:

i 2y = HY () (n=1, H=HT)

by a Laplace-transform (19) to the time-independent Laplace-transformed

equation 2) incorporating the initial condition at t':
(z-H) ¥ (2) =ie " ¥(t)

Here ¥(z) is the Laplace-transform of §(t):

- izt
(2) e ”t y(pat 3)
l“'
The solution of 2) is given by:
3 i izt 8 izt
@) =—=e2t §(t) = iG(z)e =" ¥(t) 4)

z-H
where G(z) =——7

»(t) is recovered by taking the inverse Laplace-transform:
+oo+1T)

1 ’ -iz(t-t")
e

Y =i dz G(z) ¥ (t"hdz t! (5)

Here iT| has to be taken above the singularities of G(z) y(t").
If it is desired to calculate the state with reversed causality conditions
we find:

¥t = - ~1—. P dz c_iy'((-” G(z) ¥(thdz t<t' 6)



tl
P
J

-0

V(z) =

The following Laplace-transform is now applied:
eth v(t) dt

In the case of formula 5) the problem is to determine the resolvent G(z).

7

The extended Hilbert-space is divided into two parts with the projection-

operators P and Q, which are not specified at the moment except for their

properties 9), It must be remembered

that hereafter, P will project on the

continuous states and Q on the discrete states of a certain operator. The

reason that this division is useful is that

lated as:

projects on only one (unstable) discrete

Py (t") = §(t") and Q¥ (t")

The division is not new, for Messiah used the same method. He, however,

the initial condition of 1) can be formu-

state and therefore loses the

interference effects which may occur in the case of many discrete states.

The projection-operators P and Q satis

<
P+@=1 P =P

fy the relationships:

Q=Q% @*=q; P®=p; PQ=QP 9

It is only necessary to give the relationships:

})+Q;1;p:I)T;]’)2:l)

Using Gp(z) and GQ(z) which are

given

11a) GF(2)

b) GQ(z)

the behaviour of P¥(t) and Q¥(t) in time can be derived. Using initial

conditions 8) it is seen that:

+w+i‘n
f
J

-Min

dz ¢ 121 g

PY(= -5

10)
by the definitions:
o 6% =p 3 Q
i - H
QP . 1
d G (z)»QZ ”P
})
(z) ¥(t") 12a)




-HD+]T]
Q¥ = - o j dz

] ]
S e-lz(t—t ) GQP
2mi
-atiT)

(z) ¥(t") 12b)

If instead of taking 8) as initial conditions the initial conditions
Py (t) = 0; Qy(t') = ¢(t") are taken, it is observed that:

+ootiT)

, 1
PH(® = - 5 [ dz

—iz(t-t) PRy Lo 12¢)

—oH{T

+oo+iT)

QYD) = - or [ a e 121 GReG) ey 124)

2mi

_mi‘ﬂ

The interpretation of equation 12a) is as follows: when one starts with a §(t)
given in the P projected part of the extended Hilbert space, to calculate
the P projected part of the time-development of ¥(t) one has to work on

it with the evolution-operator:

+oo {7

P

o lz(t-t) oP () 13a)

To calculate the time-development of the projected part of ¥(t) in the
extended Hilbert space orthogonal to the initial condition, one has to work on

¥(t") with the evolution-operator:

+otiT)

% = 1 [ _ —iz(t-t") QP(z)

Upp Gt =~ J dz e G 13b)
_m+i‘q

Q(Z)

The procedure to follow is to now calculate Gp(z), GQ(z), GQP(Z) and GP
using the method of Messiah (12) and Harris (6). The poles are
determined after having specified P and Q and then the Cauchy-integral
method is used to calculate 12). The result is then applied to a calculation

of the characteristic properties of the resonant system.



I1.2 Derivation of the general

H is divided into two parts:

H = Hy + H', where
15a) “d = PHP + QHQ the diagonal part
b) H? = PHQ + QHP the non-diagonal part
The following operator-relations are used:
et g NS R x P e 1 NPy
08l hH, - H H @ G Ee-Q o QR 0-e)
d d d
1 1 1 n 1 PQ 1
= - -y 3 7)) = G Y
Dl B, wH D ZH o ¢"%m) = C"oH'e - Q
d d d
) 0 8
o 6w = cUYH"P > P p "% = P ——PH"G)
7.—Hd /,-IId

Using also

17a) GP

(z) = P(z-PHP - PH' Q —— QH"P)" P
Hy
, 4 RAQ el
b) =P ”1 P (1 + PH'G¥(z)H"P = P)
¢ :p%p(npnqé—(gnc (2))
i d
Q . -1
d G¥2) = Qz- QH Q- on" P—}T~PH Q'Q
d
e) =Q MQ a+eu"cF (z)H Q —Q
z-Hg Hy
) IO ————Q) (1 anp _ pa"c%2) )

7Hd

d

formulae

9) and 10) the following formulae are derived:

-1




Formulae d, e, f can be derived from a, b, ¢ by interchanging P and Q.

The spectral representation of Hd is in general:

r

18a) H, =2 | dE Vv.(E)>E< ¢ (E)+Z ¢y, 2 E.<¥.
1) Y() /¢Y() ‘.V i

d lv\/ 1Y

¢ i,y
Y Exy

<$(E) | ¥ (EN>=6_ ,6(E-ED; O < ¥ 1> =88
b) <4 (E) | 4 () > =6 6(B-E): O<¥ . 8

d) <'i-'Y([',) | 'ﬁ'iyv, 2.0

It is proposed to describe the phenomenon of a resonance as a discrete
state made unstable by coupling with the continuous states. For discrete
states ';’i,v> is chosen and for continuous states y Y(E) >,

The discrete states are made unstable by coupling with the continuous
states by the operator H". Note that '.'V(E) > and ."i V> are not eigenstates
of H! :

k%
The following choice is made for P and Q )

~

19a2) P=2 dE ¢ (E) > < V¥ (E
) ; j B B
E

Q(z)

in 12). For the initial conditions: Py (t") = § (t"); @¥(t") = 0 one chooses:

This choice selects in 17) the forms to be chosen for GP(Z) and G

20a) Py(t) = - ')117i [ i e—lz(t—t )l’ }_jln‘*P(l*p”nGQ(Z)HnP 7_1H ) §(t)
x ) 2R gl
-o+iT)
ﬂ:fin
b Q¥ = - 5o [ dz e 26" - Py )
-® fi’n d

**¥%) In practice first the projection-operators are defined, and then Hd, see ref. (3).




For the other conditions: P¥(t") = 0; Q¥(t") = ¥(t') one chooses:

+0H-iT|

o) P¥() i _[ dz e
—w+iT)
+®+iT]

d Q¥(t) = -t j dz

~o+iT

1 '
s iz PH"G? “(2) ¥ (t)

d

-iz(t—t)p

e 2 6% ¢t

In the above formulae GQ(z) = Q(z—QHdQ-QHnP 7}—}{ PH“Q)-IQ. This is formula
aliee,
17d).

O(z)"1 is defined as:

0@ = (z-QH4Q - QH"P ———7_1H pHg !
i |

Formulae 20) are in a suitable form for the calculation of the desired physical
quantities. Formula 17b) in 20a); formula 16¢) in 20b); formula 16f) in 20c¢) and
formula 17d) in 20d) have been chosen. The reason for those choices is that

it was desired to use formula 17d) in all calculations for G ‘(z) in order to
avoid the use of formula 17a) for G (z). This is because the choice

of 19) can give for QH"P lH PH Q a very slow z dependence, which

d

we wish to use to calculate the inverse O(z)-l, defined in 21) (20).

In the case where Q projects on one discrete state, 21) is precisely the
formula that Messiah (12) used to calculate the decay-time of an excited
state. O(z) itself can be found in the same form in the work of Feshbach
(14) and Levine (10). In their work, O(z)=0 is the modified time-independent
Schrddinger equation giving an effective Hamiltonian with a so-called optical
potential. The choice of P here is however slightly different.

Formulae 17b) and c¢) and also 17e) en f) are new. Formulae c) and f)

will not be used but b) is very suitable for the calculation of the cross-
sections and time delay in the scattering problem. Formulae 16d) and 17d)
can be found in the work of Mower (21) as well as in that of Goldberger
and Watson (18). One is interested in O(x), for in evaluating 20) it is
possible to take lim T -0, because = has only poles along the real

axis. Equation A8) of the appendix A gives for the matrix O (x) in the

20




basis Q:
0l =[x I - (E+A® ) +inT (0]

where the matrices E,A(x) and I'(x) are defined by A7) and I is unit
matrix and A(x) and I' (x) are slowly x dependent.

To determine the matrix-elements of this inverse it is possible to apply Cramer's
rule directly as in ref. (21) or to use a similarity transformation to bring
first O(x) to its most simple form. The last method has the advantage of
giving the poles explicity, and it has been used for that reason.

The matrix E is diagonal and A and I' are Hermitian. Attention is drawn

to the relationship:

condition I: [E+A®X, Tx] =0 23)

When condition 1 is satisfied, E + A(x) and I'(x) can be diagonalized by

the same unitary transformation.

When condition 1 is not satisfied, the matrix O(x) is a general complex
matrix so that the simplest form to which it can be brought by a similarity
transformation is the Jordan-canonical form (22). Thus, when condition I

is satisfied, the matrix-element Oi_jl can be written:

I N e e
O ® =Z U™ 32 F) + imhy

-1
1 24
< kj (x) )

~1 e . 2o -
where Lki (x) = Ui*k(x). When condition I is not satisfied, the matrix-element

-1
()il (x) must be written as:

. 3,
: v, FSTReE
Ot e pi fpdl BNl ) 25)
il : N M 3
j j 3y
k
(x - aj)

For details of the derivation see appendix A. The matrix-elements Sij




do not form an unitary matrix now, and v{(=l in case there are no degeneracies.
a. will consist of a real and an imaginary part whose general properties are
given by A1l7).

The mathematical formalism is now developed well enough to discuss

the physical aspects of the problem. In the next paragraph 3 the decay in time
of an excited state will be studied and the modifications due to 25) of the
behaviour usually found.

It is of interest to mention the recent papers of J.Jersak (23) and M.
Simonius (24). The first author studying a system of n-interacting particles
also used the Jordan-canonical form of a matrix, which inverse played a
similar part as ();jl(x) in his calculation of time decay. The second author
also derives the general form of this matrix by stressing the inaccuracy
of the velocity of an unstable particle.

In §4 the scattering problem is studied and the form of the wave function
appropriate for the derivation of the transition-matrix is derived. Using

a theorem proposed by Feshbach (15), two expressions for the Transition-
matrix are derived. One expression is in terms of E + 4 and [ and the
other in terms of the so-called Resonance-Reactance operator. This result
is very important because it provides a link between the results using

24) and 25) and the usual results in terms of the Resonance-Reactance
operator. This not only clarifies the properties of the Transition-matrix but
also gives a new kind of behaviour for the time delay, which was until
now not predicted. After those derivations, it is possible to discuss the
interference effects of many resonant states, where formula 25) plays an
important role. Finally the connection between the proposed theory and the

existing resonance theories of Fano and Feshbach is discussed.
II.3. Decay-time

Equations 20c¢) and 20d) deal with the possibility of starting at t=t' with
a discrete state. The decay of an arbitrary state v, at t'=0 is now studied.

In case condition I 23) is satisfied, it is possible to use 24) in 20) to give:

—1Fkt -mA kt Ly
& e 26)

& ¥ '
<¥; [Qro i Uik® ki

22



It is assumed that the matrix-elements of Uik’ Fk and Ak are independent

of x and finite; for details see (12, 18, 20, 21). In these references it is shown

that this assumption permits one to neglect terms which behave like 1—3/2

or to higher negative order. This implies that this formula and 29) should

not be used for very short timcs.““)
The functions vv’i(l-l) must not describe resonant scattering. Furthermore

only terms for which "\"k > 0 contribute to 26) and 30). Then the solution

Qu(t) will have only a physical significance and the contour of the integration

can take care of it. In the case where E+A and I' are diagonal in the

basis {§, it is seen that:

~iF At
<v.|Qvh > =e 27)

Equation 27) is a well known result yielding a purely exponential decay of

b
i. =217/
9 2 A\i[

|<y;lQy® >|" = e 28)

In the case where Y is not an eigenfunction of E + A and T deviations of
the purely exponential decay occur. For example when there are only two
eigenvalues whose \'s are the same and when the matrix-elements Uik are

real one finds:
v > ‘2 = ,-2“'“" { S 1 2
<$ilQ.(t) e {a+Db cos(F-F,)t} 29)

-12 -1.2
; . = T J - ] J
where: a (Lill 1 ) (T 91 )

1 51
= ] ]
b = U;3U;4 UiV

An exponential decay is seen which is modulated by a cosine with a
frequency given by the energy-difference.

In case of different A 's and lf“, complex, a sum of exponential decaying
N

##%%) Problems of renormalization and divergencies in the self-energy are evaded by those

assumptions. They are treated in more detail in ref. (18, 20).



terms is found modulated by sine as well as cosine terms. An example
of the so-called quantum-beats phenomenon (25) occurs here. In case
condition 1 is not satisfied one must use 25) and one finds:
: Vid_
vy PR
shRnls= T/ B 8 s,
i ks Y -ne

=1

Ski ; (k=) aj = I“j—if"/:j

When there is only one discrete state 30) reduces to 27). In case there
are two discrete states and a, # a,, the behaviour will be as in 29). How-

ever, if a one sees:

N

1 1,2
| &%

2 _  =2nit 2 -
|<¥, |Q¥®>|" = e {l 5,1 1%18y;

Bttt b2
+18551 718y,

D TS | * -1 2 o
t ](S“S?i -8,.5,. )t+ |Sn| |S

-1221
il 2i i,

2i

The coefficients of the powers of t are real, as expected.

In 31) a third kind of time-dependence is observed. In the two-state
problem considered there an exponential decay modified by a power series
in t up to l2 is seen.

In ref. (21, 26) the time-dependence of a resonant two-state problem is
also investigated and the possibility of the same kind of time-dependence

is derived. In ref. (21) Cramer's rule is used to determine the inverse 22)
and in ref. (26) use is made of Fano's theory. We have seen how here
their results appear as a specialization of the proposed general formula 30).
To summarize, the new results of this section indicate that a non-exponential
decay is possible, where this deviation from exponential decay is a finite
power series in t, if condition I is not satisfied and the values aj are
degenerate. The highest possible power of the series in t is given by

2(m-1), where m is the degeneracy of aj.




1.4, The scattering problem
5 (E') has to satisfy boundary conditions at an infinite distance of
target and scattered particle, such that when t'—> -® a wave packet formed
from 1 (E") states will represent the particle without interaction with the
target before scattering.

S. Sunakawa (27) has made a careful study to show that in scattering
theory a wave packet may be used of an infinitely small width when

t'—> -=, He derives the correct boundary conditionsfor the Green's
functions in the scattering equations by studying the transition from a
finite to an infinite small width.

Therefore it is possible to take as initial condition:

-iE't'
¥(th = ¥ (EVe 31
(t" Y.( )e )

: I o
One substitutes 31) into 20% and 20 ’) and uses 19); giving:

Foo+iT +o+iT]
‘ AZ(-) imine r Loy
1";'\/.(!) = - ;}_T o> . az SERT F s e z(t-+)
SN L —oHl  z-E' @41
r ¥ n(E)>< ¥, (E) -iE't'
= SO ¢ Y Ny =10y - e
= > I A . e
1”10‘ dE - F H [O(z)J H VV,(} ) =B 32a)
Y'E u
and
+o+{T)
" _'E't'
L Rl ==Y P T e iy s © ;
Q) =-57 J dze Q[O(»] 'H ,v,(h)>W 32b)

A new function, ¢V(E') is defined by the relations:

Q% (E"Y = lim eiE‘tQ v (b
¥ t-t! = X




=
P& (E) = lim et

t-t' =

> ¥ (t
F 'Y(U

eiP:'tQ'VY(t) will be first considered. In this expression, Q‘kv(t) describes
the behaviour of the discrete states in time. According to 32b) the integral
over z has contributions from the singularities of [0(7,)]_1 which gives a
time-dependence like 26) and 30) and a contribution from the singularity

o1

-1 AT ’
of (z-E'' ~. When one now multiplies by e” t:md examines the result for times

large as compared with the decay-times, only the contribution from the last

singularity remains, therefore:

Q3% 1

= Q[OENT
¥ LO(E") J

n ~
S ot 3
H, ,(E) > 4)

In 32a) the first term is integrated giving an unaltered wave. The second
term has contributions of two kinds of singularities which are similar to

those encountered in 32b)
"
The contribution of Z | dE

Vit B
v

¥on(B) >< ¥, (B)|

z-E

1)

to 33b) will vanish'’,

sl ; iE! . e S .
After multiplying P"'V(t) with e’ ; the result is calculated again for times

large as compared with the decay-times and given by:

' SAaA L '»"V,,(E) >< ”.'Y,,(E) 5l g
Ny'>: WY‘(IC‘)> +lim Z dE . H [O(E"Y] "H ‘.'V,(l-?')> 35)

o

e—>0 y" EV" E'-E+ie

In 34) and 35) the stationary states of scattering theory have been derived.
This corresponds with experiments where one scatters with a beam of
particles of well defined energy.

When t - = the wavepacket formed from ';'Y(E) will contain, in general,

a contribution from scattered waves. To calculate the cross-section,
therefore, one must consider more than only the interaction of the continuous
states with discrete states, which gives the contribution of resonant
scattering. In general there is also the contribution of the direct scattering
which is due to the difference between l’lldl’ and HO, where H0 describes

-1
T) Direct calculation shows that it contributes due to branch-points with terms of ordert .

26




particle and target without interaction, and:

H lg, (B)>= Elg, (E)>

The interaction causing the direct scattering is given by:

'=PH,P - H
d 0

It can be easily shown that:

¥ (E)><y E)|

¥, (E)>= ’;v' (E)>+ lim Z [“ diec) e R (E")>
% -0 & E'-E+ie Y
e

These equations describe the direct scattering explicitly.

When use is made of the identity:

o g (EN>< g (EY]
P§>=¢ (E>+ lim T j ) ol SR S SR el £ S
Y Y e=0 N g E-E'+ie
Y
e (EY)><E (EY]
+ lim I [ dE':’___v, ,DV i Hn RY >
e=0 ¥ g E-E'+ie Y

Y

o3

¥ |41 (B) >< ¢ (E) ¥ le (B)><e_,(B)
TRl | Ry [ ey SASELIES N WT 1 ey (M |
v IzV, l',l-l‘.vxe v I‘V, lzl—lzéle
¥ ¥ 5 (EN><¢g (EY |4 (") ><¥_(EM)]
, A T U PR | o\ s i ATER ok . SR
vy I:\, ]‘.V,. It]-[: tig ltl—-ln tie

36)

S

38a)

38b)

39)

40)
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This expression has a form which enables one to use conventional scattering

theory (28) to find the transition matrix and time delay.

11.4a. The Transition-matrix

The differential cross-section is given by:

k

do =S N i 22 ;

(—dn) ’ . Irv, il,)\ll 41)
b N

In 41) kV is the relative momentum before scattering and kv' the relative
momentum afterwards and T , (E) is called the Transition-matrix.
N~y

From 40), one finds for this Transition-matrix:

]

42 a T, (B) =<t (E)] H'|P3 (B)>+<t (E)| H" |Qs_(E)>
Yo v = N N Y

I

42) b <gv,(r:)| ﬂ:le;(E)>+/\y;,(E) |H" | Q¢_(B) >
Y

Here ¥ ;(E) is the function given by 38) and -':1/(1-‘.) is given by

y_(EN><y_, (EY]
Y Y

y (EP=g (E>+1lim £ | dE' H'E_(E)> 43a)
N Y €~0 v & E-E'-ie o
S
£ (E)><g_ (B)| -
=g (B)>+lim % 1‘ ger X _ - N ___ HE(E> 43b)
N e=0 ' = E-E'-ie S

E ,
N

To derive 42b) from 42a) equation 34) has been substituted for QQV into

35) giving:

Ps (E)>=¢ (E)>+lim I J dE
N X e—0 o

+ +
¥ (E)><y , (E)
N J |6 Qs > 44)
A E'-Etie Y
I'4 "
A




This expression for P@V (E) is then substituted into 42a) and use is made of

43a). The essential result that the total Transition-matrix is a sum of the

Transition-matrix of direct scattering and the one of resonant scattering

*tti*)

is found in 42b). The Transition-matrix of direct scattering is given by:

d B
Pl =<e JH'|y > 45
\ e EV H N )
The Transition-matrix of resonant scattering is:
T R = oy lu Qz (B)> 46)
Using (MV(E) is 34) and 0-1(1-3) given in 22) it is possible to derive:
R - -1 P
r R -y lotlero®i eu® > 47)
N ~Y Y Y
wiod T Qe L oA"Yy b)
Y El- (E+A)+inD V
Equation 47) expresses TR, in E + A and I"' and reduces to the well-known

result when E + A and I' are numbers instead of matrices. The consequences

of this generalized formula for the behaviour of the cross-section will be

discussed in II. 5.

Using S-matrix formalism, the result 47) is connected with the results

of

formal scattering theory. The Resonance-Reactance operator is defined as:

1

K. =KL =- nP8(E-H) PH"Q
EI - (E + A)

It is shown in appendix B that T\(,R X can be expressed in KR:

T R gl o K
AR = l\(.

l-iKR

oH"P 8(E-Hy

49)

#4#%%) A fact already used by H.Feshbach in his article (14). For a further discussion refer to 1.7
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One can now use 38), 42) and 49) to find for the total Transition-matrix:

A { =<§ vlﬂ'l_]_—l'b*>_l<x 1 —R 'L'+> ‘)U)
A= Y 1- K Gy S YL e fie o

In the above formulation, use has been made of:

1 5 Pr.P.
i > = R 2 QH"P — PH'E ,(E)>
b x (P& (E-H ) PH"Q] E-H *

kK k)

A second operator needed is the Resonance-Phase operator which is defined

by the operator relation:

= .i- —— = 5
%R R tan KR 51)
One can express 50) in oR and finds:
io > io
T, =<g,0 e Beosoyly >-2<x e Rsino,ly’> 52)
N N v R N o v R v

Equation 57) shows the important result that, also in the case of more than
one discrete state, the direct scattering and resonant scattering have an

opposite phase behaviour as function of OR*
Fano (2) who derived 52) with the operator oR (with real eigenvalues)

This fact was mentioned by

replaced by a real variable (see II.6). 47) and 48) can now be used to

derive the behaviour of the time delay,

¥¥¥%%4) Pr.P indicatex the use of the principal value of the integral

rdk"y (E' )>‘~ <¥(E")
J E-E'




II.4b. The time delay.

When | > is a solution of equation:

op

the resonant part of 50) can be written as:

- -~ iO * + -
Z<y,|la>e %sing <aly > 54)
o N o N

R
T . %

Formula 25) is used to find the form analogous to 54) using the expression
47) for 'I‘R and yields:

j

: e Pl
i+ s e ’sing;
J =~ =1 + e
IR L L i e ,lll“ 5, AN 8. 1<Y |H"|w > 55)
A CO j k=j N 1 n:‘;j Y
Here r}i is defined by:
.'l‘u
tanve)y == &3 56)
E-F,.
]

The time delay (29) due to channel defined by 53) is given by:

2do 2
pbi, ——Z%K 2 0 57)
3 1+ k2 9E o
o
Here K., |a» = K | @ > because:
R o

K 1 = [
L}\RvUR. 0 '-)8)

57) canbe found by applying the wave-packet method (30) to 54) and assuming
that the energy-dependence of < ‘uv— |a> and < or]xy; > can be neglected.
The time delay due to discrete state j is found by using 55) and applying
again the wave-packet method.

It is then given by:




At = 2n;

jk g. 20 59)

-
jk dEj

Here again it i.s asgumed that only % is energy dependent. In 56) njk
ranges from vd ’ vf( - 1,... ... 1. The fact that 57) and 59) are greater
than or equal zero is a characteristic of resonant scattering processes (28).
The point has now been reached for the derivation of the mathematical
expressions of the physical quantities which characterize the scattering
process. One can now start a discussion of the physical phenomena caused

by the occurrence of many resonant levels.
II. 5. DISCUSSION OF THE INTERFERENCE EFFECTS OF MANY RESONANCES

The situation where Td,._ = 0 will be treated here. The situation where
Ti,’_ ¥ # 0 will be discuss«:d inVII.G.
It is possible to express TR into two kinds of variables.
Formula 47b) relates TR i ;(o E + A and I', whereas formula 50)
relates Tsh & to the Resonance Reactance operator or Resonance-Phase
operator as is shown in 52),
In II. 5a a novel feature of the time delay derived with formula 59) will be
discussed. In addition the relationship with the corresponding behaviour of
the cross-section and decay-time will be given. This will be illustrated in
II.5b with a detailed discussion of the case of 2 discrete states, which
are eigenvalues of E + A and the matrix I' with equal matrix elements.
These paragraphs clarify and extend the behaviour of the cross-section

found with formula 49) of Ts. Vas is discussed in II.5c.
IL. 5a.

In 30) it has been seen that degeneracies in the eigenvalues of O(E)
can lead to non-exponential decay of an excited state when condition I
is not satisfied.
The corresponding behaviour of the time delay can be found using equation
59). The physical definition of time delay is the difference in time a
particle needs to cover a certain distance in the case where there is no

collision and when the particles do collide. The fact that a positive time

32




delay is found here indicates that the time a particle needs in the last
case is larger than in the first case. (This is not always necessarily the case).
Inspecting formula 59) the following phenomenon is observed. When njk =1

59) is similar in form to 57), but when njk #1, the time delay appears

to be pulsed with intervals 2 and the ratio of intensities can be

a_
2 3B cj
found using 55). This is a novel phenomenon which only appears when there
are degeneraties and condition I is not satisfied.

Formulae 24) and 25) are now used in 47) . When condition I is satisfied

and one has the formal possibilities of only degeneracies the differential

cross-section given by 41) is

do i

a
N

" n n|, +.12
E ‘F,->2 : 22 j,ZY"<wV(E)|H ]ww, >< ij,,IH |¢Y>|

k
e
kY §

-y
602a)

When condition I is not satisfied one finds the relationship:

i
” k., st e R R
g0 = SBISE § %! <¢,,|H|¢-.>S.. — B X
dq x 2 : v i ij obiel
ey koIt 3 k=)

E ) K
-F. +
( Fj in j)

From 60a) a simple relation between the decay-time Tj and width ij is

derived:

AW, - 61
i )

This is the well-known result when there is one state resonance. When

v{( is 1, the same result is found in 60b). When vi( # 1 the energy-dependence

of %g—remains symmetric around Fj’ but we cannot find a simple relation
as in 61) between time-decay and linewidth. This is firstly, because of the
deviation of simple exponential decay in the timedependence and secondly,

because the powers of strongly diminish the linewidth originating

E~F.)+imA,
( J) ]
from those terms in which they occur. The linewidth due to the term

__1_}" , _
{ E-F 2 922 is, for example, given by:
( j) +r Aj



The more general case where there are also different values of Fi and
A. yields a sum of terms like 60) and 60b). There will also appear cross-

terms which have an energy-dependence as for example:

%, U 63)
(E—Fj - iﬂ.“.j) Kk (E-Fy + inp;) m

The real part of 63) contributes to do. The contribution of 63) will be small

dq’
when | 1-‘j— F1| >> ij and | Fj_ Fl | >> bW,.

I1. 5b.

The case of interaction with two discrete states will now be discussed.
For simplicity, the matrix I' is chosen to have equal matrix elements,
I' and the eigenvalues of E + A are given by L‘] and E,. There is also
only one scattering channel labelled v.
Now[E + A . '] # 0.

The transition matrix T is now found to be
YN

 GRL L(El + E,)
T =0 g = =% = 64)
(E - E) (E - Ey) omil {E - 3(E, + r-‘.z»}
The roots of the denominator are:
ARG : 1 S Sx 2 2 -
E- = J(E;+ Ey) +inT+3 V(E, - E)” - an’ 65)

It is, therefore, possible to distinguish three cases:

: 2 2 3
(E, - E)% 5> 4n'T 66a)
(B, = Eo)S = 4n'T" b)

2 2:2
(E] - E,)) << 4n' T c)




When 66a) is satisfied one can approximate 64) to find:

“ 1 ~ -
s i~ *I = _'(}3] t [72) ~ 9T {¥71 el A \ 67)
(E - li]»i::I") (E - Ezt"i"-f‘) (E - [-‘,l+iHT E - l-?2+i:zl"

9
The cross-section given by 41) is equal to | T|® and goes through zero
when E = 3(E

or E ~ E

=

1 E,). It behaves approximately Lorentzian when E ~ El

o*

The time-development is given by:

-2nl't

l<o|l¥w > =te [1+ cos (E; - E

2 2 .
2]! | 68)

Two values for the time delay are found, with the same intensities:

2nl 2nl
a) Aty - . 5 5 b) At, e 69)
(E - Iz]) nrl (E - k.z)
When 66b) is satisfied the Transition-matrix is given by:
E-3(E; +E)
T = 2I - £ 70)
{1 -‘4&1 E,) +inl} “

The cross-section now shows a dip. The maxima of 67) are nearly collapsed.
. +
The T-matrix shows a double pole.TT

The time-development is given by:

2 2n7 A= 1
|<o|¥® >| e ‘N1 - 2nlt + Tt 71)

The time delay is equal to:

<+
i

TGoldberger and Watson (18) were the first to discuss the possibility of a double pole in the

T-matrix, Newton (28) discussed also the corresponding decay.




2nl’ 4nT

a) Aty = 3 b) At, = 72)
1 T | 2 2.2 2 { 1 + E) 2 22
{E-z(hl+E2)} +m T E-3(E;+E)f " +nT
“ZTZ
The intensity of At, is ————5 times that of At,.
2 A j
1+4n"T

This behaviour is expected, as was mentioned in II.5a, when there are
degeneracies in the Jordan-Canonical form of the matrix O.
In appendix C a derivation of 70) showing that this is indeed the case will

be given.

When 66¢) is satisfied it is observed when I-ZI equals E:

T = 73)

The cross-section now behaves purely Lorentzian. For the decay-time it is

of course found that:

1
Ll 9
And the time delay is given by:
4nl
At = 5 5 75)
(E - El)" + 4 T

The behaviour of the cross-section is highly reminiscent of the behaviour
of the absorption spectrum in N.M.R. and E.S.R.-experiments when ex-
change is possible (38).

However, novel information about the behaviour of corresponding time delay

and time-development of the signals has been given,
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II. 5¢.

In the expression 50) which relates TI:,

with KR‘ the discrete

states can be chosen to be eigenfunctions of E + A. One's task seems to

be easier in this case because it is not necessary to consider the complications

due to non-Hermiticity as in II.5a,b. Pursuing the analysis somewhat further
it will appear, however, that other difficulties arise. The relationship with
the previous discussions in II.5a and II.5b will become clear when comparing
the present results with those obtained by Mies (17) who studied the multi-
resonance case with a formula like 50) which he derived using the Fano-
method. For this purpose, we will emphasize a so-called overlap matrix,

introduced by Mies, which in our notation is given by:

L <8 |u"| ¥ () >< 4 u(E) | 17| ¢ >

YH
Vii =¢ T Pl 76a)
Y |z l<s. |8 ¢ (B) >|2]2Lz l<g |u™ly , >|% 2
1 v ' J Y -
Y Y
1
I 1
it jj

The last expression showing the close relationship between Vij and I'i'j is
found by comparing the matrix-elements occurring in 76) with the matrix-

elements of I'', which reads: Y';j =< ?il H"| ".'V.V(E) >< *‘(..(E) | o éj >
c.f. appendix A. The accent in 76) means that instead of the functions
'vi which are eigenfunctions of E the function éi which are eigenfunctions
of E + A are used.
Because of Schwarz's inequality:

0 < lvijl <1 0

It is evident that condition I : [E + A, '] = 0 is equivalent to:

V.. = o 78)
ij ij




g R s g :
The matrix-elements Ky, N (E) of the matrix associated with the operator
KR is given by:

R ! n|. 1
K Vriz<¢‘v'|"|*i>l§-[‘:.<

1

5, |6y, > 79)

Therefore when condition 1 is satisfied, because of 78) using 50) and

one finds:

The Kronecher-delta é'i\r" assures that each discrete state ;;j is coupled
with a different continuous state (channel) so as to fullfill 78).

Equation 80) can also be found from 47b) using condition I, so in this
case equations 47) and 50) are similar.

The other extreme is \'ij = 1 for all i and j. Now condition 1 is not
satisfied and \'ij = 1 implies that there is no preferential coupling of a

discrete state with a continuous one. One therefore writes as in ref. (17):
n =
<a |uy >=1_ v, 81)

The matrix-element KR, is then found to be:
N - N

o
N
-

The problem now is to diagonalize a Hermitian matrix with matrix-elements
*

fv, fy. It is possible to find an unitary matrix L, such that

T D L (g e U O 83)
o . SETTE S Vg YN




with m _,,
~

When V.. = 1, 'I‘R, is defined as:
ij v -
R = - -1 +
T = Z 7 ISy 4 TS e L <y - -
'V‘~ N \'"' ,V”"V”v' .V' 'V” 'V‘ ’,V”V V”')\"‘”I ,Y'lll N
1
X 5 =1 84)
{m ,,,(Z l‘ll )JL + in
R | Tan S
i
In 80) and 84) all the matrix-elements must be calculated with energy
equal to E. The energy-dependence of 84) is found by studying:
1
Pl N Pt L 89)
v, S
{ m_,, ( T I_L) J'x + i
Yl E-E,

The poles and order of the poles determine the behaviour of 'I‘Ii, e
Expression 84) has to be compared with 48) when 25) is substituted therein.
Here the behaviour of 'I‘Ii, o is known and because condition 1 is not
satisfied it is possible that a;\ # 1. As is discussed in II.5a, this can
result in a collapse of lines. The peculiar narrowing effect noted by Mies
(17) when \'ij # 1 can now be related to very well-known phenomena in
different fields (38) as, for instance, cross-relaxation in N.M,R, (37).

Those phenomena are described in terms of a matrix like O and occur when

condition I is not satisfied.

It may be of interest to note that in two papers (17) and (7) systems

behave as if condition I is satisfied in spite of vij =1,

This behaviour becomes understandable if it is realized that it occurs

when the non-diagonal elements of I' are large compared with the energy-
differences.

When using a basis which diagonalizes I'y, E + A becomes non-diagonal,
but the non-diagonal elements are small compared to the diagonal elements.
Therefore,[(E + A), I'] ~ 0.




II.6. INTERFERENCE BETWEEN DIRECT AND RESONANT SCATTERING;

THE GENERALIZED FANO EQUATION.

U. Fano (2) in his treatment of auto-ionization phenomena has shown

that a peculiar asymmetry in the energy-dependence of the cross-section

finds its origin in the interference between direct ionization and ionization
by way of an intermediate discrete state. The formalism developed in this
chapter enables onetofind a new generalized expression for the Transition-

matrix in this case:

io
o R
Ty,P B < '.«V, |e cos URPTM0> +
1 L iOR n.-*1_,
s i - o >
S <V le * sin op |[[PS(E-Hy) PH'Q] ™ Q'T{, 86)

The derivation is given in Appendix D.

Here < ¢~ |T| ivo> is the matrix-element of the interaction of electro-
mag‘netic\(field with the continuum state *'.':l(E) and ground state -L-O of the
atom or molecule; <& | Tl ¥, > is the matrix-element of the interaction
of electromagnetic field with the discrete excited state Qi and ground state
Vo
quantizing it.

Q' is defined by:

One can treat the electromagnetic field as time-independent by second-

Pre P,

o' =Q + OH"P P 87)

E-Hd

H" represents the interaction of discrete and continuous states of the
molecule without the electro-magnetic field present.

Remember that in 86) o, is an operator.

R
That formula is worked out for the cases Vij '—'6ij and Vij = 1.

In the first case one finds analogous to 80):

(eu”‘u)
T, ,=L<t,lu>—r—L<yulTly > 88)
v w i | (€u+i)




In the following formulae:

E- E <3'9T|y>
¢ =——=; q = R 89)
o |2 boqv <ultly>

0" o o

1 '
.7 S = : 2 n d : ;
@ is a solution of 87) and V =< le ‘éu >3 “.. > is a continuous state
1% 1 15
d . : .
and ¥ is a discrete state. One sees that in cases where there are only

)
one discrete state and one continuous state 88) reduces to the famous result
of Fano in Ref, (2).

When \'ii 1 one finds by using 87):

r, Z <¥ v > Lo L gt < nvITI"\"' -~ 90)
Y+~0O '\('.\"'.V"' Y Y Yy & . i Y | o
N
But now:
2 -1
= i I\ll ] 1
e L™ m, f : qv = p X
N s J e d T >
il "i Vylll“o
| |
x <yl —Q'T|¥, > 91)
Y {Ps(E-HY PH"Q}" R

When one compares 90) with 88) it is evident that the essential difference
is in the definition of eV in both cases. So the discussion is analogous to
that of equation 86).

Expressions 90) and 88) have been derived by using the operator relations:

e 00805 Bme——"7 e 31 Uk W ey g —— 92)

and the definition of KR in 49). The Ei and E of 89) and 91) are eigen-
B
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values of E + A,

In present literature an example of the first case giving 88) can be found
in a treatment of Bardsley (4) on molecular resonant states. The second
case giving 90) can be found in the paper of Mies 17).

Comparing equations 52) and 86) one sees that also in the case of resonant
scaftering of particles the same behaviour appears as in auto-ionization.
Experimental verification can, for example, be found in the work of
Ehrhardt (31) and McGowan (32).

II.7. CONNECTION WITH EXISTING RESONANCE THEORIES OF FANO
AND FESHBACH.

In appendix B it is shown that the theory presented here leads to a formula

for the S-matrix:

1+1iKp .

S, .(E) =<y, (E V. (B)>
vy (®) 'V'()'l-ix | v, ®
I

R

This is equivalent to the one derived by Mies (17) using Fano's method.
Because the S-matrix contains all information about the scattering problem
this equivalence proves that all of the time-independent results presented here
are essentially the same as those derived with Fano's method.

However, in dealing with some problems the theory presented here has
definite advantages. For example, application of it to the problem of multi-
resonance clarifies many features as seen in the discussion of II, 5.
There it was shown that pecularities found by Mies by explicit calculation
with the aid of electronic computers followed analytically from the study

of the effect of E + A and I' matrices.

Expression 93) also has a form which is very similar to the one Feshbach
(14¢) derived. This similarity, however, is only formal, because the choice
of our projection-operators (19) is different from that of Feshbach. In the
work of Feshbach, P projects only on the open channels, whereas in this
work P projects on all continuous channels.

A consequence of Feshbach's definition is that the trace of A will always be
negative. The formalism presented here not only includes the Feshbach
resonances but also resonances which give a positive shift with respect

to a discrete state and the discrete states are not restricted to a region
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below an inelastic channel (34, 35).

Equation 86) shows, for the general case, how the asymmetry in the cross-
section appears as a function of the operator IR*

O'Malley and Geltman (33) showed that in the case of resonant scattering
by one discrete state their result, derived with Feshbach's formalism is
equivalent to that derived with Fano's method.

52) and 86) show explicitly that also in the general case of many resonances

the equivalence can be established.

It may also be illuminating to use an other way to compare the present
approach with those of Fano and Feshbach.

The trial function %(E) used in Fano's method to diagonalize the total
Hamiltonian is chosen as a linear combination of discrete and continuous

states. It is, therefore, given by:

3E) =% a. (B)y. +2 [ dE'Db (E,E") ¢ (E) 94)
; i,y i, v ‘ v
i,y Y OB
'y
With the choice of projection operators 19) it is clear that the eigenfunctions
used to diagonalize the total Hamiltonian have the same form.
The following relationship between Pé\(E) and QQV(I'I) can be derived and is

found by 44):

P (E-H)P§ = PH(NV 95a)
Q (E-l[)QéV = “HI’QV 95b)

The function:
B SRl 98}

is therefore an eigenfunction of the total Hamiltonian H and has the same
form as 94).

It is of interest to note that equations 95) arein a form identical to the one
Feshbach uses to start his derivation (14). Remember, however, the differences
in projection-operators.

Equation 20) which enables one to calculate the time-development of y(t)
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will now be compared with similar formulae derived on the basis of Fano's
method.

Mies and Kraus (7) and Bixon, Jortner and Dothan (26) have used Fano's
method to calculate the coefficients ai’v(E) and bV(E,E') of 94). As soon
as these are known they calculate the time-development of §(t). With initial

condition Py(t) = ¥(t") = 0; Qy(t') = 0 the equation to evaluate is then:

o = |' dE{Z a (B ti(E,E') -
1 N EV'

dE" b_,(E,E") b, JE-ENY ..(E")j,x

-l <t —iF
~ iE(t -t") & iE't 97)

When Py(t") = 0: Qy(t") = wj V(t')’ one finds for Y(t):

= il { o : - ' )
) = |dE4 2 a, E) a, E +2 | dE's b (E,E") ¢ (E')"x
W() Jd i,y l.yv( ) a]v‘Y( )Vi,\l' " | '1_] N \(( ) ﬁ‘V( )J)\

=i e

v

-iF(t-t! ad 1
cTE(E-t) Bt 98)

Comparison of equations 97) and 98) with equation 20) shows the much more

transparant structure of the latter,

This section will be closed with some remarks on the evaluation of lR v
When the eigenvalueproblem I\R o> = |a> can be solved formula >U)
of 'I‘R, can be used.

Y-y
When this is not possible it may appear to be advantageous to try to
invert EI1 - (E + A -inl') and to use formula 47b) for TS, v
The work of Mies (17) is an example of the first method; the work of Mower

(21) of the second.
Appendix A
One defines:

1
Al) O(z) = O (z—Hd-QHnP-- - PH"QQ
zZ - Hd
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and its inverse must be found. According to 5) equations 12) are to be

evaluated with z=x+iy in which x and y real and y >0. The operator H

is Hermitian, so has only real eigenvalues.

One can therefore take lim y -0. One then finds for lim O(z) = O(x) :

y =40
) n. Pr.P. n > 1 n
O(x) - Q(X—Hd—QH P———PHQ +imQH P &6(x - Hd) PH Q)Q A2)
x- H
d
Using 18) and 19) one finds for O(x):
Ox) = " St A _.;'-,i‘\(r' LY 1<y Al
N o T e el e i
Defining in Ad):
e s n| ] 1 o B .
Ai,’V' A J dE < Jl'.\(l” I VVH(]‘) >;—_I‘: < 'l'\,lv“‘«) | H | Ji,'V' - A4)
l:‘\’,.
whs Y e e n . ; : n 5
B =2 ] E<y;  |H L4 (8 > 66-B) <y (B |H 40 0> A5)
s
E_n
One defines the matrix E with the elements: E. 8..18
i,y il “yy
3 3! 1%
" " " " A "n "n " . A};V, = }y\/ AG)
15Y LY
3 A PVLAE
" " " 1" I " " " . rl:V' = Tl Y
1’y 1, v

The problem has been reduced to finding the inverse of the matrix O(x):

O(x) =xI - (E + A(x)) +inl'(® A7)

where I the unit-matrix.

It is assumed in this chapter that the x-dependence of A, I' can be neglected
(12, 18, 20).
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From AS5) it immediately follows that
trace I' = 0 AB)

Two possibilities must be discussed:
[(E+4, P)=0 9a)
[E+A, T]#0 9b)

Case a (condition I) is simple to deal with. It is possible to diagonalize

E + A and I' by the same unitary transformation:
uf ou =xI - F +inA A10)

Here U is unitary and F and A are real and diagonal.
A8) applies also to A. One now finds for the inverse of:

1

0" =UEl - F 4 g

uf Al1)

Case b (condition I is not satisfied) is less simple to deal with.
Two theorems of ref. (22) are used:
1) Any complex matrix may be transformed into Jordan-canonical form

by means of a similarity transformation.

U

2) Let (W be an arbitrary matrix with e c,,...(-l'] as its right eigenvectors

and right generalized eigenvectors. 1,3« (t) be the matrix whose columns are
the vectors c'l, ('; e €. Then (7)'11 (W(7) is a matrix in the Jordan-
canonical form and the rows of (1) are left eigenvectors or left generalized
eigenvectors of (u.
It is not possible to find a unitary matrix as in All) and in the case of
degeneracies of the eigenvalues of O, the inverse O_] will not have only
first order poles.
Let the matrix S be the matrix of the right eigenvectors and right generalized
eigenvectors of O. One then finds for its inverse o
oitsnig.c 41 A12)
with
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]

vl ranges from : 1 to \; \; is the index of the eigenvalue :lj.

C can be rearranged so that it is possible to start with specific nj and \,J. = v, !
which is the index of a,. If one thengoesfromj to j+1, Vis1 is ui' minus 1.
This is repeated untill .'i-lr 1.

The following possibilities now exist:

1) a, a,
jt+l i

or

b) a, f a

) i 1+1 i

In the case of a) one can find a new "%-1-1 , smaller than ujf and the procedure

repeates. The sum of the maximum values ;. u‘f_lA T is equal to the
multiplicity of a -
Case b) is a repetition of above with a different eigenvalue.

Because of AS8):
Im Z. a.< 0 Al4)
defining:

-, = Im a, Al5)
] J
F. = Re a,
) ]

Methods to find the Jordan-canonical form and S can be found, for example,

in ref. (22).



Appendix B. Proof of equation T}:, 3 =%<¢' | "42> and derivation

of S-matrix.

According to 33) and 38) QQ; (E) is a solution of:

Q(EI - E - A +inl') QQ:(E) = QH"w: (E)

B1)
Using the definitions of A and I' and dividing B1) by Q(EI-E-A)Q one
observes:
1+ in[QEI - E - A)Q]'IQH"P 8(E - HY P}anQ; (E) =

[QET - E - 4)Q] 'Qu"P 5 (E - Hy Pw: (B)

The inverse of E + A is well defined because of its Hermitian property.

Define:

QET - E - )@ qu" (E - HyP

>
I

B3)

w
n

P§(E - Hy PH"Q
The use of equations B3) gives:

B4)
(1 + in AB) Q¢' = APy’
h R §

Now it is possible to use the equality A(I‘*iﬂ'BA)-l = (l+inAB)']A (14c).
QQ: is now given by:

:
03

]

A(1+inBA) p',v:

]

. -1 n E 1 +
QEI-E - A)Q "QH Pé(h-Hd) Puat Py
1-iKp Y

R is defined as in 44).




According to 42)

™ =<y, ®|8% et ® >
v v Y

Substitute B5) into this expression and re-apply the definition of KR:

T, 2 il =2 = B6)
N~V m Y

Using the relationship:

<y, ® ®>=<eg (B|g (B >-2ni<e (B[ ¢ (B > B7)
Y v Y v y V
which together with 40) yields:
1 R R
T, B =5—-<g (Bl E>-<y,| B8)
Yy 2ni N v ¥ e Yy
R
One therefore finds for the S-matrix of the system:
} J . I+ iKR .
S, (E)=<y, (B " ® > BY)
e A 1 - iKp

The unitary Resonance S-operator of the system can therefore be defined as:

1+ iK
§, =—2= B10)

R 3 - iKp

The Hermitian Resonance-Phase operator is defined by:
o, = tan + Ky = og! B11)
;- Tl BB Ry -

which leads to the expression

S = a 2
SR € B12)
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Appendix C. Derivation of expression 70) for the Transition-matrix using

the Jordan-canonical form of the matrix O.
The matrix O(E) is given by A7)
O(E) =EI - E-A+ inl

In case 66b) when E; - E, = 2nl', O(E) can be written as:

O(E) :{E + inT - (P12 + ﬂr)}

One wishes to find the matrix € , which is in its Jordan-canonical form,

0Tt rgug 8 22

The matrix S and its inverse S_1 are used to find the Jordan-canonical
form of O(E), which is the matrix C_1 given by Al3b):

Using for S and s~! the matrices:

one finds:

¢t :{E - T - (B, + nn}

-1 o : ;
Therefore, the matrix C is a linear combination of the unity-matrix and

a matrix in its Jordan-canonical form of index 2.
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For C one finds:

8 : . -
1
C4) =
2
E - (E,+l) + inl {E - (E2~ﬂI') + inl }
C =
1
0
(E - (E‘)'fvf') + inl
which gives for (o 8
r -inl
C5) - v, }
FOr 2 . - e iy
E - (E,#) +inl {E -~ (E+nT) + in'} {E - (E T + inT}
0 -1
-inl 1 W
e = o 2 T e e L B
tE - (E +nl) + inT} E - (E_) trT) + inl LE= (I‘,,)*ﬂf) +inT'}
-

Using result C5) and expression 47a) for T one finds:

E - (E,+mD)
C6) T = 2T = ‘

{E - (E,+nD) +inT'}®

With El = 2nT this gives expression 70)

Appendix D. Derivation of the generalized Fano-equation 86).

The Transition-matrix of photoionization which is first order in the electro-

magnetic field is given by:

D1) T =<g |T|ly >
Y+~ 0 N o
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Here \iio is the ground-state of the molecule or atom and é:( is the continuous
eigenstate with such boundary conditions that a wave packet constructed with
it represents at t =+ = an incoming particle at an infinite distance from the target.

Using 32) and 33) PQ:( and Q@; can be found:

- 1

D2): a) P =y + PH"Q : QH"PY_
N Y lim ¢e~0 E - PHP - ic EI -(E + A) -inl )
b) QF. = Q 2 QH"Py”
ad EI - (E+ A)-inl Y
Substituting KR‘ which is defined by 49):
o ko n 1 P aiges
Kp = -n PS(E-HY PH Q QH P 5 (E-H )P
E-(E +4)
one then finds:
K
a <Pa|Tly, > =<y T|4 >+ 1<¥] |—— Ty, >
- L X i Y 1-iK 2
R
] Kgp - *_1 Pr. P.
=<y |—— L1)~(E-H )PHnQ] QH"P ——PT|y_>
SN S K 4 E-H i
R d
D3)
1 KR n s
= S 3 5 (E- D Ty >
b) <Q§VITW° > =Sy I1 : [PJ(P H ) PH Q] QT|y,
-1 KR

We use the definition of Q' 87):
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After adding D3a) to D3b), which is equal to DI1), one uses the identity:

D4) < ';v: |l| \‘JU >

and the definition of 9R’

so as to find:

cOs

[P 5(E-H )PH"Q]
d <

i e
<yl |—= 1y,
1 - ‘}\R
I\R tan oR
- F R
~ DT | & e g > ai -~
oR ! l|,w — < .\I( sin op
-1

Q"l‘]‘.‘o >
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CHAPTER 1III

ANALYSIS OF THE JORTNER-STEPANOV THEORY OF RADIATIONLESS
TRANSITIONS IN ORGANIC MOLECULES.

When molecules absorb electromagnetic radiation, excitation of an
electron can take place. Deexcitation of an excited molecular state can
occur in two ways. Firstly by stimulated or spontaneous emission of radiation
and secondly by radiationless dissipation of energy into other states of the
molecule itself or by energy transfer by collisions with other molecules.
In this chapter the intramolecular energy dissipation mechanism will be
discussed.

In large molecules it appears that the high density of vibrational states
can give rise to small decay-times at low pressures. The Jortner-Stepanov
model (1,2) is an attempt to explain this. In this model absorption of a
photon from the electromagnetic field is accompanied by excitation of an
electron from the ground-state to an higher electronic state according

to the Franck-Condon principle. The vibronic levels of this electronic
state are coupled with the vibronic levels of lower electronic states, which
carry no oscillator strength.

In the simplest form of the model only one vibronic level of the excited-
electronic state is excited and this level is assumed to be coupled with

an infinite number of other vibronic-states from the lower electronic levels
by a coupling v. Their energy-difference is assumed to be equal and given
by e (see figure 1).

In the real system this coupling is thought to arise from Herzberg-Teller

coupling (5), the breakdown of the Born-Oppenheimer approximation (1)
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figure 1

™

i (ifo0)

L

Jortner-Stepanov's model of radiationless transitions

(see text for explanation of symbols)

or spin-orbit coupling (18).

For the development of the theory, however, the coupling v needs not to be
specified.

The same model will be used in this chapter and the methods developed in
chapter 11 will be applied to unravel the things implicit to it.

First the conditions are derived that the infinite manifold of discrete
vibrational states can be treated as a quasi-continuum. The results are
essentially the same as found by other authors, but direct application of
the theory of overlapping resonances enables us to avoid pitfalls which one
encounters in some of the earlier papers on the subject.

Then the model is extended with a second electronic state, which can be
excited and the interference phenomena due to the coupling between these states
are discussed.

The different kinds of behaviour of those systems, which are predicted in
chapter 1I, are again found. But now they can be shown to correspond to
clear physical situations.

The use of the methods developed in chapter 11 are here again nicely de-
monstrated. The profit of the presented treatment is that it unifies many

different phenomena into one theory.
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II.1. THE JORTNER-STEPANOV MODEL OF RADIATIONLESS TRANSITIONS.

Suppose the states Qi’ which represent the eigenstates of the molecule
orthogonal to the ground-states when v= 0, form a complete and orthonormal
set in the space orthogonal to the ground-state. The exact excited states
¥y can then be written as:

1) wk=¢}3akj Qj

The coefficients akj and eigenvalues El'c can be found by diagonalizing a

matrix with the matrix-elements:

2) <y lHlg > =Es, | Kfo, o) <y |H|g>=ve, (Fo)

< QOIH|§O> = EO : E"( = EO + ke + @ (k< 0)

=E+ (k-1) e + o (k > 0)

The function éo represents the excited state which carries oscillator-strength.
The label k in 2) can range from -« to +e,

Let the ground-state be represented by a wavefunction ks and the interaction
with the electromagnetic field by a coupling H'. When second-quantization

is used, H' is time-independent.

The states vi defined by equation 1) are the discrete states that have inter-
action H' with the continuous states, where a photon is present and the
molecule is in ground-state Qo. In the resonant process excitation occurs
from Qo to vi by absorption of a photon. The formalism developed in

chapter II can now be used. The transition amplitude can be expressed in the

inverse of the matrix O (II, 47b). The matrix O is in the case treated here:
3) 0=E1-E'+inr?

The matrix E* is the matrix of the eigenvalues of y. The matrix AW has
been neglected because the matrix-elements of A* are small compared to
the matrix-elements of Ew and I‘v, for they are of the order of the
radiative line-shift.

Because the electromagnetic field forms the continuum, the matrix-elements

of I‘v (II, A6) can now easily be calculated:
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4) cy =

¢
ij io"jo "o
where
= = - 2
5) rp = l<a |Hlg, >|%0,

e is the density of electromagnetic-radiation and 2m I‘:; the radiative width.
Because ai‘onjo are of the same order of magnitude for all values of i

and j, condition I II, 23) is not satisfied.

As is shown in the previous chapter, it is in general not permissable to
simply neglect the non-diagonal elements of I‘."’. *)

To circumvent the difficult problem of diagonalizing the matrix 4), the
expression of the Transition-matrix in terms of the Resonance-Reactance
operator II, 49) can be ftried.

Let QE be the product of a state populated by one photon with polarization-
direction € and 90' The matrix-elements of the Resonance-Reactance

operator K R are:

L S 2
6) <8 K| 05 - - Bla, | Ci———m
€ R € Oj Jo E—I‘:j'

The Transition-matrix, found by using 6), can be elaborated and one can
find the resulting expressions in ref. (7,21).

In chapter II it was already mentioned that this expression must be equivalent
to the result of the Fano-method. This is the method used in ref. (7, 21) to
derive the Transition-matrix and the resulting expression of the Transition-
matrix is very complicated.

There exists, however, a much simpler method by using the states §~i as

a base instead of the states ""i' By using partitioning techniques (9, 10)

and formula 1I, 47b) of the Transition-matrix, one finds:

l< |0 8 >|2
€ 0
E E 73 D R 2 15
o~ g N B Ry T ik
i#o i

E is the energy of photon and molecule before absorption or after emission.

%) In ref(6) the solution of the problem is given with the assumption that I'" is diagonal.




Using the definitions 2) one finds:

; E - EO - o
8) 0 ’E o~ E" = n cot 1 —e— (i#0)
1=~ 1 e
2
mv E - FO - o 4
The:zera's of E = B =—— cots. I ————= %0 r’ have to be studied.
0 € € 0

When substitution 9) is performed:

9) E-E -oa==(+iy)

where x and y are real, x and y have to satisfy:

o
e” m
10a) 5 9 (—a‘ t x))’ Re cot (x + iy)
.-‘\- €
2 & Rk
€ L
10b) S O E Im cot (x+ iy)
mv &

Equations 10a) and 10b) are graphically represented in figures 2) and 3).

One uses expressions:

Aol
11a) Re cot (x + iy) sin 2x
- cos 2x + cosh 2y
; e
11b) Im cot (x + iy) = - sinh 2y

- cos 2x + cosh 2y

In figure 2) the full lines represent -Re cot (x + iy) and the dotted line

2
€
2 2

myVv

(%a + x). In figure 3) the full lines represent -Im cot (x + iy) and
a..r

the dotted line -

If |y| is unequal to zero, it is seen in figure 2) that instead of periodic
infinite values, finite maxima and minima in -Re cot (x + iy) appear,
which are a periodic function of x. If |y| grows larger the maxima and

minima grow smaller.
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- Im cot (xl + iy)

N - Im cot (x2 + iy)

N
N
N
N

- Im cot (x3 + iy) \\

] AN T

X o;

1

> <|x Ix I<|x_|;
0<[“2|&1\31< x4‘<}v5
when o<<x < ; m.

X xz, x3 satisfy :

1

: 1
ossin xs 33

¢ x _ satisfy :
*¢ s g

1 ey
2 Ssin X.

-Im cot (x_ + iv) | b
5
|~ -Im cot (x44 iy)

s

n iy

- m\cot (x3 + iy)
N

\ l
-Im cot (x, + iy)
2\

N

-Im cot (x, + iy)

figure 3
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One reads from figure 3) that - "'o <y <o. If 9-0 << 1, y approaches 0,
e v

when x#o. It is seen from figure 2) that then many intersection points

exist. One derives that when there are 4N+1 of them N satisfies:

12) N ==

If the poles z; of T are only first order and T is expanded into a Laurent

series one finds:

N 2
! v
) . i =
13) T =|<sLH |3 5% = 5 5
b e N 5w B 4y Pt TN (5~ Bt ¥ ) (Bt
i=-N (zi LO in [, - s e)(Li LO 1nr0 in e)(L /,i)

0o

~ 2 P 2 v |
For simplicity the assumption has been made that T o> |v|. When at t=0
€

the state § is excited, < 3 _|¢(t) > reads:
0 0 i

Niw ¢ (—izit €—i7,il l
\ € ) 2 >
= - 74— - = o
et e B o T IO ST
i g SEReH g S 0 o = e

If N may be considered infinite, the poles z; are given by (0=0):

€ i
- 7 =F R e-i—a2
15) Z Lo + (3 +tKk)g-1 2
If one takes lim ¢ - 0, 14) gives:

2 2
R = G a1 v U

n : ; —1(1,0—17 Tl = )t -(e— u Tn)t-ll‘.ol
16) <§O\¢.(t) > = @ = @

2
v r
where ts> o and T > Ty
¥ 1
The value of <3 _|y(H > will not be null because — has to be considered as
€
the finite density of the levels 3; as is seen from 7).

This expression gives, when ¢ — o, the well-known relation for a transition

from discrete to continuous states:

17) T = — € 9
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1
One sees that P = . must be read as the density of states in the continuum.

The probability distribution of absorbed or emitted quanta is then (3, 17):

4

| %
|<eglHls, >|

18) - ey i 20 b
3 s 32 2 v r.2
(E - ho) m ( 2 + r‘o)

The shape is seen to be purely Lorentzian. The decay-time r is:

19) 5

+ is the decay-time expected due to two continua. The decay-rate equals:

20) k = 217\’20 t+ 2 1—2
2.2
If T ;f>> 1, 15) can be substituted into 14) and one finds:
€
- y“r
S §‘,)~,0 t - iEOt ( N @G + ke sin(k + 3)et + ) cos(k + 3) et
&) e éow(t) B ~a V& 1 = 1 2 9 9 £
d k=0 & k) e s
G + KesinK + Jet+)' cos® + et
|
g Za% 20 .
G R e Ay
£
€ 4
where: % e 90' s nve
v
r
>
. cI‘0+ ot @
S o "7 e
‘,‘

The function within the braces is periodic with period 4"‘, Its absolute

2 2k b € k
value has a maximum at t = - and a minimum at t = -T_4+27% .
€

o p 3
ﬂu"z + wz rr
=4 0
If e © € <> 1 and N can be considered infinite use can be made of:

w (G + Ke sin(k + 3)et + ) cos(k + 3)et

9.0 2
et

™ k=0 G + k)




with % >0 and o < t<t', where t' =—T-;.

At t' the absolute value of the function has reached its minimum value, then
=N 92
increases as e At until its maximum value at t' = =T is reached.
€
If ¢ remains finite one finds therefore an exponential decay with decay-time

. = = WECE. — - This behaviour repetes with period ﬁ and its overall
2
on V< + 2m Lo £
€

decay-time is given by:

23) g lami——

This is the precise formulation of the so-called statistical limit (1). Only
when lim ¢ — o no repetition occurs, but then one deals with a real conti-

nuum.

The cross-section and therefore the emission and absorption shows sharp

maxima at E = E_ +( + k) e with width:

24) 2eT

The maxima itself are given by the curve:

4 4

l< 3 |H' 32> v
25) : T e
{(l‘.—Eo) *(T“*'HI'O) }e T

The derived formulae show that a Lorentzian curve is found but build up

from very small lines. If the set 8 is not an infinite set but a finite one

22 4
mnv v

essentially the same result will be got if — 5 >> 5
£ (i

r°
0




e2

When <3 increases the possibility exists that—:-, TTV2

and I‘; are of the
same Order . In the next paragraphs the problems which then arise

are discussed for two excited level systems.

On the very difficult problem of multi-level systems which one has to solve
in the theory of radiationless transitions in this intermediate case, will

be lightly touched, using the results found from the two level systems. It
will be seen that the extension from two level to multi-level systems is
non-trivial. The possible kinds of behaviour will be the same as in two

level system as follows from the general theory presented in chapter II.
I11.2. INTERFERENCE IN TWO LEVEL SYSTEMS.

The simplest case is that of two non-coupled levels @1 and §2. when
there is no interaction with the electromagnetic field, which can be excited
from the ground state by a photon of different direction of polarization.

In the same way as is discussed in III. 2, the matrix O can be found in

this basis:

26) E - E1+iﬂ X'] 0

0 E—E2+iﬂ1"2 !

2nT; is the radiative width of state §;. 2nT, that of state §3. E; and E,

are the energies of states 3 and 3%,,.

The time-development of the states 84 and 3, can now be found using
11, 26):

(-iE;-n Tp) (t-t) (-iEy-11 T,) (t-t)
27) ¥(H) = e cl(t') Ql + e T cz(t') §2

2
The time-development of |< ¢1| V(b >]2 and of |< ¢»2]W(t) >| © are:
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q -2n T, (t=t") ¢
28) a) | < vifll'r(t) >|‘2 =g 1 |c](t')| 2

-2n T, (t-t") 2
¥o > | 2 og & | cz(t')‘

b | <3,

1 1 -
But the time-development of the state — (@1 + &) 01‘—(—:( @l - &,)
E N2 3 N2 Vi
is given by:

" 1 l |2 L4 )—Zﬂ ll(l-[') l . (l')l 2 )
29) |<‘;—0_-(¢1_+ 5o) | 4() >|” =5 e ¢y

-2n T, (t-t") ~n(0y*Tp) ()

2 f ol '
e |c2(t’)| + e { Re cl(l) cz(t)

.
(] =

*

cos (lil - FIB)(l—l') + Im ¢ (t" cz(l‘) sin (E] - EZ)(t—t')}

c](t') and cz(t‘) are the coefficients of states & and ’;2 at t=t'.

When the states 3, and 8, are both excited at t=t' and one studies the
time-development of the individual atoms or molecules, the last term
contributés, when there is no external interaction which disturbes the
phase-relation between cl(t') and 02(('). In the case this phase-relation

is lost much faster than the radiative decay and oscillation frequency, there
is no phase-relation between c](t‘) and cg(l'). so averaging deletes the
contributions of the oscillating terms.

An example is broadband pulse excitation of two levels by linearly polarized
light, whereas 3, is assumed to be only excited by right-circular polarized
light and §, is assumed to be only excited by left-circular polarized light.

When the emission of linearly polarized light is studied and when
1

—.];1'i'2| oscillations can be expected. They can only be measured

E]—

however. when excitation takes place by a coherent light-source, because

e
E 2

otherwise they cancel against the contributions of the other atoms or
molecules.

When a Boltzmann equilibrium can be very rapidly established the phase
relationship is broken and the oscillations disappear. The development

in time is again exponential, but with a different decay-time given by the

Fermi-Golden rule (4). In III.3 the influence of relaxation on absorption




and emission is discussed in more detail.

One sees from 28) that when no external interactions are present and
excitation takes place to one of both states, no contributions to the emission

will be found due to the other state.

Consider now the case that there is a time-independent external field
present which couples the states 8, and 62. The matrix E is then not
diagonal in the basis 3 and ’?2. Let the matrix-element, which originates
from the coupling by the external field be a.

The matrix O is now:

E - El 4 inTl
30) 0 -

a* E - EZ + iﬂrz

The solutions of det |O| = 0 are:

¢ > S . c . r 3 2
81)  E-=3}{(E;+ Ep-in(Ty +Ty}* 3 ’\/{ E, - E, - in(l; - Ty}~ + 4]al
The three cases which give all the different kinds of behaviour of ¥(t) are:

4|a|2
case a: 1"] = I'.Z :‘—? << 1
B} = E,|

with solutions:

32) gt =g, +—lal - frl
1 1
Ei- Ey
- |al®
E =E, - -inT
2 1
E, - E,

Ianot sl 20 2
case b: E; =E, : m (I - Tp)" = 4]a|

with solutions:
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3 =1 + F X
33) E- =3 {E, 4 E, ~in(T; + rz)]

1
IE, - E,|?
case c: I‘l = __Z_ << 1
4|a|
with solutions:
34) E- =1} (E; + Ep) * |a| - inT

The time-development of |< 2, H(t} > lz, |< QZN(O >|2 and |<Vl—_—(~§10-§2|'."(t) >lz

2
is now:
In case a:

5 =2 T, (t-t) 2 :

) ! F 3 e
|< ¢1|w> >|~e ) {1- _2'_""— cos (E, - Ep)(t-t")] ey (e a)

(E, - E,)? £
with ¢,(t") = 0
-2 T, (t=t") al2 2
l< 3, |e(® >|2,~ e s 2lal = cos (E; - Ep)(t-t") ] le,(th = b)
S (B —Ey)* 3
=t

with cl(t') = 0 35)

1 2 2 2
le7 @ + 140 >I°~ k<o, [+ >+ b<g,|yo >
N .~ =

-2 I‘](l~t')

+ e ‘LRe{c](t‘) cy (t") cos (Eq - Ez)(t—t') +
> r ’ ¥ : = n ]
Im {e,(t") c,(t) sin (E, E,) (t-t) ] c)
To find 35) use has been made that when the roots of the det| EI - E +

+in T'| are given by

+ ' y '
E, - mfll

36) 1

=
]

=
]

Ey' - inTyy
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the time-development of the population of ¢1 when this state is excited

at t=0 is given by:

2 B 3 2
5 By -E)an y;-Tog) -2n0); ¢
| <& lvw >|" =— = 58 »
(E] - E) ™+ (T} - I‘éz)

x[{(E] - EQ)(E} - Ej) + = Ty) T}y = Tp) } cos (B} - Ef)t-

£ {(Thy - Too) (B} - Eg) - (T - Ty (B} - Ey) }sin (E] - E)t]

The oscillating terms in 35) contribute, if |Ii1 1_ B << ST

When we study the time-dependent behaviour of the individual states the
21al“

5+ This is in case a) very
(Eq - [-‘,2)“

modulation in amplitude is of order
small. When there is no other mechanism that induces transitions betwern

the states é] and <I>2 or disturbes their phase-relationship and the states
&, and Q‘.Z are both excited at the same moment, in the emission of the state
V”—]:?(Ql + Qg) the magnitude of the modulation is of order 1. It is this situation
of course which is suitable to see the quantum-beats phenomenon (11). In the
experimental situation it is only seen when the different molecules are
coherently excited.

When one does not excite with a coherent light-source, the effects of the
coupling of state 3, to 4*2 can be seen when one studies the energy-dependence
of emitted and absorbed light. When one excites with light of polarization-
direction ¢., there is now a small probability that light will be emitted

1

of polarization direction €. Tg‘ is in this case:
2 o ¢

™)

—

A L

38) Bor & == = -
Sxr- (E - E; + inTy)(E - Ey +in Ty

The probability of emission equals ng il
o -
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The time-development in case b) and ¢) is given by equations 39) and

40):

5 -77(1-] T, (t-t") .
san b |( 8 l""m >| = a {1-m(ry + Ty E (t-t") +
b b %o e m PR it 2] n|2
v 4 {nfr +T" +a” E] (t-t) 1] e (0] 39)
with ¢, (t") = 0.
" ~2r1 Ty (t-t") ; 2
case C: l’ % l 0 e {1+ cos Zlﬂl([_t'“ lc](t')l 29

with cz(t') =.0.

The probability that when one excites with light of polarization direction E’].
there is a probability that light will be emitted of direction of polarization
€, increases going from case a) to b), and from case b) to case ¢), where

the probability of finding light of both directions of polarization is equal.
In case b) and ¢) is seen that the time-dependence now grows more non-
exponential. The typical behaviour in case b) is caused by the double pole
in the matrix-elements of O_] (see II,5b) and ref. (14). Case 3) is also
suitable to see the quantum-beat phenomenon.

The case T, — 0 is of interest to the discussion of IIL 2.

There Tl 'I) and 2n T:) is the radiative width of the state QO. In the re-
presentation ¢i the matrix is non-diagonal. The set {:i is restricted now
to one other state ;1 and ¢ is the difference between the diagonal elements
of E. o is assumed to be zero. The non-diagonal elements of E are

V.

The time-dependent behaviour can now easily be found. The matrix (0]

’ . Sl R i
is equal to 30) except that Ty =T _, Ej = E, = ¢ and lal =|v].
) &
The three cases which can be distinguished now are:
2 9 p2 :
|'3 e .,_l I et I_l
case a): _—_L << 1 ¢ _(l << 1
ase a): 5 < - - g
\' v
€ 2 €1 I‘l‘
case b): o X < ) O/ rv?‘ I‘lw = \'2: S <&
\2 0 2
’ v
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v2 enld
se c: ;
case ¢ TR 1 2

2 <«< 1
e“-n2T e—nzl'g

The time-dependence of % is in the three cases:

- T; (t-t")

case a):|<¢O|W(t)>|2=%e {1 + cos 2|vl(t—t')}|c1(t')|2 41a)

- r(r) (t-t") 9

case b): |< Qolvlv(t) >|2 =e [1-7 I"g(t-t') + {(El*‘-.’ze)z— a n F;_} X

x (t-th2] Icl(t')lz 41b)

-2n T (t-t) r 2]v|?

2 1
case 0©): |< Qolv(t) >l = e [1- cos € t—i 41c)

€

The situation now is completely altered compared to the case that %, is
coupled to an infinite set of states. The proportion of e, = \":; and |v|2

are in case a) those of the statistical limit considered in II.2.

The decay-time in case a) is, however, two times longer than when v=0,
Because the inequality |v|>>m r; is satisfied, the modulation in the time-
dependence contributes to 41a), its amplitude is of order 1. The behaviour
of 41a) is that of a damped oscillator. The probability-distribution of
emitted photons will show two maxima at distance |\| from one another.
The shape around each maximum will be approximately Lorentzian, the
width ﬂr(r), that is half of the original radiative linewidth.

When | v| decreases and satisfies b), the width of the level 3 is as large
as its interaction with & and the non-oscillatory but non-exponential
behaviour 41b) appears. The two maxima of emitted photons have collapsed,
but the shape of the probability curve is non-Lorentzian. If lvl is so small
that it satisfies c), the exponential behaviour of the time-development of
¥ is modulated by very small oscillations, because 2m 1‘:;< e¢. The expo-
nential decay-time is here the original radiative one and two times

smaller than in 41a).

One can now sketch what happens when more states are coupled with Qo.
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When |v|2 remains a constant, the relations of case a) will less well
be satisfied, because the distance between the other levels and . increases.
This means that maxima will appear between the two already present at a
distance |v | The width of the individual lines will be very small. The
time-dependent behaviour will be a superposition of terms like 41a). The
interference of these terms results in the exponential decay discussed in
I11. 2. In the case lrzl =0, this has been shown by Rhodes (15). It is

seen that the full oscillations have to be taken into account.

It is also seen from 41a) that there is in fact a competition between the
lengthening of the time of radiative decay-time because of the coupling
with other states and a shortening due to the interference of the oscillating

terms. A discussion of these intermediate cases can be found in ref. (21).

The phenomena described here are only directly applicable to an experimental

situation when the relaxation times due to external interactions are very large

and there are also no other reasons of broadening. The discussion applies
only to one single atom or molecule. One has to be careful to apply it

directly to a sample of molecules. The relaxation-mechanism that can be
treated within the formalism of chapter II is that of radiationless transitions
according to the Jortner-Stepanov model. In the next paragraph the time-
development of the excited states and energy dependence in absorption and
emission will be derived of two excited states where these relaxation-

mechanisms are important.

[II.3. INTERFERENCE EFFECTS WHEN TWO EXCITED STATES ARE
COUPLED AND RADIATIONLESS TRANSITIONS ARE IMPORTANT.

Two examples of large molecules, in which radiationless transitions

are possible, are treated.

In case a) two excited states are coupled by the radiation-field to the
ground-state and each has a different direction of polarization. These
states are coupled with one another by radiationless transitions, so they
can be considered to have an interaction with an extra continuum, which
couples them.

The matrix I therefore is non-diagonal and has the matrix-elements:



Y o2t S <. W | L DA T s
42) Ty =Ty F vy 8450 Looi= Tog #'v Rosinillye. T8y = V1 Yoly

r;l and rgz are the contributionsto ' due to the coupling with the electro-
magnetic field; vy and vy are parameters which give the coupling of

states 1 and 2 to the quasi-continuum of vibrational-states in the molecule

and P is the density of this quasi-continuum. The matrix E is diagonal

and has the diagonal-elements El and I£2. This case is also considered in

ref. (8), but the method used is different.

In case b)one discrete state carries oscillator-strength, but is coupled

by a direct mechanism (not via a continuum) with a second discrete state
which, in its turn, is coupled with a quasi-continuum which induces radiation-
less-transitions. (The direct mechanism can be, for instance, spin-orbit

coupling). The matrix I’ has in this case the matrix-elements:

Do

43) Dyg T By | BTl sy 7105 gy ol

4 &

©

2n rll.l is the radiative width of level ‘,‘1.

The matrix E , however, is now non-diagonal and has the matrix-elements:

44) E“ = 151: 1522 = I-Iz: ’12 = Eqgq

, represents the coupling between two discrete states.

Here v
1
III.3a. Two discrete states coupled by a quasi-continuum.

Using equation II,47b) for the T-matrix, the expressions are:

s - EL. i T
E 1.2 1“22

a. T, o -_<¢€_.l|ll|¢1> <¢1|Ill¢€1>

det |[EI - E +inT|

E_El + iﬂ'l"ll

< ¢2|n |@52 >

e o 1
b. T;2~;2 < @ezlu | &, >

det |EI - E +in T|

_iﬂrw
c. i - :<¢_.|H'|¢1> = < ®
S €1 det |[E1 -E + in
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< clln'légl > 45)

™
(V)

1

®)
-

2 1" Get|ET1-E + inT)

f:'] and %, denote the polarization-direction of the absorbed or emitted
photon. - and §, denote the two states which carry oscillator-strength.

The behaviour that will be found will be similar to that discussed in

(I1,5b), when one puts T ¥on I'l,). This approximation is very well
~ A 3 l. r
when V4 equals v, and ‘vl equals p, and equals 93‘ because T” and T,

are much smaller than the non-radiative decay-rates. In this approximation

one can distinguish the three cases:

p 9 9
case I: |E; - E, |49 | £l? 4n®

9 9 9
- E |7 = | 1% 41"

case II: ”:l 2

2 2 92
case II: |E; - E, |7 << Irl® an®

In case 1

6: T rr :
o Pt A e
TR I R
b) Toone s g™ (B s 00 0
€1+~ %9 €9 =51
= 3E 1
C) l; g Tgg —
"2 2 E-E,; tinT,,

Expressions 46) show that the system behaves as two isolated resonances
and the corresponding time-dependent behaviour can be found in II.5). The
decay-rate is determined by the non-radiative decay.

When Il'il 2 1'3.,12 grows smaller but does not yet satisfy relationship II, the
complete expressions 45) have to be used. When the roots of the

det Ilﬁl -E+in l:n‘(- given by:

“ .’ - '

47) I',:l I.1 - in Tq4
< a 1’“

lh }"2_‘”“_’2
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It is seen from 37) that the exponential decay, corresponding to 46), now
will be modulated with a fre quency |Ei - E2'| Therefore when the coupling
T1o cannot be neglected a modulation with frequency IEl' - Eél of the decay
will be expected. The amplitude of these oscillations will however be

small.

= 2n " one finds:

When |E] = E2|

1 . .,‘);(El - E))

om0 T2 :ril[ 2|
152 E-é(E1+I§2)+iﬂI‘u {E~5(E1+E2)+inrn} ;

-in Tyq

b T, ¢ =<Q€2|H'|¢2><<§1|H'|¢El>

€o N 1/ v . 2
251 {E - 3(E; + Ep) +in rn}

This behaviour can only be found in the exact case when Py = r22‘

When é'] and 5‘2 are interchanged in 48), the expressions are the same
except that the labels 1 and 2 have also to be interchanged. The linewidths
in case II will not be Lorentzian and will be approximately half of the
linewidths of case I).

This is an example of the situation where the T-matrix has a double

pole. When ¥, is excited at t=0, its time-development is given by:

-2m rllt

o
49) |<& v > = e (1 # (e 4}
In case III one finds:
: g 2
E-E +m([‘r‘ + vp)
508) T ¢ =T o 22 ——
L= {E-3(E; +E) +inT }{E-JE, +E) +in( +2v%)]

g2
< §€2|H'|§2> (=imr v¥p) < ¢1|H']§€1 >

ox

=)
) §
1

1

2°€1  (E-}(E, +E) +in "} (E- }(E, + E) +in(r" + 2v2)

The radiative decay is now taken into account again, for otherwise the
population of the levels remains a constant for large times as can be seen
in 52).
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I’. is defined as:
g | ol T2/ ) r
51) 5 g(l‘11 + 1"22)

When §, is excited at t= 0, the time-development is given by:

s 1 % petaf Bhvipt -anvyp tj
52) |< o, ¥ > =7 e li+2e e

The time-development will appear only as a superposition of exponentially
> P 1
decaying terms and the decay-rate will be 2n rr if ED s
2nvep
P
If Tgo = 0, one sees from 51) and 52) that the decay-rate is half of the

radiative decay-rate found when no radiationless transitions occur and the

decay-time is of course two times larger, if again t>> -
2nvep

This is the same phenomenon which occurs when a rapid Boltzmann equilibrium

is established between both levels. The radiative decay-time for the same

case and high temperatures is then also two times larger than when no

Boltzmann equilibrium is established.

The probabilities of absorption and emission are proportional to |T|2. In
case I) two Lorentzian curves are found as function of energy and the
distance of the maxima is given by El - EZ.

The width of the Lorentzian curve around E] is given by 2nm [‘11, the width
around E:Z by 2n Too and they are therefore very large.

If one goes from caseI) to case II), the shape of the two curves grows
non-Lorentzian and the maxima get a smaller difference until case b) is
reached. Here the two maxima cannot be separated any more, but the
curves remain anti-symmetric. Going from case Il to case II1 the curve
diminishes until a very sharp Lorentzian curve is obtained.

This kind of behaviour is reminiscent to a well-known phenomenon in
N.M.R. spectroscopy when two inequivalent protons can interchange positions
and the absorption as function of temperature is measured (20).

One notes that when one excites with polarization direction Zl a finite pro-
bability exists of finding a polarization direction ;‘:2 of the emitted light.
The probability of finding direction El or 22 is in case III equal if

&

<agliwly,>= < lmle;>
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II.3b. Two discrete states coupled by a direct interaction.

One of them can decay by radiationless transitions.

According to 43) and 44) the matrix E is non-diagonal, but I is
diagonal. This case is formally similar to the one dealt with in IIl. 3a because
a matrix O' can be introduced, such that:

= § ®I- E +ip0) 8"V =El- Et+inrD*

The matrices S can be chosen so that E' is a diagonal matrix. Using S

and O ' the equation for the Transition-matrix is now II, 47b):

A Bl . 2 R
54) pre e @E.|H|¢1>| 1—21 8,.L07 1y S5

%]

The phenomena which will appear are, therefore, analogous to those found
in III. 3a. This behaviour will be illustrated for some limiting cases

which are of chemical interest (12, 13).
When (E1 - IC‘))Z > 4|v|2 , there will be no coupling between the two

states. Therefore:

55) T = |<s.lus, 3|2 —
€-F ¢ g

: = e
E - L] + mI"“

9 2
(E] - Ez)' <|v|" the det|E1 - E| can be approximated by:

56) det|ET - E |~{E-4(E,; +Ey +|vy, } {E - }
The eigenfunction belonging to the eigenvalue 3(E

L
Y1575

&

E,) + |\']2l is given by

:,
(8, + 8, and the other is ¥, =——(8, - ).

V2 1

In the new representation §, one finds a matrix I'" with matrix-elements:




r

11 e i
; : 5y 3L2E = (EJ+EQ+2inv=p]
22) +om II' ..l

i

W Y, T e T
(E-E} +inT])(E-Ej +in

The three cases one has to distinguish now are:

l)’ Zl\'")l ':.-rl‘l

" & 9
Remember that (l:l q I:,_ 4]\'13| and mv™ P >> Ty,
In case a) for T - is found:
5 : 2 ¥ 2
59) /T, s - : —|E - "'”"i +EY) £ v Rl
€ - * '} R e Y 2y &
(E-E] +i 1P (E - Ey +i :3)
The time-development is now:
—-(E" \':C) L
2 1%
. oz ukz ~|“ 0 st B,
60) | Y1|.l|!f| 3 e (1 Losl\u t)

Oscillations superposed on the on the exponential decay will appear, for
1 cc- : 1 —— . The decay-rate is determined by the non-radiative
2!\'131 ml t VD

decay.

Case b) gives us for T

29
1 S > R
. b . 1 I(A“ 3nv p) \
BT & P = — — |
) T Y = = ed .9 . v ¥ 9“7
I (l] ]’2) im T4 LE :(bl Eg) +im Iy,
This is only valid in the exact case when E; ° =
The time-development is given by:
g “IT ¢t 1 .r 2 . 2
32 3 14y »1* = ¢ i b= (T + 3= v D 2
62) | ‘1,.m,| ( [1 +=(Tyy + 3V P ]
In case c¢) one finds:
T‘l‘
=8 W Meie wheduilid 2
63) RE P : 'Vl')l"
€—~€ 1 o [ P Bty
E - 3@+ By iml Ty, )
mveop
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The time-development is now:

|vig| 2
) ¢
~2nCyy +—>3

)i
64) |< th(t) >|2 = e mveoe

This result is the same of that of ref. (12), where 62) is derived for this
specific case. |v12| is then the spin-orbit coupling, Ql a singulet state,
which carries oscillator-strength and Qz a triplet-state. **)

The energy-dependence of absorption and emission, which follows from |’I‘|2

is analogous to that discussed in IIIL 3a.

The case that m v2 p >> 4|v12|2 is of interest for the Robinson and Frosch
theory of energy relaxation in solids (19).

There the electronic level 815 with radiative width 2m T§1 is coupled by|v12|
with a vibrational state Qz, which in its turn is coupled with a heatbath

due to the environment. Its width is large and equals 2m v2 p. The resulting

rate found from 64) is precisely the same result as theirs.

*%) Recent measurements of E.Drent of the quantum yield of triacetyl as function of gas-
pressure verify the decay-rates resulting from 58), 60) and 62), if one assumes v p to be

proportional with the pressure (personal communication).
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CHAPTER 1V
THE ENERGY AND ANGULAR DISTRIBUTION OF ELECTRONS EMITTED
IN PHOTOELECTRON SPECTROSCOPY.

In molecular photoelectron spectroscopy (1). photons of a constant
energy (He-resonance line e.g. 21,21 eV) are scattered by molecules in
the gas-phase and the energy-spectrum of the emitted electrons is measured.
When X-rays are used the method is named E.S.C.A. (Electron Spectro-
scopy for Chemical Analysis) (2). Changing the energy-spectrum by altering
the energy of the incoming photonbeam can provide insight into the details
of the ionization process (3, 4, 6). The angular distribution of emitted

photons can also be measured (5).

Here it will be shown that the energy of emitted electrons is defined by
the difference between photon-energy and ionization-energy in agreement
with the intuitively expected result. Photoelectron spectroscopy. therefore,
provides a method of easily finding the many ionization potentials of a
molecule or atom.

In addition the intensity problem will be discussed in view of the angular

distribution.

The general formula for the angular distribution of electrons emitted
from atoms by linearly polarized light in dipole approximation is well-known
(7, 8, 9) and given by distribution I:

dg _ o

=L =2 | 4 » 1
1) dn  4n L1+ g P, (cos X




The angle between the direction of emitted electron and direction of the

polarized light is indicated by X; ¢ is the total cross-section and g is an

angle-independent parameter. The same angular distribution is found in

the photo-ionization of molecules, when the molecules may be considered

as fixed in space and their orientational distribution is isotropic (10).

The restrictions which have to be satisfied to obtain distribution 1 are

derived for those cases where rotational motion is included. There is also

a short discussion of what happens when these restrictions are not

satisfied.

The results are that distribution I is found when:

a) The difference in rotational energies is small compared with the energy
transferred to the electron.

b) The time delay, which is a measure of the rate of the ionization process,
is small compared to the rotation-time of the molecule.

Deviations of distribution I can be expected when rotational excitation is

resolved.

The derivation is related to the one used in ref. (11) in a study of reso-
nant scattering of electrons by molecules. The method used gives directly
distribution I in the case of atom-ionization. The argument is then similar
to Yang's (12).

IV.1. THE ENERGY OF EMITTED ELECTRONS.

The Hamiltonian H of a molecule can be written as:

2
2 A Z, e
> o ok .
1) .H = 2'1“1(1-i) -E’I‘n(l{k) A i Lt e, L =5 k
i i<j | rijl k<t Ry | ikl - Ry

Its form is invariant for transformation to the Center of mass coordinate
system when the motion of the Center of mass is separated out. In the
following this is assumed to be done and 1) is then the Hamiltonian of the

molecule in Center of mass-system.

The following notation is used:

LSRERERE denote space-coordinates of the electrons
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Rl"‘ . ,R denote space-coordinates of the nuclei
Tel(r) denotes the kinetic energy of electron i, i (R) denotes the kinetic

energy of nucleus i.

The eigenfunctions of the time-independent Schrddinger equation are the

solutions of:
2) Hy = Ey

where E is the total energy before photo-ionization. As is shown in chapter
II the total energy before and after scattering has to be conserved.

¥ considered as a function of space- and spin-coordinates has to satisfy:

R ’ e
3) Ay = ¢ i th ANS=—=ICylig" " TP

N p P
Here P is a permutation operator. When it induces an even permutation
ep = +1, when it induces an uneven one €p = -1.
It is now desired to determine equations for one-electronfunctions, which
satisfy the boundary conditions of an electron emitted from a bound state.

Because of the interest in ionization of single electrons the eigenstates &

A
of the ion are assumed to be only discrete.
- oy " 3 . 5 + & -
We expand ,(xl....\n.R) into the set *)\(hl""'\n—l'm
4) Vv EnaA ey Tenel i ix ILm)
3 n ik "n-1’
A
Xpreeer Xy denote spin- and space-coordinates.
Because ¥ has to satisfy 3) the right side of 4) has to be antisymmetrized:
1 *h-1 ) 4
5) y =— ¢ @-T_  Jo e, A o o) I T b SNSRI . R)
n xi:I X Xp ) n Al n-1
'I‘x > is the transposition operator of coordinates xi,xj.
ij
+
To derive 5) use has been made of ‘5_ already being anti- svmmetrued
5) is substituted into 2) and is multiplied at the left v\lth )\ (x .....xn_l.R)
and the resulting expression is integrated over the coordinates Xpoee .xn_l.R.

84




so that only a set of equations in the variable En remains:

S R 1 : o e A T
6) }_l (xn) —-. 4 CX"A' E) v (xn) + Lx (xn)
| nl‘A‘)ﬂ
r 1 - A S AR
o buss - 0 |1 s (')')) \' (rn) ' I“‘v\' ’(rn):l
AE e : 7
YN |rn|)‘,.’\
The following abbreviations have been used in 6):
) o 2
7a) 1 nz—l e : s b , X R)I = - ‘J(. ] 3. (x =T R) >
4 ; i ey Pt tlen T : R s R | n-1
[IHI:\'\ i ] l,n”ll |rn_ Jl
" n-1 n-1 p 02 Zj(*z
b) E® ‘b“n) S R Y 2 (\]......\” . H!I‘l (r,) -
= i=1 i'=1 j . [t -r.] |r-R]
n i n j
- E+H (r.l.....rn_].R) lx.r,x \'(xn) ék (x] ..... .\'n 1,R) >
Sl
( ' < LR |H R | & (x R) >
c) 5 15 < \‘_A,(\] X1 ) (1] ..... ro1 ) r{‘)(.\] ..... X 1
n-1 ol n 7.7.e"
0 | P r- R = 2.Tm) + ST R) & B —te 3
1 n-1 " :
i=1 ] i<j R..|
ij
2
n-1 2 n

Because H is the Hamiltonian of the ion:

8 C 5.,. E.
’ A'X KRR

+

"
I~I) is an eigenvalue of H .
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6) is now studied when Irnl - =, A discussion of matrix-elements 7a) and 7b)
in the case of atoms can be found in ref. (13). This discussion is not {;ﬂtered
essentially for a molecule. The matrix-element —]— reduces to - —: b

et
% ol a |rn| AN
if |r I«m. The matrix-element !: (r ) goes to zero in this hmll because
the transposmon of the comdmates results in a behaviour of l‘ (r ) as

a bound state function, which is zero at an infinite distance from the origin.

Therefore if |rn| - » equations 6) become:

9) (Tel

1
with v () = lim
0 n Irnl 5

Thus it is seen that vo)\'(rn) is a Coulomb-function with energy :: equal to:
10)

E is defined as the total energy before ionization and given by:

11) E = hy + EO

Eo is the energy of the initial-state of the molecule and hv the energy of

ionizing photon.

The energy of the emitted electron is therefore given by:

A 4 :
12) 'C = hv - ([‘,)\, - LO)

(E - E ) is the ionization-energy of the state ) of the ion. Relationship
12) gives the result that the energy of emitted electrons is given by the

difference in photon-energy and ionization-energy.

The derivation shows that the energy of emitted electrons in Center of mass-
system is independent of the details of the photo-ionization process itself.
The resolution, however, depends on the magnitude and distribution of the

intensity and therefore on the details of the jonization process (6).




[V.2. THE TRANSITIONPROBABILITY.

The interaction with electromagnetic radiation is given by:

e, -
: e e Sy e N S A=
13) “inl z Hi z (Ai : pi). with 14) div A 0
imge

A is the vector-potential of incident light.

The transition amplitude for photo-ionization of the bound-state ¥ of

the molecule to state “¢ of the ion is:

M

15) T‘L = };< .',“‘](_ n)‘—l l”il n >|.;.0 >

1 *n-1 5 i
‘here 1 e ) 1-T r(x XisonnpX s i
where Foc i ‘1.;1 ( lxi'xn) v (.\n) 4>M(\(1 X 1 R) and n, > gives

the photon-state in occupationnumber-representation. The photo-ionization
process is assumed to be first order in the electromagnetic field. Only
the electrons are assumed to interact with the electromagnetic field.

Ai can be written as:

16) A =% {_qA A+ q A}

- = | D TG : e R
with A)\(ri) : e) e Ad4me” ; e\A is the direction of polarization of the
light.
Further:
h 7
17 <n"‘]q\|n\r1> - Vv_)\d )\»1

The other matrix-elements of q, are Zero.

With 25), 26) and 27) one finds for 24):

18) T -= V‘l‘ - TL<y |X (P)—I;I‘V >
" 2“) me D 0 R S
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In dipole-approximation is found:

e ’\ l
mc ‘2. )V
A

A]F
o

19) =

It is seen that matrix-elements of one-electron operators have to be

calculated.

For simplicity "f’o and ¢ are restricted to a single product of electronic

and vibronic wavefunctions. The electronic wavefunction is assumed to be

restricted to one single determinant:

1
2 ¥ = — ) > 49 - +° > 42 . o
20) Yoo ~ N Z epl 5N (x].R) ", (xz,R).....JX (xn.R) XO(R)
P 1 2 n
2) 4. =——2 ¢ v5x) W xR T xR THE R TXR)
pk it pi B n Ay Tl Ao 2 A n-1 k

Xl*: are the vibronic wavefunctions. The dependence on vibronic states will
in the following be denoted by the second label of ¢.

’ : g 0 7 g
The one-electron functions §, and y;“ have to satisfy:

\
22) <y |42 > =58 |
M oAy Mhs
<y [Tyt > =8, <K [" ks = 0
el aTy A A ")
R 12

In general T?;.k will not reduce to a simple expression, even in this
approximation because of three reasons:

v“k is in general non-orthogonal to . (1)) rv;'\" is non-orthogonal to
,;: and vf and '~1v; are also functions ot the nuclear coordinates.

If those three restrictions are satisfied, 'I‘(:k reduces to:

23) e s I‘k‘g <\'”’|E,f§|":;\‘

ik >




Here I-‘Lfg is a Franck-Condon factor and ¥ is the molecular-orbital from

which 'b\ electron is ionized. When Koopm:n's theorem and the Born-
Oppenheimer (14) approximation are applicable, the result therefore is
simply 23).

The function v'"k is a solution of 6) solved with the correct boundary condi-
tions.

In chapter II the energy-dependence of 19) is discussed when auto-ionization
is significant. In ref. (17) this phenomenon is studied for atoms and in

ref. (18) for diatomic molecules. A general review is given in ref. (6).

In molecular photoelectron spectroscopy, the factorization 23) often gives

a good description (16).

IV.3. THE ANGULAR DISTRIBUTION OF ELECTRONS EMITTED FROM
MOLECULES.

It will appear that distribution I: 3—2 —f?[l + B [’2(cns X)] can be derived
when the photo-ionizationprocess is inde];(lndenl of the change in rotational-
states of the molecule. The rotational motion has, therefore, to be taken
explicitly into account. This will be done in the framework of the Born-
Oppenheimer approximation. The total wavefunction then is written as a
product of functions which represent the electronic, vibronic and rotational
motions. The electronic- and vibronic-coordinates are defined in a coordinate
system which is rotating with the molecule in the Center of mass-system.
The rotational functions depend on the Eulerian angles, «, g and v, that
define the rotating coordinate-system with respect to the space-fixed coor-
dinate-system. Changes in the momenta of inertia will be neglected.

Let ;x(av. 8. ~) be the rotational wavefunction, characterized by quantum-

numbers 1. The expression for the differential cross-section is then:

(doy e v |_ I+

24) ( =—= ) <V X
NIQZ b 2ne 71

v is the velocity of the emitted electron. The factor v stems from the
normalization of the wavefunction of emitted electron to unit amplitude

at a large distance (25).w = 21y

The direction of polarization of incident light ¢ will be given in the space-

fixed coordinate-system, whereas the integral over electronic- and
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vibrational-coordinates will be calculated in the rotated coordinate-system.
The relation between the components of D in the space-fixed coordinate-
system and its components in the rotated coordinate-system therefore must

be used and is given by:
25) D=7 axx,(a.g,y)px,

The coefficients a . can be expressed into the matrix-elements of the
representation of finite rotations Dg:,m (ay By (20).

The relation of the spherical harmonics Y, (8,9) in the rotated coordinate-

Im
system with the spherical harmonics in the space-fixed coordinate-system
defines D(J), g

m'm

(M

m'm

26) Y, (6.9 = ]Z'Ylm,(e'.;ov) D\ (s

41

The direction of emitted electrons in the space-fixed coordinate-system
must be calculated. The boundary-conditions with which 6) has to be solved
are therefore given in the space-fixed coordinate-system and v depends on
the Eulerian angles.

In A7) the general form of T is given and one sees that the dependence of
o, p and v results only from the function \';kl which is a Coulomb-function.
This function depends only on the scalar product (k.r), where k is the
momentum of emitted electron.

One can therefore expand \'0(}') into Pl(cos v

@

o v =kl T @ +1ia kD P (cost) =
o 1 1
1=0
“dn 2 e kDT Y, BLg) Yy
kr 1=0 At ’ nzx Im ( k' Pk Im 8.0

y is the angle of T with l_(.; 8 and ¢ are the angles of k in the rotating
coordinate-system and 6 and ¢ the angles of T in the rotating coordinate-
system.

26) is used to find:
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4

28) v () =31 E i u ko) BY 6.9 ) 2D

Here e"\_. -’pi{ are the angles of k in the space-fixed coordinate-system. The

ST
general form of T is therefore:

pkI
2m n 21 - +1 2n
0 I i i e [ r P 9=
29) T = do sing dg | dy r dr d(cos 8) dy | d° R
ukl J J J J J J J
0 0 0 0 -1 0
y A f*:m (r, 8. @ "’:E (ﬁ) P (¢, B, ¥y Z a__, (a g, §) X
1'=0 m'm I'm Ty o
(1"y* 0 = 0 = At
v. B, v) 'y By @ X o, B, : O
Pyr Dm'm (0,8, ¥ ¥, (r, 6 R) | (R) DIO (@, B, V'Y 'm (Bk wk)

The direction of polarization of incident light is chosen parallel to the
Z-axis.

The selection rule for rotational excitation (21) is seen to be dependent
(1)

m'm’

It is nicely illustrated by the experiment of Herzberg (22)* on the photo-

now upon D

ionization of H, that this causes a change in selection rule compared to
excitation of a discrete state. In appendix B the particular excitations

measured are shown to follow directly from 29),

The values of | in 29) are determined by the symmetry of the molecule.
The angular distribution will therefore in general be unequal to distribution
I. By studying the total probability of rotational excitation the conditions
to find distribution I can be derived.

The total probability of rotational excitation is:

*) The aim of this experiment was a very accurate redetermation of the dissociation limit of ”2'
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One looks for the conditions that equality (31) is valid:

2m n 2n

— s 2 r

z |< v“’kI T p Ie.pl'yo & p, > | — f‘ do' J sin g'dg'’ [ dy' x
1 k1 A [y J J v

o 0 0 0

2n n 2n
X J. do J sin pd B f deI-'|p] (@', Biy)>< Py (o, B y)‘:\'
0 0 0

Ll ) e 0,0 >2 -
Xk'“’“xxx Pr_ .

3la) x \< v

21 I

sinedaj dy|<vuk +X;f E’.ﬁl-;r: x(l’ Pl > |2
0

2
b) :6[ do #

O;_;j

2
(+)
In 31a) and b) | T | is calculated for an average value I' of the rotational

states. To make the transition from 31a) to 31b), the completeness relation

is used:
2m m 2n
32) B [ do!' J‘ sin g'd g' J dy' |p] (@,p8',¥) >< Py (% 8, ¥ =1
L9 0 0

The function v depends in two ways upon the quantumnumber I; firstly
because the momentum |k | depends on the transferred energy by relation
12); secondly because the phase-shift also depends upon this energy.

Two conditions are found which must be satisfied so that 31b) can be used:

i
33a) |E, - E |<<;
L I, 2m
— f
b) R << %o
dE % |~ . -
|E; -~ E
11 ]2
|EI - B | denotes the difference in rotational energy before and after
1 2
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photo-ionization.

Oy is defined in appendix A and is the phase-shift due to channel «.

d

IF Ca is the time delay of this channel and is the inverse of the rate
of ionization. The energy-dependence of the states | @> in appendix A,

A

which are the eigenfunctions of the phase-shift operator, is assumed to be

neglegible.

The physical interpretation of inequalities 33) is:

a. The diffeeence in rotational energy must be small compared with the
energy of the electron.

b. The time delay 2 must be small compared with the rotation-time

f

.. =N
dE %
of the ion,

2
In 31b) the cross-section still depends upon |p] (o, B, y)l” which is the
probability-density to find the molecule with ang?es. a, 8 and v with respect
to the space-fixed coordinate-system.

The function 5, is now more closely inspected. The spherical harmonics

Pl
Y, (8,a) are the rotational functions when the molecule is linear.

In a gas, where the molecules have an isotropic distribution, the weight
of the states of equal 1 but different m is equal. In 31b), therefore, one

has to sum yet over the different values of m with equal | and finds:

4
21+1

v
Im

34) > (8,2 2 -
m

. e ) 2 :
Therefore 31b) is found to be independent of Ipl | - In a symmetric top

molecule as, for example, benzene the unnormafized eigenfunctions are
(1

mm'
momentum, m of the projection of it on the axis of highest symmetry and

given by D (@ B, ¥ (20). Here again 1 is the quantumnumber of angular
m' along an arbitrary axis in the space-fixed coordinate-system. The norm
depends only on l.

In 31b) the sum is taken over the different values of m' and because:
- 2 1 -
35) = |p | =1

12 -1 0
%) The angular velocity of bemene is 10 sec when the temperature is 30 C. The rate of

g

the photo-ionizationprocess has to be larger than 1012 sec
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31b) is again found to be independent of | o1 |2.
The eigenfunctions of the asymmetric rotator can be expressed as linear
combinations (20) of the symmetrical top eigenfunctions. When the sum

is again taken over the degenerate states, relations analogous to 34) and

35) will be valid.

Those averaging procedures are applied to 31b) and one must now evaluate:

9 2m 2r
S B ¢ + L 2
: de | sinpdp | dy|< yHk Xme. ple x$ >

36a) ¥, 1

( 44
\d\:‘/ w v‘

2m m 2m

do f singdg i dy Z 5 D (el’(. (;1'()
2ric 0 0 0 Imm llmlm1 Im

* (l)

Y (8! .¢!) D p®*
llm'l Kk’ Pk m'm

*
""1”‘1 (@,8,y Z azx.(o'.e.v) a (@,B,v)

XX 4
X'x3

(@ B, ¥
1

pk

lm;llml

The matrix-elements C are given in the appendix C.

One uses the relationship (20):

1
|1+1, | L (21+1) (21,+1)] 2
37) Ylm (ek‘({)k) d ks (ek.tpk) 3 2 o

lymy L=[1-1,| m'=LL (2L+1)4n

m 1 '
n71 o 011, LO) (1Y L m-my[lm 1 -m) Y, (@, o

(L)
Dm'.m—m1 (@ B, ¥




where (I m l]mlll l1 L. m) are Clebsch-Gordan coefficients, and substitutes

37) into 36b) to yield:

B s : ||+l]| L
~—~:‘h— i do [ sinpdp [ dy[z 5 T b

( (914 p + B
(21+1) (21, +1) ]

ml r
n™ o1 o0 [ 1 l; LO( 1 Lm-m, [1m Iy - my)

4r1(21+1) J

N ‘t.’k s0s wl “‘) y A »* >

;,’ , Imslk,m (x5 )‘1) I)m':m—m (@ B,y azx'(Q'B'w azx' (@ B,y
x'x3 11 1 1
Y )

Lm' (ek' P

In appendix D the method of evaluating the integral over o, B and vy is
described. One finds that 38) gives the distribution I: H—:. ‘_1':1‘;1(1'8 P, (cos x)}
with o and go given in appendix C.

It is seen that distribution I depends only on the integration over the
(L) !
, a8
m,m-1 "xx' "xx
When the dipole-approximation is used, this form will appear for any

products D , in the integrand of 38).

approximation of electronic and vibronic wavefunctions and distribution I
is therefore independent from those last approximations.

The values of the matrix-elements C depend, of course, strongly on the
approximation for the electronic and vibronic wavefunctions.

It is seen in 29) that deviations of distribution I occur when the rotational
structure is resolved and also when the time of ionization is of the same

order as the rotation-time.

IV, 4 THE ANGULAR DISTRIBUTION OF ELECTRONS EMITTED FROM ATOMS.

Because the atom is spherical symmetric no direction of orientation
of the rotational coordinate-system is preferred. This means that 38)
directly applies and in any approximation of the atomic wavefunctions

distribution I will be obtained with 8 and go given by C2) and C3).

Ilmm' llmlm] L:—ll-l1| m'=L




(uk) are, in this case, the quantumnumbers which characterize the atomic

ion.

The expressions of g and gy are calculated in the case of photo-ionization
from an s-or p-orbital. One assumes that the angular momentum of one
electron is an appropriate quantumnumber.

In the case of photo-ionization of an electron from a s-orbital one finds:

2
39) o =2 |a,l?
1(‘\72 2
g )
B |A10|

AlO is the matrix-element, which gives the contribution from the integral

over r in C.

Because from equality:

40) dg__ —0—{1 + B P, (cos X)] = @ + vy cos X
the following relations follow:
o 3
=2 2 4 ; =2 Bo
41) o 4“, (1 2 B)' Y 2 4,1
it is seen that in this case no isotropic contributionto the differential

cross-section results. This is the known result (23).

In the case of photo-ionization of an electron from a p-orbital one finds:

2
8 2 2
42) o ==g1Aag " +2]Ay|")
1657 . 2
R i {2 Re (Agy Agy) + Ay

Now an isotropic contribution is found.

96




Appendix A. The general form of the T-matrix in photo-ionization.

Equation 18) gives the Transition-matrix of the ionization problem. Its

form is: <y |H'|y,> Here H' represents the interaction with electro-
magnetic field. The -sign of § denotes that continuous solutions of the
scattering problem have to be used with boundary-conditions such that the
scattered wave is an ingoing spherical wave. This is because in the ionization
problem, the initial conditions must be given when t - «..

This Transition-matrix will now be expressed in the phase-shift of emitted
particle using standard collision theory (19). ¢ is the solution of the Lippmann-
Schwinger equation (26):

Al) y = § + lim S AR oly” >

€ =0 B-Ho—le

8, is a product of emitted electron wave-function and target wave-function
at an infinite distance from one another,
The functions <}>0 are eigenfunctions of Ho.

The total Hamiltonian H is
A2) H=H +0

Then 'y-is also a solution of:

A3) v =% + lim g

= O|s >

¢ -0 E-H-ie P

It is assumed that H and Ho have the same spectrum.

The Transition-matrix for photo-ionization < 'k-|H'| '¢v0> is then given by:

.

<‘5'—|H'|‘l’o>:< ¢0|H'|¢o>+ lim <¢o|0 1
€ -0 E-H+ie

| ; : 1 :
=< g |0V, >-in< g |O+ lim O — O 6(E-H) H'|y, > +
€ =0 E-H+ieg

+<g o+ lim 01 —oPrPe

H'| Vo> " Ada)
e -0 E-Htie E-H
o
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Adh) =< Qol § (E-H) H'|[¢_ > - in< § |T 8 (E-H) H'|¢0> 2

Pr. P.

E-H
(¢]

+<g|T Hy, >

where T the Transition-operator satisfies:

A5) T 2O Al SO s 110

e -0 E-H+tie
Use the relation 19):
A6 nT = =K (1-11()'1

where K is the Hermitian Reactance operator.

Substitution of A6) into A4b) gives:

v

A <y |H |y, > =< 8, [s(E-H)@-KH |y

K Pr. P s
T "o| 5K B-H, lvo >

This expression must be compared with equation II,50), where A7) has been
explicitly derived for the resonant case.

Let the eigenvalues of the operator K introduced in A6) be given by equation:
A8) Kla > = K0_|a >
Because K is hermitian K(y is real.

The eigenvalues Ty of the phase-shift operator o can be found using the same
eigenfunctions. o is given by operator relationship:

i -1
A9) o =tan ~ K

AT) can be expressed into:
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A10) < ¥ |H'|'§o 2= Sl §‘>0|a >[ e % cos o, < o6 (E-H ) H'No >
o

ig
-—l—e % St o <QIPF‘P'|H‘ >
L & E-H 7
o

This expression can be compared with equation II, 86).
Appendix B. The rotational excitation of HZ'

Herzberg (22) has observed the photoabsorption spectrum of H2 from

its J=0 state and found that only the J=0 and J=2 states are excited.

In H2 the quantumnumbers of angular momentum of the electron 1 are
rather appropriate. When this approximation is used the groundstate has

1 = 0, so excitation can only take place to electronic states with 1=1.

The selection rule for rotational excitation of the molecule follows from

29) by calculating:

2m o 2n
Bz [ do [ dpsing [ dyejpy ag, @8y Dils Ve @p
LR 0

250 0 0

In Bl) the direction of polarization of incident light is along the z-axis.
The rotational eigenfunctions of a diatomic molecule are the spherical
harmonics. The relationship between spherical harmonics and the matrix-

elements of finite rotation are:

1
(I - m [ 4n|*® (B,
B2) Dmo (2 85 v) (-1) (21+1 Yl,m
1
(1) 4 4
Dom (@B y) = (21+1) Yl,m (v

The matrix-elements a, . are only related with the matrix-elements of
finite rotation D(:m)o' Because P is the spherical harmonic with J=0, it

: (o}
is a constant.
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The possible values of the excited rotational states are therefore found

by evaluating:

2n n
[ da J sin gd g D()

. | (1) (1)
By | 5.0 @8 Do (@B Dy (ap)
0 0 g

The products D( ) D(l) yield only the D(o) and D(Z) :
mo 00 m+m', o

as easily can be found b_v using (20):

matrix-elements

§ (i) H11%|
By DIV (o,8,9 DI2 @y = T  (ym}j, my|ii,im
m!m m!m o e G S e
] 29 i=li1-isl
D(j),+ . o (.3, i m, + m, |j1 m, j2 mz)
mlrmz,m1 m2 1°2 2
and that the Clebsch-Gordan coefficient (1110|1()10) =0,
Because of orthogonality relation:
2 2 -
1 r." ﬂ,, ; Gq) G5)*
B4) >3 2 do | singdp | dy D (a;8:v) D (@, By =
8m 0 0 0 m'1 my m'2 m,

8¢ v 8
mj,m)| m.,m

1t 1PMg  dpdy 20t

it follows that the values of J in B2) only give non zero result when J=0
or J=2.1)

Appendix C: the matrix-elements C, g and go.

‘d( = | -2 3= | U'k b om -
c1) (,l,m;llml(.\ xp ={d rJ &R e, (r) p,, (0 ¥y (, R) X (R)

o3 3= [ 37 Tk e w 42w 20 =2 Bty 0* =
XI(R)} {d r‘J d R fllml (l’]) px'l(rl) Y (r, R") Xk (R') Xl (R )}

1)

In this particular case excitation to J=1 state is also spin-forbidden.
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1 1
@1+)* @1,+1)° (ol o1 1,00

11,00[tm1 - m,) (O s [C(x;x) + Clysy) + C(z:2)

1m;llm1 lm;llm1 lm;llm1
2 81-12 1 1
C3) go =>— - T E ——(BD* @1;+1)° 10 Lot 20
il Im llm1 5
) ml L. & a . -
(1 l] 2 m—m.lll m ll—ml) (-1 [T S .. o (2C(z;2) C(x;x)
1 Im;l,m Im;l,m
1:93 11
- C(ysy) +
lm:llm1
;
= 0 o (Cfx33 - Clysy - iC(ys - iC (x3y +
V6 ~m1‘ml")' ; (;(n;(‘)l m :\m‘)l m (I‘n;(')l m l f:n‘l) m )
ab lige2 Sy e £hs L | ) G |
L (C (x3x) Cly:y) + iC(y:x) + iC(x;y) +
V6  -m+tm,,=2 % e N2 g 70 )
1 lm,llm1 lm.llm1 lm.llm1 lm.llml
1
— D (C(z:x) + C(x;2) + iC(z3y) + iC (v;2) +
V6 " -m my.-l lm:llm1 lm;llm1 lm;llm1 lm;llml)
1 L
=0 C(zy) + iC(y;z) - C(z;x) - C(x;2)
¥6 ° -m+m _1(’ . i ) g )
1 lm,llm1 lm,l]ml Im,llml lm.llml

The index (u,k) has been suppressed in these equations.
Appendix D: Evaluation of 38).

Choose the direction of polarization of the light parallel to the z-axis.

One is interested in the products of .. ayz, and a with their complex
conjugates.

When one expresses Cartesian coordinates into spherical coordinates and

uses 26), it is found for the matrix-elements a o

101




Lo,

(1)
o1 T D

-7

VD T
10

2,y =72 Po10
i 5@
Szt N2 DOO

The products of a, 1 aw, and a with their complex conjugates are found
using B3) and (24): i

D2) aetg - %* —%—D(Z)

A oA (2 . (2) 1 (2
8180, =3~ 78 Poz * Po-2' ~ 3 Poo

el i@, @ 1p@

xz'2xz' " 3 N6 Dy Dy_o) - 00
¥ (2) p2
A2 Pyzt T V_(D + Doy )

. 1.2 @
88 =7 5 —D))

(2) (2)
ayz'axz J-(D 3 DO"»')

The integral over a, g and y which determines the contributing values of L in

38)is:

21'1' n 21’1
r L
daj Bi"BdBJ dyD;])mm(aay)ax.(oaay) x' (g

0 0

Dp3) [
o |
0




*>

Because the products ay\_,ayx,, only contain matrix-elements D(O) and D(z),
it is found by B4) that only L=0 and L=2 yield non-zero values of D3).

o vnaffini y 2 _aal ' 1 i - ive i i
The coefficients of \O,O(Gk"pk) and Y2'0 (ek,(ok) in 38) give = and pr

They are given explicitly in Appendix C.
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SAMENVATTING

In dit proefschrift worden enige problemen uit de chemische physica met be-
hulp van de theorie van botsingen onderzocht.

Het eerste onderwerp is resonantie-verstrooiing. Dit proces kan worden opge-
vat als het invangen van een deeltje door een ander deeltje waarmee het botst,
zodat deze een complex vormen, dat na verloop van tijd weer vervalt in een
aantal fragmenten.

Een voorbeeld vandit proces wordt verschaft door de verstrooiing van electro-
nen aan atomen of moleculen. Bij lage energie van de verstrooide electronen
kan de botsingsdoorsnede zeer snel veranderen als functie van de energie. In
het geval van resonantie-verstrooiing wordt dit verklaard door aan te nemen
dat tijdelijk een negatief ion gevormd wordt. Van een stabiel ion zijn de moge-
lijke energie-toestanden discreet. Wanneer de levensduur van het instabiele
negatieve ion voldoende groot is, wordt de situatie vergelijkbaar met die van
een stabiel negatief ion met discrete toestanden. In dat geval zullen negatieve
ionen als intermediair voorkomen wanneer de energie van het atoom of mole-
cuul en electron voor verstrooiing gelijk is aan een van de energieén behoren-
de bij een "eigentoestand" van het negatieve ion. De botsingsdoorsnede is in
dit geval een zeer scherpe functie van de energie, die een zeer kleine breedte
heeft gelijk aan de inverse van de levensduur vermenigvuldigd met de constan-
te van Planck.

In een molecuul of een atoom kunnen de discrete niveaus van het bij benadering
stabiel gedachte negatief ion soms zo dicht bij elkaar komen dat de breedten
van de corresponderende botsingsdoorsneden van dezelfde grootte-orde worden
als deze energie-verschillen. In dat geval kunnen verschillende toestanden van
het negatieve ion bij dezelfde energie worden bevolkt en een eenvoudige be-

schouwing zoals in het bovenstaande geval kan niet meer worden gebruikt.




In het eerste geval spreekt men van geisoleerde resonanties, in het laatste ge-
val van overlappende resonanties.

In het geval van een geisoleerde resonantie is het tijdsafhankelijke gedrag een
exponentieel afnemende functie van de tijd en de botsingsdoorsnede is een
Lorentz-functie van de energie.

In het geval van overlappende resonanties is niet alleen de botsingsdoorsnede
geen Lorentz-functie meer van de energie, maar treden ook eigenaardige ver-
schijnselen op in het tijdsafhankelijk gedrag van het als intermediair gevormde
deeltje. Het tijdsafhankelijk gedrag is nu niet alleen een som van exponentieel
afnemende functies in de tijd, maar kan worden gemoduleerd door oscilla -

ties en ook door termen lineair in machten van de tijd-variabele.

In hoofdstuk II wordt dit tijdsafhankelijk gedrag, de vertraging die optreedt in
de verstrooide deeltjes en de tijdsonafhankelijke grootheid, de botsingsdoorsne-
de, uitvoerig onderzocht,

Bij het bestuderen van de huidige literatuur bleek dat geen theorie van resonan-
tie-verstrooiing bestaat, die de tijdsafhankelijke en tijdsonafhankelijke eigen-
schappen met elkaar verenigt. De verhandeling gegeven in dit proefschrift ver-
enigt beide en leidt de bestaande tijdsonafhankelijke theorieén uit de tijdsaf-
hankelijke theorie af.

In hoofdstuk IIT wordt deze theorie toegepast op stralingsloze overgangen in or-
ganische moleculen. Het proces van absorptie en het verval van de aangeslagen
toestand in een andere toestand van het molecuul onder uitzending van een pho-
ton is een voorbeeld van resonantie-verstrooiing. Wanneer het aangeslagen
electronische niveau een interactie heeft met een stelsel vibraties van een zeer
klein energieverschil behorende bij een lagere electronische toestand , dan is
het absorptie- en het daarop volgende emissie-proces een voorbeeld van een
overlappend resonantie-verstrooiingsproces. In deze situatie vormen de vi-
braties een quasi-continuum en kan men spreken van stralingsloos verval.

De verschijnselen die optreden wanneer twee geéxciteerde toestanden een in-
teractie hebben met hetzelfde quasi-continuum worden in detail besproken en
verschaffen een physische illustratie van een aantal effecten, die in hoofdstuk

IT zijn voorspeld.

Absorptie van een photon kan ook tot gevolg hebben dat het molecuul ionizeert,
Als het molecuul eerst wordt aangeslagen in een discrete toestand en een elec-

tron wordt vervolgens geémitteerd dan wordt dit proces auto-ionizatie ge-
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noemd. Dit is zowel een voorbeeld van een stralingsloze overgang naar een
echt continuum als een voorbeeld van resonantie-verstrooiing. Dit wordt be-
handeld in hoofdstuk II.

De electronen die worden geémitteerd door photoionizatie van atomen hebben
een hoekverdeling A*Bcos2 % . X is de hoek tussen de richting van gepolari-
zeerd licht en de richting van het geémitteerde electron; A en B zijn energie-
afhankelijke grootheden. Deze hoekverdeling wordt gevonden wanneer slechts
dipool-excitatie optreedt. De oorzaak dat de hoekverdeling zo'n eenvoudige
functie is van de hoek is gelegen in de bol-symmetrie van de atomen.

Sinds kort is het mogelijk de hoek-verdeling van electronen die geémitteerd
worden bij de photoionizatie van moleculen te meten. Moleculen hebben in het
algemeen geen bolsymmetrie en daarom zullen afwijkingen worden verwacht
voor de hoekverdeling van geémitteerde electronen.

Het blijkt echter dat in de meeste gevallen electronen geémitteerd uit molecu-
len dezelfde hoekverdeling hebben als die uit atomen.

Dit kan worden verklaard doordat het photo-ionizatie proces dan zo snel gaat
dat de moleculen als vastgeprikt in de ruimte kunnen worden beschouwd en de
moleculen isotroop georienteerd zijn, zodat bolsymmetrie weer aanwezig is.
In hoofdstuk IV zijn de condities afgeleid dat dit geoorloofd is. Als in het pho-
toionizatie proces de excitatie van rotaties niet wordt verwaarloosd blijken an-~
dere selectie-regels te gelden dan wanneer excitatie van rotaties gepaard aan
excitatie van een electron naar een discrete toestand plaats vindt.

De hoekverdeling A+Bcosz X wordt slechts dan gevonden, wanneer de rotatie-
fijnstructuur in de emissie van electronen niet kan worden onderscheiden en de
snelheid van photoionizatie groot is vergeleken met de rotatie-snelheid van

het molecuul.
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