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STELLINGEN

Het is aanbevelenswaardig het onderzoek van de diverse typen stromingen
van vloeibaar helium, zoals beschreven in dit proefschrift, voort te
zetten met een methode om de drukverschillen meer direkt te meten en

tevens het temperatuurgebied en het snelheidsgebied uit te breiden.

De door Kidder en Blackstead gemeten drukverschillen in bijna isotherme
stromingen van vloeibaar helium bij 1,09 K, zijn waarschijnlijk voor een

belangrijk gedeelte veroorzaakt door een stroming van het normale fluTdum

en niet door de superfuide stroming alleen zoals deze auteurs onderstellen.

J.N. Kidder en H.A. Blackstead, Proc. of the 9th int. Conf. on low
Temp. Phys. LT9, 1964, p.331.

I ot
J

fdstuk III van dit proefschri

De calibratie van de snelheid van het superfluide helium in het
experiment van Rosenshein, Taube en Titus is aan bedenkingen onderhevig.

o op/

J.8. Rosenshein, J. Taube en J.A. Titus, Phye. Rev. Lett. 26(1971)298.

De door Brewer en Edwards gebruikte formule voor het verband tussen de
warmtestroomdichtheid in, en het temperatuurverschil over een capillair
met vloeibaar helium, is in de gebruikte benadering niet volledig.

D.F. Brewer en D.0. Edwards, Proc. Roy. Soc. A251(1959)247.

Hoofdstuk I van dit proefechrift.

De beweringen van Kokkedee, dat bij een symmetrisch supergeleidend
dubbelpuntkontakt de kritische stroom nul wordt indien uitwendig een
magneetveld wordt aangelegd dat overeenkomt met een oneven aantal halve
fluxquanta in het omsloten oppervlak, en dat de kritische stroom als
funktie van het aangelegde veld oscilleert met een periode die over-
eenkomt met twee fluxquanta, zijn beide onjuist.

J.J.J. Kokkedee, Ned. Tijdschrift voor Natk. 37(1971)485.

R. de Bruyn Ouboter en A.Th.A.M. de Waele, Progress wn Low Temp.
Physics VI. hoofdstuk 6, red. C.J. Gorter, uitg. North-Holl and Publ. 3
y 3 v 3 3

ca 42(1969)626.




Het verdient aanbeveling het vaste punt van de IPTS-68 (International
Practical Temperature Scale of 1968) bij 27,102 K te definieren met
behulp van het kookpunt van de isotoop ZONe in plaats van met het

kookpunt van natuurlijk neon.

Om het direkte spin-roosterrelaxatieproces in geconcentreerde zouten te
onderzoeken, verdient het de voorkeur metingen te verrichten aan poeder-

preparaten die niet zijn verkregen door fijnwrijven van grotere kristallen.

Het onderscheid dat in de wet op het voortgezet onderwijs wordt gemaakt
tussen akten van bekwaamheid tweede en derde graad is meer het gevolg

van een historisch gegroeide situatie, dan van onderwi jskundig denken.

Het verdient aanbeveling de veiligheidsvoorschriften voor laagspannings-
installaties zodanig te wijzigen, dat in nieuwe woningen alleen maar

stopkontakten voorzien van een aardkontakt mogen worden aangelegd.

Voor het slagen van een interdisciplinair samenwerkingsverband in de
sociale en medische gezondheidszorg, is het noodzakelijk dat men in de
desbetreffende opleidingen reeds in een vroeg stadium hierop wordt

voorbereid.

Het door Paulus gebruikte voorbeeld van het enten van een wilde loot
op een tamme olijfboom, is in strijd met de door boomkwekers gebruikte
veredelingsmethode.

De brief van de apostel Paulus aan de Romeinen, hoofdstuk 11.

Stellingen behorende bij het proefschrift van G. van der Heijden.

(10-5-1972)
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Introduction

According to the theories of Tisza ‘), Landau 2), and London 3), liquid
uHe below 7 = 2.18 K, the ''lambda temperature'', may be considered to
consist of two components: a non-viscous superfluid component with density
P and a normal viscous component with density G The velocities of the
two components, us and Un’ may have different values. The properties of
the flowing liquid at not too small velocities appeared to be more
complicated than a simple two-fluid theory could explain. In order to

4)

describe these "'supercritical' effects, Gorter and Mellink introduced

a mutual friction force an between the two fluids. Eventually this mutual
friction was explained by means of an interaction of vortices, moving with

the superfluid, and the thermal excitations of the normal fluid (Hall and

Vinen 5)). The possible existence of quantized vortices was put forward

7)

by Onsager 6) and Feynman

. The supercritical effects are in many ways
comparable with turbulence in ordinary liquids. In particular the
experiments of Staas, Taconis and Van Alphen 8), could be explained by
means of a turbulence of the whole liquid, completely analogous to
turbulence in an ordinary liquid.

The experiments described in this thesis deal with types of stationary
flow in which the two fluids can be forced to flow simultaneously, with
independently adjustable velocities, through a capillary. From the
observed temperature differences, and the differences of level heights in
manometers, the frictional forces acting on and between the two fluids,
could be obtained as functions of the velocities (vs, vn). Only relatively
small values of the velocities v, and v could be studied: the limits are
respectively 10 cm/s and 20 cm/s.

In the present apparatus, that part of the velocity plane (vs, un)
where the relative velocity U m s v is small, could be studied.

n
Therefore the dependence of the mutual friction force on v , for small

values of vr, could be obtained. Wiarda and Kramers 9’]0),rused a similar
apparatus for the study of the attenuation of second sound.

The presentation of the results is as follows. In chapter |, experimental
details are given, together with results for flow with Pt 0. In chapter

Il, the results for flow with R 0 are reported. In chapter Ill, the




results for types of flow with Un and Us both unequal to zero are given,
together with a general discussion.

The three chapters will be published as separate papers in Physica.
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CHAPTER |

FLOW WITH SMALL SUPERFLUID VELOCITY

Synopsis

The simultaneous flow of the superfluid and normal component of
liquid He Il through a capillary is studied. The manner in which
the two fluids are forced to flow with independently adjustable
velocities is described. The temperature and chemical-potential
drop over the capillary are measured, from which the pressure drop
can be derived. In subcritical as well as in supercritical flow
with small vs, the pressure drop equals the Poiseuille pressure
drop of the normal fluid, indicating that the normal fluid is not
turbulent, but flows laminarly. No pressure drop of the superfluid
has been present. The results on the pressure drop are contrary to
the results of other experiments, in which an additional pressure

drop has been observed.

1. Introduction

The interaction between the superfluid and the normal component
of liquid helium is not well understood. The way this interaction
was previously studied, however, was limited to a few types of flow.
Most of the flow experiments with liquid helium Il fall under one
of the following four types:

1) pure superfluid flow: 55 =0 1-8);
2) pure heat transport flow: QSES + anH = 0 9-2‘);
3) normal fluid flow in a superfluid which is not restricted 22);

4) gravitational flow without a superleak 23’2b).

The mean velocities and the densities of the superfluid and normal
fluid are denoted respectively by ;s’ Pgr 56, and pn.The sum of
Pg and Ph equals the total density p.

In order to be able to study the hydrodynamics with other velocity

25-27)

combinations as well, Wiarda and Kramers constructed an
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apparatus in which an adjustable normal fluid flow was superimposed on
an adjustable mass flow. With this apparatus, these authors studied the
extra attenuation of second sound as a function of 55 and Un. The present
measurements were undertaken with an apparatus similar to that of Wiarda.
The temperature and chemical-potential differences over a capillary
are measured for combinations of superfluid and normal fluid flows that
can be chosen arbitrarily. The results of the measurements on AT and Au
and of the values of AP = pSAT + phAu calculated from this, may be a
help for a better understanding of the interdependence and the hydro-
dynamics of the two fluids. Some preliminary results have already been
published 26’28).

It should be stressed that the nomenclature in this thesis is such that
a flow will be called subcritical if the chemical-potential difference
over the capillary, pAu, is identically zero. Supercritical flows, with
pAu not identically zero, will be called turbulent. Results of turbulent
flows shall be discussed using the model of vortex lines in the super=

fluid as Vinen 10)

has proposed. The interaction of the vortices with the
excitations of the normal fluid will be described with a mutual friction

force.

2. Design of the experiments

2-1. Principle of the apparatus. In the apparatus helium flowing through
a capillary has been examined. Various flow combinations (;S, En) can be
produced by superpositions of normal flow and mass flow, either in the
same or in opposite directions. Only the mean values (gs, 5;) of the
velocities of the two components, averaged over the volume of the
capillary, can be derived. In order to allow for investigations of types
of flow in which the directions of 5; and 55 have the same or opposite
sign, two different arrangements ( a) and b)) of the apparatus have been
used.

These two arrangements are shown schematically in fig. 1. The closed
circuit, partially filled with liquid helium || and partially with helium
gas, consists essentially of the following parts: a heat exchanger (in

thermal contact with the surrounding bath), a superleak, the capillary,

a standpipe, and a gaslink. In the apparatus type a) dissipation of energy
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Fig. 1
Schematic drawing of the two versions of the apparatus.
(H)-Heater; (P)-Pressure; (S)-Superleak;

(T)-Thermometer; (h)-Helium level.
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in the heaters Hl and H2 results in an evaporation of helium from the

standpipe, and a condensation in the heat exchanger. This distillation

causes a superfluid flow through the superleak and upward through the

capillary. The direction of the gasflow is indicated by an arrow. This

direction of flow in the circuit is described with the positive sign.

Energy dissipated in heater H2 is transported upwards through the

capillary by a normal fluid flow. This upward flow of normal fluid is

accompanied by a descending flow of superfluid. After one of the heaters

is switched on, the flow is assumed to be stationary as soon as all the

thermometers and helium levels are constant.

In this apparatus, flow

with adjustabie velocity combinations (ES, En) can be produced. For

reasons of simplicity, the mean velocities of the two components, 55

and ;n’ will be denoted in the following by e and V.

The present procedure is contrary to most of the experiments on
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superfluid flow in which a level difference is first created. This level
difference then causes a superfluid flow, whose velocity can be derived

from a measurement of the rate of change of the helium level with time.

2-2. Caleulation of the velocities.

Type a: Let é1 and Qz be the energies dissipated per second in the
heaters Hl and HZ'
PV = p V. + PV through the capillary. The mass flow is related to

This dissipation results in a total mass flow
the energy flows é1 and éz by

Q; + @, = Aov(L + 57) , (2.1a)

with 4 the cross-sectional area of the capillary, L the heat of
evaporation, S the entropy and 7' the temperature. The second term ST
represents the mechanocaloric effect. The normal fluid velocity v, is
determined by the heat transport through the capillary:
6.3

ApST )

S (2.2a)

n

From (2.1a) and (2.2a) the superfluid velocity can easily be shown to be:

(2.3a)

Type b: The calculations are slightly different, since Qz does not

contribute to the evaporation.

(.“2
Pom =it g (2.2b)
ApST
Q 0. @
v = ] Tyl 2 . (2.3b)
s Ap (L + ST) o, ApST

The velocity regions within reach of the arrangements a) and b) are
shown in fig. 2. As may be seen from equations (2.2b) and (2.3b) region
b) is limited by the lines v =0 and pv = 0. From (2.2a) and (2.3a) the

limits for region a) are: v . 0 and a line vS/vn is constant with a slope
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which deviates slightly (10 % at 7' = 1.2 K and 13 % at T = 1.9 K) from the
slope of the line pv = 0.

By superimposing a pure superfluid flow on a flow of the heat conduction
type, a number of interesting velocity combinations are attainable, e.g.:
1) with é1 kept constant and varying @2, an almost constant mass flow,
with adjustable 2k and Ve is reached. At T is 1.2 K, this nearly equals
vs is constant;

2) with @ kept constant and varying @‘, a flow with constant Yy and

adjustablz Vg is reached;

3) with the ratio (QI/QZ) kept constant, flows with (US/Un) is constant
are created. In this way, types of flow such that vs = 0 or Us = v _ can
be produced. From a condition such as vs = vn, the ratio of the powers
that have to be dissipated in the two heaters can be calculated, using
the equations (2.2a) and (2.3a):

(é1/éz) = (L/sT).

(L/ST) varies from 336 at T = 1.2 K to 16.7 at T = 1.9 K. Thus, by varying
both é] and @2, but keeping their ratio constant at (L/ST) for a given
temperature, the two components will move through the capillary on the
average with a relative velocity of zero.

In order to obtain pure normal fluid flow (uS = 0) the necessary ratio is

él 0 L
—_—=— | — 4+ ] =ola
@ 0 ST

This ratio varies from 8.8 at 7 is 1.20 K to 6.6 at 7 is 1.90 K.

The velocities 0L and v, cannot be chosen arbitrarily large. There are




Table I

Temperature—dependent quantities used in the calculations.

T P Pe P S L n

K gcmn3 gcm.3 gcm.3 Jg-]K-l Jg-1 10-6 Poise
1.90 0.145543 0.08395 0.06159 0.7310 23.28 13.15
1.70 0. 145340 0.11196 0.03338 0.3988 22.95 12.60
1.50 0.145223 0.12879 0.01644 0.1978 22.32 13.55
1.45 0.145216 0.13173 0.01349 0.1628 22.13 14.0
1535 0.145195 0.13640 0.008795 0.1070 21.71 15.0
1.30 0.145189 0.13822 0.006973 0.0853 21.49 15.6
1.25 0.145185 0.13968 0.005504 0.06723 21.26 16.4
1.20 0.145183 0.14095 0.004235 0.05233 21.03 17.6

Origin of data:

p: El Hadi, Z2.E.H.A., Durieux, M. and Van Dijk, H., Physica 41(1969)289.

S and Ny smoothed values from several experiments,calculated by Cornelissen (private commmnication).

p_ and L from p, S and the second sound velocity measured by Peshkov, V.P., Sov. Phys. JEIP 11(1960)580.

s
L: Van Dijk, H. and Durteux, M., Physieca 24(1958)920.

fl
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restrictions caused by the limited dimensions of the apparatus. The
chemical-potential difference created by the helium flowing through the
capillary, will move the helium levels %, h3, and %), (see fig. 1) out
of their equilibrium positions. Raising hl to the top of its standpipe
results in fluid flow through the gaslink. In this case, the velocity
of the superfluid component flowing through the capillary cannot be
calculated. (The computation of the superfluid velocity is based on

the assumption that the helium is transported in the upper part by
distillation). Another limit is determined by the minimum heights of
h3 and h1.

Temperature-dependent quantities used in our calculations are listed

in table |.

2-3. Presgsure balance and measuring procedure. The derivation of the
pressure balance as given in the following is only correct if the
pressure and temperature differences in the apparatus are small. In

that case, a mean value for the entropy S can be used. The critical flow

rate for the superleak S, is never exceeded. For that reason, the super=

2
fluid flow through S2 is always subcritical, and the chemical-potential
drop across 52 is zero. In the stationary case, with all the helium

levels constant, there is not even any liquid flow through S‘, and pAu

across S, will also be zero. The pressure balance shall be derived for

1
the apparatus type a), see fig. la. Pl’ P3, and Ph are the pressures of
the gas above the liquid.

The pressure at the upper end of the capillary P; can be written in two

ways:
BYiw Py pghy , (2.4a)
P; = P3 + pgh3 + pS(T‘ - T3) . (2.5a)

The heights h], h3, and hk are defined with regard to the upper end of
the capillary. oS(T] - T3) is the fountain pressure across the superleak
S,. From (2.43) and (2.5a) the level height h, can be computed, since the
vapour pressures P. and P, are known.

1 3

The pressure at the lower end of the capillary, P is connected to hb by

2?




the relation

Pz = Ph + pg(hh + 1) + pS(T2 - Th) » (2.6a)

with 7 the length of the capillary.
From the equations (2.4a..... 6a) the pressure drop over the capillary

AP = P; - P2, can be derived:

AP

pg(h3 = hy) + pS(Ty = T3) + (P3 = By)i pS(Ty - T,) - pgl. (2.7a)

The last term on the righthand side is the hydrostatic pressure drop

between the two ends of the capillary. The extra pressure drop
AP = AP' + pgl, (2.8)

is much more interesting, as it describes the hydrodynamic pressure
difference created by the helium flowing in the capillary. Since the
temperature difference (Th - T3) is small during all our experiments,

dP
Poh= P, = iR, =T.) (2.9)
dr
The temperature drop over the capillary (T1 - Tz) is called AT. Combining
the thermodynamic identity, neglecting velocity contributions,

pAu = AP - pSAT , (2.10)

with the equations (2.7a), (2.8) and (2.9) the chemical-potential drop
over the capillary, pAu, is given by

dP
phu = pglhy = By) + | pS = —
¥ dr

Equation (2.11) holds for both arrangements of the apparatus.

- 1T

L '3)

(7 m

(2.11)

The measurements have been performed with one of the thermometers T]
or TZ kept constant, within a few micro degrees of the desired temperature,
by means of an electronic device. é] and QZ are fixed at a chosen value

by adjusting the voltages Vl and V2 across the heaters Hl (resistance H1)

and HZ (resistance Rz). Once the thermometers and helium levels are

constant, the flow is assumed to be stationary, and the resistances of

the thermometers are measured with an A.C. Wheatstone bridge. The helium
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levels A, and hh are determined optically with a cathetometer.

3

Summarizing:
1) The velocities Vg and v are computed from Vl' V2,
thermodynamic quantities as described in 2-2.

Rl’ RZ' and the

2) The chemical-potential drop over the capillary, pAu, is deduced from
h3, hh' T3, and Tb'

3) The temperature drop over the capillary, AT, is given by the
temperature difference (Tl - TZ)'

4) The hydrodynamic pressure drop AP is obtained from the temperature

and chemical-potential drop, using the thermodynamic identity (2.10).

2-4. The experimental set—up. A more detailed view of the apparatus as
used in case a), is shown in fig. 3. The heater HI is mounted in a central
german silver standpipe 4, above the upper end of the capillary. | f heat
is dissipated in H], evaporation of liquid in the standpipe 4 takes place.
The helium gas flows through the film constriction B, and condenses
between the brass cylinders C] and C,. The heat flows to the surrounding

2

helium bath, through the walls of cylinder C,. The superfluid flow

circuit is completed by the superleak 52 andzthe capillary.

Temperatures are measured with the five thermometers TO’ ...... T“, all in
the liquid of the apparatus. In order to allow for measurements of the
chemical-potential difference over the capillary, both sides of the
capillary are connected, via a superleak, to glass standpipes.
Stainless-steel capillaries of 2.94 x lo-zcm and 0.95 x lo-zcm inner
diameter have been used, both 14.6 cm long. The entrances were squarely
cut off. The straight capillaries are mounted vertically. In order to
avoid too large film flows in the gas part of the circuit, film
constrictions are used. The holes are of diameters of 1.5 and 0.5 mm,

in combination with the wide and the narrow capillary, respectively.

2-5. NRS flow. In the preceding, only situations with the flow circuit
partially filled with liquid helium were taken into account. In this way,

.flow with limited, but adjustable and calculable, v and v could be
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Fig. 3

The apparatus in which flow with v_ and v
5 n

in the same direction can be produced.
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created. With this apparatus, however, another type of flow is also

possible. If the apparatus is fully filled with liquid helium and energy

is dissipated in heater Hz, there will be a flow of the normal component

through the capillary. The velocity of the normal fluid v can be

computed from equation (2.2a) or (2.2b). The velocity and direction of

a possible superfluid flow through the capillary cannot be predicted.




19

It will be shown that with the apparatus completely filled with
liquid helium, the chemical-potential drop over the capillary i$ zero.

Measurements of Van Alphen et al. 29)

on the same superleak material
(type "A") as is used in the present experiment yielded a critical
transfer rate, from which the maximum superfluid velocity in our wide
capillary is estimated at 75 m/s. For that reason, a possible flow of
superfluid helium through the superleak S2 is always subcritical. Since
there are no chemical-potential drops over other parts of the apparatus,
pAu over the capillary always equals zero.

This type of flow with adjustable normal fluid velocity, possibly
accompanied by a superfluid flow whose velocity is not externally
restricted, is called NRS flow: Non Egstricted iuperfluid flow. NRS flow,
with pAu always equal to zero, was studied first by Staas et al. 22)-
With NRS flow, the velocities ¥ and vS are not limited by maximum and
minimum heights of the helium levels as in the partly filled apparatus.
So in spite of the disadvantage that the superfluid velocity v, cannot
be predicted, NRS flow is studied because of the stringent condition
pAy = 0 that is imposed on the flow, and because of the high velocitles

vn that can be obtained.

3. Corrections.

3-1. Heat transport through the superleak. Measurements with the narrow
capillary (d = 0.95 x IO-zcm) indicated the importance of a correction

for the heat transported through the superleak S, (see fig. 3). In order

to study this the capillary was removed from thezapparatus (type a)), and
the holes were closed. With this configuration, the heat transported
through the superleak SZ’ filled with liquid helium, was measured. At

the same time, the film flow was studied (see section 3-2). The superleak
S2 consists of a thin-walled stainless-steel tube, with an |.D. of 5.8 mm,
and an 0.D. of 6.4 mm filled with jeweller's rouge packed over a length
of 10 mm. The powder used is the same material Van Alphen et al. 29)
labelled type "A". The particle size of the grains is approximately

7% ID-Scm. In the stationary case, the heat current through the super-

leak prl (wall + powder + liquid) equals the power éZ dissipated in the



Fig. 4

The heat conductance of the 810 | d
superleak as a function &g /

/

of temperature. . /

heater HZ. The experimental values of éwpl are listed in table |l and
plotted in fig. 4. In all the measuring runs with helium flowing through
the capillary, a correction to v has been applied to account for the

heat transport by the superleak 52.

3-1=1. Discussion of the heat transport by a superleak. As shown in

fig. 4, pr', the heat transported by the superleak SZ' strongly depends
on temperature. This heat transport is composed of three contributions:
from the wall, the jeweller's rouge, and the liquid inside the superleak.
The contribution of the wall may be calculated using

K_A
@ = a1, (3.1)

w

L

with the length Z = 1.0 cm, the cross-sectional area Aw and the heat-
conduction coefficient of stainless steel KSS = 1.45 x 10“ x T erg/cm s K

30))

(Haasbroek . The contribution éw is listed in table Il. The contri-
bution of the powder ép is very likely negligible compared to the

contributions bl of the liquid and éw of the wall. In this approximation,

the heat transported by the liquid can be calculated from é‘ = prl = Qw.
The values of Q] obtained in this way are also listed in table II.
The strong dependence of él on T (= IZth power) suggests that the heat

is transported by the normal fluid flowing through the superleak. This
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Table II

Heat conduction by the superleak.

. . . A , L ;

T “wpl/AT QW/AI QI/AY Nr ¥ A

K 103erg/sK 103erg/sK 103erg/sK 1()-12cm14 10-6cm 10-7cm
T T T o 1.01 0.24 1.55 8.6 5.9
1.25 1.54 1.05 0.49 1.72 9.1 8.5
1.50 6.65 1.26 5.39 1.50 8.5 5.0
1.70 24.0 1.43 22.6 1.27 7.8 =3
1.90 82.0 1.60 80.4 1.19 7.5

For definitions of symbols see text.

may be understood from the following arguments. |f heat is transported
through N parallel circular channels of radius r and length 7, the mean
velocity of the normal fluid in the channels is related to the heat
current é by:

Q
0 " erosr o

In subcritical flow, a Poiseuille pressure drop over the capillary leads to

o2 W

Q= AT . (3.3)
Ty 12

The first factor is roughly proportional to 7' ~. It is tempting to

compare the é], calculated from this experiment, with the @ of equation

(3.3). From such a comparison, a value of Nr“ can be obtained (see table

31)

I1). Van Alphen et al. were able to determine the mean open cross

sections of their superleaks, from their experiments with the

31))

persistatron: 21 % and 28 % (see table | of ref. . From their results,

the mean open cross section of our superleak can be estimated to be 25 %
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of the total cross section: Nnr2 = 6.6 x 10-2cm2. Combining this relation
with the value of qu, the radii of the channels can be calculated (see
table |1). The radii r appear to be temperature dependent, since in these
narrow channels (d = 1.5 x 10-5cm), mean free path effects have to be
taken into account. Therefore the linear Maxwell slip coefficient A has

17)

to be introduced into the calculations (Brewer and Edwards

32)y

Cornelissen A correction with this slip coefficient is less

important at high temperatures, so that the value of r = 0.75 x IO-SCm
is the most reliable. Inserting this value of » into the data at lower
temperatures, the slip coefficients A are calculated (last column of
table 11). The slip coefficients obtained in this way are very close to
the roton mean free paths (Atkins 33)), as should be expected. The
number of channels is found to be 4 x 108.

In conclusion, it can be stated that heat is transported through a
superleak filled with liquid helium by a laminar flow of the normal fluid.
The agreement between the theoretical and experimental temperature
dependence of the heat current is very good. Though a superleak certainly
does not consist of parallel, circular channels, this simple physical
picture may be helpful for a good understanding of the phenomena that are
important in the case of heat transfer through a superleak. The results
of the calculations of the number and radii of the circular channels are
only to be considered as indications of the order of magnitude of the
real channels in the superleak.

At the same time, but independent of this work, Van Spronsen et aI.BA)

also studied the heat transport through a superleak. Their results

agree very well with the results of this experiment.

3-2. Filmflow. Except with NRS flow, the experimental apparatus is
partially filled with liquid helium, and the walls at the upper part of
the flow circuit will be covered by a liquid film of helium. During most
of the measuring runs, the chemical-potential drop over the capillary has
a non-zero value. As the chemical-potential drop over the superleak 52 is
always zero, the value of pAy found over the capillary equals that over

the helium film. The gradient of the chemical potential acts as a driving

force on the superfluid, so there will be a flowing film as soon as pAu
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is non-zero. This flowing film causes a transfer of mass, which results
in the necessity of a correction to the superfluid velocity in the
capillary. In order to minimize this correction, a film constriction

is placed in the gas link. The film constrictions used are of diameter
of 0.15 and 0.05 cm, in combination with the wide and narrow capillary,
respectively. The film constrictions cannot be chosen arbitrarily small,
because of the pressure difference caused by the gas flowing through the
constriction. The amount of helium transported by the film has been
measured with the capillary removed from the apparatus. The film-transfer
rate determined in this way causes a correction to v, of 0.2 cm/s in the
wide capillary and of 0.7 cm/s in the narrow one.

From various experiments on film flow, it is known that reproducible
film flows only can be obtained with clean surfaces. Since no special
precautions were taken, it is not surprising that the measured transfer
rate is a factor 4 greater than the very low transfer rate reported by

35) 36)

Hebert et al. . Very recently, Harris-Lowe and Turkington reported
film-transfer rates which depended on the chemical-potential difference
in a very complex way.

We are not able to determine the film-transfer rate during the measuring
runs with the capillary in the circuit. Because of these uncertainties,
in all the values of v, that will be quoted this correction has not been
applied. In relevant cases, a possible film-flow correction will be

considered in the discussion of the results.

3-3. Kinetic energy. From classical hydrodynamics, the kinetic-energy

correction for a viscous fluid flowing out of a large tank through a

pipe is known. The following contributions have to be considered:

T) If the velocity in the tank is negligible with respect to the mean

velocity in the pipe v, there exists a Bernoulli pressure drop 5952.

2a) For laminar flow in a pipe, a parabolic velocity profile has to build
up, giving rise to an additional pressure drop of ip;z.

2b) In the case of turbulent flow, the velocity profile is less pronounced
than in the laminar case, resulting in an empirical pressure drop of
approximately 0.0%5052 (Prandtl & Tietjens 37)).

3) If the pipe has an entrance that is not rounded off, a vena contracta
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takes place. The contracted jet expands to the full pipe radius,

within a short distance, causing an additional pressure drop. This
pressure drop varies from %052 to 952. depending on the location
of the entrance of the pipe with respect to the wall (Bayley 38)).

Combining these contributions for classical viscous fluids, one obtains
kinetic-energy pressure drops of 1.0 - 2.0 052 in the case of laminar
flow and of 0.55 - 1.55 052 for turbulent flow.

Analogous pressure drops are to be expected in experiments with helium I
flowing through a capillary. If both companents are flowing, one might
expect two additional pressure drops, proportional to 0555 and pngﬁ. In
his isothermal flow experiments, using rounded-off entrances Atkins 23)
has measured kinetic:energy pressure drops of 1.0 pEQ. In the present
experiments, a larger contribution can be expected, because of the sharp-
edged entrances and the location of the entrance of the capillary in the
liquid.

For laminar normal fluid flow through our capillary, with mean velocity
v, @ kinetic-energy pressure drop in the range of 1.5 -2.0 onv: may be
present. Since Ph is small at low temperatures, this term will only be
detectable at high velocities. From measuring runs at 7' = 1,20 K and

m

T=1.25 K with vn's up to 50 cm/s, the kinetic-energy pressure drop is
determined to be 1.6 pnvi (see section 4-1).

The motion of the excitations, produced by the energy dissipation of
the normal fluid in the wide capillary, contributes 0.12 pnvi at T is
1.20 K and 0,07 onv: at T is 1.25 K, and can therefore be neglected.

As was mentioned already in the introduction, superfluid helium flowing
with a velocity above the critical velocity may be described by assuming
the flow to be turbulent. Therefore it is likely that in this case, a
kinetic-energy pressure drop of the order of 1.0 osvi applies. These
pressure drops have to be subtracted from the AP's as derived in section
2-3, in order to obtain the pressure drops caused by the flow resistances.

In all the relevant cases, these corrections will be considered.

A kinetic-energy pressure drop has also been observed across the film
constriction in the gas. This constriction is a circular hole in a wall

of only 0.05 cm thickness. In such a short '"tube'', only a kinetic-energy

pressure drop is to be expected. The pressure drop over the constriction
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is not the only pressure drop at the upper part of the apparatus. From
the measured temperature difference T1 = Th' the corresponding pressure
difference P‘ = PQ has been calculated (see fig. 3). With the film
constriction of diameter 0.15 cm, the pressure drop over the gas may be
described with one relation at different temperatures,i.e.

b S =t =z
F1 Ph = T pgvg - 1.6pgdg (3.4)

with og the density of the gas, v_ the mean velocity of the gas in the
film constriction, and « a constant ( = 740 cms-1 K-i). Again a kinetic-
energy pressure drop is significant: 1.6 °95§' The two contributions are
of the same order of magnitude.

The first term on the right-hand side of eq.(3.4) represents the

evaporation pressure drop APV. From simple kinetic arguments, Atkins 23)
derived a pressure drop APv between an evaporating liquid and the gas
above it

s = (Wm/A ) (RT/34)%, (3.5)

with m the rate of evaporation, Av the cross section of the surface of the
evaporating liquid, R the gas constant and M the molecular weight. In the
present case Av = 0,125 cmz. The rate of evaporation can be calculated
from eq. (2.1a). On the condensation side, a similar pressure drop
occurs, but since the surface of condensation is 2.8 cm2, that pressure
drop may be neglected. The pressure drop calculated from eq. (3.5) comes
out to be a factor 2 larger than the experimental term aT%o 2 . This
discrepancy is probably caused by the curved evaporation surface, which
may be twice the area calculated from the cross section of the tube
(diam. 0.4 cm).

The pressure drop Pl = Pb has nothing to do with the situation in the
capillary, but since it has an effect on the heights of the helium levels,

it influences the limitation of the velocities which can be studied.

3=4. Variation of T and S along the eapillary. In section 2-2, the
calculation of the velocities is shown. In that section, the temperature

and other thermodynamic quantities along the capillary are assumed to be




26

constant.In practice, a temperature difference over the capillary nearly

always appears. As the entropy S strongly depends on temperature, the

normal fluid velocity will not be the same at the entrance and the exit
of the capillary. Therefore in all our measuring runs,an averaged v, is
caleulated, using eq.(2.2a) or (2.2b), but inserting for S and 7 values
averaged over the length of the capillary. All the values of v, quoted
are averaged in this way, as well as over the cross-sectional area. A
correction on e with respect to the temperature drop over the capillary
may be neglected. The fountain pressure drop over the capillary pSAT
also is calculated using an average value for the entropy. These
approximations are sufficiently accurate as long as the temperature drop
is not too large.
With NRS flow, very high values of v, are accompanied by large values
of AT. For that reason, the fountain pressure drop over the capillary |

for NRS flow has to be computed from

2
AP = p [ 5(T)dT,
"2

with T1 and TZ the temperatures at the two ends of the capillary.

4. Experimental results with small v_.

Measuring runs are performed at selected temperatures. In this way,
results from different types of flow taken at the same temperature can
be compared. Most of the measuring runs are carried out at T is 1.20 K,
1.25 K, and 1.35 K. At 7 is 1.50 K, 1.70 K, and 1.90 K only a few
series are measured. The results of the measuring runs in the region
around the line i 0 (see fig. 2) differ from the results obtained in
other parts of the velocity plane. These measurements will therefore be
treated first.

The presentation is divided into the following parts:

a) In section 4-1, the results of those measurements for which pAy = 0

and therefore AP = pSAT are treated. This part is called the linear

region, because of the )linear dependence of AT on the heat current.
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b) In section 4=2 the results with pAu # 0 and AP # pSAT are
presented, this is called the turbulent region.
c) In section 4-3 the results are compared with those of other

experiments.

b=1. Flow with small Ves the linear region. |f heat is transported by a
normal fluid flow through a circular capillary of radius » and length 7,
the normal fluid velocity P is related to the heat current @ by

g (4.1)
V= —_—— 41
& nrzoST
A laminar flow of the normal component causes a pressure drop AP over the
capillary according to Poiseuille's law,

8n_ 7

2
r

AP = -

P, (4.2)
n

I f é Is sufficiently small, the chemical-potential drop equals zero, and
AP = pSAT. (4.3)

Combining these three equations a linear dependence on @ of the measured

AT is found,

8nnZ Q
P97 = - —p — (4.14)
nr pST

Eq. (4.4) also holds, as long as the condition (4.3) is satisfied, if
there is a simultaneous flow of superfluid through the capillary.

In order to calculate a value for the viscosity from measurements on
the temperature difference AT created by normal fluid flow through a
capillary, the variations of &, n and T along the capillary have to be

taken into account. In this way one obtains the relation

AT 8n 1 T S 2 e g B ) 7
__=-—”E—21-———--——”--—AT. (4.5)
(4] nr. (pST) s 2 |pST T n, ol T ml]

For small values of AT eq. (4.5) reduces to eq.(4.4). Brewer and Edwards

17)

have derived nearly the same formula. They neglected the last term

(1/7) (AT). However, as 1/T nearly equals (l/nn)(Bnn/aT), this omission
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seems unwarranted.

With the present apparatus the linear region is studied in three
different ways:

a) with no net mass flow as long as the superfluid flows subcritically,

pv = 03

b) with only the normal fluid flowing, g 0 (the counterflow of

superfluid is balanced);

c) with NRS flow.

Ad a). If pv = 0, the results show the usual pattern as illustrated
in fig. 5. At low values of v the pressure drop equals the expected
Poiseuille pressure drop of eq.(4.2) and pAp equals zero. The limit of
the linear region depends on temperature. At high temperatures, a
critical value of Vg is already obtained at low values of v -

Ad b). A typical example of normal fluid flow without a superfluid
counterflow, vy - 0, is also shown in fig. 5. Within the measuring
accuracy, the value of pAu is zero. The straight line in fig. 5 is the
theoretical one, calculated from eq.(h.Z) with B 13.55 puP. Turbulent
points have been omitted, as they drop out of scale.

At 7 = 1.90 K and d = 0.95 x 10‘2cm, measurements on flows with pv = 0
and g 0 indicate clearly a difference in the creation of turbulence,
which is caused by the simultaneous flow of the superfluid in the case
of no net mass flow. With U 0, the linear region reaches up to
p. - 10 cn/s, while with pv = 0 the upper limit is P 4.5 cm/s,

accompanied by v_ = - 2.8 cm/s.

Ad c). In the type of flow called NRS flow, only the velocity of the
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normal fluid in the capillary is known, and pAp has to be zero (see
section 2-5). From our measurements with adjustable Vg and v (with a
partly filled apparatus), it is known that flows with pAu = 0 and

AP = AP are only possible in the immediate vicinity of the s 0

Pois
= 0 lines in the velocity diagram (fig. 2). This is in contra-

and pv
diction to the assumption of Staas et a|.22) in their original paper.
They suggested that both in the laminar and turbulent situation, the
superfluid and the normal fluid should move in the same direction, such
that no effective mutual friction occurred. Our measurements indicate
indeed that in the turbulent situation the superfluid moves with a
velocity 2y slightly smaller than 0 We shall come back to this type

of flow in a following chapter. However, Staas' assumption seems not to
be valid in the laminar situation. A laminar NRS flow may be identical
to a no net mass flow or a pure normal fluid flow. It should be noted
that in both situations the relative velocity may be very large. We
observed laminar NRS flows with values of v, up to 54 cm/s at T = 1.20 K
in the wide capillary.

In fig. 6 the pressure drop over the capillary is plotted as a function
of vn, at 7 = 1,20 K for an NRS flow series. The solid line through zero
represents the laminar normal flow. The measuring points shown above this
line are turbulent points. The hysteresis in this type of flow will be

discussed in a following chapter on turbulent flows with Ve > 0. From

e Fig. 6
200 ¥ |
dyne P t The pressure drop over the
cm? / A
‘f?g:' A /// eapillary as a finction of the
= K :
: / / . - :
50 d=294x0"cm ‘ 4
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Fig. 7

The thermal resistance as a function

of heat current (NRS flow). The slope of

the solid line g calculated from eq.(4.5).
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the solid line, the viscosity n, can be deduced.

With the narrow capillary, the correction term in eq.(4.5), taking into

account the variation of S, N

and T along the capillary, is already

significant at low heat currents, as shown in fig. 7. The slope of the

solid line is calculated from eq.(4.5). From the intersection of this

line with the vertical axis, the viscosity n is calculated. The

N
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Kinetic energy

correction

Pig. 8
The thermal resistance as
a function of heat current
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the dotted line is

caleulated from eq.(4.5).
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Table IIT
Values of the viscosity Ny computed from laminar NRS flow.

7(K) 1.20 1.25 1.30 1.35 1.45 1.50 accuracy

nn(uP) 17.8 16. 4 15.6 15.0 14.0 13.5 + 0.2

viscosities N’ computed from measurements in the linear region of a great
number of NRS flow series, are listed in table Il|. The results agree very
well with the values listed in table |. At higher temperatures, T = 1.70 K
and T = 1.90 K, the linear region is too small to give sufficient

accuracy for a determination of Nt but the results are not in contradiction
with the values from table 1I.

The maximum velocity P obtained with linear flow In the series of fig.7
is 10.6 cm/s. In the wide capillary, linear flow is observed at still
higher velocities. In fig. 8, the thermal resistance at 7 = 1.25 K in the
wide capillary is shown (NRS flow). There is a large discrepancy between
the experimental points and the dotted line calculated from eq.(4.5). The
explanation of this discrepancy was already mentioned in section 3-3. At
these high velocities a kinetic-energy correction proportional to onvi
has to be applied. From graphs such as fig. 8, the proportionality
constant is calculated to be 1.6 + 0.1. The extra thermal resistance,
describing the kinetic-energy correction, which has to be added to eq.
(4.5) is

i 6 —,;——p"é (4.6)
—=1. 5 ;
Q nzr 9353-2

The observed kinetic-energy contribution lies within the limits of the
expected correction for the normal fluid (section 3-3).

No observable kinetic-energy correction from the superfluid seems to
be present. However, in subcritical superfluid flow, no kinetic-energy

39) 31)y .

pressure drop may be expected (Meservey , Van Alphen et al. In

the linear region of NRS flow, a possible superfluid flow is always

subcritical, as pAp = 0 and AP = APPois' If in this linear region the
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superfluid should move with nearly the same velocity as the normal fluid,
as Staas 22) assumed, subcritical superfluid flow with velocities up to

50 cm/s should have been present, which is very unlikely.

4-2. Flow with small Vs the turbulent region. In the linear region, a
possible flow of the superfluid is subcritical. The chemical-potential
drop is zero, while the pressure drop equals the pressure drop created
by the normal fluid according to Poiseuille's law (4.2). In the turbulent
region, where pAu # 0, the superfluid is supposed to be turbulent, and
interacts with the normal fluid. The turbulent situation is studied in
this section, in measuring runs with Us =0 or pv = 0.

A typical illustration of a measuring series on pure heat transport
(pv = 0) is shown in fig. 9. Linear laminar flow is observed with
velocities up to A 11.7 cm/s, and corresponding Vi -0.8 em/s. In
this laminar flow, pAy = 0, and the pressure difference AP fits eq.(h.2).

At a normal fluid velocity of 12.0 cm/s, the flow begins to become

Fig. 8
Result of a pure heat conduction flow experiment (ov = 0).
The fountain pressure pSAT, the chemical-potential
difference pbu and the pressure difference AP ave ghoun
as functions of the normal fluid velocity v .

For details see text.
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Fig. 10
The pressure drop over the capillary as a funetion
of the velocity of the normal fluid v (no net mss
Flow). The circles represent linear flow, the squares
turbulent flow. The dotted line s calculated from
equation (4.8). d = 2.94 x 10—2cm.

i P 7 . —T—
90 | / /al
dyne /
P pv=0 : /;/4/
80 | T=1350K / A
pap=0 / 1 w
o o 0 / /» ™ o
BpApe ‘ Ausk ! |
/ iy o
Blasiug. A i i G 1
/ ) Ll
50 / ¢
r /A~ |
Porseulle
40 | L9
30 | yd
d
' S
20 A
-aP|10 | ’//
‘ — 4 4 4 - 4 i A i |
0 Tg 2 ¥ 4 § € 7 8 4 w0 P

turbulent (pAu # 0). This turbulent point can not be measured, since the
helium level h1 (see fig. 1) becomes too low. Once the flowing superfluid
helium has a turbulent character, it remains turbulent if the velocities
vn and vs are lowered. This turbulent part, however, does not reach down
to the linear part: at v, - 8.0 cm/s (vS = -0.6 cm/s), the flow in the
capillary does not remain turbulent for long, but drops to the laminar
part, after having been turbulent for 5 minutes. The hysteresis in this
type of flow is indicated also in fig. 9. However, the observed pressure
drops show the same dependence on Vs within the measuring accuracy, both
in linear and in turbulent flow. This is illustrated more clearly in

fig. 10. The error bars indicate the accuracy, These error bars are large,
since the pressure drop (AP = pSAT + pAu) is calculated from the difference
of two large quantities, as shown in fig. 9. The fully drawn line is

calculated according to eq.(4.2).
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From ordinary hydrodynamics, it is known that the velocity profile
of a viscous fluid flowing through a tube is directly related to the
pressure drop over the tube (ignoring kinetic-energy effects). The same
can be expected for a flow of the normal component of helium through a
capillary. In the present experiment the observed pressure drops over the
capillary for subcritical and for turbulent flow are always in accordance
with Poiseuille's law. This suggests that the velocity profile of the
normal fluid is not altered by the interaction of the normal fluid with
the vortices of the superfluid, but that the norma) fluid is moving
laminarly both in sub- and supercritical flow.

According to Staas et al. 22), classical turbulence of the normal fluid
might also play a role in the case of no net mass flow. Turbulence should
be possible at Reynolds numbers Rev exceeding 1200, these Reynolds numbers
being defined with the total density
L1 (h.7)

v 5 S ;

& 22,40)

The empirical equation of Blasius describes the pressure drop

across a tube of length Z in turbulent flow.
bnzl
n 3 Re‘-75

v

(c.g.s. units), (4.8)

AP(Blasius) = 3~ X 4,94 x 10~
pr

In fig. 10, the pressure drop calculated from equation (4.8) is given by
the dotted line. At T is 1.35 K, Rev equals 1200 at vn is 4.2 cm/s, in
the capillary with diameter d = 2.94 x 10-2cm. As may be concluded from
fig. 10, the observed pressure differences show the same dependence on vn
above and below Rev = 1200. Even at v_ = 10.8 cm/s (Rev = 3100), with a
large chemical-potential difference present, the measured pressure drop
does not indicate any turbulence of the normal fluid.

Usually, attempts to create turbulent flow with only the normal fluid
moving are only successful when a vibration of the cryostat is first
induced by tapping its top. An example of a measuring run with e 0
is shown in fig. 11. The error bars indicate the accuracy. The solid line
describes the pressure drop according to Poiseuille's law, eq.(4.2). As
may be seen from fig. 11, the measured pressure drops at the turbulent
measuring points still equal the pressure drops calculated from Poiseuille's

law. This does not differ from the results obtained with no net mass flow.
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The observed fountain pressures pSAT and the chemical-potential drops piu
are very similar to the results with no net mass flow shown in fig. 9.
This indicates that a small counterflow of superfluid is not important.
From the observed pressure drops, the conclusion can again be drawn that
the normal fluid is always flowing laminarly through the capillary with
a parabolic Poiseuille profile.

As has been mentioned, it is difficult to create turbulence with
only the normal fluid moving. However, though the normal fluid flows
laminarly, the superfluid can be turbulent, in spite of the requirement
that the mean superfluid velocity is zero. It should be remembered again,
that in the present experiment, only the macroscopic mean values of the
velocities, averaged over the capillary are known.

In order to describe the experimental results for stationary flow, two

new quantities an and Fé are defined with the following equations:

Ap
= = — - - !
0 IS > L 5 (4.9)
Ay AT
0= - g e pS —" & an - Fn. (4.10)
) /A
& L

Fn is the normal viscous force. an corresponds to the mutual friction

9)

force introduced by Gorter and Mellink , which according to these
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Table IV
The values for the Gorter-Mellink constant A, as caleulated
from measurements on no net mass flow and pure normal
fluid flow. The diameter of the capillary is 2.94 X Jo—gcwu
the length 14.6 cm.

7(K)

A(cmsg-1)

authors should have the form

F =
sn

AP =

ol

During the measuring runs with small Ves reported in this chapter, b;
is always zero within the measuring accuracy, since the observed pressure
difference equals the Poiseuille difference caused by the moving normal
liquid (eq. (4.2)).

Values for the Gorter-Mellink constant 4, concluded from the present
measurements on no net mass flow and pure normal fluid flow through the
wide capillary, are the same within the measuring accuracy. These values

are listed in table IV. The values of 4 are somewhat higher than the
10) 26,27)

20)

values found by Vinen and Wiarda and Kramers , but slightly

less than the values obtained by Brewer and Edwards . As will be shown
in a following chapter, A-values from other measuring runs, with other
velocity combinations (vn, us), are not the same as the values obtained

from no net mass flow experiments.

4-3. Comparison with other experiments. There are only a few experiments

on heat flow through a capillary in which the pressure differences AP

have been measured. Brewer and Edwards 19) (BE) have observed pressure

and temperature differences in no net mass flow through a capillary of
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Fig. 12
Result of a heat-flow experiment as measured by
Brewer and Edwards. The pressure difference AP
and the fountain pressure pSAT are shown as

functions of the normal fluid velocity v,

-1500 [

dyne pv=0

Tem? Brewer and Edwards

-1200 | T=156K
d=107x10"cm
1=10.2¢cm

|
18 ¢cms’

diameter 1.08 x !0-2cm and length 10.2 cm. In fig. 12, their results
at T = 1.56 K are shown as a function of the normal fluid velocity v
The values of ni quoted in this figure are not averaged over the length
of the capillary, but are the values of v, at the cold end of the
capillary. There are some striking differences between the results of
the experiment of BE and the present experiment.

The first difference between the results shown in fig. 9 and fig.. 12
concerns pSAT. In the present experiment, the pSAT curve does not>reach
down to the AP curve. In fig. 12 the pSAT curve intersects the AP curve.

BE 18) have observed such a behaviour in capillaries with diameters of

0.52 x 10_2cm, 1.08 x 10-2cm, and 3.66 x 10—2cm. Therefore the disagreement

between their results and ours is not caused by the difference in
diameter. The gap in our experiment probably suggests that it is difficult
to create or maintain turbulence in the capillary. A hysteresis as shown
in fig. 9 was not reported by BE for the series of fig. 12. However, in
ref.18 they also mention hysteresis effects in other measuring runs with
the same capillary.

The second important difference between our results and those of BE is




38

the dependence of AP on v in the turbulent region. In the present
experiment (see fig. 10) the pressure drop over the capillary nearly
equals the theoretical Poiseuille pressure drop. BE have observed pressure
drops much greater than should be expected from Poiseuille's law.

For a comparison of these different experiments, it is perhaps useful to
choose the so-called eddy viscosity which should be a unique function of

19)

(9n = us)d at a certain temperature. In this way BE have compared their

results with the results of Bhagat and Critchlow ‘1), obtained with a
similar apparatus, and have found good agreement. The eddy viscosity is
defined as

Neddy -~ "eff ~ "n’

The effective viscosity Neff is obtained from the observed pressure drop
using eq. (4.2). In fig. 13 the eddy viscosity is plotted as a function of
(Un - us)d. Contrary to the results of BE and Bhagat and Critchlow ]]),
the ordinary viscosity n, was sufficient to explain the results of our

experiment, and an eddy viscosity was completely absent.

Fig. 13
The eddy viscosity as a function of (v_ - v_)d in
Y Y J h s
no net mass flow. Fully drawn lines are measurements
J Y
19) -2
(d = 1.08 x 10 “em). The

3 3 = i > 11)
dotted line is observed by Bhagat and Critchlow

of Brewer and Edwards
(d = 2.97 x 10 “em). The measuring points are from
the present research. (d = 2.94 x 10~2cn5
O ¢ 150K AF 185K, BE 1. 20K),

P
pV=0
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In a following chapter, however, measurements will be described in which
a pressure drop over the capillary is observed with pure superfluid flow.
Moreover, measuring runs will be reported in which the normal and superfluid
(with Bt 0) move in opposite directions. In general, with these
experiments in the counterflow region, only pressure drops smaller than
the calculated Poiseuille pressure drops are found. With g %~ D even
flow with a pressure drop AP = 0 has been observed.

If one should try to explain the results of BE with the help of an extra
pressure drop needed to push the vortices through the capillary, the
vortices should have to move in the same direction as the normal fluid,
in order to obtain a pressure drop greater than the Poiseuille pressure
drop.

An explanation of the additional pressure drops observed by BE, by means
of a possible turbulence of the normal fluid is not likely. Reynolds
numbers as defined in eq.(4.7) are 1200 at relative velocities of 12.6 cm/s
at 7' = 1.31 K, 11.7 cm/s at T = 1.56 K, and 14.7 cm/s at T = 1.81 K.
However, deviations from the Poiseuille curves occur already at lower

values of (v - v.).
n s

5. Conclusion.

In the turbulent region of no net mass flow, there is a strong interaction
between the normal and superfluid, which can be concluded from the observed
chemical-potential drops. The pressure drops equal the theoretical
Poiseuille pressure drops, indicating that the normal fluid is moving
laminarly both in sub- and supercritical flow. Until now, it is not clear
what causes the difference in the observed pressure drops between our
results and the results of Brewer and Edwards. The present results, however,

seem to be the most simple ones. The difference in the results may perhaps

be caused by different technical arrangements.
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CHAPTER |1

SUPERFLUID FLOW

Synopsis

Superfluid flow has been studied in two capillaries with diameters of
2.94 x lo-zcm and 0.95 x IO-zcm, at temperatures ranging from 1.2 K to
1.5 K. The chemical-potential difference and the temperature difference
over the capillary are determined as a function of the superfluid velocity
US. From these values the pressure drop over the capillary is derived.
Curiously, for turbulent superfluid flow, the pressure drop resembles
the classical pressure drop caused by a turbulently flowing ordinary
liquid. There appears to be a connection between the pressure drop and
the mutual friction, suggesting that both may be related to the vorticity

in the superfluid.

1. Introduction
The aim of this research is to study the forces, acting on the

superfluid and the normal fluid, in different types of flow through the

1 :
same capillary. In a preceding chapter )(I), the experimental arrangements

a) and b) were described, in which the two fluids can be forced to flow
simul taneously through a capillary, with independently adjustable
velocities. Studied were two stainless-steel capillaries of 2.94 x 10'2cm
and 0.95 x 10-2cm, inner diameter, both 14.6 cm long. The manner in which
the mean values of the velocities B and v the chemical-potential
difference pAu, and the fountain pressure pSAT are obtained from the
measurements is described in |. The pressure drop AP is calculated using

the integrated thermodynamic identity, which for small AT and Ap reads as
AP = pSAT + pAu ; (1.1)

in this expression velocity contributions are neglected.

If pAp is not identically zero, the flow shall be called turbulent
(supercritical), and will be discussed using the picture of vortex lines
2)

).

in the superfluid (Vinen

In order to describe the experimental results for stationary turbulent
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flow in a capillary of length Z, two quantities an and Fé are defined by

the following equations:

[}

0=~ ;)S(LU/Z) S RS (1.2)

1
S

(=]
I

= on(Au/Z) - pS(AT/7) + Foo=F (1.3)

Fn is the normal viscous force. These equations resemble the equations

of motion for stationary flow. However, since there is some uncertainty
about the admissibility of inserting forces such as ?sn and ﬁs into the
original equations of motion, it is preferable to introduce in this
chapter averaged values an and F;, since these are deduced directly from
the experiments. All the terms in egs. (1.2) and (1.3) have the dimension
of a force per unit volume. In the calculations of the fountain pressure

the mean value of S over the capillary is used. The force F__ corresponds

to the mutual friction force introduced by Gorter and Melliiz 3), its
analytical form, however, being unspecified for the time being.

By adding the egs. (1.2) and (1.3), it follows that
AP = = ZF; = ZFn.

In chapter | experimental results for no net mass flow and for pure
normal fluid flow (vS = 0) were reported. In these types of flow the
pressure drop obeys Poiseuille's law, both in sub- and supercritical
flow, indicating that ZF; is negligible in these cases and the normal
fluid remains laminar.

In this chapter,!!, results for superfluid flow will be presented. In
these runs ZF; is not negligible but ZFn is small (because of the inevitable
heat leak through a superleak, a small normal fluid flow through the
capillary may also be present). The quantity ZF; includes, apart from the
main term ZF5 describigg the pressure drop over the capillary, a kinetic-
energy correction ap V. originating from the entrance of the capillary.

a can be estimated to be approximately 1.0 in the case of turbulent
superfluid flow (see 1-3-3). A similar correction to ZFn can be neglected
since R and Un remains small in the runs with "pure' superfluid
flow presented in this chapter. With these small values of v it is
reasonable to use Poiseuille's law to calculate the pressure drop caused

by the moving normal fluid. Therefore, ZFS can be obtained from

2 2
- IF =8P+ 1.0 p v, + (8nnZ/r ) v, - (1.4)



Fig. 1

Schematic drawing of the
apparatus type al.
(8)=Superleak; (H)-Heater;
(T)-Thermometer; (h)-helium

level.

T=120K

= <2
degp=294 %10 cm
legp=14.6cm

deiim=015cm

vacuum chamber Va=0

FPig. 2
Temperature differences observed
with a pure superfluid flow as a
function of the superfluid

veloctty V. For details see text.

Fig. 3
The calculated values of the
veloeity v s of the small normal

fluid flow caused by the heat

leak through the superleak, as a

ion of the superfluid velocity

Vs @ t different temperatures.
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The last term at the right-hand side of eq.(1.4) may give a noticeable
correction with the narrow capillary, while with the wide capillary the
kinetic-energy correction to AP rises to 10 % of AP at high values of the
velocity Vg

In the following chapter, 111, results for types of flow in which both

fluids move with velocities unequal to zero, shall be presented.

2. Superfluid flow, experimental results and discussion.

2-1. General. No systematic deviation between the results observed with
the arrangements a) and b) has been found. Arrangement a) is shown
schematically in fig. 1. Dissipation of heat in H1 causes a distillation
of helium resulting in a superfluid flow through the capillary. The

velocity o is calculated from the power dissipated in # , and the heat

of evaporation L together with the small correction ST, 1epresenting the
mechanocaloric effect. In order to give an idea of the order of magnitude
of the effects, an example of the temperature differences present between
several parts of the apparatus type a) is shown in fig., 2. During this run
the temperature T1 was kept constant by adjusting the bath temperature.
The temperature drop over the capillary (Tl - Tz) is caused by the super-
fluid flow in the capillary. The temperature drop over the gaslink is
called (’I’1 - Th) (see 1-3-3). The temperature drop over the superleak SZ,
(T2 - To) = (T2 - Tb)’ causes a small heat leak through the superleak,
and, therefore, a small normal fluid flow through the capillary (see

1-3-1).

The temperature drop between the two glass standpipes, (Th = T3), is

caused by the Kapitza resistance between the liquid in the apparatus and
in the bath. It should be noted that at other temperatures than 1.2 K,
and/or with other types of flow, the temperature drops in fig. 2 have
entirely different values.

In fig. 3 the velocity of the small normal fluid flow calculated from
the measured heat conduction of SZ’ is shown for both capillaries. As
could be expected this extra flow is more important for the narrow
capillary than for the wide one. The heat leak through Sl is negligible

with respect to the heat dissipated in H1.




Fig. 4

The chemical-potential drop ply, the fountain pressure pSAT,

and the pressure drop AP as functions of the superfluid velocity v

S
Jor a "pure" superfluid flow.

a) narrow eapillary b) wide capillary

T=1.20K
s <2
d=095x10 cm

|l =14.6cm

Vo=

The behaviour of the chemical-potential, the temperature and the
pressure drop over the capillaries, for a ''pure'' superfiuid flow is
illustrated in the figures 4a and 4b. In the narrow capillary the extra
normal fluid flow is responsible for the initial dip of the AP curve.
Apart from the mutual friction term, which in a superfluid flow is
approximately given by pSAT, the occurrence of a pressure difference

AP observed in this type of flow is striking.

2-2. Pressure drop. The values of the uncorrected pressure drop over
the capillaries are shown in the figures 5 and 6.

In fig. 5 (narrow capillary) the accuracy is 3 % of AF or 3 dyne/cmz,




narrow

whatever the greatest. These pressure drops are smaller than the

Poiseuille pressure drops AP _ observed with comparable normal fluid

velocities (AP = - 80 v ).

[%

n
In fig. 6 (wide capillary) the accuracy is 10 % of AP or 3 dyne/cm2

These
pressure drops are comparable with Poiseuille pressure drops (= - 8 ﬁn).

A typical example of the corrected pressure drop ZFS over the narrow
capillary, calculated from the measurements using eq.(1.4), is shown in

fig. 7 for I = 1.25 K. The solid line through the measuring points is the

mi

The pressure drop
the wide ca
funetion of the

veLociiy v
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Fig. 7
The pressure drop ZFS, eaused by a
superfluid flow through the narrow
eapillary, as a function of the
swwﬂmdwwd@u§

For dashed line see text.
300————T—T—
(jjmz
cm?
250 T=1.250K
d=095x10 cm
200} L =14.6cm

1.75 1.75

line 11.6(1)S - 1.0)
is also found at T equal to 1.20, 1.35, and 1.50 K. As was mentioned

already in 1-3-2, a correction to vs to account for the film transfer

. The same dependence of ZFS on (vS - 1.0)

has to be applied as soon as pAu # 0. This correction was estimated at
0.7 cm/s in the narrow and 0.3 cm/s in the wide capillary, and has to be
subtracted from the calculated values of the superfluid velocity Us as
soon as pAu < 0. This correction has not yet been applied in fig. 7.

In fig. 8 the pressure drop ZFS over the wide capillary is plotted as a
function of the corrected superfluid velocity. The line is drawn with a

slope of 1.75.
Three experiments with pure superfluid flow are reported earlier (Kidder

and Fairbank h), Kidder and Blackstead 5), Keller and Hammel é ), in .

which pressure drops were observed depending on the velocity as
AP v (v - )"75, with v a critical velocity.
s 5,C s,C
A slightly different velocity dependence has been found by Van Alphen
et al. 7). From their energy-dissipation measurements with pure superfluid

flow, these authors calculated a dissipative pressure drop
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Ly  ——— g Ve SRR B F_“:g' 8
m g The pressure drop LF for
SOr superfluid flow through the wide
1 - - ~ .
| ﬁg eapillary, as a function of the
gff corrected superfluid veloeity
0 8 A - s
R ‘ (v, = 0.3). The circles are
| observed with arrangement a),
10} the squares with arrangement b).
(see I-2-1).
s} 1
\
‘ o type a
o type b
. i
1 |
LFg
' sk Lo ot ot i B
S cm/s 10
By =R (2.1)

with O the area of the chamber or slit, and E the observed energy
dissipation. They found this dissipative pressure to depend on the

velocity as
- .9 2
Atdis = wzus : (2.2)

with 7 the length of the flow path and B a phenomenological constant,
depending on the temperature and on the diameter of the flow domain. It

will be clear that it is difficult to conclude whether AP depends on

J1.75 2.0
‘S S

or v , if one is only able to obtain values of AP in a small

velocity region. In Van Alphen's case this was even more difficult since
218 or v3.0. The
s s

B values of Van Alphen are in good agreement with the pressure drops in

he had to distinguish between a dependence of E on v

our narrow capillary. However, our pressure drops over the wide capillary
yield a B value which is a factor 4-8 smaller than his B value.This
discrepancy is probably caused by the different definitions of the
pressure drops in their experiment and in ours. In their experiment a
possible contribution to the energy dissipation of a mutual friction

force B could not be separated from the energy dissipation caused by a
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frictional force Fs. From our experiments an and Fs can be obtained

separately, and our pressure drop only contains the FS term.

Our preference to describe the pressure drop in a turbulent superfluid
flow with a 1.75th power dependence is strongly influenced by the
following similarity. In ordinary fluids with density p and viscosity n,

8,9)

the empirical relation of Blasius
34 ¥

p nv

= - 0,158 (cgs units), (2.3)

| &
describes the pressure drop for turbulent flow, with mean velocity v
through a circular capillary with diameter d and length Z. The dashed
line in fig. 7 is calculated from eq.(2.3) with p the total density,

n n. the viscosity of the normal fluid, and v = Vg the velocity of the
superfluid. The solid line in fig. 7 is exactly parallel to the dashed
line. Insertion of P instead of p in eq.(2.3) practically makes no
difference at these low temperatures. There is a small discrepancy
between the estimated film correction of 0.7 cm/s, and the shift between
the two lines in fig. 7 of 1.0 cm/s. This may be due to, either a wrong

film-correction, or the presence of a Y of 0.3 cm/s as found in other

experiments h-6). Apart from this shift the pressure drop ZFS in the

narrow capillary is of the same magnitude as the classical pressure drop.

Fig. 9
4= 695 x10 %em | The pressure drop ZFS,
l=14.6¢cm 9 caused by a superflutd flow

Vn=0O

in the narrow capillary
as a function of the pressure

drop ealeulated from eq.(2.3).
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As was illustrated already in fig. 8 the pressure drops over the wide
capillary also depend on the 1.75th power of the velocity. However, these
pressure drops are only 50 % of the pressure drops calculated from eq.(2.3).
Al though the relative measuring accuracy is smaller in the wide than in
the narrow capillary, this difference is much larger than the claimed
accuracy and not yet understood.

The Blasius-like behaviour of the pressure drop ZFS over the narrow
capillary is illustrated in fig. 9. In this graph the values of AFB are
calculated from eq.(2.3), with the total density, n = s and v =v_ - 1.0,
APB and ZFS coincide remarkably well at all the observed temperatures.

A possible mechanism which might explain the essential role of N, in
the determination of the pressure drop caused by a superfluid flow, is

suggested in section 4.

2-3. Mutual friction. According to the eqs. (1.2) and (1.3) the mutual

friction force an for a pure superfluid flow (Fn = 0), is defined by

e (AT/2) + (on/o)(AP/Z). (2.4)

sn

At low temperatures, where on/o << 1, the second term at the right-hand
side of eq.(2.4) is small, as can be concluded from the figures 4a and bb.
Therefore, the dependence of pSAT on the relative velocity (us - vn), as

shown in fig. 10, also illustrates the behaviour of an. The velocities

Pig. 10
The fountain pressure pSAT
for "pure" superfluid flow
a8 a funetion of (vs - vn)

at different temperatures.
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are not corrected for a film contribution, which makes no appreciable
difference. Values of Zan are calculated from the observed values of AT

3)

and pAyp, using eq.(1.3). Gorter and Mellink have introduced a

phenomenological form for an

)3

F_ =4 oson(v = - (2.5)

sn S n

with 4 depending on the temperature, which fitted the experimental data
available at that moment (mainly from no net mass flow). As was shown by

Wiarda and Kramers ]0"1),

the results of other types of flow could not

be described with this equation for an. However, in order to be able to
compare results of different types of flow or different experiments it

may be convenient to describe the results in values of A. This has been
done in | for the results of no net mass flow, and is also possible for
superfluid flow, since the values of Zan calculated from the present
measurements are roughly proportional to the cube of the relative velocity.
The values of A calculated for the wide capillary are (accuracy + 5):

106, 89, 81, 76, 87, and 97 cm s/g for T equal to 1.20, 1.25, 1.35, 1.50,
1.70, and 1.90 K, respectively. In the narrow capillary the values of A

are (accuracy + 10): 148, 171, 154, and 132 cm s/g at T equal to 1.20,
1.25, 1.35, and 1.50 K, respectively. The quoted values of A are determined
from double-logarithmic plots of Zan as a function of the relative
velocity Y U The values of v, are corrected for the film

transfer (0.3 and 0.7 cm/s). The entirely different temperature dependence
of the parameter A for superfluid and no net mass flow (see 1) clearly
demomstrates that eq.(2.5) does not describe all types of flow with one

A at a certain temperature.

Moreover, the general validity of the cubic dependence of an on

(vs - vn) may be questionable. In a linear graph the slope of Zan on vz
shows an abrupt change at a certain velocity at most of the temperatures.
This change of slope is similar to the change of slope in the curves of
the second-sound attenuation in superfluid flow as a function of Vs @S

reported by Wiarda and Kramers ]0'11), and by Le Ray et a|.13). However,
these breaks in the slope disappear if the dependence of lan on the

relative velocity is not fixed at the third power. For instance, a plot

of Zan from the present experiment with the wide capillary, as a
275

m

function of v, at T is 1.20 K, shows one straight line through all the
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IO S L0 S L PR PR Fig. 11
i{g’ Values of the mutual friction

force an caleulated from the

this research

measurements of Wiarda and Kramers,
1, L=14.6cm
,l=14.6cm

together with values of an from

. the present research, as a funetion
second sound (Wiarda)

i - latt locity v

OB S et Oem of the relative veloctty v

T=1.50K

B Vn=

4}t
Al

F {
anl

—

Qb —
O Vv,
AN

measuring points. The results for an from the present experiment can

better be described with a power which slightly rises as a function of

temperature than with a fixed cubic power. The same is found to be true
12) %

with the second sound results of Wiarda et al.

11 the results of the extra attenuation of second sound in

10-12)

In fig.

superfluid flow as observed by Wiarda and Kramers , are compared

with the results from the present experiment. The values of an from the

second-sound research are computed from
PP W
sn_o
Y /Y, - 1) v,-
p @

)
0 is the angular frequency and Qo the quality factor of the resonator

F =
sn

without flow. Y, and Y, are the amplitudes of the second-sound signal,

without and with a flow respectively. The
measuring points of the present study are
bution. Especially the values of an from

close to the values from the second-sound

Footnote »

break,

k)

Alphen et al.] is no longer warranted.

The use of the value of Us' at the previously

relative velocities of the
corrected for a film contri-
the wide capillary are very

experiment. Unfortunately

0)

reported

in the well-known critical velocity versus diameter graph of Van
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there are no second-sound data available at higher velocities, because
of the large attenuation at these velocities. Since the values of FS

n
from our capillaries , having the same length, do not coincide, the mutual

=

friction term B probably depends on the diameter of the capillary.

2-4. Connection between F_ and Fent According to the theory of Hall and

s
v 1 2! 3 =
Vinen 2,15) the mutual friction force Esn should be proportional to the

total length of vortex line per unit volume L, multiplied by the relative

velocity of the vortex lines and the excitations of the normal fluid,

F . 1 vn), (2.6)

with a a factor which does not depend on the velocities. |f the pressure

drop ZFS, as concluded from the present experiment, is connected with the

vortices in the turbulent superfluid, this pressure drop might be put in

the form,
L, (2.7)

3 an unspecified factor. These two forces will then be related by

(2.8)
the figures 12 and 13 ZFS is plotted as a function of Lan divided

Fig. 12
The pressure drop ZFS, with
a superfluid flow through
the narrow capillary, as a

funetion of the mutual

friction term Zan tvided

by the relative velocity.

-2
d=095x10 cm

L=14.6¢cm

V=0

1 ===
60 qcm?s' 80
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Fig. 13
The same quantities as in fig. 12

for the wide eapillary.

by v

The relative velocities plotted are corrected for the film transfer.
Though the relative magnitudes of FS and an in the two capillaries differ
(see figs. 4a and 4b) the patterns shown in the figures 12 and 13 are
similar. Therefore, we suggest that these graphs probably demonstrate
that the equations (2.6) and (2.7) are generally valid in turbulent
superfluid flow. Since the results, as given in the figures 12 and 13
can be represented by straight lines, £ appears to be also independent
of the velocities. The values of the quotient B/a, as calculated from the
straight lines in the figs. 12 and 13, are given in table |.

|f the pressure drop ZFS is caused by an interaction of the vortex
lines with the wall, this interaction probably takes place via the normal
fluid, since n, seems to play a role in the determination of the pressure
drop. Until now it is not clear in which way the present results can be

2,15)

related to the vortex line theories However, in our opinion, these

results strongly suggest that the pressure drop ZFS and the mutual friction

term Zan are both connected with the total length of vortex line per
unit volume. In the following chapter such a relation will be shown to

be present also at other velocity combinations.
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Table I

Values of B/a in cm/s in the two captllaries.

d = 2.9% x 10 %cm d = 0.95 x 10 2cm

4.7
3.5
2.7
1.8

3. Comparison with the thermal-fluctuation theory.

The flow of superfluid helium in very small channels has been inter-

preted in terms of the thermal-fluctuctuation theory developed by Langer

16).

and Fisher Experiments explained in accordance with this theory have

17) 18) 19)

been performed by Clow and Reppy , Notarys , Liebenberg , Chester

et al. 20), and Cannon et al. 2]). According to the theory of Langer and

Fisher 16), Notarys 18) has shown that the chemical-potential drop pAu
over a small channel should be proportional to the superfluid velocity
v, as

pAy = A exp(- B/Us), (3.1)

with 4 and B depending on the temperature, but not on v, or pAu. In order

to verify whether such a dependence is also present in our experiment, a

plot of ZFS and pAu on u;l is made, as shown in fig. 14. The values of v,

are corrected for a film contribution. From this graph it is obvious that
our measuring points do not obey eq. (3.1), since they can not be
summarized with a straight line. Therefore, the thermal-fluctuation
theory, though successful in very narrow channels, does not seem to

account for the phenomena observed in our "wide'' channels.
4, Conclusion.

In both capillaries the mutual friction force an depends on the 2.75th
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Fig. 14

The chemical-potential drop pby and

the pressure drop ZFS, as a function
of U;I at T = 1.25 K.

power of v, at the lowest temperatures. This power rises slightly as a
function of temperature, in accordance with the results from the second-
sound experiment of Wiarda et al.‘z).

With the narrow capillary ZFS, the pressure drop caused by the
turbulently flowing superfluid, resembles the pressure drop observed with
turbulent flow in classical hydrodynamics, at all temperatures studied.
With the wide capillary ZFS is much smaller than in the narrow one but
also seems to depend on the 1.75th power of V- However, these pressure
drops are only 50 % of the pressure drops calculated from the empirical
relation of Blasius.

Further, a connection has been found between the mutual friction force
an and the pressure drop ZFS. This connection suggests a common origin
of the two forces. Probably both depend on the total length of vortex

line per unit volume. The mutual friction force an represents the inter-

a loss of momentum from the superfluid to the normal fluid. The pressure
drop ZFS, suggesting an interaction of the vortex lines with the wall,

describes the momentum loss from the superfluid to the wall. The force FS

action between the vortex lines and the normal fluid. This force represents
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might be due to a momentum transfer to the wall by way of vortex lines
attached to small irregularities of the wall. It is not clear, however,
wihy n, should play a role in this process. Another possibility might be

a dissipation similar to the dissipation in ordinary fluids. In classical

hydrodynamics 22) the energy dissipation of a turbulent flow can be

described by a continuous flow of energy from large eddies to small ones.
This flow of energy is finally dissipated in the smallest eddies. The
present experiment might suggest an analogous process: larger vortices
break up into smaller ones which may finally be reduced into rotons.
This causes an energy flow from the vortices to the wall which may be
essential ly determined by the way the rotons exchange energy (or momentum)
with the wall. The energy dissipation might then be dominated by the
transport properties of the phonon-roton gas, possibly in a narrow
boundary with the wall. If this picture has some truth, it is evident
that there should be a close connection between the dissipative pressure
and the viscosity of the normal fluid.

It will be clear that until our knowledge about turbulently flowing
superfluid is substantially enlarged, these statements describing the

possible mechanisms of an and FS, are only speculations.
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CHAPTER 111

FLOW WITH LA AND vs UNEQUAL ZERO

Synopsis
Flowing liquid He || through a capillary is studied, for types of flow

in which the velocities un and vs, of the normal fluid and the superfluid
respectively, can be varied independently. A survey of the measurements
from all types of flow is given in diagrams of the (vn, vs) plane, in
which curves of constant pSAT, pAu, and AP are given. These diagrams
include curves for isothermal flow (AT = 0), flow without a chemical-
potential difference (A = 0), and isobaric flow (AP = 0). The results
indicate that the normal fluid is moving laminarly both in subcritical
and supercritical flow. In supercritical flow apart of the mutual friction
force an, a frictional force FS, connected with the superfluid, is
observed. A general relation between the ratio an/Fs and the relative
velocity (vn = vs) is found. This relation might give an indication of

a slip of the vortices relative to the superfluid.

1. Introduction

In a preceding chapter 1), referred to as |, the two versions a) and b)
of the apparatus were described, in which the superfluid and normal
component can be forced to flow simultaneously through a capillary, with
independently adjustable velocities. A brief description of these devices
can be given as follows. A closed circuit, partially filled with liquid
helium, consists of a heat exchanger, and thermally insulated: the
capillary, a superleak, an evaporator and a gaslink. Evaporation of liquid
helium in the tube above the capillary and condensation of the helium gas
in the heat exchanger results in a superfluid flow through the capillary.
By superimposing this flow on a normal heat conduction flow, combinations
of a superfluid and a normal fluid flow, either in the same or in opposite
directions, can be produced. The quoted values of the velocities vs and vn’

of the superfluid and normal fluid respectively, are averages over the

capillary. Two stainless-steel capillaries of 2.94 x 10_2cm and 0.95 x 10-2
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cm inner diameter, both 14.6 cm long, have been studied.

In order to investigate the forces acting on and between the two fluids,
various types of flow have been studied. The chemical-potential drop pAu
and the temperature difference AT over the capillary are determined as
functions of the mean superfluid and normal fluid velocities (vs, vn).
From these quantities the pressure drop AP over the capillary is calculated,
using the integrated thermodynamic identity (neglecting velocity contri-

butions), which for small values of AT and Au, can be written as,
AP = pSAT + pAu.

If pAy  is not identically zero, the flow shall be called turbulent
(supercritical).

In order to describe the experimental results for stationary flow in a
capillary of length 7, two quantities an and F; are defined from the
experimental results by:

Ay

g an = F; > (1.2)
[/

Ay AT

0=-pnl—'pSZ—+an‘Fn. (1'3)

Fn is the normal viscous force. All the terms in these equations have the
dimension of a force per unit volume. The fountain pressure pSAT and the
normal fluid velocity v, are calculated from the mean value of the entropy

-

S and the temperature 7T in the capillary. The force F i corresponds with

a mutual friction force as introduced by Gorter and Mellink 3), if the

eqs. (1.2) and (1.3) are interpreted as the equations of motion for
stationary flow.

From the eqs. (1.1) = (1.3), it follows that,
AP = - 1F =~ IP' . (1.4)
n s

The total pressure drop AP is composed of two contributions: a contribution
ZFn from the moving normal fluid, and a contribution ZF; connected with

the superfluid flow. The first contribution, ZFn, corresponds with a
pressure drop, together with a kinetic-energy correction, as observed in

experiments with ordinary viscous fluids. From section 1-3-3 it follows
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that this latter correction is negligible in the experiments described in
the present chapter. In the case of laminar flow of the normal fluid, ZFn
is therefore found to be entirely determined by Poiseuille's law.

In chapter |, the pressure drop AP, obtained from the experiments with
Py = 0, could be described completely with Poiseuille's law as well in sub-

AR

as in supercritical flow. In our opinion this indicates that = is
negligible in this case and that the normal fluid is flowing laminarly
when vs = 0, even in supercritical flow.

In view of the experimental results of the present chapter, it will be
shown that it is plausible to assume that the normal fluid also flows
laminarly in types of flow with Vg unequal to zero. Consequently ZFn will
be calculated from,

n.L
APy(n) = -~ 82— = - IF . (1.5)

2 n
r

The second contribution to the total pressure drop AP, ZF;, equals the
main term LFS describing the "superfluid friction'" in the capillary only,
together with a kinetic-energy correction stvz originating from the exits
of the capillary. In section 1-3-3, a was estimated to be approximately
equal to 1.0. Assuming that the normal fluid flows laminarly, the pressure
drop corresponding with ZFS can be calculated from the experimental results

by the relation:
S =P+ 1.0 p_v (1.6)
B s s

In the second chapter 2) (referred to as Il) the pressure drop
corresponding with ZFS, as derived from the experiments with turbulent
superfluid flow, was discussed as describing a loss of momentum from the
superfluid to the wall. This loss of momentum is probably connected with
the generation and decay of vortex lines, or probably more correct de formed

vortex rings, in the turbulent superfluid.

In the experiments reported in the present chapter, 111, ZFS and LFn

both give an appreciable contribution to AP.

In order to obtain velocity combinations (vn, vs) in the regions of
the velocity diagram between the lines D= 0 and P 0, the following
types of flow are studied:

a) flow with constant normal fluid velocity 2 and varying superfluid




velocity Vi
flow with varying 3 and Vs keeping their ratio vn/uS constant (in this
manner e.g. flow without a relative velocity, vr = vn = vs = 0, can be
produced) ;
flow with a practically constant mass transport and varying v (at Tow
temperatures, where P >> Py this nearly equals flow with constant Ve
and varying vn).

These types of runs are most conveniently realised with the present

experimental set-up (see section 1-2-2).

Every velocity combination (un, vs) can be obtained with several types

of flow. The cross-checks from different runs, even when carried out on
different days, show good reproducibility, indicating that only the
magnitudes and directions of the velocities are significant.

Both versions of the apparatus, a) and b), were described in detail in
I. The flow through the wide capillary has been studied in both arrangements.
Through the narrow one only a limited number of runs with v and v having
the same sign are carried out. Since a changing level difference in the
apparatus causes a correction to the velocities, in the narrow capillary
very long times (longer than one hour) were found to be required for
attaining stationary flow.

It should be noted that what is called the counterflow region in this
chapter, covers the whole velocity region in which the superfluid and
normal component move in opposite directions, contrary to the conventional
use of the word ''counterflow' which was restricted to no net mass flow
(pv = 0) only.

Some preliminary results of the present experiments have already been
mbﬁsmdb)

2. Experimental results

2=1. Flow with v, kept constant. In fig. 1 the results for the wide
capillary from two runs with Un is constant are showh at 7 = 1.35 K. In
fig. la the data for a pure superfluid flow are plotted as a function of
the superfluid velocity us. In fig. 1b, the results for a run with vn kept

constant at 3.8 cm/s and varying v, are plotted. The left side in both
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Fig. 1
The fountain pressure pSAT, the chemical-potential
drop phu, and the pressure drop AP over the
wide capillary as functions of v, in two runs with

v kept constant; la: B= 0; 1b: V= 3.8 em/s.
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4=294x10°cm

it

a rjﬁ{s

figures illustrates the results for the counterflow region.

In a possible subcritical region pAu is identically zero. Within the
measuring accuracy the observed values of pAu are equal to zero in the
region - 1.0 cm/s < Ve S 1.0 cm/s for pure superfluid flow, and in the
region = 0.5 cm/s < vs < 0.5 cm/s for flow with un = 3.8 cm/s. In these
subcritical regions AP equals the pressure drop calculated from
Poiseuille's law: ZFS remaining zero. In the supercritical parts, both
ZFS and pAu are unequal to zero. Though in fig. 1b the subcritical region
of the run with vn = 3.8 cm/s seems to be more extended than mentioned
above, pAu may be small, but is certainly not zero outside the quoted
region. The limited extent of the subcritical region is more evident in

the AP curve, where AP clearly deviates from AFP(n) outside this region.




Fig. 2
The fountain pressure pSAT as
a function of vy for various
runs with v, kept constant.
Shaded area: osceillatory

region (1L = 14.6 cm).

In the counterflow region of fig. 1b the line of AP rises if the
magnitude of the velocity v is increased, indicating that ZFS and LFn
have opposite signs in the counterflow region. These two contributions
to the total pressure drop may even balance each other: as is evident
from fig. 1b at Do 3.8 cm/s and s L.4 cm/s the flow is isobaric,
i.e. a pressure gradient is absent.

On the right side of fig. 1b, at A 3.8 cm/s and Ci% 5.0 cm/s, one
point from an isothermal flow (AT = 0) is found. Contrary to the usual

5-8)

experiments on isothermal flow, in which only the values of the mean

velocity v = (psuS + pnun)/o are known, from the present experiment the

values of vs and vn, at AT = 0, can be obtained separately.

In fig. 2, the observed fountain pressure pSAT over the wide capillary,
is shown as a function of the superfluid velocity Ves for various values
of the constant velocity of the normal fluid v (7' = 1.20 K). Within the
measuring accuracy pSAT equals the calculated Poiseuille pressure drop at
Desdt 0. In the shaded area no stationary flow can be obtained, since AT
oscillates between its value at o 0 and a higher value. These
oscillations will be discussed in section 3-3. In the counterflow region

no osciliations have been observed.
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In fig. 3, the chemical-potential drop pAu is shown as a function of Vs

at constant v _, for the same runs as reported in fig. 2. According to

eq.(1.2), p b = - Zan - ZFé. Therefore a point with pAu = 0 (e.g. at

Un = 7.5 cm/s and vs = 5.3 cm/s ), represents a flow with balancing an
and F;. At such a velocity combination, with Un - Us = 2 cm/s, the super-
fluid is accelerated by the normal fluid via the mutual friction force
an, and decelerated by Fs which apparently is connected with the creation
of vortices in the superfluid. In general an, in supercritical flow,
decelerates the superfluid as long as AR and accelerates the super-
fluid at vs <V, while the superfluid is decelerated by FS at all values

of V- The sign and magnitude of pAy depends on the magnitudes and signs

Fig., 8
The chemical-potential drop pbu
as a funetion of v, for various
rung with v kept constant.
Shaded area: oscillatory region
(L = 14.6 cm).
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In the shaded part of fig. 3, the oscillations prevent the occurrence
of a stationary flow, and pAu oscillates between zero and a positive value
(see section 3-3).

No correction to v has been applied, to account for a possible film
transfer (see section 1-3-2), since the magnitude of the film correction
is uncertain at values of pAp approximately equal to zero (see section

2-3)%
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2-2. Flow with the ratio ,;'n/vS kept constant. An illustration of the
results for a run with P in the wide capillary, is shown in fig. 4
(7 = 1.20 K). In this series, the values of v_ are corrected for the film

s
transfer (0.2 cm/s). With this type of flow pSAT and pAp are smaller than

the pressure drop AP, since they are found to have the same sign. The

dotted line in fig. 4 represents the Poiseuille pressure drop L?p(n)
(eq.(1.5)). With the normal fluid moving laminarly an = - APP(n). From
Fig. 4

Experimental points for the fountain
preseure pSAT, the chemical-potential
drop pbu, and the pressure drop AP
over the wide eapillary as functions

of the velocity for flow with DL =D

T

The dotted line (AP, (n)) and the 1501 3 o4
P dyne d4=294 x1Ocm, =14 .6cm
dashed line (APP(n) + APB(s)) S 7 T=120K: Vo=V
. / )
are caleulated (see text). _ /0
AP (n)+ AP (%) /
100 /

50

eq.(1.3) it follows that, at low temperatures where onAu = 0, the fountain
pressure pSAT nearly equals - LFn, if an = 0. As can be seen from fig. 4,
the observed values of pSAT lie close to the APP(n) line. Therefore the
same conclusion that was drawn in chapter | for flow with ey 0, that
the normal fluid moves laminarly even in supercritical flow, applies for
flow with v = v _.

n s
Turning now to the second part of AP one has to remember that in chapter
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Il (pure superfluid flow) the results for ZFs for the wide capillary
appeared to be comparable with - 0.5 APB(s). This AFB(S) was calculated
from the modified Blasius rule for turbulent flow,

p3nv7 ) &

APy(s) = - 0.158 1 LB 4 (2.1)

a5

The results for LFS, from runs with v, =V, at temperatures ranging from
1.2 K to 1.5 K, however, are comparable with - APB(S). The dashed line in
fig. 4 represents APP(n) B AFB(SL which corresponds well with the
experimental data for AP (the kinetic-energy correction contributes only
=3 % to AP). The increase of ZFS from = - 0.5 APB(s) at v =0, to

& - APB(S) at v = v_will be described in the following section, where
the results for types of flow with pv = constant will be given.

Since the results from measuring runs with vn/uS kept constant at
0.90 - 1.20 did not show any new aspects, these results will not be
presented in this section, but are only given in the general surveys in
section 3-1.

The small heat conductance of the superleak was measured only after
the measurements with the apparatus type a) had been completed. As was
already discussed in section 1-3-1, the small heat leak leads to a
correction to v, This correction disturbs the originally adjusted
equality of v, and v For the narrow capillary this correction is
appreciable, and vn is no longer approximately equal to v, - Therefore,
the results for these runs with the narrow capillary are omitted. The

general picture, however, appears to be the same in both capillaries.

2-3. Flow with psvs + ann kept constant.

2-3-1. Experimental results for AT and Au. An illustration of the results

for three series with pv = psvs b constant, is given in fig. 5 (7 = 1.20
»

K, wide capillary). g is the value of VSO p o 0. At low temperatures

’

(where PRso8 pn), the superfluid velocity v, is almost constant with this

type of flow: at T = 1.20 K, an increase of v, of 16.5 cm/s corresponds

to a decrease of Us of 0.5 cm/s. In order to illustrate in detail the

intersections of the lines of pSAT and pAu with the horizontal axis, only




Fig. &
pSAT and phy as functions of
v, for various runs with

pv = constant (L = 14.6 cm).

o PSAT
a PAlL
O

a part of these three series is plotted in fig. 5. The dashed line in
fig. 5 represents the Poiseuille pressure drop of the normal fluid Afp(n)

as calculated from eq.(1.5). We should like to remark that at the inter-

sections of the curves for pSAT with APP(n) one finds v, =V, as was

also found in section 2-2, and which indicates that the normal fluid is
moving laminarly at these velocity combinations.

In section 1-3-2 a possible correction to Us’ of 0.2 - 0.3 em/s, to
account for the film transfer has been discussed. This correction should
decrease the calculated . if Ay < 0 and increase S if &y > 0. Therefore,
one might expect v, to change with = 0.5 cm/s, if during a measuring run
the sign of Ay changes. However, in fig. 5 there is no clear indication
of such an abrupt change of Vg It might be possible that the film
transfer rate changes much more gradually through the point with Ay =
Because of this uncertainty about the magnitude of a possible film
correction to Ds’ no such a correction has been applied in this section.

The results from the measuring runs with pp = constant at 7 = 1,35 K
show the same pattern as at 7 = 1.20 K.

With the narrow capillary, only a few runs, all at different temperatures,

have been studied. This limited number of data roughly shows the same
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pattern as observed with the wide capillary.

2-3-2. Mutual frietion. In fig. 6 the mutual friction term Egny

calculated from the experimental results with eq.(1.3), is plotted as a

function of (vn - us) for various series with pv = constant. The circles

on the horizontal axis represent subcritical flow with pv = 0. As was

reported already in section 1-4-2, turbulent flow with pv = 0 was limited

to the high velocity region, in which an appeared to be proportional to
the cube of the relative velocity. As can be seen in fig. 6, IF

“sn
approximately symmetrical around the line kel i 0, for a constant

is

value of us.

Fig. 6 A =i E f——y——rpy—y
£ A ‘ £ cme| ° S
The mutual friction U as a aook °° T=120K
sn e [ T 9=294x % 1
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°
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lFSh & vl
Py o"".'-
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On the right side of fig. 6, a part of the measuring run with
v, o= 1.8 cm/s, is missing. At values of 2 cm/s < (un - us) < 9 cm/s,

oscillations prevented the determination of stationary values of pSAT and

phu. At values of vs = exceeding = 2.5 cm/s no oscillations have been
’
observed.

o

The results for e shown in fig. 6, together with the results presented
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in section 2-2, indicate that at v =7v : F =0 and F_ = - AP_(n).
n sn n P
Bearing in mind that pSAT equals AFP(n) at v_ = v_, another possibility
(e.qg. with F. # 0 and Wb APP(n)) is rather unlikely.
The functional dependence of an on the velocities appears to be
complicated. Since an equals zero at vn = us, it probably contains a
factor (vs - un)n. However, the results as presented in fig. 6 can not be

described by the simple cubic dependence of an on the relative velocity

as proposed by Gorter and Mellink 3). In the vicinity of vn = Us the

relation of an and (Un - US) appears to be linear. A cubic dependence
of an on (vn - vs) is only found at values of the relative velocity
larger than 8 cm/s. At high values of the relative velocity all curves

probably coincide.

Fig. 7
The "superfluid friction" ZFS as a funetion of (Un = vs)
for various runs with ov = constant (wide cap. )
(1 = 14.6 cem). For the significance of

the error bars see text.

B8O T | T T
dynq‘ |
em?| T=120K | PV=s constant = Pg Vg o 4

I d=294 x10cm L Vg o (cmis) |
60
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2-3-3. The pressure drop corresponding with ZFS. In fig. 7 the "super-
fluid friction" ZFS, for the wide capillary, is shown as a function of
the relative velocity, for five series with pv = constant. These data
are obtained from the same runs as presented in the figs. 5 and 6. As
was reported already in section |-4, ZFS is negligible for both sub-
critical and supercritical flow with Ry 0. The "superfluid friction"
ZFS, calculated from the results of runs with vs,o > 1.5 cm/s, shows the
following pattern. On the left side of flgs7; ZFS appears to depend on
us only. In the vicinity of vn = vs, lFS increases till it reaches a
maximum at MRS CERL 2 cm/s. At these velocity combinations the chemical-
potential drop pAp equals zero (see fig. 5). At values of (un - us) >
2 cm/s, the results for lFs for runs for low values of vs,differ from
those at a high value of us. At low values of Vgs @ new horizontal part
indicates that LFS is again independent of v At higher values of Vs
ZFS decreases with increasing V- An extrapolation of the curves in
fig. 7 to higher values of (vn - us), suggests that in the high velocity
region all curves possibly coincide and finally tend to zero.

The few data we obtained at values of (vn - us) < = 7 cm/s are not
plotted in fig. 7, since these data for ZFS are very inaccurate. Probably
ZFS increases again at values of (un - vs) = - 12 em/s, however, the

experimental results are not very conclusive.

The accuracy of the data for ZFS, plotted in fig. 7, is = 3 dyne/cmz.

This accuracy is estimated assuming that the value of the entropy S is
exactly known as a function of temperature. The equilibrium temperature
of the capillary is known within 2 x 10-3 K, which corresponds in the
experiment with an uncertainty in S of 1 %. The uncertainty due to this
possible error in S is indicated with the error bars in some of the
plotted data in fig. 7. These error bars are large at high values of
(Un - Us), while they are negligible at (un - vs) = = 2 cm/s, where AT
equals zero. Since these uncertainties do not significantly change the
pattern shown in fig. 7, the puzzling behaviour of LFS seems to be a
genuine trick of nature.

As was reported already in section |1-2-2, the pressure drop corresponding
with ZFS for a turbulent pure superfluid flow, resembles the Blasius
pressure drop observed in turbulent flow of ordinary liquids. A still

stranger similarity with ordinary hydrodynamics seems to show up in the
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type of flow expounded in the present section. Similar to the modi fied
Blasius pressure drop APB(s) (see eq.(2.1)), a modified Poiseuille

pressure drop APP(S) can be defined by:
(2.2)

The values of LFS at vn - vs = 2 cm/s, as calculated from the experiments,
agree well with the values of - AFP(s) and - AFB(S), whichever is the
greatest (v is the value of v_ at v_ = 0):

5,0 s n
at v = 6.4 cm/s;: - AFP(S) = 59 dyne/cm” and AP 70 dyne/cm”,

5,0
at = 5.0 cm/s: - AFP(S) = 46 dyne/cm” and - AP 45 dyne/cm”,

v
$,0

at v = 3.0 cm/s: - AFP(S) = 27 dyne/cm” and z 18 dyne/cm”,

AT = 1.8 cm/s: - AFP(s) = 13 dyne/cm” and - AP 5 dyne/cm
’

This resembles very much to the results in ordinary hydrodynamics, in
which one may find a laminar (Poiseuille) and a turbulent (Blasius) type
of flow, while the stable flow corresponds with the largest pressure

gradient of the two.

Fig. 8
The "superfluid friction" EFS as a
function of (v_ = v ) for a run
v g
with pv = constant (narrow cap.).

PV constants P, Ve o -

Vsg=46cm)s

As illustrated in fig. 8, the same pattern of ZFS as a function of

(vn - vs) is observed in thé narrow capillary (pAu equals zero at

TR 2 cm/s). In this run at 7 = 1.35 K, v, decreases from 4.6 cm/s

at v_ = 0 to 3.9 cm/s at v - 12.6 cm/s. This probably explains the slight
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decrease of ZFS at values of (v__l

= US) exceeding 3.5 cm/s. The slope
of ZF: at these values approximately equals the slope of the dashed line

representing - AP (s) calculated from eq.(2.2).

P
Summarizing the results for ZFS for flow with pv = constant for both

capillaries:

1) ZFS increases in the vicinity of vn = vs with increasing Un;

2) ZFS no longer increases at IR 2 cm/s, where Ay = 0;

3) at low values of Us,o’ where APB(S) < APP(S), ZFS levels off at a

value that corresponds with a modified Poiseuille law (eq.(2.2));

4) at high values of Ve o where APP(s) < APB(S), ZFS reaches a maximum

value that corresponds with a modified Blasius rule (eq.(2.1));

5) at values of Ds,o larger than 3 cm/s, ZFS is found to decrease at the
highest values of (vn - vs) that have been observed. Possibly all
curves of ZFS coincide at still higher values of (vn - vs).

Until now this behaviour of LFS. and its possibly unexpected resemblance

with the results for an ordinary viscous fluid, are not yet understood.

3. Survey of the results from all types of flow

3-1. The temperature, chemical-potential and pressure drops. From the
intersections of the curves of pSAT or pAu, as a function of the relevant
velocity, with the abscisses, the velocity values (vn, vs) can be deduced
at which flow with AT = 0 or Ay = 0 takes place (see e.g. the figs. 2,3,
and 5). These values of the velocities 2 and Vg for different
temperatures are collected in fig. 9 (wide capillary). The points above
the line vn = us, represent isothermal flow. The velocity combinations
for which Ay = 0, are those below the line Vo = In the shaded area,
Ay is identically zero (subcritical flow). The limits of this sub-
critical region are not very well defined.

As can be concluded from eq.(1.2), Au equals zero if an and F; balance
each other. At low temperatures, where Pa is small, the condition for
isothermal flow appears from eq.(1.3) to be a balancing of an and Fn.

For the wide capillary, the curves of (vn. vs) at which isothermal
flow or flow with Ay = 0 has been observed, are found to be temperature

independent in the velocity region studied. For both capillaries the
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Fig. 8
Isothermal flow (upper curve) and flow without
a chemical-potential drop (lower curve) in the
veloetty plane (vn, vs). In the shaded region

Ap 28 identically zero (1L = 14.6 em).

10 E Ty Y
*£
= T(K) d=2.94 x10°cm Pl

lines in the (vn, vs) plane with Ay = 0 coincide. For the narrow capillary
the isotherm in the (vn, us) plane was found to lie approximately 2 cm/s
above the line for the wide capillary shown in fig. 9.

An extrapolation of the data for AT = 0 shown in fig. 9, suggests that
the isotherm intersects the axis Ui 0 at the critical velocity Us,c
(= 1.0 cm/s). For the narrow capillary vs,c can be estimated to be
= 3.0 cm/s (no film corrections have been applied).

If one plots grad P for the isothermal measuring points as a function
of the mean velocity v = (osas + onvn)/o, the curves show a similar
behaviour as those found in other experiments on isothermal flow (see
e.g. Atkins 5)).

In the figures 10 and 11 curves of constant pSAT and phAu respectively,

are drawn in the (Un, ys) plane (7 = 1.20 K). Because of the symmetry
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Fig. 10
Lines of constant pSAT in the (un, vs) plane.

Dotted area: oscillatory region (1 = 14.6 cm).

O PSAT= constant _|
Q 0
N

d=294 x10°cm

i 1
cmis 16

of the capillary, identical curves are drawn for (vn, vs) and (- Vo= vs)
in the figs. 10 and 11. The quoted values of pSAT and pAy in the figs. 10
and 11 are in dyne/cmz.

In order to illustrate the pattern in the vicinity of the curves with
AT = 0 or Ay = 0, curves for 10, 25, 50, and 150 dyne/cm2 are given in
addition to the curves for multiple values of 100 dyne/cmz.

In the lightly dotted bulb in both figs. oscillations prevent the
observation of stationary flow, while the shaded area around the absciss
in fig. 11 indicates the velocity region at which subcritical flow takes
place. In this subcritical region pSAT equals the Poiseuille pressure
drop caused by the moving normal fluid, as is demonstrated by the inter-
sections of the curves of pSAT = 10, 25, and 50 dyne/cm2 with the axis

5

At values of Un > 13 cm/s, a flow with vs = 0 may be subcritical as

well as supercritical (see section I-4). For reasons of simplicity only

the results for turbulent flow at these high values of v _are used in the




77

Fig. 11
Iines of constant pAp in the (vn, vS) plane.
Dotted bulb: oscillatory region. In the shaded

area My is identically zero (1 = 14.6 em).
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figs. 10 and 11. The results for turbulent flow with ysa 0 fit into the
pattern given by flow with v, #0.
400, 300 etc. are

interrupted since no turbulent flow has been observed in the region around

At values of = 13 cm/s, the curves for pAy =

the line s 0. These interruptions in fig. 11 are more extensive than
the subcritical region, since, unfortunately, no measuring runs slightly
above and below the subcritical region have been carried out, and an
extrapolation of the curves to the limits of the subcritical region is
doubtful. These remarks also apply to the interrupted curves in fig. 10.
The smoothed curves in the (vn, us) velocity diagram, for constant
values of the uncorrected pressure drop AP = pSAT + pAu, are shown in
12 (7 =

region. The vertical dashed lines indicate the pattern that would have

fig. 1.20 K). Again the dotted area indicates the oscillatory
been observed if only APP(n), the Poiseuille pressure drop of the normal
fluid, had been present i.e. if ZJ; had been zero. At vs =0, lF; is

negligible and pSAT = APP(n) (see section |=4).
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A remarkable result, illustrated in fig. 12, is the possibility of
isobaric flow. In our opinion this is the first experiment in which the
existence of flow without a pressure drop is observed:

This phenomenon is clearly connected.with the peculiar two-fluid

composition of liquid He II.

Fig. 12
Lines of constant AP in the (ﬂn, vs) plane.

Dotted avea: oscillatory region (1L = 14.6 cm).

T T

: AP =constant

Contrary to the results of other experiments in the counterflow

region 9,10) (see section I-4), in the present study the directions of

the forces FS and Fn’ are found to be exclusively opposite to the direction
of the velocity of the corresponding fluid, since both forces extract
momentum from the flow of the corresponding components. Therefore the
pressure drops in the counterflow region, concluded from the present
experiment, are smaller than the value of APP(n) caused by the moving
normal fluid alone.

At T = 1.35 K, roughly the same pattern as shown in the figs. 10-12
for T = 1.20 K, has beeﬁ observed. With the narrow capillary no systematic

investigations, at a fixed temperature, have been performed.
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3-2. Connection between an and Fs. In section 11-2-4, a linear relation
between lFS and Zan/(US = un), for a pure superfluid flow, was reported.
This relation suggested that both an and FS are proportional to L, the
total length of vortex line per unit volume. According to the theory of

11,12)

Hall and Vinen , the mutual friction force an should be proportional

to L multiplied by (uS - un),

B aL(uS - un), (3.1)

with a a factor which did not depend on the velocities. The linear relation
between Zan/(vS S Dn) and ZFS suggested that the dependence of FS on L
could best be described by,

F.=8L, (3.2)

with 8 an unspecified factor independent of V- If the eqs.(3.1) and (3.2)
hold, the ratio of an and FS does not explicitly depend on L:
FoolBg = (a/8)(v, - v ). (3.3)

From the data plotted in fig. 13 of chapter 11, (a/B8) could be deduced.

e . s
= ! Fig. 13
8- o 1
‘ b\%&R T=1.20K, Datq for F__ /F_as a
d=294x10cm sn s
S =14.6cm funetion of (vn - us) from

VArtous measuring runs.

0 Vh=O
PV=PV o=constant

a Voo=18cm/s

-8F 5 Vso0=30 ,, 1
v Vs 0=50 ,,

x Veo=64 ,,

MK e

20 ? SRV -
-4 O Vp-Vs 4
—_——

o
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As can be seen from fig. 13 of the present chapter, the ratio an/["S
for other types of flow still only depends on (z)n = vs), but shows a more
complicated behaviour (the plotted data are for runs with v and Vg
having the same sign). The behaviour of the ratio an/["S as a function
of (un = vs) in the velocity region where vn i indicates that one
or more of the simple assumptions made in chapter |l do not hold for
all velocity combinations. Until now no unambiguous understanding of the
results shown in fig. 13 has been reached. However, a rather speculative

explanation might be the following.

Originally Hall and Vinen m suggested that an should depend on L as,

A Y[‘(UL - vn), (3.4)

in which vy is the vortex line velocity and y is independent of the

velocities. Using the unproved assumption that vL and Us are equal,

Vinen 12)

obtained relation (3.1). The possibility that (UL - vs) is
non-zero will be considered in the following. We still assume eq.(3.2)
holding for all types of flow. The ratio an/FS, as obtained from the

present experiments, can still be described by
s=v &, v, (3.5)

with now ¢ in general a function of (un - vs) which becomes a constant,
however, in the region where v > V. From the relations (3.2), (3.4) and
(3.5) it follows that,

L ST (w, - v)s (3.6)

with € = (y8/y) also in general a function of (vn - us), but constant
for vs > un. It is, however, not possible to obtain the values of ¢ from
the experimental results, since the ratio y/f is unknown. If the vortices
should move with the same velocity as the superfluid in the velocity
region where B ? Vo € should equal 1 and the value of y/g can be derived
immediately. Of one then assumes this value of v/B also to hold for flow
with B 2 us, the relative velocity of the vortices with respect to the
superfluid for these types of flow can be calculated.

The same procedure can be followed with other values of . In fig. 14

curves for ¢ = ¥ and € = 1 are plotted. For a comparison the fully drawn
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line with v = (e = 0) is also given. As can be seen from fig. 14

s 'the
present analysis indicates that for flow with v

> Us’ the vortices show

a tendency to move more with the normal fluid than with the superfluid.
Both for ¢ = ¥ and € = 1

the curves for vL e us sharply decrease for

- us) > 8 cm/s. This might be due to an invalidity of
relation (3.2) at high velocities. As was mentioned earlier, F

values of (v
n

= 0 for
turbulent flow with U 0, while the simultaneously non-zero value of

F indicates that yet vortices are present. Since L can not be zero in

that case, relation (3.2) can no longer be valid. Therefore relation (3.2)
might be invalid for all values of (Un = vs) exceeding 8 cm/s, though the
universal curve in fig. 13 still seems to persist.

Since we do not know the value of e, the magnitude of (v - » )
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uncertain. Moreover, the values for (un - us) as plotted in the figs. 13
and 14 are mean values, while the velocities in eq.(3.4) are not averaged.
However, in our opinion the results for an/F5 suggest that a slip of

the vortices relative to the superfluid might play a significant role.

3-3. Oscillations. In the wide capillary oscillations have been observed
in the dotted region of the velocity diagram in the figs.10, 11, and 12.
| f the heaters are adjusted for a certain velocity combination (un, us)
inside this region, no stationary flow results,since the temperature and
chemical-potential drop over the capillary are found to oscillate. The

temperature is observed to oscillate only at the thermometer Tz mounted

between the superleak Sz and the capillary (see fig. la of chapter I).

An illustration of the oscillations of T, is given in fig. 15.

2

Pig. 15
A recorder trace of the temperature oscillation of the

thermometer T, as observed for a flow in the oscillatory region.

0
o

-2 —_ -
T=120K; d=294x10 cm; Vo=7.8cm/s; Vg=1.6cm/s

(aT3)osc

These oscillations show an exactly recurring pattern during more than
one hour. Moreover, the same pattern is observed with runs on different
days. No damping of the oscillations has been found. The oscillation of

the temperature at Tz induces a correction to vn. since the helium in the
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vicinity of I, warms up or cools down, resulting in a smaller or larger

2
v through ‘the capillary respectively. The oscillation of pAu is

obtained from the oscillation of the helium level h3 (see fig. la of

chapter 1), h“ being approximately constant. Since the temperature drop
T‘ - T3 is constant, the level hl also oscillates, causing a correction
to the calculated v, From the observed oscillations of T and %, the
oscillations of v, and v, are calculated to be reverse and of the same
order of magnitude. This is contrary to a second-sound oscillation, where
vn >> vs since ps >> P at T = 1.20 K. Therefore the observed oscillations
cannot be regarded as Helmholtz second-sound oscillations between the
volume at T2 f?d the capillary. The observed frequencies, ranging from
0.05 - 0.01 s ', do not agree with the calculated Helmholtz frequency
of 1.5 s-l, while moreover such a Helmholtz oscillation should be very
strongly damped. The frequency of a possible U-tube oscillation should
be 0.15 s,

The observed oscillations are similar to those reported in ordinary

13)

hydrodynamics In the presence of a particular pressure drop over
a tube, the flow of a liquid may oscillate between a laminar and a
turbulent type of flow. In our opinion the analogue of this phenomenon
is present in our oscillatory region: the superfluid flow oscillates
between a subcritical and a supercritical behaviour, producing a varying
AT which in its turn is responsible for the variation of U

The oscillations are illustrated in fig. 16a. In this figure the
extreme values of pAp are shown as a function of the mean value of v,
for a run with pv = constant. The values of pAy are calculated from

the maximum and minimum heights of k., and hb’ which however cannot be

determined very accurately. At valuez of Ve exceeding 10.5 cm/s
stationary flow is present, and the results for this stationary flow
fit with the maxima of pAp for the oscillating measuring points.

In fig. 16b the period v-] of the oscillations is plotted as a function
of the mean value of L These periods are deduced from the recorder
traces for AT and appear to be roughly proportional to the amplitudes
of the oscillations of pAp (compare fig. 16a).

The frequency and the magnitude of the oscillations only depend on

the mean value of vn and not on the mean value of US.

In the narrow capillary, oscillations have been observed in a run with
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pY = p_ X 1.0, for values of > exceeding 6 cm/s. Because of the very
large periods, ranging from 110 s at S 6.6 cm/s up to 600 s at
Yo 11 cm/s, no higher values of v have been studied.

Concluding: in the oscillatory region of the velocity diagram for the
wide capillary, the superfluid flow probably oscillates between a sub-
critical flow with pAp = 0 and a supercritical flow with pAuy > 0. The
maximum values of pAp correspond well with.the data which can be deduced

from an extrapolation of the curves for constant pAp in fig. 11.

4. NRS FLOW

| f the present apparatus is completely filled with liquid helium, a
type of flow can be produced that was studied first by Staas, Taconis
and Van Alphen ]h). In section 2-5 of chapter |, we called this type of
flow NRS flow. In this type of flow only the velocity of the normal

fluid is adjustable, whilé a possible superfluid flow is not externally
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restricted (Non Restricted Superfluid flow). As was explained in chapter
|, the chemical-potential drop always equals zero in this type of flow,
and pSAT = AP. From fig. 11 of the present chapter it is clear that at a
certain value of v there are two possibilities for vS at which the
superfluid flow may adjust itself, keeping in mind the condition that
pAu remains zero. On the one hand v, may be approximately zero. In this
case an NRS flow is subcritical and only the laminarly flowing normal
fluid contributes to AP. On the other hand v, may lie on the solitary
line with pAp = 0 (fig. 11), at which an and F; balance each other. In
that case an NRS flow is composed of a superposition of a laminar normal
fluid flow and a turbulent superfluid flow.

These two possibilities are illustrated in fig. 17: the measuring points
on the lowest line (with a slope of 1.0) represent subcritical flow, the
measuring points lying above this line supercritical flow. During a
measuring run with NRS flow hysteresis may take place: subcritical flow
changes abruptly into supercritical flow. |If turbulence is present, a
following decrease of s down to approximately 2 cm/s is required in

order to obtain again subcritical flow.
4

10 T T T T

dyne
P 1 Fig. 17
The fountain pressure as a
o,
z funetion of v_, observed
T=1.20K je NS
d=294 x10 %cm for NRS flow. The lines are
L=14.6cm calculated (fully dram lines

NRS flow ’ 1 according to Staas et al. ).

aPp(n)
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With turbulent NRS flow (vs R PEEs 2 cm/s, see fig. 11), the interaction
of the normal fluid with the vortices causes a drag on the superfluid.
I f 2 is small ( = 2 cm/s), the vortices probably disappear and a careful
raising of v results again in a subcritical flow.

As was mentioned already NRS flow was studied first by Staas, Taconis

14)

and Van Alphen . According to these authors their results could be

represented by two relations (the notation differs from that in ref. 14):
n
aPy(n) = = 32 —— 1, (4.1)
d2
p3n v7 14
and AP_(n) = - 0.158 7 | ——= (4.2)
B a5
The eqs. (4.1) and (4.2) describe their subcritical and supercritical
results respectively. In order to interpret their results on supercritical
flow, these authors assume the entire liquid to be turbulent. In fig. 17
the solid lines APP(n) and APB(n) are calculated from the eqs. (4.1) and
(4.2).

From our experiments with a partly filled apparatus, the conclusion can
be drawn that on the line with pAy = 0 in the (un, us) plane (see fig. 11),
the superfluid flows turbulently while the normal fluid flow remains
laminar. The same can be concluded from our results for NRS flow. As can
be seen in fig. 17 our results do not fit the line APB(n). From the
results of flow with pv = constant, it is known that at vn = vs = 2 cm/s,

where Ay = 0, = U?S agrees with APP(S) or AP_(s), whichever is the largest.

B
The same behaviour is present in fig. 17. Assuming that Gy s 2 cm/s
at all values of Vs APP(S) and APB(S) can be calculated from the eqgs.

(2.2) and (2.1). The dotted line in fig. 17 represents the sum of APP(n)

and AFP(S), while the dashed line is given by the sum of APP(n) and

APB(s). The turbulent measuring points fit reasonably well with the
largest calculated pressure drops (the slight deviations at the highest
values of v, can be explained by a kinetic-energy correction from the
superfluid). The results suggest that, in turbulent NRS flow, the normal
fluid flows laminarly even at values of B of the order of 40 cm/s, while
the "superfluid friction" ZFS agrees with APB(S) at high values of v_ and
vs’ and with APP(S) at low values of the velocities. |f one defines a

Reynoldsnumber Rev with the total density, Rev = (pvnd)/un, in the wide
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capillary a velocity of 40 cm/s at 7 = 1.20 K corresponds with a value
of Re  of 10“.
)

The reason for the difference between the results of Staas et al. 14)

and the results from the present experiment is unknown. However, the
results of Staas at low temperatures, with a capillary of d = 0.82 x lo-zcm
(fig. 6 of ref. 14), also indicate a deviation from eq.(4.2) at low

values of Rev. This deviation strongly resembles our results illustrated

in fig. 17, suggesting that with their narrowest capillary deviations

of relation (4.2), similar to our deviations, were present.

5. Conclusion

In the presented experiments the fountain pressure pSAT, the chemical-
potential drop pAu, and the pressure drop AP over a capillary have been
determined as functions of the velocity pair (vn, vs), for various types
of flow through a capillary. Only a limited range of velocities have
been studied, since in general Vg and v did not exceed 10 cm/s and 20 cm/s
respectively. From the results the following conclusions can be drawn.

1) The normal fluid moves laminarly both in subcritical and supercritical
flow. This has been proved for Vo8 0 and Vs D Therefore it is
reasonable to assume that the normal fluid is also flowing laminarly
in other types of flow. The maximum values of v studied in the wide
capillary are: 50 cm/s for subcritical NRS flow, 22 cm/s for sub-
critical flow with v 0, 16 cm/s for supercritical flow with g 0,
and 10 cm/s for flow with REM DS
In supercritical flow the interaction of the superfluid and the normal
fluid can be described with a mutual friction force an. This mutual
friction force is found to be zero if Vs 0.

In supercritical flow with Vg # 0, the pressure drop over the capillary,

AP, is found to be composed of two additional contributions: a

Poiseuille drop from the moving normal fluid and a ''superfluid friction'

ZFS connected with the superfluid flow.

The ratio an/Fs only depends on the relative velocity (vn o vs). In the

velocity region where v is larger than U5y an/Fs is a linear function

of (vn - uS). At velocity combinations with v larger than v, a more
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complicated dependence of an/FS on (Un - vs) appears.
Three special lines in the (vn, vs) plane have to be noted.
On a line slightly above the line gty the flow is observed to be
isothermal (A7 = 0). At these velocity combinations the two friction
forces acting on the normal fluid, i.e. the mutual frictien force an
and the viscous force Fn, balance each other practically. The position
of this line depends on the diameter but not on the temperature.
On a line (vn & vs) = 2 cm/s, flow without a chemical-potential drop
is observed. At these velocity combinations the two forces acting on
the superfluid, an and Fs’ are balancing. The position of this line
does not depend on the diameter or the temperature.
In the counterflow region, a line on which AP = 0 is found. At these
velocity combinations the friction forces Fn and Fs’ connected with
the corresponding fluids, balance each other, giving rise to an
isobaric flow.

Apart from these conclusions the following remarks may be made.

The lines in the (vn, vS) plane on which AT = 0 or Ay = 0, are found to

be temperature independent for 1.20 K € T £ 1.50 K. This result seems to

be surprising, since the mutual friction force F_, at a fixed value of
i 3,11,12)

(vn - vs), is usually observéd to be highly temperature dependent

while Fn only weakly depends on the temperature. However, AT = 0 for

small values of (vn P vs) only, and the usual experiments on an were
carried out at large values of (vn = vs).

The "superfluid friction" LFS apparently describes that part of the
total loss of momentum of the superfluid, (Zan + LFS), which is not
directly transferred to the normal fluid. This loss of momentum is
probably related to the generation and decay of the vortices. ZFS
shows a resemblance to the pressure drops that can be calculated for
~iscous fluids. This remarkable result may possibly be explained by an
intermediate role of the normal excitations. Larger vortices break down
into smaller ones which may finally be reduced into rotons, meaning
that the momentum flux or the pressure drop should depend on the normal
viscosity. In turbulent flow a behaviour of the Blasius type may be
reasonable. However, a Poiseuille-behaviour of the superfluid, as has
been observed (see sections 2-3-3 and 4), is more difficult to understand.

An alternative way of describing the results for Fn and FS may be in
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terms of Reynolds numbers. For the normal fluid two Reynolds numbers may
be of importance, defined with P and p respectively:
pvd
Rev(n) = nrn and
n
As was mentioned already, a laminar behaviour of the normal fluid was
observed even in supercritical flow with us = 0. Because of the limited
level differences in the apparatus, the largest value of 15 that could
be studied for turbulent flow in the wide capillary, was 16 cm/s at
1.20 K, corresponding with Req(n) = 130 and Rev = 3900. In order to

interpret their own results, Staa;, Taconis and Van Alphen 14) did
choose Reu as the relevant Reynolds number and assumed the whole fluid
to be turbulent at values of Rev larger than the critical value 1200.
The present results indicate that in our experiments Rev seems to be
irrelevant. Our results are not in contradiction with Reu(n) as the
relevant Reynolds number. This is what should be expected if the two
fluids behave separately in this aspect.

For the superfluid the experiments indicate that a relevant Reynolds
number might be

osvsd ’

n
n

since a 1.75th power dependence (Blasius) is found for FS (e.g. at

vn = 0). In many cases the analogy with an ordinary viscous fluid is
exact, i.e. the critical Reynolds number equals 1200. However, this

is not always true: in some cases a different critical number has to be
accepted in order to obtain a quantitative agreement. One may perhaps
suppose that the critical Reynolds number depends on e.g. the normal fluid
velocity. Further even with a critical Reynolds number of 1200, measuring

points have been found on the ordinary unstable Blasius branch

(Re (s) < Re (s) , see flow with v =0 and withv =1v ).
v D Cer n n s

From the peculiar relation of an/FS on (Un - US) one might suppose

that v, , the velocity of the vortices, possibly deviates from v_.
L s

Especially with PV @ slip of the vortices relative to the super-

fluid might be present. At M Dl 2 equals V- It should be noted that

L
with this type of flow (vn = vs), frictional forces (Fn and Fs) are still
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acting on the normal fluid (Fn) and on the superfiuid (FS).

A possible entropy production in the flowing helium must be positive.
Therefore one might suppose that an extra term in the equation of motion
of the superfluid should contain a factor (» =-7v) (see e.g. Lhuillier
et al. ]5)). Such a condition should probabl; be 3a|id locally. In the
present experiments only quantities integrated over the capillary can be

vv

obtained. Therefore the integrated force F need not be proportional to
the mean relative velocity (vn - us). The only condition that has to be
satisfied is that the entropy production must be positive. Since an, Fn,

and FS change sign if respectively (vS - vn), v , and v, change sign, the

condition of positive entropy production is indZed fulfilled.

A quantitative comparison of the results from Wiarda and Kramers on the
second-sound attenuation with the results from the present study, is
impossible so long the two-fluid model, with built-in vortices, is not
further developed. The attenuation of second sound is closely connected
with the total energy dissipation in turbulent flow. If two frictional
forces are present (as e.g. Fo and an), these two forces both supply
positive contributions to the attenuation of second sound. A re-analysis

of the results of Wiarda is still in progress.
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Samenvatting

In dit proefschrift worden metingen beschreven, die zijn verricht aan
stromend vloeibaar helium beneden de lambda temperatuur. Verschillende
typen stromingen door een nauw capillair zijn bestudeerd.

In hoofdstuk | wordt het stromingscircuit beschreven. De snelheden van
de superfluide en normale component van vloeibaar helium || kunnen onaf-
hankelijk van elkaar, op van te voren vast te stellen waarden, ingesteld
worden. Zowel stromingen waarbij de twee fluTda dezelfde kant op stromen
als waarbij ze tegen elkaar in stromen zijn onderzocht. Uit het gemeten
temperatuurverschil over het capillair en uit een gemeten hoogteverschil
kunnen de fonteindruk (pSAT), het chemisch potentiaal verschil (pAp) en
het drukverschil (AP) over het capillair bepaald worden. De resultaten
van meetseries waarin de gemiddelde superfluide snelheid (US) ongeveer
nul is, worden in hoofdstuk | beschreven. In hoofdstuk || worden de
resultaten van stromingen waarin de gemiddelde snelheid van het normale
fluTdum (vn) ongeveer nul is gegeven, terwijl in hoofdstuk |Il meetseries
waarin v, en v, beide ongelijk aan nul zijn, behandeld worden. Er werden
twee typen stromingen waargenomen: subcritische stromingen zonder chemisch
potentiaal verschil over het capillair (pAu = 0), die dus voldoen aan de
London ‘relatie, en supercritische (turbulente) stromingen waarin pap Z 0.

De verkregen meetresultaten worden beschreven met behulp van drie
krachten: Fn, an en Fs' De kracht Fn, de visceuze wrijvingskracht,
die op het normale fluTdum werkt, blijkt zowel in sub- als in super-
critische stromingen een laminair gedrag van het normale fluTdum te
beschrijven. De wederkerige wrijvingskracht an beschrijft de wisselwerking
van de twee fluTda in turbulente stromingen. De wrijvingskracht FS, die
alleen op het superfluidum werkt, blijkt een zekere verwantschap te ver-

tonen met de wrijvingskracht, die optreedt in gewone visceuze vloeistoffen.




De resultaten zijn weergegeven in diagrammen in het (vn, US) vliak met
lijnen van constante pSAT, pAu en AP (fig. 10, 11 en 12). Uit deze
diagrammen kan afgeleid worden bij welke snelheidscombinaties (an, QS)
een isotherme stroming (AT = 0) optreedt. In een bepaald gebied van het
(vn, vs) vlak konden geen stationaire stromingen geproduceerd worden,
omdat de ingestelde grootheden bleven oscilleren.

De totale gevonden druk blijkt de som te zijn van een Poiseuille bij-
drage van het laminair stromende normale fluTdum en een bijdrage van het
turbulente superfluTdum. Ook isobare stromingen (AP = 0) zijn mogelijk,
wanneer het superfluidum en het normale fluTdum tegen elkaar in stromen
en de twee bijdragen tot de totale druk AP elkaar compenseren.

Uit de waarnemingen kan afgeleid worden dat het normale fluTdum ook
laminair stroomt, als het superfluTdum turbulent is. In deze experimenten
blijkt turbulentie dus alleen maar een eigenschap van het superfluTdum te
zijn.

Er blijkt een universeel verband te zijn tussen de verhouding an/[-'S en

de relatieve snelheid (vn = vs), hetgeen suggereert dat zowel an als FS

afhangen van de gemiddelde lengte aan wervellijnen per eenheid van volume.
Getracht is een verklaring te vinden voor de relatie van an/t’-’S en
(Un - us), door aan te nemen dat de wervellijnen onder invlioed van het

normale fluTdum ten opzichte van het superfluidum kunnen bewegen.







95

Teneinde te voldoen aan het verzoek van de faculteit der Wiskunde
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doctoraal examen experimentele natuurkunde in 1964.
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Dr. H.C. Kramers. Aanvankelijk assisteerde ik Drs. P.L.J. Cornelissen
bij zijn metingen aan de warmtegeleiding van vloeibaar helium, daarna
werkte ik bij Dr. T.M. Wiarda aan een onderzoek naar de demping van
het tweede geluid. In 1965 begon ik met het onderzoeken van stromings-
verschijnselen in He Il. In oktober 1967 werd een begin gemaakt met de
in dit proefschrift beschreven experimenten.

Sinds 1963 heb ik tevens geassisteerd op het natuurkundig practicum
en vanaf 1968 was ik belast met de leiding van het werkcollege behorende

bij het college Elementaire Statistische Fysica van Dr. H.C. Kramers.

Velen hebben bijgedragen aan het welslagen van het onderzoek in dit
proefschrift vermeld.

Bij het uitvoeren van de experimenten heb ik achtereenvolgens samen=
gewerkt met Drs. R.J. Kolderman, Drs. J.J. Giezen, Drs. W.J.P. de Voogt,
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werden verzorgd door de heren T. Nieboer en J. van den Berg, terwijl de
heer J.W. Groenewold verscheidene onderdelen vervaardigde. De tekeningen
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Dr. R.C. Thiel en Dr. H. van Beelen ben ik dank verschuldigd voor hun
kritische opmerkingen en de correctie van de Engelse tekst.
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