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STELLINGEN

In paramagnetische stoffen waarin de wisselwerking voorna-
melijk uit isotrope antiferromagnetische exchange bestaat
geeft bestudering van spin-spin-relaxatietijden in afwezig-
heid van een constant magneetveld een duidelijker inzicht
in het kritisch gedrag boven het Néelpunt dan de bepaling
van paramagnetische resonantie lijnbreedtes in velden die
klein zijn ten opzichte van de interactie.

Dit proefschrift, hoofdstuk 7

De breedte van de verboden resonantielijnen, die worden ge-
meten in de configuratie waarbij een sterk constant veld
evenwijdig aan het wisselveld is aangebracht, in stoffen
waarin de wisselwerking niet voornamelijk seculair is, wordt
door het seculaire deel van de wisselwerking bepaald.

Dit proefschrift, § 6.36.

De huidige beschrijving van Kronig-Bouwkamp relaxatie in het
in stelling 2a aangeduide geval laat geen zinvolle confron-
tatie met het experiment toe.

Dit proefschrift, appendix K.

Bij de beschrijving van paramagnetische relaxatie in stoffen
met voornamelijk seculaire wisselwerking kunnen veronderstel-
lingen omtrent de vorm van de lijnen, waaruit het geheugen-
spectrum is opgebouwd, in vele gevallen worden vermeden.

Dit proefschrift, hoofdstuk 8.

De bewering van Mori, dat de geheugenfunctie (integraalkern,
"damping function") in tegenstelling tot de relaxatiefunctie,
geen bijdrage van een langzaam proces bevat, is in haar
algemeenheid onjuist,

Mori, H., Prog.Th.Phys. 33 (1965) 423
Dit proefschrift, § 3.3 Second example.

(hierin dient de laatste formule te luiden: % = :—a + %— )
1 2




Het gebruik van het sprongpunt van lood als ijktemperatuur
verdient groter bekendheid onder experimentatoren die
werkzaam zijn in het temperatuur interval 4 K tot 14 K,

N.B.S. Special Publication 260-44,

Het valt te verwachten, dat de spin-spin absorptie beho-
rende bij enkelvoudige relaxatie in stoffen met voorname-
lijk seculaire wisselwerking, voor frequenties ver beneden
de omgekeerde relaxatietijd, in goede benadering evenredig
is met x2, . Ter aanvulling van de tweede stelling uit
Locher's® proefschrift kan derhalve worden opgemerkt, dat
Shaposhnikov's formule voor een grote klasse van stoffen
wel degelijk voor de bepaling van de grootheid

1 =

= 2 et
b/C = HS ( o 1)

mag worden gebruikt.

Shaposhnikov, I.G., Zh.eksp.teor. Fiz.(U.S.S.R.)18 (1948) 533

Ten minste één der benaderende uitdrukkingen, die Strombotne
en Hahn geven voor de sporen K3, K] (2) en K (3), is onbe-
trouwbaar. v

Strombotne, R.L. en Hahn, E.L., Phys.Rev. 133A (1964) 1629.

Ten onrechte passen Fulinski en Kramarczyk de middelwaarde-
stelling toe op een tetrade (d.i. eem n X n X n X n matrix).

Fulinski, A. en Kramarczyk, W.J., Physica 39 (1968) 575.

28
Ter berekening van Tr(SZ)n = z (k - S)n voor één ion met
k=0
spin S kan men gebruik maken van de recursieformule
- n n+l n+1 ot (n+1) N
(n+1) J (k+a)=@+1+a)" -a" - 7§ 7 S(k+a)d, |
k=0 q=o k=0
waarin 0° = 1, a reeel is en k, q, n en N geheel zijn.

10.De wijze, waarop in dit proefschrift de figuren ten opzichte van

de tekst zijn geplaatst heeft onmiskenbare voordelen.

Bradshaw, J. et al., New Scientist 54 (1972) 628.

e

4

w i v ot AN,
f.'“,;.?r.f‘«-‘;j' .

e

i)

Y

L

o
atoe b,

&
. =

<

3

s
" '.



11, De standaardinrichting van kabels, bestemd voor signaaluit-

wisseling met een bandopname-apparaat voor huiselijk gebruik,
houdt een nodeloze beperking in van hun toepassingsmogelijk-
heden.

DIN 41524,

. De op asfaltwegen gebruikelijke wijze van liniéring, uit-

sluitend door middel van kleurverschil van het wegdek, is
niet doelmatig.

De derde geldstroom, ten behoeve van wetenschappelijk onder-
zoek in Nederland, zou moeten vloeien via het Ministerie van
Cultuur, Recreatie en Maatschappelijk Werk, en niet via dat
van Sociale Zaken en Volksgezondheid.

Stellingen behorende bij het proefschrift van P.W. Verbeek,

Leiden, 1973.






"It seems a shame", the Walrus said,

"To play them such a trick,

After we've brought them out so far,

And made them trot so quick!"

The Carpenter said nothing but

"The butter's spread too thick!"

The Walrus and the (

L. Caroll, Through

Ter herinnering aan mijn moeder.

Aan mijn vader.
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In all ages man has sought ways to predict a time develcpment.
The cover shovs a most classical method: Aegeus, king of Athens,
inquires at the Delphi oracle about his future.

SURVEY

The dynamics of a quantummechanical many body system, complicated as it may be,
satisfies Schrédinger's equation. At first sight this is a simple statement, but as
the equation is governed by the hamiltonian of the system, which contains all
information about its interactions, internal or with the outer world, it is nearly
all that can or needs to be said. Such compact statements are characteristic for
the work to be given here.

Only few specifications of the hamiltonian will be made, the most important
one being: that it depends on an external vector parameter H. For the magnetic
systems to be studied H stands for the magnetic field.

The reason for choosing magnetic systems as a subject is primarily that in many
magnetic systems all interactions are believed to be known. They therefore provide
a nearly ideal testcase for quantum-statistical theory, such as the Kubo formalism
and its extensions.

For a confrontation of theory and experiment in such systems the frequency
spectrum of linear response to variations of H constitutes a convenient and commonly
used feature. Experimentally this spectrum can be determined through a measurement
of energy absorption in oscillating magnetic fields of various frequencies.
Theoretically it is seen to correspond to the spectrum of a certain correlation
function.

Although this spectrum is generally too complicated to admit a full numerical
evaluation, some characteristic values such as moments or relaxation times may be
calculated and compared with experimental results. When even such a calculation
proves too troublesome, one may look for theoretically predicted relations between
the experimental data.

The present investigations are an extension of Locher's work on spin-spin
effects in the paramagnetic susceptibility of powdered samples at frequencies around

1 GHz ). As his experimental set-up has not essentially been altered before the

end of the measurements described here,the reader will find no chapter on the
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experimental method used. Ref. 26 is a sufficient source of information.

The most important extension made is the decrease of temperature to the region

of critical phenomena (Han. chapter 7). This implied the need for a theoretical

description of relaxation in which the usual high-temperature approximation plays no
role. A review of the theoretical tools available is given in the chapters 1 to &,

A second extension is the exclusive use of single crystals as a measuring sample.
Hepce the anisotropy of the g-tensor is of more importance than it is in powders. The
necessary adaptations for the decomposition of the hamiltonian are given in chapter 5.

Chapter 6 can be considered to contain the most direct continuation of Locher's
work. The copper Tutton salts which have relatively small exchange interaction are
discussed. The main novelty in the theoretical approach of this case is the rule that
the width of the forbidden resonances in parallel fields is almost exclusively
determined by the so-called secular part of the interaction. Experimental results
are given. The moments and intensities obtained (both in zero and in high field)
are confronted with theoretical .values.

Critical phenomena have been observed in Han. The results are discussed in
Chapter 7. Based on an analysis by Tjon a relation is derived between low-field
resonance absorption and zero field relaxation in compounds with strong exchange
interaction. This relation can be specialized to give a translation rule between
EPR linewidths and zero field relaxation-times,that stays valid down to temperatures
near the transition point in antiferromagnetic compounds.

Experimentally this theory is confirmed by the present work. For the first
time in Han an enormous anisotropy has been directly observed, as high-frequency
susceptibility with alternating field parallel to the easy axis shows hardly any
critical behaviour. No theoretical explanation is given for this anisotropy. Some
measurements have been made in the antiferromagnetic temperature region.

Chapter 8 is devoted to the most frequently investigated aspect of spin-spin
relaxation being the parallel-field dependence at high temperature of the relaxation
time in compounds with relatively strong exchange interaction. The usual assumption
of Gaussian lineshapes for the integral kernel of the relaxation description is
experimentally found to be wrong in the copper alkali halides. The theory given has
been put so as to avoid this assumption. The confrontation between theory and
experiment has been focused on intensities and moments of the observed curves rather
than on relaxation times.

Moreover it is shown that assuming the occurrence of antisymmetric exchange in
copper alkali halides,one can give a reasonable description of experimental results.
The relation between EPR widths and zero field relaxation times derived in

chapter 7 Is confirmed. Their temperature dependence,al though not understood,may

thus be given a unified description.




Hobbits delighted in such things, if they were accurate:
they liked to have books filled with things that they already
knew, set out fair and equare with no contradictions.

J.R.R. Tolkien, The Lord of the Rings,
Allen & Vwin, London 1968, p. 20.

CHAPTER 1

LINEAR RESPONSE THEORY

If a sample of magnetic material lies in a homogeneous, oscillating field

(cf. appendix A)

: : . H,(0)
ﬁ](t) = Re e‘wtﬁ1(0) = (! RlaciEE) ]2 1.01
the corresponding variation of magnetisation can commonly be described by
Fip(e) = X' () v Re e'CH (0) + () v Im e".H (0)
= Re (X'(w) - i¥"(w)v eiwt.gl(O)
= Re ;(w) v eiwt.ﬁ1(0)
- (e v Rw) vty 52 (w)).ﬁ‘(O) 1.02

2

where i(w) Is a complex tensor of second order, called frequency dependent
susceptibility tensor, and v is the volume of the sample. X' (w) and X"(w) are real

tensors. The work done by the oscillating field during one period equals

t=21/w 9
s f Fl(z).dﬁl(c) = 2mv 2—° ﬁ](o).)'("(w).ﬁl(o) 1.03
t=0
H

which may be compared with the energy stored in the sample volume v —% ﬁI(O).ﬁ1(0).
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;(w) will generally depend on more parameters than frequency alone. Apart from the

oscillating field there may be a static field H.

>

This description excludes non-linear effects, and H,(0) is supposed to be so small
: 3 . : pones e : 1 T

as to make a linear approximation realistic. (Van Vianen and Tjon ) have indicated

that this may be a rather strong condition in the neighbourhood of a phase transition.)

In experimental situations it is not possible to have an oscillating field as
given by 1.01, as this would be everlasting. Instead one has an oscillating field
Af(t) of variable amplitude, the field being turned on at tp and off at te > tp.
It is therefore allowed to write

AH(t) =0 for t <t andt>t,. >t 1.04
P f P
‘;ﬁ(t)| < H for certain H and all t 1.05
max max
+ @
-;—; J e 'Yt Af(t)de = Alw) = H *(-w) 1.06
+ @
[ i 4
e Ut T(w)dw = ATi(t) = AF *(¢). 1.07
According to Kubo 2) and Siskens_and Mazur 3) ’), the variation of magnetisation,

4
which is measured as the response to an arbitrary field variation AH(t), is in

linear approximation described by

t
AM(t) = - J 3t - 1,0 .M()dt + v X (). 6H(e)
-- I (0, .00 - Tdr + v X (F).aR(x) 1.08
o]

<

= >
Siskens and Mazur have pointed out that a (real) term v X_(H).8H(t) should be

added in order to account for diamagnetic effects (cf. section 3.1).
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where 5(1.“) and im(ﬁ) are second order tensors, to be defined in section 3 (3.05
and 3.06) for the case of a sample in very weak contact with a bath of constant

temperature; 5(T,ﬁ) : %& 5(&,“) for a = T.

The first integration in 1.08 is not performed beyond t, and all information from
Aﬁ(r) for T > t is discarded; this reflects the principle of causality, which excludes
corresponding contributions to Aﬁ(t). As is well known and easily verified, a tensor
element ¢ij(t,§) may for t*z 0 - apart from constant factors and terms and the
'diamagnetic' term v Xmij(H)AHj(t) - be visualized as the response AM,(t) to a
stepwise field variation, AHj(t) B AHj(O) for t < 0 and AHj(t) =0 for t > 0 (i and

j indicate components in a fixed xyz frame; confusion with i = v~ 1 is not to be
4

expected). This type of field variation does not fulfill 1.04, 1.06 and 1.07 and

will therefore not be used.

In the sections 2 and 3 the tensor elements @ij(t,ﬁ) are shown to be continuous,
real, bounded functions of t, with continuous t derivatives of arbitrary order.
Furthermore, due to a slightly generalized form of the Wiener-Khinchin theorem, they

are seen to be the Fourier transform of 'spectral density functions' sij(w,ﬁ)

w0

+
¢ij(t,§) e J eimt sij(w,ﬁ) dw. 1.09

8

As eij(t,ﬁ) is real, one has

The inverse transformation should formally yield
+ @
> 1 =it *
sij(w,H) 2 — f e ¢ij(t,H)dt 1.11

but one cannot be sure as to the convergence of this integral and use of 1,11 should

be avoided. The time average of ¢ij(t.H) is well defined (cf. 2.37)

T
I ¢ij(:.ﬁ)dt. 1.12
[+]




e

> - -
If ¢ij(§) #0, Si)(w'H) contains a S-distribution at w = 0, with intensity ¢ij(ﬁ).

It is useful to define

o5 (0 = 0 (68 - & () 1.13
$;500H) = 50w - § (16w 1.14

which are like Ag(t). independent of a possible additive constant in ®ij(t’n)' The

functions Ci.(t.ﬁ) are bounded and lim Aﬁ(t) = 0; therefore partial integration
t + o

of 1.08 is allowed and yields

Bh(t) = ($(0,H) + v X (H).4f(e) = [ §(r,H).00(c - 1)dr 1.15

O—8

sh(e) = B0, H) + v L) .00(0) - | B, H).8f(e - 1)dr. 1.16

O —8

Under certain conditions (cf. section 1.4) this can also be written as

4+ ®©
6 = [y R ) Flado h
with v ;(w,ﬁ) =v ;m(H) + 3(0,“) - iw J e_in $(T,n)d1. 1.18
o

As &(t,H) is real, splitting 1.18 into real and imaginary parts yields

v X' (w,h) = v x (1) + 3(0,H) - w [ sin wt 3(1,H)dr 1.19

O~—18

v X"(w,f) = w | cos wr ¥(t,H)dr. 1.20

O *—-—8

Moreover, as Aﬁ(t) is real, 1.17 implies

X(w,A) =X * (~w,H)-
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1.4 A more detalled account of frequency dependent susceptibility.

It follows from the theory given in section 2 that the spectral density function
|J(w JH) generally contains a countable number of &-distributions (further to be

called 6-functions).

sy =8 ) + § Msa) - st () + z'oy; M8 lumu,) + ¢;;Msw)
1.22

where s . (w, H) contains no 6-functions; L' indicates summation over k, omitting

w, = 0; and Wy = W (H) The 6-function at w = 0 was already seen to correspond to

k
the time average of ¢, (t ,H) whereas the 8-functions at w # 0 (which, due to 1.10
occur in pairs of oppostte frequency and complex conjugate intensity) correspond to
undamped oscillations in ¢ (t H) The Fourier transform of 1.22 reads

w

t - -+
"’.j("ﬁ) =0, (: H)+¢ (H) -¢ (t,ﬁ)+z'¢’i‘j(ﬁ)e K a6, @) 1.23

Inserting this into 1.16 one gets

@

aH(e) = (B(0,H) + v X (@) .af(t) - [ R(e.B) (o) ah(e - 1)ar

P —

iw T
o' $*Me X .afi(e - 1)dt 1.24

'
O ~—38

where U(T) is the Heaviside unit step function and

+ @

Mt - 1) = j e!Ot-T) ) de 1.25

- o

One may show that 3(T,ﬁ) U(t) is Kubo's relaxation tensor 2). the elements of which
are called relaxation functions (cf, 2.40). The first integral in 1.24 has been
written in the form of a convolution integral, and one is tempted to apply the
convolution theorem to it. However, it should be remarked that ¢, J(T,ﬁ) U(t) cannot
generally be proven to be square integrable over T, which implies that its Fourier

transform need not exist and that the convolution theorem need not hold.




Nevertheless one may formally proceed and derive some expressions, the general
validity of which must be considered afterwards. It will be seen that only for
equations 1.18, 1.19 and 1.20 the condition of square integrability is

essential.

which can be calculated according to

eiw(t“T)

ye i -w)T -
3 J e & d1t e'mt
2n

i(w

o) e - w )

k

where F indicates a

generalized form of 1.02

e‘wt v ;(w,ﬁ).ﬁ(w)dw

-
=
-
L
D—

with v :(m,ﬁ) = vy iﬁ(g) + 3(0,;) -~Nw

- 2mie '3 K(A) {480

If no undamped oscillations occur, this implies 1.18, 1.19 and 1.20. Formally again,
; R .

one can calculate the Fourier transform of @ij(r.ﬁ)u(1) in a way analogous to 1.26

and insert it into 1.27; in appendix B the result is shown to be approximately

valid in experimental circumstances regardless of square integrability

v x(w,H) = v

e

No such difficulties arise with respect to the second integral in 1.24

iwﬁ(w)dwdT

iwﬁ(w)dw

P 1 jwt
e

principle value integral

e

L + 3(0,H) - 2miw

——

imﬁ(w)dw 1.26

for w. Hence one may write 1.24 in the

1.17 |
=hot ?J,( Ju(r)dr
P
mk) i 21 (o - wk)}' Vid}

o

(380 = w)s Fyreay)® Moy

o

= k> = P
¢ "(H) {16(w wk)*m} 1.28




-7 -

or v X(,A) = v _(A) + 3(0,7) - miw(ERw, ) + 2356w - w))
+ @
P_ =R > =K F
- u,(f s (w,,H)dw, + Z'¢ (H) —).1.29
w-w 1 1 W=t
1 k
-
Inserting (cf. 1.23, 1.13)
-.- oo
¥(o,0) = f R, Mdw + 3@ 1.30
into 1.29 one gets
= - = > " =R > =k +
v X(w,H) = v x_(H) - miw(s" (w,H) + £'¢ (H)6(w - w,))
+ @
Wy = + =k, > F
- ([ P _’ sR(J JHldw, + L'w ‘:k(H) —). 1.31
w=w 1 1 k W=
- o 1 k
In terms of the Hilbert transform, defined by
+ @ o
[ T f w') - flw-w'
Hi]“f(w') :T]:J ¥ F(m')dw' "%‘fm I F(..r".- J f(u(u) duw 1.32
= : Z w'-w ! £Evy0 “ w'
L £
. 4 ! Iy
with ') Hil 8(w') = - — 1.33
w mw
and the properties
Hil f(-w') = = Hi1_ f(w') 1.34
w -
“k
. ' & ey - r ¥ e g = = P
and Hllw w's(w u,k) Hllw wkd(m ‘Dk) e pry o 1.35
the equations 1.29 and 1.31 take the simple form
v X(w,H) = v X (A) - 3(0,H) = mol- i3(w,f) + Hil S(w',H) 1.36

v X(w,R) = v X_(A) = (- 168w, ) + Wil w3 ,R). 1.37




It may be reassuring to know, that the existence of these Hilbert transforms follows

straightaway from a property of ;R (w,H) (cf. 2.28).

Some remarks concerning undamped oscillations.

Generally the ék(ﬁ) are relatively small in the limit of an infinite system.
Moreover, when i(w) consists of narrow lines, there is not much chance for a
contribution from Z';k(ﬁ)d(w-wk). Usually the ék(ﬁ) are therefore excluded from
theoretical considerations as corresponding to uninteresting reversible processes 5).
Nevertheless the $k(§) are here taken into account at little extra cost, in order
that the cases of broadband E(m), such as for pulse-like A;(t), and of a finite
system, where L' sk(ﬁ)é(w‘wk) can be shown to be the only contribution, are included

as well. For broadband H(w) appendix B need not apply.

1.5 Diagonal tensor elements.

For diagonal tensor elements one has (as @ii(t,ﬁ) is real and even in time,
cf. section 3.6) Sii(w,ﬁ) = S?i(w,ﬁ), which means that in the right hand side of

1.29 the third term is the only imaginary one. Therefore

VX?;(U-E) g
St e Sii(w’H) 1.38
- e iwe Y x?](w,ﬁ)
and Oii(t.H) -J e -"—w-\dm- 1.39
llll(w H)
The zeroth moment or total intensity of is found by taking t = 0 in 1.39
*®v x“ (w,H)
J —_— dw- 1.40
) .
If 3t and dw may be interchanged
a" W | 17 v X R |
— &, .(t,H) -I (i) ——dw , n=1,2,3,... 1.1
aeh i W
t=0 -~

yields the higher moments with respect to w = 0. (Sii(w,ﬁ) is even in w (2.52),

therefore odd moments are zero). Inserting 1.38 into 1.37 one gets (cf. 1.32)
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x;i(w,ﬁ) - x«”(-ﬁ) = x”(m ) 1.42

one of the Kramers-Kronig relations.

These are usually derived from a set equations like 1.19, 1.20 while some
assumption of square integrability plays an essential role 6). With the aid of
appendix B, 1.28 and consequently 1.42 can be derived without such assumptions. This
cannot be done for the inverse relation, as one cannot be sure as to the existence

-

: 2 n "

of Hllexlw,xii(w sH).

Due to the symmetry relation S w,H) = SJ (-w,H) (cf. 3.6) x“ (w,H) is an odd

function of w, and, as S (w H) contalns neither a 6-function nor a step, at w = 0,
1.42 may be written as
o«
P " (w )
1 T - ol -2 P 1 1
Xiq@H) = xg;; (H) *nf . o o Sh ELL
W, - w 1
0 1
which for very smooth X?E(W,ﬁ)/w may be roughly approximated by the thumb rule
o
X! (w, ,H)
- > 2 3 e
l(w,H) xooi}(H) %; j 'w_dw'. 1.44

lof
On the other hand one may see from 1.43, that a step in x” (@,H)/w, at w # 0, which
is not at all excluded by the results of section 2, gives rise to a singularity in

(w H) at the same frequency.

Moreover, 1.42 shows the way to a formal phenomenological interpretation of
xw(H) As Hilbert transformation is linear and never results in a constant, xm (H)
is uniquely defined by X (w, H) and 1.42: Xeoi 4 (H) is the constant value, which must
be subtracted from Xii(w H) in order to make the difference a Hilbert transform.

As no necessary and only few sufficient conditions for a function to be a Hilbert
transform are known, the experimental value of Xooi 3 (H) can only be determined from
the measured x (w H), if this function can be nade to meet such a known condition
by subtraction of a constant. (e.g. if xii(w,H) converges for w + ® to a constant.
faster than ™ m-E-e, € > 0, then X@ii(i) equals this constant, the corresponding
sufficient condition being square integrability; in other words, then

ii: x;i(w,ﬁ) = xwii(ﬁ)). In principle this method is unambiguous and v?lii without
restrictions (the xyz-frame may always be chosen so as to diagonalize ;w(H)) but

practical applicability is less general than one would wish it to be.




1.6 Statlc measurements.

In the case of a static measurement, ﬁ(u) consists of one narrow line, around
w = 0. In theoretical calculations this line is often taken Lorentzian with vanishing
width 7)8). The corresponding zero frequency susceptibility, also called isolated
susc. or Kubo-susc. can be found by inspection of 1.65 and 1.67 (appendix B),
realizing, that Sij(w,ﬁ) contains no 6-function at w = 0

-

%(0,H) = X_(H) + v 80,0 = X (H). 1.45 *)
This may also be seen from 1.38, 1.40 and the Kramers Kronig relation 1.42 (based

on 1.65 and 1.67 etc.); combining 1.40 and 1.42 one gets

> PR 5 X (w, ) s X (w,H) -1 *
xli(O,H) - Xmii(H) == J P T P dw = ( ek dw = v ¢ii(0,H)
= e 1.46
and using 1.38
" vy = =} ; .-’ =
xii(O,H) =y ﬂuSi;(u,H) stO 0 1.47

(Sii(w,ﬁ) contains no &-function or step at w = 0 and - due to its integrability,
cf. sections 2,3 - cannot be O(M-‘) for w + 0 or w + 0). Due to the freedom of
choice of the xyz-frame one may apply 1.46 to a frame which diagonalizes ;'(0.;) =
:w(ﬁ) - v-] 3(0.§). and 1.47 to a frame, in which :“(0,“) is diagonal. This results

in the equalities (equivalent to 1.45)

%00,8) = L0 + v B0, = X; M) 1.48

m

;”(on-ﬁ) = 0‘ ,.bs

) It should be remarked that the width of the H(w) line required for a measuremnt
ot ;is(ﬁ)’ might be sp narrow as to correspond to an unpractically long measuring

time.




- 11 -

With the aid of 1.45 the expression 1.36 can be given a simpler shape still

=]
m™w v

X(w,H) - X(0,8) _ _ i5(w,H) + Hilw§(w','ﬁ). 1.50

1.7 Absorbed energy.

The total amount of work done by the varying field, or 'the energy absorbed by
g 9

the sample' in the course of the measurement, equals

= t
Lo £ £ o $
AE = - J AM(t).dAH(t) = - o J AM(t) . AH(t)dt 1.51

t t
P P

(constant terms in the magnetisation do not contribute, as AH(t < Lp) =
Aﬁ(t 5 tf) = 0). When the xyz-frame is chosen in such a way, that Lﬁ(t) is oriented
-
along the i-direction (i = x, y or z), if AH(t) satisfies 1.04 through 1.07, if
n

)

el
function of time, then the absorbed energy can - without further assumptions or

LHi(L) is continuous for any n > 0 and if AHi(t) is either an even or an odd

approximations - exactly be expressed in terms of the spectral density function
Sii(m,ﬁ) (cf. app. B)

+ ©
: A 0 2
AE = S;i(w,H) u IZTTHi(w)I duw - 1.52
- o
: 7, =+ s . . :
A different aspect of #(t,H) and S(w,H) - not to be emphasized here - is their use

in the description of fluctuations of magnetisation in absence of a varying field.
1.52 may be seen as a link between these fluctuations and energy absorption and
constitutes a representation of the fluctuation - dissipation - theorem. If - due

to 1.27 or to 1.66 - ;(w,n) is properly defined, one may insert 1.38 and get

8

BE = 2mu_ v X'i|](w’-ﬁ) lei(w)|2 duw. 1.53

J S

8

The relation with 1.03 is given at the end of appendix B.
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The appendices are dedicated to Dr. H.P. Wijnen, surgeon, who
removing the author's one just in time, made a decisive contribution
to thies thesis.

Appendix A.
The term 'magnetic field' and the symbol H are used throughout to indicate the

magnetic field strength in absence of, or just outside the sample. To put it more
-

accurately: = E/uo where B is the magnetic induction in the sample and Mg is the

permeability of the vacuum. The change of sample energy at an infinitesimal field

. . . . . <> . . ’
variation defines the magnetisation M and equals per definitionem

.- 1.54

x4

M.AB
* Uo

The magnetic susceptibility is defined through relations of the form

AW/ = X. X-AB/u 1.55

>
AH =
(<]

(in a rationalized system of units; v is the sample volume). Conventionally the
symbol H is used to indicate the magnetic field strength in the sample

-

= B/ - Wiy 1.56

H
conv o

implying: AH = (1 = X).AR. 1.57

conv

According to the historical definition of susceptibility

AN/ = X AH 1.58
/¥ = Xpist 2Mconv ?
implying: ; = ;hist'(l - ;). 1.59
As in most problems of Interest 1 - ; o (this may fail in case of-ferromagnetic
. .
ordering) there is in practice only slight difference between H and Hconv and
-

between ; and ;his[' Thus, thanks to the inconventional use of the symbol H for

=z . .
B/uo, the expressions are practically compatible with those in older literature.
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Appendix B
By the following argument the assumptions about the square integrability of
¢?_(1,H)U(1) and the validity of the formal calculation of its Fourier transform
can be replaced by experimental considerations: some conditions imposed on the
varying field. (These however, are of no help in proving the existence of the
transforms in 1.18, 1.27, 1.19 and 1.20). Let apart from having the features 1.04
through 1.07, Aﬁ(t) be such, that for any positive integer n, %;;AHi(t) is continuous
(i =x, yor z). (An example of such a function is
AF(t) = Aﬁ(O)(exp(l + (tzr;z - l).1

< n -+
Then for any t, the function f(1) = @ij(I,H)AHj(( - 1) satisfies (as 2—; @ij(t,H)
at

>
))cos w t for - 1< t < 1_, AH(t) = 0 elsewhen).
(5} o o

is continuous for all n 2 0)

f(t) =0 for t-1c«< tp and t - T > tes
an

o f(t) is continuous for all n > 0.

T

According to Gel'fand and Schilow 9) f(t) is therefore a test function and combined

with U(t) the Parseval theorem for generalized functions applies

8

o

(38(w) +

w©

8

U(t)f(r)dr = Z:iw) o O f(t)dt dw. 1.60

P —
| — 4+
| S——+
8

J flt)dr =
o

As Aﬂj(t - 1) is square integrable over T, so is its Fourier transform

8

1 =t . = ~iwt, . e
= e AHj(t T)dT = e ( lm)HJ.( w) 1.61

| S——+

e

Furthermore s?.(w,H) is absolutely integrable (cf. 2.32) therefore theorem 65 of

Titchmarsh lo) states that

8
8

ein¢R (T)Aﬁj(t~r)d1. 1.62

R s =iwyt,_. = =
Sij( n w‘)e ( |w])Hj( wl)dw‘ ij

N

=
e L
§ S—

@ «©

The analogue of this formula for ¢?j(ﬁ)6(w'wk) is straightforwardly derived




bt .
1w

t
on [ o}, M6Cuuyw) e T (- TuH (uy) duy =

=)

i 10 et i
e @ij(H) e AHj(t - 1) dt. 1.63

P — I—

«©
After construction of the Fourier transform of ®ij(T,ﬁ)AHj(t - 1) from 1.62 and

1.63 the expression 1.24 can be written as

Mh(e) = (B(0,H) + v x_(A).6H(t)

+ @ + ® ;
P = -+ I('U'[t >
- J (38 (w) + E;T;) 2n [ S(u] - w,H).e iw‘H(w1)dw‘dw 1.64
- 00 - @
4+ @ .
. = -> = - -+ = -»> “‘"]t .
or AM(t) = (&(0,H) + v x@(H)).AH(t) - in f w‘S(wl.H).e H(w1)dw1
- ™
+ @ 4+ @ &
( P = |w1t+
- [ J wIS(ul - w,H).e H(w])dmldw-

1.65

This is equivalent to 1.17 and 1.28, 1.29, 1.31, 1.36 or 1.37, if the following

equality holds.

4+ @ 4 @ =
iw, t
P =R > 1=
J = { J w, s (w, w,H).e H(w1)dw]}dw =
- o -
> 4300 jw, t
P =R - 1" =
J W, { J it (wI w,H)dw}.e H(ml) duw, - 1.66
- - &
It will now be shown, that some additional conditions for Aﬁ(t). quite natural

-
from an experimental point of view (except for broad band H(w)), make 1.66 hold in
good approximation. In experimental situations the measuring time te - tp should -
in order to get sufficient resolution - be chosen much longer than the characteristic

times of $R(t,ﬁ). Then the corresponding widths of the components of ﬁ(m) are small
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compared to the structural detail in ;R(w,ﬁ) .) and one may approximate the left
hand side of 1.66 by

8

iw t iw t
z w sR(w - w,ﬁ)dw.e " -y T w Hil ER(w,ﬁ).e L 1.67
w m m g s

I ™
| —t

8

where H" is the intensity of the m'th line in ﬁ(w), and Hi]w :R(w,n) is - according
to 2.32 - almost everywhere well defined. ”
In principle one may thus obtain information about the structural detail of
Hi!wzk(w',ﬁ) through inspection of the experimental result for
Ai(t) - ($(0,ﬁ) + v ;w(ﬁ)).Aﬁ(t). When the linewidths in ﬁ(w) are found to be narrow
compared to the detail in Hilsz(w',ﬁ) *) as well,one may also approximate the right
hand side of 1.66 by 1.67 (if necessary a longer measuring time may be chosen to
achieve this). Therefore 1.66 holds in good approximation for sufficiently narrow

H(w) lines.

Absorbed energy. Under some other conditions for AH(t) one can show that the
absorbed energy AE (cf. 1.7) can be expressed in a spectral density function S .( JH)
without making use of the square integrability of o (T H)U(1) or the ex|stence of
its Fourier transform. Let AH(t) be oriented along the i-direction and let bH, (t)
be an even (or odd) function of time. AE will then contain no contribution from the
off-diagonal elements of §(w,H) or of that part of Ai(t), which is even (odd) in
time (cf. 1.65) 4+ @

s =g [ o (00 (e =

o
e o fw, t X
i uoj fa 'TTJ “’1sii(“’1'ﬁ) & Hy (w,)dw, } 84, (t)dt
- ® - ®
+ o
°U°I s, (w,H) {,wzlzﬂui(w)l2 dw . 1.52

) Singularities in s (w H) and Hll s (w H) at w = w might compllcate matters
and are assumed absent Such slngular1t1es could be of the form |w - ] “ within
an interval around mm(whlch would not spoil the 1ntegrab111ty of s (w H)) or of the
type induced in H11 s (w JH) by a step in s (w %), The absence of sxngqlarities at

the measuring frequenc1es does not imply square integrability.
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The last equality is mainly due to Titchmarsh' lo) theorem 35, realizing that s?i(m.ﬁ)
is absolutely integrable; Aﬁ (t) is continuous and zero outside the finlte interval
€., ¢ ); hence AH (t) and its Fourier transform |wH (w) are bounded and
IwSR (w )H (w) is absolulely integrable, just like AH (t). The contribution from the
T (H) terms is found through a simple &-function argument
When H, (w) consists of lines, narrow compared to the structure of sR (w,ﬁ).

the right hand side of 1.52 may be approximated by

w©

R - .
s'i(wm.H)iwi lZnH?(w)!z do + T’ ¢ti(n)5w§|znni(mk)|2 1.68

>
m
ee
é
(<)
| ———

o

where H?(m) is the m'the line of Hi(m) and w_ its center frequency. For such a Hlw)

equation 1,66 holds, so that 1.38 may be applied

L]

AE = 2mu XY (m,ﬁ)wlui (w) Izdw. 1.53

[T S —

B8

The relation with 1.03. In the usual measuring situation Hi(w)consists of two

lines
(t) = AH](t)cos Wt 1.69
a; _ a
2Hi(w) = Hi(w wo) + Hi(m+wo) 1.70
where H?(u), the Fourier transform of the slow amplitude variation AH?(t), is a

very narrow line around w = 0 Furthermore, ¢ k (ﬁ) and H, (w ) being small (w 4 wb)

in an "infinite'" system and s (w H) being even in w, the r|ght hand side of 1.68 can

be approximated by

2
H2 (t)dt. 1.71
o O

=8

400
AE v X?l(wo,ﬁ)ﬁmovuo f |H?(w)|2 dw = X?i(uo,ﬁ)iw Vi

During an average period the oscillatinag field does an amount of work




t
f
2m "o a2
AE X 271 V. (w_,H) J — AHTT(t)dt 1.72
W lte = & v ii t 2 i
o' f ] f P 3
p
or 2m X?i(uc,g) times the average magnetic energy of the oscillating field stored

within the sample volume (cf. 1.03).




CHAPTER

OPERATOR SPACE

For a finite system with a discrete eigenvalue spectrum for every relevant

observable, the linear operators - working in the Hilbert space of state vectors of

the system - themselves constitute a linear space

operator addition and multiplication by a scalar

space, to be defined or derived in this section, are assumed to remain valid in the

limit of an infinite system with pseudocontinuous
henceforth to be called 'operator space', one may

(A,B), with

(a,B) = (B,A)*
(A,A) 20
(A,A) = 0 if and only if A = O-operator

(A,28) = A(A,B)

and corresponding projection (super)operators P

- (A,B)
LR ¥ ) R
One thus has PZB =p,P,8B=P,B
A A A A

and (81,82) - (PABI,PABZ) + (( - PA)BI.U

If the scalar product is zero one may speak of 'orthogonal operators'. Furthermore

as ((1 - PA)B,(l

Schwarz's inequality:

- PA)B) >0 (cf. 2.01, 2.06 and

Die Physik ist ja fiir die Physiker viel zu schwer.

- Pp)B,)-

D. Hilbert

2

under the commonly defined

factor. All features of this

eigenvalue spectra. In this space

define a unitary scalar product

.00
.01
.02

.03

.04

.05

2.06

1')), the scalar product obeys
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|(A,8)]% < (A,A)(8,8) . 2.07

It should be noted that the common operator product of A and B, which yields a new
product operator AB, will play no particular role in operator space. Any linear
mapping of the operator space in itself may be called a linear superoperator working
in operator space. Analogously to the situation in the common space of state vectors
a hermitean adjoint, hermiticity and unitarity can be defined by means of the scalar

product.

2.2
Choosing the Heisenberg picture one has operators that develop In time

according to

g— A(t) =4 (HA(e) - A(t)x) = i{lx,A(t)l = jLA(t) 2.08
t h h

where ¥ is the Hamiltonian of the system. Like any operator in section 2, X is assumed
not to be explicitly time dependent. The Liouville operator L, transforming each
operator into its time derivative (multiplied by 1/i), is an example of a super-

operator. The scalar product is assumed to grant hermiticity to this Liouville

operator
+
(A(tl).LB(tz)) = (L Alt,),8(t,)) = (LA(t,),B(¢,)). 2.09
Then the corresponding exponential superoperator e'Lt
it it
e'"*a(t,) = e Ale,)e = Alt, + t) 2.10

shifting every operator in time over the interval t, is unitary under the same scalar

product definition
(A(ey) e 8(e)) = (™) aGe)),B(e,)) = (e LA (e,),(¢,)) 2.11

the inverse of e'Lt being e-'Lt. Consequently one has for any t, introducing the
notation A(0) = A, B(0) = B

(eiLtA,eiL(t + t,)s) " (A,e-iLteiL(t + t‘)s) - (A,eiLt‘B) 2.12
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which proves (eILt‘A,e'LtzB) to be a stationary function of t, and t,, further to be
called correlation function. By analogy (e'Lt‘A,e'LtzA) is an autocorrelation function.

Without loss of generality these functions can and will be studied in the form

(A,e'LtB). Time derivatives are calculated according to
n 5 ¢ 3 k=0, Vs 290D
3_(a,e'tts) = (a,(iL)%e (i) B), 2.13
atn b R B g weenma e

According to the definition of L both (A,e'LtB) and its time derivatives are

continuous functions of t. This may be seen from the inequality

(Aol L85y _ (a TLtg)(2 < 2(a,m)Re|(B,B) - (B,e'B)} - 2.14
From 2.00 and 2.11 follows the symmetry relation
eiLtB) _ (eiL[B,A)’ = (B,e-iLtA)’ . 2.15

(A,

Due to 2.07 one has the bounds

k=0,1,2,... n

AN
| 9 iLt Ky koyd, n=k, n=k. ¥
3T—;(A,e B)| < (LA,LTA)° (L™ "B,L BY* s i 2.16
at
in particular for n =0
|(a,e't%8)| < (a,m)¥(8,8)} 2.17

2.3 Autocorrelation functions.
Autocorrelation functions of the type mentioned satisfy the relations 2.12

through 2.17. As moreover for each function f(t) that is continuous in a bounded

interval (a,b)

b b
0 < ((J f(t)eiLtAdt),(J f(t)eiLtAdt)) =
a a

bb
= iLty iLty =
IJ f (t])f(tz)(e A,e A)dtldtz

aa
bb

II f‘(t])f(tz)(A.eiL(tz't‘)A)dt‘dt2

aa
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A
]l >

one can write '2)
+ @
(A,e'*ta) = j e Ot dFpa () 2.19
- o
. =t
Faa(@) = Fpa(0) = 1im ;—ﬂf (A,e'ta) e—_l(—‘ dt 2.20

where FAA(m) is a real monotonic non-decreasing function of bounded variation called

iLt

the spectrum (Fourier-Stieltjes transform) of (A,e ~"A). In terms of the more

commonly used Fourier transform this reads

8

10k spa (@) dw 2.21

—
>
o
-
o
>
~
1 S

8

where SAA(‘) may contain S-functions and is called spectral density function.
. | S . . .
Further following reference 2) one may divide the Fourier-Stieltjes transform

3 4 R
FAA(‘) into a continuous part FAA(m) and a countable sum of stepfunctions

(u)xFR

A el : .2
AA U(w ) 2.22

‘A k

(‘u./) + z

F
A% k=1,2,..

R 2 s 1
FAA(u) has the same features as FAA(m) and is moreover continuous, whereas for
all k

k= k
San = Oap 20 - 2.23
Correspondingly the spectral density function sAA(w) can be written as
spa(w) = sh(w) + ¢ ok 8w = w,) 2.24
AA AA ; AA k 3
3 R - i 3
The first term SAA(w) (possibly containing stepfunctions) satisfies

s:A(u) = s::(m) 2.25

R
saa(w) 2 0 2.26




4+ @

and f Is:A(m)|dw < 2.27
;: + @ + @

s [ sh@ie s @ ds ] @R = tin G0 - R
L0 L e = W=+ ®

2.28

The existence of this limit follows from the fact that Fa,(w), like Fpplu) is
monotonic and of bounded variation. The Hilbert transform HilmsﬁA(w') is therefore
almost everywhere ’) well-defined (cf. theorem 100 of ref.]o)) and so is
: '
HalusAA(w ) (cf. 1.33).
Thus for an autocorrelation function of the type

+
(e'ttin,e!t2) = f elolt2 = t1) spp(0) do 2.29

the spectral density function SAA(m). apart from §-functions of real non-negative
intensity, which it may contain, is a real positive non-definite function of w.

It should be remarked, that proving this generalized form of the Wiener-Khinchin
theorem (and the inequality 2.34 a to be derived from it) no use is made of hermiticity
of the linear operator A. The crucial feature is rather the unitarity of the scalar

product
(a,B) = (B,A)" . 2.00

Using a proof of Khinchin ]3) one can derive from 2.19 that the following time

average exists (cf. appendix C)

T €

+
lim %J (A,e' tA)dt = 1im (Fpale) - FM('E))- lim J spalw)dw > 0

T+ E+oO E¥0 e
2.30

being equal to the intensity of the §-function at w = 0.

= 2 R . > . " R ”
) A step in sAA(w) at w, i.e. a corner in FiA(w) implies that H"wlsAA(w )

is undefined.




-23-

2.4 Correlation functions.

As any correlation function of the type (e'L!‘A,e'LtZB) may be written as a

linear combination of autocorrelation functions according to

(A,e''%8) = 3{((A+8),e't(asB)) - (a,e'Lth) - (8,e'%p)}

- 7 {((asi8) e E(avin)) - (a,e'ttn) - (5,eltg)) 2.31
one may define the spectral density function
- i _ e 4
*ap () = ¥5p.8 n,(®) = 3 Spuip peip@ - (3 2) (spa(w) + sgg(w)) - 2.32

This is a complex function of w, for which

+ @
f |50g (@] du < = 2.33

+ ©
(A,e'LtB) = f P sAB(w) dw 2.34
spa(w) = s, (w) 2.35

BA AB
and .
Sag@')
Hil s, (w') = [ Pe——— dw' is almost everyshere well defined. 2.36
w "AB w=w

Again the time average exists .) and is equal to the intensity of the &-peak

at w =0

T + €
: 1 iLt ¥
lim T I (A,e ""B)dt = lim f sAB(w) dw 2.37
Tow ! e»0l

which according to a lemma about Cesaro limits ‘b), implies the following limits to

exist and to have the same values as 2.37

* . . . L * 3
) For the existence of the time average of a function of t, it is not sufficient

that it be bounded, as the counterexample cos log (1 + Itlr;]) illustrates.




lim € f (A,e'ttB) et at 2.38
E~+0
L] o«
4 LT, =€T Ly &% “ET iLT
and lim €| (A,e ~'B)e dt = (A,e 'B) lim e d(A,e 'B) 2.39
g +0 €E+o0
t
T @
implying (A,e'“%8) = 1im -.}.-I(A e'Lt8)dt = - Vim Ie'" d(A,e' B) 2.40
T + = & £+ 0 t

an expression, which for t > 0 coincides with Kubo's definition of the relaxation

function 2). Furthermore one can derive from 2.37 that

o

iLt

(A,e B)dt 2.0

Iim

3 3
T—otzT T

T+ >

T
J (A, ILtB)dl = lim
o

and from 2.15 a series of related expressions for the time averages. Due to 2.17

the time average is bounded according to
T

[1im ;-J (A ’“s)dzl < (a,n¥,8)t . 2.42

T+ =

Furthermore it satisfies an inequality similar to 2.07

T T T
[1im lf (A,e'“t8)de]? < (1im -‘-J(A.'e'L[A)dt)(lim l[ (8,e' “t8)dt)
T T T
T+ > T+> T =<
o o
2.43
1
This is proven by defining the auxiliary scalar product {A,B} = lim % I (A lLtB)dt
T » >

for which the analogon of 2.01, {A,A} > 0 holds (cf. 2.30) together with relations

similar to 2.00 and thus also Schwarz's inequality.

Due to 2.26 one has for C = oA + e-'¢8. witha = o™ and e|® = (w)[s (w)[

0 < (u) = a s (w) + 2a Rele . SAB(w)) + s:B(m) 2.44
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and consequently the Schwarz inequality for spectral density functions

R

@] = (spa@) sh. W . 2.45

|s

2.5 The scalar product of (anti)hermitian operators.

At this stage it is useful to make a specification concerning the scalar
. t + - ¢ -
product of linear operators A' and B , which (according to the scalar product in
the Hilbert space of statevectors) are hermitean adjoint to the operators A and B

respectively. It will henceforth be assumed that the scalar product satisfies
(a",87) = (a,0)* . 2.46

-~
As X = ¥ one has

(La(e)’ = - tat(e) 2.47
(ttayT - (il 2.48
implying (A ,e''t8) = (aT,(e'tt8)T) = (a,eilte)* . 2.49

£
Particularly for pairs of (anti)hermitean operators A+ =+ A,B' =+ B, one has

(A,8) = (A,B)* 2.50
from which (A,eiLtB) = (A,e“’tﬁ)’l = (B,e_iLtA) 2.51
implying sAe(w) = s:B(-m) = SBA(‘w) . 2,52

It follows that sAA(w) has zero odd moments, if A is (anti)hermitian.

2.6 The integro-differential equality. Memory function and memory spectrum.

Following Mori's method ; ) one can derive the following equality for an

autocorrelation function (A,eILtA) (cf. appendix D):




e-iF&(A'eiLtA)

a9
dt

t % i(l'PA)L(t‘T) N
e f o iB(e=1) ((1-Pp)LAe ( PA)LA)e-iﬁh(A’eiLTA)dT 3.
(A,A)
(o]
+ @ 4+ @
with T = J W spp(0)duw/ f spa(Wdw = S (A,e'R) | (a8 = (a,1a)(a,0)7"
A e t=0

2.54

(the first moment of sAA(u), which equals zero for (anti)hermitean A, cf. 2.51,2.52).
Within the subspace of operators orthogonal to A the superoperator ei(‘-pA)Lt
unitary and thus (ei(l-PA)Lt‘B],ei(I-PA)LtZBZ) (with (A,Bl) = (A,Bz) =0) is a
stationary correlation function based on an unusual (cf. 2.10) rule of time
development. Particularly the kernel ((1'PA)LA,ei(I-PA)Lt(l-PA)LA) sometimes
called '"memory function'' is seen to be an autocorrelation function of that kind.
It should be noted, that all features of the functions (A,eiLtA) as listed in 2.3
have their counterparts for the memory function. One may even extend the analogy so
far as to derive another integro-differential equality. The procedure can be repeated
which yields a hierarchy of equalities and corresponding, increasingly complicated

autocorrelation functions. As far as the Laplace transforms exist, they are given by

1(z) = f e Zt(a e tA)de 2.55
(o]
1'(z) = J et (ar,e't tAr)dt 2.56
o
A' = (1 - PA)LA , L= (1 - PA)L 2.57
1"(z) = I e 2t (av,e't A 2.58
o]
A = (I-PA,)L'A' , =Y. PA,)L' . 2.59

The Laplace transforms 1(z), 1'(z), ... are related by
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(A,A) -1
1(z) = = w = (A,LA)(A,A) 2.60
z - iw+ 1'(z)(A,A)

(A*,A%) u 5
1'(2) = — — @' = (AL LAY (A,A0)7Y 2.61
z = iw' + 1"(z)(A',AY)

The hierarchy of equalities thus results in a continued fraction of the form

1(z) = (A,A)/z - iw+ (A", A")(R,A)" /2 - T (A", A") (A*,A0) sz - T e,

2.62
(For (anti)hermitean A one may show 0 = 0 = &' =o' = ... (cf. appendix D))
The counterparts of 2.15 and 2.21 read
iL

(A',e' " %ar) = (a1, o7l ta1)% 2.63

(w)dw . 2.64

+
LS. S vt _,
and (A',e A') = f e SAIAl

It is perhaps useful to denote the spectral density function SA‘A'(“) of the
memory function by the short name “memory spectrum’'. If 1(iw) and 1'(iw) exist,
one has for the spectral density functions of the original autoCorrelation function

and its memory function respectively

ﬂsAA(w) = Re 1(iw) 2.65
and ns‘A,A,(w) = Re 1'(iw) 2.66
such that 2.60 implies that

1'(2)(A,A)°" = 1(_???—) -z+10 2.67

Re 1'(iw)(a,a)"" = Re 1(iw) (A,A) 2.68

[1(iw) |2
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im 1° (iw) (A,A)) = 'l'—(”—"—)—(glf-)--u+6 ; 2.69
ll(lm)l

Consequently the memory spectrum can be written as

(w) 2
(w) = (A,A) . 2.70

Slll
N8 11 (iw) |

In some cases the memory spectrum offers an easier confrontation between experimental

results and theoretical analysis (cf. 3.3) than sAA(w) would do.

It follows from 2.53 through repeated differentiation that for (anti)hermitean

A the moments of s,, (w) and of sA,A,(m) are related by

w©

+ +
[ -
w2 (A A)” f A A,(w)d { wZn 2L sAA(w)dw

|1M3

SAA(w)du =

2.7 l|nvariant operators.

Operators C describing a constant of motion have a zero time derivative and

thus lie in the kernel of the Liouville operator L. This kernel constitutes a linear

subspace of operator space: the subspace of invariant operators. As every invariant

operator commutes with ¥, there will always be a representation in which that

particular operator and X both are diagonal. In case of degeneracy of energy levels,

this does not imply that a representation exists that diagonalizes all invariant

operators including ¥. Therefore the adjective "invariant' is used rather than
"diagonal''. Projection on a linear subspace can be done by projecting on an ortho-

gonal basis spanning the subspace. It is assumed that an, at most countable infinite,

number of basis vectors spans the subspace; this is reasonable if a finite system is

looked into in the limit of an infinite syslem (e.g. a system of N particles with

k states per particle correspondlng with k states; the number of independent

operators in operatorspace is (k ) (kz)N and it might be counted (on base k )

by a number of N digits.) The projection superoperator D will denote the projection

on the subspace of invariant operators:
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where {Ck} Is an orthogonal basis in that subspace. Due to 2.46 one can always

-
choose {Ck} so that CL = Ck for all k (cf. appendix E). Let this be the case and

let
Co = | = the identity operator 2.73
C‘ =K - Plx = ¥ . 2.74
In cases where all invariant operators are diagonal in one representation, D may

be called extractor of the diagonal part in that representation '5). In analogy
with 2.05 and 2.06 one has

0?8 = DDB = DB 2.75

(8],82) = (DB',DBZ) + ((1 - D)Bl,(l - 0)82) - 2.76
Moreover, as LCk =0

LDB = 0 2.77

f
and, as Ck - Ck,
+ +
(08)" = 08" and ((r - 0)8)" = (1 - p)B 2.78

(this stays - of course - valid for a different choice of {Ck}, even not Hermitean.

2.8 Application of D to correlation functions.

With the aid of the projection superoperator D a correlation function may be
split into two contributions: one from the invariant components of the operators

and the other from the remaining time dependent parts

(8,e'"8) = (0a,0e"-%8) + ((1 - D)a, (1 - p)ellts) -
= (0A,DB) + ((1 - D)A,e' t(1 - p)p) . 2.79

Applying 2.17 to the last term yields narrower bounds for (A,e'LtB)
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(A, %) - (0a,08)| < ((1 = D)A,(1 - D)W} ((1 - D)8, (1 - DI)BYY . 2.80
Due to 2.72 the invariant term in 2.79 may further be split

iL
(A,e'-tB) = (P,A,P B) + (Py,A,Py,B) +

o L3 (P AP B) + ((1 - D)A,e'*t(1 - D)B) . 2.81
k=2,3,.. k k
Taking the time average one gets
1)
: 1 iLt
lim = f (A,e ~"B)dt = (P/A,P B) + (Py,A,Py,B) + I (Pe A,P. B) +
T+ ‘ k=2,3,.. k k
T
s lim T J ((1 - D)A,e'*5(1 - D)B)dt .  2.82
T » =
In particular for an autocorrelation function this reads
T
1 2
lim= [(A,e'*tA)dt = (P, A,P,A) + (P, ,A,Ps,A) + £ (P. AP A) +
T 1 ! C, Shi kX c c
T4 k=2,3,.. "k 'k
T
+ lim % I ((1 - D)Ae' "5 (1 - D)AYIE . 2.83

T+ e

From 2.01 and 2.30 it follows that all terms in 2.83 are real non-negative,

yielding the lower bound for the time average of an autocorrelation function

T
tim 2 [ (a,e'tA)dt > (P.APA) + (PyyA,PinA) + £ (P. AP A) .
T - | | X I C C
T+ o k=2,3,.. k k
2.84
This inequality remains valid, if not all invariants are included in the summation 20).

In section 3.3 one special case will be seen to be of pacticular practical
One. ¢F Hhe
interest. It is characterized by the following property: jntﬂjoperators A and B

in the correlation function (A,e'L[B) satisfy:




lim
T+ >

This occurs if A zae B correspond to ergodic observables *). Then 2.84 implies

(P. A,P_A) =0 s k=23, Zi
€, "€,
<
lim %f ((1 - D)A,e' (1 - D)A)dr = 0 2
T+ >
(o]

o

2T the same for B. Applying 2.07 to 2.86 and 2.43 to 2.87 one finds

(P. AP B) =0, k=2,3,.. 2
Ck Ck
T
lim %f ((1 - D)A,e' (1 - p)g) = 0 2
T » >
o

£ £ )
by which (cf. 2.81) the equation§ 2.85 hawe been proven to imply thetr analogon

T
lim o+ (AeiLtB)dt=(PAPe)+(P AP, B) 2
8 ' APy 30 P . .
(o)

Moreover it is seen that

T
Ao =00) = Nte | X (Ae' tB)de = ((1 - p. - p JAe Lt (1-p -p ,)B)
gl k=t 173
o]

2

equals a stationary correlation function and has all its features (cf. section

* : ! . -
) For a more detailed discussion of ergodic observables see sections 4.1 and 4,

86

.87

.88

.89

90

.91

2.4),

2.
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Appendix C.
Inserting 2.19 the time average of (A,e'LtA) can be written as

@

Pl dFAA(w)dt

) ——t
8

- -
0 ——

T
Iim %J (A,e'tA)dt = lim

T+ = T+

For further progress the following Jemma is proven (In the remaining part of

app. C FAA(w) is written as F(w))

k
1 emma 1im J e'“t 4F(w) converges uniformly on the interval t€(- =+ @),
k-»m_k
b b
iwt : iwt||d d rd
proof ‘J e dF (w) | < J e lldw F(w) |dw J = Flw) = F(b) - Fla),as Flw)
a a a

is real and monotonous non-decreasing, and therefore
a0

1]

which does not depend on t and converges to zero for k * =, g.e.d.

@

'T o9t 4r(w) - jwt

e dF (w)
k

+ < (F(=k)=F(~=))+(F(=)=F(k))

<

| ——

Due to this uniform convergence the integrals over F(w) and t may be interchanged

% - it : i iwT
f ( e'“t dF(w)dt = J f e'“Tat dF(w) = f e_".w_.l dF () =
gt - ® o - @
+ ® + @
o I sin wTl dFlw) = 1 f cos wl - 1 dF ().
w w

According to a lemma by Khinchin 13) taking the limit T » = one gets

T+ = + © + @
lim %I f et gF(w)dt = 1im f iﬂ?i*’l dF (w) - inmf Eﬁ—‘;’f'—‘ dF (w) =
T o T+ o Tow -

0T® - @ =
- lim SI0OT (p() - F(-w))- 0 tim S5 UTL(F(w) - F(-w)) =

wTl wT
W=+ 0 w0

= lim (F(w) - F(-w))~- 0. This proves 2.30.

w=+0o
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Appendix D,
One may split
iL

d iLt z iLt - iLt
= PAe B = |PALPAe B + |PAL(I PA) e B.. 2.92

An expression for the last term can be found through
iL
e '8 2.93

d - iLt 5 o iLt : a .
dt(1 PA)e B=i1 PA)LPAe B+ i(1 PA)L(I PA)

which yields

-

(1 - PA)eiLtB = ei(l x PA)Lt(l - PA)B + i J e;(]-PA)L(I-T)(I-PA)LPAeiLIBd
o

2.9%
Hence 2.92 takes the form
d iLt : iLt
—_— P =
gt AC B IPALPAe B +
t
; i(1-Pa)Lt " o i(1-Pa)L(t-1) ity
+ |PALe (1 PA)B f PALe (I-PA)LPAe Bd1
o
2.95
from which for B = A the equality 2.53 may be derived.
For (A’BI) = (A.BZ) = 0 one has ‘6)
(B'.(I-PA)LBZ) = (Bl.LBZ) = (LB‘,BZ) = ((1 - PA)LBI.BZ) 2.96
and thus
(a].e'("PA)L‘BZ) = (e (1-PALE 8,+8,) 2.97

or in words: within the subspace of operators orthogonal to A, the superoperator
(1 - PA)L is Hermitean and ei(]-PA)Lt is unitary.

Due to 2.4 AT = + A Implies (PAB)+ - PAB+, thus if A,A' A", A" " (anti)
hermitean then (L'--" B)+ = - Lteon gt (cf.2.36) and A'-*n' + A'" "', Hence all

A'""" are (antl)hermitean, all (W eiLl‘ x A'es) = (At-en el  SERUS

and all ' ,\Ig?(A...u'eiL" |Al.-..) I =0
t=0

T
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Appendix E.
Let {Kk} be a basis in the subspace of invariant operators. Out of {Kk} a basis

of hermitean operators can be constructed. (1
This basis can be orthogonalized by Schmidt's procedure; the resulting orthogonal

basis is still hermitean. (11).

< : + 3 t

: = = = K = i

Proof of |: Let Kk Kk if k<h X ¥, hence LKh+1 L hel 0 :nd Kh+l is an

element of the subspace and can be expressed in the basis {K } y K = z cK
k h+1 k=1.2.3 k k

Therefore one may define ’

+
if c -1 K$ . = + K = (c +1) K % & K
he b1 = Fhet he1 he1 bl et KK
+
" e A= 2 ¢ . :
i cpa 1R IR Kied = 8oy =0 Kt d B e K
k#Eh+1

In both cases Kg*‘ is hermitean and allowed to replace Kh+1 as a basis member. After
+
the replacement the new set satisfies: Kk = Kk if k< h+ 1. In this way all non

hermitean operators can be replaced and a hermitean basis constructed.

Proof of 11: Schmidt's orthogonalization procedure does not introduce non~hermitean
operators: Let {Kk} be a basis of hermitean operators. Schmidt's method yields
k=1
Ky =K, Ky =00 - PK.I.)KZ. K=K - .<E1 PK:(,Kk . 2.98
In order to prove the hermiticity of {KE} it is sufficient to show that, if

+ +
K: = Kt for k < h, then K!' . = K! And indeed, due to 2.46

h+1 h+t”
+ + n (K;'Kh+l)! + R (Ng’Kh+l)
Ky <Ry = % i T K= Ky s 299
k=1 (K, K) k=1 (K&K ¥
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Mayvritwv 8° fpxe MpéBoos, ...
Homer, Iliad, Second Book, verse 756, Greece, & - 800 -

The oldest description of an externally driven magnetic assembly
in a field (And Forerunner commanded the Magnetes, ...).

CHAPTER 3

FORM AND PROPERTIES OF 4. .(t,H)
ij

3.1 Expressions for oi.(t,ﬁ) and x ij(g)'
J

A system with magnetic properties is characterized by the fact that its

Hamiltonian is field dependent
I = 3(H) 3.00
The operator of the component of magnetization in the i-direction is defined by

T O el 3.01

M () = - 3,

= |-

o

In appendix F it is shown, that this definition yields the macroscopic expression
1.51. As ¥ is hermitean the same is true for H Provided that a Taylor expansion

of K(H) is allowed, an increment AH can be accounted for in the following way

2
KW+ oF) = %) + a“(“) MM, + 31 a%x(h) MUSH, % soecn 3.02
. 3H,aH, el |
" ij I3
i 1 9%(H + AR) 1 (A + af)
"(H+AH)--:BH ST BT 38H_ 3.03

one gets from 3.02 (if term by term differentiation is permitted) the expansion

B 1 ax(h) 1 azvc(ﬁ) 2 %c(h)
s b o BN Vg ﬁ*an aHJ’aHJaH i il 25

o |
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An additional problem is the differentiation of an operator in the limit of an

infinite system. However, most often the Hamiltonian is a polynomial in Hx, Hy, H

z

and for this case the method given is rigorous.

When AH is a function of time A(t) (1ike in chapter 1) not only the Hamiltonian
but also the magnetization operator is explicitly time-dependent (cf. 3.04). This im-
plies that the Kubo formalism should be rederived with some care. Doing so (Appendix F)

one obtains in linear approximation (cf. section 1.1)

h(t) = - I%(T.ﬁ)-b—ﬁ(t-r)dr + vx (A)-afi(t) 1.08
bwte ; - 8 > it Pt
¢..(t,A) = (Tr o (R, J Tr o (BN (e m(u) ;(H)H.(ri)e“h—J(H)d)«
IJ o o _| 1 3'05
and
vy @ 2= e e'e"”’f‘rr(e’e"”’e(%é%é%% gﬁfgg’}> : 3.06

For t = 0 the function - (t H) equals Kubo's Response- or After-effect function.

R
at
As ¥ is hermitean x_ (H) is real moreover x_ (H) = X (H) The x (#) tensor,

which is part|CUlarly important in d:amagnetuc systems, ns seen to occur whenever the
hamiltonian contains terms which are non-linear in H. Higher derivatives in # should
not be expected to contribute to the magnetization variations, as far as the linear
approximation is concerned. Both in 3.05 and 3.06 none of the operators is explicit-

ly time-dependent; the symbol B has been used: 8-| = ka. k being Boltzmann's constant,
and Tb the temperature of a bath with which the system has a very weak thermal con-

tact (cf. section 4.7).

3.2 Choice of a scalar product.

18) 7) 19)

Defining the scalar product in operator space by

- 11 g ) = . < >
(a,8) = (8Tr & FC(H)I I Tr o (8- AR(H) o= (H) g gy 3.07
(+]
which meets all requirements of chapter 2 (cf. 2.01, 2.02, 2.03, 2.09, 2.46) one may

conveniently write 3.05 as
01506 = ug ), e 0, ) 3.08

(The H dependence of HJ H and L will henceforth be omitted from the notation.)
Thus ¢, (t H) equals a statlonary correlation function of the type (e'Lt‘A 'LtZB)
is contunuous and has continuous time derivatives of arbitrary order (cf. 2.14, 2. 31)

Due to Schwarz's inequality (2.07) it is bounded (cf. 2.80)and, H;(ﬁ) and Mj(ﬁ) being
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hermitean, it is real (cf. 2.51).
Egs. 2.51 and 2.11 imply

¢Ji(t.H) - ¢ij('t.H) . 3.09

Furthermore the spectral density function s (w,H) = BuoSMJH (w), its Hilbert trans-
form, and the time average of 0 (t ) are well defined (2.34, 2.36, 2.37). In
particular the diagonal tensor elements ; (t,H) equal autocorrelation functions,
have real, positive non-definite spectral density functions (cf. 2.25, 2.26. 2.27) and

satisfy 2.53 and resulting equations.

3.3 Memory spectrum and susceptibility.

If 2.85 is satisfied by Mi and Mj (i.e. if these are ergodic observables), one
has (1.13, 2.91)

- A > — - lLt
@ij(t.H) = °;j("”) - %..(H) = Bu ((1-P

ij i K')Mj’e

(1-p -ﬁn,) .) 3.10
which has a form analogous to 3.08% }s Consequently @. (t,ﬁ) has all the features of
Qij(t,ﬁ) listed above. E.g. taking A = (1 - P' - P )H s 2.53 implies (as A' =
(1 - PA)LA = LHi)
t (. ,ef (1=PAIL(E=T) )
d v I I *
7 @ii(t,H) 1 I 3 B = ¢ii(r,H)dr 3.1
o (Hi'Mi) . (I,H;) = O(.'Hi) (e xct)

and the relation between memory function and memory spectrum (2.64) reads in this

o i(1-Pa)Le,

2 iwt %
(LHi,e Hi) = J-me SLHiLMi(w.H)dw 3.12

I f ¢?i(t,§)u(t) is square integrable, such that 1.18 holds, if no undamped oscillations
(i.e. 6= and P-functions at w # 0) occur, such that ¢?i(t,ﬁ) = ®ii(t,§) **%) and if the

Onecould - at the cost of a non-unitary scalar product - choose the definition of
Nakano 2 ) and Mori ) for that and - in analogy to Terwiel and Mazur ‘7) - avoid
the ergodicity condition forcing 0 (t H) into the shape of 3.08 rightaway. The
resulting increase of general ity bevng of little practical interest, this method
has not been followed here.

—_—

s
\t is clear that the same argument cannot be given for ¢; (t,ﬁ) instead of
(t W), as ¢ (t ) = %15 (t,A) would demand ¢ (H) = 0.
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Laplace transforms used exist, then 1.18, 1.48 and 2.55 imply that

-1 xai(“'ﬁ) N Xii(o'ﬁ) -1
1(iw) (A,A) = - — (~iw) . 3.12a

Inserting this into 2.70 one obtains for the memory spectrum

wxtty (s F) O (0.F) = xq; (M)
. 3513

(w,h) (A,8)7 =

"S.
M.LM. > ok
W (! @ f) = x;; (OFP + G (w82
vx; (@, H)
As a;osAAho)zsii@.H) & ——————— , 2.71 takes the form f
W
[
{ m2n+2x“(w'n)w-ldw =
+oo +oo
=4 -1 -21 > =1
- ‘§ [ ms!y ou. (0oH) (A,R) uzzduj o X (w,He Tde . 3.13a
L=/ = i -
Using 2.60 one gets (w = 0)
xiplaof) = xg (00 ) 1
= s e 2 - 3.14
xi 1 (0.R) = xg;; () o+ 1 (i) (A,A)
which implies
! (w, ) = x; . (0,H) w + Im l'(im)(A,A)-l
LA ()
= S : 1,2 v L
rolx;; (0,8 = xp (M) (wrim 1 (i6) (A,R) )% + (Re 1 (i0) (A,A) )
i Xt (1, ) Re 1" (iw) (A,A) "
- e 1,2 S e
wlxp (0 = x_ ;) (wrim 1 (W) (AW T + (Re 11 (iw) (AR) )
First example: resonance and single relaxation.
If an absorption spectrum is known to consist (approximately or within
a certain frequency interval) of two Lorentz lines at center frequencies
sy with equal intensities | =1_= % (xii(o.ﬁ) - Xwii(ﬁ))" such that
X..I~(Wyn) 2 &
L - S ((1+(m-u°)212 i (l+(u+w°)212 N 3.17

X (0.F) = x () 2

Ld )

and if the dispersion satisfies similarly the corresponding relation

x4 (w,R)=x; ; (0,H) 4 2.2,-1 2 2,1
5 - 2;l ((m-wo)r(l+(u-uo) ) +(w+m°)r(|+(w+w°) ) 3%18

xii(O.ﬁ)-x
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then the memory spectrum is given by

i) (an " =Ly ]

at 1 +wr

"SLHiLHi 3.19
I f w, = 0 the two lines coincide and constitute a Debye line at w = 0 to which a
frequency independent sLH LM(w H):sseen to correspond. This holds within any inter-
val around w = 0 un which absorpt|on is purely Debye-like. Conversely, using 3.16
Mazur and Terwiel ) have shown that a memory spectrum SLH LM; (w,H), that is
frequency independent in a large interval around w = 0 lmpl:es such a Debye line (in

other words a single relaxation in the time domain).

Second example: double relaxation.
If an absorption spectrum is known to equal (within a frequency interval
around w = 0) the sum of two Debye lines with relaxation times T and ) and inten-

sities |, = a(x”(o.ﬁ) = % (M)m, 1,71, = a/(1-a) such that

x?.(w,ﬁ)
— = aur, (1 #6021 - Bdur, 1+ WPeR)T 3.20
(0,7) - x ()
and if the dispersion similarly satisfies
X! (M) = x;,(0,H) ; 2
L = — e g auzrz(l + uzrf) ¥ (1 - u)uzrg(l - mzrg) ' 3.21
Xp; (0.H) = Xz (H)
then the memory spectrum is given by
> -1 a 1-a 1 1,2 T
ns' (w,H) (A,A) = 4 —— = a1l = a)(—~-—) 3.22
S Iy T Y et

where

'/'( = __1'(1 + = .
T Iz

Like the resonance case the double relaxation is seen to give a Lorentz shaped con-

tribution at w = 0 in the memory spectrum. Here however the contribution is negative.

3.4 The scalar product of some special operators.

(1,1) =1 3.23
©8,8) = (Tr e 1r ¢ ™ (08")a = (1, (08")a) = (1,a(08")) 3.24
(1,8) = (Tr ¢ V1r ™ 3.25
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(,A8) = (1,80 = (1,A) (1,30 + KTZ =2 (1,A) 3.26
b
lim(A,8) = TrA B/Trl 3.27
pr0 -1 -1 -
(A,L8) =g & (1,[A",B]) 3.28
t 1
(A,8) < (1, AZAR 3.29

iLt

which may be combined with 2.80 to give a bound for (A,e ~"B), or with 2,07 to yield

Boguliubov's inequality

Wy T L p)a,L8)|% _ -1, -1 [0, (A",8]) R e, 3

(LB,LB) (1,0-L8 ",8])

AT+ TA

(1, 285

3.5 |Inversion of the static field.

For electromagnetic interactions the gq- (place, angle) - representation Nq(ﬁ) of

the hamiltonian K(ﬁ) obeys
> > K *
I (= = (% ‘
q( H)f(g) = ( q(H)f (q)) 3.31

for any square integrable f(q).

Let A(H) be an observable, of which the operator in q-representation Aq(ﬁ) obeys
A_(-A)f(q) (A () F (g " 3.32
- =0 .
q q A'q g
for similar f(q).

It is shown in appendix G that if Bq(ﬁ) satisfies a similar relation, the scalar

product obeys

A, e M) = (o a(-H),e M g () * 3.33
implying @ij(t.ﬁ) = QTJ(-t,-ﬁ) 3.34
and Xw;j(ﬁ) = Xwij(-ﬁ) ) 3.35

As the relations 3.31 and 3.32 are not independent of representation, this type of
symmetry cannot be derived within the framework of chapter 2.

One implication of 3.34 is the invariance of xii(w,p) and.all related expressions

3.12a to 3.22 with respect to inversion of the static field.
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3.6 Symmetries.

The symmetries that have been found may be listed as follows

M operators hermitean (cf. 2.52)

815 (6 = o4 (c,H) s;5(0R) = st (-u,f)
7,0 =76 CROUORE ROLED
-> > * .
Qij(t,H) = o*;j(:,n) Sij(w,H) = Sij(’“"”)
(W ) = g (e B -x L () g
V(X,J(w ) xmu( . XIJ* XulJ Xij(u'm ,X?j(_u'g)
xwij(H) = x;ij(H) cf. 3.06
Correlation functions stationary (cf. 2.15, 2.35)
¢ij(:.H) = o’}i(-t.n) = 4’);(""" siJ.(w.H) = 5‘};(“-”) = sji(-u.n)
§ 0 =30 =7, 0 7 M8(0) = 34, (F)6(w) =3;; ()6 (-w)
oij(t'H) » o}i(-t'H) - jS(-t'H) Sij(“’vH) - Sj:'i(er) - Sji('U.H)
Inversion of the static field (cf. 3.34)
¢15(6H) = 0yt R) = ¢, (e, ) sij0 M) = s u, ) = s (0,-R)
T 0 =060 =500 ¥ M8 = 7, (Mew)=F;; (F)s(w)
eij(t,ﬁ) = o”(-:,-ﬁ) = eji(z,-ﬁ) sij(w,ﬁ) = sij(-m,-ﬁ) = Sji(w,'ri)
(x; (@, ) xg; () = vix;;0,A)=x_ .. (-H) .
v X;j w X.,lJ *v in ® ) iji Xi-(“"m .x'i(w'-H)
X ) =gy () = x5 () cf.3.35 ! e
AEEendix F.

Using the standard method of quantum statistical mechanics one has - due to
the Schrédinger equation - the following equation of motion for the time dependent
density operator p(t) (Schr8dinger picture)

ddtt) L& ni[xt"’(t)] ) X, 32 H(H + a¥i(r)) 3:36
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|f before the start of the measurement, at time tp, a description by a stationary

density operator is adequate

ou<:g-pug.aqp-ﬁp-MMJx%mugl-o 3.37

then p(t) satisfies the identity

2 t ~
p(t) = olt) i Jt e-'L(t-’)lﬁ’r - ti. o(t)]ldr, LA = h-][J(tp,A] : 3.38
P

For the explicitly time dependent operator Hi(ﬁ + AA(t)) the statistical average

equals Tr Hi(ﬁ + Af(t))p(t) =

: (t :
=Tr M (H+ Aﬁ(t))p(az -5 J Tr M, (H + Aﬁ(:))e"L("’)[;q‘axt 0 (1)]dr =

t
P B

a4 (W) a%x(u)

dH.9H, aHaH;
J J

s Tr M ()o(e) - - Tr E(a{

o

}AH (t)o(t ))

2 # =iL(t=1) - N
5[ e B = ug [ ) o (2) 16 (1) 3.39
P

(linear approximation in Aﬁ). The first term is the average magnetization before the
measurement, the second is the contribution to the magnetization variation from the
non-linearity of #(H) (to be comprehended in ;;) and the third term is the well=known

Kubo response. For a canonical density operator (cf. section 4.7)
ple)) = (1r e tp)~1e HMtp 3.40

the expression 1.08, together with 3.05 and 3.06, is found after some algebra, where

use is made of
AHi(t)

Tr M, (W + 8R(t))p(t) = Tr ni(ﬁ)o(:p). 3.41

In order to derive 1.51 it is again convenient to use the statistical density
operator method in the Schr&dinger picture. The derivative of the statistical
average for the explicitly time dependent operator X(H + 4Fi(t)) equals

a(a(H)+aH(T)) daH, (t) e
Tr(Reafi(t) o (2) = Tr(z —)p (£)+Tr (Rt (1)) g 0 () =
i a(H +8H, (t)) dt

d
dt

= = Tr(zH, (Feafi(£) ) AR, (£))p (1) - STnK(H+Aﬁ(:))[x(ﬁ+Aﬁ(:)>.o(t)l -
|

= “ug (2T M, (2R (t))p (t)aH, (¢)) . 3.42
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Integration yields, as AHi(tp) = AHi(tf) = 0, eq. 1.51

tf ey f . s f.
AE =It d—dtTrJ((Hi»AH(t))p(t)dt --uorli?AHi(t)AHi(t)dt-uc'}]:Tr Ni(H)p(tp)rAHi(t)dt

t t
P P P

e 3

-‘uoj AM(t)«AH(t)dt . 1.5123.43
t
P

Appendix G. Inversion of the static field.

For electromagnetic interactions the q-(place, angle)-representation Mﬁ(ﬁ) of

the hamiltonian K(ﬁ) obeys
x () F(a) = G @ ()" 3.31

for any square integrable f(q), this implies

- 1 2 B
Niq('H)f(Q) - - :; EFT Kq(h) Tr==Ti f(q) =
1 3 - 1 2 +>, %k * -, % C3
= ;; SFT XA(‘h) Bl f(q) = :; EF?(“A(h)f (q) i -(Hiq(H)f (q)
3.44
i 2% (R) 2% (-R)
S S »f(q)-J—-p-»f(q)-
== H h=H
ah.3h, ah.3h
) 53 |
2 3% (h)
2 > % * e =
= @ (R)Ff (q) [z2= ( 2 f (q)) . 3.45
ah,oh, I lh’“ ah, ah, -

Let y(q;t) denote the g-representation of a state vector ¥(t) which under the

hamiltonian #(H) evolves according to

a_az ¥(t) = - ;1 () (e) = % p(g;t) = -f—, qu(ﬁ)w(q;t) . 3.46
then
= ¥*(q;t) =1h(xq(ﬁ)¢(q;t))* -2 yxlgit) = - %, (F)y#(q;-t) 3.47

Apparently y*(q;~t) is the q-representation of some state vector ¢(t), which under

R(-ﬁ) evolves according to

-:-t o(t) = - L a(-H)o(e) . 3.48
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on omte -
In this way every ¥(t) has its counterpart ¢(t). This relation constitutes W1 inear
mapping of {¥(t)} on {#(t)} often called the antilinear unitary operator of time
reversal, K: K¥(t) = ¢(t).

It should be noted that this operator K is as tightly bound to g-representation
as is 3.32 on which it is based. Starting from different representations correspon=
ding, different types of time reversal may be constructed which may differ from one's
icommon sense' notion of time reversal which is based on g-representation. Therefore
it is suggested that more stress could be given to the particularity of the
K-operator e.g. by fixing an index: Kq. Here the K-operator will not be used at all.

Let A(fi) be an observable, of which the operator in g-representation Aq(ﬁ) obeys
- -, X *
Aq(-H)f(q) = ap(A () (q)) 3.32

for any square integrable f(q). The expectation value of such an observable in the

field H, for the state ¥(t) equals
<¥(0)|AM) [¥(t)> = jw*(q;mqm)w(q;:)aq : 3.49
In the field =H, and in the state &(t) this is

<o (t) |A(-F) |e(t)>

[otaron,(Rrv+(ai-t)da
([o*artiagh Meai-da)’

<v(-:)|aAA(ﬁ)|v(-:)>* . 3.50

The scalar product definition 3.0? may be given in the form

eiL(_ﬁ)t

> B8 -+
(A, BH() | )1 [  ck|er(BNXM),,

B) = I<n|e
) (Bn n| g k,1,m,n

<l|A+|m><m|e-xx‘H)|n><n]eix(H)t/hBe-ix(H)t/h|k>dA 3.51

where {|n>} is some basis in the Hilbert space of state vectors. A set of energy
eigenvectors may be chosen as a basis. Let Vn(t) be the n'th eigenvector of #*(¥) and

E the corresponding eigenvalue, and let there be no degeneracy. Then the set

{vn(o)) is such a basis and
(AreiL(H)tB) -

- 118
«(ze 5En) IJ
" o

kfme‘(e‘”ﬁqu(o)|A“|vm(o)>e"5m 3.52

'x(ﬁ)t/hse'ix(ﬁ)‘/blqéo)>dx.

<!m(0)|e
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The last factor in the integrand equals <‘l’m(t)[8!‘fk(t)>.

For the opposite field direction the hamiltonian is (- 'ﬁ) having a different
set of eigenvectors. As J((H)\P (t) = €Y A (t) “3( (H)d' (q;t) = alat) =
J(q( H)\b (q;t) = E* w (q;t) (qu does not mterfere mth the t- dependence of y(q;t))=
9( (-H)p (q,-t) = E*w’(q.-t) = ¥H(- H)* (t) = E‘@‘(t) the counterpart ¢ (t) of ¥ (t)
:s seen to be an eigenvector of (=~ H) with eigenvalue E If there is no degeneracy
the set of counterparts is a complete set of eagenvectors and (~:n(0)} is a basis.

Thus not only

o 12 8
(A ,e M ta@)) = (areEEn)~! ; f e BNy (o) 1at @) [v_(0)>
n k,m S m

0
e AEm <¥, (t) [B(H) |¥, (t)>dr 3.53
but also e g %
(AGH) o™ () = (sze “8En)-1 mj e (BNE o (0)|aT () |s_(0)>
»o

e-AEm<Om(t)|B(-ﬁ)l0k(t)>dk i 3.54

I1f A(H) and 8(H) obey 3.32, one gets for the scalar product the relation

G e @ g i) (agh(-) e E g(.ipy)* 3.33
and especially for the magnetization operators (aHi = aHj = -1, cf. 3.44)

(" P @) (i, () e TRV () 3.55
implying

65 (e ) = ofj(-z,-ﬁ) . 3,34

As the relations 3.31 and 3.32 are not independent of representation, this type of
symmetry cannot be derived within the framework of chapter 2. Analogously one derives

(as Gy = oz = 1, cf. 3.45)

Vi ) = = 2o (127 = - L (o) 1,0,20%0(R) = v () L 335

O O J

with

2%(%) 35 (h) 2% ()

hoan; Rt * SR, [hah
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Re ipsa autem cum ad idem, unde semel profecta sunt, cuncta astra
redierint eandemque totius caeli descriptionem longis intervallis
rettulerint, tum ille vere vertens annus appellari potest.

M.T. Cieero. De Re Publiea, VII, 16 (Sommium Scipionis), HRome, = §3.

An early appearance of the Poincaré cycle.

really called a year going by).

~
o
A

CHAPTER 4

STATIC SUSCEPTIBILITY

In absence of a varying contribution to the magnetic field
the system is not explicitly time dependent and in the limit of
a large set of theoretical tools becomes available: the concept
system temperature and the theory of equilibrium thermodynamics

heat, adiabatic and isothermal susceptibility etc..

L.1. Ergodicity.

An observable A is said to be an ergodic observable of the
almost every initial state, the time average of the expectation

near the expectation value of A averaged over the set of energy

, however, when all stars will have returned to the same
from which they once started, and will have restored
£ the whole heaven in long time intervals, then that

the hamiltonian of
an infinite system
of ergodicity, of

including specific

system, if, for
value of A is very

eigenstates with

eigenvalues near the energy expectation value E of the initial state. Such a set is

called a microcanonical ensemble, the average over this set is notated as <A>E.

4,2. Time average of the autocorrelation function of an ergodic

observable.

Mazur 20) has shown, that the time average of the autocorrelation function of

an ergodic variable A satisfies

r *
lim 3 | (Ae'"A)dt = (P AP A) + ("R,"A)
. T o
with
m {
Aau - “aB s A4+ PI)A>E % Eo - Kau

4.01

4.02

in a representation which diagonalizes H; for reasons of simple notation both

observable and operator are designated with A, According to Tjon 22) and Mazur

20)




one moreover has
("A,"R) = (PyiA,PyiA) ; 4.03

These relations hold for sufficiently large systems and under conditions, which, at
least if one excepts phase transition points, are believed to be fulfilled in the

20).

underlying situations Combination of 4.01 and 4.03 shows an ergodic observable

A to satisfy 2.85. lff"he observables A and B“M ergodic, their operators obey

lim o J (A,e'tB)dt = (P AP B) + (P,A,PyB) . 2.90
(o]

T—m

Thus if Hi and Mj are ergodic observables of the system without field variations, the
zero frequency susceptibility as measured through a very slow field variation

(isolated susceptibility) equals (cf. 1.45)

Bu

x:.(0,H) = w|J(H) A L {(n M) - (PlHj,P M) - (PK,HJ,P

i I X,Mi)/ L.o4

an expression to be called adiabatic susceptibility (cf. 4.4).

4.3 Canonical ensemble.

When all relevant observables of a system are ergodic the system may be called
ergodic and microcanonical averages may replace time averages throughout. Using
standard arguments the microcanonical ensemble on its turn can - in the limit of an
infinite system - be replaced by a canonical ensemble, i.e. a set of states, which
yields the same average expectation values as does a set of energy eigenstates when
weighed by the Boltzmann distribution function for a certain temperature Tb. The
description by a canonical ensemble was used by Wilcox 7) to derive expressions for

the adiabatic and isothermal static susceptibility.

4.4 Adiabatic susceptibility.

In thermodynamics the adiabatic susceptibility of a system is defined as the
derivative of (the expression for the canonically averaged expectation value of)
the magnetization, under the condition that the average energy interchange between
the system and the bath to which it is coupled be zero. According to this defun:t|on
Wilcox 7) has derived an expression which after correction for diamagnetism ) may

be written as
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& N Bu
xad;J(H) = x,ij(H) +T°- {(Hj.Hi) = (PMLPM) - (RM P MY L koS

One might wonder if such an approach in which time plays no role is so realistic as
to describe an actual experiment in which the field variation however slow is essen-
tially a function of time. But comparing 4.05 with 4.04 it becomes clear that there

is no reason for such doubt: the adiabatic susceptibility is seen to equal the zero
frequency susceptibility found in 4.2 for a system in very weak (cf. 4.7) contact with
a bath (isolated s.) in case M, and Mi are ergodic (cf. 4.04). If M, and Hi are non-
ergodic or if the system is too small, no such experimental interpretation of 4.05

can be given. Still 4,05 keeps a formal validity and the expression keeps the name
""adiabatic susceptibility'. Mazur has pointed out that a discrepancy between this
formal adiabatic s. and the isolated s. proves the non-ergodicity of the magnetization

in the system - provided that it is large and not in a phase transition.

4.5 |Isothermal susceptibility.

In thermodynamics the isothermal susceptibility is defined in a way similar to
the adiabatic one i.e. as a field derivative of the average magnetization, but under
the condition of constant temperature. Again one may ask for the experimental situa-

tion in which the quantity can be measured. The isothermal s. may be written as

By
X°i_;m) = xmlj(ﬁ) + T° ((Mj,ni) - (PIHJ.,PIHi)) 4.06
an expression in terms of the scalar product 3.07 and corresponding projection
operators, which contain only the system hamiltonian (in absence of field
variations). Although in any measuring situation the condition of constant tempera-
ture implies that the system has a good contact with a thermostat, the hamiltonian
of the latter or the interaction, do not appear explicitly in 4.06; the only para-
meter in 4.06 pertaining to the thermostat is the temperature Tb' This is inherent
to the canonical description.

It is instructive to see, how 4,06 can be derived from 4.04. Consider the sys-
tem, interaction and thermostat as a new system, which may also be supposed ergodic.
It makes no difference to assume the new system in very weak contact with a bath of
the same temperature as the thermostat. Therefore 4.04 holds for the new system, but
Hj'“i' the scalar product and the projection operators now belong to the new system.
If the extra terms in the hamiltonian are field independent, 3.01 and 3.06 yield
essentially the same magnetization operators and x_-tensor as for the original sys-

tem such that (Hj.Hi) and (PIHj,PIHi) stay practically unaltered. The character of
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ﬁk, shows "an important change: the new ' contains a contribution from the big
non-magnetic thermostat. Therefore PiM; is expected to be very small and 4.04 for
the new system implies 4.06 for the original one. Indeed the isothermal susceptibility
of a system equals a measurable quantity: its zero-frequency susceptibility if it is
strongly coupled to a non-magnetic thermostat. Again even when this experimental
interpretation cannot be given, 4.06 keeps its formal validity and the expression

keeps the name '"isothermal susceptibility',

4.6 Specific heats.

The canonical description used in the definitions of ;;d(ﬁ) and ;;(ﬁ) can be
identified with equilibrium thermodynamics. Using this older language the difference

between xo__(ﬁ) and xad"(ﬁ) can be expressed in terms of the specific heats Cy
ii ii

and CH ;

&) /€ 4,07

(x M, i’ H,i

ory M) = Xpq, /x, () = (€, - ¢

where cH,i(cH,i) is the specific heat at constant field (magnetization) and constant
magnetization- (field-) components in other directions than i. The extension with a
non-magnetic thermostat as used in 4.5 does not affect the numerator while enhancing
the denominator, which illustrates the relative weakness of the RK'Hi contribution
in another way.

4.7 The canonical average in the Kubo formalism.

Kubo 2) justifies his use of canonical averages in the derivation of 3.05 through
the assumption that the actual system may be divided into a great number of identical
systems, which develop independently in time and are sufficiently large on their own,
and that - before starting the measurement - this set of systems constitutes a
realistic canonical ensemble. (This explains the Boltzmann-1ike factors in 3.05.) To
this end the system was assumed to have a very weak contact with a bath of tempera-
ture Tb. Very weak means thus that the contact is good enough to warrant the Boltzmann
distribution at the start of the measurement. It should however be so weak that it
may be neglected in the description of the measurement. The expression 3.05 describes
the time dependence of the measured magnetization in presence of time dependent field
variations, whereas the canonical ensemble averages introduced in 4.3 essentially
stand for time averages in absence of such field variations.

Obviously Kubo's justification does not rest on ergodicity of observables (in the

course of the measurement, when the coupling to the bath is neglected) and in this
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sense non-ergodic observables can be handled. The following argument does give a
justification based on ergodicity. The experimental fact, that measuring results are
= within the accuracy asked from the description - independent from the time at which
the measurement is started, implies that a theory describing an average over starting
times would be sufficient. But the states in which the systems would be at those
starting times are the states through which the system evolves when not starting the
measurement at all, that is the set of states involved in taking a time average in
absence of field variations. Indeed it was seen, that this set can be replaced by a
canonical ensemble as far as averages over ergodic observables are concerned. However,
the observable wanted ergodic here is not Jjust magnetization but magnetization at a
certain time after having started the measurement (in presence of a time dependent
field). Though a formal unification has thus been achieved, Kubo's argument has a

more general validity and is based on less complicated assumptions.

4.8 Extremely high temperature.

In the 1imit of infinite temperature (g+0) the term (pIM"PIHi) vanishes, if in
the same limit the canonical average of energy (1,%) (cf. 3.11) is independent of the
field (i.e. if =— 1im (1,%) = = Tr X/Tr | = 0)

3Hi g+ i

i aH
- - 78 3
lim (P M,,P.M.) = (Tr 1) 2Tr M.Tr M, = (Tr 1) 2Tr 2L Tr L
i a7 iy | J i oH. aH.
B+o J i
3 TrK 3 Try .3 . 3 » ”
= Ga 0GR T = G lim (L,30) G tim (1,30) = o,
J i J B»o i B+o 4.08

4.9 Short survey of static susceptibilities.

Equality 1.45 states

XisM) = X(0,8) =5 0 + V50,8 = LA + v (Fo.) - TH) . 1.4

According to 2.82

-1 =1= >
B p ¢ij(H) = (Plﬂj,PIMi) + (PJ(,Mj,Px,Hi) +

(P. M,,P. M.) +
o ckJ kl

z
k=2,3..

1 v iLt
+ lim = ((1 - D)M,,e (1 - D)M,)dt . Lk.09
T X o J !

Insertion into 1.45 and comparison.with the various definitions given in the sections
k.4 and 4.5 yields
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- - -1 ;
Xy €0 = gy )+ By LML) = (PMGP ) = (P Py)
il

= Xadij(H)
: 1 T iLt
- I (Pc M.,P. M) - lim= J (1 - D)H.,el (1 = D)M,)dt} . k.10
k=2,3.., Ck J" Ck e, T g J i
About this sum the following remarks can be made
Tw(ﬁ) =0, if X is linearly dependent on H.
(PlHj'PlHi) = 0, if the temperature is extremely high.

(PK,HJ,EK,HE) - 0, if the system contains a thermostat.

Last "'two' terms = 0, if the system is not in a phase transition and the
magnetization components are ergodic observables of the

system.

Last term = 0, if the Hilbert space of state vectors has a finite
dimension.

Finally some inequalities for the diagonal tensor elements will be given.

Due to 2.30 and 2.42 one has the relation

0 <

©

() < ¢,,;(0.H) b1

ii
from which (cf. 1.45)

- - -

X:..  (H) = x“(O,H)g_xm“(H) - k.12
Furthermore, for i = j, all terms in the right hand side of 4.09 are non-negative;
therefore one gets (also using 4.12) the inequality

1°ii(k) 2 X (H)

adil :Xis;;(H)ZX"(H) - 4.13

@il

This is valid for any choice of the xyz-frame. The differences between the various
tensors are thus positive non-definite tensors. The inequality 4.13 is illustrated in
figure 4,01, where also the bounds and values of @ii(ﬁ,t) and 3}i(ﬁ) are indicated,

together with a possible specimen of @..(ﬁ,t) vs. t (to be read upside down).
P ii
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for an ergodic system.

Appendix H. Illustration to the proof of Xadij—: ) 55 9ol
1]

Here an illustration will be given to the proof of Xadij X e
i

the proof of which in 4.2 was based directly on the perhaps rather aéstract concept

This equality

of ergodicity, will here be made plausible by an argument depending on ergodicity in
the more common way through canonical statistics and thermodynamics.

The invariant operators,

Let the system, just for this illustration, be large but finite and have a
discrete spectrum of Z, non-degenerate, energy levels. Any operator D, which is
invariant in time (commuting with i; diagonal in X-representation, a meaningful
concept here) then is a linear combination of powers of ¥

l

D =

1
aékk with#® = | 414
k

0

e~

One might call the set {Kk} a basis in the subspaceof invariant operators. In section
2.7 use has beenmade of an orthogonal basis of hermitean operators in this subspace.

By means of Schmidt's orthogonalization process such a basis is easily acquired here

k=1
CZL,CsX =(1 -P)K, C, = &= T P ¥* 2 4,15
] 1 I k c
k=0 K
The difference between y ., and x, was seen to be
ad|J lSij
B 1-1

u
W) = xoo () =<2~ 5 (P. M,,P. M.) +
Xadij( ) X:sij( v k=2 C J? Cp i

Tugpg 5
+Iim.'r—J = ((I'D)Hj.e'Lt(l-D)Hi)dt . WITE
o

T+ s

According to Wilcox the last term vanishes under the circumstances assumed above.

Furthermore

) S uoB
x°ij(H) - xadiJ(H) e (PJ('"J"PJ(-"i) ; 4.17

Translation into equilibrium quantities.

The illustration consists of an explicit translation of the first terms of 4.09
into (optionally thermodynamical) quantities of the system in canonical equilibrium,
from which their order of magnitude may be estimated. The system has already been
assumed to be sufficiently large, in which large means: consisting of a large number
(N) of interacting subsystems. |f the system is also able to, and indeed does,
develop in time through a series of states, such that the time averages of relevant

observables are equal to the corresponding canonical ensemble averages, = no matter
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k%)

In that case the value a, measured - without disturbing the canonical equilibrium -

how this has been achieved*) - equilibrium thermodynamics are expected to apply

for a quantity A, is predicted to be

a_Il’_eTu_(A_- (l.A) . 10.]8

Tr e

u = (1,%) 4.20
and
2 3
(|,A3()-(|,A)(|,J€)+ka-a—T(|,A) " 3.26

Introducing the abbreviation

R .21

aTb

azk

one may now write

(P,HJ..P,Hi) - 'f‘i’:‘j 4.22
m.m,
(PreMePic) = —52 4.23
s (@0 - m.0) (@ 0 - m,a)
' - k.24

(P MPC M) = = : : 2
¢2'rPea"? 200 ()" + 82u(i)? + 2836(0)2 + 28 ()3 - g2 (@)%

From thermodynamics one knows mi,mj and u together with their temperature derivatives

to be extensive parameters, that is to be of the order N (all in the limit of very

large N). In this way

2

(PIMJ,PlHi) = Tir?j n N 4,25
rnim. 1

(PeiMpPyes®) = —g_lz.', bl 4.26

%) |t is not necessary that the system automatically acquires such a type of time

development after a very long time or in other words ''tends to equilibrium',

%*%) |nsection4.2only the Mi have been assumed ergodic. This ismore subtle than to suppose
the system (i.e. all relevant observables) to beergodic, which warrants the existence of

such a time development.
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Retaining terms of highest order in N one may further approximate

(mi& - .&iu)(fﬂ.a - th.a)

(P. M. ,P. M) = n N° h.27
€2 j> Cai Zsb(u)h
(m, (W)2 - 3,00 - 3m, (@)2 - ;G0 (idem for J)
(Pc M.,Pc Mi) B vy ~ N . 4,28
393 68~ (u)
Though higher terms have not been checked, it is tempting to approximate
() O s @ B ke e by e oy e
X = X; =y v I ' ) = v s +) <<
adij anu [ k=2 Cx J' C i Yo Ca j" Coi
-1 -+ -+
Rl (PK"‘;'PK'";) x Xoij(H) Xad; j (H) . 4,29

Conversely Caspers et al. 23) have made an analysis of expansion 4.16 in order to
study ergodicity in systems, of which the hamiltonian shows a certain type of
structure encountered in most models and realistic systems.

Link with thermodynamics for i = j.

The equality

Sz i =G o
() -l el ) 4.30
i CH ] Oji
3

was already discussed in 4.6. The next term may be written as

—l -
u BV (ﬁK.Hi.RK.Hi) - xoii(H) Xad;

-1 Lot A ) Hyd “M,i 3,2
u BY (Pcz'kpcz“‘.) = ¥ e 3 o:: (1%}
b g A "
b"H,i o
T | -
(1% e+ g o S 1.31
H,i H, b H,i b
such that in the same approximation as in 4.29
L R
> > 1 3 H,i M, i +>a¥. 2
-y e o (Tl i
xad-~(H) thi;(H) 28 (Tb aT ( 2 o;;(H» } 8.32
" ® ToCh, i
’

which indicates that difficulties may arise if strong temperature dependences occur

in specific heat, as may be the case at phase transition points, where the argument

of 4.2 may not apply. Even if the approximation in 4.29 and 4.32 is not valid, the

expression 4,31 constitutes a lower bound for Xad;;(ﬁ) - xis;'(ﬁ)'
]




Conclusion.

In a system with non-degenerate energy levels one has for large N, at least if

one excepts phase transition points
(H) = (H)

fadjj = Xingy

if the system can be in canonical equilibrium (there may be ergodicity to warrant

this). It should be emphasized that, although the difference between xad..(ﬁ) and
il

*15'~(g) has been expressed in terms of the system in canonical equilibrium, this
L}

does not imply that Xis-'(ﬁ) can be directly measured in that state.
(B ]




he old English meaning, are things not
I have only the dimmest views of the
modern meanings attached to those terms.

W.R. Hamilton writing to P.G. Tait, 1862.

CHAPTER §
THE HAMILTONIAN OF A SPIN SYSTEM.

5.1

Up to here only few specifications have been made about the kind of system to
be investigated: it should be magnetic, i.e. have a field dependent hamiltonian
(3.00) and for a given value of the field this hamiltonian should have a discrete
spectrum of energy eigenvalues, most often becoming quasi continuous in the limit of
an infinite system. (In fact the theoretical argument given has a wider validity
still, as only small modifications would be needed to describe systems, the
hamiltonian of which depends on some other external quantity than the magnetic field).

Henceforth the rather general theory will be further evaluated for a special
class of magnetic systems: crystals containing ions with incomplete electron shells
('magnetic ions'); in particular those ions of which the single ion hamiltonian can,
in good approximation be replaced by an expression written in terms
of (effective) spin operators (Sn)x’ (Sn)y and (Sn)z. Such an expression is called
a spin hamiltonian 2“). Usually the electrostatic interaction between the magnetic
ions and the non-magnetic ions surrounding them is included in the single ion
hami ltonians.

The hamiltonian of a crystal may then be divided into four parts:
| The sum of spin hamiltonians (Z...).
Il The interaction between magnet?c Jons) {5 e

m<n

11l The hamiltonian of lattice vibrations and of non-magnetic ions.
IV The interaction between magnetic ions and lattice vibrations and the modulation

of |l by these vibrations.

In principle one may apply the general theory to this total hamiltonian and get a

description of the magnetic behaviour, where effects due to lattice vibrations,

25y

called spin-lattice-relaxation effects, are included




-58-

If, as is often found, these effects are mainly restricted to relatively low
frequencies, the faster processes due to interactions between the magnetic ions, then
called spin-spin relaxation, can be described by a model, in which the hamiltonian
consists of part | and part Il. This model may also be characterized as a crystal
without lattice vibrations or as an assembly of magnetic ions situated at fixed
places in fixed electrostatic fields. Leaving out the constant terms in its
hamiltonian one obtains a reduced model: the spin system.

The hamiltonian of the spin system reads

K = Xé + Ké] . ths + Kéx + ﬂa . 5.01

Here part | contributes

the Zeeman energy, the potential energy of the magnetic ion in the external magnetic
field

Xz = U H .Uei g, v Sg 5.02
the electric field splitting

. 2 1 2 2 2

gy = L 05(s7);0 - 313,150 + E L)L - (500 + .. 5.03

-

and the hyperfine interaction, characteristic for the coupling with the nuclear spin |

ths = I Tn . xn . gn . S.Ol‘
n
Part |l contributes in the first place

the exchange interaction, which represents the effect of spurious covalent bonding

between the ions on their magnetic behaviour,

% =28 & .3 .S - 5.05
ex m mn n
m<n

The jmn tensor can be split into an antisymmetric (Dzialoshinsky-Moriya) part, a

traceless symmetric part and a scalar (Heisenberg) part

N v 2
jmn = (ijmn - 5jmn) > (ijmn & ijmn - %(Tr jmn)ﬁ) t %(Tr jmn) v - 5.06

n
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The isotropic Heisenberg exchange often yields a satisfying description

(3
1L

3 1 =
Tt i §m . §n ol e B osi 5.07
m<n

The summation over pairs may often be restricted to nearest neighbours (and next

nearest neighbours).
Moreover part || contributes

the magnetic dipole-dipole interaction

2 > - = - =
X=ups T{7 |G .3). (@G

m
m<n

>
n ' Sn)

5.08

-BIanI-S (_':rnn - gﬂm 7 gm) (:mn g ?n X gn)}

=
where o is the vector connecting the sites of ions m and n. Just like in the Zeeman
. . 3 L
term, the so called g-tensor gives the connection between (effective) spin S ™) and
. = 2 . . . .
magnetic moment 'uBg . S of the ion. uB is the Bohr magneton, Mo the permeability of

vacuum (cf. appendix A). Expressing the Zeeman energy one often uses the g-value,
defined by

"

[H| = |H.g| 5.09

and sometimes the effective field at ion n (which brings about the quantisation of
. 2 .

spin S_ if i K;)

-»> >

Heff,n =R s gn -~ 5.10

Neither of these are of use in writing ﬂa
It may be remarked that the spin hamiltonian given here lacks a term
proportional to the square of the magnetic field and consequently cannot be used for

the description of diamagnetic effects (xm(ﬁ)-o).

’) The symbols Sand T and the word "spin" are (to be) used here for dimensionless

operators representing the angular momentum divided by h.



60 =

5.2 The decomposition of ﬂ;f , ¥ and ¥, into eigenoperators of L .
nT s——ex o - - Zz
In the chapters 6 and 8 the decomposition of ths' xex and “d into eigen-
operators of the superoperator Lz, the Liouville operator which corresponds to
the Zeeman term Kz' will be used (cf. 6.08). In this section the way will be shown

to achieve such a decomposition in the general case of an anisotropic g-tensor.

5.21 Eigenoperators of L .

Combining eqs. 5.02 and 5.10 one can write

X = A
z uouB i 9

eff_n.§n - 5.11

- . 1 . .
In the case ¥ = X (zero interaction H ¥ gives the quantization axis for the ion n.
l
It is therefore conven-ent to guve each ion its own coordnnate system with ortho-
-
normal basis vectors e oy e , where e //H and e > e arbitrary.
xn yn zn f,n xn yn
Consequently

X T |W | s 12

z HoMs r eff,n n 5
with

$% = (5.)

n n zn

Looking for eigenoperators of Lz, i.e. operators A that satisfy the equation
LAZR™) (3 .4 =)A 5.13
z z

$ < ; . o
for some scalar A, one finds as simple examples the single-spin operators Sn and
ol

5; = (Sn)xn + l(Sn)yn . One has
LzS =a wLnsn , a==1,0,+1 5.14
where
-] -
= h
“Ln ~ MoVs lHeff.n' 235

is the Larmor frequency of ion n.

- : . o
More complicated eigenoperators of Lz are the two-spin operators SmSE, m#n,
a,B ==1, 0,¥1, with
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LSSB-(uw +Bu ) s:'sﬁ . 5.16

Lm

One may define subsystems of ions (numbered u, v =1, Il, ..) demanding that
members of one subsystem (u) have the same g-tensor (g ), hence the same effective
field ]H eff, ,) and the same Larmor frequency (u ). This leads to two classes

of elgenoperators of L

e § 22 5.17
u n n
neu
and uv= I, w5 a,8=~-1, 0, +1
8- @8 sagh
uv mn “mn 5.18
m<n
mEU , NEV

a .« : -
where Cn, Cms are arbitrary constants (or operators that commute with all S; operators).

They are eigenoperators of Lz due to

LI =g ¥ 5.19
Zu Lu u
and V.= gy Ely s aBe = 0, + 1
L s e + 8w ) 5.20
Z uv Lu Lv® uv
It will be shown in section 5.22 that ¥ _ ., X  and ¥  can be written as a sum of
hfs ex d

operators of the ﬂg and Hﬁs types.

3
5.22 Decomposition of K‘fs = and ¥ |nto and ﬂa operators.

According to 5.04, 5.05 and 5. 08, the operators hhfs' ﬂ;x and Xa are conveniently
expressed in terms of Sm and gn' In order to translate them into operators of the
wﬁ and %ﬁs types, defined by 5.17 and 5.18, the relation between gn and the S:

operators must be used. One has

N - e 5.21
aw=1. 033 D B
- - - -> ->
with 2¢ 2 2 e _+ie e G Z < 5.22
n xn yn n zn

Inserting this into 5.04, 5.05 and 5.08 one obtains
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A
N%f ) 0l ann 5.23
na
* 0 g - Qa
with kn = Tn.xn.cn 5.24
and ®ow Wow T Ap 0 5.25
ex LS a,p MmN
with SBogaqy tb
mn m mn’n
2 = + B
Ve Irmn| 3(gm.c )-(g ““n )
¥ 2 » -5~ = <+ Q, = + 8
3“ouB |rmn| (nnn'gm'cm )(rmn'gn'cn ) 5.26

Using the notion of subsystems of similar ions

one may write this in the required

form (cf. 5.17, 5.18) (Zua = Zn“, rEu)
¥ =
PR 5.27
a
with CE ke, oty 5.28
n ;oS | |
(if the ions are also similar in A one may replace En by Ku)
and X +% = g p 2B 5.29
ex d uv ¥
u,v a,B
with ol & S T
mn u mn
2 = -3,= +Q = - f
* UM }rmnl (gu'cu )'(gv'cv )
i 2 -5 = = > Q, = + 8
3UOUB S (l'mn.gu.cu )(rmn'gv'cv ) , mEu, nev 5.30
5.23 Secular and non-secular operators.
Operators that commute with M} are usually called secular. Hence Hﬁ and
B o v X X
sz with ow o+ Bva = 0 are secular. The secular parts of ths and e + ¥,
are defined by
“:fs E 5 aﬁ , with 5.17, 5.28 5.31
B "
= .32
and sz + ﬂz = & I Nﬁv , with 5,18, 5.30 . 5.3

LA T T

The other parts are called non-secular.
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Tutton on his salts:
It was this discovery of these two important series which has

rendered the many years of work posstble which the author has
devoted to their study and very detailed measurement.

A.E.H. Tutton, Cryetallography II
Macmillan London (1922) p. 1223.

CHAPTER 6

MEASUREMENTS ON COPPER TUTTON SALTS.

6.1 Introductory remarks.

6.11 Introduction,

The investigation of the high-frequency magnetic susceptibility in a static field
parallel to the alternating field was started by Locher and Gorter 26). In compounds
where magnetic dipole-dipole interaction is not relatively weak compared to exchange
interaction they found 'forbidden resonances’ at the Larmor frequency and at twice
this frequency.

A theoretical description of these resonances was given by Caspers 27), Tjon 22)
and extended by Mazur and Terwiel 28). A further improvement will be given here.

The samples Locher used were powdered concentrated copper Tutton salts, which
indeed have some drawbacks: two magnetically different ions in the unit cell, a some-

what anisotropic g-tensor, the occurrence of hyperfine interaction. The drawbacks are
balanced

by the simple single-ion energy spectrum (spin %), in which no near higher levels
occur and in which electrostatic fields are of no direct importance,
by the fact that spin-lattice relaxation is so slow as not to obscure the spin~
spin effects 29)
and by the large distances between the magnetic ions, even in the concentrated
compound, which are a reason for the moderate role of exchange interaction.

In order to overcome the|complications in powdered samples due to

g-anisotropy Locher suggested to study single crystals. The underlying work gives
the outcome of his suggestion.




6.12 Choice of sample material.

In spite of a long search no series of compounds has been found which ;;%é;{ﬁ%
following desired properties than the copper Tutton salts have.

1) Slow spin~lattice relaxation.

2) Spin one half; if this is not a property an equivalent situation may sometimes be
achieved through cooling down until all single~ion spin levels except the lowest
doublet are depopulated. The method may cause serious paramagnetic saturation and
does not apply if a singlet lies lowest.

3) Small exchange, at most one order larger than the dipole-dipole interaction.

4) Nearly isotropic g-tensor.

5) Magnetically identical ions.

6) Availability of single crystals.

7) Absence of hyperfine interaction.

Some examples. Cu silico fluoride violates 5, Cu benzene sulfonate lacks property 7

and, more or less, 5; the acetyl acetonates,the ethyl sulphates and the lanthanum

magnesium nitrate family accomodate 3+ ions, which either miss 2 or 7. The same
holds for alums and moreover these miss 5. The T63+ ion looks attractive but there

6 is the problem, or even 1. The La Mg nitrate type may also be used in 'in the 2+

mode', but then 5 can cause trouble. Rare earth ions often disobey 1 or .,

Recent computational work of Hillaert (cf. 6.4) has overcome 4 and greatly

mitigated the need for 5 or 7.

Four copper Tutton salts, all sulphates, (Cu Mz (SO“)2 & 6H20) have been studied
with Cs, Rb, K and NHA as monovalent ion M. They constitute a series with increasing

exchange interaction and nearly constant dipole-dipole and hyperfine interaction.

6.13 Crystal structure and hamiltonian.

The magnetic ions in copper Tutton salts are situated in a monoclinic lattice
with axes a : b : ¢ 3 : 4 : 2 where the angles (b,a) and (b,c) are 90° and the angle
(a,c) is 105° 30). Half of the ions occupy (0, 0, 0), the other half (}, %, 0) sites.
These two groups also differ in the orientation of the g-tensor, which has the approx-
imately tetragonal symmetry of the electrostatic field generated by the stretched
water octahedron around each Cuz* jon. Both tetragonal axes that occur make an angle
(90°-4) of about 50° with the b-axis, but on opposite sides.

The magnetic principle axes (those of the static susceptibility tensor) are

called k1, k2 and k3. The k3 axis coincides with the b-axis, the k2 axis is
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perpendicular to both tetragonal axes and lies in the a-c-plane, together with ki.
Both the k2-kl-plane and the k2-k3-plane thus make equal angles with both types of
tetragonal axis.

The angle ¥, between ki and c depends on the monovalent + ion (cf. table 6.1).

¥, is defined in such a way that for k1 = a , y, = 105°.

Table 6.1 30)
Monovalent + ifon | a vy, B® -5 g g,=
1—{3 -k - | 279 | 9 97/
Cs 4o 114 3.15 A 2.28 2.06 2.22 2.43
Rb Lo 105 3.12 A 2.29S 2.07 2.23 2.45
K 42 105 3.0‘(S A 2.26 2.05 2.225 2.43
NHQ 39 77 3.085 Al 2.27 2.06 2.20 2.40

910 9, and g3 are the values for 9, = éll when ;i // k1, k2 and k3 respectively
(cf. section 6.42).

The hamiltonian of the spin system in a sample of copper Tutton salt can be

written as

= p = 6.00
€ Ké L Ma * ths i uéx 2 Xz = J(int (cf. 5.01)

where Hz' Kd' ths and Kex are the hamiltonian terms defined in 5.02, 5.08, 5.04 and
5.05.

The exchange interaction is assumed isotropic (scalar, cf. 5.07). No information
is available about antisymmetric or anisotropic exchange in these compounds, but in
view of the experimental results there is no need for a more complicated description.

The dependence of Jmn on the distance between the ions m and n constitutes a
second problem. One could try to derive these values from experiment, but for a
first estimate it is convenient if one takes the range of exchange interaction
restricted to the (0, 0, + 1) and (+}, +}, 0) neighbours attributing equal values
(J) to them all.

For the compounds used the elements of g- and A-tensor, the corresponding
values for N 'h 2Tr 35/Tr | and N 'h"2Tr 3¢ /Tr 1, the values for N 'h 2Tr 3G /Tr |
(from speclflc heat measurements in the T 2 region 3])) and the resulting values
for N 'h 21r Xﬁx/Tr I, N "y Koy /Tr l and Jh | are listed in table 6.2 As the

A-tensor has approximately the same tetragonal symmetry and principle axes as the
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g-tensor, it is sufficient to give A// and Al where // and | refer to the tetragonal

axis of the ion.

Table 6.2
| ot e, |1ead | Trad | 2Tecx
S A h-l A.h 1 d hfs int ex d ex J
9,71 91 |By 1 2 % 2 F) Z h

NR“Tr L [NR“TF I [NR"Tr 1| NR°Tr || NA°Tr |
(6Hz) | (Hz) | (Hz?) | (eHz?) | (6Hz?) | (6Hz®) | (eHz?) | (6H2)

Cs 2.43 [2.06]/0.36 [0.09 | 0.048) | 0.045s 0.10s | 0.015s 0.0007 | 0.083
0.014y | + 0.0007 [-0.079

Rb 2105 207 0-3"‘3 0.090 0.0519 0.0“29 0.139 0.0106 - 0.002 D.”‘g
0.0425 | + 0.00; =0.13,

K 2.43 [2.05(0.305 [ 0.10; | 0.058; 0.036; 0.24, 0.15, = 0.004 0.26,
0.15; + 0.00y =0.25¢

NH 2.40 | 2.06|0.39, | 0.09 | 0.053: 0.052¢ 0.35¢ | 0.25, - 0.00¢ 0.33s

0.24s + 0.00¢ =0.33¢

The following remarks can be made.

Tr 2
One has ——7—D£i = %Z (Aj/h 2 . 2Aih 2)
Nh' Tr
Tr Mz 2
ex 9 J
and T—g —2.
Nh“Tr | h
The A// and Al values for the Cs-compound are estimations on the basis of assumed

analogy with the other salts.

Assuming an isotropic g-tensor Locher calculated N-1h_2Tr Kj/Tr | to be
0.0504 GHz2 in the Cs- and 0.056; Gsz in the NH“-compound. The deviations are totally
due to the assumption made.

The sign of J does not follow from the data given. Both possibilities have been

investigated (cf. table 6.2). The resulting absolute value of J is found to differ

but little for both cases. The positive value has been adopted for further use.
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6.2 Zero field behaviour of copper Tutton salts.

The frequency dependent susceptibility in zero static field is found to
correspond to a single absorption line around zero frequency. This result has
already been obtained by Locher and Gorter 26) for the powders of the Cs- and NH, -
salt and by Pickar 32) for those of the K- and NHh-salt. In the Cs- and Rb-single-
crystals the line shapes look approximately Gaussian, apart from a tail that is dis-
tinctly too high. The K-single-crystals show an indication of the transition to more
Lorentz like line forms, which is manifest in the NHk-powder. A phenomenological
description by a product of a Gaussian and a Lorentzian enabled Locher and Gorter
to derive values for the second and the fourth moment from the few fixed frequency
measurements by which the spectrum was probed. (The determination of the moments is
an essential means of confrontation with theory as they are about the only features
of the spectral density function that can be calculated from first principles.)
Although Pickar used a variable frequency method his range of frequencies was too
limited to do without similar assumptions about the line shape.

The present experiment, being essentially the same as Locher's, again needs some
assumption concerning the line shape in order to permit an estimate of the
experimental values of the moments. The assumption to be made here is based both on
experimental evidence and on theoretical plausibility. It concerns the shape of the
memory function, or its Fourier transform, the memory spectrum (cf. 2.64), rather
than that of the relaxation function or the absorption line. According to 3.13 the
memory spectrum at a given frequency can be expressed in the absorption and
dispersion at that frequency, which permits its calculation from the experimentally
obtained x"(w,0) and x'(w,0). This result is plotted in figs. 6.01 to 6.09, in
which error bars correspond to an error of + 10% in X' or x', whichever has the
strongest influence.

It is well known, that in the weak coupling limit (i.e. for relatively weak non-
secular interaction) and also for the strong coupling case in the limit of high
static field, the memory function is a sum of two damped oscillations at the Larmor
frequency and at twice that frequency. The damping is usually assumed Gaussian.
Here jhowever, one has the strong coupling case with zero static field, a situation
in which no limit procedure is as yet available by which the memory function can be
reduced to a manageable form. Consequently the shape of the memory spectrum is only
experimentally known.

Looking at figs. 6.01 to 6.09 one sees that, apart from some deviations, Gaussian

memory spectra, represented by straight lines, can give a reasonable
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Figs. 6.01 to 6.09 Zero field memory-spectra in Cu Tutton salts.

1 | =1
107 = sinimi(zvrv,o) (ni,ni) (2 GHz)

Straight lines represent Gaussian memory spectra. Circles and thick lines
are used for the conventional log vs. square plots. Squares and thin lines
(scales in the upper and right side) show the perspective transform of

the same plots giving a better view of the high frequencies. Alternative
fits are distinguished by their ratio loth moment to square 2d moment of

the absorption spectrum (last column of table 6.3).
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description of the experimental data ‘). In fact one should confront these data with
those Gaussians, which satisfy the theoretically known values with their zeroth and
second moments., The zeroth and second moment of the memory spectrum are simply
related to the second and fourth of the absorption spectrum (cf. 2.71). As the
calculation of the fourth moment of the zero field absorption spectrum in the copper
Tutton salts has not yet been completed, the analysis has been restricted to a
tentative fit by some single Gaussians for the memory spectrum and to the
determination of the corresponding second and fourth moment of the absorption line.

Let the memory function be

H - 1A
(LM, el ! PA)LtLMi) = (LM, M) 7*° . 6.01
then the Gaussian memory spectrum Is given by
e At
s (0,0) = (LM;, LM,) (2ma7) % e 57 . 6.02

'
LM.LM.
¥3-%

According to 3,13athe lower moments of the memory spectrum are related to those of

the absorption by

$0
\ = g -1 _
Jn s LHiLM.(w'O) (A,A) "dw = H(Lni, LMi) (A,A)
-0 ! d o0 6.03
= ﬂjwz “(w.o)w-‘dm( x“(m,O)w-jduj-‘
in which the indices ii have been omitted from X0 The width A is given by
4+ 4o
2 i = I
A = Jw s LHiLNi(w,O)dm{fs'LHiLHi(w.O)dw} =
™ Ta 6.0k
40 4o 40 oo
4 P ] | 244 -3 -1 2w -1 o -1 1
= [wx"(w, 0w dof|w%'(w,0wn do} ' - |o%"(w,0)w dof|x"(w,0)w dw} .
- -® -0 -on

*) Although the method followed here bears some resemblance to Tjon's description 22)
of the zero field strong coupling case, it is different in so far that the present
work uses the exact memory functions whereas Tjon employed an approximated memory
function. A consequence is that Tjon misses the second term in the r.h.s. of

equation 6.,04.
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Figs. 6.10 to 6.12 CuC52(50u)2.6 aq.; XT'(Z““-O) as derived from the fitted Gaussian
memory spectra, and experimental results. The yth to (Zd)2 ratlo is

Indicated.
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The results of the fit for the second and fourth moment of the absorption

x”(w,O)w-] are given in table 6.3.

Table 6.3
type of %-;,{szx”w-ldw)i {f)(“m-ldm}-i Jw“x“w-‘dex”w-]dw{Iwzx“w-]dm}-z
Cu Tutton| direction
exp. theor.
salt k (GHz)
Cs 1 0.75¢ 0.684; 3.3 +0.3
Cs 2 0.7k 0.702, 2.95 0.2
Cs 3 0.82 0.718 3.05 0.2
Rb 1 0.79 0.716, 3.1 0.1
Rb 2 0.74 0.699, 3.3 0.2
Rb 3 0.80 0.737, 3.3 0.1
K 1 0.782 0.752s 4.05 0.15
3 0.82¢ 0.759; 3.5 0.1
NH,, powder 0.77 5.8 0.4

As a final check one may evaluate X' (w,0) and x'(w,0) from the fitted Gaussian
memory functions, for a confrontation with the experimental values. It should be
remarked that the deviations found may exceed the assumed error of + 10% as the
effect of cumulating errors in x" and'xr has not been taken into account. (Moreover,
some Gaussians even fail to fit between all error bars,) The evaluation of X" (w,0)
and x'(w,0) is done on the basis of 3.15 and 3.16, through which x' and X' can be
expressed in the memory function.

For the Gaussian memory function 6.01 the Laplace transform equals

w/Av2 2

DR
1'(iw) = (LM, LM,) (2m?) ¥ 308 T (4-ion *J > dt) 6.05
0
and consequently X' and X' can be found from:
x' (w,0) - x_(0) whim
3= 4 3 6.06

x(0,0) - x_(0) (m+|m)2 + Re
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Figs. 6.13 to 6.15 CquZ(SOb)2.6 aq.; xii(va.O) as derived from the fitted Gaussian

memory spectra, and experimental results. The hth to (Zd)2 ratio is

Iindicated.
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Figs. 6.16 to 6.18 CuRbﬁ(SOl‘")?é aq.; .'i'.(Z*..CJ as derived from the fitted Gaussian
L |
. h d,2
memory spectra, and experimental results. The 4" o (29)
indicated.

ratio is
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Figs. 6.19 to 6.21 Cusz(SO“)2.6 aq.; X;‘(ZHV,O) as derlved from the fitted Gausslan
memory spectra, and experimental results. The hth to (Zd)2 ratio Is
Indlcated.
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Figs.

6.22, 6.23 CuK (SO“)2 6 aq.; fig. 6.24 Cu(NHu)Z(SOI‘)2 .6 aq. powder

26
“ (va 0) as derived from the Gausslan memory spectra, and experimental
results The 8P o (2 )

)i

ratio is Indicated. The broken line is also
a good representation of the mixed Gauss-Lorentz (G-L) shape
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Figs. 6.25, 6.26 CUKZ(SOA)Z'é aq.; fig. 6.27 CU(NHQ)Z(SOh)Z'G aq. powder )4

x%i(Zﬂv,O) as derived from the Gaussian memory spectra, and experimental

results. The yth to (2d)2 ratio is indicated. The broken line is also

a good representation of the mixed Gauss-Lorentz (G-L) model.
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x"(w,0) Re

—_— o ————; 6.07%)

x(0,0) - x,(0) (w+im)© + Re
2,-2

with Re = Re 1'(iw) (A,A)7) = z a7l IR T, ) (A"
2 _Zw/A/2 2
fm = dm 1 (lw) B,8) ) =va 4720 A J eb dE (LM, LM,) (A,A)"
0

The results of the confrontation with the experimental values are shown in figs.
6.10 to 6.27. Use has been made of xm(ﬁ) = 0 (as the hamiltonian is linear in H) and
of x(0,0) = x,(0) as (A,8) = (M) = (1M = G (1,M) = (M, K,) (as no
spontaneous magnetisation (I.Hi) occurs in zero field in a paramagnet). |t appears
that the agreement is not worse than that obtained by Locher and Gorter, and to a
certain extent accounts for the ""higher than Gaussian'' tails in the Cs- and Rb-salts.
The K-compound has mainly been measured in the k1 and k3 directions. Comparison with
Pickar's absorption measurements of the powder shows rather close agreement between
the k1, k3 and powder results below 2 GHz. This implies that the k2 direction may be
expected to resemble the k1 and k3 directions in its characteristics. At 3.6 GHz
absorptién and dispersion have been measured to be the same for the k2 and k3
direction. It looks therefore safe to assume that the k2 direction would yield about
the same Gaussian memory function fit as k3. The average absorption fit may be
compared to Pickar's experimental results and the agreement is satisfactory et
fig. 6.28).

Locher's results on the powdered NH“-salt. Although one may expect from 3.16
that for a broad Gaussian memory spectrum (weak coupling) the absorption will
approximately take the form of a product of a Lorentzian and a Gaussian, it is
nevertheless surprising to find that this is already the case for the NH“-salt
( (xsec' xsec)/(xn.sec' ﬂn.sec) ~ 3.5)| where the Locher-Gorter description coincides
nicely with the set of x'" and X' curves, derived from one of the fitted Gaussian
memory functions.

’) It may be interesting to remark, that, as A and (LMi,Ll‘ﬁi)(A,A)-l can be written
in terms of the second and fourth moment of the absorption X'b_l (cf. 6.04), eq. 6.07
embodies an expression of the absorption in its second and fourth moment, which

constitutes a probably more realistic model than that of miss Wright 33)-




CUKZ(Sob)z'6 aq.; fig. 6.29 cU(NHh)z(so“)z.s aq.
Absorption.

Powder measurements of ref. 32 (full points).
Powder measurements of ref. 26 and single crystal results from the present

work are indicated by open points (cf. figs. 6.22 to 6.24).
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It is however questionable if the method used may indeed be applied to powdered
samples. If 1, 2 and 3 are the principle axes of ;(w,o) and if the memory functions
corresponding to xll(w,o), x22(w,0) and x33(w,0) are Gaussian and different, then the
powder average l/3(xll(w,0) + x?g(u,o) + X33(w’0)) will not correspond to an exactly
Gaussian memory function, as the relation 3.11 between relaxation function and memory
function is non-linear. For a not too anisotropic ¥(w,0) the method might keep its
significance and hence it has been applied to the results of the powdered NHu-salt.

The fit thus made to Locher's few single- frequency measurements on the NHQ
compound also gives a reasonable description of Pickar's multi-frequency results

(cf. fig. 6.29).

6.3 Theory of strong parallel field behaviour at high frequencies.

6.31 Strong field and zero interaction.

The high-frequency susceptibility of compounds with relatively weak exchange
interaction (strong coupling) in a strong static field parallel to the alternating
field has been studied theoretically by Caspers 27). Tjon 22) and Mazur and
Terwiel 28). All have used the high-temperature approximation as a starting point.
Here such an approximation will be postponed to the calculation of time independent
quantities.

The essential point in assuming a strong static field is the hope that the
interaction term Mint in the hamiltonian may be handled as a small correction to
the large Zeeman term KZ. The latter has such a simple structure that eigenoperators
Xp of the corresponding Liouville (super) operator Lz can be given explicitly and

that the interaction term xint can be expressed in such eigenoperators l(cf.sec.5.22)

LK =wX 6.08
Zp PP
hich implies ~n H for [ H; leading to w_ = Y H
whi i ie w = i =
? P i 9 p-p
Lzﬂz = -wﬁuz allowing Kp = XTP and W, = W
Ith iw_t
e 23 =e P¥H and LI ] = (0 +w)¥ ]
p P z p'q Py’ qoip g

Let the numbers 0, + 1, .... + n be reserved for the components of xint' then

x = 7 X
int 2]
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with different wp‘s for different Mp's. Ks is called the secular part of the
interaction, szo = 0. Thus, in order to make a rough analysis of the absorption
spectrum it is attractive to study the approximation in which ¥ is replaced by Kz.
This approximation will here be called the limit of zero interaction. It should
be noted that this excludes the description of low-temperature effects in the sense
of (anti)ferromagnetic_transitions. The only low-temperature feature preliminarily

admitted is paramagnetic saturation by the strong static field.

One may give a more experimental interpretation of the zero interaction limit. The
only expressions of interest where ¥ is replaced by Kz are of the type B and #t with
i = Mint + Xz = xint - uoHMi' Consequently the limit H + =, BH, tH constant, is

fully equivalent with ¥ -+ KZ. In a sense this limit is a high-temperature limit

(B+0) but as it is accompanied by H + « it retains the non-zero value of the average
magnetization, (I‘Mi)' The other implication (t*0) leaves wpt constant, such that

one stays within the range of experimental interest,

6.32 The absorption spectrum.

According to 1.39 one has

40
o, (t,He,) = Je"‘" = x'i'i(w,HZi) w | dw 1.39

which, due to 3.10 equals

0, (t,HE,) = Bu_ ((1-P =Py )M, &' tE(1-P P )M,) =

6.09
g [0 AR B e, %o
= Buo H (O PI ﬁK')xint'e (1 P| RK')xint)
Anticipating the zero interaction limit one may split Kint
o (e, He)) = g 'WE s (Pe'ttQ) 6.10
p,q=0,:l,...,:n
it -+ o P -+
?uxii(w'Hei) =Bu H "2 SPQ(w'Hei) 6.11

p'qno':] yo e .:n
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with Q'= (|-P|-PK')xq S P S (...)XP and 0 = (...)Ms
6388 S
- P, |LtQ) = I eiwt SPQ(w,Hei)dw . 6.12

6.33 The absorption spectrum in zero interaction limit.

For ¥ ~+ X not only the usual relation (A,LB) = (LA,B) but also (A,L B)x >
(LZA’B)H' holds *), L becomes Hermitean (for B # 0 this is not a trivial ponnt)
Conseque%tly the eigenoperators I, ' and Io with eigenvalue 0 become orthogonal to
those (Kp) with eigenvalue Wy # 0 and the latter become mutually orthogonal if
their eigezvalues are different. Hence P —+ Kp if wp¢ 0. The autocorrelation terms
in Q‘i(t,Hei) become undamped oscillations

w_t

o 9EE -2 '
(r,e' “p)zcze g w, # 0

- -1
Bu, H P) > Bug H

The term (O,eiLtO) must be handled separately. Other terms vanish due to the
orthogonality. The oscillations having an intensity proportional to H-2 could be
called 'forbidden resonances'. In the absorption spectrum they yield §-1lines at
frequencies wp. In the term (O,eiLtO) the replacement of ¥ by X; would cause a
fundamental change. The term would become a constant and this would lead to a non
zero time average of °ll(t'H;i)' contrary to 1.23. Instead one may study its
character through its second time derivative (L éKo,e'Lt ntxb) For t = 0 one
gets the second moment of the contribution to the absorption spectrum

(Lll'\t o’ Il'\t 0) (aa)-l

An estimate of its order of magnitude shows that the bulk of intensity of this
contribution must be confined to a frequency interval around w = 0, which has a width,

at most of the order of h-‘(x )*. This rough analysis yields the following

Lo i
int" int
picture: For ¥ -+ Kz the absorption spectrum consists of very narrow lines at

frequencies wp including zero frequency.

*) The index Xz has been added in order to stress the change of character in the

scalar product definition, where ¥ has been replaced by ﬂ; as well.
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6.34 The absorption spectrum for finite interaction strength.

In the preceding section it was seen that the autocorrelation terms play the
main role, if ¥ + Xz. One may hope that this will already be the case for a small

28

but finite interaction strength. Mazur and Terwiel ) *) have shown the way to an
upper bound for the cross terms (P,eiLtQ). Their result follows immediately from the
Schwarz inequality for spectral density functions 2.45.

Assuming that ¢li(t,H3i) = ¢7I(L.Hgi) (i.e. that for finite interaction it is

R

free from undamped oscillations), and consequently Sii(w,H;i) = sii(w,Hzi), one may

identify SPQ(w’H;i) = ssq(w,H;;), such that 2.45 implies
> > %
|Spq(w.He,) | < (spp(w,HZl) SQQ(w,Hei)) < 6.13

This inequality gives an impression of the way in which the various terms in 6.11
develop as the interaction strength is reduced. The main terms SPP(w'H;i) gradually
concentrate their intensity around wp. Consequently the overlap between them,
characterized by the product SPP(m.HZi) SQQ(w.H;i), vanishes and so do the cross
terms SPQ(w.Hgi) due to 6.13.

It is however hard to tell from experimental results to what extent a situation
has been reached, in which the cross terms may be neglected. When one finds a set of
wel l-resolved absorption lines at the expected frequencies mp then there is no a
priori reason why these lines could be described by the terms SPP(w,H;i). One should
realize that a line at wp may still contain contributions (e.g. satellite lines)
from other main terms than SPP(w,H;i) (and hence perhaps from cross terms SPQ(w,Hgi)
as well), which will only vanish through a further reduction of interaction strength.

Even if the experimental shape and intensity of the lines are not essentially
altered by an enhancement of field, temperature and measuring frequency (the
experimental equivalent of reduction of interaction strength) one can only hope that
the main terms have at last mainly withdrawn to their own frequency domains becoming

approximately equal to the measured lines:

*) These authors made a slip of the pen in stating that the inequality 6.13 is based
on the fact that the spectrum of a real autocorrelation function of the form
iLt, T

+ 2 g X
Tr(A'elLtA) + Tr(A e A ) is real and positive semi-definite. This should read:
1 iLt

the spectrum of an autocorrelation function of the form (Tr A'e” 'A) is real and

positive semi-definite.
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- x“ (w, He )w R Eu " S (w He , ) N 6<u<up & . 6.14

It will henceforth be assumed that this hope is actually fulfilled, such that
not only the experimental lines but also the theoretical terms are well resolved.
In that case one may try to determine the intensity and second moment of the
measured lines and confront these values with those calculated for the co;responding

- 3 . H
terms S (w,Hei). A closer estimate of the importance of the cross terms will be

PP
given in appendix |.

6.35 Intensity.

For the intensity of the line at wp one simply has
W +x
s {0 W i 12 N o =1.-2
I = = X;;(“'He;)w du & DU SPP(u,Hei)dm = tpo H “(P,P) 6.15
w -Q0

where wp-é to mp+6 indicates the frequency domain of the line, also used for the

experimental determination of the intensity.
As (P,P) = (i i) - (1 7() - (0 p)z(w )k ) vhere

-8 - R
e MKp and (H“,Kp) = aB I K ) are both of second order (p#0)

(1,5) = (Tr e i

in the interaction strength, one has up to third order (P,P) n X (¢ p,Kp). But due to
cross terms the approximation Ip v BU;YH-Z(P,P) is not even better than second order

(cf. appendix 1). In the same approximation one may write (Kﬁ,Mb ) & (kb’up)K . Hence

the intensity of the line at Wy # 0 is in second and lowest order given by %
-Bhuw -BK
=1 2 -1 P z T
i = - T by ZJ(
IpB BHT & (Mp, p)}(Z (Bhwp) (1-e ) (Tr e ) 'Tr e
For two-particle interaction ¥ =L X one may write, dividing the Zeeman energy
P m<n P,mn
into its single particle contributions Ké = g len(with [Xz'm,H}.n|=0):
I B-]u H2 A (Bhw )-] (l-e-shwp) Z(Tre B(xé k+xz'lﬁxz’mixz'n))-]
p S P k<) 6.16
m<n
=B  +H 4+ +H
T B( Zok-Zil Gz z,n)xﬁ % )
Pskl Pymn

In most cases these four particle terms reduce to expressions, in which only two
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particles occur. It can be seen from 6.16 that for temperatures so high as to make
-l
B negligible compared to(hwp)and to the single-particle Zeeman energy one may

approximate

-1 2 -1 t
I8 u M"Y (Xb,xp)xz g (Tr 1) " TraC 3 6.17

6.36 Second moment.

Within the frequency interval w -8 to wp+6 the absorption is supposed to be

reasonably described by SPP(m,H;i). Other terms are of minor importance

Spp(w,He;) >> sQQ(w,HEi) and ISPQ(w,HEi)l < (Spp(m,H;i) SQQ(m,Hzi))i

Consequently one also has

(u'mp)z SPP(w,H;i) >> (m'wp)2 SQQ(m,Hzi)

L 2 - = 2 - = 2 . %
and | (w up) SPQ(w,Hei)[ < ((w wp) SPP(w'Hei) (w up) SQQ(m,Hei)) 2
The second moment <w >p of the line at up with respect to its centre can thus be

calculated from

wp*é w_+6
" 1 =1, 2 ¥
<w2>p Ip = J (m-wp)2 % Xii(w'H;i)w dw BuolH 2 f (w-wp) SPP(m,Hei)dw
w =8 w_ =68 6.18
P P

which holds in lowest order in interaction strength. This expression is further

evaluated with the aid of the relation (proven in appendix J)

(w’wp) (w'wq) SPQ(w,Hzi) =T SPle(w'H;i) 6.19

Ky1=0,+1,...,4n

il
where Ql =3 (‘ P' Pxn) lKl ;Xq]'
fFor p = q it follows that

(w‘wp)z SPP(w.HEi) =S (w,Hzi)

PkP1

At this stage one may again distinguish main terms SPkPk(w’Hgi) and cross terms

](u.H;i), for which the inequality 6.13 holds:

Spkp
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|Spicpy (@oHE) | < (Spypy (@) S50, (0, )

PkP1 PkPk PIP

Again one may get a rough impression of the features of (m-wp)z SPP(w'Hgi) replacing

i by Kz. For the main terms one gets
> =2
Spipi (@iHe;) »h (ka,xpl,[xk,xpl)xz S (w wk-up)

-+
where again the low frequency terms sp.pp p(;,Hei) should be given some extra care.
The situation is fully equivalent to that of section 6.34. Again one may hope that
the main terms alone will give a reasonable description, such that in lowest order

approximation

Spipk (@:He; )

k=0,41,...,4n

— )2 >
(w up) SPP(w'Hei) nI

a sum of main terms, which concentrate around frequencies up+wk.
Inserting this into 6.18 one is led to an important conclusion. For the
experimental second moment of the line at Wy only the frequency interval w,=8 to

up+é is of interest and consequently only those terms S (w,H;i) with

PkPk
W =8 < +w < wp+n5. For a well resolved spectrum this is only one term:

Apparently the secular part ¥, of the interaction is the only source of the

% : s
second moment ). The argument used is similar to Van Vieck's well known

truncation procedure. Along these lines one gets for the second moment:

L w +8
(/2> I B-l H2 n (w= )25 ( He )dw 5 s ( He ) A
U gAY R R R S | g o S
w -8 ioed
: P
w +8
P oo
v { Spopo (sHey)du 3 fsPoPo(w.Hei)dw = (P,,P.),
wp-é e

£ - . . X 8
) This implies that the constants c¢ introduced by Mazur and Terwiel & ) are not

only of order 1 but should be taken exactly equal to 1 (cf. also appendix K).
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2 o o
hence  <w™> I B W H" L (P,P) a B ([*5'“5]' [ﬂb.xb])xz -

)
6.20
-Bhw =B -
L2 “Yigql p zy =1 z +
h (Bhwp) (1-e ) (Tr e ) " Tre lﬂb.ﬂb] [xb.ﬂﬁl
-BIC =B
2.2 ) SR | >
and o> n (Tre BCI)T Tre 3,373, ,%) 6.21
which for high temperatures may again be approximated by
2_ 2 < PREES +
hEaw®s o (Tr 337 THE K (3,50 . 6.22

For p = 0 eqgs. 6.20 and 6.22 are seen to yield a zero second moment in this
approximation. The zero frequency line may thus be expected to be relatively
iLt

narrow. The special character of (0, e 0) is described in an appendix (K),

as it constitutes a low-frequency effect.

6.37 Some additional remarks.

One might ask how SPP(w,HEi), which is supposed to have its domain around mw

can yield terms S (m,Hgi) at frequencies up+w with Wy # 0, when it is multiplied

PkPk k
by (w-wp)z. The answer is that SPP(w,Hzi) indeed contains satellite lines at

frequencies wp+m but with an intensity which is two orders smaller than that of

Kk?

the main line. One may write for w A mp+mk

Spp (WHE)) 1" Spypy (wsHE))
The whole picture now agrees with inequality 6.13: The intensity of the main term
SPP(w,Hgi) at wp is of second order in interaction strength. The satellite
contribution of other main terms is fourth order (like that of SPP(w’Hei) at wp+wk).
In appendix | the contribution of cross terms is shown to be of third order and this
is the geometrical mean indeed.

In principle the method used to derive the second moments could be extended to
higher even moments but the accuracy suffers from too many subsequent approximations.
One may however conclude that line broadening in the parallel configuration is
almost exclusively due to the secular part of the interaction.

Contrary to the odd moments of the total spectrum with respect to zero
frequency, those of the line at wp, with wp as reference frequency need not be zero.

One has for the first moment:
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+6
“p
<w>. I = (ww.) <y (0 He )w-ldw n
pTp T p’ T Xii %l ~N
w_~6
P
w +8 w +6
P P
v TH 2 | (i )Sonle He Jaom B2 | s (@M )0  6.23
R PR PRVETNS § A K PPo * 41 7€ ] :
w -6 w -6
p P

4

-1,-2, -1
Bu_'H A CHEIE A )Kz.

It can be shown that this lowest order approximation of the first moment is zero in

high temperature approximation, at least for the usual types of interaction.

6.38 The Yarmus and Harkavy approach.

Yarmus and Harkavy 3“) claim, that the quantity closest related to experimental
results is wzx?i(m,H;i)u-l instead of X?i(w,H;i)w_‘ (cf. 1.53). Apart from the merits
of their claim, which are discussed in appendix L, the first quantity contains the
same high frequency information as the latter and deserves further investigation.

3 > A 2 < N 5 e
Instead of the function ¢i (t’Hei) its second time derivative is studied

+00
3 2
iwt 2 v _, B Pt =t +
Je W™ = xii(u,Hei)w dw = a7 ¢ii(t.Hei) =
o at
6.24
_ am1-2 iLt R iLt
= Bu H (L Hinere L Kin[) = Bu H L (wpp.e qu)
P>q=+l,...40
which implies
2V e =t i =2 >
W = xii(w.Hei)w = Bugy H “Z SP'Q’(w’Hei) 6.25
pvq=:_]»'~-:in
with g2 =

> >
pr, S (w,Hei) z W SPQ(w'Hei)

PIQ,
Thus an expression for wzx?i(m,Hei)/w is achieved analogous to that for
x?i(w.Hgi)w-l. The main difference is the lacking of terms with p =0 or q = 0. The

same argument, which led in section 6.34 to the approximation




s88 =

: . -1 - 2
x?i(w,Hei)w o SPP(“'Hei) 5 wp § <w< wp+6 6.14

now leads to

WX G He e Sy 0 (0, HE,) = mz Spp (0, He ) 6.26
This constitutes a nice demonstration of the rather poor quality of these
approximations. The intensity and moment calculations, however, could be somewhat
more reliable. It is clear that in the approximation used the Yarmus and Harkavy
lines differ only by a factor wé from the usual SPP(*,Hzi). Hence they get the same
moments and can use the computational material available for those. The only
attractive feature of the approach is the fact that complications due to the p = 0,

q = 0 low frequency terms can be avoided.

€.39 Frequency and field.

It was seen in section 6.33, that the parallel field absorption spectrum in
the zero interaction approximation (HkMé) reduces to a set of &-lines at frequencies
e va. Studying the fiel?]dependence for a fixed frequency w one thus has a set
of é-lines at fields Hp = Tp w. As the inequality 6.13 may equally well be used in
the fixed frequency variable field interpretation, one can give an argument
analogous to that in section 6.34. Hence, if the field dependence consists of well

resolved lines at fields Hp one may approximate

2w il s =] -1 - < H = A<H<H +4 ., 6.27
H® = X} (w,He, Ju % Bu  Sppluw,He;) P P

The Yarmus and Harkavy counterpart would be
e ¥ (o He )w ! o B! Soo (w,He,) Ho-A<H<H +A 6.28
p 7 Xij'\W ey n PHo  SppiPaltey ’ P P 3

As the experimental configuration usually permits continuous field variations, but
only a restricted choice of fixed frequencies, one most often determines the
intensities and moments of the field dependent lines. Making use of the approximate
frequency-field symmetry of the functions Spp(w,Hgi) one can perform a conversion
into frequency determined values. The symmetry used is based on the approximation,
valid for high temperatures and small interaction strength (compared to the static
field), that the intensity and moments of spp(w,néi) (with respect to w_) are

independent of the static field. In other words: the shape of SPP(w,H;i) (as a
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function of frequency) is invariant, when its center frequency wp = YpH is shifted
by a field variation. Hence Spp(le;'ngi) is approximately a function (f) of w - Wy

alone. The moments can therefore be converted as follows

wp+é w_+6 +§
n ; od] Y 2 e Nee AL n !
J (w up) SPP(“’Yp “pei)d‘ b J (w wp) f (w mp)db f x f(x)dx
wp-é w -8 =
- 6.29

) H ()

w fp+y
e = n =y > n+1 gD -+
= J (w up) f(w mp)dwp N Yp J E?p H) SPP(leei)dH'

w+d H-y '§

PP

The frequency-field symmetry constitutes perhaps the only criterion for a

choice between the usual and the Yarmus and Harkavy description. It would be natural
2 v

- -‘ P -
o xii(m,Hei)u and Bu S (u,Hei)

o PP
the one that satisfies the approximation of field independent line shapes (vs.

to prefer of the functions H2 % x?i(m,Hgi)w-‘, H

frequency) best, i.e. down to lowest fields. Only experiment can decide.
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6.4 Simplifications due to the special structure of Cu Tutton salts.

6.41 The decomposition of X}n for arbitrarily oriented H.

t
The copper Tutton salts contain two subsystems (| and |1) of magnetic ions

(cf. section 6.1) corresponding to both types of tetragonal axis that occur. Within
one subsystem all ions have the same g-tensor and A-tensor. According to 5.27 and

5.29 one may therefore write

B =i T I xﬁ 6.30
u=l,ll a

% Al w o ; 208
ex d uv
u,v=l,1l a,B

6.31

with definitions 5.17, 5.18, 5.28 and 5.30. The exchange may be assumed to be of
- 1 = /
the Heisenberg type, jmn =1 3 Tr Jmn B Jmn U. Egs. 6.30 and 6.31 define a
+ X + X
ex

decomposition of Ni into eigenoperators Kp of Lz in the sense

= X
nt hfs d
of section 6.31. The eigenvalues up, which according to sections 6.33 and 6.34
represent the centerfrequencies of the high-field absorption lines, are therefore

given by
w. = ow .+ Bw y: Gf= =1, 0, +1; uvs=1, |l 6.32

(cf. 5.19, 5.20).

As thirteen different values can be seen to occur for w Fuw one might number

L L
themp = - 6, -5, ..., 0, ..., + 6. Generally speaking the absorption spectrum

in strong parallel fields is thus found to consist of thirteen lines.

6.42 The decomposition of X, = _for W in the k2-k1 or k2-k3-plane.

An important simplification is achieved if H = H;i is chosen in the k2-k1~-
or k2-k3-plane. Then B makes equal angles with both types of tetragonal axis

> . - - 2= P o A &
implying 'Heff,I' z |H.g|] = lHeff,Il' = ]H.g||| and thus = W (and

=W
LI LI
g9, = |zi.g|| =g, = léi.gl'l =g, cf. 5.09). Consequently many of the thirteen
lines coincide and only five are seen to result.

Taking together those eigenoperators of which the eigenvalues have become

the same one gets the simple decomposition
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: 5 B
me s a=-l).:0,+l u=)I:,|| % ap * o.,8=-)1:,0,+1 u-f,n Tuv aet p %
and szp = w;Kp = meKp, P k(B = =20 =l ey #2; 6.35
For this case the constants Yp = W H-I equal
=3
Yo = PR W ugg = py, . 6.36

The parallel field absorption spectrum for this case is thus found to consist of
five lines at frequencies 0, + W and + ZuL.
According to appendix | this implies that no crossterm contributions of third

and lowest order are to be expected in the lines at + ZuL- (Both ways to write ZWL

as a sum of wp I B @ -~ w. and 0 + ZwL, are excluded.) On the contrary such

crossterm contributions can exist in the lines at b (as w, can be written as
2w + (- w)).

This five-line spectrum resembles the case of absorption in a sample with the
same isotropic g-tensor for all ions, considered by other authors 27'22’28). The
g- anisotropy however is seen to complicate seriously the decomposition of Kint and
hence the expressions for intensities and second moments of the lines (cf. 6.17
and 6.22). Hillaert 35) has performed the laborious task of their computation on
the basis of the argument given in section 5.2. His results will be used for a

confrontation with experimental values (cf. section 6.5).

6.43 The static susceptibility in high temperature approximation.

It is convenient to present the experimental results for the field- and

frequency-dependent susceptibility as values relative to the static susceptibility

XO(H gi). To this end an expression for it will be derived. According to 4.06 one
has - in zero interaction limit -
- -1
Xo 1 (H &) = Bugv {("i'“i)xz (PIHK'PIHE)J(Z} : Xt

As 3.01, 6.00 and 5.02 imply

M, = -y Z@.9.5 ==y Igqgs° 6.38
i uBnei'gn'n- ”angnn -3




one has

with

One may evaluate 6.39 to be

-BK
o e W 3 z,ny~1 Z,N;.0,2
*o,.(H e;) PESY & gnue{(Tr e ) Tr e (Sn)
ii n
-BX ) -f
- (Tre =0 1(Tr e z.nsi)Zi 6.40
o
i K = u
with 3 uoH gn“BSn

In high-temperature approximation, i.e. if B is negligible with respect to the

single-ion Zeeman energy, one gets

+ g e ST 5 0,2 v

'0..(H ei) % Bu v L g Tr(Sn) /// J} e 6.41

(N n
For H = H e, in the k2-k1- or k2-k3-plane 9, is the same for all ions and
1
- -1 2 2.1
n R <! =y
'o..(H ei) % Bu v Ng Mg B S(s+1), S 3 6.42

(]

which is the well-known Curie law for this case. £q. 6.42 shows no dependence on H,

therefore

yoii(H ei) Y xo;i(O) ; 6.43

One can prove that also

X He,) & : 6.44
ﬂoii( eJ) y Xoii(O)

6.4L4 Expressions for intensity and moments.

According to 6.11, 6.14 and 6.42, 6.43 y“/vxo, the central experimental quantity,
and SPP(A. H ;i)' the functions which play the main role in the theoretical analysis,

are related by
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£as =l (v
v X;i(ZWV-Z”VLY, ei)

aNhZ lsis +) A S (wHe,),
3 ¥ (0) PP i
Xoj i
v - §/2n< PV < v+ §/2n 6.45
where S = ¥ and N is the number of magnetic ions in the sample (w = 2mv; w, = 2my, =

L L

YH, cf. 6.36; Ei in k2-k1 or k2-k3).

As was mentioned in section 6.39 Spp(w,H ;i) is approximately a function of

w = pw = @)= py‘H alone. In analogy to 6.29 one thus has for intensity Ip and

moments <w > (<w°> = 1)
P p

pw, +6
™ g ekt = L('-')nS(Hg)d'%
~w pp Llo = w P..JL PP w, i W
pr'é
w8/ 2mp v, 2y
% (2mp)™" 2N 8% 35(s 4 1) (vp~'- v)" v . 6.46
J X
v=-8/27p Y

The experimental values obtained in this way can be confronted with the results
of eqs. 6.17 and 6.22.

6.5 Experimental results. Absorption measurements in parallel fields at the highest

frequencies.

6.51 Qualitative remarks.

As the theory given in section 6.3 requires a static field so strong as to
yield a well-resolved absorption spectrum and as the centerfrequencies of the lines
were seen to be proportional to the static field (6.08, 6.35) a measurement at fixed
frequency and variable field should be performed at the highest available frequency.
For the Cs- and Rb-salt a frequency w/2m & 3 GHz was found to give sufficient
resolution. A new cavity at w/2m = 4.8 GHz was constructed in order to improve
the K- and NHQ-results.

The moderate maximum value of the static field needed in a measurement at these
frequencies amounts to only 4 or 5 kOe and can easily be obtained.

One might wonder why no measurements were done at "X-band" or even higher
frequencies. The reason is a technical one. According to eq. 6.17 the intensity of
the lines is proportional to H—z.thus decreasing rapicly with increasing measuring
frequency. This intensity competes with spurious resonance absorption (with field
independent intensity) due to misalignment of the static and alternating fields.

As the homogenity of the fields used is only of restricted
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quality, the same can be said of the optimal alignment. Another reason is the

occurrence of unwanted modes in § A coaxial cavities of manageable size at these

high frequencies. The use of a different type looks inevitable and so do the

problems of design and construction connected to it.

Absorption measurements at 3 and 5 GHz have been performed with ;i along ki-,

k2- and k3-axis for the four Tutton salts. Two lines are observed centered at Vv

L

and vL/Z. They correspond to Ipl = 1 and |p| = 2 respectively and represent all

high-frequency information as, due to the frequency symmetry of the absorption

spectrum lines of opposite p are physically equivalent.

In figs. 6.30,6.31 and 6.32 the experimental results have been plotted. The

linewidths are immediately seen to increase through the series Cs, Rb, K, NHh' This

corresponds to the increasing second moment, determined fully by the secular

interaction and thus mainly by the increasing exchange interaction (egmgzmdErman
Smropiecgeen®Sr . is exactly secular; in the Rb-, K- and NH‘.-salt K _is
ex ex

hfs')
In spite of the enhanced frequency the line separation in the K- and NHk-salt

larger than the secular parts of Ma and ¥

is rather poor. On the other hand traces of spurious resonance can already be
recognized.

In the(Cs,k1)-measurement the line at VL is found to be asymmetric. Check
measurements at other frequencies have confirmed this shape. Moreover special care
has been given to the orientation of the crystal, in order to ensure that ;i be

parallel to k1. No satisfactory explanation of the asymmetry has been found so far.

6.52 Quantitative considerations, confrontation with theoretical results.

Combining eqs. 6.17 and 6.46 one finds that the total area under a curve in
figs. 6.30, 6.31 and 6.32 is given by

? v Tr %% Tr 3%
e t1 22
v, = 4n | 5 +i— }

v X Nh“Tr | NR“Tr |

R

Theoretical values 35) for N 'h - Tr K#H /Tr | are given in table 6.4 together with
the resulting predictions for the tota? zrea and the experimental values of the
latter. The experimental results are systematically higher than the calculated ones.
The difference varies from a few to 30 percent. Roughly speaking the k2-axis (and
for the NHk-salt also the kl-axis) shows the largest discrepancies. For the K- and
NHh-compound this could be ascribed to the increasing errors due to the multi-

plication by Vf, which occur in the high field region.
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Fig. 6.32 High-frequency parallel-field absorption. Fields along k2.
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The theoretical values for the traces have also been used for the calculation of

the second moment of the zero field absorption line (cf. table 6.3) which should equal

Tr x']fx] Tr x‘;JrZ
8 3 + 32 5 , as can be found from an analysis of (LHi’LHI)' Again the
Nh“Tr | Nh Tr

experimental values are too high and in this case the reason cannot be found in some
gauge factor of the absorption measurement. Although the discrepancies are of the
same order, no obvious correlations between the deviations in both sets of results
are found.

The relative intensity of the lines at Mg = v and v =V (lp] = 2, 1)
constitutes another easy check, provided that the lines are sufficiently resolved.

In the Cs- and Rb-salt a reasonable agreement is found for the k1= and k3-
direction. As in the total intensity a large deviation occurs in the k2-direction.
This must be totally ascribed to the |p| = 1 line, as the intensities of the
|p| = 2 line in these compounds agree within 10% (k1, k3 even 3%) with the predicted
values (cf.TrﬂZﬂz exp. in table 6.4). Nevertheless there is no reason to think of
spurious resonance effects as similar anomalously large intensities are observed at
other frequencies (cf. figs. 6.34, 6.38). Although one may remark that the conditions
of appendix | exclude crossterms from contributing to the |[p| = 2 line, whereas the
other line lacks this feature, it is dubious if this is a sufficient ground. The
satellite at v of the line at = v (cf. section 6.37) should at least amount to
13% allowing (cf. 6.13) a crossterm contribution of 36% in the intensity in order
to acc?unt for the factor 1.5 discrepancy in the Rb k2 case ﬂxl.eiLEK-l) and
GK_'.e'LLK1) are the only cross terms present),

Relative intensity determination from the K- and NH“-measurements is largely a
matter of artificial separation. The method followed -~ apparently with little success-
consisted of an approximate fit of the |pl| = 2 Vineshapes observed in the Cs- and Rb-
salts (using scaling factors) to the low field side of the K- and NH“-lines at
Uy 1v. The need for sufficient resolution is clearly demonstrated.

Although the artificial separation described yields very poor results for the
intensities, slightly better agreement is obtained for the second moments (cf. table
6.5). The experimental widths clearly follow the increasing theoretical prediction as
exchange (and hence the secular part of the interaction) is enhanced from Cs to
NHh' Apart from the second moments the first moments have been evaluated. On
theoretical grounds these should be zero at high temperatures (cf. section 6.37).

In the Cs- and Rb-compounds, where the resolution is sufficient the experimental
value for the first moment <v>, of the |p| = 1 line is small as expected. It should
be remarked that the asymmetry of this line for the kl-direction of the Cs-salt is
not particularly reflected in the first moment and thus yields no contradiction with

theory. The first moments of the |p| = 2 lines are also small and have not been given



Table 6.4

Tr .'KTJ(‘ Tr J(;J(Z Tr }(;LJ(I b (Tr J(Jlr.‘)('I + iTr J(;J(z) (8Tr J(T.‘KI + 32Tr J(;’(z)s
thTr | thTr | Tr J(;J(z Nh2Tr I thTr |
th th exp th exp th exp % th exp

(Ghz?2) (GHz2) (Ghz?) _ (GHz)
Cs 0.02068 | 0.00946 | 0.0095 | 2.186 [ 2.15 L3194 | .32 |0 .6843 | .755 10
Rb 0.01875 | 0.01137 [ 0.0117 | 1.650 [ 1.7 .3070 | .34 |11 L7167 | .796 1
K 0.01960 | 0.01279 | 0.0097 | 1.532 | 2.65 .3267 | .38 |16 .7525 | .782 4
NH, | 0.01983 | 0.01214 0.0088 | 1.634 | 3.3 .3255 | .42 |29 .7396 | .776(p) | 4
Cs 0.02956 | 0.008015| 0.0089 | 3.689 | 4.3 .b219 | .53 | 26 .7021 | .745 6
Rb 0.02601 | 0,00878 | 0.0084 | 2.960 | 4.4 .3820 | .43 |13 6994 | .74 6
K 0.02302 | 0.00982 | 0.0118 | 2.344 | 2.3 .3510 | .43 | 22 .7060 \;
NH, | 0.03135 0.00850 | 0.0118 | 3.688 | 3.1 4473 | .54 | 20 L7230 | .776(p) | W f’
Cs 0.01979 | 0.01120 | 0.0113 | 1.766 | 1.85 .3191 | .335|5 .7198 | .826 15
Rb 0.01979 | 0.01205 | 0.0124 | 1.642 | 1.7 .3243 | .35 |8 L7374 | .80 9
K 0.01884 | 0.01330 | 0.0088 | 1.417 | 2.9 .3204 | .37 |15 .7591 | .826 9
NH, | 0.02284 0.01254 | 0.0060 | 1.820 | 5.2 .3657 | .43 |17 L7642 | 776(p) | &
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Table 6.5 %;<w>] %; <w2>§ %; <w2>§
exp exp th b4 exp th 4
(GHz) (GHz) (GHz)
k1
Cs 0.04 0.46 0.50, -8 0.67 0.65¢ + 3
Rb 0.03 | 0.54 [0.672 |[-20| 0.75 | 0.81p | =7
K - 023 1.03 1.093 -6 1.00 1.197 - 16
NHA - 0.60 1.52 1.353 + 12 1.15 1.50s - 24
k2
Cs - 0.09 0.51 0.49s +3 0.66 0.624 + 5
Rb - 0.06 0.58 0.69; - 16 0.70 0.85; - 18
K - 0.25 1.03 1.11, =7 ¥a2 1.269
NHh =0T} 1.55 1.31¢ + 18 V2 1.49, - 20
k3
Cs - 0.03 0.47 0.49s -6 0.65 0.67s -4
Rb - 0.02 | 0.59 | 0.66s [=- 12 [ 0.74 | 0.84s | - 12
K = 0.07 0.98 1.09s o i 1.04 1.27¢ - 18
NHH - 0.53 1.54 1.34; + 14 1.33 1.56¢ ~ 15

as they can be changed arbitrarily by the details of separation otherwise unimportant
in these salts.

The second moments measured in the Cs-salt yield satisfactory agreement with the
theoretical results. The same cannot be said with respect to the Rb-compound which
shows systematically too narrow lines (% 20%).

The second moments of the K- and NH“'salt are less affected by separation
problems than the intensities, as the uncertain centre region of the lpl = 2 lines
has a less important weight. The high-field side of these lines has not been used,
especially in the NH“-salt even the low-field side may still be uncertain.

On the other hand separation details are not of great influence on the width
of the |p| = 1 lines. The large experimental values for the NHh-compound may again
be attributed to inaccuracy in the high field region. The error may be estimated from
the first moment values, which arise from the same effect, as theoretically they
ought to be zero.

In general the difference between the three k-axes is hardly observable in the
second moments. More accurate measurements with better separation,i.e. at higher
frequencies,are needed. The spurious resonance occurring at v =V will not affect
the |p| = 2 line. Hence it is suggested that further experimental efforts in this

field be focused on the |p| = 2 line in parallel static fields at high frequencies.
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Fig. 6.33 Parallel-field dependence of absorption and dispersion in CUCSZ(SOh)2'6 aq.

at some frequencies (cf. fig. 6.34). Fields along kl.
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6.6 Experimental results at frequencies below 3.6 GHz.

In the earlier stages of investigation the role of the high static field in the
theoretical description was not yet felt so essential as it appeared to be later on.
Hence many measurements have been performed at lower frequencies than 3.6 GHz.

As it may not be excluded that a theory should ever be conceived that does
without the zero interaction approximation the results of these measurements are
given in the following pages. As much of the information lies in the low-field region
the factor VE has been replaced by a factor containing Xad (cf. figure captions)

analogous to the presentation in ref. 26.

Fig. 6.34 Parallel-field dependence of absorption in Cquz(SOh)z.G aq. at some
frequencies. 0.18 GHz, V 0.78 GHz, O 1.22 GHz,[J 1.78 GHz,A 3.2 GHz.
Fields along k2. x;; g ALY W2 (230 Oe)-z.




Fig. 6.35 Parallel-field dependence of dispersion in CUCSZ(SOA)2'6 aq. at some
= 1 + H® (230 0e) 2.

2

frequencies (cf. fig. 6.34). Fields along k2. ¥5a %o
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Fig. 6.36 Parallel-field dependence of absorption and dispersion in Cquz(Soh)2.6 aq.
at some frequencies. A 3.6 GHz, further cf. fig. 6.34. Fields along k3.

-1 2 i 4
P 1 + H® (212 0e) “.
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Fig. 6.37 Parallel-field dependence of absorption and dispersion in Cusz(SOA)2.6 aq.
at some frequencies. 0.26 GHz, further cf. fig. 6.36. Fields along k1.

-1 2 =2
Xgq Xo = 1+ H (232 0e) .
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Fig. 6.38 Parallel-field dependence of absorption and dispersion in Cusz(SOu)2.6 aq.
at some frequencies (cf. fig. 6.37). Fields along k2.
=1 2 -2
Xad Xo = 1 + H" (257 COe) “.
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Fig. 6.39 Parallel-field dependence of absorption and dispersion in CuRb2(50“)2.6 aq.
at some frequencies (cf. fig. 6.37). Fields along k3.
=3 2 74
Xad Xo = 1 + H® (239 Oe) “.
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Fig. 6.40 Parallel-field dependence of absorption in CuKz(SOh)2.6 aq. at some
frequencies (cf. fig. 6.37). Fields along ki, x;; X, * 1+ H2 (315 Oe)-z.

"1 v =1+ M (320 0e) 2,

Fields along k3, Xad Xo ]
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Appendix |, A further investigation of the cross terms.

Differentiating a cross term one gets

] iLt iLt iL
s (P,e "™Q) = (P,e Lintxq) - wq(P.e Lqu)
3 ikt _ iLt iLt
or T (P,e Q) = (Lintxp’e Q) + mp(Kp,e Q)
s (P.eiLtﬂA) . (P,eiL[Q) - (Kp,eiLtQ)

identification of these derivatives implies

(Pre'™Q) = (u )™ (e, 30) - (L e )

and Hey) = (w-w) ™' T (Spo, (w,HE)) = Sp 0 (6,He,))

Spo e PrQ

. i

where Q= h71(1-P Py ) 13,

Up to third and lowest order in interaction strength one has

74 " 3 ‘ 2\e,
Spqr (W He;) A (xp,wr,qu)wze(w w,) L P#O

> -1
and SPrQ(w'Hei) ~ h (lxr’ﬂp]’ﬂﬁ)Mzé(W_wq) , qQ#0

The SOQr and SPrO

One may state that the cross terms give a slight redistribution of the line

contributions are narrow lines at w = 0.

intensities. The contribution of the cross terms to the line at up # 0 up to
third order is
L |

h b

o WP 3 ; o
Gy oy o) Dy + (U ] N 6 (wmy)

z

The intensity of this contribution is real (cf. 2.00). Due to the orthogonality
only those terms Kr contribute for which wp = “q*mr' Consequently one may replace
the restrictions q # p and r # q by the conditions
*
Wk, = Wy W # 0 and W # iwp )
Applying the high temperature approximation (B+0, average magnetisation (I,Mi)»o)

»
) Due to the remark at eq. 6.23, wq # 0 is often required as well.
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one gets for the line intensity up to third order

-1 2 -1 & -1 -1 47
U H Tr | Tr X3 P> - Re Tr X' [3_,X
ng uH & (T 1) (Tr pp»,thr(wp wq) e Tr p[ & ql)

under the conditions mentioned above.

Appendix J. Proof of relation 6.19.

+o 40
iwt o 3 3 fwt +

J e (w-wp)(u‘wq)SPQ(w,Hei)du = (bit -“\p)(:&it -w_) [ I SPQ(W‘Hei)dw =
3 ) ikt _ b g ikt, _ i

= G7g "9,) (77 ~ug) (Pre’ 1) = ((L-w )P, " (Lou )Q)

(1P =Py ) (L-L ) e THE(1-p - D (Lt i) =

=3 iLt -1 ’
z ((1=P =P )b 136, 3 ] ,e ~“(1-P =P, )b~ [3 ¥ ]) =
ko 1=0,41,...,+7n X k*p s 1%

= iwt >
e L S (w,He, )dw.
! k020,41, .. ,4n < :

-co

Appendix K. Truncation procedure and strong coupling memory function.

Following Mazur and Terwiel 28) one may study the term (O,e'LtO) with the aid
of 2.53
t i(l‘PO)L(t'T)
. ((1-p,)LO,e (1-P,)LO) .
d iLt - ¢ et 0 itt
Tt (0,e ~70) J O] (0,e ~"0)dt

o]

The memory spectrum defined by 2.64 is real and positive semidefinite
5‘0,0,(m,HEi) > 0.
The same holds for the main terms of the sum

s .0.(u,H§i) =5 5! (w,He,)
P,g=tl,...,+n P9
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i(1 Po)Lt I e
-0

with ((1-90)5"(x°,xp1 = (n-Po)n"(xo,an = t séq(w,uzi)du b

As long as correlations between operators orthogonal to 0 are concerned, the special
propagator (I-PO)L gives the usual properties of correlation functions.
In particular the counterpart of 2.45 holds (for w # 0; S;q(w,Hzi) may contain

6(w) contributions)

|spql@ b )| < (55 (w,E,) s} (w,Hé))®

ILt0) its memory spectrum 56 0.(w Hg ) is not reduced to

Unlike the proper term (0,e
irrelevance by replacing ¥ + ﬂ;. The main terms S (m He ) contract to 8-lines at
frequency wp, with intensity h ([K R ) IK S ])K , the cross terms vanish.

In this approximation the |ntens|tves and truficated second moments (with re-
spect to the centre w_ and within the interval mp-é to wp+6) of the main terms
can be calculated ’), but contrary to the situation in section 6.36 they cannot be
confronted with experimental evidence. The reason for this awkward detachment lies
in the following:

The theoretical information consisting of lower moments of lines concentrated
around frequencies w, # 0 (p=+1,...,4n) only concerns frequency regions far away

ll'tO) however can only be gathered at w v 0

from w ) 0. The experimental data on (0,e

and the same necessarily holds for o,o,(w He ). (If one should try to look at
iLt

(0,e'

instead). The range of experimental interest lnes thus way off in the tails of the

0) in the frequency interval wp-é to Wy +é the experiment would yield (P, e'LtP)

theoretically pictured lines.

Making some assumptions about the line shape of the main terms one can still try
to extrapolate the memory spectrum at w 0 for a given field strength H from the
theoretically derived intensities and second moments around wp # 0. One should
however keep in mind that doing so one cannot show the cross terms to be negligible.
As no main term occupies the w N 0 domain in the memory spectrum, the inequality is
of no help in estimating the relative importance of main and cross terms there. In

principle they can all be of the same order of magnitude.

*) One may even prove, that again (cf. section 6.36), in the approximation ¥ -+ KZ,

the secular part ﬂ; of the interaction constitutes the only source of these

second moments.
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The three assumptions to be made are (all for X v Xé):

1) Cross terms are absent at w 0.

2) Main terms have a field independent line shape.

3) Main terms have a particular, e.g. Gaussian, line shape.
Both first assumptions are implicit in the notion of secular effective interaction
introduced by Mazur and Terwiel 28). One could say that they suppose the weak
coupling features 1) and 2) to be maintained in the strong coupling situation. As
one cannot be sure that this be the case, one is - contrary to the weak coupling
custom - not able to conclude decisively from experimental results about line shapes
in the memory spectrum.

It is nevertheless remarkable that some of the nicest examples of Gaussian
field dependence of the relaxation frequency (which corresponds to Gaussian line
shapes if 1) and 2) are fulfilled) have been measured in strong coupling

compounds 29).

Appendix L, Criticism on Yarmus and Harkavy.

1. Yarmus and Harkavy 3l') do not distinguish between mp and w; they give a

relation of the form
W= YPH + correction terms
instead of

up = YPH + correction terms.
The correction terms only apply to more complicated hamiltonians than the Cu2+ type.
Their way of doing erroneously leads to an integral over w instead of one over wy
for eq. (3) 1.c. Having emendated this failure one must assume the validity of a
frequency field conversion (cf. section 6.39) in order to obtain the uncorrected
version of eq. (3) l.c. which is used in the remainder of their article. With this
necessary addition, which spoils the simplicity to a certain extent, their approach
is not much different from the Locher - Gorter 26) method. In either way the
anisotropy of yp, the central parameter in the conversion procedure, is neglected
as otherwise the description of the powdered samples used would become highly
complicated.

2. Their reproach that Locher and Gorter neglect electric field and hyperfine

zero field splittings in the Cu Tutton salts is unjustified. The Cu2+ ion having a
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spin S = § does not experience an electrostatic field in the sense that this could
cause a zero field splitting. The hyperfine interaction is of the same order as the
dipole interaction, i.e. small compared to the static magnetic field.

3. Fig. 2 l.c. poses another problem. The first and second “"Larmor lines' in the
parallel configuration, which are known to occur at center fields differing by a
factor of two, do not appear to follow this rule. This probably indicates a real
experimental discrepancy, as it cannot be corrected through multiplication by

X;; or Hz, which would yield the Locher - Gorter presentation. In the measurements
of the latter no such deviation is found.

4. Concerning their criticism on Locher's use of Xgg ONe can admit that it seems
arbitrary and suggests a higher accuracy than is justified by the approximations

made. But if Xad/xo is replaced by (¥

% . g
int)/(sz,sz) (which equals Xad/xo in

int’
second and lowest order of interaction strength) these objections are met. The

Locher-Gorter approach is then seen to correspond to the method followed in
section 6.32, which has already be compared to Yarmus and Harkavy in section 6.38

and 6.39.
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I'lL tell thee everything I can; There 's little to relate.
L. Caroll, Through the Looking Glass.

CHARPIER ]

MEASUREMENTS ON MnF2

7.1 Introductory remarks.

7.11 Introduction.

In order to extend the field of measurements to phenomena, which are essen-
tially temperature dependent and cannot be described in the high-temperature
approximation, temperature must be lowered to a value corresponding with the strength
of the interactions in the sample. Beneath this value many substances show an ordering
of the magnetic moments and a sudden change of certain macroscopic quantities. The
temperature at which this change takes place is called the critical temperature of
the magnetic phase transition (from paramagnetic to ordered phase and v.v.). Two
types of ordering are most frequently encountered: ferromagnetism and antiferromag=-
netism; the critical temperature for antiferromagnetic ordering is called Neél
temperature (TN). Very much work has been done on the behaviour of long-time averages
of quantities as a function of temperature: the static aspects of magnetic transitions.
But the character of the variations in time of a quantity equally depends on tempera-
ture. These dynamical aspects are far more complicated to describe and constitute a
more restricted area of investigation, to which the underlying work intends to be a

contribution.

7.12 Choice of the sample material.

Manganous fluoride has been called the fruitfly of antiferromagnetism. It has
been the subject of various types of experiment 36'37’38'39) and only rubidium
manganous fluoride has reached equal popularity lately. The Ne&l temperature of 67.3K

lies conveniently in the liquid nitrogen range. Thus for a first step in the study of
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dynamical aspects of a magnetic phase transition the choice of manganous fluoride
was obvious. One might ask why an antiferromagnet was chosen rather than a ferro-
magnet. Indeed the latter shows its phase transition directly by a divergence in the
static susceptibility and the dynamical behaviour would be interesting to look into,
but on the other hand hysteresis, size effects and domain formation are complicating

factors, virtually absent in an antiferromagnetic substance.

7.13 Crystal structure and interactions.

The unit cell is tetragonal with dimensions ¢ = 3.3]033, a = h.873hR. The mag-
netic ions (Hn2+) occupy the corners and center thus forming a body-centered cubic
lattice compressed along the c-axis. The tetragonal symmetry facilitates orientation
of the crystal by X-ray diffraction. In the antiferromagnetic phase one of both
congruent sublattices consists of the corner jons, the other contains the center
ions. A strong antiferromagnetic exchange interaction between corner and nearest
center ions, together with a weaker ferromagnetic exchange between nearest ions
of the same sublattice are responsible for the occurrence of magnetic ordering.

In the ordered state the magnetic moments are aligned along the c-axis (easy
axis). This anisotropy has been shown to be mainly due to the dipole-dipole inter-
action between the magnetic ions as they are situated on the non-cubic lattice. As
the spin quantum number of the Mn2+-ions is %.
sensitive to electric fieldswithin the crystal, but these appear to be of minor

one might expect them also to be

importance. A third possible source of anisotropy, the g-value, can equally be ruled
out, as for all ions the g-tensor is isotropic with g = 1.98.

As anisotropy is fully accounted for by the dipole-dipole interaction 40), the
exchange interactions which are stronger by some orders of magnitude, may be supposed
purely isotropic (Heisenberg type). Diamagnetic effects in Mn2+ ions are negligible
in the temperature range of interest. The hyperfine interactions - essential in NMR
measurements - are weak even when compared to the dipole-dipole coupling between the
electron spins. The existence of spin-lattice interaction is manifest from sound-
attenuation measurements, but the characteristic frequencies QI) (< 50 MHz) lie well
below the frequency range used in the present work.

One may thus hope that the following hamiltonian in which only spin variables

occur may give a reasonable description

= Kéx + XZ + xa 7.01

Kex . mEnZJmngm.gn 5.07 = 7.02




PE e

= ufeugaz s 7.03
2-2 > - -+ - > -+
Hy = 4,9 Vg mln 11T 3 §m.§n— 37| 5(§m.rmn)(§n.rmn)}. 7.04

7.14 Magnetic resonance.

Depending on temperature two types of resonance have been observed. Above TN
several authors have reported electron paramagnetic resonance (EPR); among them
Seehra and Castner 39) give the most recent and detailed results. Below TN antiferro-

magnetic resonance (AFMR) has been found by Burgiel and Strandberg (S)38) . EPR is

usually measured at frequencies of 9 GHz or higher. The resonance frequency VL is
proportional to the applied magnetic field, and practically independent of tem-
perature
= Wl | 7.05
v = gugh 1y . .

The linewidth broadens when the Neg&l point is approached from above. At the usual
resonance field of 3 kOe or more the linewidth depends on the direction of the static
field, not on that of the alternating field, of which only the component perpendicular
to the static field contributes to the resonance.
AFMR has been observed at frequencies of the order of 100 GHz. In zero static

field there is one pair of resonance lines with center frequencies tvpr
TN-T

1K

vy = 46.5 GHz x ( )0-483 + 0.025

7.06
henceforth the exponent will be taken equal to the molecular field value 0.50.
(The zero field behaviour is maintained in presence of a static field parallel to the
alternating field, both perpendicular to the c-axis). Applying a static field paraliel
to the c-axis one gets two pairs of lines with centerfrequencies v, and tv_,
v, = (Vi - kvf)i t 3y, (H / c-axis). 7.07

+

For static field, alternating field and the c-axis all mutually perpendicular one
has
v

A™ (Vi + vf)i (ﬁl c-axis). 7.08

These are predictions from molecular field theory by Keffer and Kittel uz)' confirmed
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experimentally up to a few K below TN by the measurements of Burgiel and Strandberg
and given here in the approximation % ”(o) =xojfo)valid near and above T, . The
intensity of AFMR depends on the direction of the alternating field: the resonance
is driven by the component perpendicular to the c-axis. The relative intensity of
both lines for H // ¢ has not been studied. Within 5 K below TN the widths of AFMR
lines in MnF2 have not been determined unambiguously. They have been reported to
differ as much as a factor 3 depending on the experimental approach followed. (This
has been tentatively ascribed to an improbably strong field dependence at relatively
low fields.) At temperatures this close to TN one should be reluctant in assuming
Lorentzian or even symmetrical line shapes. The only statement that can be safely

made is that above 62 K AFMR lines continue broadening with increasing temperature.
7.15 Present work.

Resonance absorption has been measured as a function of the static field
(oriented perpendicular to the c-axis) for several temperatures in the region
63 K - 77 K and for room temperature, at frequencies of 0.179, 0.263, 0.565, 1.21,
1.78, 3.05 and 4.84 GHz with the alternating field parallel to the c-axis. In a
check measurement at 3.05 GHz no significant difference was found between the results
for static field along (1, 0, 0) and (1, 1, 0). At 1.78 GHz measurements were per-
formed with the alternating field perpendicular to ¢ for both main orientations of
the static field: H/ c and H) c. In all situations the alternating field was per-
pendicular to the static field.

In two aspects the present work differs from the investigations of other authors
mentioned in the previous section: First the range of frequencies lies considerably
lower than 'X-band'' such that for EPR the zero field behaviour and the development
into the high-field region, where the lines become narrow compared to the center-
frequency, can be studied. At low field the orientation of the alternating field
plays an essential role. In the second place measurements have been made in the
antiferromagnetic phase with the alternating field parallel to the c-axis. In this
orientation no AFMR is known to occur, while the non-zero xoﬂ(o)indicates that
absorption must exist somewhere in the frequency spectrum. For zero static field
this intensity can be fully accounted for by the relaxation absorption measured in
the low frequency region. Moreover the relaxation time for this orientation of the
alternating field is found to be practically independent of temperature right through

the transition. The field dependence of these measurements will be treated with the

aid of the more general approach given in the next section.
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12 Theorz.
7.21 The frequency dependent susceptibility in a static field according to Tjon.

In section 3.3 it has been derived, that under certain mathematical assumptions

the complex frequency dependent susceptibility xii(u,ﬁ) satisfies the relation

x..(u,ﬁ) - x..(D.F) =
il 11 (-iu) 1 = 1 . 3.”‘ = 709

X; (0,F) = xpq (F) i+ 10 (w,A) (A ,A)7

The index i corresponds to the direction of the alternating magnetic field of the

resonance experiment; furthermore

1 (2,H) = J e 2t (ar,e't tAr) de 2.56
o

A' H (l-PAi)LAi Pl (I-PAi)L 2.57

Ai H (I-Pl-PJ(,)Mi = Hi-(l,Hi)I-(J(' ,X')-l(kTé aib (|,ni))3('

where (I'Mi) is proportional to the average magnetization in the i-direction, and
the field dependence of L, X', P and the scalar product has been omitted from the
notation, Let the hamiltonian be given by

v xéx " uoH.UB Egn'gn * K&

The magnetization operators for this hamiltonian do not contain the static field

M, ='u8§§(gn)ij(§n)j
and

Xy () = 0

as X is linear in the field.

Tjon has reduced the expression 7.09 by two successive approximations, based on
the relative weakness of the static field compared to the exchange interaction. The
first consists of replacing the function I'(im,ﬁ) by the zeroth and second order
terms of a Taylor expansion in the strengthof the static field ﬁ; odd order terms
are identically zero, as xii(“'g) = Xii(wrﬁ) (cf. 7.09, section 3.5, section 3.6).

Hence

1 (lw, He.) = 1°(iw,0) + N2 —ail'(‘ He )
s j - w, BHZ 1w, eJ.

H=0
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where ;j is the unit vector in the direction of H (j-direction). The zeroth order

term can be expressed in the zero field susceptibility by inversion of 7.09
Xii(hlyo) -1
1" (iw,0) = - iw(A.,A.) (1 + ((——m—=-1) ") . 7.1
i’ i "H=0
x;;(0,0)

As the hamiltonian can be written as H = Kex - ;OHMJ - Kd the second order term can

be split according to

a2 .
[ ? 1 (Iw,Hej) ] H=0 =
-iwt -2 a2 iL't
- e WO = (M0, e ["d'“i]” Heg 9t 7212
‘0 oH
- 2 L BN TR I (U DERC TS I AT ) T

¥ ~jut -2 2 iL't
+ 2 J’e h Mo [([MJ,H;],e

[Hj.Mi])] H=p 9t

where use has been made of [Réx'Mi] =0 (J(ex denotes isotropic exchange).

If the alternating field is parallel to the static field (i=j) the first term
in the right hand side of eq. 7.12 is the only non-zero contribution. Nevertheless
this term is very small: the resulting field dependence is expected to be negligible
in fields which are weak compared to the exchange interaction. In MnF2 for T > TN
this is indeed experimentally found (cf. also the remark at eq. 7.06). In CuClz.Zaq.
the orientation along the easy axis shows a dependence on very low fields (- dipolar
field), which persists in the high-temperature region and looks akin to similar
mysterious effects in other Cu2+ compounds reported by van der Molen “b).

From here the investigation will be restricted to the resonance configuration
in which the alternating field is perpendicular to the static field (i#j). In that
case the last term of eq. 7.12 plays the main role and Tjon makes the second
approximation dropping both other terms, which - at least in high-temperature
approximation - can be shown to be of the order (ﬂa,ﬂa)/(ﬂéx,ﬂéx). If all ions have
the same g-tensor and if the j- and i~ directions are different principal axes of this

tensor, one has

: -1
[M;.M;] = Tugg 9,9, €)M,

where k is the third axis, 9; = 95 etc. and Eijk = +1, depending on the sign of the
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permutation ijk. Thus

2 L :
2 3 T oo s = ~jwt 2 -2 iL't
RS [=— 1 (lw.Hej)] He=0 * 9L J e 9;9;, [(Mk'e Hk)] H=0 7.13

aHZ o

where w = h-‘gjuBuOH (cf. 7.05).

It is perhaps elucidating to make the following note here: Use has been made of
[Mi'xex] = 0 and ["i'Hj] #0, i.e. Kex is secular and --,OHHj is non-secular. The
static field H determines the strength of the non-secular contribution in the
hamiltonian and is assumed so small as to make this contribution a small perturba-
tion compared with the secular exchange term. Therefore the low-field approximation
may be looked upon as an analogon of the usual weak-coupling limit, where the non-
secular part of the dipole-dipole interaction plays the role of the perturbation.
Contrary to the situation in the weak-coupling limit the replacement of the propaga-
tor L' by the normal Liouville operator L will be seen to be often exact and no part
of the limit procedure for low field.

If the hamiltonian for H = 0 is invariant with respect to the inversion of the
i~direction (e.g. in a crystal with mirror symmetry for a j-k-plane and symmetric

interactions) one has ¥, .{(w,0) = 0 and hence
ki

n
[(Mi,L Hk)] Heo ™ 0 for n=0, 1, 2,
This implies
Ml - i
fo™ Ml o= [6H

By definition no spontaneous total magnetization occurs in a pure antiferromagnet.
Therefore, for H = 0, one has (I'Mi) = 0 and 3%; (I'Hi) = 0, hence Ai = Hi'<‘ - P’)Mi=
Hi and Xii(o'o) = Xo;(O)’ and the same for k. Moreover, if the hamiltonian for H = 0

is invariant with respect to the inversion of the j-direction as well, one has

(I'Mi) = 0 for any value of H, and hence Xii(o'sz) = x°i(H3j).

According to 2.56, 7.14 and section 3.3 eq. 7.10 takes the form

l-(im,uéj) (Ai,Ai)" :

XOi(o) Xii(w'o) -]
= ——{-iy + (——— - 1) (-iw) +
xoi(Hej) Xo;(O)

2.2 -2 -1 Xy (@2 0) s
+ 0 959 x°i(o)x°k(0) (—;;:TET— = 1)(=iw) "} o 7.15
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At this stage it is essential to know how strongly the isothermal susceptibility in
one direction, Xoi? depends on a static field HZJ perpendicular to that direction.
| f xoi(Héj) - xoi(o) holds in a good approximation, one can derive (cf. 7.09 and
7.15) that 3.16 yields

x?i(Zﬂv.HeJ)

X (0) d. 5 a. =
03 ( A n2v Zd )2 +( s nzv 2a )2
d2 2 k 2 k
. +a, d,+a
Bty i
with
x?i(Z"V'O) x;i(va,O)
a; = . di 2 -1
(0) x.,.(0)
x°i 9j
and

s o=k : -1 3
=9;9, xoi(o)xok(o)h gjuBuOH = HYy .

Instead of w the experimentally more convenient v = w/27 has been used. The extrema

in the field dependence given by eq. 7.16 occur for H = He 2 yne with

Gag I -1 2,-2,~4
( I_(1+ai d;a,d, ) (l+akdk N Sl 7.16a

d.
i 2 =2
=nwd
%! . (2mv,HE.) PR 5
ii g N L 7.16b
A d, a, . 3
Xoi(o) ( 3 '2 - nzv de)Z + ( 5 — + n2v 2ak)2
i di+a

The essential point in eq. 7.16 is the fact that the frequency-dependent susceptibi-
lity for a given frequency in a static field has been expressed in the frequency-
dependent susceptibility for the same frequency in zero field, represented by the
four variables ai, di' ak, dk' This number can often be reduced to two as will be
seen below.

If the zero field susceptibility for alternating fields in the i-direction

behaves according to a single relaxation (with relaxation time (Z“FI)-]):
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a; = vF;‘(I + vzrgz)

~

(property |
d, ==v2r; 20 + VA0
or else,

if it satisfies the relation idif << a, in the frequency region of interest

(property I1)

and if also the susceptibility in the k-direction has one of those properties,
equation 7.16 may be considerably simplified:

| for i and k:

> -1 2 =2
" \ ) oA
Xii(z.»,Hej) i B Sy )
- 2 S e A
Koi(o) (=1-n%v dk) i (riv +n"v ak)
r Tttt oBesoiel
A(T..T. o) i k k
s (-l+n27-2(1*:2?-2)")2 . numerator2
k k
| for i, Il for k:
e i o1, 2 -2
Xii(z ,,Hej) g v "8
. (0) 1+ numerator2

Oj

|f the experimental results can be approximated by A(Ti.fk,n,u), with Ty >>

5 g o |
then one may identify I'’ =3 v

k K Ve
¥ for ¥, 1 For ki
x?i(Zﬁv,Hgi) ) a;l+n2v-zak )
xoi(O) - (-nzv-zdk)2 + (a l+n2v-zak)2
y a;l+n2v-lr;1(]+v2r;2)-l
o (-nzr;2(|+v2r;2)")2 + numerator2

If the experimental results can be approximated by A(F;.Fk.n.v), with Fi >> v,

then one may identify Pi = a;lv.

)




Fig. 7.01 Relative deviation of the high frequency linewidth 3_{'7([‘i e rk) from

the linewidth AH, measured at a frequency v,as a function of AH/yv.
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Il for i and k:

=) 2,22 -1
. (ai +nv ak) <

x?i(Zﬂv,H:.)
aldece Sd bl
x°'(0)

If the experimental results can be approximated by A(ri,rk,n,v), with ri >> vy

and rk >> v, then one may identify ri - a;‘v and Fk = a;1v.

7.22 Application 1, linewidth in paramagnetic resonance.

In the paramagnetic temperature region the zero field susceptibility of a
compound which has the symmetries supposed in the preceding section and in which
isotropic exchange is the main type of interaction, can usually be described by
single relaxations such that both i~ and k-direction have property |. Hence eq. 7.17

is expected to hold. For high frequencies (v >> rk) one may write

x?i(Zwv.HZ.)
=R e V7 1

= ) (1400 20D e (e (o) r72) ! 7.18
vX, (0)
|

swp 2 2.3 Pt 2.2 Ty,

L T bl S R Mt M)

2 v 2

For fields

H = tyv(or n = #v)

eq. 7.18 gives absorption values close to those of a sum of two Lorentz shaped lines

centered around *yv, with full width at half height
2T = y(ri+rk) 7.19

(1f v >> I is satisfied, the condition H = tyv is fulfilled throughout the width of
these Lorentz lines). Eq. 7.18 may equally well be taken as a function of frequency v.
In the region where not only v >> Fk but also v = #n holds, the frequency spectrum
given by eq. 7.18 nearly coincides with a pair of Lorentz lines at frequency *n with

half width at half height (I') given by the simple relation

ri+r
2

k

I = 7.20

(if |[n] >> r is satisfied, the condition v = #n is fulfilled throughout the width of
these Lorentz lines). Egs. 7.19, 7.20 relate resonance linewidth for a static field

along the j-direction with zero field relaxation times for an alternating field
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along i- and k-direction respectively. Apart from the present experimental work the
measurements on CuClz-Zaq- by de Jong MS) and Zimmerman h6) have confirmed relation
7.19, for temperatures down to less than 2% above TN. The conditions for the validity

of 7.19, 7.20 can be summarized as follows:

s The static field should be weak compared to the exchange interaction.

2. All ions should have the same g-tensor.

3. The static field should be oriented along a principal axis (j) of this common
g-tensor.

4. The static field should not influence the static susceptibility along both

other principal axes.

s No spontaneous magnetization should occur and the hamiltonian should be in-
variant with respect to inversion of the direction (j) parallel to the static
field and of one (i) of the other principal g-tensor axes.

6. The zero field susceptibility with alternating fields along i and j direction
should allow a description by single relaxations.

/& The resonance frequency should be high compared to the inverse zero field

relaxation time (with alternating field along the third principal axis k).

As the width of resonance lines is often characterized by the distance AH

between the inflection points, one may ask which value is predicted for it by eq. 7.1%
For high frequencies (v >> T, Fk) there is no problem: a solitary Lorentzian of which
the full (field-)width at half height equals 2yI has an inflection point distance
given by AH = %;f; therefore the value AH = ;Ldri + Yk) is expected for the lines
described by eq. 7.17. At lower frequencies however the lines at +yv and -yv meet and,
for v = 0, eventually merge. It is clear that the width at half height soon loses its
practical meaning. The inflection-point distance AH however stays well-defined and

is found to vary but little down to surprisingly low frequencies (v 2 n; + rk). An
analytical expression for AH, derived from eq. 7.17, has not been achieved; for some
special cases (?i/v fixed, Fk/v fixed, or ri = rk) a numerical calculation h?§*?:en
performed, which gives the relative deviation of the high-frequency value y —%;r-

3

from the exact value AH, as a function of the latter (cf. fig. 7.01).

7.23 Application 2, field dependence of antiferromagnetic resonance absorption in

the low-frequency region.

In section 7.21 the simplification of eq. 7.16 has been seen to rest on the
properties | or |l of the zero field susceptibilities. One may wonder if these

conditions are fulfilled in the antiferromagnetic case. Below TN the zero field sus-

ceptibility for alternating fields perpendicular (1) to the easy axis can usually
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be described by one or two pairs of antiferromagnetic resonance lines. Thls sus-

ceptibility has property 1l (i.e.|di|<< aj) in a frequency ;eguon |v] <-§v°,
2 0
if the antiferromagnetic spectral density function XSQOIv' can be approximated by

a sum of Lorentz shaped lines with center frequencies and widths all greater than Vg
In order to account for deviations from such a sum one may need a correction term.
Such a term may be added without loss of property 11, provided that for frequencies
[v] < v, the correction has a frequency independent value, and for |v| 2 v, either
stays below this value or is so restricted that its intensity in this region at most
equals its intensity in the frequency range !vl $ Ve As these conditions look rather
moderate, |di| << a) will be assumed to hold. In some cases the susceptibility for
alternating fields parallel to the easy axis is exper»mentally found to behave accor-
ding to a single relaxation (with relaxation time (Z"FA') )and thus has property |.
Hence for static and alternating fields parallel or perpendicular to the easy axis,
the simplifications of eq. 7.16 given in section 7.21 may be used. Consequently one
may try to approximate the experimental results by the A-function defined in eq. 7.17
through an appropriate choice of ri and Pk values. If the best fit yields I'y >> v,
this value may be identified with

-1 XI(Z"V'O))_‘ L -

ag v e
vXq, (0)

7.21

In such a case both in the paramagnetic and in the antiferromagnetic region an
analysis in terms of single relaxations gives a reasonable description. This is due
to the fact that in the antiferromagnetic phase (for v << frequencies and widths) the
low-frequency part of the antiferromagnetic resonance lines may be replaced by the
broad top of a fake relaxation band with equal height, which determines the effective
relaxation time (anl)-l. This can only be done if this top is indeed broad with
respect tov (I} >> v) and if dispersion plays a minor role (11).

7.24 Application 3, field dependence of the antiferromagnetic frequencies in Han.

For narrow resonance lines, which vary mainly in centerfrequency and scarcely in
shape as the field is changed, the maxima in the field dependence practically coincide
with those in the frequency dependence. In order to find the relation between static
field and resonance frequency one may therefore start from eq. 7.16a which gives the
extrema in the field dependent absorption for a given frequency. It is true that
following this method one may not hope to detect any field independent modes. The
rather tedious check made to ensure that the frequency dependence of eq. 7.16 shows
only those extrema, which are found in the field dependence, will not be given here.

As only the usual resonance configuration with alternating field perpendicular to the
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static field is studied no field independent modes are to be expected (cf. 7.07 and

7.08).
In MnF2 the zero field absorption for

easy (c) axis is commonly described by the

£V, with half width at half height FA. The
ing expressions. This gives the following
al(da+ af)-] = rAv"(l + vi(ri +
aldi] = 'TAv-I(l + Zvi(fz
in which also a) can be expressed
aI] = al(df - ai)_l(ai2

alternating fields perpendicular to the
sum of two Lorentz lines at frequencies
dispersion is bound to follow correspond-

quantities to be inserted in eq. 7.16a

Y 7.22
st o By 7.23
d% +1)

The zero field susceptibility for alternating fields parallel to c is at low

(cf.

(2nr

frequencies measured

v

with relaxation time ) » T, << T

/

Static field parallel to the c-axis.

/ A’
As the frequencies typically used in AFMR satisfy v

section 7.31) to behave according to a single relaxation

[, one may write
A F e

In this case one has for the directions: i = L1, j =/, k=1, Eq. 7.16a then
takes the form (only the + sign in 7.16a gives ni >0)
nov 2 = (1A (20 ™) 2 (1eadd1?) (-142(14ata 12 T 7.25
For v, > 10 T, and [v™ " (ve=v2) | > b T, this may be (within 5%) approximated by
-1
n e (' -V ) 7.26
e

implying




v

This is to be compared with eq. 7.07, which holds near TN

. 2 i
|"topln ivL 2 (VA%VL) 7.07
with
=W
RS S
or rather with the more general form given by Keffer and Kittel 102), of which
7.07 is an approximation
Vool = (=81 (0)x, ,/(0)) v £ (v, (ax]  (0)x , (0)v ) D)F . 7.28
top Y E-Y/4 Kby Gianta” | o/ L -

l ‘o//(o)’ which may differ from one.
This may indicate that the approximations applied to eq. 7.12 breaks down at tempera-

The only discrepancy lies in the ratio X; (0)x
tures T << TN where such a deviation occurs.

Static field perpendicular to the c-axis.

In this case one has for the directions: i =1, j =1, k= /. Using the
approximation 7.24 one may approximate eq. 7.16a (as r// % 2I'A only the + sign in
7.16a gives nz > 0) by

Tgiv-z . l'vi([‘id-\-z)—] 7.29
or

2 I Sh I S R 22,4

V' s dlvpen =Ty) + 3 ((vpen -Tp)" + 4n Ty) 7-30
which for FA << v, may be written as

L (2 2% g % =y 3 =[S0

v ot (vA+ne, with n_ = glg//xol(())xo//(ﬂ) h g ugu He - 7.31

This is to be compared with eq. 7.08, which gives
2, 2,3 . =
vtop :(vA+vL) with v = h 91”8“0“ 3 7.08

: . : -3 3
As for MnF, g) equals g, the only discrepancy is again the factor Xol(O)xo//(O) -
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Fig. 7.02 Magnetic absorption in zero field as a function of temperature.
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7.3 Experimental results concerning magnetic absorption in Han

7.31 Zero field absorption.

In fig. 7.02 both types of temperature dependence that occur in the zero field
absorption can clearly be distinguished. For alternating fields perpendicular to the
easy (c) axis x1(2nv,0) shows a distinct jump at the phase transition, whereas for
the orientation parallel to ¢ only small variations (of the same order as those in
the isothermal static susceptibility XO”(O))are found in x»‘V(ZHV,O). The first of
these observations stands to reason, as it is shown that below TN an alternating
field Lc excites antiferromagnetic resonance (at a centerfrequency typically far
above the measuring frequencies used here), whereas above TN paramagnetic resonance
must be expected (at zero center frequency). This zero frequency resonance, having
3 Lorentzian line shape, is identical to a single relaxation with relaxation time
(2nrl)-l. The width Iy derived from the measurement at 1.78 GHz is given in fig. 7.03
as a function of temperature. It has been assumed that the intensity of the relaxa-
tion varies with temperature proportional to the isothermal static susceptibility

Xol(o) as measured by Bizette and Tsai (BT) h7)

. The temperature dependence of I}
will be studied in more detail in section 7.33. At about 73 K the absorption (1.78 GHz)
reaches its maximum value (cf. fig. 7.02). Taking this to be the usual O.SXOL(O) one
finds for Xol(o) a value 5 *+ 2% bigger than that of BT.

The behaviour in an alternating field parallel to the c-axis embodies a new
phenomenon. The frequency dependence of this absorption is given in fig. 7.04. At
temperatures above 63 K it is seen to have a Debye lineshape (i.e. Lorentz shape

around v = 0) and thus to correspond to a single relaxation with relaxation time

(anﬂﬂ -! A check on the true Debye character, the widths Fﬂ' and the intensities of

the lines has been made by means of fig. 7.05 in which straight lines represent Debye
curves. As could be conjectured from fig. 7.04 the relaxation time (F” is shown in
fig. 7.03) varies but little between 63 K and 77 K. It varies even less from there up

to room temperature (where I', = 0.65 GHz is reached). The small variation of T

/4
around T is about opposnte to that.in yx ”(0) This might be a weak support to

/

Suzuki's predlctnon ) that the relaxation time could be proportional to the static
susceptibility in the critical region. This would account for the observed tempera-
ture independent x (va 0) at high frequencies (>> T /) (cf. fig. 7.02). Again the
isothermal static susceptlbuluty corresponding to the intensity of this relaxation
absorption amounts to a value 5 + 2% higher than that found by BT. These deviations
need not be totally ascribed to inaccuracy of the present work as can be seen

from the comparative survey given in table 7.1. Consequently the higher value found in
this work has been used throughout.

) The rates calculated in high Eemperature approximation are F =0.362 GHz,
Ty = 0.433 GHz 35), for JonB = - 36.6, + 6.7, - 0.8 GHz °).
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Some additional measurements were done at hydrogen temperatures. As those at
20 K suffer from uncertainty of the zero absorption level only measurements at 14 K
have been used. At these low temperatures the absorption band is about an order of
magnitude broader than the characteristic widths at liquid nitrogen temperatures

and up, and its shape is no longer Debye-like (cf. fig. 7.04).

An appreciable part of the intensity may still be found at frequencies above the
measuring range (i.e. > 5 GHz). The intensity measured below 5 GHz equals 70% of the
total intensity according to the rather inaccurate values for the isothermal static
susceptibility xo”(O)’ reported by BT. It may also be compared to the results of
Griffel and Stout 49) for x_,(0) - x  (0) combined with the x, (0) value of BT. If
the latter is enhanced by 2 to 3% (cf. table 7.1) the intensity measured below 5 GHz
takes about 60% of the total intensity. In fig. 7.04 XO”(O)at 14 K is assumed to
equal a value that would yield 65%.

Table 7.1. lIsothermal static susceptibility

Measurement v T Deviation from
Bizette and Tsai h7)
Corliss 50)
Xo (0) 0 293 K 6%
wonind 195 K 5 %
This work
x| (2mv,0) 1.78 GHz 73 K 2 s i -
77 K 4..8 %
x'/', (2mv,0) 0.18..3.05GHz | 70 K 3::7 2
67 K 2..6 2
Griffel and Stout 'O)
xol(o)-xo//(o) 0 20 K 1..35%
14 K 1.4 %
extrapolation 0 4 K 2 2%

7.32 Field dependence.

According to the properties of Man summarized in section 7.13 and especially
those reported in the preceding section, the theory of field dependence given in
section 7.2 is expected to apply. The behaviour in static fields perpendicular to
the alternating field has been measured at liquid nitrogen temperatures and the
results have been successfully analyzed along the lines of section 7.2 both above

and below TN' The measurements of the absorption as a function of the static field
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-133-

were performed at fixed frequency, temperature and orientation. In order to avoid
systematic errors every field run has been analyzed separately. Basically the analysis
consists of searching the values for the zero field relaxation rates Pi’ rk and
normalization factor, which yield the best fit when approximating the experimental
results by a function A(Fi,rk,n,v) defined in eq. 7.17. It was discussed in section
7.23 that such an approach may stay useful below TN' A first search was made shifting
specially devised double logarithmic plots of the measurements over a series of gauge
plots based on the A-function of eq. 7.17. It revealed that a good fit could be made
and that its quality depends strongly on I'; but far less on FA/' With this knowledge
in mind the second step was performed. An average value r” = 0.595 GHz was inserted
and by adapting I'ythe differences between the experimental values and the A-function
were minimized. (The resulting values for I and normalization factor have been
checked to undergo only minor changes if a different value (10%2) is chosen for rﬁl.)
Some typical fits produced in this way are shown in figs. 7.06, 7.07, 7.08. Their
quality may be taken as an indication for the validity of Tjon's approximations and
the theory based thereupon. The standard deviation achieved (determined from the
differences between theory and experiment) is typically a few percent of the mean
value (of all measuring points in one field run). The values of ry determined by this
procedure have been plotted in fig. 7.09. Every point corresponds to one field run
and thus to one combination of frequency, temperature and orientation. A nice agree-
ment is found with the result of the zero field measurements above TN with alternating
field lc. (cf. fig. 7.10) The points below TN are seen to satisfy the condition

Iy >> v, which justifies the identification with

-1 x1(2mv,0) -1
aj v = (————)
X o (0)

the inverse of the zero field AFMR tail (cf. Appl. 2).

7.33 Temperature dependence of I'j.

For reasons of clarity no error bars have been drawn in fig. 7.09. Therefore
it is necessary to mention here that the typical errors in temperature are about
0.2 to 0.3 K, due to the uncertain correction for the hydrostatic pressure,
applied to the reading of the vapour pressure above the liquid nitrogen. (The
resulting temperature gradient is compensated to an unknown extent by heat flow
in the apparatus.) The remaining errors must be ascribed to imperfections in the

theory or the method of analysis. Even when these errors are takeén into account
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there stays a gap or at least a very steep temperature dependence between 11 GHz and
20 GHz. In view of the inaccuracy in the determination of temperature it looks
reasonable to identify this singularity with the antiferromagnetic transition.

This would indicate that the Ne€l temperature is about 67.1° K according to the
""temperature scale' used, or rather that all temperatures measured should be correct-
ed (enhanced) by 0.2 K. The transition temperature so found has been used to make
the double logarithmic plot of ry vs. T/TN = 1 shown in fig. 7.10, in which also the
results of the zero field measurements are given.

At this stage a comparison with the measurements of EPR linewidths by Seehra and
Castner can be made. If their results are translated according to Application 1 one
gets, taking FA,n 0.6y GHz, the plot given in fig. 7.11. Two series of points can be
distinguished, which correspond to the orientation of the static field Jc and //c
respectively. Although the first systematically show a slightly stronger temperature
dependence no reason appears to exist, in view of the measuring errors, to assume
a different transition temperature for both orientations.

Comparing these EPR results with those of the present work (the tiny dots
in fig. 7.11) theagreement is seen to be surprisingly good, which again supports the
credibility of the theory used. In only one respect the temperature dependence of Iy
found may be considered less satisfactory. If one tries to describe it by the cele-
brated exponential type of relation one gets for 0.01 < T/TN =1 <02

TR A TN)-O.GS +0.03

an exponent which may be compared to that in CuCIZ-ZHZO, where for all three
principal axes -0.59 + 0.03 has been reported hs). But closer than 1% from TN a
deviation is seen to occur. It is doubtful if accuracy and purity justify the
introduction of a separate critical temperature for the l-orientation (Tc = 66.8 +
0.1 K and critical exponent -0.7 + 0.1 would account for the observed deviation).
Although the theory given can describe the field dependence in terms of zero field
behaviour,a far more complicated theory will be needed to describe the critical as-
pects of these zero field effects. Yet one may conclude, that it seems more funda-

mental to describe EPR in terms of the zero field relaxation rates I, and ry, than

V4
on the basis of high-field resonance linewidths for static field flc and /lc, as

Seehra and Castner have done. From this point of view a qualitative conjecture can
be made: If the sample is highly symmetric around the direction of the alternating
field (RanF3 all axes, MnF, c-axis) there is little or no temperature dependence

in the relaxation time. If the symmetry around that direction is low (CuCl ~2aq- all

2
axes, MnFZ Lc-axis) one has a significant temperature dependence. This empirical rule

might support the argument of Huber SI).
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7.34 Temperature dependence of the AFMR tail.

At the end of section 7.23 it was seen that for T < TN the T) values may be
interpreted as the inverse of the zero field AFMR tail at low frequencies. With the
aid of the temperature correction introduced in the preceding sections this tail has
been plotted in fig. 7.12 together with the rather inaccurate results of the direct
zero field measurement at 1.78 GHz. For comparison with the AFMR measurements of
Burgiel and Strandberg 38) two curves have been added. BS have determined the zero
field AFMR frequency (cf. eq. 7.06) and zero field AFMR linewidth up to 64 K. Extra-
polating their results to higher temperature and assuming both lines (at % vA) of
which the AFMR absorption consists to be Lorentzian all the way down their low
frequency tail one can estimate the zero field AFMR tail as a function of temperature.
This yields the H = 0 curve in fig. 7.12. From a different type of measurement at
10 kODe BS got quite different values for the AFMR width. As no strong field depen-
dence of AFMR width in low fields can be derived from eq. 7.16, it might well be that
these 10 kOe values are closer to the actual zero field values than those measured in
zero field. Therefore a second extrapolation and estimate have been made, based on the
10 kOe widths (cf. the H # 0 curve in fig. 7.12). The agreement with present results,
especially around 64 K is much better than for the H = 0 curve. This might be a second
reason for doubt concerning the BS zero field measurement. Within 3% below the Ne&l
temperature only qualitative agreement is found. The deviations can be attributed to

a failure of the extrapolations and the assumption about the Lorentzian character

of the lineshape.




- 140 -

How nicely microscopic forces yield
In Units growing Visible the World we wield.

John Updike

CHAPTER 8

MEASUREMENTS ON SOME COPPER ALKAL| HALIDES

8.1 |Introductory remarks.

8.11 Introduction.

In both preceding chapters two examples representing extreme choices for the
strength of the exchange interaction have been treated. In chapter 6 the Cu Tutton
salts were studied in which exchange interaction is not large, compared to dipole-
dipole interaction and Zeeman energy. In chapter 7 manganous fluoride was seen to
have an exchange interaction much larger than dipole-dipole interaction or Zeeman
energy; hence relaxation rates in MnF2 cannot be changed by the parallel static fields
available and temperature becomes the central parameter.

In this chapter the intermediate case Is investigated: a series of three
compounds of the CU(NHN)ZC]A'Z aq. type, where the exchange is still large compared
to the dipole-dipole interaction but of the same order of magnitude as the Zeeman
energy in highest obtainable field. The dependence of the relaxation rate on parallel
static fields is studied in the high-temperature region, i.e. at temperatures where
no ordering effects are to be expected and where relaxation rates are independent of
temperature. Hence the fact that the exchange in these compounds is mainly of the

ferromagnetic type is of little importance.

8.12 Choice of the sample material.

The copper alkali halides were chosen for the following reasons:
- The exchange interaction corresponds to fields of the order of 10 kOe to be compared
to the highest available static field of 16 kOe.
= The dipole-dipole interaction is weak compared to the exchange.
- The crystal structure is well-known and relatively simple (cf. section 8.13).

- Single crystals are readily available.
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- The work of Van der Molen hh) below 0.2 GHz and 7 kOe shows the need for an

extension to higher frequencies and fields.

8.13 Crystal structure and hamiltonian.

The Cu2+ions in the copper alkali halides studied constitute a body-centered
almost-cubic lattice. The deviation from the cubic form is given by the ratio
c/a f 1.05 (cf. table 8.1). Just like in the Tutton salts the copper ions being
surrounded by stretched octahedrons of charged particles, have an anisotropic g-tensor
with tetragonal symmetry. Here, however, the charges are not only localized in water
molecules as the octahedron consists of four halogen ions and two H20 groups.
Depending on the direction of the tetragonal axis two types of ion can be distinguished,
with axis along (1, 1, 0) and (1, =1, 0) respectively. Corner ions are all of one
type, centre ions all of the other. Both c-a-planes make equal angles with both types
of tetragonal axis. The elements of the g-tensor are given by 9,/ = 2.38, 9, = 2.06,
which values are in reasonable agreement with the present experimental results.

As was mentioned in section 8.11 the interaction in these compounds mainly
consists of exchange. A more detailed discussion is given in section 8.14. Furthermore
one has dipole-dipole interaction and hyperfine interaction. According to Wielinga )
the latter being much smaller than the former,can be neglected in this case. One may
thus expect that the hamiltonian of the spin system in a sample of a copper alkali
halide is given by eq. 6.00 where th can be omitted.

In analogy to section 6.31 (cf. also section 5. 22) K B will be decomposed into
eigenoperators of L, in section 8.21. For the parallel static field = He ) ina
c-a-plane a situation occurs analogous to that in the k2-k1 or k2-k3-plane of the

Tutton salts. Hence the decomposition is then given by egs. 6.33, 6.34, 6.35, 6.36.

Table 8.1 compound a® |c® T, (K Jmnh" (GHz)
Cu(NH,),C1,.2 aq. | 7.58 7.96 0.70 5.0
Cuk, Clh 2 aq. 7.45 7.88 0.88 6.3
Cu(NH,),Br,.2 aq. | 7.98 8.41 1.74 12.6

8.14 Exchange interaction in the Cu alkali halides.

In eq. 5.06 the exchange tensor 3 is seen to consist of three parts. The

isotropic (Heisenberg) part —(Tr j ) U contributes to the secular part H of the
interaction. In the underlylng compounds it corresponds to the major part of Kex and
also of K The values of 3 Tr 3m for nearest neighbours are given in table 8.1.

Those for next nearest neighbours are four times smaller. Farther neighbours may

be ignored.
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It is a well-known feature of spin-spin relaxation (cf. e.g. section 8.21) that
the relaxation rate 1-‘ strongly depends on the non-secular part of the interaction.
Van der Molen ) has found for these compounds that the non-secular part of the
dipole-dipole interaction is too small to allow a satisfying description of his
experiments. Hence he postulated the existence of non-secular contributions in the
exchange, akin to Van Vleck's pseudo-dipolar exchange, which is anisotropic and
symmetric ) 53)

This correction to isotropic exchange, however, is not the first to be made. As
was pointed out by Moriya 5L') one may roughly estimate the relative contributions

(isotropic) : (antisymmetric-Dzialoshinsky) : (pseudo-dipolar)

to be of the order
o o o B2

which implies that the antisymmetric exchange can play an important role in spin-

’

spin relaxation. The introduction by De Jong ) of antisymmetric exchange in the
description of dynamical spin-spin effects has proven successful in many Cu2+-
compounds and probably constitutes the biggest step forward in this field during the
last decade.

It is not surprising that neither in the Cu Tutton salts nor in MnF2 the need
for an introduction of antisymmetric exchange has been felt. In the first case the
total exchange is not much larger than the dipole-dipole interaction such that only
a minor correction can be expected. In MnF, g is very close to 2 (within 1%).Yet one
might thus try to explain the difference between 295 K results and high T calculations

8.15 Antisymmetric exchange in the Cu alkali halides.

The Dzialoshinsky-Moriya part of the exchange may be written as

N
2 m}<:n $ .3 A mEn an.@m A En) 8.01
- z
with (0_), = eijk(i jmn -3 Jmn)jk , m<n
and €xyz = Eyzx = ezxy — 3 eyxz = szy sgzyx's -1

* -

The axial vectors Dmn representing an interaction in the crys;zl satisfy
the symmetry conditions of the total crystal. Using these De Jong ”° ) has proven that
in the Cu alkali halides no antisymmetric exchange between next nearest neighbours
occurs and that for nearest nelghbours all D ,~vectors have the same length and are

parallel to the a-a-plane, with D ok rmn' Exchange between farther neighbours has

» . s e : .
) These contributions are part of, but may not be identified with the second term in
5.06, which is traceless and may still contribute a secular component toJ(ex. As
the definition of "seculap" depends on the orientation of the static field, eq.

5.06 gives the only universal way of splitting “;x
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been ignored. Designating both types of ion by | and Il and realizing that an ion and
its nearest neighbours are of different types one can indicate the direction of the

vectors by the following rules

> - - -»> -+ -+

(Dmn i Dml) A rnl and (Dmn w3 Dkn) g rmk 2

-~ > -+ -+ -> >

Dmn + Dml =0, if Fal // ¢ and Dmn + Dkn =0, if r ok f/:ics

where the numbering has been chosen so as to satisfy mel, n€ll * m < n. Thus the
+
antisymmetric exchange in these compounds can be characterized by one parameter |Dmn|,

which should be of the order of g—é—l | % Tr jmn" where m and n are nearest neighbours.

8.2 Theory for the field dependence of the relaxation rate in compounds with relatively
strong exchange interaction.

The case of compounds that have exchange as the main type of interaction more
. & 3 x 5 22,17
or less constitutes the standard problem in spin-spin relaxation theory ) ).
It is characterized by the feature that the secular part of the interaction (cf. section
T = .

5.23) - mostly due to the presence of strong isotropic exchange ) - is much larger
than the remaining non-secular part. This allows a simplifying assumption concerning
the field dependence of the memory spectrum at high temperatures. The situation is

17)_

sometimes referred to as the weak coupling case

8.21 The memory spectrum and the weak coupling limit.

In section 6.33 it was seen that in strong parallel fields and at high temperatures
(zero interaction limit) the secular part Ko of the interaction yields a narrow line
at w = 0. In section 6.36 this line was found to be narrower than the lines at
other frequencies, its second moment being approximately zero. In the present case
where non-secular interaction is negligible this narrow line at zero frequency, usually
called Kronig - Bouwkamp relaxation, is the only line in the absorption spectrum.
Experimentally this is found to be true for all values of the parallel static field.
As the analysis of the absorption spectrum by means of moment calculations breaks down

it is useful to try an analysis of the memory spectrum. Due to the single-line

* " * : < g i
) This holds for an almost isotropic g-tensor. An interesting case of possibly small
but mainly secular interaction occurs for Kéx % 0 and very anisotropic g-tensor with
R - «s : 2> g X i - T i i .
g1] g; 613 and 8; g],gk, such that d hardly contains non-secular contributions
The same holds for X£fs, if the A-tensor has similar characteristics. This situation

is found in some rare-earth compounds.
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character of the absorption spectrum this may well be done for the memory spectrum
that corresponds to the total absorption spectrum (rather than for the one that can
be derived from the zero-frequency term alone, as was done in appendix K). It will
be seen that the strong field condition, implicit in the zero interaction limit,
can then be omitted, the only approximation to be made being that of negligible
non-secular interaction (weak coupling limit).

According to 3.12 the memory function and memory spectrum pertaining to the

total spectrum are given by

i(1-P )Lt bk £
= ! { (.
(LM, e LM.) J e sLMiLMi(u,H) dw . 3.12

Up to second and lowest order in the non-secular part of the interaction the
memory function equals (LZMi = LOMi = 0)

i(L +Lo)t
(LM, je LMi)K 3
Z o

m

. with L.B =h™'[% 8]
o o

If this Is a good approximation in the long time region (i.e. for times of the
order of the inverse - very narrow = |inewidth) one says that the weak coupling

limit applies. One can then write

i(I-PA)Lt i(Lz+L°)z
(LMi.e LMi) A (LMi,e LMi)szo . 8.02

In analogy to section 6.31 one may split

i(Lz+L0)t 2 i(Lz+Lo)t
(L"a'e LMi)J( P H (LZJ(,e LZJ()J( a "
20 z o
o (L +L )t
-yt W2 £ PR I X 8.03
P+q,=0,%1,...,47 B T
As lﬂz.ﬂol = 0, one has for all B LzLoB = LOLZB implying
i(Lz+L°)t lLot ILZt
(¥ _,e K ) = (¥ ,e e i)
: +
P q ¥ P qH A
Bt o t
e 8.04

= (J(p,e = J(q)
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One can prove by inspection of 3.07 that

iLt Lt
e X ) = (i, e i) 8 . 8.05
’ ’ H +3C

P q K+ q qra e

K
( Pq

Hence the memory function in weak coupling limit equals

i(1-P,)Lt iL iw t
A -2 2 (<]
(LM, ,e LM.) % u z Yo , e YX) e
; : ? p=0,+1,...,# 2P P Mé+ﬂ6
8.06

The corresponding approximation for the memory spectrum is given by

v TR v ) -
' L - .
sLH.w'(w,H) My z Y, SK x (w wp,H) 8.07
(il p=0,+1,...,4n PP
iLot It o iwnt o >
with (Kp.e xp)M 85 - © Sie % (w,H) dw 8.08
- 2 S PP

. o > . 2ia
where the functions Sic 3 (w,H) are centered around w = 0 and have intensities
f 1

< p >
(Mb,dp)xZ*KO and second moments (Loxp' LdKP)Kz*M6(KP'MP)KZ*Ko .

Their shape, though fully determined by their moments, is in most cases not

explicitly known but probably resembles a broad line.

8.22 High-temperature approximation and rigid line shapes.

Contrary to the situation in section 6.3 one can achieve an essential
simplification excluding low-temperature effects through application of the high-
temperature approximation (g - D) at this stage,instead of postponing it to the
calculation of intensities and moments. The functions s§ %
8.08 depend on the static field through the definition o? ghe scalar product only.

(w,H) defined through

Making the high-temperature approximation one gets field independent functions

lim s;x (w,H) = s§x (w) . 8.09

B+0 pp PP

The memory spectrum may thus be approximated by a sum of lines S % (0 - w ) at

A B
1 PP
B+0" Contrary to

centerfrequencies wp with linewidths of the order of h-](MS'MQ)
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the general parallel-field absorption-spectrum (cf. section 6.3) it contains no

* - < = - .
crossterms ) or satellite lines and, as Yo = 0, no zero-frequency line. It is

important that in the double approximation of weak coupling and high temperature the

line shapes may be assumed independent of the static field. At a field variation

the lines simply shift rigidly keeping their form. Hence one may speak of '‘lines"

and not only of '"terms'" as in section 6.3; the name memory lines will be used (only

well-defined at high temperatures).

Due to the symmetry with respect to inversion of the static field (cf. section

3.5) one has

-+ -
SLHiLMi(w'H) = SLHiLMi(u'-H) .
Hence eqs. 8.07 and 8.09 imply
© 2 o 2 o
z Y, S % (w-w)MIy Sic % (w+ w)
p=t1,....am P “p'p TR A P

Moreover, due to 2.46, one has

o
S (@) = sy g (w)
PP -p -p
As Y = =Y one gets
p -p
2 o o 2 -0 e
wpsx,,((vw)=¥_psx i (-w)
PP “P P
and hence
z YZ (%ﬁ (w=-w)+ 5; (~w+w)) xn
—t s B X P X P
P=1l, e PP PP
X z Yz (s 2 (W4 w)+sS. (~0-0))
e p/Noge g0 WY W Sep g R
P=lyueuyn PP PP

At least for n < 2 this implies

= W 2 : A ; .
) This implies that a narrower upper bound (in terms of the relative importance of

d ,p# 0and Ko) than 6.13 must exist. A search for such a relation is suggested
p

as it would greatly clarify the mechanism of the weak coupling approximation.
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S 3 @ % s o () 8.14
PP PP

i.e. if the weak coupling and high-temperature approximation apply the memory lines

are approximately symmetric with respect to their centre. |f the calculation of an

odd moment (v Tr KPT(L°)2n+1 Mp) yields a non-zero value, this proves the break-

down of the approximation.

8.23 Single relaxation at high temperatures.

If the memory lines are smoothly curved and contain no fine structures it
follows from 8.12 that SLM.LMi(w'n) is approximately constant (% siniLHi(O,ﬁ))
in a frequency interval around w = 0. The width of this interval may be estimated
to be one order of magnitude smaller than the linewidth h-‘(xo’uo)é*o' As was
mentioned in section 3.3.this implies single-relaxation absorption in that
interval 28). The relaxation rate T-I is proportional to the constant value

=1

2 - (0,§)(A,A)élo cf. 3.19

)
SLM, LM,
et
This value is field dependent according to

s’ (0,f) = u z yz s; (-w ) . 8.15
i p=tl,...,4n P axp p

For increasing static field the memory lines shift away from the interval around

w = 0 yielding a decreasing relaxation rate .). When the field dependence of T

has been experimentally determined it can be confronted with the theoretical values

for intensities and moments of the memory lines S; % (w).

Thus in compounds with negligible non-secular interaction and at high

temperatures the memory spectrum, approximated by a sum of rigid lines, can be
recorded through measurements of 1-1 at fixed low frequencies in a variable field.
The maximal value of this field should be of the order of y;‘ h-](ﬂs,ﬂs)é*o.
Without the simplification of rigid line shapes the same result could only be
achieved through a measurement of the frequency dependent susceptibility up to
frequencies of the order of h-1(M6,XB)§*°, an experiment which is much more difficult
to perform (cf. section 6.2).

The single relaxation derived above on the basis of the weak coupling and

* s .
) This decrease may be compensated to some extent by the field dependence of

(8,8)g,



- 148 -

high-temperature approximation and under the assumption of smooth unstructured
memory lines is often experimentally found. One usually checks the single-relaxation
character and determines the relaxation rate and its field dependence measuring
the absorption at some fixed frequencies around 1-1 and fitting the results to a
Debye line (i.e. a Lorentz line at w = 0, cf. eq. 3.17 with w, = 0).

It should be emphasized that no other than experimental evidence is available
to support the assumed absence of fine structures in the memory lines. In some
cases deviations from single-relaxation behaviour are found that imply such fine

structures (cf. e.g. 3.22).

8.24 The high-frequency tail of a single relaxation.

Once the single-relaxation (Debye) character within a frequency interval
around w = 0 has been established (or assumed), the field dependence of ! can
be determined in a still easier way. Choosing one fixed measuring frequency within
that interval, and far above 1-1 ’) (or rather its maximum as a function of field),

one may approximate (cf. 3.17, 3.19, w, = 0, a=1)

x?.(w,ﬁ) sz -1

: T R

2 - —3 (w, ) (A,) 7",
(0,H) = Xoi; (M) 1+ u'

8.16

LM, LM,
m(xi] ok

3 -1
This means that at these high frequencies the field dependence of T can be
immediately observed and that the memory spectrum is directly proportional to
2 =1

"

wx'w
The complicating field dependence of (A,A) can easily be dealt with. Due to

4.04, 4.06 and section 3.3 one has

- - -1 - -
01 (0,1) = Yoo (D) (AR = g (A) = s (D) (M LML) = (1,4)%)7
il il i ii fi= i
8.17
which in absence of diamagnetic effects (¥ linear in H) and for negligible average
=y .
magnetization (!,Mi) approximately equals XOii(ﬁ)(Mi,Hi) implying

x4 (w,H) > 2
o ——ww sl B0 H)TT 8.18
waIi(ﬁ) =1

As often the field dependence of XOii(ﬁ) and (Hi'Hi) is of little importance

*) If such a choice is impossible one should not speak of a relaxation.
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8.18 shows the equivalence of wZX”w-l and s' at high frequencies.

8.25 The direct measurement of the memory spectrum.

The approximate equivalence of mzx“w-] and the memory spectrum s' derived in
the preceding section for the high-frequency tail of a single relaxation can be given

a more general significance. Inspecting eqs. 3.14 and 3.13 one sees that if
X1 @) = Yooy (D] << %, (0,H) = 3y (R 8.19

holds, one may approximate

-1 Xi i (“-nﬁ) = Xm.i(g)
l'(iw)(A,A) = - jw = ! — %
Xii(w.H) - Xii(o'H)

xii(m,?{) - X”ii(g)
R iw b — 8.20
X;1(0,H) = gy (H)

and thus

m (w,) = Re 1'(iw) % w (A,A) . 8.21

SLM, LM, .
et “(H))
This allows a general and simple experimental determination of the memory spectrum.
In most cases inequality B.19 holds outside a narrow zero-frequency absorption-
line leaving the bulk of the broad functions gﬁ % (w,H) (cf. 8.08) open for direct

investigation. Combining 8.21 and 8.07 one has ?i% 8.19 holds)

X' (w,H) X" (w,H)
Wt L (n M) B o - (A,R) %
 Xoq; (H) WXy 5 (0,H) = xp;, (H))
N u;z z Yz %; % (w - wp,ﬁ) 8.22
p=tl,...,m PP

to which 8.09 may be applied.

As far as a confrontation with theoretical values for intensities and moments
of the functions s;.x (w,ﬁ) (for 8 + 0 memory lines) is concerned the excluded
interval plays a minor role. This suggests that in such a confrontation no use is
made of the distinct features of s' at w & 0 and that an analysis of mzx“m-‘ would
be sufficient. In the next section it is shown that at low frequencies and high
temperatures the application of the weak coupling approximation in such an analysis

“eads to definitely wrong results.



8.26 Tentative analysis of wzx“w-].

N - SO X S
A direct analysis of wx''w = seems to have the advantage of doing without
condition 8.19. However it will be seen that the interval around @ = 0 must again
be excluded or otherwise the weak-coupling approximation does not hold.

Taking the second time-derivative of 3.08 one gets

+ @
Bu (LM, , L LM,) = f Pt s”(u,ﬁ) dw . 8.23

- @

Comparing this to eg. 3.12 one may remark that 8.23 shows a simpler type of time
development. Consequently one would expect the weak coupling approximation to be
valid such that up to second and lowest order in the non-secular part of the

interaction one has

8

i (Lz+Lo)t
S;so(LMi. e LM,)

% loe 2 s, (w,f) dw 8.24

| ———
(]

8

H
zZ o

and thus analogous to 8.07 (cf. 1.38, 1.45, 3.10)

% s — (A,A) = 1 o S, (w,0) &
w(x;; (0,H) = o . () ¥

BT U p=0’:§‘2'“.':n Yi SJO(PJCP(“""“p’H)‘
8.25

This would constitute an alternative and more general way to derive eq. 8.22.
It is instructive to compare both weak-coupling approximations 8.02 and 8.24

for the special case of a single relaxation at high temperature. For a single

relaxation eq. 3.19 yields

- - - . . = -1
m sLMiLMi(w,H) = SLMiLHi(O'H) T (A,A) 8.26
whereas eq. 3.17 implies
762 s, ()=l an (1 - —10) . 8.27
ii 2.2
1 +wT

Although both expressions have been approximated by the same sum
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2 o *
T U p=:1,%...:ﬂ Yp ﬁksxp(w - wp.H) 8.28
the first expression is frequency independent, whereas the second contains a
narrow line (a negative replica of the absorption line) which stays at zero
frequency for all fields. The occurrence of a constant value was seen to be
plausible in section 8.28 but the zero-frequency line in eq. 8.27 indicates a
serious difficulty. For high temperatures 8.28 becomes a sum of (positive non-
definite) memory lines which have a rigid shape and only shift when the field is
varied. Their sum cannot yield an anomaly of the type found in eq. 8.27, whatever
their shape may be. Therefore the weak coupling approximation for quii(m,ﬁ) is
seen to break down in the frequency interval around w = 0, where 8.19 does not
hold either. Even outside this interval and certainly at lower temperatures the
validity of eq. 8.22 would be dubious without the argument of section 8.25.

Again the importance of experimental evidence concerning the single-
relaxation character has appeared. Without it one would be tempted to prefer
the erroneous method given in this section ’). The weak coupling approximation

is a subtle method.

8.27 The extremely high-frequency tail of relaxation absorption.

A well-known paradox in relaxation absorption is the fact that a pure Debye
(or Lorentz) line has infinite even moments. This means that relaxation absorption
cannot exactly satisfy such a frequency dependence. The divergence can be under-
stood realizing that the time development corresponding to a pure Debye line is

- -1
proportional to e It[T

thus having a singularity at t = 0. The high-frequency
region of the Fourier spectrum is essential for the short-time behaviour and may
therefore be expected to be anomalous. In physical situations however the sharp
bend at t = 0 is rounded and the absorption spectrum must be cut off. It has
often been put that this occurs at frequencies of the order of h'I(Ko,KO)i.

Eq. 8.22 clearly shows the shape of this cut-off.

8.3 Experimental results on Cu alkali halides.

Absorption measurements at a frequency v = w/2m = 1.78 GHz have been performed
as a function of the parallel static field = Hzi. for Cu(NH“)ZCIh.Z aq. and its
two variants CuKZClh.Z aq. and Cu(NHh)ZBr“.z aq., with ;i both along a- and c-axis

S . g .
) However, a further analysis by an estimate of the cross terms, as suggested in

the note to section 8.22, could indeed be easier for ”2511 than for s'.



1 l

1

Field dependence of vx”/xo in some Cu alkali halides at 1.78 GHz.

Open points: ;i // a, full points: gi // ¢. Circles: Cu(NHh)ZC]h'Z aq.;

squares: CUKZCIL'Z aq.; triangles: CU(NHA)ZBFA'Z aq.; the tails represent
the change when the temperature Tb is reduced from 20 K to 14 K. The

’ Ly
extrapolations from the low-frequency zero field measurements of T )

are indicated on the left.
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(for the K-compound only the a-axis). A slight difference was found between the

results for the two temperatures 14 K and 20 K which are high compared to the ferro-

magnetic transition temperatures (cf. table 8.1). Measurements at other temperatures

were too inaccurate to justify further analysis.

Moreover the routine of the measurement included a determination of the EPR

line. A discussion of the observed linewidths will be given in section 8.32.

8.31 Intensity and second moment of a sum of memory lines.

For the underlying compounds Van der Molen hh) gives zero-field low-frequency

relaxation-rates T-] which all lie below 21 0.2 GHz. Consequently 8.19 is expected
-~
to apply at the measuring frequency. In presence of a parallel static field T

usually decreases, apart from the field dependence of (A,A) "~ X:( (0,H) = x (W) .
il adii

The latter factor, however, does not invalidate 8.19 for the measuring

frequency used.

Hence eq. 8.22 applies. Moreover the temperature is high and ;oii(ﬁ) is almost

field independent (cf. section 6.43) such that

-1 =+

v x4, (2mv, 27y, v, e;)
282 %s(sn) i 5 ! T SO TR 52 (0= pu) 829
Xoii(o) p=+1,+2 pp

where use has been made of the decomposition given by eqs. 6.33, 6.34, 6.35 and
6.36, as ;i lies in a c-a-plane (cf. section 8.13). As the memory lines are broad
(width of the order of & h-1(Ko,M6)i) compared to the measuring frequency one may
approximate (cf. €.11, 8.14)

Z:3 VX o (5
2Nh =S(S+1) —— & 2 s () + 85 (2 ) - 8.30
3 X2 HG L G

*

Thus the absorption measurement yields a rather clear picture of the memory lines.

In analogy to 6.29 and 6.46 one may derive from 8.29 (cf. 8.11, 8.14) that

o v X"" + @ 2
1 n (o]
2w 2 %s(sn) Jvz" du % b (wg)iont) 2 f 0 Sy g (W) du =

LI I Y PP
| o] (R

-(2n+1) -1 + 1-2n +
= (2m) (Te 77 {Tr((Lge) L) + 2 Te((Lgge,) L) ). 8.31
The traces in 8.31 can be calculated with the aid of 6.34 and 6.30, 6.31 with

dafinitions 5.17, 5.18, 5.28, 5.30, where Xéx includes the antisymmetric exchange

Lintroduced in section 8.15.



Table 8.2

el S E K L i 5= vf e dv
chloride & é> Xo

2 theor. exp L theor.
(GHz") (GHz )

3.61 0'50+]2'60C4 . 0.0280+0.7‘49€E
3.22

(g.gh) 0.51+25.20¢C, . 0.0239+1.50 Cg
.81 9

3.18

4.52 0.514-0-12.60("‘1 . 0.0‘075+1.165€E
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Using the approximation of isotropic g-tensor in X and HH and neglecting the
contribution of anttsymmetrlc exchange to K with respect to that of the isotropic
exchange De Jong ) has performed these calculatlons, the results of which are
given in table 8.2.

The experimental results for the field dependence of vxi'./xq;; are given in
fig. 8.01. In order to simplify the comparison between compounds with different
strength of the isotropic exchange (which through Lo in the second moment mainly
determines the widths of the memory lines) the absorption has been plotted vs.

a normalized field value, the ratio (Tr Xz)&(Tr J('cz,)-i % 12-i th J;l, rather than

vs. Vv, , A check measurement in Cu(NHh) C|b.2 aq. (a-direction) at 4.84% GHz confirmed

the a:proxxmate frequency independence predicted by 8.30. For reasons of clarity it
has been omitted from fig. 8.01.

It follows from eq. 8.30 that fig. 8.01 showing their weighted sum gives an
impression of the right halves of the two memory lines 2 and so *). One
may improve the picture imagining the negative field re:Téﬁ]to be zfgfent as well
such that symmetric figures appear. It will be seen that §;EK2 may probably be

negiected, which implies that fig. 8.01 immediately shows the approximate shape of

§K i It is clear from fig. 8.01 that the symmetrized VX“/X figures for Ei // a
and ei // ¢ have a different shape respectively being broad and sharp. Neither
type can be analyzed to equal the sum of two Gaussians around Nl - 0, such that
the celebrated assumption of Gaussian memory lines (which has been carefully
avoided in the present work) is found to be wrong in this case. The shape of the
memory lines constitutes a problem which should be further investigated both
experimentally and theoretically.

The present results are in good agreement with the Debye-extrapolations based
on the T values of ref. 44, such that the single relaxation behaviour is seen to
persist up to frequencies of ten or twenty times the relaxation rate.

The temperature dependence observed cannot be explained from spin-spin
effects, It is suggested that interionic distances and orientations change with
temperature and that this influences the exchange interaction'*)_strong dependence

on temperature has been observed in the resonance linewidths (cf. table 8.3).
@

and B = f v

"
: 2 x
dv, are listed

L X°i| L

The experimental values for 4 = f de
Oj |

in table 8.2. As can be seen from fig. 8.01 the measurements for the Br-compound

L‘) The latter horizontally compressed by a factor 2.

% S > . .
) Probably mainly its antisymmetric part.
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should be extended to higher fields before values for Intensity and second moment can
be given. As far as could be observed it shows characteristics similar to the Cl-
compounds.

The theoretical values for 4 and B are given in table 8.2 as functions of the
strength lamn[ of antisymmetric exchange between nearest neighbours. Thus the
experiment yields two formally independent ‘) ways to determine this constant. The
values derived from 4 and B are presented separately in the form ID Iz 2 As
according to Moriya the ratio [D [Jm; should be of the order 2—— (cf section 8.14),
the former ratio is given as well.

In the a-direction of Cu(NH“)ZCl“.Z aq. both values for [an| agree. An
acceptable difference is found for the a-direction of the K-compound. Both |an[J;l
ratios are slightly lower.

The c-direction of Cu(NH“)ZCIh.Z aq., however, shows a remarkable discrepancy,
not only between the |an[ values that result from 4 and B but also when these values
are compared to those found for the a-direction. One may try to ascribe this to an
experimental error and calculate 4 and B for the c-direction based on the |an| values
measured in the a-direction. The results (in brackets) are about twice and four times
larger respectively. The difference could at most be explained by a narrow line at
Vo % 30 GHz, which would lie well within the measuring range but has not been
observed, Another explanation, a possible error in the zero absorption level can
also be ruled out as reasonable agreement with ref. 44 has been found in zero field.
A closer investigation is needed.

The 1anfJ;l ratios fgund in the a-direction of both compounds give almost too

= 0.10 as derived from the average g in the a-a-plane.

good an agreement with
Even the results of the c-girection of the NH& compound, taken on their own, satisfy
Moriya's estimate for the order of magnitude of the ratio.

The improvement achieved by the introduction of antisymmetric exchange may be

i

seen when one takes |D | = 0 in the theoretical expressions in table 8.2. The

remalnnng values for 4 and B are totally due to K with about equal contributions

from s and ﬁK “). As the antnsymmetrlc exchange (for almost isotropic
3

g-tensor) hardly contributes to the ?K memory line, this becomes negligible upon
introduction of a large amount of this exchange. Hence one may interpret fig. 8.01

in the simple way mentioned above.

* * 2 s
) For large [Dmnl, compared to Xd, an erroneous gauge factor in the absorption

measurement may cause the same error in both results.
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8.32 Resonance linewidths in low fields.

The resonance linewidths observed (half width at half height) are listed in
table 8.3. Apart from present results those of Henderson and Rogers 57) determined

at room temperature have been added in order to stress the temperature dependence.
Moreover the observed values for g are given, through which the frequency measured

half widths I' have been derived. As the measuring frequency is only 1.78 GHz the
resonance field corresponds to (Tr Ki)i(Tr ﬂi)_i < 0.10 which may be called a low

field (condition 1 of section 7.22).

Although the other conditions of section 7.22 are poorly satisfied one may try a
description by eq. 7.20, where k is the direction perpendicular to the alternating
field (i) and the static field (j). The zero-field relaxation rates might be taken
from ref. 44 but are also - and perhaps in somewhat more detail - directly available
in the present work (cf. section 8.24), as (A,A) = (Mi'Mi) for H = 0. The latter
results have been used for a tentative calculation of the resonance linewidth according
to 7.20 (cf. table 8.3 values in brackets). The agr;ement is surprisingly good. One

)

> : y : 4 - -
might state that antisymmetric exchange once again 5) gives a reasonable description

both of relaxation rates and of resonance |inewidths.

Table 8.3 |Cualkali| H=He, | T 3 width at r I+
] b g (-2-2)
hal ide along (K) | & height (Oe) (GHz) 2
NH,,-C1 c 14 34 2.04 | 0.097 | (0.100)
L 20 36 2.06 | 0.104 | (0.109)
i 77 W2 2.10 | 0.1z | (0.11)
’ 295 84 2.10 57)
' K-C1 c 20 4o 2.11 | 0.118 | (0.120)
r 77 49 2.1 0.15 (0.20 )
295 95 2.09
NH,-Br c 14 29 2.07 | 0.084 | (0.092)
20 30 2.11 | 0.089 | (0.10 )
Fa+YC
( 3 )
NHh-Cl a 14 42 2.24 | 0.132 | (0.133)
20 42 2.21 | 0.130 | (0.143)
77 52 2.24 | 0.163 (0.18 )
NH, =Br (1,1,0) 14 31 2.24 | 0.098 | (0.104)
(0.12 )
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25)

+«ss (horresco refereng) ....

P. Vergilius, Aeneis,
Second Book, verse 204.
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SAMENVATTING

De tijdontwikkeling van een systeem, ook al bestaat het uit veel deeltjes, wordt
in de quantummechanica beschreven door de Schrédinger vergelijking. Dit 1ijkt een
eenvoudige uitspraak maar aangezien deze vergelijking bepaald wordt door de hamilto-
niaan van het systeem, waarin alle gegevens over zijn wisselwerkingen, zowel inwen-
dig als met de buitenwereld zijn bevat, kan of hoeft er nauwelijks meer van worden
gezegd. Zulke korte maar veel omvattende uitspraken komen in het theoretisch gedeelte
(hoofdstuk 1 tot en met 5) veelvuldig voor.

Aanvankelijk is weinig over de aard van de hamiltoniaan verondersteld. De
belangrijkste aanname is dat deze van een uitwendige vector-parameter I afhankelijk
is. Voor de magnetische systemen die hier in het bijzonder zijn beschouwd is H het
magnetisch veld.

De voornaamste reden om magnetische systemen te onderzoeken is gelegen in het
feit dat men in magnetische systemen alle wisselwerkingen denkt te kennen. Daarom
vormen zij een vrijwel ideale toetssteen voor de theorie der quantumstatistica,
zoals het Kubo-formalisme en de uitbreidingen daarvan.

Een confrontatie van theorie en experiment in zulke systemen is mogelijk aan de
hand van het frequentiespectrum van de lineaire respons op veranderingen van ﬁ.
Experimenteel valt dit spectrum te bepalen door meting van energie-absorptie in
magnetische wisselvelden van verscheidene frequenties. Theoretisch komt het overeen
met het spectrum van een bepaalde correlatiefunctie.

Hoewel dit spectrum in het algemeen te ingewikkeld is om een volledige numerieke
berekening ervan mogelijk te maken, kunnen toch enige karakteristieke grootheden
zoals momenten of relaxatietijden worden berekend en worden vergeleken met de experi-
mentele uitkomsten. Als zelfs zo'n berekening te moeilijk is kan men zoeken naar het
onderling verband tussen de experimentele resultaten zoals dat door de theorie wordt
voorspeld. :

De hier beschreven onderzoekingen vormen een uitbreiding van Locher's werk over
spin-spin effecten in de paramagnetische susceptibiliteit van poeders bij frequenties
van ongeveer 1 GHz 26). Aangezien zijn meetopstelling voor het einde der hier
beschreven metingen geen wezenlijke veranderingen heeft ondergaan, wordt de lezer
voor een beschrijving van de experimentele methode verwezen naar ref. 26.

De belangrijkste uitbreiding wordt gevormd door het onderzoek op het gebied van

overgangsverschijnselen (Man. hoofdstuk 7). Hierdoor werd een theoretische beschrij=-

ving van relaxatie nodig waarin de hoge temperatuur benadering niet wordt verondersteld.
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Een overzicht van de mogelijkheden daartoe vindt men in de hoofdstukken 1 tot en met 4.

Een tweede uitbreiding is gelegen in het gebruik van éénkristallen in plaats van
poeders. Dit betekent dat de anisotropie van de g-tensor meer op de voorgrond treedt.
De veranderingen die aangebracht moeten worden in de gebruikelijke ontbinding van de
hamiltoniaan zijn behandeld in hoofdstuk 5.

Hoofdstuk 6 beschrijft de onmiddellijke voortzetting van Locher's werk. Hierin
worden de koper Tutton zouten besproken, die verhoudingsgewijs kleine exchange-
interactie hebben. Wat de theorie betreft wordt het bewijs geleverd van de regel, dat
de breedte van de verboden parallel veld resonantielijnen praktisch uitsluitend door
het z.g. seculaire deel van de wisselwerking wordt bepaald. De experimentele resulta-
ten zijn hiermee niet geheel in strijd.

De overgangsverschijnselen in MnF, zijn besproken in hoofdstuk 7. Uitgaande van

een aanpak van Tjon wordt een verband ngeleid tussen resonantie-absorptie in lage
velden en relaxatie in nulveld voor stoffen waarin sterke exchange-interactie optreedt.
Dit verband kan worden toegespitst en levert dan een vertaalrecept op tussen para-
magnetische resonantie lijnbreedtes enerzijds en relaxatietijden in nulveld anderzijds,
welk recept blijft gelden tot vlak boven het overgangspunt in antiferromagneten.

Hoofdstuk 8 is gewijd aan de meest onderzochte vorm van spin-spin relaxatie,
de veldafhankelijkheid bij hoge temperatuur van de relaxatietijd in stoffen met
verhoudingsgewijs sterke exchange-interactie. Experimenteel blijkt de gebruikelijke
veronderstelling van Gaussische lijnen voor de integraalkern van de relaxatie in de
koper alkali halogeniden niet op te gaan. De theorie in dit hoofdstuk is daarom
gegeven in een vorm die deze aanname vermijdt. De confrontatie tussen theorie en
experiment is uitgevoerd aan de hand van opperviakte en momenten van de waargenomen
veldafhankelijkheden en niet in de vorm van relaxatietijden.

Bovendien blijkt, dat men, door de aanwezigheid van antisymmetrische exchange in
deze stoffen aan te nemen, de experimentele resultaten redelijk kan beschrijven.

De bruikbaarheid van het vertaalrecept uit hoofdstuk 7 wordt ook door deze
metingen bevestigd. De overigens slecht begrepen temperatuurafhankelijkheden van

lijnbreedtes en relaxatietijden kunnen zo onder een noemer worden gebracht.
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Those were the days my friend, .....

Op verzoek van de faculteit der Wiskunde en Natuurwetenschappen volgt hier een
overzicht van mijn studie.

Na een gymnasium-B opleiding aan het Coornhert Lyceum der Gemeente Haarlem,
waar Dr. J.K. van den Briel mijn door mijn vader gewekte belangstelling voor de
natuurkunde verder aanwakkerde, begon ik in 1958 mijn studie aan de Rijksuniversiteit
te Leiden. Het kandidaatsexamen met de hoofdvakken natuurkunde en wiskunde en
bijvak scheikunde werd in 1961 afgelegd. Sinds november van dat jaar ben ik verbonden
aan de werkgroep spin-spin relaxatie van het Kamerlingh Onnes Laboratorium, waarvoor
Prof.dr. C.J. Gorter de verantwoordelijkheid heeft. Aanvankelijk assisteerde ik
tezamen met Dr. R.G. van Welzenis bij het onderzoek van Dr. P.R. Locher, vervolgens
bij dat van de eerste onder toezicht van Dr. J.C. Verstelle.

Enige tijd v66r het behalen van het doctoraal examen, afgelegd in 1965, nam ik
de zorg voor het onderzoek van spin-spin relaxatie bij frequenties rond 1 GHz op mij
eveneens onder directe leiding van Dr. J.C. Verstelle.

Sinds 1963 ben ik verbonden aan het electronica practicum voor tweede- en derde-
jaars studenten (sedert 1969 als hoofdassistent).

Degenen die mij in staat gesteld hebben dit proefschrift te schrijven zijn te
verdelen in vier, hier en daar overlappende groepen.

Allereerst zij die als directe samenwerkers de sfeer bepalen of bepaalden waarin
leven en werken tot een harmonisch geheel verenigd zijn. Hiervan wil ik er één als
voorbeeld noemen: Henk van Noort, die vanaf 1964 in alles,voor- en tegenspoed, heeft
meege leefd.

Vervolgens zi] die door hun ervaring en belangstelling mijn denken en ons
onderzoek hebben gevormd en gericht. Dr. J.C. Verstelle, hoewel zeker eveneens
behorend tot de eerste groep, neemt hier een onvervangbare plaats in. Hij was het,
die, door in 1967 het onderzoek van overgangsverschijnselen te suggereren, aan de
werkzaamheden in de groep spin-spin relaxatie een noodzakelijke en succesvolle
wending gaf. Bovendien wil ik de vele gesprekken memoreren, die ik als kandidaat met
Dr. P. Locher had (of liever omgekeerd), welke toen juist zijn proefschrift voor-
bereidde. Het gelukkig toeval dat bij het begin van het onderzoek (% 1965) een opbloei
van de theoretische belangstelling ervoor juist in het Instituut Lorentz plaatsvond
is van groot belang geweest. Met Prof.dr. P. Mazur en Dr. R.H. Terwiel heeft een

vruchtbare wisselwerking plaats gehad en hetzelfde kan worden gezegd over het

contact met Prof.dr. J.A. Tjon (Utrecht).
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De computerberekeningen van C. de Lezenne Coulander en in het bijzonder die van
J.G.A. Hillaert hebben de analyses in hoofdstukken 7 en 6 mogelijk gemaakt. De
hechte samenwerking met de drie collega-promovendi H.L. van Noort, J.G.A. Hillaert
en W.M. de Jong is van onmiskenbaar nut geweest.

In de derde plaats zij die door hun functie in het Kamer]ingh Onnes Laboratorium,
doch vaak met groter hulpvaardigheid dan alleen daaruit te verklaren valt, het onder-
zoek hebben gesteund. Weer vallen hier slechts voorbeelden te noemen: de kamer~
technici D. de Jong en J. Turenhout komen mij het eerst in gedachten.

Ten vierde zij die de directe uitvoering van het proefschrift hebben verzorgd.
Geen van hen zal het mij kwalijk nemen, dat ik hier het eerst Sary Kranenburg-Ginjaar
noem, die ongeveer de helft van het typewerk (waaronder de beide eerste hoofdstukken!)
en bovendien nog de afwerking heeft verricht. Een groot deel van de hoofdstukken 5
en 6 werd enthousiast verzorgd door Marja Muns. De hoofdstukken 3, L en 7 werden
uitgevoerd door mevr. E. de Haas-Walraven. Het tekenwerk werd in hoog tempo uitgevoerd
door de heren H.J. Rijskamp, W.J. Brokaar en W.F. Tegelaar, welke laatste tevens voor

de speciale fotografische afwerking zorg droeg en de indeling van de omslag ontwierp.

Typed on 1BM Selectric 71,Artisan, Scribe, Light Italic.













