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STELLINGEN

In analogie met gewone Wigner-distributiefuncties, die gebruikt kunnen
worden om quantummechanische ensemblegemiddelden als klassieke fase-
gemiddelden te schrijven, kunnen ook ‘“‘simultane Wigner-distributie-
functies”” worden ingevoerd om quantummechanische tijd-correlatiefuncties
als klassieke fasegemiddelden te berekenen.

Hoofdstuk 11 van dit proefschrift.
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gevallen van Bose-Einstein- en Fermi-Dirac-statistiek kunnen door middel
van integraalvergelijkingen worden uitgedrukt in de micro-kanonieke
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De door Oppenheim behandelde methode, om de Bloch-vergelijking
voor de Wigner-distributiefunctie van het kanonieke ensemble op te lossen
door middel van een reeksontwikkeling van deze distributiefunctie naar
machten van de constante van Planck, kan alleen worden toegepast in het
geval van Maxwell-Boltzmann-statistiek. Zijn bewering, dat deze methode
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J. G. Kirkwood, Phys. Rev. 44 (1933) 31.

VI

De door Butler en Friedman afgeleide exacte uitdrukking voor de
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R. P. Feynman, Phys. Rev. 91 (1953) 1291.
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VII

Eenzelfde verband, als er bestaat tussen padenintegralen van Feynman
in de quantumtheorie en het variatieprincipe van Hamilton in de klassieke
mechanica, bestaat ook tussen padenintegralen in de faseruimte, zoals die
door Groenewold zijn ingevoerd, en het zogenaamde gewijzigde variatie-
principe van Hamilton.

R. P. Feynman, Rev. mod. Phys. 20 (1948) 367.
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VIII

De door Kramers besproken moeilijkheid om de zogenaamde Darwin-
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electrisch geladen deeltjes op eenduidige wijze te hermiteiseren, kan worden
opgelost. Men kan namelijk bewijzen, dat deze term van een dusdanige vorm
is dat een ondubbelzinnige hermiteisering mogelijk is.
H. A. Kramers, Die Grundlagen der Quantentheorie,
Leipzig (1938), pg. 108, 109.
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P. Mazur en S. R. de Groot, Physica 22 (1956) 657.

X
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INTRODUCTION

In this thesis we shall be concerned with the quantum statistical foun-
dations of the Onsager reciprocal relations in non-equilibrium thermo-
dynamics. We shall make use of Wigner's phase space representation of
quantum statistical mechanics. The theory of the foundations of the Onsager
relations can thus be developed in a way analogous to the classical treatment,
given by de Groot and Mazur 1).

In chapter I we shall discuss the theory of ordinary Wigner distribution
functions. Furthermore we shall introduce the equilibrium distribution
function of a set of extensive state variables, which provide a macroscopic
description of the system, assuming that these variables are represented by
commuting operators in quantum theory. This probability distribution
function will be expressed in terms of the Wigner distribution function of
the micro-canonical ensemble. The properties of equilibrium distribution
functions of extensive variables will be studied.

In chapter II we shall introduce “‘joint Wigner distribution functions”.
which may be used for the calculation of quantum mechanical correlation
functions. Furthermore we shall define the joint equilibrium distribution
function of a set of extensive state variables, This distribution function
will be expressed in terms of the joint Wigner distribution function of the
micro-canonical ensemble. We shall derive several properties of joint
equilibrium distribution functions of extensive variables, in particular
the so-called property of detailed balance.

Joint distribution functions of extensive state variables are in general
not probability distribution functions. It will be shown, however, that the
joint equilibrium distribution function does represent a joint probability,
if the set of quantum mechanical operators, corresponding to the state
variables, is of a certain class.

The theory of distribution functions of extensive state variables will be
used for the well-known derivation of the Onsager reciprocal relations.

The theory in chapters I and II will be developed for Maxwell-Boltzmann
statistics only. The extension to the cases of Bose-Einstein and Fermi-I Jirac
statistics will be given in chapter II1.

REFERENCE

1) Groot, S. R. de and Mazur, P., Non-equilibrium thermodynamics, (to be published).




CHAPTER |

THE THEORY OF ORDINARY
WIGNER DISTRIBUTION FUNCTIONS

Synopsis

The quantum statistical theory of Wigner distribution functions is developed to
serve as a basis for the derivation of the Onsager reciprocal relations in non-equilibrium
thermodynamics. The theory is closely analogous to the classical treatment, given by
de Groot and Mazur.

The present chapter deals with the following topics:

1) Time dependence of Wigner distribution functions, which is described by
means of a propagator. The properties of this propagator are studied.

2) Equilibrium distribution function of a set of extensive state variables, which
provide a macroscopic description of the system, assuming that these variables are
represented by commuting operators in quantum theory. This probability distribution
function is expressed in terms of the Wigner distribution function of the micro-
canonical ensemble, representing thermodynamic equilibrium. The properties of
distribution functions of extensive variables, in particular those with regard to the
even or odd character of these variables, are studied.

3) Definition of a set of intensive thermodynamic variables, conjugate to the
extensive state variables, by means of Boltzmann's entropy postulate.

The theory is developed in the present chapter for Maxwell-Boltzmann statistics.

§ 1. Introduction. In the present (I) and in the following chapters (II, III)
we shall be concerned with the quantum statistical foundations of the
Onsager reciprocal relations1) in non-equilibrium thermodynamics. We
shall make use of Wigner's phase space representation ?) of quantum
statistical mechanics. Whereas chapter I deals with the theory of ordinary
Wigner distribution functions, we shall introduce in chapter II “joint Wigner
distribution functions’’, which is needed for a derivation of the Onsager
relations. The theory in I and II is developed for Maxwell-Boltzmann
statistics. The extension to the cases of Fermi-Dirac and Bose-Einstein
statistics is given in III.

The Wigner distribution function is a phase space distribution function,
which may be considered as a quantum statistical analogue of the classical
distribution function. Its importance follows from a theorem, due to
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Wigner?), Groenewold 3) and Irving and Zwanzig %). This theorem
states that quantum mechanical ensemble averages of operators can be
written as phase space averages of classical functions over the Wigner
distribution function, if we use Weyl's rule of correspondence %) between
the quantum mechanical operators and the classical functions. In this way
quantum statistical mechanics can be formulated in a manner, closely
analogous to the formalism of classical statistical mechanics. The theory
of the foundations of non-equilibrium thermodynamics in the present (I)
and following chapters (II, ITI) can thus be developed in a way analogous
to the classical treatment, given by de Groot and Mazur 9).

In § 2 of this chapter we shall study the time dependence of Wigner distri-
bution functions. The time evolution of Wigner distribution functions will
be described by means of a propagator 7)8). Several properties of this
propagator will be derived for later use.

For the macroscopic description of a system we shall introduce a set of
extensive state wvariables, (e.g. masses, energies of small sub-systems,
containing large numbers of particles). The number of these state variables
is much smaller than the number of particles in the system. We shall assume
that these variables are represented by commuting operators in quantum
theory. In § 3 we shall introduce the probability distribution function of the
extensive variables in thermodynamic equilibrium. This distribution function
will be written as the phase space average of the classical function, corre-
sponding to a certain projection operator of the state variables, over the
Wigner distribution function of the micro-canonical ensemble, representing
thermodynamic equilibrium. With the help of this phase space average we
shall derive the properties of distribution functions of extensive variables
with regard to the character of these variables under reversal of the particle
velocities.

Micro-canonical ensemble averages of functions of the extensive state
variables can be written as averages over distribution functions of these
variables. Since these distribution functions are of a discontinuous type
in quantum statistical mechanics, the latter averages have the form of
Stieltjes integrals. If we make, however, the assumption that a central
limit theorem holds for the state variables under consideration, these
distribution functions are approximately continuous, differentiable normal
distribution functions. In this approximation it is possible to define
probability density functions of the state variables, which are Gaussian,
The above mentioned Stieltjes integrals then become ordinary integrals.

In addition to the extensive state variables we shall introduce in § 4 a
set of intensive thermodynamic variables. These new variables will be
defined by making use of Boltzmann's entropy postulate.

§ 2. Wigner distribution functions; propagators. Consider a quantum
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mechanical ensemble of conservative systems, each containing N point
particles with Cartesian coordinates 1y, rs, ..., ry. This set of coordinates
will be denoted briefly by the symbol r¥. This ensemble is characterized
by a density matrix (in coordinate representation)

p(F N, 1N 1) = X wa (N 1) pu(ry; b), (2-1)

where @y (X @y = 1; w, > 0) is the relative number of systems in the state
with normalized wave function y,(r¥; ¢), (g} is the complex conjugate of yy).

The Wigner distribution function 2) of this quantum mechanical ensemble
is defined by

/'(r.\" p\' t) (ﬁ/z)ﬁll.\' j (‘.\]):(21. /”(p_\‘ })\): p(r.\' L y.\" rA\' — y\' [) dy.\' -
_ () 3N S0, exp{(2i/H)(PY -yN)bya(ry + ¥V i) yulrN — y¥ ;1) Ay, (2:2)

where

pN-yN = TN (pi-yi) and dyN =dyidyz...dyn.

Furthermore n = h/2x, where h is Planck’s constant.

Just as a distribution function in classical statistical mechanics a Wigner
distribution function is a real function, depending on the coordinates
1, 2, ..., rxy and the variables pi, P2, ..., Pv, which will be called the
momenta. The orthogonal 6N-dimensional space, in which the Wigner
distribution function is defined, will be called the phase space. A Wigner
distribution function may assume negative values and does not represent
a probability density in phase space, in contrast to a classical distribution
function, which is a probability density function and consequently always
])()hi1i\'(‘.

Using Weyl's rule of correspondence 3) between operators Aop and
classical functions A(r¥, pV):

Aop=JL(oN, T¥) expli(oN £ + ¥ -pil)} do¥ dr¥ =
= A(rN, p¥) = [ (0N, V) expli(oN - N + 7V -pN)} do¥ dr¥, (2-3)
it can be shown 2)3)4) that the quantum mechanical ensemble average
A(t) = Suwu [ yi(rN; £) Aoppulr™; 1) dr¥ (2-4)

.

may be written as the following phase space average:

A(t) = [ A(rN, pN) (rN, pN; 1) drN dpN. (2-5)
In eq, (2-3) rY, = ¥, p;, = (hfi)(¢/érN) and
expli(o¥ 1l 4 T¥-pY)} = B, (#/n) (0¥ 15, + TV py)".  (26)

Equation (2-5) demonstrates again the formal analogy between Wigner
distribution functions and classical distribution functions. From the Weyl




correspondence Ayp = 1 2 A(rN, p¥) = 1 it follows, together with eqs.

(2-4) and (2-5), that
SN, PN §) drN dpN = Nuwp [ lya(ry; D)|2d4rY = Sue, 1. (2-7)
The Wigner distribution function (2-2) is therefore normalized in phase

space.

The time dependence of the Wigner distribution function f(r¥, p¥;¢),
eq. (2-2), 1s determined by the time dependence of the wave functions
yu(ry; ¢), which are solutions of the Schroedinger wave equation

ih Owu(rN; t) ot = Hopyu(ry; 1), (2-8)
where H,yp is the Hamilton operator. The solution of eq. (2-8) is given by
yu(rN; ) = exp{(—ifh) Hypt} pu(rN; 0), (2-9)
which can be written in the form
Yu(ry; 8) = [yu(r'™y; 0) K(r'NeN; t) dr'N, (2-10)
with the propagator K(r'¥|r¥;{). From eqs. (2-8) and (2-10) it follows
that this propagator satisfies the Schroedinger wave equation
th 0K (r'N|eN; 1) [0t = HopK(r'V|rN; §), (2-11)
with the initial condition
K(r'NrN; 0) = 4(r'> ry), (2-12)
where H,; operates on the variables ¥ and where (D ry¥) is a 3N-
dimensional d-function. It follows from eqs. (2-11) and (2-12) that

K(r'N|rN: {) expl(—i/h) Hopt} 6(r'y rN) (2-13)

or

K(r'NjrN: t) = D393 expi( -1/h) E it} q ,’:;(I"‘\') q (), (2-14)

where @(r¥) are the eigenfunctions and Ej the corresponding eigenvalues
of Hop:
Hoppi(rN) = Ergpr(ry). (2-15)

From eq. (2-14) and the fact that the energy eigenfunctions ¢g(r¥) form
a complete orthonormal set of functions we find that the propagator
K(r'~N|rN; {) is a unitary matrix of the continuous indices #'& and =¥, i.e.:

SEMNr' NN ) K(r*NieN; §) deN = §(r'N — r'N), (2-16)
SEK*(rN|e'N ) K(rN|e'™N; §) drN = §(r'N — ¢"N), (2-17)
Furthermore it follows from eq. (2-14) that

K(r'N|rN; t) = K*(rN|r'N; —1). (2-18)
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Another property of the propagator K(r'Nr¥ ;) follows from the fact
that the Hamiltonian is an even function of the particle momenta:

H(r¥, p¥) = H(rN, —p¥). (2-19)
Putting
[1(’-.\" P‘\') — f '/(0.\" TA\') ('XP:I‘(O‘\‘ N -+ T\P\) : (10.\' d‘r‘\" (2_20)

we find from eq. (2-19) and the fact that H(rd, p¥) is real, that

n(ay, ¥¥) = n*(—aN, 7). (2-21)
According to eq. (2-3) the Hamilton operator, corresponding to the Hamil-
tonian (2-20) is given by
Hop = [n(0Y, V) exp{i(o¥ 1), + 7¥-pY)} do¥ dz¥ (2-22)

and we obtain from the last two equations the following property:

H,p, = H},. (2-23)
From eqs. (2-13) and (2-23) it is found that
K(r'NeN;t) = K*(r'N(rN; —1), (2-24)
which can be transformed into
K(r'NirN;{) = K({r¥|r'N; ¢), (2-25)

by using the relation (2-18).
In the presence of an external magnetic field B, which may depend on
the space coordinates, but which is independent of time, eq. (2-19) becomes

H(r¥, p¥; B) = H(rN, —p¥; —B), (2-26)

where H(rN, p¥; B) is the Hamiltonian of the system for a given external
magnetic field B and H(rY, p¥; —B) the Hamiltonian of the same system,
but with the external field reversed. Eq. (2-23) becomes

H,p(B) = H},(—B), (2-27)

whereas eqs. (2-24) and (2-25) become
K(r'N|eN; B; t) = K*(r'NrN; —B; —1), (2-28)
K(r'N|rN; B; t) = K(r¥|r'N; —B; 1). (2-29)

From (2-2) and (2-10) we find that
f(r.\'_ p.\'; t)= (‘7/,)%3.\' .\_‘,/ﬂl'/z [ ,/,;(r"\’: 0) '/,”(rmx; 0) ]\'*(1‘.‘\' N 4 y‘\.; f)
K(r"N|rN —yN; {) exp{(2i/h)(pN -yN)} dr'N dr"N dyN. (2-30)

Introducing new variables r¥ and y'¥ by means of r'V = r'N 4 y'¥
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and r”¥ ry — y ‘N eq. (2-30) becomes

frN, pN: 1) =
= (2/7h)3N Fpwu fyn(r'Y 4 yN;0) wu(r'y — yN;0) K*(r'N 4 y'N{rN 4 yN )
K(r'yN — y'NieN — yN: f) exp{(2i/h) (pY -y¥)} dr'N dy’N dy¥N, (2-31)

Using the identity
O(y™N — y'N) = (ah) 3N fexp{(2i/h) p'V - ("N — y'N)} dp'¥N, (2-32)
eq. (2-31) can be transformed into
[N, pN; f)
= (7th) 3N (2/7h)3N 300y [exp{(2i/h) (PN -y M)yt (r'N 4 y°N; 0)
Yu(r'y — y°N;0) exp{(—2i/h)(p'N -y'N)} K*(r'N + y'N[rN 4 y¥: )
K(r'N — y'™N|rN — y¥N;¢) exp{(2i/h) (pY - y¥)} dy™¥ dy'N dyN dr'Ndp'N. (2-33)
This equation can be written in the form
fr¥, pN 1) = [f(r'N, p'N; 0) P(r'N, p’NieN, pN: {) dr'N dp’N,  (2-34)
where we have introduced the propagator?)8) of the Wigner distribution
function
P(r'N, p’N|¢N, pN: f)

(2/7h)3N [expi(—2i/h)(p'N - YN K*(r'N + yN[rN - yN; {)

K(r'N — y'¥|rN — yN; t) exp{(2t/h)(pN -yN)} dy’N dyN (2-35)
and used (2-2). The quantity P(r'N, p'N|r¥, p¥; {) is real, but not necessarily
positive.

We shall now prove the following theorem. If we have the Weyl corre-
spondences
P(r'N, p'NieN, pN; 0) 2= Poy(r'y, p'v; (2-36)
and
P(r'N, pN|rN, pN:t) 2 Pop(r'N, p'N; —t), (2-37)
then one has

Pop(r'N, p'¥; —t) = exp{(—i/h) Hopt} Pop(r'y, p'~ ; 0) exp{(i/h) Hopt). (2-38)
In order to prove this, we shall use the following theorem, due to Groene-
wold 3)9), If
Aopp(r¥) = [p(r'™N) A(r'N|rN) dr'N, (2-39)
then the classical function, corresponding to 4,y, is given by
A ('-.\" p\) 23N / (',\[)': (21 /,)(p\}v\l: A (r.\' | y.\' .. yA\') (1}».\'. {2_40]
Comparing (2-35) with (2-40) and using (2-37) and (2-39), we obtain
Pop(r'N, p'N; —t) p(rN) = (ah)=3N [p(r'N). exp{(—2i/h)(p’'N -y'N)}
K*(rN + yNeN ) K(e' — yNie¥; ) de¥ dy'™,  (2-41)




which can be transformed into
Pop(r'™N, p'N; —t) wp(r¥) = (wh)=3N [(r"™N) K(r'N|r'N 4+ y'N; —¢)
exp{(— 2i/h)(p'N-yN)} K(r'N — y'N|rN; 1) dr"™N dy'V, (2-42)
by using eq. (2-18). Eq. (2-42) can be written as
Pop(r'™, p'¥; —1) '/'("'v)
= (awh) 3N fp(r"" N)K (r"Nr"N ; —1)6(r"N —r'N —y'Nyexp{(—2i/h) (p'N - y'N)}
()(r'o"—y'l\'—r”-")I\'(r"-‘ rN O dr”Ndr "Ndr'Ndy'N, (2-43)
Furthermore we find from eqs. (2-42) and (2-12) that
Pop(r'™, p'¥; 0) p(r¥) =
= (7h)=3N [p(r'N) 8(r'N — ¢'N — y'N) exp{(— 2i/h)(p’N-y'¥))
S(r'N — y'N — ¢N) de'N dy'N.  (2-44)
From the last two equations, together with (2-9) and (2-10), we then obtain
the result (2-38).

From the theorem (2-36)—(2-38) we shall derive here a partial differential
equation for the propagator P(r'N, p'¥|rN, pN: 1), It follows from (2-38) that
OPop(r'N,p'N; —t) ot = (—i/B){H opPop(r'™,p'N ; —t) —

— Pop(r'N,p’N; —t) Hop}. (2-45)
Now we have the following Weyl correspondence (Groenewold 3)):
(= ¢/R){H opPop(r'N, p'N; —t) — Pop(r'N, p'N; —1) Hop} =
= (2/h)H (rN, pN) sin ja ( o ~ o ¢ O )l P(r'N, p'N|rN, pN; 1), (2-46)
| 2 \6r¥5 opy~ 6pN ory )|

where the 6-symbol denotes differentiation “to the left”. From eq. (2-45)
and the Weyl correspondences (2-37) and (2-46) we find that the propagator
P(r'N, p’N|rN, pN; 1) satisfies the differential equations

8P(r'N, p'N|rN, pN: 1) ot = LopP(r'N, p'N|eN, pN; t), (2-47)
with
(% 6 é 6 & \|
Lop (2/h) H(rN, p~N) xlnl > <()r-\' . 7("17'\‘ — 6p™ . H.\.>I-. (2-48)
The initial condition follows from eqs. (2-35) and (2-12):

P(r'N, p'N[eN, pN; 0) = 8(r'N — r¥) 8(p'N — p¥). (2-49)

From eqs. (2-34) and (2-47) we find the following differential equation for
the Wigner distribution function f(r¥, p¥;¢):

of(rN, p¥; t)[ot = Lopf(r¥, p¥; 1), (2-50)




which is the quantum mechanical analogue 7)9) of the Liouville equation
in classical statistical mechanics.

Let P“D(r'N, p'¥|rN, pN; {) be the propagator of a classical distribution
function. Then P“(r'N, p’N|eN, pN: ¢) dr¥ dp¥ is the probability to find
the system in the range (r¥, p¥; dry, dp¥) at some time, if initially, a
time interval ¢ earlier (£ > 0), this system was at the point (r'¥, p'~). The
propagator of a classical distribution function is therefore the conditional
probability density in phase space, in contrast to the propagator of a Wigner
distribution function, which is not a conditional probability density.
Furthermore it should be noted, that the propagator P(r'N, p’N|rN, pN; 1),
eq. (2-35), is not a Wigner distribution function, although it is a solution of
the quantum mechanical Liouville equation, since a Wigner distribution
function with the initial form (2-49) does not exist.

Integration of the expression (2-35) over (r¥, pN) or (r'N, p'N) gives,
together with (2-16) and (2-17),

JP(r'N, p’N|eN, pN: ) deN dpN = 1, (2-51)
SP(r'N, pNieN, pN; 1) dr'N dp'N = 1. (2-52)

Furthermore it follows from (2-35) and (2-18) that
P(r'N, p'NieN, pN; {) = P(rN, pNjr'N, p'N; —1). (2-53)

The influence of the property (2-19) of the Hamiltonian on the propagator
P(r'~, p’N|rN, p¥N: ) is found from (2-35) and (2-25):

P(r'N, p'N|eN, pN; 1) = P(rN, —pN|¥'N, —p'N: 4. (2-54)
This relation is the quantum mechanical analogue of what is called ““in-
variance under reversal of the motion of the particles” in classical statistical
mechanics ),

In the presence of an external magnetic field B we find, instead of eq.
(2-54), from (2-35) and (2-29)

P(r'N, p'NirN, pN; B; 1) = P(rN, —p¥|r'N, —p'N; —B: ). (2-55)
The magnetic field B must also be reversed, if the “motion of the particles’’

is reversed.

§ 3. Equilibrivm distribution functions of extensive state variables. Let us
consider an adiabatically insulated system in thermodynamic equilibrium.
In quantum statistical mechanics the behaviour of this system is described
with the micro-canonical ensemble, given by the density matrix

Ap(r' N eN) = G2l ) *(p'N N s
PE; AE(I'N, 1) = Gring Xpecmsany PEIY) gr(rN), (3-1)

where @p(rN) and Ej; are given by eq. (2-15). The summation in (3-1)
extends over those quantum numbers £, for which Ej lies in the range
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(E; AE), i.e. E — IAE < Ey < E + }AE. The number of eigenvalues Ej
in this range is Gg;ag. Introducing the projection operator pg;ag,op by
means of

PE: AE.0p Pr(rY) = pE;ar(Ex) @r(rY), (3-2)
with
[I, if Epe(E;AE)

pe;ae (Er) = IO- it Exé(E: AE)[’

(3-3)

the expression (3-1) can be transformed into

pE; aE(r'N, rN) = Gl a i Tk P(r'N) pE; aB,0p PE(TY), (3-4)
where now the summation extends over all possible quantum numbers 4.
This equation may alternatively be written as

pE; aB(r'N, tN) = Gplap PE; AE,0p O(r'N — 1N), (3-5)
using the fact that the functions ¢g(rY) form a complete orthonormal set.
Writing pg; ag(Ey) as the Fourier integral
" 3 7% sin (3AE t/h) . = X

pE; sE(Er) = lim [ (3 exp{(—e/h)t(Ex — E —¢)} dt

£-+00 - 00 gt
(6>0)

(T sin (3AE t/h) Y . '

' = expi{(—i/h)t (Er — E — 0)} dt,
J —o0 il

we find with (3-2) and (2-15) that

"% sin (3AE tfh)

f)E; AE,o0p — [

J ~oc0 7t

exp{(—i/h) {(Ho,p — E — 0)} dt.

Substituting (3-7) into (3-5) and using (2-13), we obtain

e 2 ; "% sin (3AE t/h) ’ 3
p[.;:_”.;(f"\, ry) = ('I:l;IAI:'J 7\111 (-7[ g (‘.\']’;(1 /1)(11 -+ 0)/:

K(r'N|rN; ¢) dt.
Applying the property (2-25) to this equation, we find that
pE; aB(r'N, V) = pg; ap(r¥, r'N).
In the presence of an external magnetic field B we have
pe; ae(r'™, r¥; B) = pg; ag(r¥, r'N; —B),

which follows from (3-8), using the property (2-29) and also
Gg; ag(B) = Gg; ap(—B). (3-11)
Eq. (3-11) can be proved by integrating pg; ag(r¥, r¥; B) over r¥, which

gives, independently of B, the value 1. Since K(r¥|r¥; B;{)is an even function
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of B, according to (2-29), it follows indeed that Gg: ap(B) is an even function
of B.
The Wigner distribution function of the micro-canonical ensemble is

fE; aE(rN, pN)
= (awh) 3N [exp{(2i/R)(PY -y¥)} pi: ar(rY + y¥, rY — yN) dyN,  (3-12)

It follows from (2-39) and (2-40) that fg. ag(rY, pY) is the classical function
corresponding to the operator h=3¥ppg: ap, op, Which is defined by means
of the relation

PE; AE, opy(rN) = [w(r'YN) pg: a(r'N, r¥) dr'¥N, (3-13)
Substituting (3-5) into this relation, we find that
PE; AE, op = Gpoap PE; AE, op: (3-14)
If pg; ap(rN, p¥) is the classical function corresponding to DPE: AE, op:
PE; ar(rN, PY) <= pE: AE, ops (3-15)

we then obtain for the Wigner distribution function of the micro-canonical
ensemble the following expression:

[E;ap(rY, pY) = 3N Gl pE: ap(rN, pN). (3-16)
Putting
Qp; ap = BPNGg; ag, (3-17)
eq. (3-16) becomes
fe; ag(r® PNy = \, pe; ar(ry, p¥N). (3-18)

Since fg; ap(ry, p¥) is normalized ((‘/. eq. (2-7)), we have

Qp;ap = [ pe; ap(ry, pN) dry dp¥. (3-19)
Applying the property (3-9) to (3-12) we find that
fe; ae(ry, pY) = [g; ap(ry, —p¥). (3-20)
In the presence of an external magnetic field B we have
fe; ap(rN, p¥; B) = fg ap(rN, —p~; —B), (3-21)

which follows from (3-12), together with (3-10).

With regard to eqs. (3-18) and (3-19) we want to make the following
remark. The function pg, ag(r¥, p¥) is the quantum mechanical analogue
of the function

[l within the energy shell (E;AE )]

PV (PN, pN)=pp. ap(H (rN, pN)) I (3-22)

|0, elsewhere in phase space

in classical statistical mechanics, whereas Qp. ag corresponds to the volume




in phase space of the energy shell (E; AE):
QD = [ P50 e(r¥, pY) dr¥ dpy = fig; apy dr¥ dph. (3-23)

The function fg; ap(ry, p¥) is the quantum mechanical analogue of the
classical distribution function of the micro-canonical ensemble:

(el) N pN
Eoap(ryN, pN) =

- Qfeb-1, (rl; (r\ P\) :

[QEDGE within the energy shell (E;AE) ]|
= gk Prian

| 0, elsewhere in phase space I o)
For the macroscopic description of the system we shall use, in addition
to the energy E, a set of n extensive state variables oy, a3, ..., ay. One may
think, for instance, of the masses, energies, electric charges of macroscopi-
cally infinitesimal sub-regions within the system. These regions must still
contain a large number of the constituent particles of the system, so that
the prm(‘lpl(,.s of statistical mechanics may be applied to them. The number
of state variables is much smaller than the number of particles in the system.
For convenience a matrix notation will be introduced. We consider the
quantities a;(z = 1, 2, ..., n) as the components of a vector «. The state of
the system can then be represented by a point in the so-called a-space, of
which the n Cartesian coordinates are the quantities «;. In classical mechanics
the state vector @ is a function of ¥ and p¥V. Let «,p be the quantum
mechanical operator, corresponding to e(r¥, p&) according to Weyl's rule:

Qop = a(ryN, pN). (3-25)

We shall now make the assumption *) that the components «;, »p of @, are
commuting quantities. The operators «;, p then possess a simultaneous set
of eigenfunctions y,(r¥) with corresponding eigenvalues o; ;, so that

Copxa(rN) = aya(ry). (3-26)

The state variables are supposed to be normalized in such a way that the
average of @,y in the micro-canonical ensemble vanishes:

@™ = Gylsg Tpwem:am [ GTY) Coppi(rN) drN =
- [ a(r¥, pV) g ax(r¥, p) dr¥ dp¥ — 0, (3-27)

*) 1f the extensive variables are the masses of sub-regions of a system, the corresponding operators
commute, since these quantities depend only on the coordinates of the particles, In the case of a
crystal lattice, which we divide into a number of sub-regions, the operators, corresponding to the
energies of these regions, commute since they refer to different groups of particles, In general,
however, the operators, corresponding to extensive state variables, do not commute. We shall,
however, make the assumption 19) that there exists a complete orthonormal set of functions yz(r¥),
such that for every function of this set the root mean square deviations lj.xi‘,‘. of these operators
around their average values z;; are much smaller than the experimental inaccuracies Jag z, with
which the state variables are measured. It is then possible to replace the non-commuting operators
by commuting operators «g, op, With ecigenfunctions y;(r¥) and eigenvalues &2, (cf. eq. (3-26)).
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where we have applied the theorem (2-4), (2-5) and used the Weyl corre-
spondence (3-25).
We now define the projection operator

Dop() [17- 1 pPoplai), (3-28)
by means of
Pop(@) 2a(rY) = pla, — @) ya(rV), (3-29)
where
pla; — a) [17=1 Pl 2 — o), (3-30)
with

Ploi, 2 — o)

L w} (3-31)

lO if o, A > O 2
Writing $(ai, 2 — %) as a Fourier integral, we obtain from the last three
equations

Pop(@) = [ 0.(R) exp{(—i/h) k- (asp — @ — 0))} dk, (3-32)
where k is a vector with components %y, ks, ..., kn and where
04(R) = 17 04(R¢) (3-33)

is the product of singular functions
0+(ki) = (27)71 [° exp(— tkix;) dx;. (3-34)
Let p(+¥, p¥; @) be the classical function corresponding to pop(e):
p(rN, pN; @) = poy(a). (3-35)
Introducing the propagator Q(r'¥|r¥; k) by means of
expi(—i/h) R-aopip(rN) = [p(r'N) Q(r'N|rN; k) dr'N (3-36)
and applying the theorem (2-39), (2-40), we find with (3-32) and (3-35) that
p(r¥, p; @) = 23N [ exp{(2i/h)(pN-yN)} p(rN + yN|rN — yN: @) dyN, (3-37)
where
p(r'NirN; a) = [6.(k) exp{(i/h) k(e + 0)}Q(r'N|rN: k) dk. (3-38)

It follows from the definition (3-36) of Q(r'N|r¥; k) that this propagator is
the solution of
th dQ(r'N|rN; k) |0k = a,p Q(r'N|rN; k), (3-39)
with
Q(r'N|rN; 0) = o(r'N — rN), (3-40)

(cf. eqs. (2-11) and (2-12)). Now we make the assumption that the state
variables are even functions of the particle velocities. In the absence of an
external magnetic field, we then have

a(r¥, p¥) = a(ry, —p¥), (3-41)
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(¢f. eq. (2-19)). It follows from the last three equations that the propagator
Q(r'N|rN; k) possesses similar properties as the propagator K(r'¥[rN; ) of
the Schroedinger wave function. In particular we have

Q(r'N|r¥; k) = Q(rN|r'N; k), (3-42)
(¢f. eq. (2-25)). Applying this property to eq. (3-38), we find that
k p(r'¥eN; @) = p(rNr'V; ). (3-43)
From (3-37) and (3-43) we then obtain
prY, pV; @) = p(r, —p¥; @), (3-44)

For the description of the system, one may require also variables, which
are odd functions of the particle velocities, (e.g. barycentric velocities,
magnetizations of small sub-regions of the system). Such state variables
will be denoted by g = f1, fa, ..., Pm- For both even and odd variables eq.
(3-32) becomes

pop(@, B) = [0.+(k) 6..(1) exp{(—i/h) k- (€top —a— 0)}
exp{(—z/h) I-(Bop — B — 0)} dk dl, (3-45)

where I is a vector with components /4, /s, ..., ;. Introducing the propagator
Q(r'NirN; k, I) by means of

exp{(— i/h) (k-op + 1 Bop)} p(r™) = [p(r'™) Q(r'N(r¥; k, 1) dr'Y,  (3-46)
eqgs. (3-37) and (3-38) become
p(r¥, pN; e, B)=23N [exp{(2i/h)(pN - yN)}p(rN4+yN|rN—yN; @, B) dyV, (3-47)
with
p(r'NieN; a, B) = [0.(R) 6+(1) exp{(i/h) k- (a + 0)}
expi(e/h) I-(B + 0)} Q(r'N|rN; k, I) dk dl. (3-48)
For odd variables, in the absence of an external magnetic field, we have
BleN, pY) = —p(eN, —p¥). (3-49)
Using (3-41) and (3-49), we find, instead of eq. (3-42), that
O(r¥|rN; k, 1) = Q(r¥|r'N; k, —1). (3-50)

Applying this property to eqs. (3-47), (3-48) and using the relation
04(—1) = o(ly) — d+(ly), (3-51)
it follows with (3-46) and the theorem (2-39), (2-40) that
p(rN, pY; @, B) = p'(rN, —p¥; a, — 3 —0), (3-52)




where p'(rN, p¥; @, f3) is the classical function corresponding to the operator
/.>,',,,(a, B) = [04(R) T1}" {6(l5) — +(4y)} expi(—12/h) k- (¢top —a¢ —0)}

expi(—2/h) - (Bop — B —0)} dk dL. (3-53)
From the last equation we find that

Pon(@ B) = T1iy Pop(a) T {1 — pon(B)} =

= k=0 (—1)* 2 h<ir<...<iv<m Pop(o1, 22, <., ap, Piss Ptgs ++es Pi), (3-54)

e

where pop(oa, @2, ..., an, By, iy ---» ;) is the projection operator for the

set of state variables ay, a3, ..., an, By, Bis ---» ., so that
/)/(’.A\-l p\’ a, /}) —
= Dk=0(—1)* 21 i1 <ia<...<ixs w PPN ey, oy, o) %y Py Pigy +oe f‘i;)~ (3-35)

In the presence of an external magnetic field B eq. (3-50) becomes
Q(r'NieN; B; k, I) = Q(rN|r'¥; —B; k, —1), (3-56)
(cf. eq. (2-29)) and eq. (3-52) becomes
p(ry, p¥; @, B; B) = p'(rN, —pN; a, — 3 —0; —B). (3-57)
The probability
Plo, <a) = Play,a <o, 03,2 < a3, ..., tp.a < op), (3-58)
that a system in thermodynamic equilibrium is in a state with
01,1 < o, 02,4 K D, ..., Ond < dp,

is equal to the average of the projection operator Pop(@) in the micro-
canonical ensemble:

Pla, < @) = Ggiap Ep,cimiam [ 9EIN) pop(@) gi(ry) dr¥, (3-59)
Applying the theorem (2-4), (2-5) to this equation and using (3-35), we get
Pla;, < a) = [p(rN, p¥; @) fg;ap (rV, pY) dr¥N dpN, (3-60)

We now introduce the function
F(a) Pla; < a), (3-61)

which is the probability distribution function of the extensive state variables
in thermodynamic equilibrium. This distribution function is discontinuous,
since ¢,p has discrete eigenvalues. The function F(a) is introduced here in
order to formulate later on the so-called ““central limit theorem”. It follows
from (3-61) and (3-60) that

F(a) = [p(rN, p¥; @) [g;ar(r¥, pN) dr¥ dpV. (3-62)
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With (3-18) we obtain from the last equation
F(a) = Q(@)/Qg: sz, (3-63)
where
Q(a) = [ p(rN, pN; @) pg; ap(ry, pY) drd dph. (3-64)
In the case of both even and odd state variables, eq. (3-62) becomes
F(a, B) = [p(rN, pY; @, B) fe; a(rY, pY) dry dp¥. (3-65)
Applying the relations (3-20) and (3-52), (3-55) to this equation, we get
F(a, B) = F'(e, —p —0), (3-66)
with
F'(e, B)=2%k=0 (—1)* Zici<i-

F(cxl. o, .

e PE=S

where F(ay, o3, .., on, By, By ;) is the reduced distribution function

2

of the state variables oq, a2, ..., an, fi, Bip s Bi.-

In the presence of an external magnetic field B we have *)
F(a, 3; B) = [ p(r¥, p¥; @, B; B) fz; au(r™, p¥; B) drV dp®,  (3-68)
and it follows with (3-21) and (3-57) that
F(a, B; B) = F'(e, — 8 — 0; —B). (3-69)

It follows from (3-28)—(3-31) that the projection operator p,p(@) has the
following properties:

Pop(— ©0) = 0, pop(+-00) = 1. (3-70)
For the corresponding classical function p(r¥, p¥; «) we therefore have
p(ry, pN; —o0) =0, p(r¥, pN; +o0) =1 (3-71)
and with eq. (3-62) we find for the distribution function F(e) that
F(—o0) =0, F(+ o0) = 1. (3-72)
Introducing the operator R(ct,p) by means of
R(aop) 22(r™) = R(aa) za(rN), (3-73)
and writing R(a;) as the Stieltjes integral
R(a;) = [ R(a) dp(a; — a), (3-74)
we obtain with (3-29)
R(ayp) = [ R(a) dpopla). (3-75)
*) For puinAl particles it can be shown that, since the energy and the state variables are functions

of the coordinates and velocities of these particles only, the expression (3-68) is independent of
B in the classical limit.
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For the classical function R(r¥, p¥), corresponding to R(ep):
R(r¥, p¥) = R(aop), (3-76)
we find, using (3-75) and (3-35), that
R(r¥, pN) = [R(a) dp(r¥, pV; a). (3-77)

It then follows with eqs. (3-77) and (3-62) that the average of R(@,p) in the
micro-canonical ensemble:

m.c.

R(e) (;l~:';l.&l'.' Zave:ary ) PirY) R(aop) gr(ry) dry =

= [R(rN, PY) fu:ar (1N, pY) dr¥ dp¥, (3-78)

can be written as the following Stieltjes integral:

m.ce.

R(a) = [R(a) dF(a) = (R(e)>. (3-79)

We shall now assume that a central limit theorem *) holds for the ex-
tensive state variables under consideration. It then follows that the distri-
bution function F(e) is approximately equal to the normal distribution
function:

n

Fla) ~ (27k) z (L X S es e exp {— .i/c“('\_,:,"',j 187 oz; 1,’)}
(11; (lfx.:, ... do (3-80)

n

where |g| is the determinant of a symmetrical positive definite matrix g
with elements gy and where & is Boltzmann’s constant. In this approxi-
mation the distribution function (3-61) becomes continuous and differen-
tiable and we can define a function
onF(a)

; - (3-81)

doty O3 ... Ooip

f(a)

which is the probability density in @-space for a system in thermodynamic
equilibrium. It follows from the last two equations that this probability
density function is Gaussian

n

fl@) = (2zk) ® |g|} exp{— 3k~ (BF ;=1 Guoury)} =

= (27k)

o]

- gl* exp {— Yk1(g : aq)}, (3-82)

where @e is the dyadic matrix with elements a;o;. The function f(e) is
normalized in a-space:
[Ha) de = 1. (3-83)

*) For certain types of extensive state variables, e.¢. the energies of sub-regions of a crystal, the
validity of a central limit theorem can be proved 11)12),
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In the approximation (3-80) the Stieltjes integral (3-79) becomes the
following ordinary integral:

m.c.

R(a) = [R(a) [(a) da = R(a)). (3-84)
The Gaussian probability density (3-82) has mean values

ay =0 (3-85)
and variances

(aay = kg1, (3-86)

where g—1 is the reciprocal matrix of g.

In the case of both even and odd state variables we have, instead of
(3-81):
ant m[.‘(a,}‘})

doyas ... Cay Py P2 ... Pm

f(e, B) (3-87)

with the normal distribution function F(e, ). It follows from (3-87), (3-66)
and (3-67) that

He, B) = fa. —P), (3-88)

where we have used the fact that normal distribution functions are conti-
nuous. In the Gaussian probability density
n+m
fla, B) = (22k) % |gaalt [gps!!
exp{—4k1 (gaa : @ + gps : BB)} (3-89)

no cross-terms between a- and B-variables will occur as a consequence of
the relation (3-88). The variances of (3-89) are

caay = kgaa, <BB> = kazs, <ap> = 0. (3-90)
In the presence of an external magnetic field B we find with (3-69) that

f(a, B; B) = f(a, —3; —B). (3-91)

In the Gaussian probability density *)

n+

fla, B; B) = (2nk) 2 |g(B)|* exp[—3k1{gxa(B) : aa +
+ gap(B) : B + gsa(B) :

m

L BB (3-92)

now cross-terms between @- and fJ-variables occur, in contrast to the case
that B=0. In the last equation |g(B)| is the determinant of the matrix

af + gps(B)

*) In the classical limit the expression (3-92) reduces to the form (3-89) for B = 0, since in this
limit Fla, B; B) and cousequently f(a, f; B) are independent of B.
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gux(B) gap(B)
gB) = | - (3-93)

9pa(B) gss(B) %

Since g(B) is symmetrical, the matrices gax(B) and ggs(B) are symmetrical
and gug(B) is the transposed matrix of gga(B):

gas(B) = gpa(B); (2ap;1(B) = gaa;ji(B)). (3-94)

It follows from (3-91) and (3-92) that the elements of the matrices guaa(B)
and ggs(B) are even functions of B, those of gxs(B) and gga(B) odd functions
of B, whereas |g(B)| is an even function of B. The variances of (3-92) are

(aa> = kyxa(B), <BB> = kyps(B) | (3-95)
<af> = kyap(B), <{pa> = kysa(B) |’
with
<« N —— ~—m >
1
Yax(B) Yaxs(B) "
B =] s (3-96)
vo(B) | veslB) [

From the properties of the matrices gaa(B), gps(B), gap(B) and gpa(B)
we find the following properties of the matrices yaa(B), ys3(B),Yas(B) and
Yea(B): the matrices yaa(B) and ygs(B) are symmetrical and

Yx8(B) = Ypa(B). (3-97)

The elements of the matrices yix(B) and ygp(B) are even functions of B
and those of y,s(B) and ygx(B) odd functions of B.

§ 4. Intensive variables. In addition to the extensive state variables «
we shall now introduce a set of intensive thermodynamic variables X. In
order to define these variables, we shall make use of Boltzmann’s entropy
postulate, according to which the entropy S(«) of a state e, defined with
the precision Ae,is given by

S(e) = k In {AQ(a)/h3N}, (4-1)
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where AQ(e) is the nt* order difference *) of Q(«) over the range (a; Aa).
The quantity AQ(e) reduces in the classical limit to the volume of the region
in phase space, where the state variables have values in the range (a; Aq)
and where the energy lies in the range (E; AE). It follows with (3-63) and
(3-17) that

S(e) = k2 In {AF (@)} + Sq, (4-2)
where
Se kIn Gg. ap (4-3)

is Gibbs’ entropy of the micro-canonical ensemble. It follows with (3-61) that
AF(e) is the probability that the system in thermodynamic equilibrium is
in a state with € (a; Aa), i.e. oy — 3Aa; < oy, < o5 + 3. Eq. (4-2)
is therefore a relation between the entropy and the probability of a state
«, defined with the precision Ac.

In the approximation (3-80), eq. (4-2) becomes

n

S(a) ~ kIn{(2=zk) 2 |g|! Aa} — (g : aa) +Sg, (4-4)
with Aa = [[7., Aa;, assuming that the quantities Aoy are much smaller
than the half-widths of the Gaussian (3-82). It can be shown that, even for
a very precise determination Aea of the state e, the first term on the right-
hand side of eq. (4-4) may be neglected with respect to the third term, so
that

S(a) =~ — (g : aa) + Sg. (4-5)
Introducing the quantity
AS = S(a) — S(0), (4-6)
we find that
AS = —1(q : aa), (4-7)
which may be regarded as a Taylor series expansion up to terms of order
a2 of S(e) around its maximum value.
We now define intensive variables X, conjugate to the extensive variables
a, by means of
X = 0AS /o (4-8)
It then follows with (4-7) that
X=—g-a (4-9)
In the case of both @- and B-variables, eq. (4-7) becomes

AS = —3(gax : @ + gps : BB, (4-10)

*) The quantity AQ{a) is defined as follows:

0 ¥ _nES Olie <t b S RN
AQ@) =20 _ o (—D* 2y i ctie. <iran 2@ } Aai, ..., Q-1 + 3ai—,
ai, — § Aayy, a4 + 341, o Qig-1 + $8A0 -1, Tiy — A0, Aeyer HAdig+1, -
[ 77 S &Afhk—l.’lu 5.3!14“'11‘_.1 + AAU(L-l,...,(lu t LAu,.).
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AS= — Hagaxa(B) : aa + gas(B) : Ba + gpa(B) : af
(cf. eq. (3-92)). Defining now the intensive variables
X = 0AS|ca|
Y = 2AS/ap|’
we get in the absence of a magnetic field
X=—gma|
Y = —ggs-B|
and in the presence of a magnetic field
X = —gaa(B) @ — gus(B)- 3|
Y ~gpa(B) @ — gps(B)- B’

where eqs. (4-10) and (4-11) have been used.
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CHAPTER II

THE THEORY OF JOINT WIGNER DISTRIBUTION
FUNCTIONS AND THE DERIVATION OF THE
ONSAGER RECIPROCAL RELATIONS

Synopsis

The quantum statistical theory of Wigner distribution functions, presented in the
previous chapter, is used in order to develop the theory of “joint Wigner distri-
bution functions”, which may be employed for the calculation of quantum mechanical
correlation functions.

The joint equilibrium distribution function of a set of extensive state variables is
defined. This distribution function is expressed in terms of the joint Wigner distribution
function of the micro-canonical ensemble. The properties of joint equilibrium distri-
bution functions of extensive variables, in particular the so-called property of detailed
balance, are studied.

It is shown that joint equilibrium distribution functions, which do in general not
represent a probability, are joint probabilities, if the set of quantum mechanical
operators, corresponding to the extensive state variables, is of a certain class.

The theory of distribution functions of extensive state variables thus obtained,
which is formally the same as developed by de Groot and Mazur on the basis of
classical statistical mechanics, is used for the derivation of the Onsager reciprocal
relations in non-equilibrium thermodynamics.

The theory is developed in the present chapter for Maxwell-Boltzmann statistics.

§ 1. Introduction. In the previous chapter (I) we have developed the
theory of ordinary Wigner distribution functions!). Using the results
obtained in that chapter, we shall develop in the present chapter (II) the
theory of “joint Wigner distribution functions”. Just as in I, the theory
is developed here for Maxwell-Boltzmann statistics only. The extension
to the cases of Bose-Einstein and Fermi-Dirac statistics will be given
in the following chapter (III).

In §2 it will be shown that time correlation functions of quantum
mechanical operators may be written as phase space averages of the classical
functions, corresponding to these operators according to Weyl’s rule 2),
over joint phase space distribution functions. These quantum mechanical
distribution functions will be called “joint Wigner distribution functions”.
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We shall express the joint Wigner distribution functions in terms of
ordinary Wigner distribution functions and their propagators. From the
properties, obtained in I for the last two quantities, we shall then derive
several properties of joint Wigner distribution functions.

In § 3 we shall introduce the joint equilibrium distribution function of a
set of extensive state variables, which will be defined as the time correlation
function of certain projection operators of these state variables in the
micro-canonical ensemble. This distribution function will be written as the
phase space avémgc of the classical functions, corresponding to these
projection operators, over the joint Wigner distribution function of the
micro-canonical ensemble. We then derive the property of detailed balance
for joint equilibrium distribution functions of extensive variables. The joint
equilibrium distribution functions may be used to calculate time correlation
functions of arbitrary functions of the state variables in a micro-canonical
ensemble.

Joint distribution functions of extensive state variables are in general
not probability distribution functions. It will be shown, however, at the
end of § 3 that the joint equilibrium distribution function does represent a
joint probability, if the set of quantum mechanical operators, corresponding
to the state variables, satisfies certain conditions. In the approximation
that these distribution functions are continuous and differentiable, it is
then possible to define joint probability density functions of the state
variables in thermodynamic equilibrium.

The theory of probability density functions of extensive state variables,
thus obtained on the basis of quantum statistical mechanics, is formally
the same as developed by de Groot and Mazur3) on the basis of classical
statistical mechanics. The derivation of the Onsager reciprocal relations 4)
can then proceed along the usual lines.

§ 2. Joint Wigner distribution functions. In chapter I, eqs. (2-4) and (2-5),
we have seen that Wigner distribution functions f(r¥, p¥; ¢) could be used
in order to calculate ensemble averages of quantum mechanical operators
as phase space averages of the classical functions, corresponding to these
operators according to Weyl’s rule I (2-3). We shall introduce in the present
section distribution functions f(rN, p¥; ¢; r'N, p’N; t 4 =), which will enable
us to calculate time correlation functions of quantum mechanical operators
as phase space averages.

The time correlation of the operators 4, and B, in a quantum mechanical
ensemble with density matrix I (2-1) is described by means of the correlation
function

C{A(1), B{t + 7))
= 3 Suwy [y ; 8) {AopBop(r) + Bop(r) Aop} wult¥; ) dr¥,  (2-1)
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with

Bop(7) = exp{(i/h) Hopr} Bop exp{(—i[h) Hopr}. (2-2)
Let A(r¥, p¥) be the classical function, corresponding to 4,, according
to Weyl’s rule:
A(rN, pN) 2 Aop, (2-3)
then it follows with I (2-36) and I (2-49) that
Aop = [A(r'N, p'N) Pop(r'¥, p’N; 0) dr'N dp’>. (2-4)
Similarly we have
Bop = [ B(r'N, p'N) Pop(r'¥, p’¥; 0) dr'™N dp'¥, (2-5)
with
B(rN, p¥) = Bop. (2-6)

Substituting (2-5) into the right-hand side of (2-2) and using I (2-38), we
find that

Bop(t) = [ B(r'N, p'N) Pop (r'Y, p'¥; 7) dr'N dp’¥. (2-7)
Applying (2-4) and (2-7) to (2-1), we get

C{A(t), Bt + =)} =
— [JA(EN,pN)B(r'N, p"M){(r'N,p’N ;"N pN ; t+7)dr' Ndp Ndr'Ndp’N, (2-8)
where we have introduced the distribution function
N, pNt; e N, PNt 4 7) = C{P(r'N,p’N 1), P(r'N, p'N:t + 7))} =

= 320 @u [y (rY  O{Pop(r'™, pN ;0) Pop(r'™™, p™N ;1) +

+ Pop(r™¥, pN:7) Pop(r'N, p'N : 0)yu(rN ;) dr¥. (2-9)

We thus obtain the result that the time correlation function of the quantum
mechanical operators 4,, and B,, can be written as the phase space
average of the classical functions A(r'y, p'V) and B(r'N, p'N) over the
distribution function (2-9).

From the Weyl correspondences I (2-36) and I (2-37) it can be shown 9)
that

HPop(r'™, pN;0) Pop(r'™™N, p™¥;7) + Pop(r'N,p™¥;7) Pop(r'¥, p'N;0)} =
—=>P(#'N p'N| N pN-0)c J’I _6 ik o 0 i lp(,-".\' *N|gN pN-_ (2-10
=P, p N | r,pY 0)cos 1o\ 2o = gon yw | E PN 2, pY5 =), )

where the 6-symbol denotes differentiation “to the left”. It follows from
the last Weyl correspondence and the theorem I (2-4), I (2-5) that the
distribution function (2-9) can be written as the following phase space
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integral over the Wigner distribution function I (2-2):

HS, pY 4N, N 4 ) = | (N, p¥ ) [1"<r'-". p¥|r¥, p¥;0)

“

[nf 6 ¢ PR | S BT BT, D :| 5.
A05 1- - )P PN, p"N [¢N pN: — 1) | dr¥dpN. (2-11
m\lz ((m" apV  GpN (.,r‘\->] (L p N Y, p ) [dr¥dp¥. (2-11)
Applying the relations I (2-49) and I (2-53) to this equation and integrating
by parts, we find that

»

[(r'.\" p'.\’-_[: r”A\"p”_\': t47) = ’,)(r'.\' — r.\') ,)(p’.\' p\) [/’(r.\"P.\' - [)

.

cmlh T Sl né I[’(r-\' N N p™N;7) | deV dp¥, (2-12)
12\ 6e¥ éapy  6pN V)| P P »

so that

[N, pN; b "N, p'N 4 1) = [(r'N, p'N; 1)

l’l < 6 ¢ 6 ¢ )l [)( 'N ‘N |¢"N *N ) (2 ]3)
cos = — —— rN, p’N|e'N, p"N 7). -
[2 6r'’y  gp'y 6p’N  ar'y | P P
The distribution function (2-13) is the quantum mechanical analogue of
the classical distribution function

[N pN N, PN b 7)=[D(r'N, p'N ;1) PCO(e'N, p'N| "N, p'N : 1), (2-14)
which may be used in order to calculate time correlation functions in classical
statistical mechanics. The quantity

[N, PN "N Nt - 7) dr'N dp'N dr'N dp™N

is the joint probability to find a system of a classical ensemble in the range
(r'¥,p™N;dr'N,dp’y) at the time ¢ and in (¢'N, p"¥; dr"N, dp™D) at t + =.
The classical distribution function (2-14) is therefore a joint probability
density in phase space and consequently always positive. The quantum
analogue (2-13) of this classical joint distribution function will be called a
“joint Wigner distribution function”. In contrast with a classical joint
distribution function, a joint Wigner distribution function may assume
negative values and does not represent a joint probability density in phase
space.
[t follows from (2-13) that

f/’(r'.\',pﬂ\' <d r".\"p”.\' 2 = T) dr'N (lp'.\' — ’/‘(r’.\‘.’PC\' 1)

M(f; é 6

gasT )lp(r‘-". PN N PNy AN dp' N =

67 ¥ G v )|
= [N, p'N;4) P(r'N, p’N | #'N, p’N: 7) dr'N dp'N, (2-15)
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applying partial integration. Since the last member of this equation is
equal to the Wigner distribution function at the time ¢ + 7 (¢f. I (2-34)),
we find that

SHr N, p Nt e’ N p' Nt + 7)dr’'Ndp'N = f(r'N,p"N:t 7). (2-16)
On the other hand it follows from (2-13) and I (2-51) that
SHr N, p Nt e™N, p"N it 1) dr'™Ndp'™N = f(r'N, p'N; 1). (2-17)

Equations (2-16) and (2-17) give the normalization of the joint Wigner
distribution function (2-13).

For an adiabatically insulated system in thermodynamic equilibrium,
described by a micro-canonical ensemble with density matrix I (3-1), the
joint Wigner distribution function (2-9) becomes
fE: ap(r'N,p’N;¢r'N p'N:7) =

SO S NEP. (¢'N p'N-0) Polr"N p“Noa)

= 2(’16;A1-,'.\;415".:(15:_\1':1./"/ HIN) {Pop(r'™, p™V;0) Pop(r'™, p¥ ;1) +

+ Poplt™, 7N 1) Pop(r'™, ' ;0)} gi(r¥) dr¥, (2-18)
which depends only on the time interval = and not on the initial time {
(stationary distribution function), since the micro-canonical density matrix
is independent of . We may therefore shift the times, appearing in the time
dependent operators on the right-hand side of (2-18), with the same amount,
so that we obtain
fe;a(r Y, p N ¢’ N, p'N i) =

= 3G gian Zieew; am OHIN) Pop(r™N, PN 1) Pop(r'™N, p™V 1+ 7) +

- P(}])(r"‘vyP"'V st 7) Pnp(f"'\..P“\' i 1) :‘ (I‘I.'(r‘\.) dr¥. (2‘19)

If we now put { = — 7 in this equation, we find with (2-18) that the
following relation holds for the stationary distribution function

tesagi e N; pY; e N, pi¥ )
fE;ap(r'N, p N r'N, p™N 1) = fp ap(r'™, pN; N, pN; —7).  (2-20)
For a micro-canonical ensemble eq. (2-13) becomes

[e; a6(r'™N, p N r'N, p'N:7) = [g; ap(r'Y, p'V)

[/;( 6 o 6 ¢ )] PN, N e N, p'N: ), (2:21)
: - - e " 0 S e—  — L Jp—- —_ 4 3 - - N - :T - L -
i 12 6r'N op’N  6p’N orN | el P

where fg. ap(r'™y, p'N) is given by I (3-12). If we now apply the property
I (2-54) (“invariance under reversal of the motion of the particles”) to
the right-hand side of (2-21), we find with I (2-53) and the fact that
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fe;a6(r'™, p'N) is an even function of the particle momenta (eq. I (3-20)),
that
[e:am(r™N, pN;r'N, p™N 7) = fgap(r'N, —p'N;r'N, —pN; —7), (2-22)
or with (2-20)
fis an(r N, PN N, PN 1) = i am (N, 7NN, —p'Nia). (223)
In the presence of an external magnetic field B the last relation becomes
[E;a6(r' Y, p'N 0N, p"N B 7) = fg; ap(t'N, —p"N;r'N, —p'N; —B;7), (2-24)
which may be proved in an analogous way as (2-23), using I (2-55) and
I (3-21).
The normalization of the stationary joint Wigner distribution function
(2-21) is given by
[ e ag(r'™,p N r'N p"N:2) dr'Ndp'N = fp. ap(r'¥, p'N), (2-25)
[1g;ap(r™, pN N, pV 1) dr'N AN = fg, ap(r'¥,p¥),  (2-26)
as follows with (2-16) and (2-17).

§ 3. Joint equilibrium distribution functions of extensive state variables;
detailed balance. In chapter I we have introduced the probability distribution
function F(a) of a set of extensive state variables in thermodynamic
equilibrium, assuming that these variables are represented by commuting
operators in quantum theory. According to I (3-61) and I (3-59), this
distribution function is given by the micro-canonical ensemble average of
the projection operator p,p(e), defined by I (3-28)-I (3-31).

We shall now introduce the joint equilibrium distribution function
F(a'; a; 7), which will be defined as the time correlation function of the
projection operators pop(’) and p,p(e) in a micro-canonical ensemble:

Fla';a;7) = C™*{p(a), ple; 7)}
= 3 Gilaw Dpeemianm S HrY) (Pop(@) pop(e; 7) +
-+ pop(a; T) f’op(a’):‘ ‘I'A’(r'\.) dr¥, (3-])

where
Pop(; 7) expi(z/h) Hopr} pop(@) exp{(—i/h) Hopr}. (3-2)

The distribution function F(a'; a; 1) is stationary, z.e. it depends only
on the time interval = and not on the initial time ¢.

Applying the general formula (2-8) to (3-1) and using the Weyl correspon-
dence I (3-35), we find that

Fla'; a;7) =
=/[Ip(rY,pN;&)p(rN,pN ;@) fp; ap(r'™, pN; #N, pN;7)dr'Ndp NdrNdp¥, (3-3)
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where the joint Wigner distribution function fg;ag(r'™y, p'&; rN, pN;7)
is given by (2-21).

According to (3-1), F(e'; @; 7) is an ensemble average of the anticommu-
tator of two non-commuting projection operators. Although both projection
operators have non-negative eigenvalues, their anticommutator may
possess negative eigenvalues, so that an ensemble average of this anti-
commutator may be negative. Therefore F(a'; ;) does in general not
represent a probability in «-space, in contrast with the distribution
function F(a).

In chapter I, eq. (3-79),we have seen that equilibrium distribution functions
F(e) could be used to calculate micro-canonical ensemble averages of quantum
mechanical operators R(a,p). We shall now prove that joint equilibrium
distribution functions F(e'; @; 7) may be employed for the calculation of
time correlation functions of operators Ri(a,p) and Rs(e,p) in micro-
canonical ensembles. These correlation functions are given by

C™Ry (), Ra(e(r))}
= 3 Gl Si e am S LIN) {Ri(@op) Ra(@op(r))
+ Ra(@op(r)) Ri(€op)} gr(ry) dry =
— JIRYEN, pY)YRo(rY, pN) fi: an(r'™, p'N: o, N ;7) dr'N dp’N deN dp¥, (3-4)
where

Ra(eop(7)) = exp{(i/h) Hopr} Ra(@op) exp {(—i[h) Hopt}, (3-5)

and where Ry(rN, pV) and Ra(rd, p») are the classical functions, corre-
sponding to Ry(@sp) and Ra(a,p) according to Weyl’s rule:

Ry(r¥, p¥) == Ry(ctop))
[\’2(,-.\" P\) = l\,g(aap)].

(3-6)
From I (3-77) we have

Ry(rN, pN) = [ Ri(a) dp(rY, p¥; )|

Ro(rN, p¥) = [ Re(a) dp(r¥, p¥; @)’ 2

Substituting these relations into the last member of (3-4) and using (3-3),
we find that
C™IRy(a), Ra(a(7))} = [/ Ri(e’) Ra(er) dF(a'; @; 7). (3-8)

From (3-3) and I (3-71), together with (2-25), (2-26) and I (3-62), we
find that F(e'; @; 7) is normalized in the following way:

F(—o0; @;7) =0, F(+c0; @; 7) = F(a), (3-9)
F(a'; —co0;7) = 0, F(d'; +00;7) = F(c'). (3-10)

We shall now examine the influence of the properties (2-23) and (2-24)
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of micro-canonical joint Wigner distribution functions on joint equilibrium
distribution functions of extensive state variables. Application of (2-23) to
(3-3) gives
Flo!; a;7) =
[ BN, —pN; &) p(rN, —p¥; @)

fe;ap(rN, —pN; r'N, —p'N:7) de'’Ndp'¥Ndr¥N dp¥, (3-11)
where we have also used the fact that p(r¥, p¥; @) is an even function of
the momenta of the particles (eq. I (3-44)). After the transformation of
variables (r'y, —p~) — (r¥N, p¥N) and (r¥, — p¥) — (r'N, p'N), we then
obtain the result

Fla';ea;7) = F(a; a'; 7). (3-12)
If the functions F(e'; @; ) were true probabilities, relation (3-12) would
express the so-called principle of detailed balance or microscopic reversibility.
By extension we shall quite generally refer to this relation as the “principle
of detailed balance”.
In the case of both even and odd state variables eq. (3-3) becomes

Fla',p'ea B;,7)=
=[P, p N, §) p(rV, p¥; @, p)
[E; a(r'N, pN; N, pN: 7) dr'N dp'N drN dpV. (3-13)
If we now apply the relations (2-23) and I (3-52), I (3-55) to this equation,

we obtain, after the above mentioned transformation of variables, the follow-
ing expression for detailed balance:

Fle,p'a B;7)=F'(e, - —0; e, —p' —0;7), (3-14)
where
o3 r o, AR Y mn Y m k4l Y
Fla',pa,8;7) =3 s S o (—1) D O T (OO 3 P S
1(,,l 1_;’ ,1,'1, I.;;)’ [-;;3. f;:'k: A1y %2y weny %y P Biuy ooes Bs 7)s (3-15)

with the reduced joint distribution functions
F(”‘l’v ";- '1,,,’ /‘;,' [;;;" ey /;i’u: oLy O3, «eny Cny Py /",'_‘v vy P T) =
= [/ PN, PN ay, ag, ooy o, Biy Bl oo B
PN, PN oy, aa, ..., op, Bios Brs ouns B;)
[E; ap(r™, p'’N,tN, pN; 7) dr'N dp’N drN dpN. (3-16)
In the presence of an external magnetic field B we have
Fla,p;a B;B;7) =
=/[/p(r¥,pN;a', B'; B) p(r¥,p¥; t, B; B)
fE; aB(r'N, p"N;rN, pN; B; ) dr'N dp’N drN dp¥, (3-17)
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and the principle of detailed balance becomes
F(e',B';a,B;B;7)=F'(a, — —0;a’, —p' —0; —B; 7), (3-18)
which follows from (3-17), together with (2-24) and T (3-57).

Just as the distribution function F(e), the joint distribution function
F(a'; a; 7) is of a discontinuous type. In chapter I we have assumed that F(e)
is approximately equal to the continuous and differentiable normal distri-
bution function, (central limit theorem). We shall now make the assumption
that for systems with a large number of degrees of freedom the function
F(e'; @; 7) can also be approximated by a continuous and differentiable
function. It is then possible to define the function
e (a'; e; 7)

PRI (3-19)

fle'; a;7) T R AT A :
doty Ooty ... Oor, Coty O3 ... Odp

which is in general not a probability density in a@-space, in contrast with
f(e), eq. I (3-81).
The normalization of f(a’; &; 7) now follows with (3-9), (3-10) and I (3-81):

[fla; a;7)da’ = [(a), (3-20)
[ile'; a; ) da = (). (3-21)

Furthermore the expression (3-8) for the micro-canonical time correlation
function of the operators Ry(@,p) and Ra(a,p) can be written as

C™{Ry(a), Re(a(r))} = [/ Ri(e') Ra(e) f(e'; @; 7) de’ dee.  (3-22)

The principle of detailed balance (3-12) becomes
fle'; a;7) = fle; ;7). (3-23)
In the case of both even and odd state variables we have, instead of (3-19),

fla', B ;e B;7) =
¥t Fa!, 8" e, B 1)

e, (324)
Oty Doty ... Ot Ofy APy ... 0P, Oo1 Q3 ... Doy Off1 P2 ... Pm
and we find with (3-14) and (3-15) that
fe', B a Bir) = fla, —B; ', —p'; 7). (3-295)

In the presence of an external magnetic field B it follows with (3-18) that
fle’, ;@ B;B;7) = [, —f;a', —p'; —B; 7). (3-26)

The expressions (3-23), (3-25) and (3-26) for detailed balance are the basis
for a derivation of the Onsager reciprocal relations, which will be given in
§ 5 of this chapter.
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As stated above, the joint equilibrium distribution function F(e'; e; 7)
is in general, 7z.e. for an arbitrary set of commuting operators oy, op
(#=12,...,m), not a probability. We shall, however, prove that Fla';a; )
does represent a probability, if this set of operators is of a special class,
satisfying certain conditions,

We divide the energy scale into intervals (E,; AE,), where AE, are the
experimental inaccuracies in measurements of the energy of the system.
Each interval is supposed to contain a large number of eigenvalues Ey of
the Hamilton operator H,;. We now suppose that the eigenfunctions 722(rN)
of the set of commuting operators «;,,, may be obtained from the eigen-
functions gx(r¥) of H,y, by means of such unitary transformation, that
each y;(r¥) is only a linear combination of energy eigenfunctions pr(ry),
which belong to the same range (E,; AEy). In this case the eigenfunctions
%a(r¥) may conveniently be denoted by z,,(rV), where the index u refers
to the energy range (E,; AE,). We then find with I (3-2) and I (3-3) that

PEuiak.op Xu o (TN) = duur yu »(rN), (3-27)

where 9, is the Kronecker symbol.
We now define the operator

Eop =Xy Ifl‘ﬁlz‘.,:.\lz’,,,un‘ (3-28)

It follows with I (3-2) and I (3-3) that this operator possesses the same
eigenfunctions gg(r¥) as the Hamilton operator H,,, whereas the differences
between the corresponding eigenvalues of these operators are always
smaller than AE,. Therefore in a macroscopic description, in which we do
not distinguish between values of the energy of order AE,, we may use E,p,
instead of H,), as the operator, representing the energy of the system *)
The operator E,j, will be called the MAacroscopic energy operator **)
On the other hand it follows from (3-27) and (3-28) that

E optup(rN) = Euyus(r™). (3-29)
Denoting the eigenvalues of e, by @, eq. I (3-26) becomes
Aop Zu,v(r‘\‘) = Wy p Z‘,_,-(f‘v). (3—30)

The macroscopic energy operator therefore commutes with the operators
%i,0p. The index p is the quantum number of the macroscopic energy,
whereas » is an additional quantum number, which describes the rarious
eigenstates of @,, for a given value of this energy.

Since the functions y,,(r") for fixed # may be obtained by means of a
unitary transformation from the functions ¢x(rY), belonging to the energy

*) 1t should be noted, however, that E,, does not describe the motion of the particles of the

system, in contrast with the Hamilton operator H
‘.)

op.

The definition (3-28) of macroscopic or gross energy operator is due to van Kam pen 8).
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range (Eu;AE,), we find that the density matrix of the micro-canonical
ensemble (cf. I (3-1)) can be written as

’

N. ¢NY —= G=1 Y *(g'N 3
PE.arr™Y, rN) = Gglap, Drvewuan) Pl V) pr(r¥) =
- . l -~ " AT P »
= Gzt xm. 2o 1Y) 2ua(r¥). (3-31)

If we now choose in (3-1) for (E; AE) one of the ranges (Eu; AE,), we
find with (3-31) that

F(a'; a;7) =6, :an,
E,,./’Zj,',,(ri\'){f),,,,(a’)f),,,,(a;f) b pop(@; ) Pop(@)} zus(r?) dr¥. (3-32)
With I (3-29)-1 (3-31) we obtain

F(e';a;7) = Ggjap, Zr T (rN) pople; 7) gua(rN) dr¥, - (3-33)
(@up=a’)
where the summation extends over those quantum numbers », for which
@, < with a fixed value of the quantum number u. It follows from
(3-33) and (3-31), that F(a'; @; 7) may be interpreted as the joint probability
that a system in thermodynamic equilibrium is in a state with au, < @
at some initial time and in a state with @, < @ after a time interval 7. From
(3-19) we then find that f(e’; @; 7) is the joint probability density of the state
variables in thermodynamic equilibrium.
In the following sections we shall assume that relevant sets of operators
ai,0p fOr extensive variables are of the special class described above.

§ 4. Conditional probability density functions of extensive state variables.
The conditional probability density P(ao|@;?) for the micro-canonical
ensemble is defined as the quotient of the joint probability density flao; ;1)
and the probability density f(@o):

rf((t()l a;t)
)

I)(Cl() a; [) (4-1)
We shall now prove that P(ao|@;?) is equal to a special non-equilibrium
probability density function in a-space.

Let us suppose that a measurement has indicated that a system with an
energy in the range (Ey; AE) is at a given time, say { = 0, in a specified
state in the range (ao; Ag). According to the postulate of equal a priori
probability this system is then represented by an ensemble with density
matrix

0 50y (', 773 0) = G3L, 5 2al0™) st (42)

Pao;Aas ao;dao
(auve(aosAao))

where the summation extends over those quantum numbers », for which
@,y (with a fixed value of p) lies in the range (ato; Adp), and where G .,

is the number of eigenvalues @, in this range. The probability
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P,.(a: < a;t), that this system is in a state with ¢; < « at the time ¢
(¢ = 0), is then given by

P (o < a)l) =

=, G Lo (rY) pople; ) yus(rN) dr, (4-3)
(@u,v€(ao:Aao))
with the projection operator (3-2).
We now introduce the non-equilibrium distribution function

F.(a;t) =P, (a1 <@a;i). (4-4)

0
It can then be shown that

(i) = A, I (fl()' ) , (4-5)
2 AF (ap)
where A, F(ao; @; 1) is the nth order difference *) of F(ay; ;) over the
range (cto; Aep) with constant & and where AF (ap) is the 2tk order difference
of F(ag) over this range. In order to prove this relation we note that it
follows from (3-33) that

A Fla; a;t) = ("l-f,.]:_\l':,l 2 25 ,(rY) pop(@; t) gus(rN) dr¥, (4-6)

(@ure(aosAan))

and from I (3-61), I (3-59) and (3-31), together with I (3-28) I (3-31), that
AF(ao) = Gglap, Zo [ 15(rY) Apop(@o) yus(r¥) dr¥ = G® Gy, iam, (4-7)

,cuZAlu-’
From (4-3), (4-4), (4-6) and (4-7) we then obtain the relation (4-5).

Since we have assumed that the distribution functions F(ap) and F (e ; @;?)
may be approximated by continuous and differentiable functions, we find
from (4-5) that
é""["(a(): «; t)[00g,1 Cotg,2 ... Ao,

Fue:t) = f(eo)

5 (4-8)

where we have used the definition I (3-81) of f(e).
We now define the non-equilibrium probability density function

(q"]:lu((L $ {)

ol G )
doty Ooes ... Qo
From (4-9), (4-8), (3-19) and (4-1) we then find that
fala;t) = Plag | @; ). (4-10)

Let f). \,.(rN, p¥; ) be the Wigner distribution function of the ensemble
with density matrix pJ2. . (r'N, #¥; 1), which for £=0 has the form (4-2).

*) For the definition of this quantity see footnote on page 20.




Then it follows from (4-4), (4-3), (3-2) and the theorem I (2-4), I (2-5) that

Foa;t) = [p(r¥, pY; @) [ e, (rY, pY; 1) drY dp¥, (4-11)

where we have used the Weyl correspondence I (3-35).

In an analogous way as the distribution function F(e) in chapter I has been
used to calculate the micro-canonical ensemble average of an operator
R(aop) (¢f. 1(3-79)), the distribution function F_(e;?¢) may now be
employed for the calculation of the average of this operator in the ensemble
with initial density matrix (4-2). This ensemble average is given by

a0 “(u)—=1 < a £ §
R(a@) " (f) = Ggyiaa, Zv I 2%s (1Y) R(@op(t) zu, (r¥) dr¥ =
(@uy E(ao;Aao))

= [R(r¥, pN) {5 ,(rY, p¥; £) dr¥ dpV,  (4-12)

ao;Aay

R(aop(t)) = exp{(i/h) Hopt} R(Cop) exp{(—i[h) Hopt}, (4-13)

and where R(rN, p¥) is the classical function corresponding to R(&,p)
according to Weyl's rule. If we now substitute I (3-77) into the last member
of (4-12), we find with (4-11) that

R(&)*(t) = [ R(e) dF  (; 1), (4-14)
or with (4-9)

R(a)(t) = [ R(@) f,(a; 1) dea. (4-15)

Applying the relation (4-10) to the last equation we obtain

R(@)*"(f) = [ R(e) P(ay|@; ) de, (4-16)

which has the form of a conditional average, 7.e. an average over the con-
ditional probability density P(ao|@; {).

§ 5. Derivation of the Onsager reciprocal relations. The proof of the
Onsager reciprocal relations 4) now proceeds along the usual lines (cf.
reference 3)). One assumes that the conditional averages of the extensive
state variables obey linear differential equations of first order:

a0
'a,[,(i;)- — —M-a™ (), (5-1)
2

where M is the matrix of real phenomenological coefficients and where
t =0.
The formal solution of (5-1) is given by

a ’(t) = exp(—Mi)-ay, (5-2)

where the matrix exp(—M{) is given by its series development. From this
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equation we find, together with I (3-84) and I (3-86), that
Ja™(t) aof(ao) day = exp(—Mi) -/ apaof(ao) dag = k exp(—Mi)-g-1.  (5-3)
On the other hand it follows with (4-16) and (4-1) that
Ja™(t) aof(co) dey = [ [ aaof(ao; @; 1) day da, (5-4)
so that we have
kexp(—Mt)-g71 = [ [ aaof(ap; ; t) day de. (5-5)
If we now apply the principle of detailed balance (3-23) to the right-hand
side of this equation, we find, interchanging the dummy variables @y and ¢:
kexp(—Mi)-g71 = [ [ aapf(e; ap; t) dey da = r
= [ [ apef(ao; @; t) dap da = kg—1-exp(—Mi), (5-6)
where we have used the fact that the matrix g is symmetrical and where M

is the transposed matrix of M. It follows from this equation that the matrix
M satisfies the relation
M-g~1 = g-1:M, (5-7)
If we now define
L=Mg, (5-8)
which is the matrix of phenomenological coefficients, if (5-1) is written,
with the help of the expression I (4-9) for the intensive variables X, as

! t<t)_ = L-X"@), (5-9)
C

we obtain with (5-7) the Onsager reciprocal relations
by =L (5-10)
In the case of both even and odd state variables eq. (5-1) becomes

n_ao,Bo

o1 2 —ao,Po %0 Po

i O Maw @ — Map BP0 l
ot

B

[- (5-11)
= —Max @™ () — Mgy B

First we consider the case that no external magnetic field is present. With
the expressions I (4-13) for X and Y, eq. (5-11) may be written as

/ l ao.fo 2o Po
La ‘TQ = Laa X g ([) i L:h". Y s ([) l
L 52
aB (f) o a0, Po <> @0, Po J
g e X () +Lep YU (1)
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where

Lax = Max"9aa
Las M \:3'9,3_,31
Laa = Mﬁ\’g‘\‘,.
Lss = Mpp-g55

(5-13)

One can then derive along the same lines as above, using detailed balance
in the form (3-25), the following Onsager relations:

L R 1 XX
L - A e L(J.\ . (5- 14)
Leg = Las

Secondly we consider the case that an external magnetic field B is present.
With I (4-14) we find again eq. (5-12), if we put

Laa(B) xx(B) -Yax(B) + Map(B)-v3a(B)

Laa(B) \\(B “Yap(B) + Map(B) - yps(B) ‘ . (5-15)
Lsx(B) = Mpa(B)-Yax(B) + (B)'Ym(B)’

Lgs(B) = Mga(B) -yas(B) + Mms(B)'Y/m(B)

The Onsager reciprocal relations now become

L\\(B) h L\\( —B)
L\;}(B): LB‘\( -B
Les(B) =  Lpa( '3),

as follows with the expression (3-26) for detailed balance.

(5-16)

In connection with the derivation of the Onsager reciprocal relations,
given above, we want to make the following remark: it follows from (5-5)
and (3-22) that

kexp(—Mi)-g~1 = C"{a, a(t)}, (5-17)
where C™{a, a(t)} is the micro-canonical correlation matrix of the extensive
state variables, with elements C"™{a;, oy(t)} (4,7 = 1,2, ..., n). From (5-8)
and (5-17) we find that

) cme. e, a( )} C"" e, a(0)}
L= —lim W 3 (5-18)
140 v

where ¢t approaches zero from the positive side.

At first sight this expression seems to be different from the expression
for the matrix of phenomenological coefficients, given by Kubo, Yokota
and Nakajima 7), (¢f. formula (3.14) of this reference). It should be noted,
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however, that the result (5-18) is only valid, if the set of quantum mechanical
operators o, op, corresponding to the extensive state variables, is of the
special class, described at the end of § 3, whereas formula (3.14) of reference 7)
holds for an arbitrary set of operators «; ,p. The latter formula must
therefore also be calculated for a set of operators of this class. One then
obtains an expression for the matrix of phenomenological coefficients of
the same form as (5-18).

§ 6. Markoff processes. In the preceding section only those aspects of the
3 / I 8 B
processes «(t) have been considered, which were needed for a derivation of
the Onsager reciprocal relations. We shall discuss in the present section a
further assumption, which is usually made concerning the nature of the
processes af(t), to wit that these processes are Markoffian. This assumption
implies that the conditional probability density P(ap|e;?) satisfies the
so-called Smoluchowski equation
Plap|a; t + 7) = [ Plag|a’; t) Pla'|a; ) da'. (6-1)
This equation holds if one assumes that the Wigner distribution function
[ sa(rN, PV ; 1), introduced in § 4, is approximately given by
do:aeo (PN, PN 1) = 3g wo(l) [ e, (PN, PV 0), (6-2)
where the Wigner distribution functions fJ*. .. (r¥, p¥; 0) correspond to the
density matrices

Peae(r Y, r¥;0) = GLZL B LT 2u(r), (6-3)

agiAag -V
(@uy€(aosdag))

(¢f. (4-2)) and where ¢ numbers the different ranges (¢s; Aay), into which
we have divided e-space. This is the so-called assumption of “‘repeated
randomness”. It is the quantum statistical analogue of the assumption in
classical statistical mechanics that non-stationary distribution functions,
which are initially uniform over regions in phase space, where the state
variables have values in ranges (¢q; Aa;) and where the energy lies in the
range (E; AE), remain “‘sufficiently’”’ uniform in the course of time over
these regions.
Now it follows from (4-11) that

_\I?du(a: [) — [ A/)(r.\" P.‘\': a) (n) (rA\" P\' [) dr.\' dpA\" (6_4)

ap;dao
where AF, (@; t) and Ap(r¥, p¥; @) are the nth order differences of FF, (&; )
and p(ry, pV; @) respectively over the range («; Aa). Substituting (6-2) into
the right-hand side of this equation, we find that

AF, (a;t) = T we(t) AF, (a; 0). (6-5)
From (4-4) and (4-3), together with I (3-28)-I (3-31), we have
AF, (@; 0) = dgqr, (6-6)
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where dg4- is the Kronecker symbol. From the last two equations we then
obtain
we(t) = AF, (¢s; 1), (6-7)
so that (6-2) becomes
Tt aast™, PV 1) == Fg AF, (055 8) 1) (1Y PN 0). (6-8)
It follows from (6-4), (6-8) and I (2-34) that

AF, (a;t + 7) =
— [/ 19, 5aar N, PPN, p'N [#8, pN 1) Ap(r¥, pN ; @) dr'Ndp'NdrVdpN —

= ZoAF, (@o:0) []12,00, (1N, 0N 0) PN, pN | 1N, p¥ ;)
Ap(r¥,pN; a) dr'N dp'¥N dr¥N dpN = Y AF, (aq;t) AF, (@;7), (6-9)

or with (4-9)
/’au(a: l S T) == / /an(al; [) /a'(a; T) (1“" (6_10)

If we now apply (4-10) to this result, we finally obtain the Smoluchowski
equation (6-1).
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CHAPTER 111
BOSE-EINSTEIN AND FERMI-DIRAC STATISTICS

Synopsis

The quantum statistical theory of Wigner distribution functions, which has been
developed in the two previous chapters for Maxwell-Boltzmann statistics, is extended
in the present chapter to the cases of Bose-Einstein and Fermi-Dirac statistics,

§ 1. Introduction. The theory of the quantum statistical foundations of
the Onsager reciprocal relations in non-equilibrium thermodynamics in the
two previous chapters (I, II) has been developed for Maxwell-Boltzmann
statistics only. No special requirements were made concerning the symmetry
character of the wave functions with respect to the coordinates of the
particles. In the present chapter (III) we shall discuss the changes in the
theory of I and II, arising from the influence of special symmetry properties
of the wave functions in the particle coordinates. We shall treat the cases
of Bose-Einstein statistics (symmetrical wave functions) and Fermi-Dirac
statistics (antisymmetrical wave functions).

We shall establish an integral relation between the Wigner distribution
function of the micro-canonical ensemble for Bose-Einstein (Fermi-Dirac)
statistics and the micro-canonical Wigner distribution function for Maxwell-
Boltzmann statistics. This relation will then be used to derive several
formulae for Bose-Einstein (Fermi-Dirac) statistics from the corresponding
formulae for Maxwell-Boltzmann statistics.

§ 2. Bose-Einstein and Fermi-Dirac statistics. We consider a quantum
mechanical ensemble of conservative systems, each containing N identical
point particles. In the case of Bose-Einstein statistics the wave functions
i (r¥; 1) of the systems in this ensemble are symmetrical in the particle
coordinates, in the case of Fermi-Dirac statistics the wave functionsy, (r¥; t)
are antisymmetrical, 7.e.

yi (PrV ;1) = 0py, (rN; 8, (2-1)
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where Pr¥N is a permutation of the particle coordinates and where 6}, = 1
for any permutation, whereas 6, =1 for even and 6, = —1 for odd
permutations.

[t follows from (2-1) that for both kinds of statistics the Wigner distri-
bution functions

£ (r¥, pN: 1)
(k) =38 Euwy, [ exp{(2i[h) (PN -y¥)}y *(rN+ N ) i (PN —yN 1) dyV (2-2)
are symmetrical in the particle phases:
(PPN, PpN : §) = j*(rN, p¥: 1), (2-3)

where (Pr¥, Pp¥) is a permutation of the particle phases.

The propagators of the wave functions o} (r¥; #) and the Wigner distri-
bution functions f*(r¥, p¥; #) are again solutions of the differential equations
(2-11) and (2-47) in chapter I, and the initial conditions I (2-12) and I (2-49)
may be employed in unaltered form.

We shall now express the Wigner distribution functions f.,.(r¥, p¥)
of the micro-canonical ensemble for Bose-Einstein and Fermi-Dirac statistics
in terms of the micro-canonical Wigner distribution function fg, ag(r¥, p¥)
for Maxwell-Boltzmann statistics. To this end we shall first establish a
relation between the micro-canonical density matrices

PE;ar(r™, V) = Guap Tpwcqzsam 9 HrY) oi (rY) (2-4)
for Bose-Einstein (Fermi-Dirac) statistics and the density matrix
pe;ag(r™, rN), eq. I (3-1). With the projection operator pg: ar,op, €q. (2-4)
may be transformed into

P ar(r™, V) = Gi 1\ Xk ¢ *(r'N) pr; a8, 0p Pr(rY). (2-5)
Now in the cases of Bose-Einstein and Fermi-Dirac statistics we have the
completeness relations

Sk @i () g (P) = (V)72 Sp,g 05050(Pr'N — QrY),  (2-6)
where the summation in the right-hand side extends over all possible

permutations Pr'N¥ and Qrd of the particle coordinates. Eq. (2-5) may
therefore be written as

Pizan(t'™, 18) = (N1)=2 Gy p,@ 0505 PE; ak,0p (PN — QrY), (2-7)

where pg: ag,0p Operates on the variables r¥.

The density matrices pg. . pn(r'V, r¥), eq. (2-7), may now be expressed in
terms of the density matrix pg; ag(r'y, V), eq. I (3-5), by means of the
following integral equations:

Pisian(r™, 1) = [ p; an(r™, 1°8) K,y (r"N, N | 1N, ) dr"N dr'N, (2-8)
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with the kernels
B s, r ¥ | ¢ pN)
e OE:AE PRI S £ -
(N1)—2— 2P, Q 0p0gd(r"™N — Pr'N) (r'N orN), (2-9)
Giar
using the fact that pg; ag, op is symmetrical with respect to the coordinates
of the identical particles.
With the help of the last two equations, it is now possible to express the
Wigner distribution functions
i:au(rY, pN) = (ah)=3N [exp{(2i/h)(pN -y¥)}
PE;ar(ry + YN, N — yN) dyN (2-10)
in terms of the Wigner distribution function fe; ae(rY, p¥), eq. I (3-12),
by means of the integral equations *)
[i:au(, PY) = [ [5; 58N, p'N) P, s ('Y, p'N | eV, p¥) dr'N dp'¥,  (2-11)
with the kernels
P ap(r'™y, p¥|rN, pN)

(2}',".,/,)3.\'(‘\7 !)_2

~

Ge:ae i 4 el Dl
e -‘—Jl,-Qh/'h(Jchp{( ~2i[h)(p'N -y'N)}

TEAE
()(r’A\‘ 3 0 y"\' = I”u\' = I)y\) ')(r'.\' [ y'.\' o ()r;\' _{_ ()y\)
exp{(2¢/h) (pN-yN)} dyN dy¥, (2-12)

(¢f. also reference 1), eq. (25) *¥)).
It follows from (2-12) that
Piaplt™, pN|1¥, pN) = P p(r'Y, —p'™N|¢N, —p¥), (2-13)
Applying this property to (2-11) and using the fact that g ag(r¥, p¥) is
an even function of the particle momenta (eq. I (3-20)), we find that the
Wigner distribution functions fg.,,(r¥, pV) are also even in the particle
momenta:
TE:a(rN, PY) = [ an(ry, —pY). (2-14)
In the presence of an external magnetic field B we get from (2-12)
Pian(r™, pN|rN, p¥; B) = Pi. suy(r'N, —p'¥|r¥, —pN; —B),  (2-15)
using the fact that Gg;ag(B) and Gy, ,,(B) are even functions of B, (cf.

*) The derivation of (2-11), (2-12) proceeds along the same lines as the derivation in chapter |
of (2-34), (2-35) from (2-2) and (2-10).
**) It should be noted, however, that the right-hand side of this equation must be multiplied with
a proper normalization factor since the Wigner distribution functions w(r, p) and f%(r, p) are supposed
to be normalized in phase space.
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I (3-11)). From (2-11), (2-15) and I (3-21) we then obtain the relations

fg:am (PY, PN B) = fiap(ry, —pN; —B), (2-16)
which have the same form as I (3-21).
Substituting the expression I (3-16) into the right-hand side of (2-11),
we find with (2-12) that

[5:am (™, pN) =05 X [ Pr; ap(r™N, p'Y) PE(r'N, p'™™ [ rN, pN) dr'N dp'¥, (2-17)
with
Qu.ap = PN Gy (2-18)
and the kernels *)
P(¢'N, p'N|¢N, pN) =
= (2/mh)3N (N!)=2 Xp, @ 050% / exp{(—2i/h)(p™N -y¥)}
(s(r'x\' + y':\' ste Pr.’\" e nyv) 6(’-',\’. - b y',’\' — Or,\' _,‘l_ ()yN)
exp{(2i[h) (PN -yN)} dy'N dyV. (2-19)
Since the Wigner distribution functions fz. x(r", pY) are normalized, we
obtain from (2-17)
Qfiaw = /] brssp(r’™, pY) PE(r'S, p'N |£N, pN) dr'S dp'™™ dr¥ dpV. (2-20)
The expressions (2-17) and (2-20) now take the place of the expressions
(3-18) and (3-19) in chapter I.
For the equilibrium distribution function of extensive state variables we
have
F(a) = [ p(r¥, P @) [,5(r¥, pY) dr¥ dp¥, (2-21)
(cf. I (3-62)). Substituting (2-17) into the right-hand side of this equation
we find that
Fla) =9 (a)[2%: ax (2-22)
where
2+(a)
= [ [ pi: ap(r'N,p'N)PE(r'N, p'N | N, pN) p(r¥,pN ; @) dr'¥Ndp'¥NdrNd pV, (2-23)
(cf. I (3-63) and I (3-64)).
Boltzmann'’s entropy postulate I (4-1) becomes in the cases of Bose-
Einstein and Fermi-Dirac statistics
S(et) = & In {AQ*(a) [h3N}, (2-24)
where AQ#(e) are the nth order differences of 2+(a) over the range (@; Ae).
Gibbs’ entropy of the micro-canonical ensemble is given by
Se¢ = kIn GE. a5 (2-25)

*) The classical analogue of (2-19) is the kernel
Pleb)(p'N, p'NeN, pN) = (N1)=2 p 8(r'Y — Pr¥) §(p’N — PpN),

which may be obtained by considering only the terms with P = Q in (2-19).
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(¢f. T (4-3)). The intensive thermodynamic variables X are again defined
by means of I (4-8).

The joint Wigner distribution functions (2-13) and (2-21) in chapter II
must be replaced by

[N, PV eN, pY St 1) = [N, pN ;1)
COS { 7/{ ( () 3 ¢ 6 : ¢ >} I)(r"\-' p.‘,v 1 rl\.‘ P\, 1—) (2_26)

2\6rY  p’N  6p'N N

and
[Z: a6t N, N N, PV 7) = [ ax(r™, V)

[ 3 < 2 Z 6 9 )1 P(r'N, p'Nie¥, p¥N; 7) (2-27)
*12 - 2p'N . 6p'N  ae'N N .
¥ \l 2 \6r'~N op'N 6p'~y or'N ] P DT,

in the cases of Bose-Einstein and Fermi-Dirac statistics.

It is immediately seen, that the relations II (2-23) and II (2-24) are also
valid in the cases of Bose-Einstein and Fermi-Dirac statistics, since the
properties of Wigner distribution functions and propagators, which were
needed in II for the derivation of these relations, also hold in these cases.
We therefore have in the absence of an external magnetic field:

fianlr ™, PN N, PN 1) = [ p(eN, —pN N, —pNia),  (228)
and in the presence of a magnetic field:
Fsam(r™, PN, N, pN By 1) = [, up(r, —p¥; N, —p'N; —B; 7). (2-29)

For the joint equilibrium distribution functions of extensive state
variables, we get

F(a'; a;7) = [/ p(r'N,p'N;e) p(r¥, pN; @)
fE:ag(r'™,p’N;rN, pN:7) dr'N dp'N drN dp¥, (2-30)

(¢f. II (3-3)), and for the non-equilibrium distribution function F, (e; ),
introduced in § 4 of chapter 1I, we now obtain

Fo(a;t) = [p(r™, p¥; @) fi5,(rY, p¥; 1) dr¥ dpY, (2-31)
(cf. IT (4-11)).
The further development of the theory of the foundations of the Onsager

reciprocal relations for Bose-Einstein and Fermi-Dirac statistics proceeds
along the same lines as in the case of Maxwell-Boltzmann statistics.
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SAMENVATTING

In dit proefschrift worden de quantumstatistische grondslagen van de
reciprociteitsrelaties van Onsager in de thermodynamica van niet-even-
wichtsprocessen behandeld. Daarbij wordt gebruik gemaakt van de be-
schrijving van de quantumstatistica met behulp van Wigner-distributie-
functies. Deze quantummechanische distributiefuncties, die in de fase-
ruimte gedefinieerd zijn, vertonen overeenkomst met de distributiefuncties
in de klassieke statistische mechanica. De theorie van de grondslagen van
de Onsager-relaties wordt derhalve behandeld op een wijze, die analoog
is aan de klassieke bzhandelingswijze van de Groot en Mazur.

In hoofdstuk I wordt de theorie van gewone Wigner-distributiefuncties
behandeld. Verder wordt de evenwichtsdistributiefunctie van de extensieve
toestandsvariabzlen, welke het systeem macroscopisch beschrijven, in-
gevoerd, waarbij de veronderstelling wordt gemaakt, dat de quantum-
mechanische operatoren, die met deze variabelen corresponderen, onderling
verwisselbaar zijn. Deze waarschijnlijkheidsdistributiefunctie kan worden
uitgedrukt in de Wigner-distributiefunctie van het micro-kanonieke en-
semble. Verschillende eigenschappen van evenwichtsdistributiefuncties van
extensieve variabelen worden afgeleid.

In hoofdstuk IT worden “‘simultane Wigner-distributiefuncties” ingevoerd,
die gebruikt kunnen worden om quantummechanische correlatiefuncties
te berekenen. Verder wordt de simultane evenwichtsdistributiefunctie van
de extensieve toestandsvariabelen van het systeem gedefinieerd. Deze
distributiefunctie kan worden uitgedrukt in de simultane Wigner-distributie-
functie van het micro-kanonieke ensemble. De eigenschappen van simultane
evenwichtsdistributiefuncties, in het bijzonder de zogenaamde eigenschap
van microscopische reversibiliteit, worden afgeleid.

In het algemeen zijn simultane distributiefuncties van extensieve variabe-
len geen waarschijnlijkheidsdistributiefuncties. Men kan echter bewijzen,
dat de simultane evenwichtsdistributiefunctie een simultane waarschijnlijk-
heid voorstelt, indien de quantummechanische operatoren, die met de
toestandsvariabelen van het systeem corresponderen, van een speciale
klasse zijn.
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De theorie van distributiefuncties van extensieve variabelen wordt

tenslotte gebruikt voor de bekende afleiding van de reciprociteitsrelaties

van Onsager.

De theorie, behandeld in de hoofdstukken I en II, is alleen geldig voor
Maxwell-Boltzmanu-statistick. In hoofdstuk III wordt de theorie uitge-
breid tot de gevallen van Bose-Einstein- en Fermi-Dirac-statistiek.



















