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1.Introduction

In 1918 a committee was established in the Netherlands to study the effect of the clo-
sure of the Zuiderzee, a large bay of the North Sea, on tidal motion and storm surges
in the western Wadden Sea, figure 2. The famous physician H.A. Lorentz was asked to
be the chairman. Lorentz was already retired at that time. He was not familiar with the
matter of fluid dynamics but he accepted the assignment. Although much was known
about water and land reclamation, a project of this scale had not been carried out be-
fore, hence a thorough investigation was believed to be necessary. Some specialists,
e.g. Ir. C. Lely politician and promoter of the project, believed that the construction
of the 30 km long dam would cause minor changes in tidal patterns and height of the
water elevation during storms in the Wadden Sea. While others, e.g. H.E. de Bruijn,
argued that the height of the high tide would double, however this was no result of
any computation it was more ’based on experience gained elsewhere and on relevant
research.’ In 1918, the Dutch parliament approved to proceed with the project under
the condition that a committee would be appointed to investigate the consequences.
After 8 years of hydrodynamical research the State committee Zuiderzee, or commit-
tee Lorentz as it was soon called, published a report bearing conclusions that cleared
the way for the actual building of the dam.
In this report the focus will be on the method of analysing the influence of the bot-
tom stress and on the way of calculating in a time where no (digital) computers where
available. The basic (shallow water) equations of motion, applicable to this problem,
contain the quadratic bottom stress and it was Lorentz who found an elegant way of
avoiding this complicated term by replacing it by an effective linear one. This method
is described in the final report of the State committee Zuiderzee (1926) but also in an
article by Lorentz (1922). Later this method was revisited by Zimmerman (1982,1992)
and applied in many theoretical studies on tides. Recently the success of Lorentz lin-
earization was reconfirmed by Terra et al. (2004) who compared the results of labora-
tory experiments with theoretical predictions using the Lorentz method.

Figure 1: H.A. Lorentz (1853-1928)



The structure of the rest this paper is as follows: in sections 2 and 3 basic equations
and Lorentz linearization will be explained, section 4 describes the set up of the actual
calculations the committee performed and in section 5 an example is given of such a
calculation. Finally in section 6 the conclusions are presented. Throughout the whole
report the original notation of the committee is used, this means that equations are
similarly found in the final report of the State committee Zuiderzee (1926).

(a) (b)

Figure 2: The system of shoals and channels in 1920 (a) and after closure in 1970 (b)



2. Basic equations of motion

The first assumption Lorentz made was that he could schematize the area of Wadden
Sea and Zuiderzee as a network of tidal channels see figures 2 and 3. These channels
were given a depth consistent with the real world average depth. In cases where a
channel had a cross sectional depth profile the solution was found to have several
channels next to each other with different depths. In every channel the along-channel
velocity and the sea surface elevation were calculated. The dynamics were described
by the the standard equations of motion, assuming that the width of the channel is
small compared both to the Rossby deformation radius as to the channel length. This
excludes variation over the width of the channel. At first hand the influence of the wind
was neglected, but recall that one of the tasks the commission had was to see what the
effects of storms on tidal motion in the Wadden Sea where after construction of the
dyke. The calculations were based on the one-dimensional shallow water equations.
In this formulation the continuity equation becomes

∂s

∂x
= −b

∂h

∂t
, (1)

whereb is the width of the channel,h the height above a certain reverence level so that,
if q is the mean depth, the total water depth isq + h. This means thats represents the
volume flux through a surface:

s = b(q + h)v, (2)

wherev is the cross-section a averaged velocity. Note thath ands are functions of
space and time and that generallyh/q � 1, so in calculations it was used thats = bqv.
The momentum equation reads

ρ
∂v

∂t
= −gρ

∂h

∂x
+ W, (3)

whereρ is the density of water,g the acceleration due to gravity and W a force per unit
volume due to bottom friction. It is this latter term that caused the trouble since it is
quadratic in the velocity:

W = −ρ
g

qC2
|v|v. (4)

The constantC is nowadays known Chezy’s constant (in that time constant of Eytel-
wein) and the ratiog

c2
= Cd, the so called drag coefficient. ThisCd has often the value

of 0.0025.



3. Lorentz linearization

Lorentz decided to linearize the problem in respect to the bottom friction and replaced
the quadratic bottom friction by a tidally averaged linear one. So he proposed an
alternative model which contains the momentum equation:

∂v

∂t
= −g

∂h

∂x
− kv. (5)

This is possible by choosingk so that it approximates the magnitude of the ’true’
friction. This value had to be estimated for each channel separately. A complicating
factor is that the velocity is not constant over the channel in time while dealing with
tides. The friction coefficient was determined using the condition that the mean energy
dissipation (mean as in tidal mean) is the same for the ’true’ and for the linearized
friction. Lorentz considered only the positive part of the velocity during one tidal
evolution (the negative part will be the same; only the sign is reversed) and modelled
it as sinusoidal with amplitudevmax and radian frequencyn:

v = vmax cos nt. (6)

The work done is

∫ π/2n

−π/2n

Wvdt. (7)

The condition that Lorentz imposed was that the two formulations for the frictional
force, i.e. (4) and the last term in (5) should yield the same dissipation of energy over
one tidal period, thus by the fictional force during half a tidal period is:

k

∫ π/2n

−π/2n

v2dt =
g

c2q

∫ π/2n

−π/2n

v3dt. (8)

So if v is inserted as in given in (6)

k

∫ π/2n

−π/2n

(cos nt)2dt =
gvmax

C2q

∫ π/2n

−π/2n

(cos nt)3dt. (9)

Development of these integrals yields an expression fork:



k =
8

3π
∗ gvmax

C2q
. (10)

This expression uses the maximum value of the velocity in the channel, a value that
is not known a priory. Still, there is the problem that for the determination ofk in a
particular channel one needs at least an estimation of the maximum velocity. This value
was partly obtained from measurements, but also derived by making a first guess and
corrected later in the calculations. Strictly speaking, it is not even possible to define
a constant maximum velocity along a channel, this was accounted for by splitting the
channel in two in cases where the values ofk differed too much. As mentioned before,
in case of a cross-sectional depth profile they choose several channels along each other
with different depths.

4. Selection of the tidal channels

Apart from all the theoretical work, the committee initiated many field campaigns.
During the whole time observations were made in the Zuiderzee and were later used. In
order to calculate the tide and see if it represented the measured values prior to closure
well enough, the committee divided the complete Zuiderzee in a system consisting
of main channels, see fig (3). Only the M2 constituent of the tide (’the semi diurnal
tide’) was used in the first calculations. Every channel had as unknown values the
volume fluxs and the sea surface elevationh at one end using the equations of motion,
the values at the other end were expressed in the same unknowns. At the connection
points the condition was that surface elevation and volume flux must be continues.
Thereby at the land borderss had to be zero and at the sea sideh was imposed.

5. Lorentz method

To facilitate the calculations, Lorentz introduced some other variables. This section
will follow his original way of calculating the tides in the Wadden Sea and Zuiderzee
and will adopt the same symbols he used in the original report.

Starting point are the two shallow water equations for a channel as in eq. (1) and (5):

∂v

∂t
= −g

∂h

∂x
− kv,

∂s

∂x
= −b

∂h

∂t
,

s = bqv.

Lorentz converted this into a system that can be solved fors andh:

∂s

∂t
+ ks = −gbq

∂h

∂x
(11)



Figure 3: The schematized representation of the Zuiderzee by a network of channels.



and

∂s

∂x
= −b

∂h

∂t
. (12)

This system allows for solutions that describe travelling waves in thex-direction with
damping-factoru:

h = aeint+ux,

s = ceint+ux.

Note that these are complex solutions, the real part of the r.h.s. is the solution. Substi-
tution of these solutions in equations (11) and (12) yields expressions for the complex
amplitudesu andc:

u2 = n
gq

(−n + ik), (13)

c = − ibn
u

a. (14)

The real part ofu can be seen as the spatial damping factor of the tidal wave due to
the bottom friction, the imaginary part as the wavenumber. When taking account of
the waves travelling in the opposite (negative)x-direction, similar expressions can be
derived. A superposition of these results gives:

h = aeint+ux + a′eint−ux, (15)

s = ibn
u

(−aeint+ux + a′eint−ux). (16)

Here, the only remaining unknown variables area anda′, assuming thatk andu are
known at that time in the calculation. At one boundarys andh are prescribed, this
is the connection with the open sea. The values can be measured and used in the
calculations. Atx = 0:

h0 = aeint + a′eint, (17)

s0 =
ibn

u
(−aeint + a′eint). (18)



This can be solved foraeint anda′eint. Now at the other end of the channelh ands
can be expressed inh0 ands0.
At x = l, (l = L/100km) is the dimension of length that Lorentz used:

hl = Hhh0 + Hss0, (19)

sl = Shh0 + Sss0, (20)

with

Hh = 1
2
(eul + e−ul),

Hs = iu
2bn

(eul − e−ul), (21)

Sh = ibn
2u

(eul − e−ul),

Ss = 1
2
(eul + e−ul).

Before computinghl andsl with (21) realise that only the real parts contribute. There
was the possibility of an extra computational check on correctness in the long calcula-
tion sinceHhSs − HsSh = 1. In other words the real part of quantityHhSs − HsSh

has to be 1 and the imaginary part has to be zero.

Thus far no mathematical problems are encountered and the problem is solved with
the above equations. However, in the time of Lorentz and his committee there were no
digital computers. The calculations had to be done by hand and were done in duplicate
on different calculating machines to avoid errors. One of the team leaders, Dr J.P.
Thijsse, later stated that only the calculations of the existing tide took one month for
two persons. It has to be realized that this was only a small part of the total amount
of calculations. For this reason some more variables were introduced that made the
calculations better to comprehend. Remind that the problem in principle is solved, now
there just some convenient modifications that will be made. For this were introduced:
ϑ = bg tan k/n andf = bg. From hereu is rewritten:

u2 =
−b0n

2/g

Σf cos2 ϑ + Σf cos2 ϑ tan ϑ0

=
−b0n

2/g

G(cos ϑ0 + i sin ϑ0)
, (22)

with G = Σf cos2 ϑ, ϑ0 = f tan K/G andK = Σf cos2 ϑ tan ϑ0. This results in the
following expression foru:



u = i

√
b0n2 cos ϑ0

Gg
(cos

ϑ0

2
− i sin

ϑ0

2
) = σ + ir, (23)

wherer = R cos ϕ andσ = R sin ϕ with R =
√

b0n2 cos ϑ0

Gg
andϕ = 1

2
ϑ0. Recalling

the formulations for the water elevation and volume transport (21), we have another
expression foru now, therefore we rewrite1

2
(eul + e−ul) and 1

2
(eul − e−ul)

1

2
(eul + e−ul) =

1

2
eσl(cos rl + i sin rl) +

1

2
e−σl(cos rl − i sin rl)

= cos rl cosh σl + i sin rl sinh σl, (24)

and

1

2
(eul − e−ul) = cos rl sinh σl + i sin rl cosh σl.

So finally we find for (21)

Hh = Ss = cos rl cosh σl + i sin rl sinh σl, (25)

Hs =
iu

2bn
(eul − e−ul)

=
i

2bn
(σ + ir)(cos rl sinh σl + i sin rl cosh σl)

=
R

b0n
((− cos ϕ cos rl sinh σl − sin ϕ sin rl cosh σl)

+i(+ sin ϕ cos rl sinh σl)− cos ϕ sin rl cosh σl), (26)

andSh =
b0n

R
((− cos ϕ cos rl sinh σl + sin ϕ sin rl cosh σl)

+i(− sin ϕ cos rl sinh σl)− cos ϕ sin rl cosh σl). (27)

These were the terms the committee painstakingly calculated. An example of such
an activity is given in figure 4. In this scheme the calculations are done for channel
Westgat, see figure 3. The notation here is:Hh = Ss = (1) + (2)i, Hs = (3) + (4)i
andSh = (5) + (6)i.



Figure 4: An example of a calculation as done by the State Committee Zuiderzee in
1926, see text for explanation.

6. Conclusions of the Committee

In 1926 the State Committee Zuiderzee published the comprehensive report bearing
its conclusions concerning the new dam that was planned in the Zuiderzee. It had
taken the committee 8 years of applied hydrodynamical research. One of the most
striking methods used was the, somewhat anonymously called, third method, a new
way a dealing with the bottom-friction in the shallow water equations of motion. This



method turned out to be quite successful in predicting the situation without the dam, as
the model results where extensively validated against measurements. In the same way
the tidal characteristics where calculated for the situation after closure and it turned
out that the tides would be enhanced in the new configuration. The basin would come
closer to the resonance length of 1/4 wavelength and thereby would have much stronger
currents. Figure 5 shown the ratio of the currents before and after the construction
of the dam. This fact gave rise to one of the main recommendations: to build the
dam further up north than originally planned. This advice has been followed. After
completion of the dam on the 28th of may in 1932 the tide patterns corroborated fully
with the predictions of the committee.

Figure 5: The ratio of the currents before and after closure of the Zuiderzee.

Not covered in this report is the way the committee dealt with the storm influence and
the prevention of the land from it. Measurements later in the century learned that,
where the tidal effect where accurate up to a few centimetres, the predictions on storm
effects where less accurate. Thijsse (1972) concluded on basis of empirical data that
the predictions of the committee had been 30 cm too low. By that time the dykes had
been heightened as result of the storm in 1953. Despite the underestimation of the
storm effects Lorentz and his committee succeeded in predicting changes at a con-
vincing level of accuracy. The report formed an important handbook for hydraulic
engineers for a long time and still is a milestone in the scientific history of tidal pre-
diction.
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