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Berry curvature and dynamics of Bloch electrons

• anomalous velocity (Karplus and Luttinger 1957)
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The “anomalous velocity” is absent 
if time-reversal and inversion 
symmetry are both present.
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• The Karplus-Luttinger term was derived from a 
Kubo fomula, and gives rise to the “intrinsic” part of 
the anomalous Hall effect in ferromagnetic metals.

• It was very controversial, and dismissed as deriving 
from an “obvious error” by a number of authors at 
the time, who felt it violated “fundamental principles”

• A modern interpretation (Sundaram and Niu 1999) 
identifies it as the effect of the “Berry curvature”.
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modified Phase-space volume element!

• The symplectic form identifies the 
conserved phase-space volume element 
(Louiville theorem) (to lowest order in B) 
as

1
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(Xiao,Shi, and Niu,2006)



• anomalous velocity is motion of “average position of electron in 
unit cell” (with more than one orbital in the cell)

• as k changes (wavepacket is accelerated), “average position”   *  in 
unit cell moves, relative amplitude on different orbitals (diferent 
atoms) changes.

• This internal motion is the “anomalous velocity”.
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Ambiguity of the “mean position in the unit cell”

• The “average position” depends on the 
(arbitrary) choice of unit cell.

• Displacements and velocity of the “average 
position” are unambiguous.
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The Berry connection and curvature.

|Ψn(k)〉 =
∑

R,i

an,i(k)eik·(R+ri)|R, i〉

Aa
n(k) = −i〈Ψn(k)|∇a

kΨn(k)〉

|Ψn(k)〉 → eiχn(k)|Ψn(k)〉

Bloch state

unit cell
orbitals inside 
unit cell

positions of 
orbitals inside 
unit cell

“Berry gauge” transformation

Aa
n(k)→ Aa

n(k) +∇a
kχn(k)

Berry  connection
(analog of vector
 potential in k-space)

effect of “Berry gauge” transformation



non-commutative geometry of the 
“average position” in the unit cell:

• formal operator involves the Berry 
connection:

ra
n = −i∇a

k −Aa
n(k)

• commutation relation:

•  compare to
≡ i(∇a

kAb
n(k)−∇b

kAa
n(k))

Berry curvature

[ra
n, rb

n] = iFab
n (k)

ka = −i∇a − ieAa(r)/! [ka, kb] = ieFab(r)/!
electromagnetic vector potential



significance of the Berry curvature

• It is gauge invariant.

• It depends not just on the Hamiltonian, but 
on how it is embedded in (Euclidean) space.

• This means that it contains information 
about how the electron system responds 
to uniform electromagnetic fields:
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∑
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time-reversal (T) and inversion symmetry (I)

• if either (antiunitary) T or (unitary) I is unbroken,
εn(k) = εn(−k)

• if (antiunitary) T is unbroken,

• if (unitary) I is unbroken,
Fab

n (k) = +Fab
n (−k)

Fab
n (k) = −Fab

n (−k)

• if both (antiunitary) T and (unitary) I is unbroken,

Fab
n (k) = 0



k-space analogs of electromagnetic quantities:

• Berry phase as analog of Bohm-Aharanov 
phase:

eiφB(Γ′) = exp i

∮

Γ′
Aa(k)dka

measures magnetic
flux through a closed

 path in real space

measures “Berry
flux” through a closed

 path in k-space

e.g.: The Berry phase around closed constant energy paths in k-space can 
give a correction to Landau-level quantization in a uniform magnetic field.

eiφBA(Γ) = exp i(e/!)
∮

Γ
Aa(r)dra



Chern number and Dirac monopole quantization: 

• This is the integrated flux through any 
closed 2-manifold in k-space

• The 2D Brillouin zone (BZ) is a 2-torus, so 
the integral of Berry curvature over the 2D 
BZ is 2π times the (integer) Chern number.
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• this works because by Stokes theorem, the 
Berry phase is given by

exp i

∮

Γ
Aa(k)dka = exp i

∫

M
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where     is any 2-surface bounded by the closed path 

ΓM
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M−M′
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where      is a closed 2-manifold.Σ

eiφB(Γ) =



Chern invariants of non-degenerate bands: 

• 2D case, k-space = (kx,ky) :

1
2π

∫

2DBZ
dkxdkyFxy

n = Cn chern number

• 3D case: the intersection of  3D bands  with 2D plane normal 
to a lattice translation is a 2D bandstructure.   If the band is 
non-degenerate, Gauss law is obeyed (no monopoles), so.

chern number

1
2π

∫

3DBZ
d3kFab

n = Cnεabc(G0
n)c

a primitive reciprocal 
vector, (which indexes a family 
of lattice planes)

2D integer QHE

3D integer QHE =
2D integer QHE on 

each plane

(these vanish if time-reversal symmetry is present)



Quantum Hall effect:

• number of states in a filled band varies with B!
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=
e

!εabc
1

(2π)3

∫

BZ
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• By the Streda formula, if there is a gap at the 
Fermi level,

σab
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e2

h

εabc

2π

∑

n(occ)

Cn(G0
n)c

(this is an integer 2D QHE in each plane of a 
family of parallel lattice planes)



Accidental degeneracies 

• Three generic classes:

• “orthogonal”:   hamiltonian  “is real symmetric” : NO Berry curvature; 
vary TWO parameters to find an “accidental degeneracy” between levels

• “unitary”: hamiltonian is complex, has Berry curvature, vary THREE 
parameters to find an “accidental” degeneracy between levels

• “symplectic” (Kramers degeneracy), vary FIVE parameters to find an 
“accidental” degeneracy between two Kramers doublets

• First case:  time-reversal symmetry without spin-orbit coupling, third 
case, time-reversal symmetry with spin-orbit coupling.

topologically-stable “Dirac points” occur at 
“accidental” degeneracies between bands.



A simple model 2D bandstructure.

• “Graphene”:

x 

x x 

x x 

x x x 
has spatial 

inversion and 
time-reversal 

symmetry

Two distinct “Dirac points” at BZ corners.



why does graphene have two Dirac points?

• (a) because the corners of the BZ have threefold symmetry, 
and degenerate bands make doublet representation of C3v 
point group?

• NO, because Dirac points dont disappear when three-fold 
rotation symmetry is broken! - they just move to generic 
points (related by inversion symmetry).

• correct answer: because time-reversal symmetry and 
inversion symmetry are unbroken, and no spin-orbit 
coupling: (“orthogonal” case, vary TWO parameters, kx, ky, 
to find an “accidental” degeneracy.)

• Immediately destroyed (gap opens) if EITHER of these two 
symmetries is broken! THEN GET UNITARY CASE.



2D zero-field Quantized 
Hall Effect

• 2D quantized Hall effect: σxy = νe2/h.   In the 
absence of  interactions between the particles, ν  
must be an integer.   There are no current-carrying 
states at the Fermi level in the interior of a QHE 
system (all such states are localized on its edge).

• The 2D integer QHE does NOT require Landau 
levels,  and can occur if time-reversal symmetry is 
broken even if there is no net magnetic flux through 
the unit cell of a periodic system.   (This was first 
demonstrated in an explicit “graphene” model 
shown at the right.). 

• Electronic states are “simple” Bloch states! (real 
first-neighbor hopping t1, complex second-neighbor 

hopping t2eiφ, alternating onsite potential M.)

FDMH, Phys. Rev. Lett. 61, 2015 (1988). 



 2D “graphene” bandstructure
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two distinct “Dirac points”
 (at corners of hexagonal 

Brillouin zone)

A

B A

A

B

B

Break onlyT: mA = mB

Breaking either 
inversion  (I) or 
time-reversal (T)

symmetry opens a 
“mass gap” at Dirac 

points.)

Break only I: mA = -mB

same sign Berry curvature 
near A and B points

opposite sign Berry curvature 
near A and B points

massive case
(bulk insulator)

massive case
(bulk metal)

k-space

Dirac  
points



ArJ

gap quantized (1)

quantized (0)

quantized (0)

non-quantized (AHE)

non-quantized (AHE)

• Intrinsic (Karplus Luttinger) Hall conductivity 
interpolates between quantized Hall 
conductance from edge states



Graphene model with second neighbor 
hopping is very useful!

• Quantum Hall effect with simple Bloch states

• Used for anomalous Hall effect  studies(Nagaosa), 
add disorder etc.

• used for testing/developing fundamental band-
stucture formulas for orbital magnetization 
(Vanderbilt)

• Quantum Spin Hall effect (Kane and Mele)

• Analog system for photonic edge states (Haldane 
and Raghu)



• Unitary case: 2π Berry flux “monopole” in 
three parameter space.

• If parameters are kx, ky, and the 
“mass” (gap) parameter,  total “flux” π 
passes through the k-plane “near” the 
weakly-gapped Dirac point.  These points 
dominate the Chern number integral.



graphene: zigzag edge

“gapless graphene”

bulk
empty

bulk
filled

edge state band

broken
inversion
symmetry

broken
time-reversal

symmetry

edge state connects
conduction band to 

valence band!



quantum Hall effect vs Photonics

• Quantum Hall effect:

• involves charged interacting fermions (electrons) in 
strong magnetic fields (Landau levels) in an 
incompressible collective quantum state.

•  Photonics (photon band gap materials, etc)

•  involves neutral non-interacting non-conserved  
bosons (photons) propagating as waves: not really 
“quantum”, and definitely not incompressible!

Superficially, it seems unlikely that there could be 
any similarities between the two systems!



Photonic bands  (2D array of dielectric rods)
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• need to get a thin slab, with a gap around 
Dirac point for all modes

• one-way transmission, no elastic reflection at 
bends

• unlike electrons, photons can be absorbed

• Faraday effect is weak...

• but interesting possibilities for “Berry phase 
engineering” 

• Berry phases also from broken inversion, but 
no edge modes


