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Laughlin FQHE state

• ν = 1/m Laughlin state

• “occupation number”-like representation in 
orbitals zm, m = 0,1,..., NΦ  = m(N-1) 
orbitals

Ψ = Φ(z1, z2, . . . , zN )
N∏

i=1

e−ϕ(ri)

∇2ϕ(r) = 2πB(r)/Φ0
N-variable (anti)symmetric polynomial

Φ(z1, z2, . . . , zN ) =
∏

i<j

(zi − zj)m

1001001001001001001...1001 (m=3)

lowest 
Landau level

This is the “dominant” configuration of the Laughlin state

m=0 orbital



“Dominance”

• convert occupation pattern to a partition 
λ, “padded” with zeroes to length N:

• 1001001 → λ = {λ 1,λ2,λ3} = {6,3,0}

• λ dominates λ′ if  

• |λ| ≡ (∑i λi )= |λ′| = M 

• (∑j≤i  λ′j )≤  ( ∑j≤i  λj ) for all i = 1,2,..N-1



“dominance” and “squeezing”

• (pairwise) squeezing:  move a particle from  orbital m1-1 to m1 

and another from m2+1 to m2 where m1 ≤ m2.

• dominance is a partial ordering: if A > B and 
B > C, then A > C.

1001001001001001001...1001
1000101001001010001...1001

A dominates B     ( A > B)

A
B



• When expanded in occupation number 
states, the (polynomial) 1/m Laughlin state 
only contains configurations dominated by 
the most compressed (minimum M) “(1,m)-
admissible configuration” where no group 
of m consecutive orbitals contains more 
than 1 particle.

• “admissibility” can be thought of as a 
generalized Pauli principle.



Compactification of the Lowest Landau level 
on the Riemann sphere.

Identify orbitals m = 0,1,...,NΦ

with orbitals Lz = S,S-1,...,-S on a
sphere enclosing magnetic 
monopole charge NΦ= 2S

Uniform QHE states are 
rotationally-invariant, 
Ltot = 0.



Beyond “standard” occupation 
number formalism

• k-particle 1/m Laughlin droplet creation 
operator (circular droplet centered at R):

ηkm(R)†|vac〉 ∝
∏

i>j

(zi − zj)m
k∏

i=1

ψR(ri)

• For k = 1, (m has no meaning in this case), this is 
just the standard lowest Landau-level single-particle 
creation operator 

c(R)†|vac〉 ∝ ψR(r1)

Gaussian 
centered 

at R



• Read-Rezayi (includes Laughlin, Moore-Read) 
FQHE states are defined by

ν =
k

km + 2
ηk+1,m(R)|Ψ〉 = 0

η2,m′(R)|Ψ〉 = 0,m′ < m
for all R

ηk,m(Ri)|Ψ〉 = 0
at locations Ri

of pinned elementary
quasiholes“Admissible” configurations:

Not more than k particles in km+2 consecutive orbitals
For m >0, not more than one particle in m consecutive orbitals

(k+1)-particle 
destruction

k-particle 
destruction



• On the sphere,  the number of charge -e/(km+2) 
elementary quasiholes  for a given N, NΦ is

• The size of the basis set of quantum states (with 
unpinned quasi holes) is equal to the number of 
admissible configurations.

• The states can be  completely constructed out 
of configurations dominated by the dominant 
admissible configuration (“top” configuration).

• These are a very small subset of lowest Landau 
level states!

Nqh = k(NΦ − 1
2mk(k − 1))− (km + 2)(N − k)



Jack Polynomials.
• For m = 0 (bosonic case) the ν = k/2 Read-
Rezayi multi-quasihole states are 
spanned by the set of Jack symmetric 
polynomials J λ-(k+1) (z1,...zN) with an 
admissible partition λ, which form a 
complete but non-orthogonal basis. (See 
Feigin,Miwa, Jimbo and Mukhin 2002, and Bernevig and 
Haldane, cond-mat/0707.3637)

• J αλ(z) with parameter α real positive and unrestricted  are orthogonal 
polynomials; here α is in general negative rational, and λ  are restricted to 
“admissible” partitions.



Fermionic 2/4=1/2 Moore-Read state

1100110011001100110011001100110011

uniform vacuum state on sphere:

even fermion number -e/2 double quasihole (h/e vortex) at North Pole:

odd fermion number -e/2 double quasihole  (h/e vortex) at North Pole:

01100110011001100110011001100110011

100110011001100110011001100110011
fractionalization:  one -e/4 quasihole  (h/2e vortex) at North Pole, one  near equator.

101010101010101001100110011001100110011

These translate into explicit wavefunctions that can 
be calculated in finite-size systems 



3/5 (fibonacci) Read-Rezayi state primary configurations

11010110101101011010110101101 . . .

1001110011100111001110011100111 . . .

01110011100111001110011100111 . . .

111001110011100111001110011100 . . .

110011100111001110011100111001 . . .
10101101011010110101101011010 . . .

01101011010110101101011010110 . . .

0101101011010110101101011010 . . .

elementary -e/5 vortex at North pole
vortex moves
by hopping
5 orbitals at a
time

For charge -ne/5, n > 1 there are always 2 orthogonal  primary states.



explicit numerical calculations

• Strategy:  obtain full set of highest-weight 
states by solving

• The number of admissible configs at each Lz tells us how many we 
need.  We exclude from the basis set configs not dominated by the 
dominant admissible config.  This gives a highly overdetermined system 
of equations!

• Within the full basis set thus obtained,  impose the condition that pins 
the quasiholes at the desired locations.

L+
tot|Ψ〉 = 0



Partial ordering of occupation number configurations with fixed Lz

• squeezing decreases the variance
mmax∑

m=0

m2nm − (
mmax∑

m=0

mnm)2

decreasing 
variance

“Top” 

“Bottom” 

“admissible”

“squeezed from 
admissible” 

“excluded”

P0|“excluded config.”〉 = 0



• Use Wigner-Eckert: need to (simultaneously) solve  

• In the full basis this is an undetermined problem 
(more columns than rows)

• After “excluded” states are removed, it is 
overdetermined (more rows than columns)!  

• (can efficiently solve with a variant Lanczos-type technique to 
full floating-point accuracy.)

• Disk:

• Sphere:

key point:

[P0, a] = 0
[P0, L

+] = 0

Null space is invariant under the Euclidean group

highest weight 
null modes

L+|Ψ〉 = 0 and P0|Ψ〉 = 0



example: 
16 electrons on sphere, maximum ν=1/2 Moore-Read density, plus 

2h/e extra flux (single qubit when vortices are fixed)

output Wed Jun 21 19:14:22 2006 1

Program ZSPHERE: projection into FQHE zero-mode spaces 

large arrays limits set by adjustable parameter variables:
MXNSTATE=        10000000 (configurations with fixed Lz)
STORAGE =        20000000 (MXNSTATE x SIZE of binary  config code)
STORELST=        40000000 (total STORAGE for all Lz sectors)
MAXLLIST=        90000000 (number of non-zero elements of L+ )
ZSTORE  =        70000000 (space for stored zeromodes)

give datafile name (6 characters, in quotes)
 enter 0 to do full calculation 
 enter n to do only subspace n
 enter -1 to do only Wigner Eckert with pair density
 enter -2 to do only Wigner Eckert without pair density
 enter 0 or 1 for  " fast" or "debug"  calculations;
also give a seed integer for a random numbers
 (use different seeds when combining calculations)
NEL  = number of particles
 NORB = 2L+1 = Nflux +1 = number of orbitals
     give nel,norb
 for k > 0, nu_max = k0/(k0*m0+2) ; (k=0, m even/odd for free bosons/fermions)
 give projection type k0,m0:
 default interaction (n=0 landau level, Coulomb)
 BINARY: registered binary code total size =     2:
    1 components with sizes:     2
  16 spinless fermions on the sphere with   32 orbitals:
 full basis: 601080390 projected basis:       825 (summmed over LZ)
=========================================================================================
Ltot=    0.0    1.0    2.0    3.0    4.0    5.0    6.0    7.0    8.0    9.0   10.0   11.0
all:    6235  17625  30017  41207  53324  64172  75813  86131  97177 106789 117059 125864
nul:       3      0      6      2      7      4      7      4      7      3      5      2
=========================================================================================
Ltot=   12.0   13.0   14.0   15.0   16.0   17.0   18.0   19.0   20.0   21.0   22.0   23.0
all:  135218 143078 151432 158231 165486 171188 177258 181794 186683 190016 193686 195853
nul:       3      1      2      0      1      0      0      0      0      0      0      0
=========================================================================================
Ltot=   24.0   25.0   26.0   27.0   28.0   29.0   30.0   31.0   32.0   33.0   34.0   35.0
all:  198308 199313 200616 200495 200691 199542 198684 196573 194791 191805 189174 185450
nul:       0      0      0      0      0      0      0      0      0      0      0      0
=========================================================================================
Ltot=   36.0   37.0   38.0   39.0   40.0   41.0   42.0   43.0   44.0   45.0   46.0   47.0
all:  182078 177713 173741 168841 164375 159089 154232 148660 143557 137800 132538 126726
nul:       0      0      0      0      0      0      0      0      0      0      0      0
=========================================================================================
Ltot=   48.0   49.0   50.0   51.0   52.0   53.0   54.0   55.0   56.0   57.0   58.0   59.0
all:  121404 115614 110338 104648  99488  93993  89004  83748  79012  74039  69580  64944
nul:       0      0      0      0      0      0      0      0      0      0      0      0
=========================================================================================
Ltot=   60.0   61.0   62.0   63.0   64.0   65.0   66.0   67.0   68.0   69.0   70.0   71.0

output Wed Jun 21 19:14:22 2006 4

 starting polishing phase
    4    5 niter=   67 error in/out=    0.614D-15    0.475D-15
 no more significant error improvement
 zeromode     5 is computed 
 no useable data in "zeromode.006" using random data
 type 2 termination
    1    6 niter= 4994 error in/out=    0.103D+01    0.268D-01
 reached error limit of  0.600D-15
    2    6 niter= 3136 error in/out=    0.268D-01    0.665D-05
 reached error limit of  0.600D-15
    3    6 niter= 2109 error in/out=    0.665D-05    0.116D-08
 reached error limit of  0.600D-15
    4    6 niter=  804 error in/out=    0.116D-08    0.607D-15
 reached error limit of  0.600D-15
 starting polishing phase
    5    6 niter=   60 error in/out=    0.617D-15    0.496D-15
 no more significant error improvement
 zeromode     6 is computed 
 overlap matrix eigenvalues, trace =     6.00000000
     1.00000000     1.00000000     1.00000000     1.00000000     1.00000000
     1.00000000
 quality control of     6 zero modes, basis size 5800384, satisfying  6170810 constraints
 zero mode #    1: maximum error      3.0D-18
 zero mode #    2: maximum error      5.2D-18
 zero mode #    3: maximum error      4.8D-18
 zero mode #    4: maximum error      6.2D-18
 zero mode #    5: maximum error      3.8D-18
 zero mode #    6: maximum error      5.5D-18
 final overlap matrix eigenvalues:
     1.00000000     1.00000000     1.00000000     1.00000000     1.00000000
     1.00000000
 two-body interaction energies:
      -7.4892956319233095      -7.4689790893071946      -7.4496977681804388
      -7.4039194994824538      -7.3871308896580405      -7.3668521272231633
    6 highest weight zero modes found
storage used:    34802304

output Wed Jun 21 19:14:22 2006 2

all:   60792  56506  52696  48770  45304  41758  38630  35450  32675  29846  27396  24917
nul:       0      0      0      0      0      0      0      0      0      0      0      0
=========================================================================================
Ltot=   72.0   73.0   74.0   75.0   76.0   77.0   78.0   79.0   80.0   81.0   82.0   83.0
all:   22776  20617  18772  16906  15329  13742  12403  11059   9945   8816   7891   6961
nul:       0      0      0      0      0      0      0      0      0      0      0      0
=========================================================================================
Ltot=   84.0   85.0   86.0   87.0   88.0   89.0   90.0   91.0   92.0   93.0   94.0   95.0
all:    6201   5436   4824   4200   3710   3212   2821   2424   2123   1809   1575   1333
nul:       0      0      0      0      0      0      0      0      0      0      0      0
=========================================================================================
Ltot=   96.0   97.0   98.0   99.0  100.0  101.0  102.0  103.0  104.0  105.0  106.0  107.0
all:    1155    968    837    693    596    490    418    339    290    231    196    155
nul:       0      0      0      0      0      0      0      0      0      0      0      0
=========================================================================================
Ltot=  108.0  109.0  110.0  111.0  112.0  113.0  114.0  115.0  116.0  117.0  118.0  119.0
all:     131    101     86     64     55     41     34     24     21     14     12      8
nul:       0      0      0      0      0      0      0      0      0      0      0      0
=========================================================================================
Ltot=  120.0  121.0  122.0  123.0  124.0  125.0  126.0  127.0  128.0  129.0  130.0  131.0
all:       7      4      4      2      2      1      1      0      1      0      0      0
nul:       0      0      0      0      0      0      0      0      0      0      0      0
=========================================================================================
Ltot=  132.0  133.0  134.0  135.0  136.0
all:       0      0      0      0      0
nul:       0      0      0      0      0
=========================================================================================
PURGE: nstate =   8884686 LZ=     2.0 root =   11001100110011001001001100110011
nstate before purge=   8884686 after purge =   5800384
 BINARY: registered binary code total size =     2:
    1 components with sizes:     2
PURGE: nstate =   8854669 LZ=     3.0 root =   11001100110011001010001100110011
L+ has   52060614 +  21167057 non-zero elements
   6170810 constraints,   52060614 nonzero matrix elements, and    370432 linear dependencies
 second representation of L+:   16 distinct values  48727308 elements 
 subspace     2 L =      2.0 zeromode problem has:
 nvec=   6170810 nbasis =   5800384 nzero=    6  ndefect =    370432
 LZERO v0.1:  workspace =       35000000
 no useable data in "zeromode.001" using random data
 type 2 termination
    1    1 niter= 4660 error in/out=    0.103D+01    0.180D-01
 reached error limit of  0.600D-15
    2    1 niter= 3187 error in/out=    0.180D-01    0.386D-05
 reached error limit of  0.600D-15
    3    1 niter= 2060 error in/out=    0.386D-05    0.610D-15
 reached error limit of  0.600D-15
 starting polishing phase
    4    1 niter=   76 error in/out=    0.612D-15    0.477D-15
 no more significant error improvement

Lz = 2: find 6 zero modes of a sparse  5,800,384 x 6,170,810 
overdetermined matrix (52x106 non-zero matrix elements)

601,080,390 lowest LL states
825 MR null-mode states, of which
57  are highest weight



• Laughlin 1/3 state is represented by 
“occupation number” pattern

• Moore-Read “Pfaffian” 2/4 (= 1/2) state has 
the occupation pattern

1001001001001001001001 . . .

110011001100110011001100 . . .

any 3 consecutive “orbitals”
contain exactly 1 particle

any 4 consecutive “orbitals”
contain exactly 2 particles

(These are not simple Slater determinant states, but (related to) 
Jack polynomials with specific negative integer Jack parameters)



• The 3 Laughlin 1/3 configurations

• The 6 Moore-Read 2/4 configurations

. . . 100100100100100 . . .
. . . 010010010010010 . . .
. . . 001001001001001 . . .

. . . 110011001100110011 . . .

. . . 011001100110011001 . . .
. . . 001100110011001100 . . .
. . . 100110011001100110 . . .

. . . 010101010101010101 . . .

. . . 101010101010101010 . . .

repeat period 3

repeat period 4

repeat period 2

These counts give the “topological degeneracies” of 
these states when constructed on a 2-torus



• operator that creates a circular“filled 
Landau level droplet” of k particles, 
centered at position R: η†k(R)

〈r1, . . . rk|η†k(R)|vac〉 ∝
∏

i<j

(zi − zj)
∏

i

ψR(ri)

Gaussian coherent state centered at R

|ψR(r)|2 ∝ exp−|r −R|2/2"2 “magnetic length” 



• (Abelian) Laughlin 1/3 state with elementary 
charge  -e/3 quasi holes at positions Rh

i

ΨL({ri}; {rh
j }) ∝

∏

ij

(zi − zh
j )

∏

i<j

(zi − zj)3
∏

i

ψ0(ri)

η2(R)|ΨL({rh
j })〉 = 0, all R

η1(Rh
i )|ΨL({rh

j })〉 = 0

can’t destroy a m=1 pair anywhere

can’t destroy a single electron at  positions of holes

• This state is completely defined (up to a phase 
factor) by the positions of the quasi holes



• (Non-Abelian) Moore-Read 2/4 = 1/2 state with 
elementary charge  -e/4 quasi holes at positions 

Rh
i

can’t destroy a 3-particle droplet anywhere

can’t destroy a 2-particle droplet at  positions of 
non-abelian quasiholes

• This state is NOT fully defined by the positions 
of the quasi holes

• residual degeneracy 2Nqh/2−1, Nqh even

η3(R)|ΨMR({rh
j })〉 = 0, all R

η2(Rh
i )|ΨMR({rh

j })〉 = 0



• The only local operations possible are

• (i) add/remove an electron orbital (h/e flux)

• (ii) add/remove an electron

• isolated non-Abelian Moore-Read -e/4 (h/2e)
quasiholes cannot be created by local 
operations, only PAIRS of quasiholes can be 
locally created, then split apart.



• Topological quantum computing dream:  
encode and process quantum information 
in the residual degeneracy that is left after 
the positions of the non-Abelian quasiholes 
have been specified

• When the quasiholes are widely separated, 
local measurements dont distinguish the 
states, so they are immune to decoherence 
by local enviromental perturbations

What distinguishes the “internal states” 
physically?



single-particle 
density

m=1 two-
particle density

Tetrahedral arrangement of 
4 MR  h/2e vortices, 
(14 electrons, 28 orbitals)

Sphere is mapped to unit 
disk.

the qubit doublet  is 
split by the Coulomb 
interaction, both states are 
shown.THE SPLITTING 
AND LOCAL DIFFERENCE 
BETWEEN THE TWO 
STATES IS EXPECTED TO 
DISAPPEAR  AS THE 
SYSTEM SIZE INCREASES.

One qubit is left after  
positions of vortices are fixed.



• states are distinguished by small oscillations of charge 
density (like interference fringes) around a common 
background density pattern

• the amplitude of these oscillations becomes 
exponentially small as the separation becomes large on 
the magnetic  length scale.

• a pair of quasiholes has TWO states, distinguished by 
local fermion number parity (even/odd):

01100110011001100110011 . . .
10011001100110011001100 . . .**

* *two  quasiholes at 
north pole:

11001100110011001100110 . . .uniform state:

unpaired 
electron:



• The oscillations around close pairs or 
quasiholes clearly distinguish even and odd 
fermion number states of the pair

10011001100110011001100 . . .

01100110011001100110011 . . .



 two Moore-Read vortices (fused)
7
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FIG. 3: The spectrum of H(w1, w2)!H0 as function of distance
between the probes, which are moved along the meridians
(θ, φ = 0) and (θ, φ = π), with θ increasing from 0 to π/2.
The left /right column corresponds to odd/even number of
electrons. Starting from the top, the left panels correspond
to N/Nφ=9/16, 11/20, 13/24, 15/28 and the right panels to
N/Nφ=10/18, 12/22, 14/26, 16/30.

number of electrons). In this cases, the total many-body
Hilbert spaces have staggering dimensions of 77,558,760
and 300,540,195, respectively. In this extremely large
Hilbert spaces, we find a number of zero modes of H(2,2)

equal to 36 in the first case and 45 in the second case
(in total agreement with Eq. (22)). If we fix w1 and w2

and diagonalize H(w1, w2)!H0 , we find one zero mode
for both cases, with a precision better than 10−12. Of

FIG. 4: The particle density for fused probes as function
of distance from the fusing point. Left/right panel refers
to odd/even number of electrons. On the left, the different
curves correspond to N/Nφ=9/16, 11/20, 13/24, 15/28 and,
on the right, the different curves correspond to N/Nφ=10/18,
12/22, 14/26, 16/30.

course, finding these zero modes would have been impos-
sible without taking full advantage of the translational
symmetry at the first step.

To visualize a state, we compute the corresponding
particle density and pair amplitude as functions of posi-
tion on the sphere. The latest is given by the expectation
value of η(2,2)(w)†η(2,2)(w). A plot of these quantities
for the zero modes discussed above, is shown in Fig. 2.
The positions of the probes were chosen as (θ=π/2,φ=0)
and (θ=π/2,φ = π), so that we have maximum possi-
ble separation between the trapped anyons. One can see
that, because the anyons are far apart, there is no visi-
ble difference between even and odd cases (or S=0 and
S=1). This is precisely what one should see in a topolog-
ical degeneracy. As we shall see, things look completely
different when we bring the anyons close to each other.
Other things to remark about Fig. 2 are the fact that the
density is finite while the pair amplitude is exactly zero
at the probe locations and the fact that the two anyons
appear to be totally separated.

Let us take a few lines here and explain our plots.
Quantities that depend on the position on the sphere will
be shown as surface plots, with the quantity of interest
on the z axis. The cartesian coordinates x and y describe
points of the sphere. If θ and φ are the usual angles on
the sphere, then the relation between (θ,φ) and (x, y) is
given by θ=

√
x2 + y2 and φ=arctan(y/x).

Next, we take a look at the spectrum of H(w1, w2)!H0

as function of probe separation, d(θ) =
√

Nφ sin θ
2 , grad-

ually increasing the number of electrons from 9 to 16.
For each size, the probes were moved along the merid-
ians (θ,φ=0) and (θ,φ=π), with θ increasing from 0 to
π/2. The strength of the probe potential was fixed at
λ=1. The results are shown in Fig. 3, where each panel
displays a number of bands (equal to
dimH0), each of them representing the flow of one eigen-
value with the distance d. There is one and only one
eigenvalue that remains strictly zero (within a numerical
error that is less than 10−12!). The energy gap separat-
ing the zero mode from the rest of the spectrum goes to

100110011001100110011 . . . 011001100110011001100 . . .

unpaired electron at North pole



Monodromy
• Hold one vortex at the north pole,  and 

move the other in infinitesimal loops to 
map out the Berry curvature, in the two 
cases of even and odd fermion number.

• Integrate the berry curvature inside a 
closed path to get the monodromy. 

12

2n− 1 quasi-holes, the 2n−1 zero modes have the general
form:50

Ψi(w) = Ai(w)Ψ̃i(w), (46)

where Ψ̃i(w) is an analytic function of w and Ai(w) is a
normalization factor that is not analytic of w. We have:

Tr{F̂ (w)} = 2Im
∑

i

〈∂1Ψi(w), [1− Pw]∂2Ψi(w)〉. (47)

Due to the presence of 1 − Pw, the derivatives act only
on the tilde part of the wave-functions and, consequently,
we can pull out the normalization constants like below:

TrF̂ (w) = 2
∑
i
|Ai(w)|2

×Im〈∂1Ψ̃i(w), [1− Pw]∂2Ψ̃i(w)〉.
(48)

Next we use the fact that Ψ̃i are analytic functions:

TrF̂ (w) = 2
∑
i
|Ai(w)|2

×Im{〈∂wΨ̃i(w), [1− Pw]∂wΨ̃i(w)〉(∂1w)∗∂2w}.
(49)

The factor containing the expectation value is real, which
allows us to easily compute the imaginary part, resulting
in:

TrF̂ (w) = 2
∑
i
|Ai(w)|2

×〈∂wΨ̃i(w), [1− Pw]∂wΨ̃i(w)〉.
(50)

If one repeats exactly the same arguments for the quan-
tum metric tensor given in Eq. 43, he will arrive to the
conclusion:

gq
µν(w) = 2

∑
i
|Ai(w)|2

×〈∂wΨ̃i(w), [1− Pw]∂wΨ̃i(w)〉δµν .
(51)

Since w1 and w2 coincide with the geodesic coordinates of
the sphere at x (i.e. the coordinates in which the metric
tensor is the identity matrix at x), the proof of Eq. 45
is completed. The result, of course, extends also to the
parafermion Hall sequences,34 and to geometries other
than the sphere.

VII. ONE FLUX ADDED.

In this case we have 2 quasi-holes and the zero modes
space is 1-dimensional, which means we are in an Abelian
situation. We will keep one probe fixed and move the
other along different braiding paths. For the Abelian
case, the monodromy of any path Γ is determined by
the Berry phase φΓ, WΓ=eiφΓ . The Berry phase can be
computed from the curvature:

φΓ =
∫

SΓ

dF, (52)
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FIG. 10: (Color online.) The Berry curvature obtained
by moving one anyon while keeping the other fixed. Left-
upper panel shows the results for odd number of electrons:
N/Nφ=9/16, 11/20, 13/24, 15/28 and the right-upper panel
shows the results for even number of electrons: N/Nφ=10/18,
12/22, 14/26, 16/30. The lower-left and lower-right panels
show the sum and the difference between the odd and even
results, respectively. For example, we added and subtracted
the result for N/Nφ=10/18 and N/Nφ=9/16, and then the
results for N/Nφ=12/22 and N/Nφ=11/20, etc..

where SΓ is the surface enclosed by Γ. It is then very
useful to map the curvature first.

We compute the coefficient F of the curvature form
from:

F (x) = lim
SΓ→0

WΓ − 1
iSΓ

, (53)

where Γ is a small path around x. We obtain the limit
by considering paths of decreasing radiuses. The value
of F computed this way coincides with the coefficient of
the curvature corresponding to the coordinates (w1, w2)
introduced at the beginning of the previous section.

The upper panels in Fig. 10 plot F (w) as a function
of the distance to the fixed probe for odd (left panel)
and even (right panel) number of electrons. The curves
in Fig. 10 go asymptotically towards a constant value,
which is precisely equal to the quasi-hole charge e∗=e/4
(when working on the sphere, there is a small correction
to this value, correction that goes to zero as the size is
increased). The most remarkable thing about these plots
is that the curvatures for odd/even number of electrons
have different thermodynamic limits, as one can clearly
see when looking at the difference, plotted in the lower-
right panel of Fig. 10.

From the Berry curvature we compute the Berry
phases accumulated as we move one probe along different
paths of the form θ=ct., while keeping the other probe
fixed at the North Pole. Fig. 11 shows the Berry phase
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FIG. 11: (Color online.) The Berry phase accumulated by
an anyon when moved along a path θ=const, with the other
anyon fixed at the North pole. The Berry phase is plotted
against the area enclosed by the paths. Each curve is marked
with the corresponding N/Nφ numbers. The insets show the
electron density for the fused anyons, computed in Fig. 4,
which one can use, experimentally, to distinguish between
even/odd cases.

as function of the area enclosed by the path. We use this
figure to draw several important conclusions. First, we
point out that the Berry phase plotted in this figure in-
cludes also the trivial Aharonov-Bohm phase due to the
magnetic flux: φAB = e∗φB . Thus it was expected that
the total Berry phase, as a function of the enclosed area,
to go asymptotically to a linear curve. The slope of this
asymptotic curve is equal to the charge of the quasi-holes.
The second and most important fact is that the graphs
for even/odd number of electrons are shifted by π, as it
was previously predicted.46,48

We conclude this subsection with the observation that
the coefficient F depends on how we compute the area
enclosed by Γ in Eq. 53, more precisely on what metric
tensor is used. The plots shown so far used the standard
metric of the sphere. We have repeated the calculations
using the quantum metric tensor Eq. (43), in which case
we have to re-scale the coefficient:

F q(w) = F (w)/
√

det gq
µν(w). (54)

According to the our previous analytic prediction (see
Eq. 45), F q(w) should be identically 1. We numerically
checked this prediction in the following way. The quan-
tity that is readily available in the numerical calcualtions
is the quantum distance. We can compute the determi-
nant of the quantum metric tensor by considering a circle
of radius ρ (in the standard metric of the sphere) centered

12/23

14/27

10/19

15/29

13/25

11/21

FIG. 12: Plots of f0(x) for different system sizes (each panel
is marked with the corresponding N/Nφ). For each size, we
show f0(x) calculated with the standard metric tensor (left)
and with the quantum metric tensor (right).

at w and calculate the quantum distance between w and
the points of this circle. If dq

M and dq
m denote the max-

imum, respectively minimum quantum distance to the
points of the circle, then

det gq
µν(w) = lim

ρ→0

(dq
mdq

M )2

ρ4
. (55)

The computation of the determinant is done in the simul-
taneously with the calculation of the curvature. The nu-
merical calculation confirms that F q(w)=1 for all points
of the sphere (excepting the North pole).

A. Two fluxes added.

In this case we have 4 quasi-holes and the zero modes
space is 2-dimensional. We will keep 3 quasi-holes fixed
and move the forth one along different braiding paths.

For the Non-Abelian case, there is no simple Stokes
theorem,59,60 which means the monodromy can not be
simply computed from the curvature. Even so, map-
ping the curvature provides a clear picture of the non-
comutative and topological properties of the states.

The parameter space remains 2-dimensional and
dF=F̂ dw1∧dw2, where F̂ is a 2×2 matrix now. We
compute F̂ (x) using the algorithm presented above (see
Eq. 53). Using the Pauli’s matrices, σi, i=1, 2, 3, F̂ (w)
can be uniquely decomposed as:

F̂ (x) = f0(x) + f(x)σ, (56)

where f0(w)= 1
2TrF̂ (w) and f is 3-component vector. We

will refer to f0 as the Abelian and to fσ as the Non-
Abelian part of the curvature.

for a  path with
a large radius, the
relative Berry phase 
factor between
the even and odd 
fermion number 
cases approaches -1
(as predicted!)



4 well-separated vortices (a qubit)

Note that the two state have slightly different
“interference ripple” patterns in the electron density

that will be exponentially small as the distance between
the vortices increases, but which is a residual local physical 

difference between the states.



single-particle 
density

m=1 two-
particle density

Tetrahedral arrangement of 
4 MR  h/2e vortices, 
(14 electrons, 28 orbitals)

Sphere is mapped to unit 
disk.

the qubit doublet  is 
split by the Coulomb 
interaction, both states are 
shown.THE SPLITTING 
AND LOCAL DIFFERENCE 
BETWEEN THE TWO 
STATES IS EXPECTED TO 
DISAPPEAR  AS THE 
SYSTEM SIZE INCREASES.

One qubit is left after  
positions of vortices are fixed.



four probes,  
tetrahedral 
pattern: 
candidate  qubit 
pair, 14/28  

These are  made with “STM + coulomb repulsion”: 
very close to the “exact” states!

zero-point
motion of

vortex positions



non-Abelian Berry curvature , for 
increasing size (10-15 electrons)

10/20
11/22

12/24 13/26

as size increases, the (magnititude) of the non-abelian curvature field is 
seen to be concentrated near the quasiparticle cores, consistent with 
braiding.  (For widely separated vortices, there should be vanishing non-
abelian curvature in the regions in between the vortices, so the 
monodromy becomes purely topological)



Entanglement spectra 
and “dominance”

• Schmidt decomposition of  
Fock space into N and S 
hemispheres.

• Classify states by Lz and N 
in northern hemisphere, 
relative to dominant 
configuration. Lz always 
decreases relative to this 
(squeezing)



Represent bipartite Schmidt 
decomposition  like an excitation 

spectrum (with Hui Li)

• like CFT of edge states.

• A lot more information than 
single number (entropy)

• many zero eigenvalues 

|Ψ〉 =
∑

α

e−βα/2|ΨNα〉 ⊗ |ΨSα〉

2

(a) N = 10, Nφ = 27

(b) N = 12, Nφ = 33

FIG. 1: Entanglement spectrum for the 1/3-filling Laughlin
states, for N = 10, m = 3, Nφ = 27 and N = 12, m = 3, Nφ =
33. Only sectors of NA = NB = N/2 are shown.

have a single element and their singular values are de-
generate.

These features are indeed expected from the special
form of ψN . Arbitrarily divide the subscripts in Eq. (2),
i.e., l in ul and vl, into two subsets, say I and J . Let |I|
be the number of elements in I and similarly |J |, note
that |I| + |J | = N . Re-write Eq. (2) as

ψN = ψI · ψJ ·
∏

i,j
(uivj − ujvi)

m (3)

where ψI =
∏

i<i′(uivi′ − ui′vi)m, ψJ =
∏

j<j′ (ujvj′ −
uj′vj)m, and i, i′ ∈ I, j, j′ ∈ J . The first two terms in
the product in Eq. (3), ψI and ψJ , describe two Laugh-
lin droplets that consist of particles in subsets I and J ,
respectively. Expanding the third term, we get

ψN = ψ(0)
I ψ(0)

J + m · ψ(1)
I ψ(1)

J + · · · (4)

where

ψ(0)
I = ψI ·

∏

i
um|J|

i (5)

ψ(0)
J = ψJ ·

∏

j
vm|I|

j (6)

ψ(1)
I = ψI ·

∏

i
um|J|

i ·
∑

i

vi

ui
(7)

ψ(1)
J = ψJ ·

∏

j
vm|I|

j ·
∑

j

uj

vj
(8)

and · · · represents other terms that are not of our con-
cern here. Equation (4) indicates that the sectors at the
greatest two Lz

A’s each contains only one singular value.
In order to explain the degeneracy of the two singular
values, we need to show that the norms of the above four
states are related by

‖ψ(0)
I ‖‖ψ(0)

J ‖ = m‖ψ(1)
I ‖‖ψ(1)

J ‖ (9)

Note that the total angular momentum operators of

subset I are Lz
I = 1

2

∑

I∈I

(

ui
∂

∂ui
− vi

∂
∂vi

)

, L+
I =

∑

i∈Iui
∂

∂vi
, L+

I =
∑

i∈Ivi
∂

∂ui
. It is easy to show that

Lz
Iψ

(0)
I = m

2 |I||J |ψ
(0)
I , L+

I ψ(0)
I = 0, L−

I ψ(0)
I = m|J |ψ(1)

I ,

which means that ψ(0)
I and ψ(1)

I belong to the same ir-

reducible representation of which "L2
I = S(S + 1) where

S = m
2 |I||J |. Thus using L−

I |lz,S〉 = [S(S + 1) − lz(lz −

1)]1/2|lz − 1,S〉 and lz = S, we get

‖ψ(1)
I ‖2 =

1

m2|J |2
‖L−

I ψ(0)
i ‖2 =

|I|

m|J |
‖ψ(0)

I ‖2 (10)

Similarly we have

‖ψ(1)
J ‖2 =

|J |

m|I|
‖ψ(0)

J ‖2 (11)

Therefore Eq. (9) is obtained.
The alert readers may argue that partitioning sub-

scripts as done in Eq. (3) is not equivalent to partition-
ing of Landau-level orbitals. However, the first two terms
in Eq. (4) are in fact equivalent to what we would get
from partitioning Landau-level orbitals, even though the
rest [those represented by · · · in Eq. (4)] are generally

TABLE I: The multiplicity M(∆L) versus ∆L for electronic
Laughlin states of different sizes, for ∆L ! N/2. N is the
numbers of electrons, 1/m is the filling fraction.

∆L 0 1 2 3 4 5 6

N = 6, m = 5 1 1 2 3

N = 8, m = 5 1 1 2 3 5

N = 8, m = 3 1 1 2 3 5

N = 10, m = 3 1 1 2 3 5 7

N = 12, m = 3 1 1 2 3 5 7 11

e−βα = 0



Look at difference between Laughlin state,entanglement spectrum 
and state that interpolates to Coulomb ground state.

3

(a) x = 1 (b) x = 1/3 (c) x = 1/10

FIG. 2: Entanglement spectrum for the ground state, for a system of N = 10 electrons in the lowest Landau level on a sphere
enclosing Nφ = 27 flux quanta, of the Hamiltonian in Eq. (12) for various values of x.

not. By setting |I| = |J | = N/2, we see that the first two
terms in Eq. (4) indeed correspond to the Lz

A = max(Lz
A)

and Lz
A = max(Lz

A) − 1 sectors in Fig. 1. This not only
explains why these two sectors each has only one singu-
lar value and why the two singular values are degenerate,
but also explicitly gives max(Lz

A) = mN2/8.

The most interesting feature of the spectra shown in
Fig. 1 may be the counting structure. We define a new
symbol ∆L := max(Lz

A) − Lz
A to label the sectors, and

M(∆L) be the multiplicity of the sector, i.e., the number
of singular values in the sector. In Table I we list a few
values of M(∆L) for several small ∆L, for systems of
different sizes. Interestingly, M(∆L) listed there seems
to be the number of integer partitions of ∆L. We spec-
ulate that in the thermodynamic limit where N → ∞,
M(∆L)is exactly the number of integer partitions for any
∆L. Our numerical study also indicates that this is a

FIG. 3: The gap in various sectors of the entanglement spec-
trum of the ground state of the Hamiltonian in Eq. (12) for
a system of N = 10 electrons in the lowest Landau level on
a sphere enclosing Nφ = 27 flux quanta. At x ! 1, the gap
appears to be linear in − log x.

unique feature for all states in the Laughlin sequence,
independent of filling fraction.

This can be understood when we further review the
form of Laughlin wave-functions in Eq. (3). Even
though it is not explicitly about partitioning Landau-
level orbitals, it reveals the origin of the entanglement in
Laughlin states, correlated quasi-hole excitations in the
two blocks. Thus the multiplicity M(∆L) is simply the
number of linearly-independent quasi-hole excitations in
block A that have total Lz angular momentum equal to
∆L, which, in a sufficiently large system, is exactly the
number of ways that the integer ∆L can be partitioned.
For any finite system, as soon as ∆L > N/2, some of
the partitions of ∆L may contain parts that are greater
than N/2. Since no quasi-hole can carry angular momen-
tum larger than N/2, multiplicity of such a ∆L will be
smaller than the number of partitions. Indeed, this is in
full consistency with our numerical analysis.

Now we turn to the entanglement spectrum of true
ground states of Coulomb interaction. The system we
will be interested in has N = 10 electrons in the lowest
Landau level on the sphere that contains Nφ = 28 flux
quanta. This system has the same size of one that sup-
ports an N = 10, m = 3 Laughlin state. We will study
the numerically obtained ground state of the following
Hamiltonian [9]

H = xHc + (1 − x)V1 (12)

where x ∈ [0, 1] is the tuning parameter, Hc is the Hamil-
tonian of Coulomb interaction in the lowest Landau level,
while V1 is the pseudo-potential that gives unit energy
whenever the relative angular momentum of a pair of
electrons is 1. For a few typical values of x, the spectra
are presented in Fig. 2.

For the ground state of the unmodified Coulomb inter-
action in the lowest Landau level (x = 1), the spectrum
shows a clear gap near max(Lz

A) which in our case here is
75
2 , which gradually closes as Lz

A decreases to ∼ 30. The
gap becomes clearer for all Lz

A ! max(Lz
A) at x = 1/3,

3
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FIG. 2: Entanglement spectrum for the ground state, for a system of N = 10 electrons in the lowest Landau level on a sphere
enclosing Nφ = 27 flux quanta, of the Hamiltonian in Eq. (12) for various values of x.

not. By setting |I| = |J | = N/2, we see that the first two
terms in Eq. (4) indeed correspond to the Lz

A = max(Lz
A)

and Lz
A = max(Lz

A) − 1 sectors in Fig. 1. This not only
explains why these two sectors each has only one singu-
lar value and why the two singular values are degenerate,
but also explicitly gives max(Lz

A) = mN2/8.

The most interesting feature of the spectra shown in
Fig. 1 may be the counting structure. We define a new
symbol ∆L := max(Lz

A) − Lz
A to label the sectors, and

M(∆L) be the multiplicity of the sector, i.e., the number
of singular values in the sector. In Table I we list a few
values of M(∆L) for several small ∆L, for systems of
different sizes. Interestingly, M(∆L) listed there seems
to be the number of integer partitions of ∆L. We spec-
ulate that in the thermodynamic limit where N → ∞,
M(∆L)is exactly the number of integer partitions for any
∆L. Our numerical study also indicates that this is a

FIG. 3: The gap in various sectors of the entanglement spec-
trum of the ground state of the Hamiltonian in Eq. (12) for
a system of N = 10 electrons in the lowest Landau level on
a sphere enclosing Nφ = 27 flux quanta. At x ! 1, the gap
appears to be linear in − log x.

unique feature for all states in the Laughlin sequence,
independent of filling fraction.

This can be understood when we further review the
form of Laughlin wave-functions in Eq. (3). Even
though it is not explicitly about partitioning Landau-
level orbitals, it reveals the origin of the entanglement in
Laughlin states, correlated quasi-hole excitations in the
two blocks. Thus the multiplicity M(∆L) is simply the
number of linearly-independent quasi-hole excitations in
block A that have total Lz angular momentum equal to
∆L, which, in a sufficiently large system, is exactly the
number of ways that the integer ∆L can be partitioned.
For any finite system, as soon as ∆L > N/2, some of
the partitions of ∆L may contain parts that are greater
than N/2. Since no quasi-hole can carry angular momen-
tum larger than N/2, multiplicity of such a ∆L will be
smaller than the number of partitions. Indeed, this is in
full consistency with our numerical analysis.

Now we turn to the entanglement spectrum of true
ground states of Coulomb interaction. The system we
will be interested in has N = 10 electrons in the lowest
Landau level on the sphere that contains Nφ = 28 flux
quanta. This system has the same size of one that sup-
ports an N = 10, m = 3 Laughlin state. We will study
the numerically obtained ground state of the following
Hamiltonian [9]

H = xHc + (1 − x)V1 (12)

where x ∈ [0, 1] is the tuning parameter, Hc is the Hamil-
tonian of Coulomb interaction in the lowest Landau level,
while V1 is the pseudo-potential that gives unit energy
whenever the relative angular momentum of a pair of
electrons is 1. For a few typical values of x, the spectra
are presented in Fig. 2.

For the ground state of the unmodified Coulomb inter-
action in the lowest Landau level (x = 1), the spectrum
shows a clear gap near max(Lz

A) which in our case here is
75
2 , which gradually closes as Lz

A decreases to ∼ 30. The
gap becomes clearer for all Lz

A ! max(Lz
A) at x = 1/3,

x=0 is pure
Laughlin

Can we identify topological order in “physical as opposed to model 
wavefunctions from low-energy entanglement spectra?



Entanglement spectra near “phase transitoin” for ν = 1/2 FQHE states

Hui Li
(Dated: June 4, 2008)

The interaction potential is Coulomb in LL=1 (spherical geometry) plus δV1. System size is Ne = 14, Norb = 26.

I. VARYING δV1

The overlap with model Moore-Read state.
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Spectra for varying δV1.

Latest results showing change in entangle spectrum of 
half-filled second-landau-level coulomb interaction with

additional V(1) pseudopotential (with Hui Li)

V(1) modifies the m=1 
pair energy, and  drives a 
transition between a 
Moore-Read-like state
and a gapless state
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low-lying entanglement spectrum
matches that of pure MR state


