Symmetry, Topology and Electronic Phases of Matter

E

\[k = \Lambda_a \]

\[k = \Lambda_b \]

E

\[k = \Lambda_a \]

\[k = \Lambda_b \]
Organizing Principles for Understanding Matter

Symmetry

- What operations leave a system invariant?
- Distinguish phases of matter by symmetries

Topology

- What stays the same when a system is deformed?
- Distinguish topological phases of matter
Symmetry, Topology and Electronic Phases of Matter

I. Introduction
- Topological band theory

II. Topological Insulators in 2 and 3 Dimension
- Time reversal symmetry & Boundary States
- Experiments: Transport, Photoemission

III. Topological Superconductivity
- Majorana fermion bound states
- A platform for topological quantum computing?

IV. The Frontier
- Many more examples of topological band phenomena
- Beyond band theory: states combining topology and strong interactions

Thanks to:
Gene Mele, Liang Fu, Jeffrey Teo, Fan Zhang, Steve Young, Saad Zaheer, Ben Wieder, Youngkuk Kim, Andrew Rappe (U. Penn.)
The Insulating State

Characterized by energy gap: absence of low energy electronic excitations

Covalent Insulator
- e.g. intrinsic semiconductor

Atomic Insulator
- e.g. solid Argon

The vacuum

Covalent Insulator
- Characterized by a large energy gap

Atomic Insulator
- Characterized by a small energy gap

Energy Gap:
- $\Delta \sim 10$ eV
- $\Delta = 2 m_e c^2 \sim 10^6$ eV
Insulators are topologically equivalent if they can be continuously deformed into one another without closing the energy gap.

Are there “topological phases” that are not adiabatically connected to the trivial insulator (i.e., the vacuum)?

- **genus = 0**
- **genus = 1**
The Integer Quantum Hall State

2D Cyclotron Motion, Landau Levels

Energy gap, but NOT an insulator

Quantized Hall conductivity:

\[J_y = \sigma_{xy} E_x \]

\[\sigma_{xy} = n \frac{e^2}{h} \]

Integer accurate to \(10^{-9}\)

Energy gap:

\[E_{gap} = \hbar \omega_c \]
Topological Band Theory

Thouless et al., 1982: The distinction between a conventional insulator and the quantum Hall state is a topological property of the band structure.

- When there is an energy gap, the occupied electronic states (valence bands) vary smoothly as a function of momentum k and can be classified by an integer topological invariant.

- Integer Chern (or TKNN) number:

$$ n = \frac{1}{2\pi i} \int_{BZ} d^2k \cdot \langle \nabla_k u(k) | \times | \nabla_k u(k) \rangle \in \mathbb{Z} $$

$u(k) = $ Bloch wavefunction

- n characterizes the quantized Hall conductivity:

 Insulator: $n = 0$; IQHE state: $\sigma_{xy} = n e^2/h$

- Similar to a winding number:

 $n=0$ $n=1$ $n=2$
Edge States

Classical: Skipping Orbits

Quantum: 1D Chiral Dirac Fermions \(E = \nu p \)

Chiral edge states are topologically protected
- Electric current flows without dissipation
- Precisely quantized conductance
- Insensitive to disorder

Bulk-Boundary Correspondence: (related to index theorems in mathematics)
- Bulk Invariant = Boundary Invariant
- Chern number \(n \) = \# chiral edge modes
Time Reversal Symmetry

Under the reversal of the direction of time:

- Magnetic Field: \(B \rightarrow -B \)
- Chiral Edge state:
 \begin{align*}
 \text{Right mover} & \rightarrow \text{Left mover} \\
 S & \rightarrow -S
 \end{align*}
- Spin Angular Momentum:
 \begin{align*}
 \phi_\uparrow(r) & \rightarrow \phi_\downarrow(r)^* \\
 \phi_\downarrow(r) & \rightarrow -\phi_\uparrow(r)^*
 \end{align*}
- Kramers’ Theorem: \(T^2 = -1 \):
 For spin \(\frac{1}{2} \) particles with T symmetry, all states are at least two fold degenerate.

The integer quantum Hall state requires broken time reversal symmetry. Are there topological phases with unbroken time reversal symmetry?
Quantum Spin Hall Insulator

Simplest version: 2 copies of quantum Hall effect

"Helical" edge states protected by time reversal

HgCdTe quantum wells

- Theory: Bernevig, Hughes and Zhang, Science ’06
 Predict inversion of conductance and valence band for \(d > d_c = 6.3 \text{ nm} \Rightarrow \text{QSHI} \)

- Experiment: Konig et al. Science ’07
 Measure electrical conductance due to edge states

Kane and Mele ‘05
Bernevig and Zhang ‘06
3D Topological Insulator

3D insulators are characterized by four \mathbb{Z}_2 topological invariants

\[\text{Energy gap: } \Delta \sim 0.3 \text{ eV} : \text{A room temperature topological insulator} \]

\[\text{Simple surface state structure: A textbook Dirac cone, with a spin texture} \]

Bi$_2$Se$_3$

ARPES Experiment: Y. Xia et al., '09
Band Theory: H. Zhang et al., '09

Moore & Balents ’06; Roy ’06; Fu & Kane ’06

Angle resolved photoemission spectroscopy (Xia et al ’09)
Surface of a topological insulator: A route to new gapped topological states

I. Break time reversal symmetry:

“Half integer” Quantum Hall Effect

1. Orbital QHE:

\[
\sigma_{xy} = \frac{e^2}{h} \left(n + \frac{1}{2} \right)
\]

Landau levels

2. Magnetic insulator on surface:

Chiral Dirac fermion at domain wall

3. Quantum anomalous Hall effect recently observed in thin film magnetic topological insulators

C-Z Chang, … Q-K Xue, et al. Science ‘13

II. Break gauge symmetry:

Superconducting Proximity Effect

A route to topological superconductivity using ordinary superconductors
Topological Superconductivity

Key ingredients of BCS model of superconductivity:

- Similar to insulator: energy gap for quasiparticle excitations
- Intrinsic Particle – Hole symmetry

1D Topological Superconductor

- Two topological classes
- Protected zero energy end state

Particle = Anti particle

- Defines a **Majorana Fermion** bound state
- “Half” an ordinary particle

\[
\gamma_0^\dagger = \gamma_0
\]
In search of Majorana

1937: Majorana publishes his modification of the Dirac equation that allows spin $\frac{1}{2}$ particles to be their own antiparticle.

1938: Majorana mysteriously disappears at sea

2013: Italian police concludes Majorana was alive in Venezuela until the 1950’s.

Observation of a Majorana fermion is among the great challenges of physics today

Particle physics:
Fundamental particles (eg neutrino) might be Majorana fermions

Condensed matter physics:
Kitaev ’03: Zero energy Majorana bound states provide a new method for storing and manipulating quantum information

- 2 Majorana bound states store 1 qubit of quantum information nonlocally
- Immune from local sources of decoherence
- “Braiding” can perform quantum operations
Quest for Majorana in Condensed Matter

Superconducting Proximity Effect: Use ordinary superconductors and topological materials to engineer topological superconductivity

Superconductor - Topological Insulator Devices
Theory: Fu, Kane '07, '08

Expt: Hart, ... Yacoby '14 (HgTe);
Priibag, ... Kouwenhoven '14 (InAs/GaSb)

"Two slit" interference pattern in a S-TI-S Josephson Junction
Demonstrates edge superconductivity

Superconductor - Semiconductor Nanowire Devices
Theory:
Lutchyn, Sau, Das Sarma '10
Oreg, Refael, von Oppen '10

Expt: Mourik, ... Kouwenhoven '12

Ferromagnetic Atomic Chains on Superconductors

Nadj-Perg, ..., Yazdani '14 (Fe on Pb)
A Vast Frontier I: Many more examples of topological Band Phenomena

Example: Symmetry protected topological semimetals

1. Graphene
 2D Dirac points protected by
 inversion symmetry,
 time reversal symmetry,
 spin rotation symmetry (no spin orbit)

2. 3D Dirac Semimetal
 3D Dirac points with strong spin-orbit
 protected by
 time reversal symmetry
 space group symmetries
 Observed in many real materials

Current status:

- Strong interaction between theory, computation and experiment.
- Many real materials have been shown to exhibit topological band phenomena.
A Vast Frontier II: states that combine band topology and strong interactions

Strongly interacting systems can exhibit intrinsic topological order, which is distinct from band topology in insulators.

- Excitations with fractional quantum numbers
- Long ranged quantum entanglement in ground state
- Ground state degeneracy depends on topology of space

Example: Laughlin state of fractional quantum Hall effect

Can we engineer topologically ordered states in materials or devices?

- Fractional Chern Insulators?
- Fractional Topological Insulators?
- Fractional Majorana Fermions (aka Z_n parafermions)?
- … and beyond

Current status:

- There has been much recent progress in models for such states.
- More work needs to be done to achieve them in the real world.
Conclusion

• **Symmetry and Topology** provide a powerful framework for the discovery of novel electronic phases with protected low energy states.
 - topological insulators in 2D and 3D
 - topological superconductivity
 - topological semimetals

• **Experimental Challenges**
 - Perfect known topological materials and discover new ones
 - Superconducting, Magnetic structures
 - Create heterostructure devices

• **Theoretical Challenges**
 - Materials physics: predicting and optimizing materials for topological phases
 - Many body physics: What phases are possible and how can you make them?