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1. General introduction

Historically mathematics and physics were closely related subjects.
All the famous mathematicians in the past were familiar with theo-
retical physics and made important contributions to it: in the first
place Isaac Newton, his successors Joseph-Louis Lagrange, Pierre-
Simon Laplace and William Rowan Hamilton. In the 19th and 20th
century David Hilbert, John von Neumann, Henri Poincaré, Her-
mann Weyl, Elie Cartan, etc.. Since roughly the end of the second
World War this is no longer the case. Reasons? Probably the in-
fluence of the Bourbaki movement, which revolutionized the formu-
lation of mathematics, made it much more formal, ‘abstract’, more
difficult to understand for physicists. And, of course, increasing
specialization.

When I studied physics, mathematics students had to follow a
few thorough courses in physics, in quantum mechanics, for exam-
ple. Nowadays, certainly in the Netherlands, someone who studies
mathematics won’t in general learn anything about physics. As
a consequence the present generation of mathematicians know lit-
tle about modern physics, in particular very little about the two
great theories that revolutionized 20th century physics, relativity
and quantum theory.

Those who are nevertheless interested in these topics, find most
physics books to be unaccessible, because of the loose, intuitive and
sloppy mathematical language used.

Recently books have appeared that try to remedy this. Three to
the best of my knowledge:

• Valter Moretti
Spectral Theory and Quantum Mechanics
Springer 2013,

• Brian Hall
Quantum Mechanics for Mathematicians
Springer 2014,

and finally my own book, published in December last year:

• Peter Bongaarts
Quantum Theory. A Mathematical Approach
Springer 2014.
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See

http://www.springer.com/physics/

quantumphysics/book/978-3-319-09560-8

Not surprisingly these three books have a certain amount of overlap.
Each has its strong points; they are complementary. This talk is
based on my own book.

To understand the underlying mathematical structure of the great
physical theories, in particular relativity and quantum theory, one
needs to know such topics as functional analysis, Lie groups and al-
gebra, differential geometry. That makes it easy for mathematicians
to acquire a basic understanding of these theories. Physicist are not
familiar with this kind of modern mathematics; physics textbooks do
not use it. This makes getting a grip on the basic structure of quan-
tum mechanics a long and relatively difficult procedure for physics
students. Learning applications to specific explicit situations and
applications is, of course, a different matter.

2. A bit of history

In the impressive building of classical physics, as it existed at the
end of the 19th century, with as its main pillars Newton’s classical
mechanics and Maxwell’s theory of electromagnetism, two small but
embarrassing problems remained. One was the aether; this problem
was solved by Einstein’s special theory of relativity. The other was
the problem of atomic spectra. Atoms can emit radiation. For ex-
ample, NaCl gives in a flame yellow light, in fact with two slightly
different sharp frequencies. This is a general phenomenon. All
atoms have such systems of frequencies; all are different and char-
acteristic for the type of atom. Most of these frequencies had been
precisely measured by spectroscopists in the second half of the 19th
century. The problem was that these spectra, and in particular their
discreteness could not be understood by, and were in fact in total
contradiction with classical physics.

The first step in the solution of this problem was taken by Max
Planck. He found in 1900 that he could solve the longstanding prob-
lem of the distribution of frequencies in radiation in a cavity with
non absorbing walls (‘black-body radiation’) by the ad hoc assump-
tion that energy between the wall of the cavity and the radiation
was exchanged in discrete energy packets.
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• M. Planck
Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum
Verhandl. der Deutschen Physikal. Gesellschaft 17. 237-245 (1900)

Accessible at

http://www.christoph.mettenheim.de/

planck-energieverteilung.pdf

• M. Planck
On the Theory of the Energy Distribution Law of the Normal Spec-
trum. English translation:

http://web.ihep.su/dbserv/compas/src/planck00b/eng.pdf

Planck was abhorred by this idea of discreteness, even though he
realized that it worked very well. He was too much a classical physi-
cist.

Remark : There is a very nice book written by a historian of science
about a German professor of theoretical physics, working towards
the end of World War I, who worries about a lot and in particular
about the new physics that he sees emerging, and which he does not
like. This professor is fictitious, but every thing he does and says
and all other things in the book reflect real persons and events, as
is shown in the extensive notes at the end of the book.

• Russell McCormach
Night Thoughts of a Classical Physicist
Harvard University Press

The next step was taken by Niels Bohr, while working as a post-
doctoral assistant with Ernest Rutherford in England. Rutherford
had experimentally shown that an atom could be seen as a small
planetary system: a nucleus encircled by electrons. To explain the
discrete spectrum of the hydrogen atom, Bohr made in 1913 a bril-
liant ad hoc postulate, namely, that the electrons could only move in
discrete orbits, occasionally jumping between different orbits, emit-
ting or absorbing radiation in this process. Bohr was inspired by
the work of Planck, but apart from that he had little theoretical
background or justification for this idea, but he was able to derive
from his assumption precise values for spectral lines.

• N. Bohr
Of the Constitution of Atoms and Molecules
Philos. Mag. 26, 1-24 (1913).
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Accessible at:

http://web.ihep.su/dbserv/compas/src/bohr13/eng.pdf

Finally a complete theory explaining this was developed, within the
span of a few years, basically between 1925 and 1927. It was the
work of a few theoreticians, in the first place Werner Heisenberg,
Max Born, Pasual Jordan, Erwin Schrödinger, then Wolfgang Pauli,
Paul Dirac and many others. This is quantum mechanics as we know
and use today. Its mathematical basis is functional analysis, in par-
ticular the theory of operators in Hilbert space, the understanding
of which is due to John von Neumann, and is as such completely
satisfactory.

At first it looked as if there were two different types of quantum
mechanics. There was at first Heisenberg’s matrix mechanics, in
which the observables were noncommuting quantities, in fact infi-
nite matrices. (A deep idea, on which I shall comment later). Then
Schrödinger’s wave mechanics. It was soon demonstrated that this
was a matter of two different representations of the same mathe-
matical theory.

Basic papers :

• W. Heisenberg
Über quantentheoretische Umdeutung kinematischer und mechanis-
cher Beziehungen
Z. Phys. 333, 879-893 (1925)

Accessible at

http://www.chemie.unibas.ch/~steinhauser/

documents/Heisenberg_1925_33_879-893.pdf

An English translation can be found in the book “Sources of Quan-
tum Mechanics”by B.L. van der Waerden. The complete book can
be found at

https://ia601208.us.archive.org/14/items/

SourcesOfQuantumMechanics/

VanDerWaerden-SourcesOfQuantumMechanics.pdf

or

https://archive.org/details/SourcesOfQuantumMechanics
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• M. Born, W. Heisenberg, P. Jordan
Zur Quantenmechanik
Z. Phys. 35, 557-615 (1926)
English translation. On Quantum Mechanics II.

The English translation is available at:

http://fisica.ciens.ucv.ve/~svincenz/SQM333.pdf

• E. Schrödinger
Quantization as a Problem of Proper Values. I,II
Collected papers on wave mechanics. AMS Chelsea 1982
English translation of the 1928 German edition.

For the contribution of von Neumann see his classical book:

• John von Neumann
Mathematische Grundlagen der Quantenmechanik
Springer 1996 (Original edition Springer 1932)
Mathematical Foundations of Quantum Mechanics
English translation. Princeton 1996.

The physics of atoms, their properties and structure, cannot be de-
scribed with classical theories. Atoms consists of a (relatively) heavy
nucleus, surrounded by a system of electrons. Quantum mechanics
made atomic physics an important and fruitful new area of physics.

The next step was the study of the nucleus itself: nuclear Physics,
which began in earnest just before the beginning of World War II. It
lead to the construction of nuclear reactors and finally to the atomic
bomb. For this the quantum mechanics of Heisenberg, Schrödinger,
c.s. was no longer sufficient. A new version of quantum theory had
to be developed: quantum field theory. The pioneer in this was Paul
Dirac; it was later made into a broad physical theory by Richard
Feynman, Julian Schwinger, Freeman Dyson, and independently, by
Sin-Itiro Tomonaga, whose papers were initially written in Japanese.
It was also very effective. By using quantum field theories theoreti-
cians were able to predict certain experimental results with extreme
precision, in some cases up to fifteen decimals.

However, in a mathematical sense, the theory was – and still is
- very unsatisfactory. During calculations one finds at many places
divergent integrals. These can be removed by a system of ad-hoc
prescriptions, renormalization. Fifty years of hard work by mathe-
maticians and mathematical physicists have been of no avail.
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Two basic papers

• P.A.M. Dirac
The Quantum Theory of the Emission and Absorption of Radiation
Proc. Roy. Soc. A114, 243-265 (1927).

Accessible at

http://hermes.ffn.ub.es/luisnavarro/

nuevo_maletin/Dirac_QED_1927.pdf

or

http://wwwhome.lorentz.leidenuniv.nl/~boyarsky/

media/Proc.R.Soc.Lond.-1927-Dirac-243-65.pdf

• Julian Schwinger
The Theory of Quantized Fields. I. II. III. IV
Phys. Rev. 82, 914- (1951), 91, 713- (1953), 91, 728- (1953), 92,
1283- (1953)

Understanding the structure of nuclei led to the next step: elemen-
tary particle physics or high energy physics. This means breaking
up the nucleus and investigate the properties of the new ‘subatomic’
particles that appear in collisions in high energy particle accelera-
tors.

The role of quantum field theory, with its effectiveness but also
with its mathematical problems, remains the same. Quantum field
theory is the unique theoretical framework for elementary particle
physics.

The final result so far is the so-called Standard Model, a phe-
nomenological scheme in which all the known particles have a def-
inite place, except the graviton, the supposed particle associated
with some kind of quantum field for general relativity.

At the end of my talk I shall make a few remarks on the Standard
Model, its problems, together with remarks concerning the general
outlook for elementary particles and quantum theory.

This will do for the history of quantum theory.

3. Quantum theory. Introduction

In most physics textbooks the treatment of quantum theory follows
a scheme which is in essence the scheme of the historical develop-
ment of the theory, even though usually very few actual historical
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details are given. The history of quantum theory is in itself quite
interesting. It shows how new theories come into being, with half
understood heuristic ideas, with leaps and bounds, dead ends and
false roads, which may be followed for some time.

Although I find the history of quantum theory – and the history of
physics generally – of great interest, and although I believe that some
knowledge should be a part of the general education of physicists,
I shall nevertheless follow here in my exposition of quantum theory
the opposite direction. This is in particular the best way to teach
the subject to mathematicians.

This means that I shall formulate a number of precise mathemat-
ical ‘axioms’, together with rules for the physical interpretations of
these axioms. There will be three levels of axiomatization.

1. That for elementary quantum mechanics.

2. That for quantum statistical mechanics.

3. That for quantum field theory.

For this third case I shall give the axioms for a special approach:
algebraic quantum field theory. This is a very general axiomatiza-
tion, in terms of abstract algebras, which has been used to attack
the mathematical problems of quantum field theory.

4. Level 1. The axioms for elementary quantum mechanics

I shall state the axioms, as given – in a manner of speaking – by
revelation from above. After that I shall illustrate them by explicit
example of quantum systems. There will be five of these axioms.

Axiom I : The state of a quantum system is represented by a unit
vector ψ in a Hilbert space H.

A Hilbert space is a complex inner product space. The inner product
of two vectors ψ and φ is denoted as (ψ, φ). It is conjugate linear in
the first variable (physics convention). If the dimension is infinite,
the usual case in quantum theory, it is separable, i.e. has a countable
orthonormal basis, and is complete, i.e. each Cauchy sequence has
a limit.

Axiom II : An observable a of the system is represented by a self-
adjoint operator A in H.
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Intermezzo. Operators in Hilbert space

In finite dimensional linear algebra a hermitian operator can be rep-
resented by a hermitian matrix. In an infinite dimensional Hilbert
space the notion of operator and more specifically that of hermi-
tian operator is more complicated. In general operators in infinite
dimensional Hilbert space may not be defined on all vectors of the
Hilbert space, but only on a dense linear subspace D. Such opera-
tors are called unbounded operators. An operator A in H, defined
on a linear subspace D, is bounded iff there is a positive constant C
such that

||Aψ|| ≤ C||ψ||, ∀ψ ∈ D.
The infinum of all possible such numbers C is called the norm of A;
it is denoted as ||A||. If an operator is bounded it can be uniquely
extended to all of H. Most of the operators in quantum theory are
in fact unbounded.

The infinite dimensional analogue of a hermitian operator is a
hermitian symmetric, or, for short, symmetric operator. An operator
A with domain of definition D is symmetric if and only if

(Aψ, φ) = (ψ,Aψ), ∀ψ, φ ∈ D.

For quantum theory symmetric operators are not good enough; a
special property is needed. They should be selfadjoint. This prop-
erty is fairly subtle; I shall not give the definition. Note that the
general theory of unbounded selfadjoint operator is due to John von
Neumann; it is one of the great achievements of 20th century math-
ematics. The most important property of selfadjoint operators, very
relevant for selfadjoint operators is the spectral theorem. Further on
more on this.

Example : Our standard example of a quantum system is that
of a nonrelativistic particle of mass m, in ordinary 3-dimensional
space, with space coordinates x = (x1, x2, x3), moving in a central
potential V (x). The Hilbert spaceH is the space of square integrable
functions ψ(x). The inner product of two such ‘wave functions’ ψ
and φ is

(ψ, φ) =

∫ +∞

−∞
ψ(x)φ(x)) dx.

There are two sets of three observables from which all other observ-
ables can be constructed. One has the three components of position,
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represented by the operators Qj, for j = 1, 2, 3, acting in H as mul-
tiplication operators,

(Qjψ)(x1, x2, x3) = xjψ(x1, x2, x3),

and three (linear) momentum operators Pj, for j = 1, 2, 3, acting as
differential operators,

(Pjψ)(x1, x2, x3) =
~
i

∂

∂xj
ψ(x1, x2, x3).

Why these particular operators have been chosen for these particular
observables is a story in which I cannot enter here, except stating
that, using general principles, it is, essentially, the only possibility.

Commutation rules between operators that represent observables,
expressions of the form [A,B] = AB−BA, are of great importance
in quantum theory. For the above example the basic commutation
rules are the relations between the operators for position and mo-
mentum.

[Pj, Pk] = [Qj, Qk] = 0, [Pj, Qk] =
~
i
δj,k, j, k = 1, 2, 3,

the canonical commutation relations.

All other observables of this system can be constructed from these
Pj and Qk. The most important one is the energy:

H =
P 2

2m
+ V (x).

This operator is usually called the Hamiltonian because it generates
the time development of the system, as will be discussed further on.

This definition illustrates the general manner in which quantum ob-
servables are obtained from suggestions from the classical descrip-
tions of the system. This is however in general not without problems,
because the road from a polynomial in classical pj and qk to a cor-
responding polynomial in quantum Pj and Qk is not always unique.
Obviously pq = qp but PQ 6= QP . This means that quantization
of a classical system is not a unique procedure. If there are differ-
ent possibilities experiments should decide which is the correct one.
This problem does not occur in the simple case of a particle in a
potential.
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Two points are worth noting here:

1. The appearance of Planck’s constant in a formula means that
one is dealing with quantum theory. There is a relation between
quantum and classical systems. By taking the limit ~→ 0 (classical
limit) one obtains the corresponding classical system. Note however
that ~ is a constant of nature. It has a dimension (of an action),
so it numerical value depends on the system of units that one is
using. Taking the classical limit means therefore taking a limit of
the system of units that is being used.

2. The noncommuting of operators that represent observables is very
typical for and important in quantum theory. It means that the
corresponding observables cannot be measured simultaneously with
arbitrary precision . I shall come back to this later.

Axiom III : Physical interpretation of Axioms I and II.

Axioms I and II, as I have presented them, do not tell us anything
about the physical meaning of quantum theory. To explain this
meaning we need the spectral theorem for selfadjoint operators.

The spectral theorem for selfadjoint operators

In finite dimensional linear algebra a hermitian matrix can be diag-
onalized. On the diagonal there will be real numbers α1, α2, α3, . . .,
the eigenvalues of the linear operator A associated with the matrix,
belonging to an orthonormal system of eigenvectors ψ1, ψ2, ψ3, . . ..

In an infinite dimensional Hilbert space one has something in the
same spirit, but much more sophisticated. In the first place there
may be continuous spectrum, which is not associated with eigenvec-
tors. In stead one has in general a so-called spectral resolution for a
given A, a system {Eα}α∈R of nondecreasing, mutually commuting
projection operators such that, in operator language,

lim
α→−∞

Eα = 0, lim
α→+∞

Eα = 1.

and

A =

∫ +∞

−∞
α dEα,

or in terms of vector-valued integrals

Aψ =

∫ +∞

−∞
α d(Eαψ), ∀ψ ∈ D,
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or in terms of numerical integrals

(ψ1, Aψ2) =

∫ +∞

−∞
d(ψ1, Eαψ2), ∀Ψ1, ψ2 ∈ D.

This is the general form of the spectral theorem. (The various inte-
grals are Riemann-Stieltjes integrals). It is important to note that
this theorem does not hold for symmetric operators; one definitely
does need selfadjointness .

In some cases one still has (discrete) eigenvalues and eigenvectors.
For the sake of simplicity I shall not discuss the general case, but
only the discrete case. Most physics textbooks do this, in addition
they write integrals instead of infinite sums in the case of continuous
spectrum.

The probabilistic nature of quantum theory

The most important and striking feature of quantum theory is that
most statements are probabilistic .

In classical physics, such as classical statistical mechanics, probabil-
ity means that one has insufficient knowledge of the underlying state
of the system. In quantum theory there is no underlying situation;
the probabilistic nature is fundamental. This is a philosophical prob-
lem; in the submicroscopic world there is no strict causality. This
has been discussed since the beginning of quantum mechanics, with
Einstein and Bohr as its principal antagonists. Vivid discussions
continue. There are different theoretical positions, with interest-
ing experiments being done, the results of which may decide which
theory is correct.

Axiom III (continued)

Let me now state Axiom III in a physically more explicit manner. I
do it only for the discrete case.

Consider an observable a represented by the selfadjoint operator A,
with real eigenvalues α1 < α2 < . . .. There is an orthonormal system
of eigenvectors {ψj}j=1,2,... of A. Consider a state represented by a
unit vector ψ.

1. The probability of finding in a measurement the value α for the
observable a in the interval [λ1, λ2] is

∑
|(ψ,Ejψ)|2, for j running
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through the values for which λ1 ≤ αj ≤ λ2, and with Ej the orthog-
onal projection operator on ψj.

This statement is only true when the spectrum of A is nondegen-
erate, i.e. when there is – up to a phase factor – only one unit
eigenvector for each eigenvalue. The eigenspaces on which the Ej
project are then one-dimensional. For the degenerate case one de-
notes the eigenvectors as as ψsj , with j = 1, 2, . . . and s = 1, 2, . . ..
The eigenprojections Ej are then higher dimensional. It represents
a simple generalization in which I shall not go.

2. The average value (expectation or expectation value) for such a
measurement is

aψ = (ψ,Aψ).

Note that is not hard to derive 2 from 1.

From these formulas it is clear that a quantum system can only be
found with values for an observable in the spectrum of the corre-
sponding operator, a very nonclassical fact.

Commensurable and noncommensurable observables

Operators that commute represent commensurable observables. For
a system of such observables a state determines a simultaneous or
joint probability distribution, just as one has has in classical physics.
(This is a slight extension of Axiom III).

Examples of such systems are the three components of position or
of momenta. Noncommuting operators represent incommensurable
observables. An example is the pair (Pj, Qj). For a system of such
incommensurable operators there is no joint probability distribution.
They cannot be measured at the same time with arbitrary precision.

There is, for example, an inequality which restricts the precision
of simultaneous measurement of position of momenta. It is one of
the basic formula of quantum mechanics:

∆p∆x ≥ ~
2
,

the Heisenberg uncertainty relation. It means that if a particle has
a sharply determined position its momentum is ill defined, and vice
versa. A typical quantum consequence is that particles have no well-
defined trajectories. An even more typical consequence is that in a
system of two identical particles one cannot distinguish the separate
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particles. It does not make sense to speak of particle 1 and particle
2. This leads to Pauli’s Exclusion Principle, one of the corner stones
of atomic physics. I shall not discuss this.

Example (Harmonic oscillator) :

I consider a simplified version of my earlier example, now in 1-
dimensional space: the 1-dimensional harmonic oscillator.

The classical harmonic oscillator in its simplest form is a point par-
ticle, moving along a straight line and attracted to the origin by a
force proportional with its distance to the origin. Its total energy
consists of potential and kinetic energy, is constant, and equal to

E =
p2

2m
+

1

2
mω2x2,

with ω its frequency. This energy can have all possible nonnegative
values. The precise motion of such a classical oscillator can be easily
derived (first year classical mechanics).

The quantum harmonic oscillator. Its Hilbert space is L2(R); the
two basic operators are P (momentum) and Q (position); the Hamil-
tonian (energy) operator is, not surprisingly,

H =
P 2

2m
+

1

2
mω2Q2.

The eigenfunction and eigenvalues of H can be found (standard sec-
ond year quantum mechanics course). The eigenvalues are definitely
nonclassical, i.e.

En = n ~ω +
1

2
~ω,

which means that only a series of discrete values of the energy are
possible, and moreover that the oscillator has a nonzero lowest en-
ergy. (Zero point energy).

Example (Hydrogen atom). The obvious 3-dimensional example
is the hydrogen atom, in which an electron moves around the nucleus
attracted by a Coulomb potential. Classically this just Keppler’s
model of planetary motion: a planet moving in the gravitational
field of the sun. The main feature of this model are the closed
orbits (ellipses) of a planet. All such orbits are possible; they form
a continuum. (Calculating this is second year’s classical mechanics).
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The quantized version is the hydrogen atom with the electron mov-
ing in the electrostatic Coulomb field of the nucleus. The energy
operator is obtained again by substituting in the the classical ex-
pression the variables pj, qk by the operators Pj, Qk, which gives

H =
P 2

2m
+ V (x),

with the Coulomb potential

V (x) = − 1

4πε0

e2

r
.

It should be noted that, together with the harmonic oscillator, this
is the only quantum model which can be solved explicitly, i.e. of
which the energy eigenvalues and eigenfunctions can be found in
closed form. (Second year quantum mechanics).

There are discrete eigenvalues

En = − me4

8ε20h
2n2

n = 1, 2, . . . ,

with h = 2π~. These give in fact Bohr’s electron orbits, calculated
by him in a rather heuristic manner. Apart from the case n =
1, they are all degenerate, i.e. with more than one eigenfunction
for each eigenvalue. Corresponding with these are eigenfunctions,
expressions in terms of well-known classical orthogonal polynomials.
They describe the bound states of the atom. The one with the
lowest energy is called the ground state. The other states converge
to E = 0. Above this value there is a continuum spectrum, going to
+∞; this corresponds with the scattering states in which the electron
is no longer bound to the nucleus. (All this a bit more advanced than
the theory of the harmonic oscillator, but still second year quantum
mechanics material).

Basic papers

• E. Schrödinger
Quantisation as a Problem of Proper Values (Part I)
English translation of the German original
Ann. Phys. 79 (1926).

Accessible at:
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http://einstein.drexel.edu/~bob/

Quantum_Papers/Schr_1.pdf

• E. Schrödinger
Quantisierung als Eigenwertproblem (Zweite Mitteilung)
Ann. Phys. 79, 489-525 (1926).

Accessible at:

http://dieumsnh.qfb.umich.mx/

archivoshistoricosmq/

ModernaHist/Schrodinger1926c.pdf

These two papers are highlights in 20th century theoretical physics.

The next two axioms are less surprising. Quantum mechanics is
described in terms of Hilbert space and its operators. The natural
automorphisms of Hilbert space are unitary operators.

Axiom IV : Time development. This is described by a one-parameter
group {U(t)}t∈R of unitary operators in H (Stone’s theorem), i.e.
with

U(t2 + t1) = U(t2)U(t1), ∀t1, t2 ∈ R.
This group is continuous in t, i.e. the vectors U(t)ψ are continuous
in t, in the strong topology, determined by the norm of the vectors.
As a consequence U(t) can be written as an exponential

U(t) = e−
i
~ tH ,

with the generator H the generator of the group, the Hamiltonian,
usually the energy operator.

Example (continued) : For a 3-dimensional particle in a poten-
tial the time development can be described by a partial differential
equation

∂ψ(x, t)

∂t
= − i

~

(
− ~2

2m
∆ + V (x)

)
ψ(x, t),

with ∆ the Laplace operator. This the Schrödinger equation.

Axiom V : Symmetries in quantum mechanics are described by sys-
tems {U(g)}g∈G of unitary operators in H, with G usually a ‘con-
tinuous’ or Lie group. The U(g) should commute with all the time
development operators U(t) .
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Lie groups have systems of generators which form a Lie algebra. A
representative A of such a Lie algebra in H is constant of the mo-
tion, meaning that for every state ψ the results of measuring the
observable associated with A is independent of time. For symmetry
under spatial translation one has the three components of momen-
tum as constants of the motion, for rotational symmetry the three
components of angular momentum.

5. Level 2. The axioms for quantum statistical mechanics

When studying a system of a very large number of particles, e.g. a
container filled with a gas, it is impossible to describe the motion of
the separate particles. It also would be of no interest. Interesting
are global properties such as pressure or temperature. Such prop-
erties can be studied by calculating averages, by using probability
theory. For this one uses ensembles, the physical term for proba-
bility distribution on the phase space of a system, i.e. the space of
position and momentum variables of all the particles, a space of very
high dimensions, of course, but that is in itself no problem.

For the quantum description of such a system on needs a more gen-
eral system of axioms. In this case this starts with the observables,
not with the states.

Axiom I′ : The observables of the system are the selfadjoint opera-
tors in an ambient Hilbert space H.

Axiom II′ : The states are density operators in H, i.e. selfadjoint
trace class operators with trace 1.

A trace class operator D in a Hilbert space is a bounded operator
such that for an orthonormal basis {ψj}j=1,2,... one has

∞∑
j=1,2,...

((D∗D)1/2ψj, ψj) <∞.

If this is true for one orthonormal basis it is true for all. The expres-
sion

∑∞
j=1,2,...(Dψj, ψj) is then called the trace of D. A trace class

operator has always discrete spectrum; all the eigenvalues not equal
to 0 have finite multiplicity. If one has a fixed orthonormal basis in
mind the matrix representing D is called the density matrix.

Axiom III ′ : Physical interpretation of Axioms I ′ and II ′.

18



For the statistical description of system of many particles, both
classical and quantum mechanically, such system has to be enclosed
in a finite box. This implies that in the quantum case one has purely
discrete spectrum.

For the sake of simplicity I restrict myself to the situation in
which the state is stationary, i.e. with D constant in time, which
is, in fact, usually the case in quantum en classical statistical me-
chanics. This means that D and the Hamiltonian H have a com-
mon orthonormal basis {ψj}j of eigenvectors. Note that the energy
eigenvalues are very narrowly spaced. We also assume – again for
simplicity’s sake – that there is no degeneracy.

With all these assumptions we have

1. The probability of finding in a measurement the value α for the
observable a in the interval [λ1, λ2] is |(ψj, djEjψj)|2, for j running
through the values for which λ1 ≤ αj ≤ λ2, with Ej the orthog-
onal projection operator on ψj, and with the dj the (nonnegative)
eigenvalues of D .

The numbers dj are weights connected with the ψj, contributing to
the total probability of the state.

2. The average value (expectation or expectation value) for such a
measurement is Trace (DA).

The next two axioms are much the same as in Level 1, except that
the groups go unitary operators now act on the density operator.

Axiom IV ′ : The time development. The one-parameter group
{U(t)}t∈R of unitary operators acts on the density operator D as

D(t) = U(t)D(0)U(t)−1 = e−
i
~ tHD(0)e

i
~ tH , ∀t ∈ R.

Most of the density operators in quantum statistical mechanics, like
the corresponding classical ensembles, are time-invariant.

Axiom V ′ : Symmetries. Groups {U(g)}g∈G of unitary operators
act on D as

D 7→ U(g)DU(g)−1, ∀g ∈ G,
with G a group, usually a Lie group. The U(g) should again commute
with the time development operators .
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Note that if the density operator is just a one-dimensional projection
operator on a unit vector ψ, we are back in the situation of Level 1,
with ψ as state vector. This shows that Level 2 is a generalization
of Level 1, to which it may return in special cases.

6. Level 3. The axioms for quantum field theory

One may consider four successive approaches to quantum field the-
ory:

1. Quantum field theory according to Feynman, Dyson c.s.: Phys-
ically very successful. Elementary particle physics is based on it.
Mathematically not understood. No axiom system.

2. Wightman axiomatic quantum field theory. Has a system of
axioms.

3. Constructive quantum field theory of Jaffe and Glimm. No ax-
ioms.

4. Algebraic quantum field theory. Has a system of axioms.

Approaches 2-4 try or have tried to find a mathematical basis for 1.
I shall discuss all four briefly and state the axioms for 4.

- 1. The main reason quantum field theory is mathematically much
more difficult than quantum mechanics is that it describes – or tries
to describe – systems with an infinite number of degrees of freedom.
Dirac was one the first to discuss the quantization of fields (1927).

• P.A.M Dirac
The Quantum Theory of the Emission and Absorption of Radiation
Proc. Roy. Soc. A 114, 243-265 (1927)

Accessible at:

http://hermes.ffn.ub.es/luisnavarro/

nuevo_maletin/Dirac_QED_1927.pdf

or

http://rspa.royalsocietypublishing.org/

content/114/767/243.full.pdf

It was soon discovered that this new theory was plagued with serious
difficulties. At most points in the calculations so-called ‘infinities’,
i.e. divergent integrals, appeared. A practical solution was found
in the late 1940s by several theoreticians, Richard Feynman, Julian
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Schwinger, Freeman Dyson, and independently in Japan, Sin-Itiro
Tomonaga. It was called renomalization, a set of prescriptions in
which the infinities are bundled together and then removed. The
method is very technical, without any mathematical basis, but it
results in numbers that agree in an astonishing degree with exper-
imental results. So in a practical sense quantum field theory is a
great success; it remains to this day the main theoretical basis for
elementary particle physics. But as a mathematically rigorous the-
ory is just does not exist.

Here are two critical quotes:

Dirac, in 1975: “Most physicists are very satisfied with the situa-
tion. They say: ‘Quantum electrodynamics is a good theory and
we do not have to worry about it any more.’ I must say that I
am very dissatisfied with the situation, because this so-called ‘good
theory’ does involve neglecting infinities which appear in its equa-
tions, neglecting them in an arbitrary way. This is just not sensible
mathematics. Sensible mathematics involves neglecting a quantity
when it is small – not neglecting it just because it is infinitely great
and you do not want it!”

Feynman, one of the creators of renormalized quantum field theory,
in 1985: “The shell game that we play ... is technically called ‘renor-
malization’. But no matter how clever the word, it is still what I
would call a dippy process! Having to resort to such hocus-pocus
has prevented us from proving that the theory of quantum elec-
trodynamics is mathematically self-consistent. It’s surprising that
the theory still hasn’t been proved self-consistent one way or the
other by now; I suspect that renormalization is not mathematically
legitimate.”

One of the fundamental papers:

• F.J. Dyson
Divergence of perturbation theory in quantum electrodynamics
Phys. Rev. 85, 631632 (1952).

Introductory texts:

• B. Delamotte
A hint of renormalization
Am. J. Phys. 72, 170-184 (2004)
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Accessible at

http://arxiv.org/pdf/hep-th/0212049v3.pdf

and

• John Baez
Renormalization Made Easy
Web page, December 2009
http://math.ucr.edu/home/baez/renormalization.html

- 2. Starting in the late 1960s several mathematical physicists
started a search for a rigorous basis for quantum field theory. The
first was Arthur Wightman. He proposed to characterize a quantum
field theory by its vacuum expectation values of the product of field
operators. A beautiful scheme in which a few interesting general
theorems could be proved, but so far it has been in impossible to fit
a nontrivial theory in this scheme.

• Arthur Wightman
Quantum field theory in terms of vacuum expectation values
Phys. Rev. 101, 860 (1956).

A good book on this approach

• R.F. Streater, A.S. Wightman
PCT, Spin and Statistics and All That
Princeton University Press 2000.

- 3. The next step was constructive quantum field theory, mainly
by James Glimm and Arthur Jaffe, an approach in which one tried
to construct interacting quantum field models by working in lower
spacetime dimension and using position and momentum cut-offs,
which at the end of the process might be removed by taking lim-
its. In this spirit one obtained a few well-defined models in 2 or 3
dimensional spacetime, but not much more.

An overview of this work by the two main protagonists:

• J. Glimm, A. Jaffe
Quantum Physics. A Functional Integral Point of View
Springer 1987.

For another overview:

• Stephen J. Summers
A Perspective on Constructive Quantum Field Theory. 2012
http://arxiv.org/pdf/1203.3991v1.pdf
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- 4. Finally a fourth step: algebraic quantum field theory. This
approach takes the algebra of observables as its starting point. A
Hilbert spaceH appears later. I give here one of the possible slightly
different set of axioms.

Axioms for algebraic quantum theory

Axiom I′′ : There is an abstract ∗-algebra A of pre-observables.

A is complex, associative, with unit element, and – typical for the
quantum situation – noncommutative. The ∗-operation or conjuga-
tion is a conjugate-linear map, A → A, a 7→ a∗, with the property
(ab)∗ = b∗a∗. A selfadjoint element is of course characterized by
a∗ = a. Note that the selfadjoint elements do not form a subalgebra
of A.

Axiom II′′ : The state of the system is described by a positive,
normalized, linear functional ω on A .

Positivity of ω means ω(a∗a) ≥ 0, for all a in A; ω normalized means
ω(1A) = 1.

Axiom III′′ : The interpretation needs the so-called GNS construc-
tion, depending on ω, which leads back to the interpretation accord-
ing to Levels 1 and 2 .

Intermezzo : The GNS construction.

The GNS construction (Gelfand-Naimark-Segal) is an example of
something that mathematicians like: to take an object, let it act on
itself and then as a result get a new object with interesting proper-
ties.

Start from the algebra A and an arbitrary state ω. Take a copy of
A, use it as a vector space and call it H0. Elements of this space, in
fact elements of A will, in their new role, be denoted as a. Define a
sesquilinear for on H0

(a, b) = ω(a∗b), ∀a, b ∈ A.

The form (·, ·) is not yet a true inner product, because there are
still null-vectors. They can be squeezed out by a simple quotient
procedure. Let me call the resulting quotient space H1. The vectors
in H1 are equivalence classes in H0, and can be denoted as [a].
H1 is not yet a Hilbert space, because it is not complete. It can
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be completed by the standard completion prescription in terms of
Cauchy sequences. The result is the ω-dependent Hilbert space Hω,
with a representation πω of the algebra A by bounded operators
πω(a) in the representation space Hω, according to

πω(a)[b] = [ab], ∀a, b ∈ A.

One needs of course to check that this is indeed well-defined, in term
of equivalence classes.

There is a special unit vector in Hω, namely [1A]; it is usually
denoted as Ω0. It is cyclic, meaning that the set of all vectors
πω(a)Ω0 is dense in Hω. This state is in most systems the ground
state.

With this we are back in the situation of Level 1, and in an adapted
version of Level 2.

Axiom IV′′ : The time development of the system is – not surpris-
ingly – given by a one-parameter group {φ(t)}t∈R of ∗-automorphisms
of the algebra A.

We consider states together with time development automorphisms
that leave these states invariant, i.e. with

ω(φ(t)a) = ω(a), ∀a ∈ A, t ∈ R.

As a consequence of this the automorphisms φ(t) are unitarily imple-
mentable in Hω, which means there are unitary operators {U(t)}t∈R
such that

πω(φ(t)a) = U(t)πω(a)U(t)−1, ∀a ∈ A, t ∈ R.

Another consequence is that the ground state Ω0 = 1A is time-
invariant.

At this point the algebra A has not yet a topology. However, if
the group of automorphisms is in an appropriate sense continuous in
t, then the group of unitary operators {U(t)}t∈R has a a selfadjoint
generator, the Hamiltonian for this particular situation.

Axiom V′′ : Symmetries are described by ∗-automorphisms, usually
groups {U(g)}g∈G of such automorphisms.

For a state ω invariant under the {φ(g)}g∈G such symmetries can be
implemented by unitary operators {U(g)}g∈G, meaning that

πω(φ(g)a) = U(g)πω(a)U(g)−1, ∀a ∈ A, g ∈ G.
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The idea of an algebraic formulation of quantum mechanics goes
back to Irving Segal (1947 paper):

• I.E. Segal
Postulates for general quantum mechanics
Ann. of Math. 48, 930-948 (1947).

For a long time this paper remained fairly unknown. Some twenty
years later Rudolf Haag and Daniel Kastler took up its ideas and
applied it to quantum field theory, then, as now, mathematically
speaking, a very problematic topic. This resulted in a fundamental
paper (1964):

• Rudolf Haag, Daniel Kastler
An algebraic approach to quantum field theory
J. Math. Phys. 5, 848-861 (1964).

Important further work in this direction was done by Huzihiro Araki.
He published (in 1999) an overview of general algebraic quantum
field theory in his book:

• Huzihiro Araki
Mathematical Theory of Quantum Fields
Oxford University Press 1999.

A good recent review is

• Hans Halvorson, Michael Mueger
Algebraic Quantum Field Theory
http://arxiv.org/pdf/math-ph/0602036v1.pdf

The main application of algebraic quantum theory is quantum field
theory. This is a relativistic theory. This is the first time that I men-
tion relativity theory in this lecture. Therefore a brief intermezzo.

Intermezzo :Relativity . Relativity theory is a new description of
spacetime due to Albert Einstein (paper in 1905).

According to special relativity spacetime is not just the combina-
tion of 3-dimensional space and 1-dimensional time; it is a truly
4-dimensional linear space. It is called Minkowski space and has
a indefinite bilinear form, the Minkowski metric. The symmetry
group of special relativity is the (in homogenous) Lorentz group, a
pseudo-orthogonal matrix group which leaves the Minkowski inner
product invariant.
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Note that relativity here means special relativity. There is also a
generalization, general relativity (1912 paper by Einstein), which
gives a description of gravity in terms of the curvature of space
time. I do not need this here, except for a brief remark at the end
of my talk.

Strangely enough the explicit idea of a four dimensional spacetime is
not due to Einstein but to the mathematician Hermann Minkowski,
a number theorist, who gave a talk on this in 1908 and subsequently
published it in a paper in 1909. Here is a quote:

“The views of space and time which I wish to lay before you have
sprung from the soil of experimental physics, and therein lies their
strength. They are radical. Henceforth space by itself, and time by
itself, are doomed to fade away into mere shadows, and only a kind
of union of the two will preserve an independent reality”.

Basic historical literature on relativity .

• A. Einstein
Zur Elektrodynamik bewegter Körper
Ann. Phys. 891-921 (1905).

Accessible at

https://web.archive.org/web/20050220050316/

http://www.pro-physik.de/Phy/pdfs/ger_890_921.pdf

English translations:
“On the Electrodynamics of Moving Bodies”

at:

http://www.fourmilab.ch/etexts/einstein/specrel/www/

A collection of the principal early papers on special relativity:

• A. Einstein, H.A. Lorentz, H. Weyl, H. Minkowski
The Principle of Relativity
A collection of original papers on the special and general theory of
relativity
Translated from the 1913 German edition, Dover 1952

The application of algebraic Level 3 scheme to quantum field the-
ory is as follows. Consider the collection of all open sets O in R4

(spacetime). Inclusion gives this collection a natural partial order.
Suppose one has a ∗-algebra AO for every O, generated by all field
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operators with support in O. These algebras will be C∗-algebras, a
very important class of abstract normed ∗-algebras.

Brief Characterization of C∗-algebras

A C∗-algebra A is a complete normed ∗-algebra, so a ∗-Banach
algebra, with the the additional property

||a∗a|| = ||a||2, ∀a ∈ A.

Because of this innocent looking property C∗-algebras are among the
most important and widely studied objects in functional analysis.

For each pair (O1,O2), such that O1 ⊂ O2, there will be an injec-
tive ∗-homomorphism O1 → O2. By means of a projective limit
construction the algebras AO together give a single large C∗-algebra
Aq.l., the algebra of quasi-local algebras, in my terminology the al-
gebra of pre-observables . The difficult task now is to find a Lorentz
invariant state ω on this Aq.l.. So far such states are known only
for systems of free fields, i.e. fields that describe noninteracting
particles. This is a bit disappointing, of course.

However, the algebraic scheme for Level 3 quantum theory, as
formulated here, is appealing as an elegant way of describing general
physical systems, both classical and quantum. A brief sketch of this
idea is given in the next section.

7. Algebraic dynamical systems

Algebras first appeared in quantum mechanics, in the spirit of the
general formalism that we have in mind, in the pioneering work of
Irving Segal (1918-1998), in his 1947 paper, mentioned earlier.

The realization that algebraic descriptions have a much wider scope
than algebraic quantum mechanics and field theory is more recent.
This more general point of view is probably due to Alain Connes,
the French mathematician and Field medalist.

Connes introduced noncommutative geometry, in first instance
a way of making geometry a part of algebra. This goes back to
the classical Gelfand-Naimark theorem which states that there is a
one-to-one correspondence between compact topological spaces and
commutative C∗-algebras. There is, however, an interesting and far
reaching generalization. A noncommutative C∗-algebra can be seen
as an algebraic description of a fictitious ‘noncommutative mani-
fold’, with properties that generalizes the properties of an ordinary
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manifold. Connes studied in this way in particular ‘noncommutative
Riemannian manifolds’.

Connes wrote a fascinating book about this:

• Alain Connes
Noncommutative Geometry
Academic Press 1994
It can be freely downloaded from his official website:
http://www.alainconnes.org/en/

It was extensively reviewed in 1996 by Irving Segal in the Bulletin
of the American Mathematical Society. The review is well worth
reading. It can be found at:

http://www.ams.org/bull/1996-33-04/

S0273-0979-96-00687-8/S0273-0979-96-00687-8.pdf

Here is a brief quote:

“It is more in the nature of a long discourse or letter to friends.”

Connes was not pleased by this remark.

Alain Connes is one of the few present-day mathematicians with a
deep interest in and great knowledge of physics. Another is Michael
Atyah.

The idea that both commutative and noncommutative algebraic
schemes can be used to give general characterizations of physical
systems will not be surprising to most mathematical physicists, but
discussions of this point of view in the literature are rare. To my
knowledge there are two fairly recent books:

• L.D. Fadeev, O.A. Yakubowskǐi
Lectures on Quantum Mechanics for Mathematics Students
American Mathematical Society 2009.

• F. Strocchi
An Introduction to the Mathematical Structure of Quantum Mechan-
ics
World Scientific 2005.

The first book is an elegant introduction. It is however brief and
contains few details. The approach of the second book is much too
restricted. In my own book on quantum theory algebraic descrip-
tions of physical systems was one of the main themes.
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Here is a list of the elements of what I call an algebraic dynamical
system.

An algebraic dynamical system consists of

1. a ∗-algebra A of observables,

2. a positive normalized linear expectation functional ω on A,

3. rules for the physical interpretation of 1 and 2,

4. a 1-parameter group {φ(t)}t∈R of time evolution ∗-automorphisms
of A,

5. Groups of symmetry ∗-automorphisms {φ(g)}g∈G of A.

If A is commutative we have a classical system; If A is noncom-
mutative a quantum system. In the noncommutative case Planck’s
constant ~ will appear in the formulas. Letting ~ go to 0, i.e. taking
the limit of the system of units, such that the numerical value of ~
goes to zero, gives the classical limit of the quantum system.

However, not all classical limits of quantum systems are physi-
cally meaningful. A Maxwell quantum or photon quantum field, in
elementary particle, has as classical limit the classical Maxwell field.
A meson quantum field, also in elementary particle physics, has a
classical limit which is mathematically well-defined but physically
meaningless. It may however play a role as an auxiliary object, used
for constructing the quantum field.

There is an even more problematic situation, in which the clas-
sical limit is not only an object without physical meaning, but in
which the limit of the noncommuting algebra of quantum oberse-
vables is not commutative, but what I call ‘almost commutative’,
i.e. commutative up to minus signs. An example is the electron-
positron quantum field. Such a ‘pseudo-classical’ system can still be
used for constructing the quantum system. It also leads to an inter-
esting recently developed field of mathematics, with notions such as
super algebras, super manifolds, etc. I cannot discuss this here.

Elementary quantum mechanics (Level 1) is nonrelativistic. This is
obvious for the Schrödinger equation; it is first order in time and
second order in space. Time and space should be treated on equal
footing. The same holds for quantum statistical mechanics (Level 2).
The distinction between space and time depends on the coordinate
system. Therefore time development has no intrinsic meaning. It is
part of the general symmetry under the action of the inhomogeneous
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Lorentz group. Relativistic theories have to be Lorentz covariant,
their equations Lorentz invariant. For this reason I employ for rel-
ativistic physical systems, such as relativistic quantum field theory,
the term algebraic covariance system, instead of algebraic dynamical
system.

What I have said here about general algebraic dynamical systems is
a sketch of what I consider to be an interesting idea. Many impor-
tant technical details need to be worked out. One obvious question
is what types of algebras A should be used. C∗algebras? They
are the foremost sort of ‘abstract’ algebras in functional analysis,
of which must is known. They cannot be used universally, as is
suggested in the book of Strocchi, because they have in general not
enough projection operators, the main tool for applications in quan-
tum physics. Von Neumann algebras, the most important type of
operator algebras, do better in this respect, in fact all projections
of a selfadjoint operator in such an algebra belong to this algebra.
(Note that an algebraic description of classical statistical mechanics,
or more general of classical probability theory uses commutative von
Neumann algebras). The natural commutative algebras describing
classical mechanics are the algebras of smooth functions on phase
space, obviously not C∗- or von Neumann algebras, but some kind
of generalizations of Fréchet algebras.

I should finally remark that the notion of a general algebraic system
or an algebraic covariance system has no great practical value when
doing explicit calculations in some explicit model. It should how-
ever appeal to theoretical and mathematical physicists for who like
structural elegance and who appreciate possibilities of unification of
theories.

8. Concluding remarks

I have discussed non-relativistic quantum mechanics and quantum
statistical mechanics as theories that are both mathematically and
physically completely satisfactory (Level 1 and 2). The situation is
less good for relativistic quantum mechanics and field theory (Level
3). The physical side is all right; a proper mathematical basis has
yet not been found. Level 4, quantization of general relativity, is still
very much work in progress. A few remarks on this in this section
may be useful.
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General relativity, as developed by Albert Einstein is a classical field
theory (1912), which gave a new description of gravity, in terms of
a 4-dimensional spacetime manifold, with a curvature tensor as its
main feature. Its predictions have been verified with great precision
by various experiments (redshift of light, perihelion precession of the
orbit of the planet Mercury, deflection of light by the sun).

An acceptable quantum version of the gravitational field has not
been found. The main problem is that the standard renormalization
procedure of Feynman c.s. does not work. The theory is nonrenor-
malizable.

Various attempts have been made to solve this problem, by by-
passing the renormalization procedure. One approach is called loop
gravity. The most important and most visible contender in this field
is string theory, in which the basic elements are no longer point par-
ticles in 4-dimensional spacetime, but tiny strings, open or closed,
in much higher dimension. This approach has been studied by many
people, making it clear that there would be no possibilities for ex-
perimental verification of its predictions even in a distant future.
Moreover it needs supersymmetry, a phenomenon, predicted forty
years ago, no trace of which has until now been experimentally ob-
served. This together means that string theory is not a physical
theory. It is science fiction.

So far the relevance of string theory for physics is zero. Its use-
fulness lies in its contributions to mathematics. This is due to work,
and sometimes just heuristically suggestions by people like Nathan
Seiberg, Juan Maldacena and in particular Ed Witten, Fields Medal-
ist in mathematics in 1990. Examples of topics that greatly profited
from this are, for example, Calabi-Yau manifolds and vertex opera-
tor algebras.

String theory is an example where ideas from physics have been
important for pure mathematics. Another example is the theory of
operator algebras, C∗-algebras and von Neumann algebras. There is
a difference: physics articles by people as Haag, Kastler are perfectly
readable for mathematicians, this contrary to most articles in string
theory.
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See for an introduction to string theory

• T. Hübsch
A Hitchhikers Guide to Superstring Jump Gates and Other Worlds
https://web.archive.org/web/20101207045114/http://

homepage.mac.com/thubsch/HSProc.pdf

and for a very critical evaluation

• Peter Woit
String Theory: An Evaluation
http://arxiv.org/pdf/physics/0102051v1.pdf
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