
Exercise 1: Prove how conservation of angular momentum follows from invariance under
rotations. Do this by first demonstrating that a rotation with an angle |~ω| around an axis ~ω
gives a displacement of δ~r(i) = ~ω × ~r(i).

Exercise 2: Why is α1 dropping out in the change of the surface tension, as well as the
Coulomb energy? (Hint: show that α1 is a variation in the overall position, that does not
contribute to the changes in the form.) Check that for the ellipse α2 = ǫ and demonstrate
that the result in the book agrees with the formula of Bohr and Wheeler.

Exercise 3: Show that EqPN.(4.17) from the book, dE ′ = v′dp′, is valid both in the classical
theory as well as in the relativistic theory.

Exercise 4: The Rosenbluth equation is made plausible by demonstrating that Lµν(P, P
′) =

K1(q
2)(−gµν +qµqν/q

2)+K2(q
2)(Pµ+ 1

2
qµ)(Pν + 1

2
qν)/(M

2c2), met K1(q
2) = −q2 en K2(q

2) =
4M2c2 (form factor of a point particle). Demonstrate this1.
(Extra: give a derivation of the Rosenbluth equation.)

Exercise 5: Show that Eq.(7.64) can also be written as

d2σ

dΩdE ′
=
F1(x)

2M

(

αh̄

E sin(θ/2)

)2 [

1 +
2EE ′

(E − E ′)2
cos2(θ/2)

]

. (7.66)

(Extra: Prove that EqPN.(7.7) indeed follows from Eq.(7.60) and Eq.(7.61).)

Exercise 6: Starting from the fact that all quarks (in units of e) have a charge −1/3(mod
1) (the up quark has for example a charge 2/3 = −1/3+1), prove that baryons with integer
charge consists of clusters of three quarks (hadrons) and/or a quark and an anti-quark
(mesons).

Exercise 7: i) Use lepton universality (§9.1) to demonstrate that the contribution of the
Z0-resonance of e+ + e− → µ+ + µ− is roughly half that of e+ + e− → ν + ν̄.
ii) At the decay of a φ particle in two kaons the gluon could also be exchanged by the s
anti-quark. Draw one of the processes with the appropriate colors. Work this also out for
the decay in to pions, in which all colors and the glouns are properly represented.

Exercise 8: Why is it that for low energies Eq.(11.76) turns into 〈|M|2〉 = 2 (4παW )2

M4

W
c4

×
(pνµ

· pe−)(pνe
· pµ−). If we neglect the masses of the electron and the neutrino we have

as before pνµ
· pe− = 2E2/c2 = 1

2
s/c2, but this is no longer equal to pνe

· pµ− . Show first
that ~p ′ = ~pµ− = −~pνe

and |~p ′| = Eνe
/c, while E2

µ = E2
νe

+ m2
µc

4. Why is it valid that
Eνe

+ Eµ = |~pνµ
|c + |~pe−|c = 2|~p|c = 2E. Demonstrate now that pνe

· pµ− = 2EEνe
/c2 and

Eνe
= E(1 − ( 1

2
mµc

2/E)2) = E(1 −m2
µc

4/s). Use finally Eq.(10.67) to find Eq.(11.79).

1One can also first check that qµLµν(P, P ′) = 0, such that Lµν must be of the general form in Eq.(5.56).
Since Lµν(P, P ′) must be quadratic in its momenta, K1(q

2) must be linear and K2(q
2) must be independent

of q2. On the ground of dimensions K1(q
2) = Aq2 and K2(q

2) = BM2c2, with A en B constants. Argue
now that A = −1 and B = 4.
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Mott and the Golden Rule

In this exercise we will calculate the cross section for scattering of an electron on a fixed
target (for example a heavy nucleus, with the recoil of the nucleus neglected), so the cross
section of Mott. Our starting point is EqPN.(5.23) from the book,

dσ

dΩ
=

V 2E ′2

(2π)2(h̄c)4
|〈ψf |Hint|ψi〉|2, (1)

where the matrix element is given by

〈ψf |Hint|ψi〉 = e
∫

ψ†
f(~x)φ(~x)ψi(~x)d

3x.

Here the electric potential is φ(~x) = A0(~x), with ∆φ(~x) = −Ze
ε0
δ3(~x) for a point charge (see

EqPN.(5.30) of the book). In case of the electron, the wave function ψ(~x) is a standing four
component vector and ψ†(~x) a lying complex conjugate vector. If we use Eq.([5.]39-41) of
the extra text, then

ψi(~x) =
1√
V
ei~p·~x/h̄u(a)(~p), ψf(~x) =

1√
V
ei~p ′·~x/h̄u(b)(~p ′).

We stress that in an infinite volume V needs to be replaced by (2π)3, and that we take t = 0,
such that ψ(~x) is a time independent solution of the Dirac equation, (αipic+ βmc2)ψ(~x) =
Eψ(~x), with positive energy, E =

√
~p 2c2 +m2c4. The labels (a) and (b) give the spin of the

ingoing and outgoing electrons.
a) Show that similarly to EqPN.(5.31-32) in the book

〈ψf |Hint|ψi〉 =
4παh̄3cZ

~q 2V
fba(~q), fba(~q) = u(b)(~p ′)†u(a)(~p) ≡

4
∑

ℓ=1

u
(b)
ℓ (~p ′)∗u

(a)
ℓ (~p).

This is for the case of scattering on point charges. If this charge is spread out, one also needs
to multiply with the usual form factor, F (~q) (see EqPN.(5.32) in the book). The ”form”
information of the electron, that is the dependence on its spin, is described by fba. Here we
only consider the case of an unpolarized beam of electrons, both with spin-up and down,
that scatters on a target. We have to average EqPN.(5.23) (Eq.(1) above) over the incoming
spins and sum over the outgoing spins.
b) Show that the unpolarized cross section is given by

dσ

dΩ
=

4Z2α2(h̄c)2E ′2

|c~q|4
(

1

2

2
∑

a=1

2
∑

b=1

|fba(~q)|2
)

|F (~q)|2.

Below we will show that

1

2

2
∑

a=1

2
∑

b=1

|fba(~q)|2 = 1 − v2

c2
sin2( 1

2
θ). (2)

Use this to show that we precisely obtain the Mott cross section, that is EqPN.(5.38) and
EqPN.(5.41) from the book.
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To prove Eq.(2) one could simply use Eq.([5.]40-41) of the extra text, but this is not
recommended. In stead, there is a compact result (also called the Casimir result) for the
summation over spin polarizations. We introduce the following 4 × 4 matrix

Λkℓ(~p) =
2
∑

a=1

u
(a)
k (~p)u

(a)
ℓ (~p)∗.

c) Show now that

1

2

2
∑

a=1

2
∑

b=1

|fba(~q)|2 = 1

2

4
∑

k,ℓ=1

Λkℓ(~p
′)Λℓk(~p) = 1

2
Tr
(

Λ(~p ′)Λ(~p)
)

,

where Tr stands for the trace of a matrix.
d) Show with Eq.([5.]40-41) from the extra text that

Λ(~p) =
1

2p0(p0 +mc)
(γµpµ + 14mc)Λ(~0)(γµpµ + 14mc)

†,

Of course, the † means the hermitian conjugate of a 4 × 4 matrix. We can calculate Λ(~0)

explicitly, because u(a)(~0) = u
(a)
0 as defined in Eq.([5.]41) has a simple form. Use this to

show that Λ(~0) = 1

2
(14 + β) = 1

2
(14 + γ0).

e) Now we want to demonstrate that Λ(~p) takes a remarkable simple form,

Λ(~p) =
1

2p0
(γµpµ + 14mc)γ

0. (3)

We collect step by step the necessary ingredients:
i) Use the definitions in Eq.([5.]38) (or Eq.([5.]37)) of the extra text to show that αi and
β(= γ0) are hermitian, (αi)† = αi and β† = β.
ii) Use the fact that β and αi anti-commute to demonstrate that γi is anti-hermitian, (γi)† =
−γi. Prove also that γiγi = −14 (and γ0γ0 = 14).
iii) Show also that γi and γ0 mutually anti-commute, γiγ0 + γ0γi = 0 and conclude that
(γµ)† = γ0γµγ0, such that

Λ(~p) =
1

4p0(p0 +mc)
(γµpµ + 14mc)(14 + γ0)γ0(γνpν + 14mc)γ

0,

where we note that (14 + γ0)γ0 = (14 + γ0).
iv) We split the computation of (γµpµ + 14mc)(14 + γ0)(γνpν + 14mc) in two parts:
Show that for part A=(γµpµ + 14mc)(γ

νpν + 14mc) = (γµpµ)2 + 2mcγµpµ + 14m
2c2 and for

part B=(γµpµ+14mc)γ
0(γνpν+14mc) = −(γµpµ)

2γ0+(γµpµ+14mc)(γ
0γν+γνγ0)pν+m

2c2γ0

is found. Show then that (γ0γµ + γµγ0)pµ = 2p014 and (γµpµ)
2 = 1

2
(γµγν + γνγµ)pµpν =14(p

2
0−~p 2) = 14m

2c2 and with that A+B=2(p0 +mc)(γµpµ +14mc). Verify now the validity
of Eq.(3).

f) To conclude, we calculate 1

2
Tr
(

Λ(~p ′)Λ(~p)
)

= 1
8p′0p0

Tr
(

(γµp′µ+14mc)γ
0(γνpν+14mc)γ

0
)

, for

which it is advantageous to introduce in addition to p = (p0; ~p) also p̃ = (p0,−~p). Verify that

γ0γµpµγ
0 = γµp̃µ and so 1

2
Tr
(

Λ(~p ′)Λ(~p)
)

= 1
8p′0p0

Tr
(

(γµp′µ + 14mc)(γ
ν p̃ν + 14mc)

)

. Prove

that Tr(γµ) = 0 and that Tr(γµp′µγ
ν p̃ν) = Tr(γµγν)p′µp̃ν = 1

2
Tr(γµγν +γνγµ)p′µp̃ν = 4(p′ ·p̃) =

4(p′0p0+~p ′·~p), such that 1

2
Tr
(

Λ(~p ′)Λ(~p)
)

= 1
2p′0p0

(p′0p0+|~p ′||~p| cos θ+m2c2) = 1− v2

c2
sin2( 1

2
θ).
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Extra opgave: Bewijs nu zelf eenvoudig hoe het behoud van impulsmoment volgt uit
invariantie onder rotaties. Laat daartoe eerst zien dat een rotatie over een hoek |~ω| om een
as met richting ~ω aanleiding geeft tot δ~r(i) = ~ω × ~r(i).

Extra opgave: Waarom valt α1 volledig weg uit zowel de verandering in de oppervlaktespan-
ning als in de Coulomb energie? (Hint: beredeneer dat α1 niet zozeer een vormverandering
geeft, maar een verplaatsing van het zwaartepunt.) Controleer dat voor de ellips α2 = ǫ en
laat zien dat het gegeven resultaat in het boek klopt met de formule van Bohr en Wheeler.

Extra opgave: Laat zien dat EqPN.(4.17) in het boek, dE ′ = v′dp′, geldig is zowel in de
klassieke theorie als in de relativistische theorie.

Extra opgave: De Rosenbluth formule kan aannemelijk gemaakt worden door te laten
zien dat Lµν(P, P

′) = K1(q
2)(−gµν + qµqν/q

2) + K2(q
2)(Pµ + 1

2
qµ)(Pν + 1

2
qν)/(M

2c2), met
K1(q

2) = −q2 en K2(q
2) = 4M2c2 (de vormfuncties voor puntdeeltjes). Laat dit zien2.

(Fakultatief: geef de afleiding van de Rosenbluth formule.)

Extra opgave: Laat zien dat Eq.(7.64) ook geschreven kan worden als

d2σ

dΩdE ′
=
F1(x)

2M

(

αh̄

E sin(θ/2)

)2 [

1 +
2EE ′

(E − E ′)2
cos2(θ/2)

]

. (7.66)

(Fakultatief: Bewijs dat EqPN.(7.7) inderdaad volgt uit Eq.(7.60) en (7.61)).

Extra opgave: Uitgaande van het feit dat alle quarks (in eenheden van e) een lading
−1/3(mod 1) hebben (bedenk dat het up quark een lading 2/3 = −1/3 + 1 heeft), bewijs
dat heeltallige lading van de baryonen impliceert dat ze bestaan uit clusters van drie quarks
(hadronen) en/of een quark en een anti-quark (mesonen).

Extra opgaven: i) Gebruik de lepton universaliteit (§9.1) om te laten zien dat de Z0-
resonante bijdrage aan de werkzame doorsnede voor e+ + e− → µ+ +µ− ongeveer de helft is
van die voor e+ + e− → ν + ν̄.
ii) Bij het verval van het φ deeltje in twee kaonen kan men het gluon ook laten uitwisselen
door het s anti-quark. Teken hiervoor zelf een van de mogelijke processen onder vermelding
van de kleuren. Werk ook voor het verval in pionen een voorbeeld uit waarin alle kleuren en
de gluonen correct zijn weergegeven.

Extra opgave: Waarom geldt bij lage energie dat Eq.(11.76) over gaat in 〈|M|2〉 =

2 (4παW )2

M4

W
c4

(pνµ
·pe−)(pνe

·pµ−). Als we de massas van het electron en de neutrinos verwaarlozen

geldt als eerder pνµ
· pe− = 2E2/c2 = 1

2
s/c2, maar dit is niet langer gelijk aan pνe

· pµ− . Laat
eerst zien dat ~p ′ = ~pµ− = −~pνe

en |~p ′| = Eνe
/c, terwijl E2

µ = E2
νe

+ m2
µc

4. Waarom geldt
Eνe

+ Eµ = |~pνµ
|c + |~pe−|c = 2|~p|c = 2E. Laat hiermee nu zien dat pνe

· pµ− = 2EEνe
/c2

en dat Eνe
= E(1 − ( 1

2
mµc

2/E)2) = E(1 −m2
µc

4/s). Gebruik tenslotte Eq.(10.67) om het
resultaat uit Eq.(11.79) te vinden.

2In plaats van uitschrijven kun je ook eerst controleren dat qµLµν(P, P ′) = 0, zodat Lµν noodzakelij-
kerwijze de algemene vorm van Eq.(5.56) moet hebben. Omdat Lµν(P, P ′) kwadratisch in de impulsen is,
moet dus K1(q

2) linear in, en K2(q
2) onafhangelijk van q2 zijn. Op grond van dimensies K1(q

2) = Aq2 en
K2(q

2) = BM2c2, met A en B constanten. Beredeneer tenslotte dat A = −1 en B = 4.
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Mott en de Golden rule

In deze opgave berekenen we de werkzame doorsnede voor verstrooiing van een electron aan
een vaste puntlading (bijv. een zware kern, dus onder verwaarlozing van de terugstoot), dus
de werkzame doorsnede van Mott. Ons uitgangspunt is verg.(5.23) in het boek,

dσ

dΩ
=

V 2E ′2

(2π)2(h̄c)4
|〈ψf |Hint|ψi〉|2, (1)

waarbij het matrixelement gegeven wordt door

〈ψf |Hint|ψi〉 = e
∫

ψ†
f(~x)φ(~x)ψi(~x)d

3x.

Hierin is φ(~x) = A0(~x) de electrische potentiaal, met voor een puntlading ∆φ(~x) = −Ze
ε0
δ3(~x)

(zie verg.(5.30) in het boek). In het geval van het electron is de golffunctie ψ(~x) een staande
vector, met vier componenten, en ψ†(~x) een complex geconjugeerde liggende vector. Ge-
bruiken we Eq.(5.39-41) van de aanvulling dan geldt

ψi(~x) =
1√
V
ei~p·~x/h̄u(a)(~p), ψf(~x) =

1√
V
ei~p ′·~x/h̄u(b)(~p ′),

waarbij we opmerken dat in een oneindig volume V vervangen wordt door (2π)3, en dat
we t = 0 hebben genomen zodat ψ(~x) een tijdsonfahankelijke oplossing is van de Dirac
Hamiltoniaan, (αipic + βmc2)ψ(~x) = Eψ(~x) met positieve energie E =

√
~p 2c2 +m2c4. De

labels (a) en (b) geven aan wat de spin van resp. het ingaande en uitgaande electron is.
a) Laat zien dat in analogie met verg.(5.31-32) in het boek

〈ψf |Hint|ψi〉 =
4παh̄3cZ

~q 2V
fba(~q), fba(~q) = u(b)(~p ′)†u(a)(~p) ≡

4
∑

ℓ=1

u
(b)
ℓ (~p ′)∗u

(a)
ℓ (~p).

Dit is voor het geval van verstrooiing aan een puntlading. Als deze lading uitgespreid is
dan moeten we nog met de gewoonlijke vormfactor F (~q) vermenigvuldigen (zie verg.(5.32)
van het boek). In zekere zin beschrijft fba de “vorm” informatie van het electron, namelijk
de afhankelijkheid van de spin. We bekijken hier het geval van een bundel ongepolariseerde
electronen en een detector die geen onderscheid maakt naar spin. We moeten dan verg.(5.23)
(Eq.(1) hierboven) middelen over de ingaande en sommeren over de uitgaande spins.
b) Laat zien dat de ongepolariseerde werkzame doorsnede gegeven wordt door

dσ

dΩ
=

4Z2α2(h̄c)2E ′2

|c~q|4
(

1

2

2
∑

a=1

2
∑

b=1

|fba(~q)|2
)

|F (~q)|2.

Hieronder gaan we aantonen dat

1

2

2
∑

a=1

2
∑

b=1

|fba(~q)|2 = 1 − v2

c2
sin2( 1

2
θ). (2)

Gebruik dit om te laten zien dat we daarmee dan precies de werkzame doorsnede voor Mott,
verg.(5.38) en verg.(5.41) in het boek, hebben bewezen.
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Om Eq.(2) te bewijzen zou je gewoon botweg Eq.(5.40-41) in de aanvulling kunnen ge-
bruiken, maar dat is niet aan te bevelen. Het blijkt dat er een compact resultaat voor de
sommatie over de spin polarisaties bestaat (ook wel de truc van Casimir genoemd). Daartoe
introduceren we de volgende 4 × 4 matrix

Λkℓ(~p) =
2
∑

a=1

u
(a)
k (~p)u

(a)
ℓ (~p)∗.

c) Laat zien dat hiermee

1

2

2
∑

a=1

2
∑

b=1

|fba(~q)|2 = 1

2

4
∑

k,ℓ=1

Λkℓ(~p
′)Λℓk(~p) = 1

2
Tr
(

Λ(~p ′)Λ(~p)
)

,

waarin Tr staat voor het spoor van een matrix.
d) Laat m.b.v. Eq.(5.40-41) van de aanvulling zien dat

Λ(~p) =
1

2p0(p0 +mc)
(γµpµ + 14mc)Λ(~0)(γµpµ + 14mc)

†,

De † staat hier uiteraard voor hermitisch conjugeren van de 4 × 4 matrix. We kunnen Λ(~0)

expliciet berekenen doordat u(a)(~0) = u
(a)
0 als gedefinieerd in Eq.(5.41) een simpele vorm

heeft. Gebruik dit om te laten zien dat Λ(~0) = 1

2
(14 + β) = 1

2
(14 + γ0).

e) Nu willen we aantonen dat Λ(~p) een opmerkelijk eenvoudige vorm aanneemt,

Λ(~p) =
1

2p0

(γµpµ + 14mc)γ
0. (3)

We vergaren stap voor stap hieronder de nodige identiteiten:
i) Gebruik de definities in Eq.(5.38) (of Eq.(5.37)) van de aanvulling om te laten zien dat αi

en β(= γ0) hermitisch zijn, (αi)† = αi en β† = β.
ii) Gebruik het feit dat β en αi met elkaar anti-commuteren om te laten zien dat γi anti-
hermitisch is, (γi)† = −γi. Bewijs ook dat γiγi = −14 (naast γ0γ0 = 14).
iii) Laat ook zien dat γi en γ0 onderling anti-commuteren, γiγ0 + γ0γi = 0 en concludeer
dat (γµ)† = γ0γµγ0, zodat

Λ(~p) =
1

4p0(p0 +mc)
(γµpµ + 14mc)(14 + γ0)γ0(γνpν + 14mc)γ

0,

waarbij we opmerken dat (14 + γ0)γ0 = (14 + γ0).
iv) De berekening van (γµpµ + 14mc)(14 + γ0)(γνpν + 14mc) splitsen we in twee delen:
Bewijs dat voor deel A=(γµpµ +14mc)(γ

νpν +14mc) = (γµpµ)
2 +2mcγµpµ +14m

2c2 en voor
deel B=(γµpµ+14mc)γ

0(γνpν+14mc) = −(γµpµ)
2γ0+(γµpµ+14mc)(γ

0γν+γνγ0)pν+m2c2γ0

gelden. Laat vervolgens zien dat (γ0γµ+γµγ0)pµ = 2p014 en (γµpµ)2 = 1

2
(γµγν +γνγµ)pµpν =14(p

2
0 − ~p 2) = 14m

2c2 en daarmee dat deel A+B=2(p0 + mc)(γµpµ + 14mc). Bewijs nu de
geldigheid van Eq.(3).

f) Tot slot berekenen we 1

2
Tr
(

Λ(~p ′)Λ(~p)
)

= 1
8p′0p0

Tr
(

(γµp′µ + 14mc)γ
0(γνpν + 14mc)γ

0
)

,

waarvoor het nuttig is om naast p = (p0; ~p) ook p̃ = (p0,−~p) in te voeren. Ga na dat

γ0γµpµγ
0 = γµp̃µ en dus 1

2
Tr
(

Λ(~p ′)Λ(~p)
)

= 1
8p′0p0

Tr
(

(γµp′µ + 14mc)(γ
ν p̃ν + 14mc)

)

. Bewijs

dat Tr(γµ) = 0 en dat Tr(γµp′µγ
ν p̃ν) = Tr(γµγν)p′µp̃ν = 1

2
Tr(γµγν + γνγµ)p′µp̃ν = 4(p′ · p̃) =

4(p′0p0 + ~p ′ · ~p), zodat 1

2
Tr
(

Λ(~p ′)Λ(~p)
)

= 1
2p′0p0

(p′0p0 + |~p ′||~p| cos θ+m2c2) = 1− v2

c2
sin2( 1

2
θ).
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