Exercise 1: Prove how conservation of angular momentum follows from invariance under
rotations. Do this by first demonstrating that a rotation with an angle |J| around an axis &
gives a displacement of 67(;) = & X 7).

Exercise 2: Why is a; dropping out in the change of the surface tension, as well as the
Coulomb energy? (Hint: show that a; is a variation in the overall position, that does not
contribute to the changes in the form.) Check that for the ellipse ay = € and demonstrate
that the result in the book agrees with the formula of Bohr and Wheeler.

Exercise 3: Show that EqPN.(4.17) from the book, dE" = v'dp’, is valid both in the classical
theory as well as in the relativistic theory.

Exercise 4: The Rosenbluth equation is made plausible by demonstrating that L, (P, P') =
Ky(0*) (= g+ 4ut /0°) + K2(q%) (P 36u) (P + 3a0) / (MPc?), met K (%) = —¢* en K(¢?) =
4M?c* (form factor of a point particle). Demonstrate this'.

(Extra: give a derivation of the Rosenbluth equation.)

Exercise 5: Show that Eq.(7.64) can also be written as

o _ R (__ah 2EE
d0dE — 2M <Esin(6/2)> [”mm 0/2)]- (7.66)

(Extra: Prove that EqPN.(7.7) indeed follows from Eq.(7.60) and Eq.(7.61).)

Exercise 6: Starting from the fact that all quarks (in units of €) have a charge —1/3(mod
1) (the up quark has for example a charge 2/3 = —1/3 + 1), prove that baryons with integer
charge consists of clusters of three quarks (hadrons) and/or a quark and an anti-quark
(mesons).

Exercise 7: i) Use lepton universality (§9.1) to demonstrate that the contribution of the
Z%-resonance of et 4+ e~ — uT + p~ is roughly half that of e* + e~ — v + .

ii) At the decay of a ¢ particle in two kaons the gluon could also be exchanged by the s
anti-quark. Draw one of the processes with the appropriate colors. Work this also out for
the decay in to pions, in which all colors and the glouns are properly represented.
Exercise 8: Why is it that for low energies Eq.(11.76) turns into (|M|*) = 2% X
(Pv, * Pe=) (v - Pu-). If we neglect the masses of the electron and the neutrino we have
as before p,, - p.— = 2E?/c* = 1s/c?, but this is no longer equal to p,, - p,~. Show first
that " = p,- = —p,. and [p'| = E, /c, while B} = E> +m2c'. Why is it valid that
E,, + E, = |p,,|c + |P.-|c = 2|plc = 2E. Demonstrate now that p,, - p,- = 2EE,, /c* and
E,, = E(1— (3m,c*/E)?*) = E(1—mZc'/s). Use finally Eq.(10.67) to find Eq.(11.79).

'One can also first check that ¢*L,,, (P, P') = 0, such that L,, must be of the general form in Eq.(5.56).
Since Ly, (P, P') must be quadratic in its momenta, K (¢?) must be linear and K2(¢?) must be independent
of ¢2. On the ground of dimensions K;(¢?) = A¢® and K»(q?) = BM?c?, with A en B constants. Argue
now that A= —1and B =4.



Mott and the Golden Rule

In this exercise we will calculate the cross section for scattering of an electron on a fixed
target (for example a heavy nucleus, with the recoil of the nucleus neglected), so the cross
section of Mott. Our starting point is EqPN.(5.23) from the book,

do V2E"”?
- m|<¢f|Hmt|¢l>| ; (1)

where the matrix element is given by

<¢f‘Hmth —€/¢f D)i(T )

Here the electric potential is ¢(Z) = Ay (Z), with Ap(¥) = —5—553(3?) for a point charge (see
EqPN.(5.30) of the book). In case of the electron, the wave function (%) is a standing four
component vector and ¢f(F) a lying complex conjugate vector. If we use Eq.([5.]39-41) of
the extra text, then

@) = S PG, (@) = e ),
We stress that in an infinite volume V needs to be replaced by (27)3, and that we take t = 0,
such that (%) is a time independent solution of the Dirac equation, (a'p;c + Bmc?)y(F) =
E(Z), with positive energy, E = /p?c? + m?c*. The labels (a) and (b) give the spin of the
ingoing and outgoing electrons.
a) Show that similarly to EqPN.(5.31-32) in the book
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<wmﬂw_“fwﬂwv fral@) = u® ()@ (7) = zu 7)u (7).

This is for the case of scattering on point charges. If this charge is spread out, one also needs
to multiply with the usual form factor, F'(¢) (see EqPN.(5.32) in the book). The ”form”
information of the electron, that is the dependence on its spin, is described by f;,. Here we
only consider the case of an unpolarized beam of electrons, both with spin-up and down,
that scatters on a target. We have to average EqPN.(5.23) (Eq.(1) above) over the incoming
spins and sum over the outgoing spins.

b) Show that the unpolarized cross section is given by

Zzw@@ww.

a=1b=1

do  42%0*(he)’E” (|
aQ leql* 2
Below we will show that
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%Z;\fm @\2_1—6—sm (16). (2)

Use this to show that we precisely obtain the Mott cross section, that is EqPN.(5.38) and
EqPN.(5.41) from the book.



To prove Eq.(2) one could simply use Eq.([5.]40-41) of the extra text, but this is not
recommended. In stead, there is a compact result (also called the Casimir result) for the
summation over spin polarizations. We introduce the following 4 x 4 matrix

Akg ﬁ) Z u ﬁ)uz _> .

¢) Show now that

%sz_: | foa(@D]? = Z Ake(p") Ao (P) = lTl”( (17/)/\(13))7

kfl

where Tr stands for the trace of a matrix.
d) Show with Eq.([5.]40-41) from the extra text that

A =

—  (v*p, + Lymc)A0)(V*p, + Lyme),
2p0(p0+m0)(7 pu 4 ) ()(7 pu 4 )

Of course, the T means the hermitian conjugate of a 4 x 4 matrix. We can calculate A(a)
explicitly, because u(®(0) = u as defined in Eq. ([5.]41) has a simple form. Use this to
show that A(0) = (14 + 8) = 2(]14 +79).

e) Now we want to demonstrate that A(p 4) takes a remarkable simple form,

A(p) = (7 P+ Lame)y’. (3)

We collect step by step the necessary mgredlents:

i) Use the definitions in Eq.([5. ]38) (or Eq.([5.]37)) of the extra text to show that o’ and
A(=1") are hermitian, (a’)! = o and ' = 3.

ii) Use the fact that 3 and o anti-commute to demonstrate that 4 is anti-hermitian, (v*)" =
—v%. Prove also that iy’ = —1, (and 7°7° = 14).

iii) Show also that 7 and 7° mutually anti-commute, 77° + %y = 0 and conclude that
()T = 49944 such that

1 v
A(@ = ) (fy‘up,u + ]l4mc)(114 + /70>70(/7 DPv + 14mc>707

4po(po + mc
where we note that (1, ++°)7° = (14 +1°).
iv) We split the computation of (v*p, + 14mc)(14 +7°)(v*py + Lame) in two parts:
Show that for part A=(y"p, + Lymc)(v"p, + Lamc) = (v"p,)* + 2mey*p, + Lym?c? and for
part B=(v"p,+1smc)y’ (7" p,+1ame) = —(v*pu)* 70+ (7 put-L1ame) (107" +977°)p, +mP
is found. Show then that (7°4* + #4)p, = 2pols and (v*p,)* = 1(V*V" + ¥ Y*)pup, =
1,(pg — p?) = Lym*c? and with that A+B=2(py+ mc)(y#p, + Lyme). Verify now the validity
of Eq.(3).
f) To conclude, we calculate 1 Tr (A(ﬁ’)A(ﬁ)) = ﬁrTr((7“p&+14m0)70(v’jp,,+]l4mc)70), for

8p'7p0
which it is advantageous to introduce in addition to p = (po; p) also p = (po, —p). Verify that

V77" = B and so 3Te(AB)AD)) = b Tr((4p), + Lime) (v, + Lume) ). Prove
that Tr(y“) = 0 and that Tr(v"p,7"p,) = Tr(v"7")p, b = $Tr(v*y" +4"vy*)p,pn = 4(p' D) =
4(p°p*+7-5). such that Tx (AG)AD)) = g (0780 +17]|5] cos 6+m*e?) = 1- 2 sin®(30).



Extra opgave: Bewijs nu zelf eenvoudig hoe het behoud van impulsmoment volgt uit
invariantie onder rotaties. Laat daartoe eerst zien dat een rotatie over een hoek |J| om een
as met richting & aanleiding geeft tot 67(;) = & X 7).

Extra opgave: Waarom valt a;; volledig weg uit zowel de verandering in de oppervlaktespan-
ning als in de Coulomb energie? (Hint: beredeneer dat oy niet zozeer een vormverandering
geeft, maar een verplaatsing van het zwaartepunt.) Controleer dat voor de ellips ap = € en
laat zien dat het gegeven resultaat in het boek klopt met de formule van Bohr en Wheeler.

Extra opgave: Laat zien dat EqPN.(4.17) in het boek, dE' = v'dp’, geldig is zowel in de
klassieke theorie als in de relativistische theorie.

Extra opgave: De Rosenbluth formule kan aannemelijk gemaakt worden door te laten
zien dat L, (P, P') = Ki(¢°)(=guw + quq./4%) + Ka(q*) (P + 1q,) (P, + 1¢,)/(M?c?), met
Ki(¢?) = —¢* en Ky(¢*) = 4M?c* (de vormfuncties voor puntdeeltjes). Laat dit zien?.
(Fakultatief: geef de afleiding van de Rosenbluth formule.)

Extra opgave: Laat zien dat Eq.(7.64) ook geschreven kan worden als

d*o Fi(z) ah ? 2EFE' )
= 14+ %= 0/2)] .
dQdE' ~ 2M \ Esin(6/2) T E—Ep (0/2) (7.66)
(Fakultatief: Bewijs dat EqPN.(7.7) inderdaad volgt uit Eq.(7.60) en (7.61)).

Extra opgave: Uitgaande van het feit dat alle quarks (in eenheden van e) een lading
—1/3(mod 1) hebben (bedenk dat het up quark een lading 2/3 = —1/3 + 1 heeft), bewijs
dat heeltallige lading van de baryonen impliceert dat ze bestaan uit clusters van drie quarks
(hadronen) en/of een quark en een anti-quark (mesonen).

Extra opgaven: i) Gebruik de lepton universaliteit (§9.1) om te laten zien dat de Z°-
resonante bijdrage aan de werkzame doorsnede voor e™ 4+ e~ — u™ 4+ u~ ongeveer de helft is
van die voor et + e~ — v+ D.

ii) Bij het verval van het ¢ deeltje in twee kaonen kan men het gluon ook laten uitwisselen
door het s anti-quark. Teken hiervoor zelf een van de mogelijke processen onder vermelding
van de kleuren. Werk ook voor het verval in pionen een voorbeeld uit waarin alle kleuren en
de gluonen correct zijn weergegeven.

Extra opgave: Waarom geldt bij lage energie dat Eq.(11.76) over gaat in (|M]?) =

2 (4]\723“’222 (Py,, " Pe- ) (Pre - Pu-)- Als we de massas van het electron en de neutrinos verwaarlozen
w
geldt als eerder p,, - p.- = 2E?/c* = s/c®, maar dit is niet langer gelijk aan p,, - p,-. Laat

eerst zien dat §' = p,- = —p,, en |p'| = E,, /¢, terwijl E. = E; + m,c'. Waarom geldt
E, + E, = |p,,|c+ |p-|c = 2|plc = 2E. Laat hiermee nu zien dat p,, - p,- = 2FE,_/c?
en dat E,, = E(1 — (im,c*/E)*) = E(1 —m’c"/s). Gebruik tenslotte Eq.(10.67) om het
resultaat uit Eq.(11.79) te vinden.

?In plaats van uitschrijven kun je ook eerst controleren dat ¢"L,,(P,P") = 0, zodat L,, noodzakelij-
kerwijze de algemene vorm van Eq.(5.56) moet hebben. Omdat L, (P, P’") kwadratisch in de impulsen is,
moet dus K;(g?) linear in, en K»(g?) onafhangelijk van ¢? zijn. Op grond van dimensies K;(q?) = Aq? en
K»(q¢%) = BM?c?, met A en B constanten. Beredeneer tenslotte dat A = —1 en B = 4.
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Mott en de Golden rule

In deze opgave berekenen we de werkzame doorsnede voor verstrooiing van een electron aan
een vaste puntlading (bijv. een zware kern, dus onder verwaarlozing van de terugstoot), dus
de werkzame doorsnede van Mott. Ons uitgangspunt is verg.(5.23) in het boek,

do V2E"?

- W|<¢f|Hmt|¢z>| ; (1)

waarbij het matrixelement gegeven wordt door

<¢f‘Hmth —€/¢f D)i(T )

Hierin is ¢(Z) = Ao(Z) de electrische potentiaal, met voor een puntlading A¢(¥) = —5—553(93')
(zie verg.(5.30) in het boek). In het geval van het electron is de golffunctie ¢)(Z) een staande
vector, met vier componenten, en 1f(Z) een complex geconjugeerde liggende vector. Ge-
bruiken we Eq.(5.39-41) van de aanvulling dan geldt

@) = ST, (@) = e ),
waarbij we opmerken dat in een oneindig volume V vervangen wordt door (27)3, en dat
we t = 0 hebben genomen zodat ¢ (Z) een tijdsonfahankelijke oplossing is van de Dirac
Hamiltoniaan, (a'p;c + Bmc?)y(T) = E(F) met positieve energie E = v/p2c2 + m2ct. De
labels (a) en (b) geven aan wat de spin van resp. het ingaande en uitgaande electron is.
a) Laat zien dat in analogie met verg.(5.31-32) in het boek
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<wmﬂw_“fwﬂwv fral@) = u® ()@ (7) = zu 7)u® (7).

Dit is voor het geval van verstrooiing aan een puntlading. Als deze lading uitgespreid is
dan moeten we nog met de gewoonlijke vormfactor F'(¢) vermenigvuldigen (zie verg.(5.32)
van het boek). In zekere zin beschrijft f,, de “vorm” informatie van het electron, namelijk
de afthankelijkheid van de spin. We bekijken hier het geval van een bundel ongepolariseerde
electronen en een detector die geen onderscheid maakt naar spin. We moeten dan verg.(5.23)
(Eq.(1) hierboven) middelen over de ingaande en sommeren over de uitgaande spins.

b) Laat zien dat de ongepolariseerde werkzame doorsnede gegeven wordt door

ZZ%@@WW

a=1b=1

do  47%c*(he)*E"” [
aQ leql* 2
Hieronder gaan we aantonen dat

2

P35 @ = 1= Ssnd(30), @

Gebruik dit om te laten zien dat we daarmee dan precies de werkzame doorsnede voor Mott,
verg.(5.38) en verg.(5.41) in het boek, hebben bewezen.

5



Om Eq.(2) te bewijzen zou je gewoon botweg Eq.(5.40-41) in de aanvulling kunnen ge-
bruiken, maar dat is niet aan te bevelen. Het blijkt dat er een compact resultaat voor de
sommatie over de spin polarisaties bestaat (ook wel de truc van Casimir genoemd). Daartoe
introduceren we de volgende 4 x 4 matrix

Awe(p) = Zu (D)l ()"

c¢) Laat zien dat hiermee

D @) = Z Ape(p") Aer(P) = lTl”( (17/)/\(15)),

a=1b=1 kZ 1

waarin Tr staat voor het spoor van een matrix.
d) Laat m.b.v. Eq.(5.40-41) van de aanvulling zien dat

A =

—  (v*p, + Lyme)A0)(V*p, + Lyme),

2p0(p0 —l—mc) (’y pu 4 ) ( )(7 pu 4 )

De t staat hier uiteraard voor hermitisch conjugeren van de 4 x 4 matrix. We kunnen A(@)
expliciet berekenen doordat u(®(0) = ul als gedefinieerd in Eq. (5 41) een simpele vorm
heeft. Gebruik dit om te laten zien dat A(O) 114+ B) = (14 +7°).

e) Nu willen we aantonen dat A(p) een opmerkelijk eenvoudige vorm aanneemt,

A(p) = (7 P+ Lame)y’. (3)

We vergaren stap voor stap hieronder de nodlge identiteiten:

i) Gebruik de definities in Eq.(5.38) (of Eq.(5.37)) van de aanvulling om te laten zien dat o’
en 3(= ") hermitisch zijn, (a?)' = o en 37 = 3.

ii) Gebruik het feit dat 3 en o' met elkaar anti-commuteren om te laten zien dat v* anti-
hermitisch is, (v")" = —7'. Bewijs ook dat 7'y’ = —1, (naast 7°7° = 1,).

iii) Laat ook zien dat 7' en 7° onderling anti-commuteren, 7% 4+ v%y* = 0 en concludeer
dat (7))t = 4049440, zodat

1 v
A(@ = ) (fy‘up,u + ]l4mc)(114 + /70>70(/7 DPv + 14mc>707

4po(po + mc
waarbij we opmerken dat (14 +~)7% = (14 ++°).
iv) De berekening van (vp, + 1ymc)(1s +7°)(7/py + Lame) splitsen we in twee delen'
Bewijs dat voor deel A=(y#p, + 1ymc) (v p, + Lamce) = (Yp,)? + 2meytp, + Lym?*c? en voor
deel B=(v"p,+1sme)y* (v p,+1ame) = —(v#p,)*7° + (v pu+Lame) (V09" +977°)p, +mP ey
gelden. Laat vervolgens zien dat (7°*+~4#9")p, = 2poly en (v*p,)? = L(Y*Y" +4"v*)pupy =
1,(p3 — p?) = Lym?*c® en daarmee dat deel A+B=2(py + mc)(v*p, + 14mc). Bewijs nu de
geldigheid van Eq.(3).
f) Tot slot berekenen we 1Tr( (p"A (ﬁ)) = WTr((v“pL + 1yme)y°(vp, + 1[4mc)70),
waarvoor het nuttig is om naast p = (po;p) ook p = (po, —p) in te voeren. Ga na dat
A

Yy p,y? = 4P, en dus 1Tr(A( (‘)) = %Tr((*y”p& + Lyme) (v, + ]l4mc)) Bewijs
dat Tr(y") = 0 en dat Tr(v“pﬂ Pu) = (7”7 )pupu = 1Tr(v"y" +"v")p.bv = 4(p" - p) =
4(p"°p° + p" - ), zodat %Tr( ”)) PP + 97| |P] cos @ + m3c?) = 1—0—281112(59).




