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PROGRESS ON CALORONS, CONTINUED
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The progress on calorons (finite temperature instantons) is sketched. In partic-
ular there is some interest for confining temperatures, where the holonomy (the
asymptotic value of the Polyakov loop) is non-trivial. In the last section I give
more recent results by others.

1. Introduction

This is what I said in a special talk1 given at the Minneapolis workshop

“Continuous Advances in QCD” in April, 1998:

Volodya Gribov was a lightning and thundering example of scientific

integrity and honesty. The first time I heard him speak was at a meeting

in Eger in August 1988. My first interactions with him stem from a visit

to my friends here in Minneapolis in May of 1995. At that time I gave

two talks, both on the global issue of gauge fixing and its applications to

the dynamics in gauge theories. I did get to the end of those talks and

had a few private discussions with Volodya. It is not that I believe to have

convinced him this was the way to go - our results are furthermore only

very modest. Later I learned2 that he considered having a “picture” to be

very important for approaching a problem. In February 1996 I managed

to convince Volodya to come and present a colloquium Eherenfestii, a visit

none of us in Leiden and his wife Julia are likely to forget. With sadness

we have to bear the loss of a great and unique physicist who relentlessly

looked for the truth and forcefully reminded us that we have the duty to

do the same.

Today I am happy I can repeat this, because it remains true, no matter

how long ago this was said.

During the first memorial in Budapest, called “Gribov75”, I decided to

talk about “Cosmic Rays: a bridge between high schools and real research”.
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You can still find the slides at www.kfki.hu/∼gribov75/programt.html.

Alan White remembered it and I would have loved to talk about this also at

the “Gribov80” memorial, here in Trieste, but I couldn’t. Jan-Willem van

Holten who is now an extraordinary Professor in Leiden has taken it over,

so it is doing fine. For myself, I doubted if I could talk again, but it finally

came back in time (I thank Dmitri Kharzeev who has convinced me to try

at BNL, where I did give a talk on April 28). My condition is apparently

now finally going up, instead of down, but Julia Nyiri knew this all the time

and scheduled me for a talk on May 28. But I still was afraid, so the talk

is similar to the one I gave at BNL, and also similar to the one I gave in

Mainz on September 6, 2008 (which I have written up, arXiv:0901.2853).

2. The setting

There has been a revised interest in studying instantons at finite temper-

ature T , so-called calorons,3,4 because new explicit solutions could be ob-

tained where the Polyakov loop at spatial infinity (the so-called holonomy)

is non-trivial. They reveal more clearly the monopole constituent nature of

these calorons.5 Non-trivial holonomy is therefore expected to play a role

in the confined phase (i.e. for T < Tc) where the trace of the Polyakov loop

fluctuates around small values. The properties of instantons are therefore

directly coupled to the order parameter for the deconfining phase transition.

At finite temperature A0 plays in some sense the role of a Higgs field

in the adjoint representation, which explains why magnetic monopoles oc-

cur as constituents of calorons. Since A0 is not necessarily static it is

better to consider the Polyakov loop as the analog of the Higgs field,

P (t, ~x) = Pexp
(

∫ β

0
A0(t+ s, ~x)ds

)

, which transforms under a periodic

gauge transformation g(x) to g(x)P (x)g−1(x), like an adjoint Higgs field.

Here β = 1/kT is the period in the imaginary time direction, under

which the gauge field is assumed to be periodic. Finite action requires

the Polyakov loop at spatial infinity to be constant. For SU(n) gauge the-

ory this gives P∞ = lim|~x|→∞ P (0, ~x) = g† exp(2πidiag(µ1, µ2, . . . , µn))g,

where g brings P∞ to its diagonal form, with n eigenvalues being ordered

according to
∑n

i=1
µi = 0 and µ1 ≤ µ2 ≤ . . . ≤ µn ≤ µn+1 ≡ 1 + µ1. In the

algebraic gauge, where A0(x) is transformed to zero at spatial infinity, the

gauge fields satisfy the boundary condition Aµ(t+β, ~x) = P∞Aµ(t, ~x)P−1
∞ .

Caloron solutions are such that the total magnetic charge vanishes. A

single caloron with topological charge one contains n − 1 monopoles with

a unit magnetic charge in the i-th U(1) subgroup, which are compensated
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by the n-th monopole of so-called type (1, 1, . . . , 1), having a magnetic

charge in each of these subgroups.6 At topological charge k there are kn

constituents, k monopoles of each of the n types. Monopoles of type j have

a mass 8π2νj/β, with νj ≡ µj+1−µj. The sum rule
∑n

j=1
νj =1 guarantees

the correct action, 8π2k.

Prior to their explicit construction, calorons with non-trivial holonomy

were considered irrelevant,4 because the one-loop correction gives rise to

an infinite action barrier. However, the infinity simply arises due to the

integration over the finite energy density induced by the perturbative fluc-

tuations in the background of a non-trivial Polyakov loop.7 The calculation

of the non-perturbative contribution was performed in.8 When added to

this perturbative contribution, with minima at center elements, these min-

ima turn unstable for decreasing temperature right around the expected

value of Tc. This lends some support to monopole constituents being the

relevant degrees of freedom which drive the transition from a phase in which

the center symmetry is broken at high temperatures to one in which the

center symmetry is restored at low temperatures. Lattice studies, both

using cooling9 and chiral fermion zero-modes10 as filters, have also conclu-

sively confirmed that monopole constituents do dynamically occur in the

confined phase.

3. Some Properties of Caloron Solutions

Using the classical scale invariance we can always arrange β = 1, as will be

assumed throughout. A remarkably simple formula for the SU(n) action

density exists,6

TrF 2
αβ(x) = ∂2

α∂
2
β logψ(x), ψ(x) = 1

2
tr(An · · · A1) − cos(2πt),

Am ≡
1

rm

(

rm|~ρm+1|

0 rm+1

) (

cosh(2πνmrm)sinh(2πνmrm)

sinh(2πνmrm)cosh(2πνmrm)

)

,

with rm ≡ |~x − ~ym| and ~ρm ≡ ~ym − ~ym−1, where ~ym is the location of

the mth constituent monopole with a mass 8π2νm. Note that the index m

should be considered mod n, such that e.g. rn+1 = r1 and ~yn+1 = ~y1 (there

is one exception, µn+1 = 1 + µ1). It is sufficient that only one constituent

location is far separated from the others, to show that one can neglect the

cos(2πt) term in ψ(x), giving rise to a static action density in this limit.6

In Fig. 1 we show how for SU(2) there are two lumps, except that the

second lump is absent for trivial holonomy. Fig. 2 demonstrates for SU(2)

and SU(3) that there are indeed n lumps (for SU(n)) which can be put
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Figure 1. Shown are three charge one SU(2) caloron profiles at t = 0 with β = 1 and
ρ = 1. From left to right for µ2 = −µ1 = 0 (ν1 = 0, ν2 = 1), µ2 = −µ1 = 0.125
(ν1 = 1/4, ν2 = 3/4) and µ2 = −µ1 = 0.25 (ν1 = ν2 = 1/2) on equal logarithmic scales,
cutoff below an action density of 1/(2e).

anywhere. These lumps are constituent monopoles, where one of them has

a winding in the temporal direction (which cannot be seen from the action

density).

Figure 2. On the left are shown two charge one SU(2) caloron profiles at t = 0 with
β = 1 and µ2 = −µ1 = 0.125, for ρ = 1.6 (bottom) and 0.8 (top) on equal logarithmic
scales, cutoff below an action density of 1/(2e2). On the right are shown two charge
one SU(3) caloron profiles at t = 0 and (ν1, ν2, ν3) = (1/4, 7/20, 2/5), implemented by

(µ1, µ2, µ3) = (−17/60,−1/30, 19/60). The bottom configuration has the location of the
lumps scaled by 8/3. They are cutoff at 1/(2e).

3.1. Fermion Zero-Modes

An essential property of calorons is that the chiral fermion zero-modes are

localized to constituents of a certain charge only. The latter depends on

the choice of boundary condition for the fermions in the imaginary time

direction (allowing for an arbitrary U(1) phase exp(2πiz)).11 This pro-

vides an important signature for the dynamical lattice studies, using chiral
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fermion zero-modes as a filter.10 To be precise, the zero-modes are local-

ized to the monopoles of type m provided µm < z < µm+1. Denoting

the zero-modes by Ψ̂z(x), we can write Ψ̂†
z(x)Ψ̂z(x) = −(2π)−2∂2

µf̂x(z, z),

where f̂x(z, z′) is a Green’s function which for z ∈ [µm, µm+1] satisfies

f̂z(z, z) = π < vm(z)|Am−1 · · · A1An · · · Am|wm(z)> /(rmψ), where the

spinors vm and wm are defined by v1
m(z) = −w2

m(z) = sinh (2π(z−µm)rm),

and v2
m(z) = w1

m(z) = cosh (2π(z−µm)rm).

To obtain the finite temperature fermion zero-mode one puts z = 1

2
,

whereas for the fermion zero-mode with periodic boundary conditions one

takes z = 0. From this it is easily seen that in case of well separated con-

stituents the zero-mode is localized only at ~ym for which z ∈ [µm, µm+1].

To be specific, in this limit f̂x(z, z) = π tanh(πrmνm)/rm for SU(2),

and more generally f̂x(z, z)=2π sinh[2π(z−µm)rm] sinh[2π(µm+1−z)rm]/

(rm sinh[2πνmrm]). We illustrate in Fig. 3 the localization of the fermion

zero-modes for the case of SU(3).

Figure 3. For the SU(3) configuration in the lower right corner of Fig. 2 we have de-
termined on the left the zero-mode density for fermions with anti-periodic boundary
conditions in time and on the right for periodic boundary conditions. They are plotted
at equal logarithmic scales, cut off below 1/e5.

3.2. Calorons of Higher Charge

We have been able to use a “mix” of the ADHM and Nahm formalism,12

both in making powerful approximations, like in the far field limit (based

on our ability to identify the exponentially rising and falling terms),

and for finding exact solutions through solving the homogeneous Green’s

function.13 We found axially symmetric solutions for arbitrary k, as well

as for k = 2 two sets of non-trivial solutions for the matching conditions

that interpolate between overlapping and well-separated constituents. For

this task we could make use of an existing analytic result for charge-2
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monopoles,14 adapting it to the case of carolons. An example is shown in

Fig. 4.

Figure 4. In the middle is shown the action density in the plane of the constituents
at t = 0 for an SU(2) charge 2 caloron with trP∞ = 0, where all constituents strongly
overlap. On a scale enhanced by a factor 10π2 are shown the densities for the two zero-
modes, using either periodic (left) or anti-periodic (right) boundary conditions in the
time direction.

4. More recent results

There are more recent lectures by Bruckmann15 and Diakonov.16 Also, Di-

akonov and Petrov made some progress on constructing the hyperKähler

metric which approximates the metric for an arbitrary number of calorons.

They claim that this already gives confinement.16,17 But some cautionary

remarks can be made.18 Also multi-calorons were revisited,19 and the au-

thors claim to have the full SU(2) moduli space for k = 2.

The calorons have also adjoint fermionic zero-modes, and they are now

known in analytical form.20 Finally, Ünsal has published a paper concerning

the mechanism of confinement in QCD-like theories,21 for example SU(2)

with 1 ≤ nf ≤ 4 adjoint Majorana fermions. He argues that there are BPS

and KK monopoles (precisely the constituents of the caloron), which have

zero-modes under the adjoint fermions. They then make BPS-KK bound

states (instead of BPS-KK).
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21. M. Ünsal, Phys. Rev. D80 (2009) 065001 [arXiv:0709.3269 [hep-th]].


