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Pierre van Baal*
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The Netherlands

Abstract. We study for T4 the class of solutions to the SU(ΛΓ) Yang-Mills
equations with constant field strength. The fluctuation spectrum is explicitly
calculated in terms of generalized Riemann theta functions. We show that if
these solutions are stable, they are necessarily (anti)-selfdual, in which case we
verify the index theorem.

1. Introduction

Euclidean solutions to the classical equations of motion (instantons), play an
important role in the nonperturbative analysis of gauge theories. For S4 the most
general solution is known now (ADHM construction [1]) using advanced
mathematical results. It was hoped that they could be used to understand
confinement, however Coleman's argument shows that instantons have no effect
on the Wilson loop, which is used to measure the static quark-antiquark potential
[3].

For the torus this argument is no longer valid, because twisted boundary
conditions [2] force electric and magnetic flux through the box. Nevertheless one
will encounter as always severe infrared problems. Physical quantities are
expressed in terms of the running coupling constant, which for small box size L is
proportional to ( —lnL)~1/2. So if L increases, the running coupling constant
increases and perturbation theory breaks down, not only in the perturbative but
also in the instanton sectors. Including instantons however can give an earlier
signal for the crossover. Moreover the analysis of Lύscher [4] shows that the
energy of the ground state is independent of the electric flux e (the central sectors)
to all orders in perturbation theory. Confinement would be signalled by an energy
difference, between the ground state levels in each central sector, proportional to
L. Since "twisted" instantons lift the degeneracy they might be crucial to detect this
behaviour. This work is intended as a first step in that direction.

We will concentrate on gauge fields with constant curvature. Such soltuions
were already considered some time ago by 4t Hooft [5] for SU(iV) on T4 with
twisted boundary conditions. Only if the sides of the box representing T4 satisfy
certain relations, these solutions are (anti)-selfdual. For small groups and arbitrary
compact manifolds [including SU(2) (SO(3)) bundles over Γ4] stable extrema of
the action are (anti)-selfdual [6]. It is therefore no surprise that in SU(2) an explicit
calculation shows that constant solutions which are stable are (anti)-selfdual (the
reverse is obvious).
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For constant gauge fields on R 4 this was already established by Leutwyler [7].
The boundary condition is given by requiring the action to differ by a finite
amount from that of the constant background field. There is an infinite degeneracy
in the fluctuation spectrum, which can be understood by the lack of control over
the topology of the field configurations. On the hypercube (T4) this problem is
resolved, but complicated boundary conditions is the price we have to pay. For the
boundary conditions that we choose (which are of the abelian type), the Riemann
^-functions provide a natural (from the mathematical point of view) solution to this
problem. In the case of SU(2) each set of boundary conditions admitting constant
solutions is gauge equivalent to an abelian set (Appendix B), but for SU(JV), N > 2,
this is no longer true.

Constant field strength configurations also played an important role in the
Copenhagen vacuum picture [8]. One starts from a constant chromomagnetic
field in the z-direction. This is certainly not selfdual and thus unstable (unlike in the
abelian case). Including the unstable mode yields an effective Higgs type potential.
In analogy with the abelian Higgs model one minimizes the potential by assuming
the formation of a lattice structure orthogonal to the z-direction, with size of the
order of the inverse of the effective Higgs mass (~j/2g|β|, B the background
chromomagnetic field strength). The reason for considering this type of vacuum is
that, when including ("static") quantum fluctuations and minimizing with respect
to the background magnetic field, the energy is smaller than that of the
perturbative vacuum. Furthermore phenomenology indicates <0|£2|0>>0, and
the bag model gives similar results.

It has been shown by AmbJΘrn and Olesen [8] that their lattice structure is
equivalent to imposing twisted boundary conditions on the unit cell in the x, y
direction. In essence one considers gauge fields over the 2-torus T2, the unstable
mode is then given by the θ-function on T2 (up to an exponential factor). It is
therefore not really surprising that our analysis on T4 is also based on ^-functions.
Whereas the classical ^-function on the 2-torus (due to Jacobi) is well known, its
generalization to a 2w-torus (due to Riemann) is not.

This article will mainly concentrate on giving the necessary technical details.
As for the 2-dimensional case, there is a specific complex structure on T4 in

which the 0-functions are most easily expressed. This suggests looking for the most
general (anti) selfdual solutions on T4. It is amusing to note that for (CPί on Γ2, the
exact instanton solutions are expressed in terms of the Weierstrass σ-function [9a],
which has a simple relation to the 0-function [9b]. Also the solution of Gϋrsey and
Tze [10] is based on elliptic functions (the generalization of the Weierstrass
^-function to quaternions). It seems to be a candidate for an instanton on T4 with
unit Chern number. However, one simply checks that the gauge invariant quantity
Tr(f^v) is not periodic and it can therefore not yield a solution on T4. Explicitly
their solution is of the form: (σa the Pauli matrices, η the 't Hooft η symbol [11]):

Aμ=-±σaήaμvd
v\nρ, (1.1)

with

+ \ ( L 2 )
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where L is the lattice (minus the origin) spanned by qμ = ωμvn
v, with n e Z 4 and

detωφO. ρ is pseudo periodic: ρ(x + q) = ρ(x) + X'aq + bq, but

T r ( F 2 v ) = - D D l n ρ , (1.3)

with D the four-dimensional Laplacian, is not periodic.
The organization of the rest of the paper is as follows. In Sect. 2 we will set up

the notations and the fluctuation equations. We will use SU(JV) gauge fields with
twisted boundary conditions, which is equivalent to SO(N2 — 1) fiber bundles over
Γ 4 [12]. In Sect. 3 we will give the fluctuation spectrum. Self duality and stability
of the solutions will be treated in Sect. 4, together with the index theorem. Section 5
gives a discussion of the results and an outlook for further research. Technicalities
on the ^-functions are collected in an appendix.

2. The Solutions and Their Fluctuations

We will first review how to put gauge fields on the hypertorus. These gauge fields
will be in the fundamental representation of SU(iV) and are hermitian. The
curvature or field strength is given by

= dμAv - dvAμ + i[Aμ, Av] . (2.1)

The 4-torus will be labelled by a 4-dimensional hypercube { | μ μ }
with the standard metric of R 4 . It is not really essential that the hypercube is
rectangular, but for physical applications [2] it is more convenient. From a
mathematical point of view it is more appropriate to view T 4 as IR4 modulo some
4-dimensional lattice L. So with

= nμa
{μ); ΠGZ*}, (2.2)

we have Γ 4 = R4/L. Here a{μ) is a vector in the μ-direction with length aμ, they form
the Z-basis of the lattice L.

To define gauge fields on Γ4, we take gauge potentials on R 4 and demand that
all gauge invariant quantities which can be formed out of them are periodic over L.
This implies that the vector potential satisfies:

Aλ(x + *<*>) = lΩμ(x)-]Aλ(x) = Ωμ(x)Aλ{x)Ωμ{x)"1 - iΩμ(x)dλΩ; \x). (2.3)

In the terminology of fiber bundles over the torus, Ωμ(x) is the elementary cocycle
Ee(μ)(x) and in general we have

)Aλ(x)9 (2.4)

where the cocycles have to satisfy the cocycle condition:

M)Em(x). (2.5)

This clearly implies En(x + m)Em(x) = Em(x + n)En(x), and one easily shows that
given the elementary coycles Ee(μ) this identity is satisfies if En(x) is defined
inductively by (2.5) and if:

)(x). (2.6)
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Since [ZΩμ] = [Ωμ], for Z an element of the centre of SU(JV), identity (2.6) implies:

Ωμ(x + α(v))Ωv(x) = ZμvΩv(x + ̂ >)Ωμ(x). (2.7)

Zμv is an element of the centre of SU(JV) defining the twist of the bundle [2,12]. It is
a topological invariant, which is conveniently labelled by the twist tensor nμv:

Zμv = exp(-2πinμJN), (2.8)

n is an antisymmetric 4 x 4 matrix with entries in TL (modiV). Together with the
Pontryagin index Pl9 this specifies the topology of the fiber bundle:

P, = - 2NC2, C2 = ^ j Tr(GμvGμv)d4x = v + ^ Pf(n), (2.9)

where G is the dual of G: Gμv=^εμvaβGaβ. Pf(w) is the Pfaffian of the twist tensor:

Pf(w) =inμvnμv=$nμvnaβεμvaβ, (2.10)

and v is an integer, the "instanton number," see [12] for details. Px is always an
even integer; C2 is also integer if there is no twist ( Z μ v = l or equivalently nμy

= 0modiV).
We will restrict ourselves here to pure abelian boundary conditions; to be

specific [12]:

( ^ ^ Λ (2.11)

with T the generator in SU(iV) which "contains" the centre of SU(IV):

T = d i a g ( l , . . . , l , l - N ) . (2.12)

JV—1
For these configurations v = 0, or C2= —rr—Pf(n). An obvious solution to the

Yang-Mills equations of motion:

DμG2v = dμGjv + i[Λ2,G2,]=O, (2.l3)

satisfying the boundary conditions (2.3), (2.11) is:

One of the reasons which enables us to explicitly compute the fluctuations around
these solutions, is that they are sections of certain well-defined U(l) line bundles
over T 4 .

For this purpose we expand Aμ as follows:

(JV-l) 2 JV-1

Aμ = A°μ+ Σ ba

μTa+ Σ ] / 2 R e ( c ^ f l ) , (2.15)
α = l α = l v

where b is real, c is complex, Ta for α= 1 up to (JV— I) 2 — 1 are the generators of
SU(JV-l) embedded in SU(JV) in the upper left corner, 7^-1)2
= (2JV(JV-1))~1/2T and (Σa)kl = δkaδlN. The generators Ta supplemented with
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T{N-1)2 + 2a+1=&a + Et) and T{N_1)2 + 2a=
 l-{Σa-Σ+\ form the algebra of

SU(iV) with normalization Tr(TaTb)=^δab. Using the commutation relations:

lT,ΣA=NΣa9 [_τΣn=-NΣ:, [Γ,Γβ]=0, (2.16)

one finds that the boundary conditions on Aμ are satisfied if and only if:

) (2.17)

So obviously b is a section of a trivial U(l) line-bundle and c a section of a non-
trivial U(l) bundle with its first Chern class in 1 — 1 relation with n. Again we can
define for this bundle a cocycle en(x):

v a,

en + m(x) = en(x + rnμa^)em(x)

Explicitly we have:

α(fc) = exp (πi

V
We are now in a position to formulate the fluctuation equation, by expanding

the action around the solution (2.14):

iί d4x Tr(G,\) = i J rf4x
- Tr(<5 A μ ί ) v

2 ^ μ - ^^ μ

+ 2iΎΐ(δAμDvlδAμ, δAvJ)+±Tτ((ilδAμ,δAJ)2)} , (2.20)

where Aμ = A°μ-\-δAμ and Dμ = dμ + ί[Aμ, •]. Furthermore we introduce as usual
background gauge fixing, DμδAμ = 0, so that in general the action including the
Faddeev-Popov fields is given by [11]:

S= ^ d4x{jΎr(G^v)
2^^Ύr(δAμM

μ^δAv)-i-Ύr(ψ + Mghψ)-\-Θ(δA3)} , (2.21)

with

M5V = -δμ vD
2

λ-2i[Gμ° v, •] , Mgh=-D2

λ . (2.22)

If we substitute for δAμ the expression in (2.15) and expand the ghost fields
according to:

Ψ= Σ ψaTa-\~ Σ v^iφa^a~f~{φa Σa} ) (2.23)
α = 1 a=1
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with the appropriate boundary conditions:

ψa(x + nμa
{fl)) = ψa(x), φ\x + nμa

{μ)) = en(x)φ\x), (2.24)

then the action takes the form:

S = So + ί dAx{\ba

μ{Moδ^δab)b\ + < ( M n ^ - 4πiFnδabc
h

v + ψ"(MoδJιpP

+ φa\Mnδab)φh + 0(OS^)3)} , (2.25)

with

S 0 = 2 ί ^ 4 X Tl" (Gμv ) = τ~τ Fμv2 V>

n 4

F = μv V= Γf a
(2.26)

V1 /
Before we will construct the spectrum of these operators, let us briefly discuss

the generalization for an arbitrary gauge group H. For convenience we will restrict
ourselves to a simple and simply connected group [like SU(/V)]. Generalization to
semi-simple, multiple connected groups and details can be found with the help of
Goddard et al. [13] and Humphreys [14] (see also [20]). One can always choose
the following basis of the Lie-algebra of H:

Ti T1 U1 (1) Z7 (s) (0 OΠ\

[7J,£J = a i £ e , [ΪJ,ϊ}] = 0. (2.28)

The α(i) are called the roots and they span an r-dimensional space, whose metric is
given by the Killing form κ(X, Y) = Tvad(XY) restricted to the maximal torus (or
Cartan subalgebra, spanned by Tl9..., Tr)

One can choose normalizations such that this metric is δtj\

TU7J7J) = 2ΛΓ Ίv^Tj) = δtJ, Σ «,«; = δtJ. (2.29)
a,

The abelian boundary conditions are now

^ Y (2.30)

and the cocycle conditions imply

exp(2πmfe

μvTfc)eZ(i/). (2.31)
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Using (2.28) one easily finds that this is true if and only if:

exp(2πm*vαk) =1 or nμv α e Έ (2.32)

for all roots α. So for each μ, v —— is a weight for the "dual" of H [13], which is
2N

nothing but the Dirac quantization condition [Eq. (2.31) is the condition for the
"single valuedness"]. The solutions of the Yang-Mills equations of motion are:

<Λ ^ (2.33)
aμav * aμav

Expanding around these solutions to implement the boundary conditions on the
fluctuations we find:

Aμ = A°μ + &μTk+-j= c«μEa, b(x + α<">) = b(x),

(2.34)

And (2.32) again implies that we have sections of line bundles with a first Chern-
index ot nμv. Furthermore we have

Pi = 2Σ PfKv) = 2 Σ Pf(α nj, (2.35)
k α

which is again twice an integer.

3. The Fluctuation Spectrum

We will introduce suitable complex coordinates, in which the fluctuation
equations obtain an especially simple form. This is also suggested by Leutwyler's
[7] analysis, but the amazing thing is that the boundary conditions are compatible
with this choice and the whole analysis becomes canonical if one realizes that F
[see (2.26)] introduces a positive definite hermitian form H. To be specific we first
introduce coordinates:

x = Sx, SeΘ(4), (3.1)

which brings F in the standard form:

0
(3.2)

The complex coordinates will be chosen according to

z(x) = (zuz2)=-=(x1-ix3,x2-ίx4)9 (3.3)

and the positive definite hermitian form will be given by

H(z,w) = 2(z1/1w1+z2/2w2) = vvt/zz, (3.4)
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with /ι = 2diag(/ 1 ,/ 2 ) 1 . If we furthermore define:

{ A A ) {ι ^ , (3.5)

(dZl, dZ2) = -~ (3*, + i δ ί 3 , 3 i 2 + iδ i 4 ), (3.6)

a = (aua2); ak^--^-~ ~hklzu (3.7)

i dzk 2

we find [see (2.26)]

Mw = {α,αt}, (3.8)

<(MΛv - 4πiFμ vK = (cJJ* ( M A - 2π/ι,z)< + (<U* (MBίH + 2πhkl)c% .(3.9)

Clearly the operators ak and αj are annihilation and creation operators, since:

[αfe, a\] = πhkl = 2πfkδkl. (3.10)

Therefore the spectrum of Mn is given by2

2 ^(2mk+l)/fc, χ m = l 1LhJL χ0, (3.11)
|/m 1 !m 2 !

where χ0 is the ground state, uniquely determined by

and the boundary conditions. Explicitly

— —H(z,z)

χo = e 2 f(z), (3.13)

where f(z) is any holomorphic function, such that χ0 satisfies the boundary
conditions.

Let us define unit vectors e^k) and e(*k\ with the properties e{Zk) = (e{Zk))* and e^k)

= δkb e^k) = 0. Explicitly with respect to the x basis in (3.1) we have

e ( Z l ) = - p ( l , 0 , -z,0) = [ e ( f l ) ] * , e ( Z 2 ) = - ^ ( 0 , 1 , 0 , - 0 = [e ( f 2 ) ]* . (3.14)

Then the spectrum of MΠ(5μv — 4πiFμ v is also easily determined:

Kn, k = λ m - 4πfk, χmΛ = χme(Zk)

( 1 1 5 )

1 If one prefers to work with H(z, w) = zfhw one should replace (3.3) by z = (x1 + ix39 x2

+ ix4)/j/2
2 For the time being we assume fk Φ 0, so H non-degenerate
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For Leutwyler's analysis [7] the boundary conditions are that χ is square
integrabel, but this means that /(z) in (3.13) can be any holomorphic function,
whence the infinite degeneracy. In our case / has to satisfy the boundary
conditions f(z-\-q) = uq(z)f(z), with uq(z) the appropriate cocycle. In order for
(3.13) to admit a non-trivial solution the coycle uq must necessarily be a
holomorphic function. That this turns out to be the case is not really a surprise
since the spectrum of a bounded hermitian operator can never be empty. Thus we
look for holomorphic sections on a complex torus: T4 = (C2/L. The canonical
objects for these are the(Riemann) ̂ -functions. For the theory of ^-functions we
refer to Igusa [15], whose notations we will roughly follow.

The crucial thing for the complex structure on <£2/L with hermitian form H to
admit 0-functions as holomorphic sections is that

E(z,w) = ImiJ(z,w) (3.16)

restricted to the lattice L = {kμζ
{μ)\k e Z 4 , ζ^ = z(a{μ))} takes values in the integers.

With respect to the real basis one can simply express the hermitian form explicitly:

H(z(x), z(y)) = xμ\F\μvyv + ίxμFμvyv, (3.17)

where \F\ = (-F2)ί/2. To prove this, first express things in the x basis of Eq. (3.1),
where ( - F 2 ) 1 / 2 = d iag(/ l 9 / 2 , / l 5 / 2 ) . So E is nothing but F and E/L = n:

E(ζM,ζW) = nμv9 C(μ) = Φ ( μ ) ) (3.18)

The elementary cocycle of (2.18) can also be expressed in terms of E and z:

eeM(x) = exp( - πiE(ζ*\ z(x))). (3.19)

The boundary condition for χ0 is therefore

χo(z + nμ£<*>) = exp( - πiE(nμζ^\ z))α(n)χo(z). (3.20)

Note that, as it should be, χm as defined in (3.11) satisfies the same boundary
conditions. For this one uses the property

a\z + q)eq{z) = eq{z)a\z\ qeL. (3.21)

To make the holomorphic structure visible we finally write down the boundary
conditions on f(z):

f(z + q) = a(q) exp (^ H(q9 q) + πff(z, q)) f(z)

= uq(z)f(z)9 qeL, (3.22)

where a(q) is defined in (2.19). It satisfies:

a(q + r) - α(«)α(r) exp(πi£fa, r)). (3.23)

The holomorphic cocycle uq is also called an automorphy factor. Any α defined on
L satisfying (3.23) and having values in U(l) is called a second degree character
strongly associated with E. Then all functions defined by (3.22) are called
^-functions of type (H, α); they form a complex linear space L(H, α) of dimension
|Pf(n)|, see [15, Chap. II] for details, some of which are collected in the appendix.



406 P. van Baal

We assumed that H is non-degenerate (/l9 f2 φ 0) this is not really necessary. If
f2 = o, /j φ 0, (3.11) still generates part of the spectrum (m2 = 0), especially the m = 0
modes are still given by β-functions. The dimension of L(H, α) is in this case the
greatest common divisor of the entries of n [g.c.d. (ftμv)], see the appendix for
details. There is one 0-function in L(H, α) which has an especially simple form (for
H non-degenerate):

/<>(*) = Σ oto)exp(tf(z f ί)- f fl(ί,«)). (3.24)
qsL \ 2 J

We will call it the intrinsic 0-function [16]. That the analysis of the spectrum of Mn

is indeed canonical can be found in [17] and references therein, where the spectrum
of the Laplace-Beltrami operator (Mn up to a constant) is constructed.

Let us finally collect our results to give explicitly the eigenfunctions and
eigenvalues for the operators in (2.22):

MAδA = λδA δA = ]/ϊRe φ Mghψ = λψ

Φ

fh{P,a)

fin,r,b) / 2 \ 2

φ{m,r,b) 2πί Σ ( 2 m i + l)/ i -2/ k J φ{m'r>b)

 2π Σ (2mi + l)/ i

(̂"».»1.6/ i . . _ , / . = 1

/ι = 0 ^(μ)^(P'c)

A<Oow/j; ίe{zi)φ(0'r'a)

where α, fo, c, fc, m, p, and r have the range:

α=l, . . . , ( iV-l) 2 ; ft=l,...,(JV-l); c= 1, ...,(iV2-1);

fc = l,2; m e N 2 ;

We used the following definitions for the normalized eigenfunctions (Σa = Σa+ί_N

ΐora>N-l)
φ(P^a)— e2πipμxu/aμ . j» ^

(3.26)



Yang-Mills Solutions with Constant Field Strength 407

The χr form an orthogonal basis for aχ = 0 (3.12) and are defined in the appendix
(A.23).

The generalization to the solutions in (2.33) is straightforward and will
therefore not be worked out in detail.

4. Stability and Selfduality

Using the results of the previous section we find 2(N— l)|Pf(n)| negative
eigenvalues (λ = 2π(/2 —/i)) if and only if /i φ f2 (by construction we choose fx ^ f2

^ 0). The duality equation is invariant under Θ(4) transformations S. If det S = - 1
self and antiselfdual configurations are interchanged. Thus the constant field
strength solution is (anti) selfdual iff fγ = / 2 . (In the x coordinates the solution is
always antiselfdual). We can conclude from this that the constant solutions are
stable if and only if they are (anti)-selfdual. If f1 φ /2, the number of negative (and
zero) modes is consistent with the lower bound derived by Taubes, Theorem 3.8
[23]. Selfduality imposes for a given twist tensor nμv constraints on the sides aμ of
the euclidean box which parametrizes the torus (or equivalently the aμ determine
the scale of the coordinates). But there is also a constraint on nμv itself to admit an
(anti)-selfdual solution. It is necessary and sufficient that sign(nμv) is self or anti-
selfdual. If ftμvφO for all μφv, aμ is fixed up to an overall scale (no summation):

^ ^ 1 / 2 α v ? (4.1)

where μ, v, α, β are all different. In general the number of undetermined scales is one
more than the number of zeros in (rc14, w24, w34). These are similar conditions as
found by't Hooft [5]. His boundary conditions are however more complicated for
N Φ 2. But we are confident that a similar analysis can be performed. One needs a
generalization of the θ-function, where the bicharacters α(fc) take their values in
SU(JV).

We will now use the symmetries of the solution to describe the degeneracies.
With (2.14), (3.2), and (3.5) the solution in complex coordinates is given by:

Al = jjfaT. (4.2)

The connection 1-form A = Aμdxμ is given by A = Az.dzi + AI.dzi. The solution is
therefore obviously invariant under 1) the unitary coordinate transformation
z-+Uz which leaves h invariant, and 2) the global gauge transformations which
commute with the holonomy group of (4.2)3. These gauge transformations form
the group generated by Ta for a = 1.. .(N — I) 2 with covering XJ(N — 1). The unitary
transformations leaving h invariant form the group U(l) x U(l) for f1 φ f2 and U(2)
for fx = / 2 . In the real x coordinates the group U(2) is SO(4)nSP(2). Explicitly it is
generated by

(4.3)
τ 2 = - I2(g)σ2, τ 3 = -σ2(x)σ3,

3 The holonomy group of Aμ is given by P exp ί i J Λμdxμ I, where c runs over all closed loops,
with a fixed base point, see [18, 20] \ c /
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where the tensor product (x) is such that F= —ίfo2®
σ3' τo a n ( i τ3 generate the

subgroup U(l) x U(l). The fluctuations have to be representations of these groups,
which explains most of the degeneracies in the eigenvalues.

Assuming from now on selfduality (f1=f2 = f) we find the following
eigenvalues (λ) and degeneracies (μ):

/=o

MA

λ

4πf\k\

μ

4(JV-1)|£

4(iV-l)2

4(iV2-l)

• PflWI

M 9 f t

Σ W 2

μ \ &μ J

(Λf-l)|fc

(JV-1)2

•Pί")l (4.4)

where keΊL and p e Z 4 and k = k + δk>0.
From now on we will only concentrate on the zero-modes. Explicitly they are

given by [see (3.25), (3.26)]

/Φ0

/=0

where fc=l,2; α=l...(JV-1)2; 6= l...(iV-1); c= l...(iV2-1); r1=Q...(ex-\)\
r2 = O...(e2-l) and/i-1,2,3 or 4.

Before we discuss which modes are physical we work out the index of the
appropriate operator to check the index theorem, which has been calculated in the
literature for arbitrary base manifold and gauge group [18, 19]. If T is the
following operator (in the selfdual sector):

T:δAμ^(-±εμvaβD[aδAβ] + D[μδAx], DμδAμ), (4.6)

and iΐfμy is an anti-selfdual 2-form with values in the Lie algebra and g also takes
values in this algebra, we can define the inner products:

(4.7)

With respect to these inner products we can find the adjoint of T:

(4.8)
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After some calculations one finds

TfT = MA, (4.9)

and

TT\f,g) = (-D2f, -D2g) = Mgh(f,g). (4.10)

On Γ4, g and / satisfy the same boundary conditions as δA. So we find:

index T = dim ker T- dim ker Tf= dim ker Tf T- dim ker TT^

= dim ker MA - 4 dim ker Mgh,
(4.11)

and with the results from Eq. (4.5) this implies:

index Γ=4(ΛΓ- 1) |Pf(n)|, (4.12)

which is exactly the number of non-constant zero modes. This corresponds with the
general result for T 4 [18], which easily extends to the twisted case too:

indexT=4N|C2 | = 2|P1 | . (4.13)

To see which modes are physical we first consider the topologically trivial case
with zero twist (nμv = 0) and periodic boundary conditions. There we can easily
write down the most general solution [4]:

d(ΐ\...,φW), £ < = 0, (4.14)

where two solutions A and A of this form are gauge equivalent (allowing periodic
gauge transformations only) if and only if for all μ and i

φf = φ^\moά2π)\ (4.15)

with σ some JV-permutation. All solutions are gauge equivalent to the above ones.
Wilson loops which wind around the torus should be left invariant under gauge
transformations; we therefore allow for periodic gauge transformations only4. For
almost all solutions (4.14), i.e. φ^)φφj/)(mod2π) for all ίφj, MA has 4(JV— 1) and
Mgh has (N— 1) zero modes. Those of MA are to be treated as collective
coordinates. Those of Mgh are a consequence of the constant gauge transforma-
tions which leave A invariant; they are deleted from the spectrum of Mgh (see
[18] for details, a factor (volume HA)~ι enters the path integral, where HA is the
group which leaves A invariant).

In the topologically nontrivial case with non-zero twist we do not know the
most general solution, but we can at least exhibit the most general abelian solution:

Aμ=-^FflvxvT+-dmg(φ^,...,φ^), Σφf = 0, (4.16)

where again two solutions are gauge equivalent if and only if for all μ and /:

(4.17)

Equivalently, allowed gauge transformations (Ω) have to satisfy Ωμ(x)
a{μ))Ωμ(x)Ω(x)~~1modZN, therefore leaving the boundary conditions invariant
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However in this case the permutation σ should leave N fixed5. This constraint on σ
comes from the fact that the allowed gauge transformations have to be periodic
and leave T fixed. We leave it to the reader to show that also for the solutions in Eq.
(4.16) the fluctuation spectrum can be found explicitly. In particular for almost all
solutions (4.16), [i.e. φf * φf{moά2π) for all iφ j], MA has 4(ΛΓ- 1) (|Pf(n)| +1)
and Mgh has (N— 1) zero-modes. The non-constant zero-modes of MA are again
given by ^-functions, this time with shifted arguments and modified bicharacters α.

Let us digress to the case of SU(2). We want to determine the number of
parameters for an (anti)-selfdual solution if our abelian solution is not (anti)-
selfdual. The number of zero-modes in MA cannot be smaller than the index of T. If
it is larger, dimkerM^ is necessarily non-zero. So let us investigate solutions ψ
[with values in the algebra of SU(2)] of Dμψ = 0 (if there are nontrivial solutions the
kernel of Mgh is not zero). This obviously implies [Dμ,Dv~\ψ = Q or equivalently:

[<V,V] = 0. (4.18)

We find therefore in SU(2),

Gμv(x)=fμv(xMx), (4.19)

where fμv(x) is an (anti)-selfdual 2-form with real values. The condition that Gμv

satisfies the Bianchi identity and the Yang-Mills equations of motion imply

V ; v = 0, 5^ ,1 = 0. (4.20)

So fμv is the field strength of an abelian gauge field bμ,

fμv = dμbv-dvbμ. (4.21)

Obviously the nonabelian gauge potential

Aμ = bμψ (4.22)

gives rise to (4.19). The general form of Aμ is therefore a gauge transformation Ω of
(4.22) which leaves (4.19) fixed, so ΩxpΩ~ί=ψ. This implies that Ωdfi'1 is
proportional to ψ and thus it only changes bμ by an abelian gauge transformation
and Aμ is still of the form (4.22). Finally we have to implement the boundary
conditions with [see (2.11)]

(4.23)
\ Δ v Clv /

We find:

σ3. (4.24)

5 Wilson loops winding around Γ 4 have to be invariant. See also footnote 4. The appropriate
Wilson loop winding once around the torus in the vth direction is now
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t
- S/(2nβΓ

1 2

Fig. 1. The action S as a function of y. The dotted line is the abelίan and the full line the antiselfdual
solution

This is only possible if ψ(x) is a multiple of σ3, but then Aμ is necessarily of the

abelian form [see (4.16)]

Λ<=l-2J (4.25)

Since we considered the case that this solution is not (anti)-selfdual, we conclude
that the number of zero modes for MΛ9 with A (anti)-selfdual is 4(N — 1) |Pf(«)| and
Mgh has no zero-modes.

There is a nice intuitive picture which explains the enlargement of the (anti-

selfdual solution manifold for (anti)-selfdual Fuv= —^-. For convenience fix n13

aμav

= n24 = e,n12 = nί4. = n23 --=n24. = 0 and put y = a1a3/a2a4 which is variable. For an
anti-selfdual solution we must have y=l. The action of the abelian solution in
(4.25) is:

) . (4.26)
This is depicted in Fig. 1. The unstable solution for yΦ 1, joins together with the
anti-selfdual solution solution at y=l. At this point the solution manifold is
obviously enlarged. As we computed there are 4(ΛΓ— 1) extra zero-modes. In [18]
one can find that the contribution to the path-integral, in so far as it depends on the
coupling constant is

(ϋfWa) (4.27)

where σ(F) = h1(F)-ho(F)-(hί(0)-ho(0)), with ft^dimkerM^ and h0

= dim kerMgh. So σ(F) = 4|Pf(n)| if F is (anti)-selfdual and σ(F) = 4|Pf(n)| - 3 if F is
not. Thus tunneling through (anti)-selfdual solutions in the case that conditions
(4.1) are not fulfilled is suppressed by a factor g3.
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5. Discussion

We considered on Γ 4 abelian solutions of the Yang-Mills equations of motion,
satisfying abelian boundary conditions. In Appendix B we prove that this saturates
all possibilities for SU(2) (up to a gauge), but for SU(JV), N> 2, t' Hooft's analysis
[5] shows that abelian solutions exist which do not satisfy abelian boundary
conditions.

Our computations suggest that the (anti)-selfdual solutions which contain an
abelian sector dominate the path integral. Perhaps it is sufficient only to consider
these situations. Furthermore in this case the valley in the action functional,
describing the local minimum, is widest near the abelian solutions of the form Aμ

= — —FμvxvT. It is then feasible that one only needs to expand around these

solutions. For this situation one can already check that the correct renormaliza-
tion group behaviour is obtained, by explicitly using the results of Eq. (4.4). Also
the quasi-classical expansions for MA and Mgh given in [21] can be used.

However, since the "instantons"6 on T 4 (after transforming to the Λo = 0
gauge) do not in general represent tunneling between vacuum states, it is not
guaranteed that the "instantons" we suspect to dominate the path integral
interpolate between states with nonzero overlap with the vacuum states. In that
case one is computing energy splits between excited states.

Alternatively one can try to find all euclidean solutions explicitly interpolating
between Luscher's vacuum configurations. This seems as difficult as constructing
the general "instantons" on T4. The subject is presently under investigation.

Finally we hope that our work is also of mathematical interest. It is suggested
that ^-functions are the natural objects to construct the "instantons." Since
θ-functions are algebraic objects on a torus, an algebraic construction, somewhat
similar to S4 (see [22] for a review), might be possible. Unlike S4, we have on T 4 a
"preferred" complex structure. One can even view our abelian solution in the
holomorphic gauge Az. = iπfizi as canonically associated with the metric on the
U(l)-line bundle, admitting the ^-functions / as sections. The norm n is given by:

n(f(z)) = \f(z)\e~πϊmz z\ (5.1)

and the connection in the holomorphic gauge is then found by

Appendix A

We will discuss the necessary details to prove the following formula [remember
that L(H, α) is the linear space of θ-functions of type (//, α), and not the line bundle
determined by (H, α)],

(A.I)

6 Instantons between quotation marks, since we include twist
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and to construct explicitly an orthonormal basis for L(H, oc). For the time being we
assume that H is nondegenerate. An obvious generalization of the intrinsic theta
function /0 (3.24) is:

ft(z) = Σ «(«) exp (πH(z + t,q-t)-~ H(q, q)+*- H(t, ή) ,V 2 2 J
E(t9q)eZ MqeL.

Explicitly the condition for t is:

nμvtveZ. (A.3)

Equivalently one can define ft through:

r . . -?-H(t,t)-πH(z,t)

ft(z) = e 2 fo(z + t). (A.4)

Therefore t is only defined modulo L. Clearly, t satisfying (A.3) form a lattice Ln

which contains L. If (A.I) is correct, then not all these ^-functions can be
independent, since LJL has det(w) = Pf(n)2 points. In the following we will show
how to single out the appropriate set.

But first we will discuss the classical θ-functions which will yield a canonical
orthonormal base for L(H, a). We remind the reader of the fact that n can be
brought in the Frobenius standard form by an SL(4,Z) transformation T [15, p.
71]:

(A.5)

e1 = g.c.d. (n ), e2 = — e ex

Let the Z-basis of the lattice L with respects to which n is of this form be ξ{μ\ i.e.
E(ξiμ\ ξ{v)) = riμV, or equivalently ξ{μ)=Tμvζ

{v\ and choose a C-basis according to

£<3) £(4)

z = 21—+z2—=Utz. (A.6)

Using lmH(z, W) = E(z9 w) and E(ξ{3\ ξ{4)) = 0, we find that K= U+hU is real and
symmetric, so we can define the symmetric (C-bilinear form

S(z,w)=-zhw. (A.7)

Next we introduce the mixed quadratic form,

w), (A.8)
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and transform the ^-function / of type (H, α) to the 0-function θ of type (Q, α):

( z ) , (A.9)

= ΰq(z)θ(z); qeL,

( (A.lUj

It is obvious that the transformation between (#, α) and (Q, α) is 1 — 1. It is
introduced because of the property:

or that Q(z, w) vanishes for wt real. So for q e L of the form p1ξ
i3)-\-p2ζ

(4\ uq(z)
= a(q), and θ is almost periodic in the real direction. To work this out in more
detail, we introduce the so-called characters m and / of α:

where exp(πiB(q, q)) is a bicharacter as in (2.19) but with respect to the Frobenius
bases (ξiμ)) of L; if we denote the components by qμ(q = qμξ

{μ)),

2

B(q,q)= Σ eMi + 2
i=ί

β(q) is now obviously linear in q and this defines the characters of α:

[ Σ ( k q k + 2 k q k ) ) (A. 14)

For α given by (2.19) m and Z can always be chosen 0 or \. With these definitions one
easily verifies that the holomorphic function7:

θ(z)exp(-2πim e~ιz) (A. 15)

is periodic for z real, with periods (el9 e2). Therefore θ has the following unique
Fourier expansion:

0(Z)= Σ c
reΈ1

We still have to satisfy (A.10) for q = p1ξ
{1)+p2ξ

{2\

= θ(z)Qχp(-2πί(p

where we used the following identity:

) <> ) () , ξ(v)).

7 e = ), m z =
\ 0 eJ
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Using (A. 11) this implies Q(z,q)=-2ip z. On the other hand E(ξ(i), ξ(j)) = 0 (ij
= 1,2) implies that

is symmetric, τ as defined above is called the period matrix, and one easily verifies
that

2 MJ+2)

ξ{i)= Σ τ o - , (A.20)
β

and that Imτ is positive definite,

Substituting (A. 16) in (A. 17) gives a relation between the Fourier coefficients,

c(r + ep) = exp (2πi{\p τp + (r + m) e " ιτp+p 0) Φ ) ,

p G Ί?

and so we find:

θ(z)= Σ d(r)θr(z),
Ogri<|e i | (A.23)

By construction we verified (A.I) since |Pf(n)| = |e1^2 |, but furthermore the θr

form an orthogonal set of 0-functions each with the same length, where the inner
product is defined through

<Θ19Θ2>= ί ^ ^ i ω ^ ω e x p ( - π R e ( β ( z , z ) ) ) , (A.24)

or if we write things in terms of the original U(l) sections,

(z), (A.25)

it is the standard inner product <Zi,Z2)
=:: ί d4xχ1(z)χ2(z). For the proof of

T4

<θn θs) = δrs(θ0, θ0} = δrs || θ01|2 (A.26)

we refer the reader to the literature [15, p. 80]. The canonical basis for the zero-
modes of Mn is therefore given by the orthonormal set:

which is still true if H is degenerate {e2 = 0), e1 is called the reduced Pfaffian [15]8.

8 In (A.6) replace e2 by 1, then following the analysis one finds (A.23) with all 2 comp. vectors
replaced by their first component. So θr(z) is independent of z2
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There is one disadvantage concerning the above construction and that is its
complexity. The intrinsic ^-functions (A.2) are on the other hand in general not
orthogonal9:

</,/*>= K * / ^ ) 7 F K π * ^ ^ (A.28)
so they all have the same norm, but cannot all be orthogonal. Let us at least
constitute a basis for L(H, α), using these intrinsic θ-functions. First we have

ft(z) = e ~ *S(* fz) Σ ctrθr(z). (A.29)

Using (A.4) we find

(A.30)

A set of |Pf(rc)| distinct t e LJL, such that β( , ί) = 0 is given by

1 e2

 2 e2 '

With (A.23) this implies:

ft(z) = e~^Six'x)Σc0^
2κi{m+r)'e'lϊθr(z). (A.32)

And so

ctr = exp(2π/(m + r) e"x~t)cor, (A.33)

ft(z) form a basis for L(ίf, α) iff the square metric ctr in (A.29) is nonsingular. Or

τ-r /g2πifc/ei _ ^nil/eΛ

(A.34)

So corφ0 Vr is necessary and sufficient. We leave this to the reader to verify [16,
Sect. 4].

Note that </t,/f> = Σkorl2 ll^oll2 independent of ί, consistent with (A.28).
Using (A.4) only, a somewhat simpler version of (A.28) can be established:

α / , > = β-1cϋϊ (M)</ t-.,/o> (A.35)

Also with (A.4) we have ft-s(fy = e~*m~Stt~8)fQ(t-s). So knowledge of /0(ί)
enables us to find with the Gramm-Schmidt procedure an orthonormal basis,
using (A.28).

We will end this appendix by mentioning a simple consequence of (A.28): All /
orthogonal to f0 have to vanish in z = 0, and therefore on the whole of L.

9 (A.28) is found by explicitly working out the double sums, and using periodicity of the
integrand
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Appendix B

In this appendix we will answer two questions about SU(JV)/ZN fiber bundles over
/τ-i4

(i) Given a solution of the Yang-Mills equation (DμGμv = 0) with constant
curvature, is there a gauge in which the boundary conditions are of the abelian
type?

(ii) For which values of the twist tensor nμv and Pontryagin-index P is there a
gauge in which the boundary conditions are of the abelian type?

Let us first consider SU(2) and neglect the boundary conditions. In that case it
was shown by Leutwyler [7] that all constant curvature solutions are of the
abelian type up to a gauge

Aμ= ~iGμvxv; Gμv = πFμvσ3. (B.I)

Now we impose the boundary conditions and write

Ωv(x) = exp ( y Σ xμFμvavσλ ωv(x). (B.2)

From Eq. (2.3) one deduces

Dμω v = 0. (B.3)

With a similar observation as in (4.18) we find

(DμDλ - DλDμ)ωv = i[_Gμλ, ωv] = 0. (B.4)

So ω v commutes with σ3. Combining with (B.3) this implies that ω v is a constant
gauge function of the form:

ωv(x) = exp(/φvσ3); φv constant. (B.5)

Finally we transform ω v to the identity by the gauge transformation

( (B.6)
\ β aμ J

under which Aμ changes into

^ ^ (B.7)

which is exactly the general abelian solution for SU(2) [see (4.14) and (4.16)]. Note
that the cocycle condition forces Fμv to be of the form nμv/aμav.

For SU(ΛΓ) (N > 2) we assume the constant curvature solution to be abelian
[for SU(2) this is automatically satisfied. Whether this is also true for SU(iV), N > 2,
is not relevant for the point we want to make],

[G μ v ,G Λ J = 0. (B.8)

In a suitable gauge we have

Aμ=-$Gμyxv, (B.9)
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with boundary conditions

ω v . (b.lϋj

Again ωv is a constant gauge function satisfying

[ωv,Gμλ] = 0. (B.ll)

Imposing the cocycle condition gives

Qxiρ{iaμGμvav) [ωv, ωμ] = exp(2πinμv/JV). (B. 12)

There is a gauge transformation which brings ωv to the identity for all v, if and only
if [ωμ, ωv] = 1. The possibility to have [ωμ5 ωv] φ 1 enabled't Hooft to construct a
constant curvature solution with Chern index 1/JV [5]. So our first question can
only be answered by yes for SU(2). Note that for [ωμ, ωv] = 1 the generalization

following Eq. (2.27) is applicable with Aμ = A%+ — dmg(φμ

ί)...φ{

μ

N)); Σφμ

ί) = 0

[compare (2.33)] as a general solution.
The second question will be considered for SU(2) only (see [12, Lemma 3.2],

also for N>2). The abelian boundary conditions (4.23) uniquely fix C2 to be
^Pf(fl). Therefore if w = 0mod2 (no twist) C2 is always even. There is no constant
curvature solution with odd Chern index. For unit Chern index there seems even
to be an obstruction for the existence of any solution satisfying the duality
equations on T4 [24]. For C2 even, there certainly are (anti)-selfdual solutions
however. Finally if the twist is non-zero (n φ 0 mod 2) it is not hard to see that each
value of C 2 compatible with the given twist can be reached. So to answer the
second question: Only boundary conditions yielding nμv = 2mμv and Px = 4(2k +1),
with arbitrary m and k, are not gauge equivalent to abelian boundary conditions.
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