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1. Introduction

There has been a revised interest in studying instantons at finite temperature T , so-called

calorons [1, 2], because new explicit solutions could be obtained where the Polyakov loop at spatial

infinity (the so-called holonomy) is non-trivial. They reveal more clearly the monopole constituent

nature of these calorons [3]. Non-trivial holonomy is therefore expected to play a role in the con-

fined phase (i.e. for T < Tc) where the trace of the Polyakov loop fluctuates around small values.

The properties of instantons are therefore directly coupled to the order parameter for the deconfin-

ing phase transition.

At finite temperature A0 plays in some sense the role of a Higgs field in the adjoint rep-

resentation, which explains why magnetic monopoles occur as constituents of calorons. Since

A0 is not necessarily static it is better to consider the Polyakov loop as the analog of the Higgs

field, P(t;~x) = Pexp
�R β

0 A0(t + s;~x)ds
�

, which transforms under a periodic gauge transformation

g(x) to g(x)P(x)g�1(x), like an adjoint Higgs field. Here β = 1=kT is the period in the imag-

inary time direction, under which the gauge field is assumed to be periodic. Finite action re-

quires the Polyakov loop at spatial infinity to be constant. For SU(n) gauge theory this givesP∞ = limj~xj!∞ P(0;~x) = g† exp(2πidiag(µ1;µ2; : : : ;µn))g, where g bringsP∞ to its diagonal form,

with n eigenvalues being ordered according to ∑n
i=1 µi = 0 and µ1 � µ2 � : : :� µn � µn+1 � 1+µ1.

In the algebraic gauge, where A0(x) is transformed to zero at spatial infinity, the gauge fields satisfy

the boundary condition Aµ(t +β ;~x) =P∞Aµ(t;~x)P�1
∞ .

Caloron solutions are such that the total magnetic charge vanishes. A single caloron with

topological charge one contains n� 1 monopoles with a unit magnetic charge in the i-th U(1)

subgroup, which are compensated by the n-th monopole of so-called type (1;1; : : : ;1), having a

magnetic charge in each of these subgroups [4]. At topological charge k there are kn constituents, k

monopoles of each of the n types. Monopoles of type j have a mass 8π2ν j=β , with ν j � µ j+1�µ j.

The sum rule ∑n
j=1ν j =1 guarantees the correct action, 8π2k.

Prior to their explicit construction, calorons with non-trivial holonomy were considered irrel-

evant [2], because the one-loop correction gives rise to an infinite action barrier. However, the

infinity simply arises due to the integration over the finite energy density induced by the pertur-

bative fluctuations in the background of a non-trivial Polyakov loop [5]. The calculation of the

non-perturbative contribution was performed in [6]. When added to this perturbative contribution,

with minima at center elements, these minima turn unstable for decreasing temperature right around

the expected value of Tc. This lends some support to monopole constituents being the relevant de-

grees of freedom which drive the transition from a phase in which the center symmetry is broken

at high temperatures to one in which the center symmetry is restored at low temperatures. Lattice

studies, both using cooling [7] and chiral fermion zero-modes [8] as filters, have also conclusively

confirmed that monopole constituents do dynamically occur in the confined phase.

2. Some Properties of Caloron Solutions

Using the classical scale invariance we can always arrange β = 1, as will be assumed through-

out. A remarkably simple formula for the SU(n) action density exists [4],

TrF 2
αβ (x) = ∂ 2

α∂ 2
β logψ(x); ψ(x) = 1

2
tr(An � � �A1)� cos(2πt);
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rm

 
rm j~ρm+1j
0 rm+1

! 
cosh(2πνmrm) sinh(2πνmrm)
sinh(2πνmrm) cosh(2πνmrm)! ;

with rm � j~x�~ymj and ~ρm �~ym �~ym�1, where ~ym is the location of the mth constituent monopole

with a mass 8π2νm. Note that the index m should be considered mod n, such that e.g. rn+1 = r1 and~yn+1 =~y1 (there is one exception, µn+1 = 1+µ1). It is sufficient that only one constituent location

is far separated from the others, to show that one can neglect the cos(2πt) term in ψ(x), giving rise

to a static action density in this limit [4].

Figure 1: Shown are three charge one SU(2) caloron profiles at t = 0 with β = 1 and ρ = 1. From left to

right for µ2 = �µ1 = 0 (ν1 = 0;ν2 = 1), µ2 = �µ1 = 0:125 (ν1 = 1=4;ν2 = 3=4) and µ2 = �µ1 = 0:25

(ν1 = ν2 = 1=2) on equal logarithmic scales, cutoff below an action density of 1=(2e).
In Fig. 1 we show how for SU(2) there are two lumps, except that the second lump is absent

for trivial holonomy. Fig. 2 demonstrates for SU(2) and SU(3) that there are indeed n lumps (for

SU(n)) which can be put anywhere. These lumps are constituent monopoles, where one of them

has a winding in the temporal direction (which cannot be seen from the action density).

Figure 2: On the left are shown two charge one SU(2) caloron profiles at t = 0 with β = 1 and

µ2 = �µ1 = 0:125, for ρ = 1:6 (bottom) and 0.8 (top) on equal logarithmic scales, cutoff below an ac-

tion density of 1=(2e2). On the right are shown two charge one SU(3) caloron profiles at t = 0 and(ν1;ν2;ν3) = (1=4;7=20;2=5), implemented by (µ1;µ2;µ3) = (�17=60;�1=30;19=60). The bottom con-

figuration has the location of the lumps scaled by 8=3. They are cutoff at 1=(2e).
2.1 Fermion Zero-Modes

An essential property of calorons is that the chiral fermion zero-modes are localized to con-

stituents of a certain charge only. The latter depends on the choice of boundary condition for

the fermions in the imaginary time direction (allowing for an arbitrary U(1) phase exp(2πiz)) [9].

This provides an important signature for the dynamical lattice studies, using chiral fermion zero-

modes as a filter [8]. To be precise, the zero-modes are localized to the monopoles of type
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m provided µm < z < µm+1. Denoting the zero-modes by Ψ̂z(x), we can write Ψ̂†
z (x)Ψ̂z(x) =�(2π)�2∂ 2

µ f̂x(z;z), where f̂x(z;z0) is a Green’s function which for z2 [µm;µm+1℄ satisfies f̂z(z;z) =
π <vm(z)jAm�1 � � �A1An � � �Amjwm(z)> =(rmψ), where the spinors vm and wm are defined by

v1
m(z) =�w2

m(z) = sinh (2π(z�µm)rm), and v2
m(z) = w1

m(z) = cosh (2π(z�µm)rm).
To obtain the finite temperature fermion zero-mode one puts z = 1

2
, whereas for the fermion

zero-mode with periodic boundary conditions one takes z = 0. From this it is easily seen that in

case of well separated constituents the zero-mode is localized only at~ym for which z 2 [µm;µm+1℄.
To be specific, in this limit f̂x(z;z) = π tanh(πrmνm)=rm for SU(2), and more generally f̂x(z;z) =
2π sinh[2π(z� µm)rm℄sinh[2π(µm+1 � z)rm℄=(rm sinh[2πνmrm℄)�1. We illustrate in Fig. 3 the lo-

calization of the fermion zero-modes for the case of SU(3).
Figure 3: For the SU(3) configuration in the lower right corner of Fig. 2 we have determined on the left the

zero-mode density for fermions with anti-periodic boundary conditions in time and on the right for periodic

boundary conditions. They are plotted at equal logarithmic scales, cut off below 1=e5.

2.2 Calorons of Higher Charge

We have been able to use a “mix” of the ADHM and Nahm formalism [10], both in making

powerful approximations, like in the far field limit (based on our ability to identify the exponentially

rising and falling terms), and for finding exact solutions through solving the homogeneous Green’s

function [11]. We found axially symmetric solutions for arbitrary k, as well as for k = 2 two sets

Figure 4: In the middle is shown the action density in the plane of the constituents at t = 0 for an SU(2)

charge 2 caloron with trP∞ = 0, where all constituents strongly overlap. On a scale enhanced by a factor

10π2 are shown the densities for the two zero-modes, using either periodic (left) or anti-periodic (right)

boundary conditions in the time direction.
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of non-trivial solutions for the matching conditions that interpolate between overlapping and well-

separated constituents. For this task we could make use of an existing analytic result for charge-2

monopoles [12], adapting it to the case of carolons. An example is shown in Fig. 4.

There has also been some progress on constructing the hyperKähler metric which approxi-

mates the metric for an arbitrary number of calorons. They claim that this already gives confine-

ment [13]. For the implications of caloron constituents near the phase transition see [14].
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