A simple construction of twist-eating solutions
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A simple general construction of all solutions to the set of equations [(),,, , ] = exp (2min,,,/
N)I, where ,eSU(N) or U(N) and u, v =1, 2, ..., 2g, is given.

I. REDUCTION TO A CANONICAL FORM

Twisted guage fields on the hypertorus, both in the con-
tinuum' and on the lattice,? posed the interesting mathemat-
ical problem of finding matrices 2, in SU(¥N) or U(N)
(called twist-eating solutions), such that

[2.0,]1=0,00;'0"

= exp (2min,,/N)I. (D)
Here 7 is called the twist tensor; it is skew symmetric with
integer entries mod N. The index & runs from 1 up to 2g (the
dimension of space-time; odd dimensions need not be con-
sidered separately). For details see Refs. 3 and 4, where the
full solution of this problem for g<2 was found (see also Ref.
5).

By means of a Sl (2g, Z) transformation X, we can al-
ways transform 7 to its standard® form n°:

)] e

where e, |e,|- - |e, and n = ‘Xn* X. (For integer p and g the
symbol plg means that p divides ¢.) If [Q,,
Q, ] = exp (2min,,/N)1, then Eq. (1) is solved by

Q, = [ 3)

The standard form »° is not unique since we can add a multi-
pleof N toeach n,,. However, transformation (3) is inverti-
ble*; the specific choice of n* is therefore irrelevant. To be
precise,

8, =z,J[0 7,

with Z,, an element of the center of SU(XN), depending only
on n and X.

Define
fi=ged(e;,N), N,=N,,;=N/f, j=12,.8.

(4)

(Greek indices will always run from 1 up to 2g and Latin
indices from 1 up to g; gcd = greatest common divisor.)
From the commutation relations it follows that

[ﬁf",ﬁg”] = [ﬁj’ﬂ:ifl =1
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Hence, the ﬁf"eSU(N ) or U(N) commute, so they can be
simultaneously diagonalized. Let AcSU(N) be such that the

AN 4 —
W, = AQ4 ©)

arediagonal matrices. As [ W, ,Aﬂ“A —11 =TI forally, vwe
can choose diagonal matrices A,, such that

AM =W, and [A,, 42,4 7). (6)
If we define
0, =A'A0,47, )

then the Q0;, satisfy
[, Q] =exp @minl,/N)I, (Q)™=1  (8)

Next we will further simplify these commutation relations.
Recall that ged (e;/ f;, N;) = 1; hence there exist inte-
gers M ; such that

M,(e,/f)=1 (mod N,). (9)
Define
Uu=@™, U, ,=9,.,, (10)

This transformation can also be inverted: @, = U777,
where we used that (Q’,)N’=I. As [U;, U, ;]
= [(@)™, Q.. ;] =exp(2mie,M;/N)I and e;M,/
N=M;(e;/f;)/N; =N ;' (modZ), we see that the U,
satisfy the commutation relations (1) with a twist tensor m
in standard form;

h
(11)

~fe
(Note that f,|f,| - | f, and moreover each f; divides
N.) In particular,
[(UpUg, ;]=exp2miN Y, (U)™=1  (12)
Hence to find all solutions to Eq. (1) it suffices to determine
all solutions to Eq. (12).

Il. THE GENERAL SOLUTION FOR THE CANONICAL
FORM

Theorem: There exist matrices U, eGl(N) satisfying
Eq. (12) if and only if N\ N, - -N, divides N, where N, = N /

fi
Proof: Note that the subgroup X of G1(V) generated by
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U, is finite. Moreover the U (1 < j < g) generate an Abelian
subgroup, in particular there is a basis of CV consisting of
simultaneous eigenvectors for all U; (1< j < g). Let v be such
a basis vector and assume U,v = exp (2mia /N ;Jv. Then
U; (U, jv)=exp (2mila; + 1)/N;)U, , ;v, hence the vec-
tors Kv span a subspace ¥ of dimension N, N, - -N, . Itis easy
to see that K acts irreducibly on V. Proceeding with this
method in the K-invariant complementary subspace of V' we
see that CV is a direct sum of k K-invariant subspaces, each
of dimension N\N,: - -N,.So N = kN,N,- - -N,.

To prove the converse, let ¥ be a vector space of dimen-
sion N\N,. - -N, withabasise(b,, b,,... , b, ), withb ;,€Z/N ;Z.
Define linear maps U ,: V—V by

U'e(byby, ... ,b,) = exp (2mib,/N Je(by,by, ... ,b,),
UL, jelby b s oo sby) = elbyy b, + 1, b, ).

J

(13)

It is easy to check that the U, satisfy Eq. (12). Now assume
N =kNN, - -N,, then C¥ =V* and define U,eGI(N) by
the block diagonal sum of & copies of U,. Then obviously
the U, also satisfy Eq. (12).

We point out that the finite group K generated by the U,
is a Heisenberg group. All irreducible representations were
constructed in Ref. 6. Solutions of Eq. (12) form representa-
tions p of K, which, when restricted to the center
C(K) (={AI|A™ =1}~Z, ) of K, is given by p(c) =,
VceC(K). This implies that each irreducible component of p
has to be the unique so-called Schrodinger representation®
[Eq. (13)1. Hence, p is unique up to a similarity transforma-
tion.

More directly, following closely the above proof of the
theorem, it is easily seen that for k = 1, e(b,, b,, ..., b, ) and
U ;ﬁ;al)v are to be identified. Similar statements for k> 1
reproduce the block diagonal form, and two solutions to Eq.
(12) have to be equivalent, ie., 34eSU(N), U

=AU P4 ™", Yu. We will conclude this note with a few
remarks.

The U, are unitary matrices. The explicit matrices for
Eq. (13) are given by

Ui=1y 8 -0Qy 8- 81y,

Ugrj=1y8---8Py 8- 0ly, (14a)
with
Qn — diag(1,€2ﬂi/", ™. ,eZﬂi(nv 1)/n),
0 1
P, = 0 N (14b)
1 V)

This establishes the relation with the previous construc-
tions.?>-

A solution ,, to the original Eq. (1) is clearly specified
by AeSU(N) and A,,, a diagonal unitary matrix [see Egs.
(5) and (6) ], together with U, [see Eqs. (13) and (14)].
Equation (6) implies that A, is a multiple of the identity in
each block of U,: A, = diag (4 "L, ... A PI), with I the
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N,N,. - -N,-dimensional identity matrix. Hence, the pair (4,
A,,) forms the group G = SU(N) XU(1)*. On the other
hand, the uniqueness of solutions to Eq. (12) guarantees
that for each {A, } satisfying Al for all y, there exists an (in
general not unique) AeSU(X) such that for all y,

AU, =A4U,A7", Aj=1 (15)
[This can be explicitly verified for> Eq. (14).] Equation
(15) specifies a subgroup H of G. The solutions to Eq. (1)
are [for (), €U(N)] in 1-1 corresponding with G /H. These
solutions are described by 2gk inequivalent continuous pa-
rameters [2g(k — 1) for (1, eSU(N)]. A case of special in-
terest is k = 1 for 2, eSU(XN), where the solution space for
Eq. (1) modulo equivalence is discrete and isomorphic to
[5_,(Zy/Zy )? with N>€~ D elements.

Suppose N = k I1¢_ | N, define

m; = —e;/gcd(e;,N) = — (e, f;). (16)

Obviously both n,, and N-Pf(n/N) are multiples of k,
sincee, = —m,k Il;,,N; and N-Pf (n/N) = —k II,m,.
Consequently N-Pf (n/N)€Z is a necessary condition for
existence of a solution to Eq. (1). Next observe that gcd (m;,
N)=1and N,|N,_,|---|N,. Hence ged(m;, N;) =1,
for all j>i, so
£
ged(n,, ,N-Pf(n/N),N)=k gcd(HN,., ﬁm,-). (17)
=2 i=2

Given a solution, it is clearly unique up to a similarity trans-
formation and Z, factors if and only if k= 1. Hence
ged (n,,, N-Pf(n/N), N)=1is a sufficient condition for
uniqueness. For g = 2 it is also necessary, as can be seen from
Eq. (17) and ged(m,, N,) = 1. Furthermore, in the case
g=2,NPf(n/N)= —ee,/N. Wecan write e, =m, [,
and N= f,c with ged(m,,c) =1. Hence N-Pf(n/N)
= —mm,f,/ceZ implies that f, is a multiple of c¢. So
N/N\N,= f,f./N = f,/ceZ. Consequently for g =2,
N-Pf (n/N)€LZ is also sufficient for existence of solutions to
Eq. (1).

That the above criteria [i.e., N-Pf (n/N) is sufficient
for existence and ged(n,,, , N-Pf (n/N), N) = 1 is necessary
for uniqueness] cannot be extended beyond g =2 can be
seen from the following two examples constructed by Coste:
(i) g=3, N=2235 e, =¢,=3% and e, =2*3* (hence
N,=N,=2%3%and N, = 3?),so N-Pf (n/N) = e e,e;/N?
= 1 but N;N,N; = 4N does not divide N, and no solution
exists; and (ii) g=3, N=2?7%, ¢,=e,=2-3.7% and
e;=2%.3.7* (hence N,=N,=2-7 and N; =T7), so ged
(n,.,, NPf(n/N), N)=2, but N\N,N; = N and the solu-
tion is unique.

Note added in proof: After completion of this work, we
received a preprint by Lebedev and Polikarpov.® Their re-
sults coincide with those of Ref. 6 and this paper.
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