
P
o
S
(
L
C
2
0
0
8
)
0
5
5

The Witten Index Revisited

Pierre van Baal�
Instituut-Lorentz for Theoretical Physics

University of Leiden, P.O.Box 9506

NL-2300 RA Leiden, The Netherlands

E-mail: vanbaal@lorentz.leidenuniv.nl

We attempt to deal with the orbifold singularities in the moduli space of flat connections for

supersymmetric gauge theories on the torus. The fields are restricted to the fundamental domain,

containing no gauge copies, but requiring a boundary condition in field space.

LIGHT CONE 2008 Relativistic Nuclear and Particle Physics

July 7-11 2008

Mulhouse, France�Speaker.

c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
L
C
2
0
0
8
)
0
5
5

The Witten Index Revisited Pierre van Baal

1. Introduction

We revisit supersymmetric Yang-Mills theories on the torus to study the vacuum state in con-

nection with the Witten index[1]. The torus geometry is crucial to preserve the supersymmetry.

The index counts the number of quantum states (fermionic states with a negative sign). Due to su-

persymmetry, states at non-zero energy occur in fermionic and bosonic pairs, and do not contribute

to the Witten index. The counting can therefore be reduced to the vacuum sector.

Witten argued that the wave function is constant on the moduli space of flat connections and

the degeneracy due to the constant abelian gluino components costs no energy[1]. Requiring gauge

invariance (under Weyl reflections) one has r + 1 (= 2 for SU(2)) invariant vacuum states which

are all bosonic, j0 >, U j0 >, � � �, U rj0 >, where U = ∑r
a=1 λ̄ a

α̇ λ̄ a

β̇
ε α̇β̇ . Untill 1998 there was a

puzzle: It didn’t agree with the infinite volume gluino condensate calculations for SO(N�7) and

the exceptional groups[2]. (Additional references are contained in[3].) Witten solved that by

finding an extra disconnected component in the moduli space for SO(7), using a D-brane orientifold

construction[4]. This means that their are isolated points for SO(7) and SO(8) and for SO(N�9)

there is an extra component which is like the trivial component for SO(N-7). One therefore finds

1+r(SO(N))+1+r(SO(N�7)) = h(SO(N)), or 1+[N/2]+1+[(N-7)/2]=N-2 (h is the dual Coxeter

number). This is precisely the infinite volume result! The field theory construction works also for

Group Vacuum-type

G h 1 2 3 4 5 6

SU(N) N N

Sp(N) N +1 N +1

SO(2N +1) 2N�1 N +1 N�2

SO(2N) 2N�2 N +1 N�3

G2 4 3 1

F4 9 5 2 (1+1)

E6 12 7 3 (1+1)

E7 18 8 4 (2+2) (1+1)

E8 30 9 5 (3+3) (2+2) (1+1+1+1) (1+1)

Table 1: Contributions to the index for small volumes (A. Keurentjes, JHEP 05, 001(1999))

exceptional groups[5, 6], and is based on classifying triples, Ωi = Pexp(R L
0 Aidxi), which satisfy

ΩiΩ j = Ω jΩi. Also here one finds that the index in small volumes equals the large volume results.

But a technical problem occurs when using periodic boundary conditions. This is the break-

down of the adiabatic approximation in the reduction of the degrees of freedom to those of the

classical vacuum. For SU(2) the classical vacuum is defined up to a gauge transformation by the

set of zero-momentum abelian gauge fields, Ai = ic3
i τ3

2L
, where c3

i is constant and ~τ are the Pauli

matrices. Its gauge invariant parametrization is in terms of the Wilson loops that wind around the

three compact directions of the torus, which are compact variables. This describes the vacuum val-

ley as an orbifold, T 3=Z2 for SU(2). Here g[~n℄ = exp(�2πi~n �~xτ3=L) (which maps c3
i to c3

i +4πni)

and g = iτ2 (which maps c3
i to �c3

i ) give Gribov copies. The orbifold singularities arise where the

flat connection is invariant under (part of) the Weyl group (the remnant gauge transformations that
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leave the set of zero-momentum abelian gauge fields invariant). For SU(2) their are eight orbifold

singularities (related to A = 0 by anti-periodic gauge transformations), c3
i = �c3

i + 4πni, giving

c3
i = 2πni (with ni = 0 or 1). It was studied in[3] and we will review some of it here.

2. The Hamiltonian

We choose the dependence on the bare coupling constant such that

L =� 1

4g2
0

(Fa
µν)2 + i

2g2
0

λ̄ aγµ(Dµλ )a: (2.1)

The reduction to the zero-momentum degrees of freedom, as in the bosonic case, will replace the

bare coupling constant by a running and asymptotically free coupling constant g(L). The zero-

momentum gauge fields are parametrized as Ai = ica
i τa=(2L). The vacuum valley is parametrized

by the abelian degrees of freedom. These are defined by ri, with rir j = ∑a ca
i ca

j , for each i and j.

As said, we may also parametrize the vacuum valley by ri =Ci � c3
i .
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Figure 1: A two dimensional slice of the vacuum valley along the (C1;C2) plane. The grey square is the

fundamental domain Λ. The dots are gauge copies of the origin (which turn out to lie on the Gribov horizon

Ω, indicated by the fat square).

The cell ~C 2 [�π;π℄3 can be used as a fundamental domain Λ. Any point on the vacuum

valley can be reached by applying suitable gauge transformations. This reduces the eight orbifold

singularities to one, but at a cost: Opposite sides on it’s boundary are identified by homotopically

non-trivial gauge transformations (indicated by g in Fig. 1). The representations of their homotopy

define the electric flux quantum numbers as introduced by ’t Hooft [7]. We will here only consider

the sector with zero electric flux, i.e. the trivial representation, where wave functions at opposite

sides are equal. Since the orbifold singularity implies massless excitations for the transverse fluc-

tuations, we seemingly have no choice: We have to keep the non-abelian zero-momentum modes,

and thus the adiabatic approximation breaks down.

The energy gap in the fluctuations transverse to the vacuum valley is easily read off. Close to

the origin it is given by 2j~Cj=L. Integrating out transverse degrees of freedom is only reliable if the

energy of the low-lying states is smaller than this gap. This energy behaves as g2=3(L)=L. Consider

now a sphere of radius g1=3(L) around each orbifold, beyond which the adiabatic approximation is
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accurate. There, the wave function can be reduced to the vacuum valley and, assuming indeed it has

zero energy, it will be constant. As long as g(L) is small, we may assume the wave function in the

neighborhood of the orbifold singularity to respect spherical symmetry. In the bosonic case, once

the wave function spreads out over the vacuum valley, any spherical symmetry is quickly lost. In

the supersymmetric case, however, the reduced wave function on the vacuum valley will become

constant up to exponential corrections at distances much greater than g2=3(L) from the orbifold

singularities, which are separated over a distance 2π . Instead of insisting that the groundstate wave

function is normalizable, we should rather insist on its projection to the vacuum valley to become

constant. Spherical symmetry near the orbifold singularities will dramatically simplify the analysis.

We will now set up the zero-momentum supersymmetric Hamiltonian, and its reduction to the

gauge invariant, spherically symmetric sector. This is not new[8], but we will be able to push it to

the point where we can explicitly construct a complete basis of states that respect these symmetries.

We start from the supercharge operators,

Qα = σ j

αβ̇
λ̄ β̇

a

��i
∂

∂V
j

a

� iBa
j

� ; Q̄α̇ = λ β
a σ j

βα̇

 �i
∂

∂V a
j

+ iBa
j

! ; (2.2)

with V a
i � ca

i =(g(L)L) and σ j = τ j (and σ 0 the unit) as 2� 2 matrices. Restricting to the zero-

momentum modes, both the Weyl spinors λ β
a and λ̄ β̇

a are constant. Lowering indices is done with

εαβ = εα̇β̇ = �iτ2, δab and ηµν = diag(1;1;1;�1) (or δi j) for respectively the spinor, group and

space-time (or space) indices, and raising of indices is done with the inverse of these matrices.

Repeated indices are assumed to be summed over, but to keep notations transparent we will not

always balance the positions of the gauge and space indices. Finally, for zero-momentum gauge

fields one has Ba
i =� 1

2 gεi jkεabcV
b
j V c

k .

In the Hamiltonian formulation the anti-commutation relations fλ aα ;λ bβg= 0, fλ̄ aα̇ ; λ̄ bβ̇ g=
0, fλ aα ; λ̄ bβ̇g = σ̄ β̇α

0 δ ab, with σ̄0 the unit 2� 2 matrix (one has (σ̄ µ)α̇α = ε α̇β̇ εαβ (σ µ)ββ̇ ), givefQα ; Q̄α̇g= 2(σ0)αα̇H �2(σ i)αα̇V a
i Ga, where

Ga = igεabc

 
V c

j

∂

∂V b
j

� λ̄ bσ̄0λ c

!
(2.3)

is the generator of infinitesimal gauge transformations, and H is the Hamiltonian density

H =� 1
2

∂ 2

∂V a
i ∂V a

i

+ 1
2 Ba

i Ba
i � igεabcλ̄ aσ̄ jλ bV c

j : (2.4)

Splitting the Hamiltonian,
R

d3xH � g2=3(L)H=L, in its bosonic and fermionic pieces, H = HB +
H f , we find with ca

i = g2=3(L)ĉa
i and B̂i

a = � 1
2 ε i jkεabd ĉb

j ĉ
d
k that HB = � 1

2 (∂=∂ ĉa
i )2 + 1

2

�
B̂a

i

�2
and

H f =�iεabd λ̄ aσ̄ iλ bĉd
i .

The orbifold singularities, other than at ĉ = 0, lie at a distance b = 2πg�2=3(L) in these new

variables ĉ (measured along the vacuum valley where B̂ vanishes). We want to solve for the ground-

state wave function such that for jĉj � 1 it becomes a constant, after projecting to the vacuum

valley. As this boundary condition is compatible with spherical symmetry, i.e. it goes to the same

constant for all directions on the vacuum valley, we will restrict ourselves to wave functions Ψ(ĉ)
that are spherically symmetric and gauge invariant. We stress again that this is an accidental spher-

ical symmetry, that holds in sufficiently small volumes.
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3. Vacuum valley and boundary condition

States with odd fermion number F do not respect the symmetry and particle-hole duality re-

lates F = 0 to F = 6 and F = 2 to F = 4[3]. Without fermions (F = 0) this will reduce to the

bosonic Hamiltonian which is known to have a non-zero vacuum energy[9]. We therefore write

down the most general F = 2 states, that is the two-spinor states which are symmetric or antisym-

metric in the gauge index (and thus respectively antisymmetric and symmetric in the spinor index),jV i � V j
aI j

a � �2iV c
j εabcλ̄ a

α̇(σ̄ j0)α̇
β̇

λ̄ bβ̇ j0i and jS i � SabJ
ab � �Sabλ̄ a

α̇ λ̄ b

β̇
ε α̇β̇ j0i (where

σ̄ µν = 1
4(σ̄ µσ ν � σ̄ νσ µ), such that σ̄ j0 = 1

2 τ j as a 2� 2 matrix with the first index up and the

second down). Here V a
j and S ab = S ba are arbitrary and covariance allows us to write this as

V j
a = h1ĉa

j=r̂� h2B̂a
j=r̂2 + h3ĉb

j ĉ
b
k ĉa

k=r̂3 and S ab = h4δ ab + h5ĉa
j ĉ

b
j=r̂2 + h6ĉa

j ĉ
d
j ĉ

d
k ĉb

k=r̂4, where hi

depend on r̂2 = (ĉa
j)2, u = r̂�4(B̂a

j)2 and v = r̂�3 det ĉ. This gives a six dimensional matrix equation

for the Hamiltonian which can be split into a “radial" and “angular" part (Ĥ f = H f =r̂),

H
p0 p
n0n = hp0;n0jHjp;ni= E`n

p δnn0δ pp0 + hp0; `n0 jr̂4jp; `nihn0ju
2
jni+ hp0; `n0 jr̂jp; `nihn0jĤ f jni: (3.1)

Our basis explicitly diagonalizes the angular part (“spherical harmonics") in terms of invariant

polynomials. In Fig. 2 the angular band structure is given by plotting hn0jujni 6= 0 or hn0jĤ f jni 6= 0

Figure 2: Band structure of the reduced Hamiltonian, for the first 100 states.

as black squares. The different bands can be traced to come from the selection rules jδ`j = 0;2;4
for the matrix elements of u, and jδ`j= 1 for the matrix elements of Ĥ f .

The radial wave function is φp̀(r̂) =Cp̀r̂�3 j`(kp̀r̂), with E p̀ = 1
2(kp̀)2 and ` = 2L+ 3 ( j`(z) is

the spherical Bessel function and Cp̀ is the normalization constant). It diagonalizes the kinetic term,� 1
2 r̂�8∂r̂ r̂

8∂r̂ + r̂�2L(2L+7) =� 1
2 r̂�3

�
r̂�2∂r̂ r̂

2∂r̂ + 1
2 r̂�2`(`+1)� r̂3. To complete the construction

of the basis, we need to address the question of boundary conditions (fixing the momenta kp̀), so

that the groundstate wave function becomes a constant, after projecting to the vacuum valley. The

vacuum valley is characterized by those configurations for which u = 0 (this implies v = 0), and r̂

measures the (three-dimensional) distance to the origin along this vacuum valley.
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The wave function can be decomposed as Ψ = ∑∞
n=0 r̂�3 fn(r̂)χn(u;v; r̂), with χn(u;v; r̂) nor-

malized eigenfunctions, so that hΨjΨ0i = ∑∞
n=0

R
4π r̂2dr̂ f �n (r̂) f 0n(r̂). This means that we have to

impose ∂r̂ f0(r̂) = 0 at the boundary of the fundamental domain, r̂ = b� πg�2=3(L). This is equiv-

alent to hχ0j∂r̂(r̂3Ψ)i = 0, where the inner product is at fixed r̂. That this boundary condition

receives corrections is however an artifact of the truncation to the zero-momentum modes. If

we take into account that in the full theory χ0 also involves the non-zero momentum modes, the

(gauge) symmetry guarantees[10] that at the boundary of the fundamental domain ∂r̂ f0(b) = 0,

and this source of the breaking of supersymmetry is absent. Higher order terms in computing the

effective Hamiltonian are required to deal with this [3]. We therefore impose ∂r̂(r̂3Ψ(r̂)) = 0 at

r̂ = b � πg�2=3(L), knowing that it is only valid at small g(L).
A direct measure for the failure of the Born-Oppenheimer approximation is given by f 2(r̂)�

f 2
0 (r̂) � ∑∞

n=1 f 2
n (r̂), which as expected, deviates from zero when the gap is small, but also when

we approach the boundary at r̂ = b (due to the zero-momentum approximation). In Fig. 3 we show

the results for b = 4:4, 4.7 and 5.0, to illustrate that this second deviation decreases with increasing

b (or decreasing coupling). This shows that the mismatch between the boundary condition and

the truncation of the effective Hamiltonian does not affect the wave function in the neighborhood

of the orbifold singularities, where the failure of the adiabatic approximation is non-perturbative.

2.5 3 3.5 4 4.5 5

-0.4

-0.2

0

0.2

0.4

b

1 2 3 4 5

0.1

0.2

0.3

0.4

0.5 �10�4 E0

f 2� f 2
0

! r̂

Figure 3: On the right is shown f 2(r̂)� f 2
0 (r̂) extracted from the groundstate wave function Ψ0, satisfying

the boundary condition ∂r̂(r̂3Ψ0)(b) = 0, for b = 4:4, 4,7 and 5.0. We normalized with respect to b= 5, such
that at r̂ = 2 all f 2 agree. On the left is shown the groundstate energy itself, using up to 20 radial modes for

each of the 420 harmonics together with the lower bound from Temple’s inequality (indicated by the dots).

Finally Fig. 3 also shows the groundstate energy E0 (the curve gives the upper and the dots the

lower bound). To keep the size of the matrix manageable, the components of the eigenvectors

are removed when they are in absolute value below a threshold, without significantly affecting the

accuracy. This process of pruning is performed iteratively, increasing the number of radial modes

per angular state. Together with Temple’s inequality[10] this is extremely efficient to optimize the

accuracy and achieve numerical control.

We have only considered SU(2) to illustrate how to go beyond the adiabatic approxima-

tion. Our analysis shows that, although the orbifold singularities are cause for concern, in the

end they do not upset the result for the Witten index. For other groups this is much harder.

Of course, a numerical analysis can never be entirely conclusive in deciding a theoretical issue
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that involves the counting of exact zero-energy states. The computer code is still available at

www.lorentz.leidenuniv.nl/vanbaal/susyYM (partly they could be used for other studies[11]).
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