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We present the final result for the short-distance expansion of the energy of 't Hooft-type 
electric flux, in units of the glueball mass. As a spin-off, we also give the nonperturbative 
correction for the short-distance expansion of the glueball mass and mass ratios, which turn out to 
be already significant at z =  M(0+)L = 1. We propose a way to bridge the gap between the 
short-distance expansion (z < 1) and the Monte Carlo data (z > 1.5). We provide evidence by 
reinterpreting existing Monte Carlo data, and discuss the nature of the Z 2 symmetry-breaking 
transition. 

I. Introduction 

The main result of this paper is the final numerical evaluation of the constants in 
the short-distance expansion for the energy of electric flux in a pure SU(2) gauge 
theory on the torus T 3. (The fields are periodic with period L in the 3 spatial 
directions.) In his pioneering work 't Hooft  [1] showed how to give a gauge-invariant 
meaning to nonabelian electric (and magnetic) flux, using twisted boundary condi- 
tions. It is for this electric flux, and for a nonperturbative glueball mass correction 
that we derive a rigorous short-distance result. A very important and perhaps crucial 
advantage of this approach is the absence of infrared divergences. 

We will outline a few steps in the derivation of the result, but for details see ref. 
[2] and a forthcoming paper [20]. The method is based on deriving an effective 
hamiltonian or lagrangian for the zero-momentum modes. We are ultimately inter- 
ested in the long-distance behaviour, so these zero-momentum or long-wavelength 
modes are expected to play an important role. This effective theory is well defined 
for small L, since the momenta behave as 2~rn/L, with n i integer, and the 
zero-momentum sector is well separated in energy from the nonzero-momentum 
sectors. 

In the effective hamiltonian approach special attention is paid to a quantum- 
induced potential barrier. Tunneling through this barrier removes an 8-fold degener- 
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acy labeled by electric flux. For the ground state the energy split gives a nonzero 
value to the energy of electric flux. It will become clear that tunneling for the 
excited levels arises through the same "channel" as for the ground state, and in 
weak coupling only deviates from the result for the ground state through its 
dependence on the energy and its coupling to this dominant tunneling mode. It 
implies that both the glueball mass and the mass ratios are affected by tunneling 
which sets in for z-= ML(0+)L < 1. 

Beyond z = 1 perturbative and semiclassical approximations for the energy levels 
are inapplicable, but the effective hamiltonian itself might very well be trusted up to 
z = 2, or at least describe the main features of the dynamics. Arguing from this we 
suggest a way to close the gap between the short-distance expansion and the Monte 
Carlo results. Indeed, Monte Carlo results for the same quantities we consider have 
been obtained recently by Berg and Billoire [10]. Reinterpreting their results and 
combining them with our short-distance expansion almost closes this gap. 

This paper is organized as follows. In the next section we describe the effective 
hamiltonian and the quantum-induced poential barrier. Sect. 3 describes the tunnel- 
ing ingredients and sect. 4 fills in the numerical values. Sect. 5 describes how to 
bridge the gap and provides circumstantial evidence by comparing our result and 
existing Monte Carlo data. In this section we also show how to calculate, in 
principle, the value of the lattice coupling at which a crossover in the Monte Carlo 
evaluation of the expectation value for a spatial Polyakov loop occurs. In sect. 6 we 
ask ourselves whether magnetic flux can be of any help, and we end with conclu- 
sions and a plea to the Monte Carlo community. 

A reader mainly interested in the results is advised to start at sect. 4, which is 
more or less self-contained. 

2. Effective hamiltonians and all that 

Let us first briefly review the shape of the classical potential: V =  ¼f Tr(Fij)  2. 
The potential is identically zero for vector potentials which, up to a periodic gauge 
transformation, are spatially constant and abelian (i.e., diagonal). We label these by 
C through A = (Co3/2L). C parameterizes what we call a vacuum valley [2], but 
the shape of the potential in other directions depends on C. This dependence has a 
periodicity of 2,r, because the translation of C over 2qre i is generated by an allowed 
gauge transformation, satisfying I2(x + Lei) = ( -  1)kil2(x). Hence we only need to 
know the effective hamiltonian in one unit cell of C, (ICi[ ~< ,r). A wave functional 
is invariant under the above gauge transformations, only up to a phase factor 
exp(*reiki), where e ~ (Z2) 3 is the nonabelian electric flux (k ~ (Z2) 3 is the hamilto- 
nian equivalent of a twist in the time direction [1]). 

The wave functional will be concentrated around points where V is widest, which 
is at C/2~r ~ Z 3. Here something dramatic occurs, first discussed in detail for the 
lattice in connection with the so-called groundstate metamorphosis [3]. Generically, 
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V is quadratic for variations perpendicular to the vacuum valley, but at C = 0 the 
potential is quartic in all constant vector potentials: V= (-L3/4g2)Tr([A,, A j]2). 
These quartic modes reoccur for all C/2~r ~ Z 3 \ ( 0 } ,  where they are related to 
constant modes by the same gauge transformations which map C = 0 to C/27r 
Z3\{0} .  This quartic mode problem is a topological feature which cannot be 
removed by choosing a different metric on the torus, and occurs in one form or 
another in all approaches to this subject. It can be regarded as a manifestation of 
the infrared problem, and prevents the naive application of perturbation theory. 
(One could however get rid of these quartic modes by introducing magnetic flux, 
but at the cost of other complications. We will comment on this in sect. 6.) 

Intuitively one would like to derive an effective hamiltonian for the three 
parameters (7,. of the vacuum valley, which we will denote by Hvaney. This would be 
obtained by integrating out all other degrees of freedom. However, because of the 
quartic-mode problem, a simple loop expansion for nvalley breaks down near the 
points C/2~r ~ Z 3. Liischer [4] resolved this quartic-mode problem by deriving an 
effective hamiltonian for all zero-momentum modes, i.e. those vector potentials A, 
which satisfy aiA j + i[Cio3/2L , A j] = 0. For C = 0 this is equivalent to deriving a 
nine-dimensional effective hamiltonian in the spatially-constant vector potentials, 
labeled by c/L,  which we will call npert. 

Thus, provided we stay far enough away from C/27r ~ Z 3, an effective hamilto- 
nian in terms of C is easily derived to be: 

g2 a 2 

]'/valley 2L aC ~ + VI(C)' (1) 

where g is the renormalised coupling constant and V1 the one-loop effective 
potential [2, 4], periodic in C with periods 2~r in all 3 directions (see eq. (A.4)). V 1 
has the property that it is minimal along the coordinate axes and behaves as 

2fCI (0.30104661...) 
C2 "4- O(C?)  ( 2 )  VI(C) = L L " 

It is only in fourth order in C i that the spherical symmetry in V 1 is broken, where it 
gets replaced by the cubic symmetry O(3,Z). 

On the other hand, for C/2~r close to integer values one can use Liischer's 
effective hamiltonian [4], which in lowest order is (A = c/L): 

g2 02 1 
Hpert = 2L aC a2 2g2L Tr[c''cj]2' (3) 

i.e., just the Yang-Mills hamiltonian for a constant vector potential, but with a 
renormalised coupling constant. This hamiltonian exhibits intricate dynamics, and is 
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interesting in its own right. It was recently extensively studied by Savvidy [5] who 
showed, amongst other things, that this hamiltonian is nonintegrable. This fact was 
conjectured independently by Lfischer and Mi~nster [6], and means one must resort 
to numerical techniques to solve for the energy eigenvalues, for which they used 
Rayleigh-Ritz perturbation theory. 

Wave functionals are only strictly periodic for translations of C i over 4~r, hence 
there exist 2 3 inequivalent vacua: C/2rr ~ {0,ex,e2,%,e 1 + %,% + e3,e 2 + e3, 
e I + e 2 + e 3). Since in perturbation theory one can expand around any one of the 2 3 
inequivalent vacua [4], there is an 8-fold degeneracy, which gets lifted by tunneling 
through the quantum-induced potential barrier described by Vx(C ) [2]. It is interest- 
ing to note that while in perturbation theory the Z 2 symmetry is broken, it gets 
restored by including the tunneling contributions. The tunneling calculation is 
complicated both by the quartic-mode problem and the fact that the barrier is 
quantum induced. However, an extensive analysis of toy-models [7] showed how, 
with the help of the path decomposition expansion [8], one can separately use 
perturbative quantum mechanics in the well regions and a semi-classical approxima- 
tion in the barrier region, and then "glue" these contributions to the Green function 
together to find an asymptotic expansion for the energy splitting, correct up to a 
relative error growing as a positive power of the coupling constant [7]. 

3. All one need know for tunneling 

To understand how one obtains the tunneling result from eqs. (1) and (3) we will 
rewrite the hamiltonian //pert in three steps in such a way that it manifestly 
reproduces Hv~ley for small C. nvalley as given in eq. (1) is obtained by an adiabatic 
approximation for the fluctuations transverse to the vacuum valley. This approxima- 
tion breaks down close to C/2~" ~ Z 3, due to the quartic nature of the potential 
near these points. Rewriting Hp~ n makes clear how one goes beyond the adiabatic 
approximation and at the same time shows the validity of this approximation for 
points along the vacuum valley far enough from C/2~r ~ Z 3. 

The analysis is greatly simplified if we use the spherical symmetry. In that case we 
can use the polar decomposition [5] for SU(2) gauge fields (here and henceforth x i 
should not be confused with the space coordinates!) 

c~' = g 2 / 3 ~ ° e x h j n  u , 

X =  diag(x l, x 2 , x3), 

4, n ~ s o ( a ) .  (4) 

r/ gives the rotational and ~ the gauge degrees of freedom, and in the gauge- 
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invariant, spherically-symmetric sector an easy computat ion shows [5]: 

g2/3[ 1 0 0 ] 
H P m =  2L - J  OxiJ--~xi +(x~x~+x22xz+x2x2)  " (5) 

The factor g2/3 in eq. (4) was chosen to make Hpert proport ional  to a power of g. 
For gauge- and rotation-invariant wave functions, 

f d~c ~,(c)O*(c) = ~g6 2,~, f d3x IJI ,I,(x)~*(x), (6) 

where J is the jacobian: 

J = FI  (x~ - 4 ) .  (7/ 
i > j  

The x i are not all gauge and rotationally inequivalent. A permutation and two 
simultaneous sign changes describe the remaining gauge/rota t ional  freedom. We 
can hence choose xi to uniquely label a rotation- and gauge-invariant state if we 
restrict it to 

x,  >_. x= >_. o,  ~ >_- x?.  (8) 

The vacuum valley is now easily identified as the x 3 axis, and we have x 3 = g-2/31C[. 
As an intermediate step we transform the wave function according to: 

,~,(x) = ](x32 - x2 )( x2 - x22)1 1 /2 ' / ' (x ) ,  (9) 

and for convenience put g = L = 1. The hamiltonian and inner product now 
become: 

1 0 2 
H= 2 &~+/?~," (lo) 

H[x3] = 
1 0 

2(~,= - x~)  o~, 
2 0 

- - ( x l  2 - x 2 ) - ~ x  l + lx~(x~+ x~) 

1 2 2 
-'}- ~ X 1 X  2 --  

1 x 2 + x  2 1 x 2 + x  2 

2 ( x ~ - x ? )  ~ 2 ( x ~ _ x ~ )  2'  
(11) 

f d~x IJl~(x)~*(x) = f d~x Ix 2, - x~l@(x)@*(x). (12) 
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From (9) ~' satisfies vanishing boundary conditions at x ( =  x 2 and x 2 = x 2. 
Finally, we solve for the (Xl, x2)-dependent eigenvunctions Y'I("~ of Hix,l with 
energies V,,(x3), where n = 1 labels the ground state. The eigenfunctions are normal- 
ised according to: 

f"3 f X3 dx 1 dx 2 ix12_ ,.2~or(,,) l , .  ~ ~or~.,),l"~ 3 .... , "~21~[x3]\~1 ' 'a '2 /~[x3]  \-`1, X2) = 

- -  " ' 3  - -  X 3  

(13) 

and are invariant under interchange and reversal of x 1 and x 2 (we can restrict 
ourselves to positive parity wave functions). This problem can be easily solved in 
perturbation theory with x33 as expansion parameter. The vanishing boundary 
conditions for 5f~ff~ at Xl 2= x32 and x 2= x 2 only lead to exponentially small 
corrections, and can be ignored for x 3 >t 1.5. One finds up to first order in x33: 

[2x2x2x~ + x , (x~ + x 2) - 3] )e_X,c,. r +~,)/2, 
,-i"/" ( 1 ) 2 

= x 3 1 - ~f-,~l 16x 3 

3 
Vl(x3) = 2x 3 4x 2 . (14) 

/)  can now be expressed w.r.t, the following expansion of the wave function [7]: 

Ct'( xl, x2, x ,)  = ~. ¢P°')( x3):~7]l( X,, X2), (15) 
n=l  

as 

n , , n , ~ ( m ) =  __ I ~ n m ~ x 3  A .... ( x 3 )  {/~(m)(X3) "q- Vn(X3){/}(")(X3), (16) 

where the "gauge field" A is given by 

A .... (x3) = dxl  f dx2 ]xl 2 - "21~[x31~.-̀l'"21~/'(m'('~ "21" "~--0/'O')*/'Xl,,.,.qX3~[,. l ~ X2). (17) 
- -  A" 3 - -  X 3 

It is also straightforward to repeat the careful analysis of ref. [7]. One finds that 
• ° '~(x3)/~m(x3) decreases at least as x[ 3/2, but often exponentially with x 3. 

(1) (1) Hence for x32>>(x 2'x~), ~ ( x  1,x 2 , x 3 ) = ~  (x3)Xtx , ( x  1,xe). In this sense, 
• ~a)(x3) is the dominant "channel", i.e. tunneling mode. Indeed, in the barrier 
region, this component gives the dominant contribution to the Green function (c.f. 
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[7]). For x 3 sufficiently large, ~(1)(x3) satisfies the SchrSdinger equation: 

393 

1 o 1 ')\1 
2 0x-----} + 2x 3 -  2 x---~ + O(x  3 ~ ( 1 ) ( X 3 )  = ~ ' ~ ) ( 1 ) ( X 3 )  , ( 1 8 )  

where E = g2/3e/L is the lowest order (in g2/3) energy of the ground state for Hpert. 
The potential of eq. (18) is the sum of Vl(x3) and Aom(X3)Amo(X3). Reinstating the 
proper g and L dependence, (i.e. multiplying eq. (18) by g2/a/L) the potential of 
eq. (18) becomes 

g2/3(  1 ) 
L 2 x 3 -  2x---~ + 0 ( x 3 5 )  " (19a) 

Putting ICI = g2/3x  3 in eq. (2) gives 

g2/3(2x 3 (0.30104661 )gZ/3x2 + O ( x 4 ) )  (19b) - -  _ . . .  . 

L 

Thus both potentials agree for g - 2 / 3  >>x3 >> 1, which is essential for the con- 
sistency of the approach. This consistency requirement is discussed further in 
appendix A. 

Looking at the toy-models of ref. [7], g-2/3 >> x3 >> 1 is exactly the region where 
we "glue" the perturbative wave function to the tunneling contribution (the transi- 
tion Green function). 

It turns out that all one needs from the perturbative region is the energy 
eigenvalue and the asymptotic behaviour of the wave function for I C] >> g2/3. Were 
we to take nvaney as given in eq. (1) to calculate the energy splitting, the asymptotic 
behaviour of its perturbative wave function ~ ( C )  would be wrong by a constant 
factor, and its energy eigenvalue ~ would not equal e. This is because Hvaney is an 
inadequate approximation in the perturbative region. However, one can calculate 
the energy of electric flux by using e instead of ~ and (/)(1) instead of ~ in the 
expression for the energy splitting as derived from Hvalley. 

Equivalently, one could change VI(C ) in the perturbative region (ICI <g2/3)  
such that it does give the correct energy eigenvalue and asymptotic behaviour of the 
wave function. In that case, the modified version of Hvaney gives an expression for 
the energy splitting identical to the energy of electric flux, up to relative errors 
which grow as positive powers of the coupling c o n s t a n t .  Hvalley is very similar to the 
double cone problem studied in ref. [7], and from this we easily read off the 
expression for AE (C* is the classical turning point, accidentally omitted in ref. 
[2b], eq. (14)): 

AE=2XlBl2gS/3L-~exp(--lf 2'~-c* - d C )  (20) g~c" ~/2(LV,(Ce,) gZ/3e) , 
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where ~, is a constant determined by the transverse fluctuations [7,20] and B is 
given by: 

B =  lim ( 4 r -  2e)l/4exp(~(4r - 2e)3/2)~(1)(r). (21) 
F ~ O G  

In this equation B is g-independent, therefore one has to normalise the wave- 
function ~ ( C )  for the purely three-dimensional problem according to 
g-2fd3Cl~(g-2/3C) l  2= 1. If we express q,o) in terms of the ground state wave 
function Xo(Xl, x2, x3) , we easily deduce from this that q" has to be normalised as: 

fo°°f f f l = 4 ~ r  dx  3 dx ,  dx21Jllg '(x)12=g-6rr -3 d g c l ' / ' ( c ) l  2 . (22) 
- -  X 3 - -  A- 3 

We have used eq. (6) and the invariance of q' under permutations and reflections of 
the coordinates for the last part of this identity. Hence we derive the following two 
equivalent expressions for q~tl) (see eq. (15)): 

f l • [X'(x3) = 7r3/2N dx  1 dx  2 Ix? - x~] 
" - -  X 3  3 

X [(X 2 -- X ? ) ( X ;  -- X22)] 1/2x/t(X).~(I~](X1 ' X2),  

2 o) 0 = = x 2  = O, ) 

where 

(for x 3 >> 1), (23) 

N-2  = g-6 f dgc i xo(¢)12 (24) 

For x 3 sufficiently large, where ~t,~ (n > 1) can be neglected w.r.t. ~tl), ~i  and ~n  
will coincide. 

Eq. (21) tells us that ~ ° ) ( r )  will decay rapidly. We calculated the wave function 
numerically [20], using Rayleigh-Ritz perturbation theory for Hpert to a higher 
accuracy than in ref. [6]. Since convergence of the Rayleigh-Ritz procedure is in the 
L 2 sense, the relative error in ~ ° ) ( r )  will rapidly increase with r. Eq. (21) is 
therefore not useful for practical purposes. Instead, let us introduce ~o(r), which 
satisfies the same asymptotic equation as ~tl) (eq. (18)), but normalised so as to give 
B = 1 in eq. (21), i.e. 

( 1 0  2 1 ) 
- ~  Or--- Z + 2 r -  ~ r  2 ~ o ( r ) = e q b o ( r  ), 

lira ( 4 r -  2e)l / 'exp(~(4r - 2e )3 /2 )~o ( r )=  1. (25) 
r ~  
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Fig. 1. The results for Bl(r) and Bu(r). The upper two curves are for the ground state and the lower 
two curves for the first excited state. These results were used to extract B (eq. (27)) and B' (eq. (32)). 

(1) r • r In fig. 1 we plot Bxm)(r ) =  ~uxi)( ) /  o ( ) .  We determined ~0( r )  by numerical 
in tegrat ion and verified that including an O( r  -5 )  term in the potential of  the 

Schr/Sdinger equation for ~o( r )  yields a relative change in q~0(r) smaller than 0.5% 
for  r > 2.5. For  the ground state we see f rom fig. 1 that B~ and B n coincide for 

r > 2.9 within 0.2% accuracy. That  they deviate beyond  r --- 3.6 is due to numerical 
errors  in the wave function bigger than 0.2%. We can therefore reliably extract B 

f rom BI~ m around r =  3.4. The introduct ion of  ~ 0 ( r )  is indeed necessary, since 
( 4 r -  2e ) l /%xp(~ (4r  - 2e)3 /2)dPo(r) -  0.95, for r - 3 . 4 ,  which differs significantly 

f rom 1. 

4. The numerical results for the semiclassical parameters 

The energy of  electric flux A E ( L ) ,  eq. (20), was previously calculated up to a 
cons tan t  prefac tor  [2]: 

A E  = A g S / S L - l e x p ( - S g  -1 + Teg-1 /3 ) (1  + O ( g V ) ) ,  

S = 12.4637 . . . .  T = 3.9186 . . . .  ~ < ~/~< ~. (26) 

The  g round  state energy eigenvalue t = 4 .11672. . .  was numerically evaluated by 
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Liascher and Mihnster [6]. As discussed in sect. 3, we repeated their Rayleigh-Ritz 
procedure to a higher accuracy in order to evaluate the wave function and thus fix 

the prefactor A = 22,]B[ 2. Also, ?~ had to be numerically evaluated. In a separate 
publication we will describe the calculations in more detail [20], here we only give 

the results: 

-- 0.69970 + 0.00001, 

B = 0.2063 _+ 0.0008. (27) 

This value of B was extracted from the plateau in fig. 1. 
To get a renormalization group invariant expression we express 

e ( L )  = +) (28) 

in terms of the universal expansion parameter  z [9]: 

z = Mt.(O+)L = 2.2696390g 2/3 - 0.7975278g 4/3 + O ( g 2 ) ,  (29) 

and substitute for e the ground state energy (more precisely E = g2/3e//L): 

E = 4.116719735 - 1.174516027g 2/3 + 0 ( g 4 / 3 ) .  (30) 

(The coefficients in eq. (29) and (30) were first evaluated in ref. [6], but can easily be 
obtained to a higher accuracy from our own numerical analysis.) One finds: 

g ( z )  = O.OO767z3/2exp(-42.6169z -3/z + 34.2001z-1/2).  (31) 

The possible error in the prefactor is 0.8%, and the relative error due to the 
semiclassical approximation is at most O(z 1/4) (and most likely 0(zl /2) ,  obtained 

from evaluating the integral in the exponent of eq. (20) to a higher order, leading to 

a multiplicative factor of approximately exp(4zl/2)). 
We can strictly trust eq. (31) only for z << 1. In a previous paper [2b], one of us 

expressed the hope that one can trust eq. (31) all the way up to z - 3, where it has a 
remarkably  linear behaviour, which would fit to an expected linear long-distance 
behaviour of g ( z ) .  With the actual value of the prefactor we have now computed, 
this turns out to be unrealistic. Also the tunneling sets in between z = 1.1 and 
z = 1.3 (instead of z - 2), where g ( z )  grows from < 0.0001 to > 0.05. It further- 
more implies that the perturbative result obtained by Liascher and Mi~nster for 
M(O ÷)/A-ffs as a function of z will be drastically modified for z > 1. 

The weak coupling expansion for the shift in the glueball mass due to the 
tunneling can be easily evaluated by calculating the energy split A E ' ( L )  for the first 
excited level, which is obtained by simply repeating the analysis for the ground state 
but replacing g'  and e by ' /"  and g, the numerically evaluated first excited wave 
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function and energy. We find: 

e ' =  6.3863588 - 1.9720438g 2/3 + O ( g 4 / 3 ) ,  

B '  = 0.1480 +_ 0.0008,  

397 

(32)  

whereas ?,, S and T are not  affected*. Hence we can calculate ~ ' ( L ) =  

A E ' ( L ) / M t . ( O  +) and express it in terms of  z: 

8 ' ( z )  = O.O0395z3/Zexp( - 42.6169z -3/2 + 47 .5989z-~/2) .  (33) 

In weak coupling the energy of  an e = 0 level will shift downwards  by half  the 

energy difference with the ]el = 1 state. Hence the relative mass shift is: 

AML(0 +) 

ML(0 +) 
-= ( g ~ ( z ) - d ~ ' ( z ) ) / 2  ---- - ½d~ ' (z ) .  (34) 

We need not stop here, and can evaluate similarly o~t~)(L) for the vth excited level, 

which gives the following result for the shift in mass ratios: 

A Mr.(0+) = - ½d°(~)(z), 

e , ' (  z ) = 2 x I B ~ I  2~ 3/2exp( _ 42.6a 69z - 3/2 + (9.897 + 5.903 ~ 1 )  ~ - 1/2 ). 

(35)  

Thus  all mass ratios will be affected significantly by the tunneling. Fur thermore,  
the larger the energy e ~) the earlier the tunneling sets in (for obvious reasons); for 

the energy of  electric flux it sets in a round z - 1.2, for the glueball mass a round 

z = 1 and for the mass ratios at even smaller values of  z. 

In ref. [6] three "obvious  quest ions" were posed: 

(a) At what  z does tunneling effectively set in? 
(b) Is there a direct connect ion with the crossover f rom small- to large-volume 

behaviour  o f  the masses? 

(c) Are the mass ratios in the zero "electric" flux sector affected by the tunnel- 
ing? 

Of  these questions we have now settled (a) and (c). The fact that tunneling sets in 

so early fits extremely well with the conclusion of  Berg and Billoire [10], using 

M o n t e  Carlo calculations, that the perturbative result [6] for ML(0 +) cannot  be used 
for  z - 1 . 6 - 2 ,  which unfor tunate ly  is about  the value of z that Monte  Carlo 

calculat ions can reach with some confidence. 

* For the first excited state there is a much larger fraction of the wave function contained in ~t,,~ 
(n > 1), signalled by a deviation of B~ and B~I, and we have to resort to B[ alone to extract B' (see 
fig. 1). 
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We will comment on (b) in the next section. Recently, this point was discussed in 
detail for the two-dimensional 0(3) model [24], where the Monte Carlo data seem to 
fit satisfactorily to the short-distance expansion for the mass gap. However, that 
model is not plagued by the tunneling phenomenon. There the only difficulty is that 
one has to go beyond the two-loop beta function to establish scaling for the mass 
gap. We avoid this problem by looking at a dimensionless quantity. 

5. H o w  to bridge the gap, z = 1 to z = 2 

5.1. THEORETICAL DISCUSSION 

We want to present what we think is strong circumstantial evidence for the 
existence of a reliable short- to long-distance connection, provided one is willing to 
leap the hurdle of the (induced) potential barrier. We first observe that there can be 
two physically distinct crossovers, which could easily confuse this issue, so let us 
clearly disentangle them. First, there is possibly (but not necessarily) a crossover 
from weak to strong coupling, due to the renormalization group, or the flow of the 
coupling constant. This affects all quantities with the dimensions of a mass equally 
strongly; Monte Carlo data suggest it occurs around z = 3. On the other hand, there 
is the "crossover" due to the onset of tunneling, which is in principle unrelated to 
the first crossover and occurs for z < 1 depending on what quantity we consider. 
This "crossover" has now lost its mystery. Whereas the first crossover should not 
affect dimensionless quantities expressed in terms of the renormalization group 
invariant parameter z, the second "crossover" does affect these quantities, as we 
showed in detail. However, it is reasonable to assume that we can trust the effective 
hamiltonian (provided we construct it to a high enough order in g) in the way 
described in ref. [2], all the way up to z = 2 or even beyond. There is however a 
fundamental  obstacle to pushing this to high values of z. The zero momentum states 
should not lose their identity and hence ML(0 +) should stay smaller than the 
energy ( - 2 ~ r / L )  of the first nonzero momentum state or equivalently z < 2~r, 
although this basically depends on how the latter state ( " J  = 1" [6]) behaves for 
large L. 

We can therefore reliably "climb" the induced potential barrier by numerically 
evaluating the energies for this effective hamiltonian. This should be no more 
difficult than a molecular physics problem (which however can still be hard 
enough). 

One believes the dynamics at long distances to be described by a string picture. 
Almost in contradiction to this, we still expect the long-distance behaviour to be 
derivable from some sort of an effective hamiltonian in the zero- (or nearly zero-) 
momentum modes. To reconcile this one has to realise that even in the presence of 
electric flux, the lowest energy state has zero momentum, in particular in the 
direction perpendicular to the electric flux. (Even if the flux is generated by colour 
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sources, for large separations the roughening [14] will set in, so the localised nature 

of a flux tube completely disappears.) 
Before comparing our expressions with existing Monte Carlo data, let us present a 

short-distance expansion of the heavy quark potential VL(R ) and review the existing 

predictions for the long-distance behaviour. 

5.2. SHORT-DISTANCE EXPANSION FOR THE HEAVY QUARK POTENTIAL 

Ltischer's effective hamiltonian is very well suited to a straightforward derivation 
of a short-distance expansion of the heavy quark potential, which should be useful 
for Monte Carlo purposes. In appendix B we will derive the following result, which 

consistently incorporates finite size effects: 

with 

VL(k) 
MAO *) 
- -  = ~1Z q'- ( ~ 2  + ° 1 3 U ( R / / L ) )  Z2 "[- O ( Z 3 ) '  (36) 

a 1 = 0.2524585 . . . .  a 2 = 0.0569698 . . . .  a 3 = 0.08553219 . . . .  (37) 

and where U ( R / L )  is the nonzero momentum contribution, which reduces to the 
usual perturbative result for R / L  << 1: 

3 cos(2~rp, r )  r-.o 3 
p2 ~ 16~rEirl (38) U ( r )  = 16~r 2 p . o  

Eq. (B.7) of the appendix gives a rapidly converging expression for the momentum 
sum in eq. (38). Tunneling contributions will start to play a role for z > 1. 

For  the lattice, in the euclidean domain, finite size corrections for the Wilson loop 
due to the zero momentum modes (not only Pi = 0 but also P0 = 0) were previously 
considered in ref. [12]. Their result is, however, only valid for large temperature and 
cannot be used to extract the finite size corrections to the heavy quark potential at 
zero temperature. 

5.3. LONG-DISTANCE EXPANSIONS 

For  the long-distance behaviour the following two predictions are available: 

( ~ )2 3 exp(_tC~MLL) (39) 
Moo - M L - _ - ~  16 ~r M L L 

where )~ is real and related to a certain forward scattering amplitude in the infinite 
volume theory [13], and M stands for the mass gap. The second prediction assumes 

the formation of electric flux tubes; the correction to a linear potential is due to the 



400 J. Koller, P. van Baal / Electric flux energr 

roughening of the string [14]: 

VL(R) = oIRI + Co- 
q7 

(40) 
121R t ' 

q7 

A E ( L )  =oL+c"  o 3L (41) 

Here o is the string tension. Eq. (40) is obtained by taking a string with fixed end 
points (the colour sources) and modelling the transverse fluctuations by a 1 + 1 
dimensional nonlinear sigma-model [15] (thereby assuming the most obvious "uni-  
versality class" for the pure QCD string [27]). The Coulomb term is universal, i.e., 
does not depend on the interactions of the nonlinear sigma-model. Eq. (41) is 
obtained by taking a closed string (closed by the periodic boundary conditions) and 
simply repeating the analysis of ref. [15]. Due to the universality, one need not 
worry about the periodic boundary conditions in the direction transverse to the 
string, even for spatially elongated boxes. The value of ±~r3 in eq. (41) is also known 
from finite temperature corrections to the Polyakov loop in the confining phase [25]. 
The constants c 0, c~ and their difference can easily be shown to be not universal and 
are hence not predictable from a string picture. A more speculative prediction will 

be considered at the end of this section. 
Let us now discuss what Monte Carlo data are available and how to represent 

them. First of all the data of ref. [16] reproduce eq. (40) reasonably well. The 
authors work on a 154 lattice and eq. (36) is presumably not applicable. Monte 
Carlo calculations aiming at producing data also for low z-values were recently 
performed by Berg and Billoire [10]. They work on lattices elongated in the time 
direction with sizes up to 63 in the space directions (N s = 6) and up to 64 in the time 
direction (Art= 64). Hence they are guaranteed to be at zero temperature. They 
calculate the mass gap (ML) from time correlations for Wilson loops in the adjoint 
representation. The Wilson loop, running in the space direction, is closed by the 
periodic boundary conditions. Hereafter we call this type of Wilson loop a spatial 
Polyakov loop. 

Here we should point out a difficulty in identifying to what state the mass gap 
belongs. In weak coupling the smallest mass is a 2 + state [6]. Previous Monte Carlo 
results seemed to indicate a 0 + state for the mass gap, almost degenerate with a 2 + 
state [28] (at large z-values). But very recent Monte Carlo calculations prefer a 2 + 
state for the mass gap, with M(2+)/M(O +) = 1.25 around z = 2 to 1.1 around 
z = 5, and behaving smoothly as a function of z [29]. The value of 1.25 for this ratio 
is to good approximation equal to the perturbative result. Yet one cannot expect a 
completely smooth short- to long-distance connection for this ratio. The actual 
calculation for the tunneling contribution to M(2 +) is more involved, but assuming 
that the 2 + level couples to the same tunneling channel as the 0 + level, tunneling for 
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the latter will set in slightly earlier than for the former, causing a small dip in the 
ratio M(O+)/M(2 +) around z = 1 to 1.2. The effect will be small because of the 
near degeneracy. 

The data suggest a dip in the graph of the mass gap versus z around z = 3. This 
dip could be due to two effects; the coupling constant could depend nonmonotoni-  
cally on z. Or, if we can trust the effective hamiltonian up to z - 3, it can be due to 
the tunneling effect. As alluded to above, a dip could appear because tunneling for 
an excited state sets in earlier than for the ground state. As a very naive example of 

such a behaviour, one might consider the double harmonic oscillator and compute 
the difference between energies of the two lowest energy even parity states, which 
is the analogue of the mass gap (e.g. see [11], fig. (5.4)). It seems likely therefore, 
that the asymptotic value of M L is indeed approached from below, as predicted by 
eq. (39). 

5.4. K N O W N  M O N T E  CARLO RESULTS 

The strongest evidence we will present for the feasibility of our program is to 
compare our results with g ( z )  as obtained from Monte Carlo data. The most direct 
way of measuring the energy of electric flux is by using twisted boundary condi- 
tions. Some years ago this was done by Mack and Pietarinen [17] for square lattices 
up to a size of 54. In ref. [2] a formula was given for extracting the energy of electric 
flux in lattice units. But we have to do better in order to be able to use the data of 
ref. [17]. The result in lattice units, up to exponential corrections in N t, is (see 
appendix C): 

1 [ ~t(fl, N,) 
AE:= - ~ t l n  (42) 

- 2 N  t OAE: /Ot~  

/t is the quantity measured in the Monte Carlo simulations: 

1 0 
ln( Zt/Zu), (43) 

2 

with Z t the twisted and Z u the untwisted partition function. Also, # is the 
difference between the twisted and untwisted plaquette expectation values, and one 
therefore needs high statistics to get an accurate result. For the small values of N t 
considered in ref. [17] it is important to use eq. (42), instead of [2] AEe= 
-(1/Nt)ln[(1/Nt)l~]. Furthermore, one can only trust those Monte Carlo calcula- 
tions for z >> 1, where one can neglect finite temperature effects, which supposedly 
set in when the value of # starts to decrease as a function of/3. Since we will need 
an estimate of aAE/afl, we shall first discuss the result of ref. [10]. 

By measuring the time correlation for spatial Polyakov loops in the fundamental 
representation, instead of the adjoint representation, one obtains the energy of 
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electric flux, instead of the mass  gap*. The  "s t r ing  tension" K, for a box of size 
L × L × L, is defined to be  A E / L  and therefore o = l i m L ~ K .  Calcula t ing both  

K t and M e for lattices with spatial  extent Ns 3 ( f  s tands for latt ice units, as in eq. 

(42)) we find: 
z =MeUs,  

~ z ) / z  = K / M e .  (44) 

Strictly speaking,  one has to conver t  the mass  gap to M(0  +) in the defini t ion of z 
and @(z). Because of the near  degeneracy of M(0  +) and M(2  +) this convers ion will 
not significantly modify our results (certainly not  within the errors  inherent  in the 

Mon te  Car lo  data).  Hence this modif ica t ion will be  ignored for  the t ime being. For  
large z-values M e is not available and instead we use values of  ~/K, given in units of 

A 0~ttice), and assume M L for these large values of  z to be  approx ima te ly  cons tant  
(cf. eq. (39)) and equal to [10]: M ~  = (175 _+ 25)Alatti~ ~. F r o m  the da ta  we can also 

deduce  L in units of  Al~ttic e ( L  ~ z ' / ( 3 . 5 ~ e )  [10]) and hence calculate z = M~L 
and g ( z ) =  KL/M~.  Note  that  these quantit ies are sensitive to a possible lack of 

a sympto t i c  scaling, whereas eq. (44) does not  depend on this ambigui ty .  The  results 
are d isplayed in fig. 2. (We have used the t - - 4  es t imates  for  M e, where  they 

deviated cons iderably  f rom the t = 5 est imates [10].) Also note  that  the results 
a p p e a r  to fall on a universal curve, indicating c lose- to-cont inuum behaviour .  

Since we now have data for M e and AE e available for d i f fe rent /3  and N~, we can 
also use the results of ref. [17]. We extract the following two da ta  points  [17]: (i) 
N, --- 4, fl = 2.25,/~ = 2.6 + 0.6 and (ii) Ns = 5,/3 = 2.40, bt = 2.7 + 1.1. F r o m  ref. [10] 
we obta in  for  these points: (i) Me= 1.30 + 0.03, OAE/O/3 = - 1.3 + 0.1 and (ii) 
Me= 0.82 + 0.06, OAE/O/3 = - 1.0 + 0.1. This gives: (i) z = 5.2 + 0.12, 8 ( z )  = 0.27 
+ 0.05 and (ii) z --- 4.1 + 0.30, g ( z )  = 0.32 + 0.13. The  result coincides within the 

errors  with the other  data  points  (see fig. 2). It  shows that  Monte  Car lo  calculat ions 
with twisted bounda ry  condi t ions are consistent with the values obta ined  f rom 
loop- loop  correlat ions,  and that  it should be useful to improve  on the accuracy with 

the increased computa t iona l  power  of  today. 

5.5. COMPARISON AND INTERPRETATION OF RESULTS 

Let  us now s tudy what  one can learn f rom fig. 2. First  of  all it is clear that  the 
s t rong z dependence  a round z = 3, obvious bo th  in the da ta  of  the mass  gap and the 
str ing tension as a funct ion of z [10], disappears  in the graph of  d ( z ) .  This  adds  
c redence  to ou r  idea abou t  the crossover due to the flow of the coupl ing constant .  
Also,  the da t a  fit ext remely well with our short-dis tance expansion.  H a d  tunneling 
really set in a round  z = 2, we would have been inconsistent  with the Monte  Car lo  

* This important observation relates 't Hooft's QCD on a torus with twisted boundary conditions to 
conventional lattice QCD with periodic boundary conditions. 
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Fig. 2. Results for (a) d~(z) (=zIE(L)/Mt. ) ,  and (b) ~ ( = l / r K ( - ~ / M t ) .  The solid curves 
represent our short-distance expansion. The Monte Carlo data are specified as follows: + : Independent  
est imates for K,, and M e from ref. [10], with only statistical errors displayed. (We used the t = 4 instead 
of the t = 5 est imates for M e whenever the two disagree significantly.)-~-: As above, but using an 
est imate for M~ of (175+ 25)Alattic e. Error bars are due to the uncertainty in this q u a n t i t y . - ~ :  
Est imates  obtained from ref. [17]; error bars are statistical. We ignore the fact that the mass  gap could be 

a 2 + state [29]. 
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data. Indeed, we see no obstacle to taking the effective hamiltonian (including the 
tunneling domain [2,20]) and calculating # ( z )  numerically for z = 1 up to at least 
z -  2 and perhaps even beyond. It is important to note that although this is a 
numerical calculation, it is based on the continuum field theory. This can be an 
important starting point in reliably working our way out to larger values of z, and 
should provide sufficient confidence in Monte Carlo calculations. 

The Monte Carlo data can at present reach z - 1.5. For lower z values it becomes 
increasingly hard to calculate energies from time correlations. There is also a 
technical limitation due to the use of a discrete subgroup of SU(2) in Monte Carlo 
calculations [29]. We can also give a definite prediction for the behaviour of the 
expectation value of the spatial Polyakov loop in the fundamental representation 
( ( p  f ), p t(A) = ½ Tr( P exp(if0LA - d x))). For z values where tunneling is suppressed, 

the Monte Carlo simulations get stuck in one of the perturbative vacua. In other 
words, the Z 2 symmetry is broken for z---, 0, and metastable states occur with 
( P  f)  = + 1. The Monte Carlo measurements will therefore exhibit a strong cross- 
over in I ( P f ) l  around z = 1.2, where tunneling sets in, and beyond which I (P f ) [  
should drop to zero. There is an obvious similarity to the deconfining transition, 
conjectured to be first order. However, the transition discussed above is smooth. 
Given N s, the spatial size of the lattice, we can in principle predict at what 13 this 
transition occurs. If 9(/3) is the two-loop scale factor (which is universal): 

6~r2/3 t sa/ '2'exp( - 3~r2/3 
a(/3) = ( - ] - ] - -  ] 11 ) '  (45) 

then for the continuum this means we have [6]: 

L=AY~ss?I (1 + O ( g 2 ( z ) ) ) ,  (46) 

and for the lattice (/3- 4/g02), using the definition of Alatt ic  e [23] and the lattice 

spacing a = L/Ns: 

Z = A ~atlticeNsa(/3)(1 q- O ( / 3 - 1 ) )  • (47) 

Were we to have control over the higher order corrections in eqs. (46) and (47), 
and to z(g  2) in eq. (29), we could combine eq. (46) and eq. (47), with AMS-- 
7.462A lattice, to calculate/3c corresponding to z = 1.2. (N  s should be large enough to 
suppress lattice artefacts.) However, in the mean time, a Monte Carlo determination 

of tic(N~) will give us some interesting information. 
Let us finally take a closer look at the larger z behaviour in fig. 2. The data 

suggest, (but not conclusively) that ~d(z)/z has a dip around z = 5. Since for the 
data at z > 5 there was no independent estimate for the mass gap available, this 
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could be due merely to a systematic error. However if indeed £(z)/z is asymptoti- 
cally constant, the dip would indicate that this asymptotic value is approached from 
below. The reality of a dip would, however, also imply that a string picture breaks 
down below z = 5, which is a bit disappointing. But we'll have to wait and see how 
far the effective hamiltonian calculation can be pushed to see if a real understanding 
of confinement can be obtained. Nevertheless fig. 2 does strongly suggest the 
existence of three distinct domains: (I) The perturbative domain from z = 0 to 
z = 1, where the Z 2 symmetry is broken, (II) an intermediate domain where the Z 2 
symmetry gets restored by the onset of tunneling, and where the glueball mass is 
formed, from z = 1 to z = 5, and (III) a string-like domain, truly nonperturbative, 
beyond z = 5. Note that the second domain is probably the most important for the 

calculation of physical quantities. 
Regarding the breakdown of the string picture, it is interesting to note that if we 

take the Nambu-Goto string at face value, one can calculate g ( z )  exactly [26,27]: 

with 

oz ( lj2, 
d ° ( z ) =  M----~ 1 -  z-y ] (48) 

2~ M~ (49) 2 
Zc 3 o 

The string picture then necessarily breaks down for z < z c, and using our value for 
M~/o gives z~ = 4.6, which coincides more or less with the dip in fig. 2. It makes it 
worthwhile to concentrate some Monte Carlo effort on this region, which is easily 
accessible. 

6. Can magnetic flux close the gap? 

Magnetic flux is introduced by twisted boundary conditions [1]. As is well known 
from the twisted Eguchi-Kawai model [18], choosing a nonzero twist will make all 
modes quadratic. Similarly, for the hamiltonian approach we have considered in the 
continuum, it is easy to show that the presence of magnetic flux removes the 
vacuum valley, and makes all modes quadratic. Let us take the magnetic flux 
m = (1,0,0). Then [30], both the glueball mass and the energy of electric flux 
orthogonal to m(e.m = 0) will to lowest order in g be proportional to 1/L, 
whereas the energy of the other electric fluxes will be suppressed by a factor 
exp(-4rt2/g 2) [19]. Then, if confinement is realised, 't Hooft 's duality arguments 
[1] tell us to expect that neither the glueball mass nor the string tension will depend 
on m. It would thus be interesting to repeat all the perturbative calculations for this 
nonzero magnetic flux sector, but although at first sight it seems that this will be 
much easier due to the absence of quartic modes (so that masses and energies for 
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perpendicular electric flux will behave as 1/]L in weak coupling), there might still be 
some obstacles to overcome. 

To be able to trust the perturbative expansion to give predictions for the 
long-distance limit, one should at least see the restoration of the cubic symmetry, 
which at weak coupling is broken when m 4: 0, and makes electric fluxes perpendic- 
ular to m behave very differently to those parallel to m. The restoration of this 
symmetry involves tunneling, but now through a classical potential barrier of order 
g-2, and would set in much later. Finally, we cannot escape the intuitive feeling that 
in the long-distance limit, (approximate) zero momentum modes dominate the 
dynamics. The analysis for zero magnetic flux has clear advantages: these modes 
play a role all the way from the shortest distance scales, the nonabelian nature of 
the theory is essentially incorporated, and the results are directly comparable with 
existing Monte Carlo data for elongated lattices [10]. 

7. Conclusion 

We have given the rigorous short-distance expansion for the energy of electric 
flux and the mass shifts in the 0 ÷ sector due to tunneling. Thereby we have sorted 
out many of the problems stated in refs. [1] and [6]. Since tunneling sets in so 
rapidly and at such a low value of z, a semiclassical approximation is not good 
enough. The situation is far more intricate than originally hoped [1,2,6]. We 
described how to go beyond this semiclassical approximation and we see no 
essential obstruction to bridging the gap between the short-distance expansion and 
the Monte Carlo data. We presented circumstantial evidence (e.g. fig. 2), and hereby 
rest our case, asking for some time to acquire the proof. 

Although it is indeed very useful to do Monte Carlo calculations for twisted 
lattices [17], both for twists in the elongated direction to measure o~(z), or in the 
spatial directions to suppress finite size effects (as also emphasised by the authors of 
ref. [12]), we would also like to urge strongly for improvements in existing Monte 
Carlo data in the small z regime. 

For the more distant future one might think of a way in which Monte Carlo 
calculations can be used to derive an effective theory for the long wavelength 
modes, in the regime where the weak coupling result for the hamiltonian will be 
inapplicable. From the analytic side we would of course like to include fermions and 
to extend the calculations to SU(3) [31]. There are no fundamental obstacles to 
doing this. 

The numerical calculations were done on the Ridge 32 at the ITP in Stony Brook. 
We made extensive use of the symbolic manipulation program SMP [21] and the 
IMSL routines for numerical integration and finding matrix eigenvalues. 

It is clear that this paper could never have been written without the seminal work 
by Gerard 't Hooft and Martin L~scher; it is therefore a pleasure for one of us 
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A p p e n d i x  A 

This appendix discusses the consistency of the tunneling approach as alluded to 
in ref. [2] and the discussion below eq. (18). The consistency is summarised by 
demanding that the following diagram commute. 

~ =  _ 
1 , . ,  A~\G L C  2 

 o TrtF.  ) , ,Zeo.= V,(C) + . . .  

~60 ~ ~" R 

A~\,~ X ~  c, 

.£°~,r = ~g~ Tr(F~ (c)) / + - - . .  

An arrow with A \ B  means that one is obtained from the other by integrating out 
all fields A except for B, thus yielding an effective lagrangian in B. From a 
hamiitonian point of view this was described by Liischer [4], using Bloch degenerate 
perturbation theory, and from the lagrangian point of view, using a suitable 
nonlocal gauge fixing, by one of us [2b]. It was observed in the main text that the 
potential V1(C  ) had to coincide with the effective potential derived in eq. (18) in the 
region where both the one-loop effective potential along the vacuum valley and 
Liascher's perturbative hamiltonian could be trusted, i.e. g2/3<< ICl << 1. We 
verified this to lowest order by comparing eq. (19a) and eq. (19b). We can push this 
to higher order, as was indicated in ref. [2b]. 

Liischer's effective hamiltonian is given by [4, 6]: 

L H '  = - -  

g2 02 1 ~ b a h 

2 a q  + - ) 

a a b b  a a b b  +Kl~,~-, . . . .  + ~3(c*c*clcl + 2c,clc,cl ) 

a a b h _ _  2CkClCkC 1 ) q_ . . .  +K4(5CkCkCkC k - -  CkCkC. ~_b_hcl ~ , b b . (A.1) 
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(We ignore a term which can be absorbed by a finite rescaling of the coupling 
constant and the fields, i.e. the term proportional to x2 in ref. [6], eq. (10e).) The 
numerical values for K i are [4, 6]: 

gl - 0.30104661 . . . .  K 3 = ~ ( 4 ¢ r )  - 2  = = , x4 -0 .15687855. . . -10  -2 . (A.2) 

To lowest order in g, the corrections to eq. (19a) due to the terms proportional to 
•1, K3, and x4 are simply obtained by restricting these terms to the vacuum valley. 
Hence eq. (19a) gets replaced by: 

- 2C--- 7 +2 lC l  " + K I C 2 " F 3 ( K 3 - - K 4 ) ( C 2 ) 2 - t - 5 K 4 C i  4"F " '"  t .  (m.3) 

Consistency requires that all terms independent of g should coincide with the 
effective one-loop potential [2, 4] 

4 sin2(n • ~_ C)  
- y '  ( A . 4 )  v , ( c )  . . o  

Hence we make a Taylor expansion of eq. (A.4). Using lattice sum techniques 
[2a, 22] one easily derives that the singular leading term is 2IC I / Z  and that 

W(C) = LVI(C)- 21Cl (A.5) 

is analytic for all C. Using the cubic symmetry this leads to: 

1 O2W(C) c - ° C  2 
w ( c )  = 2 oc? 

a" )w(c)c-o a'w(c) c=o + ~ g2_ 3 - ~  i*j~" C 2̀Cj2 + 24 aC~ ~", C 4̀ + ' " "  

(A.6) 

One easily evaluates zl2W(0) to be 2/~r 2. The remaining terms can all be expressed 
in terms of the Taylor coefficients for W along one of the axes. There exists a 
rapidly converging expression for this function [2] (C ~ [ - 2 ~ r ,  27r]): 

8 
W(Ce,)  = -1C2+ - ~ a. sin2(½nC), (A.7) 

7/" qT n = l  
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with [2a, 20]: 

2~r 5"/'/.2 
a, = - -  ~_, Ka(2~rnlkf) < - - e  -2"" . (A.8) 

n k~z2\{o} n 

Here K 1 is the modified Bessel function. The expansion of eq. (A.4) now becomes: 

LVx(C)  -- 2ICl + - n 2 a , -  C 2 
7r n=l 

1 __1 E n4a,, (C2)  2 -  
+ ~ + 4~2 ,1=1 / 

+ ,,=in'a,, C 4 ' ' '  

(A.9) 

Using the numerical values of a ,  [2], this indeed coincides with eq. (A.3), and we 
therefore establish the consistency up to fourth order in C and one-loop in g; the 
O(g  2) term in eq. (A.3) is a two-loop contribution [20]. 

Note  that since VI(C ) in eq. (A.4) is minimal along the axes [2,20], the minimal 
potential height the wave function has to penetrate is (~r + ( 8 / ~ ) E ~ n = l a 2 , , + l ) / L ,  

which roughly equals the ground state energy for z = 1.2. This is in good agreement 
with the fact that tunneling sets in at z = 1.2. 

Appendix B 

Here we will derive the short-distance expansion for the heavy quark potential. In 
the Born approximation this is obtained by computing the connected two-point 
function. Using the cubic symmetry one has 

( A~( R ) A~(O) ) c = - 8"bs,j ~ VL ( R ) . (B.1) 

The factor 3 is such that for a rectangular Wilson loop with sides IRI and T, 
(W ( I R  I, T ) )  = e xp ( -TVL(R) )  for T--* oc. We can next make a momentum expan- 
sion: 

AT(R) = Z Af(p)e2 ,. ,,/L 
p=O L3/2 

(B.2) 

and evaluate eq. (B.1) to lowest order in the coupling constant. We will not take the 
tunneling effects into account for this calculation. Hence one can compute the 
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connected two-point function by expanding around A = 0, and one finds: 

(A~(R)Ab(O))c = ~_~ (A~(p)A~(P))eZ~'iPR/L (B.3) 
L 3 

p=O 

To lowest order the hamiltonian for the nonzero momentum modes is given by 

2 0A~(p)  2 + 2g2k L A ~ ( p ) A ~ ( p ) .  (B.4) 

For the zero momentum modes one can use Liischer's effective hamiltonian (A.1). 

Hence we find: 

(A'~(R)A~(O))¢ (c'i'c~) g°2e2~'P R/L 
-- @ 3ij 3ab E 16,z. 2Lp2 L t,*o 

(B.5) 

The one-loop corrections will turn the bare coupling constant in eq. (B.5) into a 
renormalised one, and the vacuum expectation value of c~c 7 can easily be obtained 

from the results in ref. [6] (cf. eq. (A.1)) 

(c~'c~)= 8,jS"h(g4/3e2 + 2gEe3 +0(gS/3)) /9~1,  (B .6) 

where E = g2/ae/L = (g2/3e x + g4/3e 2 + g2e 3 + O(gg/3))/L is the ground state en- 

ergy. Substituting the expression for z = M,_(O+)L (eq. (29)), and the values of e 2 
and e 3 (ref. [6]) and r 1 (eq. (A.2)) one obtains eqs. (36)-(38). Using lattice sum 
techniques [2a, 22] a rapidly converging expression for U(r) is found: 

3 cos(2~rn- r )  
U(r) = 16~2 Y~. n2 

n~0 

e_~rn2 3 ~_, __e2~rin .  r erfc(vr~-In - rl)  
- 16~r 2 - T r +  +v/-~-~ In-r1 n ~ O  112 n 

(B.7) 

Appendix C 

In this appendix we will derive the expression for the energy of electric flux 
obtained from twisted boundary conditions. Let L a x  T be the extent of the 
four-dimensional torus on which twisted boundary conditions are defined [1] and k 
the twist in the time direction. Then one can express the twisted partition function 



J. Koller, P. l,an Baal / Electric flux energl' 

in terms of the free energies F(e, L, T, r )  introduced by 't Hooft  [1]: 

411 

zk = ~ e  -2"'k " /Ne-  ~'" L, r,B) (C.1) 
£ 

Here fl = 4/gZo and e is the electric flux, integer mod N for SU(N).  The free energy 

behaves as 

r ( e ,  L ,  T, ,8) = T A E ( e ,  L ,  f l ) ,  (C.2) 

up to corrections e x p ( - T M ) ,  with M the gap between the ground state and the 
first excited state in a given electric sector (assumed to be finite); for zero electric 
flux M is by definition the glueball mass. Next we can use the cubic symmetry and 
normalize such that AE(0, L, r )  = 0. Hence AE(+e~,  L, r )  = AE (ei the unit 
vector in the/-direction). Finally it is reasonable to assume a finite gap between the 
energy of one unit of electric flux and two units of electric flux, of order A E. Then 

one easily derives: 

Z k  3 
- -  = 1 + 2 Y'. (cos(2~rk, /N)  - 1 ) e - r a E +  O(e - (aE+ae) r ) ,  
Zo i=1 

(c.3) 

which is easily seen to give (gE = rain(M, zaE)): 

zaE=  - - ~ l n  - - ~ - - ~ ( l n ( Z J Z o )  ) ~ ,  s in2(~rkJNl- - f f f f  - + O ( T - X e  - • 
i ' l  

(C.4) 

In lattice units L = N s, T =  Nt and thus for k = (1,0,0) and SU(2), with 

1 0 
/~(1~, Nt) = - ~ - . ~ l n ( Z J Z o )  , (C.5) 

we find eq. (42). For N t ~ oo one can ignore the term [2] - 2 cgAE/Ofl, but for finite 
N, it can give an appreciable correction. 
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