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The small-volume expansion of the low-lying glueball states for SU(2) and SU(3) gauge
theory, coupled to massless fermions with periodic and antiperiodic boundary conditions, is
determined. For SU(3) with periodic boundary conditions the vacuum is eightfold degenerate and
breaks part of the cubic group spontaneously. In all cases the scalar-to-tensor mass ratio
My /my++ is 1.1 10 1.3 as in the pure-gauge case. We also discuss chiral symmetry.

1. Introduction

In this paper we wish to apply the approach of the zero-temperature smali-volume
expansion [1] to SU(N) (for N = 2,3) gauge theories coupled to massless fermions
with spatially periodic and antiperiodic boundary conditions. The number of
flavours n; will be arbitrary (but small enough in order not to destroy asymptotic
freedom). Some explicit predictions for three flavours will be given as an example.
This work is aimed at understanding the mechanism of confinement and chiral-sym-
metry breaking, starting from the fundamental QCD lagrangian. Asymptotic free-
dom will guarantee calculability at small volumes. For large volumes one has the
important results of Liischer [2] and of Gasser and Leutwyler [3], especially for
controlling the finite-volume errors in lattice gauge theory. However, these large-
volume expansions leave undetermined a number of, in principle, calculable con-
stants.

It was claimed in ref. [4] that chiral symmetry is broken even when going to small
volumes, due to condensation of zero-energy fermion modes. We will show that
actually expanding around the true quantum vacuum, no such zero-energy fermion
modes occur, so chiral symmetry is unbroken in small volumes [3].

Another motivation for our study is the comparison of analytic results with
Monte Carlo data [S]. Limitations in computational power will allow a better
approach to the continuum in small volumes [6]. In this context we compute the
contribution of massless fermions to the effective hamiltonian of the zero-momen-
tum gauge fields, yielding a generalization of Liischer’s effective hamiltonian [1].
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The fermions contribute through vacuum polarization effects, which are computed
to one-loop order. The spectrum of the effective hamiltonian will give the low-lying
glueball masses in a small volume and, as in the pure-gauge case, these are of the
order g2/? /L. On the other hand, since there are no zero-energy fermion modes, the
pion has a mass of order 1/L and hence glueballs cannot decay into pions in a
small volume (the “femto universe” [7]; this reference also contains a very clear
overview of the many aspects of nonperturbative QCD.) Therefore, we need not
address the issue of coupling to flavour-singlet mesons. Nevertheless this is an
important issue, since this coupling determines the decay modes for the glueballs. In
principle, however, the glueball wave function (not to be confused with the wave
function for the effective hamiltonian) allows one to determine the mixing with the
flavour-singlet states, but this issue will not be pursued any further in this paper.

A surprising result for SU(3) with periodic boundary conditions is that the
vacuum is eightfold degenerate and the set of vacua form an orbit under the group
of coordinate reflections. As a consequence the mass gap will go to zero for small
volumes. Tunneling effects will have to be included in order to go to intermediate
volumes, as in the pure-gauge case [§8], but a detailed study of the appropriate
nonperturbative dynamics will be left for the future.

2. Boundary conditions and chiral symmetry

Let us begin by specifying the boundary conditions for the gauge and fermion
fields on a cube of sides L X L X L (n€Z?)

A(x+nL)y=A4,(x),
@ (x4nl) = (£ (). 1)

Hence, the vector fields and ¥ are periodic, whereas ¥ _ is antiperiodic. Naively,
one would expand around 4,=0, ¥, =0, but the following argument will show
that this is not obviously correct. The periodic boundary conditions for the gauge
fields remain unchanged under the twisted gauge transformations of 't Hooft [9]

gu(x+nL)=exp(2min-k/N)g,(x), (2)

but the boundary conditions for the fermion fields in the fundamental representa-
tion of SU(N ) change to

¥ (x+nL)=(21)"""""expQ2nik -n/N)¥, (x), (3)

where ¥ L(x) =g, (x)¥ (x). However, operators like the hamiltonian remain in-
variant under the gauge transformations g, and therefore one could just as well
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claim that perturbation theory is defined by expanding around ¥_ =0, A4,(x)=
—igy '(x) 3,8,(x), (which is equivalent to expanding around ‘IA'i= 0, ff,. =0.) Due
to the presence of the fermions this will, in general, be a state with a different
energy.
The various candidate vacua, thus obtained, can be distinguished by the Polyakov
line
1 [L
PI=NTr[Pexp(1fO Aj(x+tej)dt)], (4)

evaluated at the vacuum. These Polyakov lines have to take values in the centre of
the gauge group when evaluated at the quantum vacua (otherwise gauge invariance
would be spontaneously broken) and they transform under eq. (2) by multiplying
with an element of the centre.

For SU(2) P;= £1 and we expect the vacuum to have maximal symmetry.
Indeed we will show that for periodic boundary conditions P,= —1for all j (hence
¥.=0, 4,=0is a false vacuum), whereas for antiperiodic boundary conditions,
P,=1 for all j (here ¥_=0, 4,=0 is the true vacuum). By taking k = (1,1,1) in
eq. (3) we see that both cases are related by a gauge transformation. This observa-
tion is well known in lattice gauge theory [10] but the implication for the vacuum
ambiguity was never realized.

For SU(3) and antiperiodic boundary conditions we likewise find P, =1 for all j,
but with periodic boundary conditions P, =1 will correspond to a false vacuum.
The lowest energy in this case is achieved for P(l) = exp(27il,/3) with [, = +1.
Reflection in the ith coordinate will change the sign of /, and we therefore have an
eightfold-degenerate vacuum which forms an orbit under the coordinate
reflections Z3.

The proof that the above vacua are not false vacua will be given after we have
discussed the implication for chiral-symmetry breaking. Chiral-symmetry breaking
is believed to be associated with condensation of zero-energy fermion modes, and
indeed for the two-dimensional Gross—-Neveu model [11] (exactly solvable in the
large N-limit) this causes chiral symmetry to be broken even in small volumes [12].
Expanding around ¥ =0, 4,=0, one would then expect a similar behaviour for
gauge theories coupled to massless fermions [4]. However, one can easily convince
oneself that zero-energy modes for the fermions in perturbation theory will only

occur when
3

I1 Pl

Jj=1

Y(x+nl)= ¥(x), (5)

where P, is the value of the Polyakov line in the true vacuum. This criterion is
clearly not satisfied for the vacua we identified and, in lowest order, chiral
symmetry will be unbroken.

Actually, we claim that even if eq. (5) were fulfilled, no chiral-symmetry breaking
would occur. To see this we compute, for periodic fermion fields in a fixed
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zero-momentum gauge-field background 4,, the lowest order contribution to (¥ ¥).
This yields

mNn;
L¥/m*+ 2Tr( A%)

For A,=0, m — 0 we indeed get the result [4] (¥¥) = Nn,;/L>. However, one is
not allowed to take the limit m — 0 before averaging over the gauge-field fluctua-
tions and this is easily seen to wipe out the non-zero value of (¥¥) for m — 0.
(Note, that for the Gross—~Neveu model the fermions are not coupled to a gauge
field and our argument does not apply to that model.) Thus, chiral symmetry will
not be broken perturbatively through the presence of zero-energy fermion modes,
and to all orders in perturbation theory, (¥¥) = 0 for massless fermions. It should
be noted, however, that (¥¥) is not a good order parameter for spontaneous
chiral-symmetry breaking in a finite volume (for the same reason that the magneti-
zation in the Ising model will only be non-zero in the thermodynamic limit).

Finally, we wish to remark that breaking of chiral SU(n,) X SU(n) down to the
diagonal flavour symmetry group SU(n;) should not be confused with breaking of
chiral U (1) through instantons [13]. However, using the consistency conditions
imposed by the axial anomaly, 't Hooft showed that spontaneous chiral-symmetry
breaking seems unavoidable in QCD [14], which suggests that this breaking of chiral
symmetry is dynamically realized through the breakdown of the chiral U,(1)
symmetry.

(PP = +0(m/L?). (6)

3. The effective potential

We will compute, in this section, the contribution of the fermions to the effective
potential, which depends on the parameters of the classical vacua. These parameters
are the same as for the pure-gauge theories (the fermion fields are zero), and are
given by the set of spatially constant, abelian, gauge fields [1] (parametrizing the
vacuum valley)

y “r-ar 7
(%)= =-T,= ==, )
modulo periodic (homotopically trivial) gauge transformations, leaving the abelian
and constant properties invariant. In eq. (7), 7, are the (N — 1) generators for the
Cartan subalgebra, explicitly
SU(2): = 1o, = Jdiag(1, - 1);

1

2

Tl
SU(3): T,

A, = idiag(1, -1,0),

1
(2/3)

T,

g = diag(1,1, —2). (8)
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To be more precise, this describes one connected component, related to the others
by the homotopically non-trivial periodic gauge transformations. Concentrating on
one such component is equivalent to ignoring instanton effects [15].

If pu, i=1,2,..., N are the (N — 1)-dimensional weight vectors of the funda-
mental representation (i.e. T, = diag(p‘D, ..., p™)), one easily generalizes Liischer’s
result for the effective potential [1] to include the fermions

Va(Cy =1 ¥ B(C- (10— u0) - m TR (Cuv ). ()

z# j=1 i=1
(up to a possible overall constant), where

) -y S0anx). (10)

L 70 (n?)

C_ =0 (periodic boundary conditions for the fermions) and C_= (7, 7, 7) (anti-
periodic boundary conditions for the fermions). Note, that {p? — pu)} are the
weights of the adjoint representation, i.e. the roots {a} (ref. [15], appendix D). Eq.
(9) follows straightforwardly from (ref. [16])

det'(—Dj(B))det(ID(B))"‘
det'(w,,(B))""

: (11)

/ dt Ve (C)

with D(B) the Dirac operator at B,= C,- T/L.

The correct quantum vacuum is now given by the minimum of V. Since Vi(x)
has its minimum at x =0 (mod 2+) and its maximum at x = C_ (mod27) [15], the
true vacuum for antiperiodic boundary conditions is given by - C =0 (mod 27).
Note that p- C are not independent, since ¥,y - C = Tr(T- C) =0 and that the
Polyakov lines evaluated at A = C- T/L are given by

P(CH) = %Tr(exp(iq- T))

; xp(ip®- C,). (12)

= |

Hence, for antiperiodic boundary conditions we confirm the quantum vacuum to be
unique with P, =1. For periodic boundary conditions the situation is more com-
plicated, however. As mentioned before, exp(iC;- T') should be in the centre of
SU(N) for Cf corresponding to the proper vacuum and hence at the vacuum for all
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i#j, u- C=pY- C (mod2w), or for all i

p(")-C=%vzl(mod2w), IJ.=O,1,...,(N—1). (13)
At this value, V;(C) = —anl}l(27rl/N ), which is minimal for SU(2) and SU(3) if
all /;= +1. Hence, for SU(Z) we have P,= ~1 and the vacuum is unique. Note that
for SU(2) the periodic and the antiperiodic cases are related by the gauge transfor-
mation g ; 1), which transforms P; to — P,

For SU(3) the vacuum is eightfold degenerate with P, = exp(/,27i/3), [;= +1.In
perturbation theory we will only expand around one of the quantum vacua. Since
these vacua are related by coordinate reflections, a symmetry of the full effective
hamiltonian, each choice is equivalent. The vacua of eq. (13) are related to C*=0
by the gauge transformation g,(x). Hence, expanding around ¥, (x) =0,
p) - A(x)=2ml/NL is equivalent to expanding around ¥,(x)=0, 4,(x)=0
provided operators are properly transformed before computing the expectation
value. We will, therefore, express the effective hamiltonian in terms of

1 )
ot = z—2/d3x2Tr(Ai(x)Ta),

A (x) =g (x)4,(x)g (x) —ig,(x) 3,87 (x), (14)

where a now runs from 1 to N2 —1, with 7, a hermitian basis of the Lie algebra
and Tr(T,T,) = ;6,,. The effective hamiltonian was computed with the “dynamical
background field” calculation exactly as in the pure-gauge case [15,16]. The back-
ground field is /fj.‘ =c¢?/L, the pure-gauge Feynman rules are those of ref. [17]
(m = 0) and the rules which include the fermions are given in fig. 1 with ( Y, are the

A7 g7 |

angle (rad)
(=]
T
1

p{GeV)

Fig. 1. Feynman rules which contain fermion lines. For the remaining, purely bosonic Feynman rules,
see ref. [17].
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Dirac matrices)

. 2a )
’ = -0 + L)
I (n n,

ap

i8,;
i oy

Y+ e
V8= _i(‘Yp)aﬁ(TL)abapu,qu+r“' (15)

For antiperiodic boundary conditions ny= 3(1,1,1) and for periodic boundary
conditions n,=1/N, ie. for SU2) n,=1(1,1,1) and for SU(3) we choose
ny= 3(1,1,1) (the other seven possibilities can be obtained by coordinate reflec-
tions.)

The results up to one loop will be expressed in terms of the background field ¢!
and the renormalized coupling constant at the scale p=1/L in the minimal
subtraction scheme [18]

b
g (L) = —2byin( LA ) + —51In[ —21n( LA )]

262
1 11 2
o Gy )
b= Gy (CEN BN (V= D). (19

4. The effective hamiltonian for SU(2)

For SU(2) we find the following result for the effective hamiltonian in the
zero-momentum gauge fields

11 R
Heffz_ﬁ(?-'—&l) W+VT(C)+V1(C)+'“,
11 ~ ~ bbb ~ bab | = 2
L-Vi(c)= b + &, | FAFS + & FAFSciey + @ FSFacle) + as(dete)” + -+ -,

Vi(e) = I}l(r) ~ 2nf171(%r+ C_) —2jr|/L,
ibityhy ibitity

= z(flcfcf‘ + 3(&; — Ry)clclebe? + SR clelcle?

3 3 3
+ESZ(c?cf>3+ﬁﬁz(c:'c:')chc;’wJII(cfcf)+--- . (17)
i=1 i=

i)
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where
— a.a a __ __ a.b
r=yec E‘j_ EabclLiC s
~ . ’ ~ _ ’
&=a,—2na, K, =K,—2n;x]. (18)

The constants «a;, a/, k,, k/ are given in table 1. The primed coefficients are as
momentum sums similar to those for the pure-gauge case [16], but with the
momenta shifted over 27n,/L.

1 1 7d+1 LY 2ni(d-1) L

PR Sl i St Lo,

g 8o 4d g k| 8d M k]

1 8(7,~ &) 1 51 (d—1)(d—-6) L
— @ =8k~ R+ 5 21+ —————— Y —
g2 2 Tt g 24d o kI

2n,(2d—3) _ L¢
+ P —

2d kP

1
A= g
ah = rry i 3K+ 8(k5 — k%),

Y 1 35k%k2  189KZk2k?
=L - + ,

e ST TR
e 36kEkS  189Kk2k2kE
a4=aL Z 2|k|11 - 2|k|ll °

@

1 63k2k2K2

af =3 L°) Tk (19)

&)

where d is the dimension of space, g, is the bare coupling constant and

= X . X-= ) : (20)

) k=2mn/L+0 (ny) k=2m(n+ny(1,1,1))/L

For the remaining coefficients see ref. [16] or below.
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TABLE 1

Coefficients for the SU(2) effective hamiltonian. The primed coefficients give the fermionic contribution

per Weyl component

x; = —0.30104661 @ = 21810429 x 1072
Ky = —6.3319840 X 10~? ay = 7.5714590 X 103
Ky= 56289546 X 107* a; = —1.1130266 x 10~ *
Ky = —1.5687855 x 107? o, = —2.1475176 x 107*
Ks= 49676959 x 1073 a5 = —1.2775652 X 103
kg = —5.5172502 X 1073

£, = —1.2423581 x 103

8] = —2.1272012x 1072 o = 3.098211 x107°
k5= 22421241 x10°* af= 17211922 x 1073
k; = 3.5180967 x 1073 of= 3.0178786 x 1073
kj= 15850480 X 1074 af= 32156523 x10°°
K= —2.8659656 X 10~ ¢ af = —3.2271736 x 1073
xy= 11578663 x 107°

K= ~7.9447492 x 107°

To obtain the perturbative expansion we add 2nf171(77, 7, 7) to eq. (17) and

rescale the fields as
ct—>g (1~ H&+a)g’)ef,

(21)

which yields Lischer’s effective hamiltonian {1] with n; dependent coefficients

L-H ;= g* Hy+ g*kjcief + 88/3('22 +5(k,— ’33))H0
+3g%3(Ry — R,) cfefelel + 5%k yefefclel + ... (22)
with
82
Ho= o + SESES. (23)

i

This deviates slightly from Liischer’s [1] expression, but is equivalent to it by the use
of the virial theorem, which implies (¢, F’bg) = 5(d, Hyby) (here ¢, is the
eigenfunction of H,). Energies, labelled by the representations of the cubic group
are again given by a power series in g2/3, but now with coefficients & which depend
on the number of flavours

L-E= g2/3§1 + g4/3gz + g253 + g8/3§4+ O(g10/3)’

~ ~ ~ 2 o~
§748, € = P&y, €3 = P&, p =K /Ky,

Ey=peyt ['E2+ SR, — &) - 93("2+ O K3))]81

+3['33“'€4—P3('€3"'C4)]771+5['€4—P3"4]"2’ (24)
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TABLE 2
Coefficients for the perturbative expansion of the energy for a few low-lying states in SU(2)

A1+ A1+ Al‘ E+ 7’:2+
N 18.348 55.96 27.1518 41.55 41.55
M, 8.8134 30.18 11.6048 25.10 19.47
£§03) 4.116720 6.386359 8.786713 6.0145 6.0145
£,(3) —0.676567 ~1.135974 —0.855423 —1.039 ~1.039
£(3) —0.039464 —0.145 —0.024888 —-0.090 —0.090
£.(3) —0.02188 -0.0382 —0.0485197 -0.0732 —0.0023

where ¢, were calculated by Liischer and Miinster [1] and 7, are the expectation
values

a

m= (‘Po, C,‘Cfcfc%o), M= (‘Po,cfcfcfcfﬁbo)- (25)

They are given in table 2 for a few states, together with § as an example for three
flavours. One can easily generate the results for other flavours by using eq. (24).

We note that for the first three orders in perturbation theory there is a simple
scaling of the energies

L-E(ng,g)=p 'L-E(0,07%). (26)

Masses, which are obtained as the energy differences with the ground state, scale
similarly, whereas mass ratios rg = mg/m,+ scale with z,.=m,.- L to this order
as:

"R(”f’zAl*)zrk(O’PzA;)- (27)

Since p=(1—0.14132n;) is smaller than 1, the mass ratios in the presence of
dynamical fermions have a weaker z-dependence than in the pure-gauge case, which
suggests that the perturbative expansion remains valid for larger values of z. Indeed,
this 1s what a crude nonperturbative analysis shows. Such an analysis is based on
the fact that V; has local minima, which are false vacua, separated from the true
vacuum by a potential barrier, and perturbation theory is typically expected to
break down for the energy level in question, once this energy reaches the saddle
point (the minimal potential one has to overcome to go to the false vacuum). We
find the following heights 6¥V(n,) for the saddle point above the vacuum:

L-8V(0) =3.210, L-8V(1)=3.576,

L-8V(2)=3984, L-8V(3)=4.432. (28)
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As an example we take again three flavours and equate E for the first excited A;"
state to 8. From this we find that the perturbative expansion should hold up to
g ~ 0.76, which corresponds to z,.~ 1.5 and m,./mg+~ 1.18. This is to be com-
pared with the pure-gauge case, where perturbation theory for the same state breaks
down at g ~ 0.54, for which z,.~ 1.0. For SU(2) we therefore predict the low-lying
glueball states to be arranged as in the pure-gauge case, independent of the
boundary conditions for the fermions. Moreover, the spatial Polyakov line will have
a single-phase structure, which clusters around (+1)—1 with (anti-)periodic
boundary conditions for the fermions.

5. The effective hamiltonian for SU(3)

The techniques to calculate the effective hamiltonian for SU(3) are essentially the
same as for SU(2). We will restrict ourselves to one-loop and fourth order in the
background field. In the following

Fi‘; = —fahcctbcj ’ (29)
with f,,. the SU(3) structure constants. The coefficients of — 132/ dc¢’ and F,-‘}z
were determined by a one-loop calculation; the remaining coefficients are de-

termined by expanding the effective vacuum-valley potential. For this the following
identities will be helpful (p(” are the weights introduced earlier)

3

Z (k) (k) ,

3
— 4 k k), (k
abc” 3 Z ¢ )}L( nu‘(c)

Sapea= 18 Z pOuOuEu (30)
k=1

In this equation a4, b, ¢ and d run only over the generators of the Cartan
subalgebra (i.e. in our conventions over 1 and 2), 4,,.=2Tr({7T,, T,}T,) and s,,.,
is the symmetric tensor introduced by Liischer [1]. We note that, for SU(3), [19]

Sabed = %(Sabscd + 8 de + Sadsbc) (31)

(for SU(N), N > 3, no similar reduction of s,,., to delta functions exists.)

Using the fact that § and d are irreducible SU(3) invariant tensors, the extension
to fourth order in the fields, from the vacuum valley to all background fields, is
unique up to Fi‘j-z. The result will, therefore, be expressed in terms of the Taylor
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coefficients of 171

3"V, (C)
ac. ...aC

i in

ng#0, Mif’.‘?)i" =

’

C=2mny(1,1,1)

(7, (€) -21C))
aC. ... aC.

I In

ny=0, Mifq)..i,, = (32)

Note that the Miff’f>_)i" are fully symmetric with respect to its indices and further are
related by S, (e.g. My, = My, = M;;, My, = M,; = M,; etc.) Furthermore, M}/? is
negative definite (with two of its eigenvalues equal M{{/» — M1/ and the other
eigenvalue equal M{1/® + 2M5/?), which guarantees that u)- C=27,/3(1,1,1) is
a minimum of V3 (CF).

We find the following expression for the SU(3) effective hamiltonian

2

L.Heff= —%Kljacaaca-i-V(cla)’
i J

1
(K_l),-j=E+a{”°) for lzj,

= —n B for  i#j,
1/ 1
V(c,.“) = Z _g_ + a(no))[.;szlj+ 1 ,B(nO)Z ’ZFﬁ( (3M(0)_ n M(”o)) ja
i#]

1 0
- §nf tjk dabe 432 (9M1(jk)m - Ml(jkom)sabdec ¢ CkC (33)

where "), a{™) and B" are determined by

1 (o) 1 (7d+1) LY 2n.(d-1)
— o= — g Ay = PMRET e
g 8o 8d o |kl 8d (70) | <]
1 1 d—1)(d—6 LY 2n,(2d-3
__2+a<2no)=__2_31+(__L _3+_;(___)Z__3’
g 8o 24d © |k 12d () 1Kl
Lkk
B = X s = h(aMifd + MR (34)

5
(ng) 4,k|
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In table 3 we give the values of M for ny=0, ny=} and n,= 1. The following
relations of M (" with «; and «; hold

Mf?) =2k, Ml(ﬂl = 24(3"3 + 2"4) ) Ml(?%z = 24("3 - "4) )
Mﬁ/z) = 8k ,Ml(lll/lz) = 384(3k} + 2x}), Ml(llz/zz) = 384(1(3 AR (35)

furthermore, we have

1
ai"O) = 15( 672 - 3'(2) - 2nf('m7 - 3K§no)) ,
( ! ! &
0‘2"0) = 15(1—8;2- — 3K2) - 2nf( 727{2 — 3K2 o)) ,
k§/D =5, kY= 4856880 X 1074 (36)

The case of n,= 7 gives the results for antiperiodic boundary conditions. For
periodic boundary conditions of the fermion fields one has to choose n,= 3.
To obtain the perturbative expansion we rescale the fields as in eq. (21)

et =g (1 L(af™ + af™)g?)ct, (37)
and find (using eq. (29), H, is still given by eq. (23))

_ ,2/3 4/3 0 2 b
L-Hy=g¥ Hy+ 1g**(3MQ — n, M ) cle? — Lgn MU0d ,, co¢"ct

8,3 1 8/3 0 b.d
+g% (1-5"2 - 2an(2n0))H0 + ;8" (9Mi(j/3m - nfMi(J"IiOrzz)Sabdecz{leckc;

+oee (38)

i i

92
4+ 1873, g ¥ | _ + FeFs
28 B lgj 9c% 9t ik L'k

For the case of antiperiodic boundary conditions in the fermions, H,; is exactly
of the same form as in ref. {1] but with coefficients depending on the number of
flavours. (To be specific one makes the following replacements in Liischer’s expres-
sion for the SU(3) pure gauge effective hamiltonian: a, = a; - 2nk{, a;—
as— ny(k}—x}) ay— a,— ¥n;x}.) The quantum vacuum is unique with a single
phase structure for the Polyakov loops P;, clustering around 1. The effective
hamiltonian has the symmetries of the full cubic group and charge conjugation C

C: ¢;'T— —(c;-T)*=~(c¢,-T)". (39)
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TABLE 3

Taylor coefficients of I;l No summations over repeated indices is implied, / #j # k run from 1 to 3 and
M is symmetric in its indices

no=0 no=13 no =%
M, —6.0209322 x 107! —1.70176098 x 10~ —-1.25941522 x 10!
M, 0.0 0.0 —6.03866725 X 1072
M, 0.0 0.0 —1.88451162 107!
M, 0.0 0.0 4.40270126 X 102
M, 0.0 0.0 407658227 X 107}
M, —3.4773231 1072 1.62260164 x 10~} 138599356 x 10!
M, 5.1160343 X 102 — 473563539 x 1077 —3.55259501 X 10~ 2
M. 0.0 0.0 4.25447526 X 1072
M, 0.0 0.0 —3.61684403 x 1072

For the first three non-trivial orders we have, again, exactly the same scaling
behaviour of egs. (26) and (27), but with

p= 3k, —4nk{)/(3k;) = (1 -0.09421 n;). (40)

To this order the results can, therefore, be read off from those of ref. [20], using egs.
(26) and (27). We will not determine the dependence of the fourth order term on the
number of flavours, expecting this dependence to be relatively weak, like for SU(2).

For n;=3, p~! ~1.394 and the saddle point, similar to what was discussed for
SU(2), has a height of L-8V ~ 7.834 above the vacuum. Therefore, perturbation
theory is expected to break down at g ~ 0.64 for the first excited 4;"" state, which
corresponds to z,.-~ 1.8. (In this case we have to compare 8V with the energy
difference of the SU(2) groundstate energy [21}].)

Finally, we will discuss the consequences of our results for the energy levels of
SU(3) with periodic boundary conditions for the fermions. As observed before, the
coordinate-reflection symmetry is broken, since the values of P; are not invariant
under these symmetries. Moreover, since P; is complex, charge conjugation is also
spontaneously broken. However, since charge conjugation C has the same effect as
overall parity P on the value of this Polyakov loop, evaluated in the quantum vacua,
the simultaneous parity and charge conjugation transformation is still a symmetry.
That is, CP is conversed but C and P are separately broken spontaneously. Indeed,
only terms in the expansion of the effective hamiltonian, which are odd in the tensor
d,,.» break either parity or charge conjugation, but are invariant under their
combined action. The other symmetries of the perturbative vacuum are the coordi-
nate permutations S; (up to a possible conjugation with coordinate reflections).
Irreducible representations of S, X CP are denoted by A%, E¥ and 4%, with k= +1
the eigenvalue of CP. The representations A; and A4, are singlets and E is a
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doublet. Each perturbative state is eightfold degenerate and tunneling between the
vacua will lift the degeneracies and restore the full symmetries (of the cubic group
and charge conjugation.) The perturbative ground state is an A4," state, which will
split into the following representations of O(3,Z) X C: A > A", T, T,'*, A, .
Alternatively, these states can be classified by the eigenvalues p; of the coordinate
reflections. The A;"* corresponds to all p,=1; T; ", to one out of the three
p,=-1, T,'%, to two out of the three p;= —1; and A4, = corresponds to all
p;= — 1. (There is some resemblance to the case of electric flux in pure SU(2) gauge
theory [8,16].) We therefore have the surprising result that at small volumes the
mass gap is exponentially small. Furthermore, each spatial Polyakov loop P, has a
two-phase structure, at sufficiently weak coupling, clustering around exp(27i/3)
and exp(—2wi/3). No clustering around 1 should occur.

Concerning perturbation theory we can obtain the low-order results from those of
Weisz and Ziemann [20], depending on the representation in question. Since
reflection symmetry is already broken at second order in perturbation theory
(M}/? is not diagonal), there are two possibilities: (i) states A, EP and A%¢
which do not split since they are already representations of S; X CP. Their energies
are given by

1/3
Ml(l/ )nf

L-E=¢g"+¢, ”
1

1- g2+ 0(g%), (41)

where the O(g?) term requires more information than can be extracted from [20];
(i) states 77¢ and T;°¢ which are not invariant under coordinate reflections and
will hence split into irreducible representations of S; X CP (into (E*, A%) and
(E*, AY), respectively, where k is the eigenvalue of CP). This splitting occurs to
order g%/ since M/}/Vcfc? is not invariant under coordinate reflections. In this case
we can only extract the lowest order energy, which does not depend on the number
of flavours, from ref. [20].

A safe estimate for z .+, below which the mass gap is exponentially small, is the
value of 1.6 estimated for the pure-gauge case, as the value below which electric flux
is suppressed [21]. A more detailed analysis of nonperturbative effects is beyond the
scope of this paper. However, we can expect that the ratio m,./mg. (the
scalar-to-tensor glueball mass ratio) remains relatively constant with a value of
1.2-1.3 and that the perturbative results (eq. (42) together with the results of ref.
[20]) remain valid up to at least z,.-~ 1.5.

This is consistent with the Monte Carlo results of ref. [5] where the fol-
lowing ratios were measured: m -/mpe=1311017 at z,..=3.08£0.24,
M yr/mper=1621030 at z,..=324+0.30 and m ../mp..=1.69+040 at
z 40+=3.52 £ 0.60. However, the fermion mass used in ref. [5] is relatively high and a
direct comparison has to wait until the mass dependence is included in the analytic
calculations. This dependence is, however, expected to be small because the mass
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ratios only weakly depend on the fermionic contributions. To lowest order, glueball
masses are independent of this fermion mass since to order g2/ there is no n;
dependence.

6. Conclusions

We have started to investigate the effect of dynamical massless fermions, in the
continuum for gauge theories in a finite cubic volume, on the low-lying spectrum for
the glueball states. Already, at the order which allows one to identify the proper
quantum vacuum, we found unexpected results. In particular, for periodic boundary
conditions in the spatial directions imposed on the fermions, no zero-energy modes
for the fermions arose and for SU(3) we found an unexpected rich vacuum
structure, whose more direct consequences should be easily verifiable in Monte
Carlo studies. We hope that some of the present work can serve as a testing ground
for the fermionic algorithms developed [22]. A comparison with existing Monte
Carlo results [5] for SU(3) was possible, but one needs to include nonperturbative
corrections in the spirit of the pure-gauge case [8,16] and a fermion-mass term in
order to make a direct comparison.

Except for the case of SU(3) with periodic boundary conditions imposed on the
fermions, the small-volume expansion is remarkably similar to the pure-gauge case
[1,20], as expressed in terms of the scaling in eqgs. (26) and (27), valid up to and
including third order in g2/°. We should stress, however, that there is no reason to
expect this scaling to hold even approximately in larger volumes.

As for the pure-gauge case no claim is made that the results will give predictions
for infinite-volume mass ratios and the interest is mainly theoretical. It would,
however, be desirable for some SU(2) Monte Carlo glueball-spectrum calculations
with dynamical fermions to become available, since intermediate-volume analytic
calculations for SU(2) seem feasible, whereas those for SU(3) at present appear
impractical. Certainly, in the pure-gauge case these intermediate-volume calcula-
tions give good results, at least for the lowest-lying states, and seem to bring us to
the point where confining effects set in [6, 8, 16]. This conclusion is supported by the
recent finite-temperature analysis [23]. In the presence of massless fermions one
would likewise expect the intermediate-volume calculation (based on using the
effective hamiltonian presented here, supplemented with boundary conditions in
configuration space, which are dictated by symmetries and Gribov horizons [16]) to
bring us to the point where spontaneous breaking of chiral symmetry starts to
manifest itself.

Andreas Gocksch was the first to urge me to look at fermions in a small volume,
for which I thank him. I am greatly indebted to Jack Smith, whose valuable time
was spent on ensuring that I could use my Stony Brook computer programmes at
CERN. Many of those programmes were to a large extent developed by Jeff Koller
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and I thank him for the fruitful collaboration of the previous two years. I also wish
to thank Jiirg Gasser, Frithjof Karsch, Apoorva Patel and Akira Ukawa for fruitful
discussions and Ulrich Baur for his help to run TEX.
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