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Inspired by an unambiguous observation of Gribov copies on the lattice an old continuum
example due to Henyey is re-analysed in terms of bifurcations at the Gribov horizon. This gives
yet another proof that there are in general Gribov copies within the horizon. Using results by
Semenov-Tyan-Shanskii, Franke, Del’Antonio and Zwanziger on a possible fundamental modu-
lar domain we argue that its boundary has both Gribov copies and points that coincide with the
Gribov horizon.

1. Introduction

One way strong interactions in non-abelian gauge theories manifest themselves
is by a spreading of the wave functionals over such a large portion of configuration
space, that the issue of Gribov copies [1] can no longer be ignored. To have a
chance to understand the non-perturbative dynamics of the low-energy physics a
better understanding of the physical configuration space is essential, particularly
for describing how physics depends on the quantum numbers associated to the
homotopically non-trivial gauge transformations. These issues are intimately con-
nected to the dynamical questions involving tunnelling between different vacua. To
make this a little more explicit we review an old argument due to Jackiw et al. [2]
in somewhat more generality. (In much of this paper we will be primarily inter-
ested in the hamiltonian formulation, in which case the gauge fields are defined
over a three-dimensional space, but some of the discussion is relevant for the
four-dimensional situation too.) Let g be a homotopically non-trivial gauge trans-
formation, such that A, =[gl®,= —igd,g” " satisfies the Coulomb gauge 9,4, =10
(where throughout this paper @ will denote the zero connection). Then the

Faddeev-Popov operator (our gauge fields will be hermitian Lie algebra elements
and adX(Y)=[X, YD

FP(A) = —3.D,(A) = —d,(3,+i ad A,) (1)
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has a vanishing eigenvalue. The argument is simple: Constant gauge transforma-
tions leave the gauge condition invariant. The obviously related zero modes, that
correspond to constant Lie algebra elements, are removed by defining the theory
modulo constant gauge transformation and demanding the wave functionals to be
trivial representations of the gauge group G. As g is a homotopically non-trivial
gauge transformation, gXg ! cannot be constant for all constant Lie algebra
elements X, but it is nevertheless a zero mode of FP(A4). Thus the Gribov horizon
will contain gauge copies of the classical vacuum, making it more urgent to
understand the problem of gauge fixing.

It seemed therefore that Gribov copies are always associated to homotopically
non-trivial gauge transformations. It was first demonstrated in an example by
Henyey [3] that this is not always true. But probably the most simple example is
provided by gauge fields on the torus in the abelian zero-momentum sector. For
definiteness let us take G = SU(2) (with the Pauli matrices 7, as generators of the
algebra and L the size of the torus) and A,=(C,/2L)r;, then the gauge
transformation g, = exp(—mix,75/L) maps C, to C, +2m. As g, is anti-peri-
odic it is homotopically non-trivial (they are ’t Hooft’s twisted gauge transforma-
tions [4]). However, g(zk) will map C, to C, + 4. As this gauge transformation is
periodic and abelian, it is contractable to the identity and provides an example of
gauge copies by homotopically trivial gauge transformations. This example also
proves that in general there are gauge copies within the Gribov horizon, which
occurs [5,6] at |C, | =2m. For example C=D + (—m, 0, 0) is a gauge copy of
C =D + (=, 0, 0) and both occur inside the horizon if | D;| <. (It would seem
the simplest case arises by taking D = 0, however, in that case both configurations
are related by a constant gauge transformation, which are to be divided out.)

Still, one might conjecture (as in the above example) that such copies within the
horizon are always associated to homotopically non-trivial gauge transformations.
Henyey’s [3] example will be shown to provide an explicit example of gauge copies
within the horizon, that are related by homotopically trivial gauge transformations
(and that are related to a copy outside the horizon). In sect. 1 we will first give an
argument based on Morse theory that in certain cases shows how, when moving
from inside the horizon to outside (where the lowest eigenvalue of FP(A4) flips
sign) two additional copies will be created for which FP( A) is positive and which
are therefore inside the horizon. As these copies coalesce at the horizon, the gauge
transformation relating the two can be deformed to the identity. Our interest in
this example was stirred by an unambiguous observation of Gribov copies on a
lattice [7]. The structure of the relevant gauge transformations was analysed and
some of them would have non-zero winding number, whereas others were typically
of the form expected from ref. [3].

That there are Gribov copies within the Gribov horizon was first demonstrated
by Semenov-Tyan-Shanskii and Franke {8] and analysed in more detail by
Dell’Antonio and Zwanziger [9,10]. These authors also provide a recipe that will
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(almost) uniquely fix an element of the gauge orbit. In sect. 4 we make more
precise in what sense this forms a fundamental modular domain. The interior is a
convex subset of the transverse connections, that contains no Gribov copies. The
boundary will contain Gribov copies, but can at most coincide with the horizon on
a subset of the boundary of codimension one. The gauge transformations that
relate the copies provides the identifications at the boundary that makes it into a
fundamental modular domain for configuration space. These considerations are
both relevant for the hamiltonian formulation and for the recent path integral
formulation on this fundamental modular domain by Zwanziger [11], Parinello and
Jona-Lasinio [12]. In the case of SU(2) gauge theory on the torus the intersection
of this fundamental modular domain with the constant abelian gauge fields is given
by |Cyl <7 and g, provides the identification of the (opposite) points on the
boundary. In this case the boundary is regular, but we will argue that in general
so-called singular boundary points (i.c. those that coincide with the horizon) do
occur.

It should be mentioned that for the torus in the presence of fields in the
fundamental representation (quarks) only periodic gauge transformations are
allowed. In that case it is easily seen that the intersection of the fundamental
modular domain with the constant abelian gauge fields is given by the domain
|C, | <2, whose boundary coincides with the Gribov horizon. Nevertheless, this
domain is a covering space of the domain |C, | <7 and fields in the fundamental
representation can be defined on the latter if allowed to be multi-valued (an
alternative formulation in terms of coordinate patches is described in ref. [6]).
Later we will see that even for pure gauge theories, the wave functionals are still
multi-valued, but in that case the multi-valuedness is restricted to a phase factor
determined by the periodicity condition that arises as a consequence of the
identifications at the boundary of the fundamental modular domain. The relevant
“Bloch momenta” give the topological quantum numbers.

In sect. 5 we conclude with a discussion on the implications for the hamiltonian
formulation. We also re-emphasize [13] that for supersymmetric gauge theories on
a torus the Gribov copies are essential for a proper evaluation of the Witten index,
despite the fact that one can take the coupling constant (and hence the volume) as
small as one likes. The problem remains open (despite the claim made in ref. [14])
and turns out to be related to the non-trivial issue of constructing Dirac vacuum
bundles that incorporate the identifications associated to the Gribov copies. It
seems to require one to introduce a multi-valued vacuum wave functional that
incorporates the non-conservation of chiral particle number, induced by the chiral
U(1) anomaly [15]. Note that this multi-valuedness is again of a different nature as
discussed in the previous paragraph (the fermions in supersymmetric gauge theo-
ries are in the adjoint representation). These issues certainly deserve further study.
However, this paper will concentrate on the pure gauge sector.
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2. Morse theory and bifurcation of copies at the horizon

The Coulomb gauge condition d; 4; = 0 can be formulated in terms of an action
principle [8,9,16] (M is the manifold over which the gauge theory is defined, which
we will mostly take three dimensional and compact. For R*® we assume the fields to
have an asymptotics that allows compactification to the three sphere.)

I(g; A) =I[g]4N = [ T({lela})= [ ({4, +ig70g)),

whose critical points satisfy the gauge condition and whose hessian is precisely the
Faddeev-Popov operator. This is most easily established by observing that

I(hg; A)=1I(h;[g]A). 3)
Writing 4 = e and using

! —exp(—ad X)

- X X
e 0, e =
! ad X

(6,X)

=X+ 300X, X]+<[loX, X1, X] +..., (4

one finds

I(eX; Ay =1 All*- 2i[MTr(XaiA,) + /MTr(X*FP(A)X)

+%,-fMTr(X[[A,., X, aX])+.... (%)

We note that for g € G a constant group element I(g; A) =1I(1; A), thus F(g)
defined by

F(g)=1(g; A) (6)

is for generic A a Morse function [18] on £ /G, where ¥ is the group of local
gauge transformations, i.e. the set of functions g(x) that map M to G. (For Morse
theory in relation to supersymmetric quantum mchanics, see ref. [19].) The critical
points of the Morse function are precisely the gauge functions g for which [g]A4 is
transverse (i.e. d[g]1A4; = 0.) The hessian of the Morse function at the critical point
is precisely the Faddeev—Popov operator FP([g]4). The Morse index u for the
critical points, is defined as the number of negative eigenvalues of the hessian. As
F, depends continuously on 4 (in the norm implicitly defined in eq. (2)), the
alternating sum of the Morse indices over the critical points (which is the Euler
characteristic of the manifold on which F, is defined) is conserved.
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This argument needs to be treated with caution, as ¥/G is not compact and
there will in general be infinitely many critical points. Nevertheless, the property is
topological in nature and is invariant under continuous deformations of F,. If we
will be interested in a local neighborhood of a particular critical point, we can if
necessary deform F, such that when changing A, there will only happen some-
thing to the critical points in this particular neighborhood. As the type of none of
the other critical points will change, the change is finite and the alternating sum
over the critical points in the chosen neighborhood will be conserved. However, in
general singularities occur at reducible connections (these are connections for
which there exists a non-trivial gauge function g, such that [g]4 =A). Thus &
does not act freely and although dividing out the constant gauge transformations
will remove some of the singularities, it can be shown that /G does not act freely
either. Nevertheless, the presence of the remaining singularities does not affect
our arguments. (For example, for SU(2) gauge theory on S? it can be shown that
up to gauge transformations A = 0 is the only reducible connection.)

The Gribov region £2° is defined as the set of transverse gauge fields for which
the Faddeev—Popov operator is (strictly) positive. Its boundary (342, 2 = 2° U d)
is the Gribov horizon, where the lowest eigenvalue vanishes. It is well known that
2° is convex [8,17]. This is essentially because FP(A) is linear in A. Thus if 4,
and A, are in (2°,

FP(sA4., + (1 —5)Ay) =5 FP(Ag)) + (1 —5)FP(A,) >0 (7

for all s €[0, 1]. Thus, if A4 is on the horizon, the Morse index u(s4) will be zero
for 0 <s <1 and one for s > 1, at least in a small neighborhood of s =1. Let us
assume that as s approaches one from below, there is a sufficiently small neighbor-
hood of the identity in &/G such that F(g) has no further extrema, except the
one at g = 1. The only way the alternating sum of Morse indices can be preserved
is (when s increases beyond one) if two additional extrema are created, that are
both local minima, see fig. 1. Thus for s > 1 F, has extrema at g,(s) =1, g (s) and
g,(s), where lim;_, ,g,(s)=1lim,_,, g,(s) =1, such that g, are homotopically
trivial gauge transformations. Clearly [g, ,(s)ls4 € 2° and are thus points inside
the Gribov horizon (inside and outside is of course well defined since {2 is convex)
that are related by a homotopically trivial gauge transformation.

Thus under the assumption that g=1 is the only extremum of F, in a
sufficiently small neighborhood in /G there will be a bifurcation at the horizon
of solutions to the Coulomb gauge condition into two stable and one unstable
solution. The assumption just mentioned, however, is easily seen to imply that the
third-order term in eq. (5) has to vanish at the horizon for X the zero mode of the
hessian (apart from a factor § this term coincides with the definition of u in ref.
[9]). Generically this will not be the case, in which instance there will be a saddle
point that coalesces with the local minimum at the horizon and the situation is as
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(c)
Fig. 1. Here we sketch the bifurcation at the horizon by three different representations. In (a) we show
what happens to F,(g) when we pass the horizon (h), (b) is the well-known bifurcation picture, where s
stands for stable (a local minimum) and u stands for unstable (a saddle point). Finally, in (c) we sketch
the situation regarding the Gribov region.

sketched in fig. 2, i.e. the saddle point with Morse index 1 will turn into a local
minimum, such that the alternating sum of the Morse indices is again conserved.
Note that, for s > 1 this local minimum is a homotopically trivial copy of the saddle
point sA4, such that the region just outside the Gribov horizon has copies just
inside the Gribov horizon, which is what was already proved by Gribov [1]. In refs.
[8,9] it is, however, proven that if the third-order term of eq. (5) at the horizon is
non-zero for X the zero mode of the hessian, then s4 for 0 < 1-s <e (with €
sufficiently small) cannot be an absolute minimum of F,, and hence also in this
case there will be a gauge copy within the horizon (in general by a large, possibly
homotopically non-trivial gauge transformation).

3. The explicit example

As the Morse theory arguments of sect. 2 are formal and not easily made
rigorous, it is useful to consider an explicit example, where all the features of the
bifurcation can be checked in detail. We will consider Henyey’s example [3] of an
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B(9)

Fig. 2. Here we sketch the generic situation at the horizon (h), when a (local) minimum coalesces with a
saddle point.

axial symmetric abelian gauge field for SU(2) gauge theory on R? which obviously
satisfies 9,4, =0,
A=a(r,0)¢;73, d;=(—sin b, cos ¢, 0),
where (r, 8, ¢) are spherical coordinates. The following gauge transformation:
g = exp(a(cos ¢7, +sin ¢7,)) (8)
will leave the Coulomb gauge condition invariant if and only if [3]
2r? sin? 007« + sin(2a)(2a(r, 8)r sin § — 1) =0. (9)
Rather then solving this equation for «, Henyey’s strategy was to choose a and
solve for a(r, 8). He took
a(r,@)=>b(r)rsin @, (10)
which through eq. (9) yields
dzb( r) 4 db(r)
+ —_—
dr? r o dr
2r sin @ sin(2rb(r) sin ) ’

b(r) +r? sin’ @

a(r, 8) = (11)
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defining a proper gauge field, provided b(r) satisfies the following three conditions
[3]: (D) it is regular at the origin with vanishing first derivative (db(0)/dr = 0); (ii)
2rb(r) <7 for all r; (iii) »3b(r) is bounded.

We note, as expected, that g comes always into pairs as a is invariant under a
change of sign of b. Thus for this example g, =g5' =g, cf. fig. 1. To investigate
the bifurcation structure of the Gribov copies, we replace b by Bb, with 8 a
constant. It satisfies the above-mentioned conditions provided | 8] < 1. Explicitly
we therefore have

A(B) =a(B)drs,

d’h 4 db
b+r’sin? 0| — +——
a(B) - 1 dr’ r.dr
2r sin 6 B~ sin(2rBb sin )
g(B) = exp(iBrb sin 6(e'*r_+e '*7,)). (12)

As g(0) is the identity, the two gauge copies [ g(+8)]A(B) will coalesce at 8 =0,
and it should be such that FP(A(0)) has a zero mode. We even know in advance
what this zero mode should be

ag : =i [l
X(]a£(0)=br sin 8(e "7, +e'P7_). (13)
This is easily checked explicitly. Introducing the function f(r) by

a(f=0) 1 (db 4db)’ (14

=" Gwe “wlaE T
one finds
FP(A(0)) X, = — (97X, — if (r)[ 73, 3, X,] ) = (=37 +2f(r)) X, = 0.

We now address the issue of the spectrum of FP(A(B)) for B #+ 0. We do this in
perturbation theory to order B2, restricting ourselves to the mode that coincides
with X, at B =0. As

Aa

FP( A(B)) = FP( A(0)) —iB? adry 0, + ..., (15)

rsin @
with

Aa = 333a(B =0) = —¢b*r sin §(2 + fr* sin’ 9), (16)
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the relevant eigenvalue is obtained from first-order perturbation theory. With the
innerproduct { X | Y ) = [, Tr(X 'Y this becomes (using some partial integrations
in the last step) to second order in 8

B Xyl -—2% e X
A= S
(X, X,) "% rsineg T3 %1 %0

B fdr dé r*b?* sin® 9(2 + f(r)r? sin? 9)
E)

fdr de r*b? sin® 0

2| p2p4 dr’p? ’
232 fdrr r + ar

- - . (17)

We thus confirm that A(B) always corresponds to an unstable solution to the
gauge condition.

It remains to show that the corresponding eigenvalues for the Gribov copies,
[g(B)A(B), stay positive. Explicitly we find

[2(B)]A(B) =4.(B) +4_(B),

A,(8) = |a(B) + sin*(Ba) | g = 2a(8) |,
in(2Ba) in(2Ba
A4(3)= _B{QHZTD(A(.B))(XO)+ 1‘81112(‘%)))(081“(“)}-

(18)
One casily verifies that 4 _(8) does not contribute to second order in 8, since
[4_(B), 3X,] =0. (19)

Thus to second order in B the eigenvalue A" of FP([g(B)]A(B)), that reduces to
zero at B =0, is given by

B4

A (X1 2B X = — 2 20
_<X0|X0> Orsin(ﬁal T3 %10/ = 724 (20)
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where we used the remarkable coincidence that (4, =a +q§73)

a+(B)=a(B)—3gna(—ZBOQAa=a(B=O)—ZBZAa—i—O(B“). (21)

We thus confirm the bifurcation picture, but in general A(8 = 0) need not be on
the Gribov horizon as FP(A(B = 0)) might have negative eigenvalues. To see this
note that

FP(A(0)) = —37 +if(r) ad 74 3, (22)
commutes with ad 7, L, and L% Thus we can decompose the eigenfunctions as
X=X (r)Y(0, §)7.+ X ()Y (8, d)7_+ X5(r)Y,, (0, d)73. (23)

Restricted to X5 the hessian is positive definite and only the “charged” sector will
be relevant, for which the hessian reduces to

14,4 f(lr;zl)——bnf(r). (24)

= — — —pf—
Lm r2dr  dr

For given m and [ this is a one-dimensional potential problem. It has a zero
eigenvalue for / = —m = 1, with X =b. Thus, if b has nodes there are lower (and
hence negative) eigenvalues.

As an example without a node, we take [3]

_3,2 15r
b(ry=K(r’+rd)""%,  flr)=-——. (25)

(r2+r2)

The hamiltonian (24) can only have negative eigenvalues if its potential can
become negative. This only leaves (I, m) = (2, —2) and (1, —1). As b has no nodes
H, | >0, whereas H, ,—H,_, >0 proves that also H,_, > 0. In conclusion, eg.
(25) provides an example for which A(B =0) is at the Gribov horizon, which
concludes this section.

4. The fundamental modular domain

Let us consider the set
A={A|FA(g)>FA(1), Vge?}. (26)

Clearly one has A a subset of (2. Furthermore, it was proven by Semenov-Tyan-
Shanskii and Franke [8] and Dell’Antonio and Zwanziger [10] that A covers all
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gauge orbits. That is, given a connection A (with finite norm || A4 [|), there exists a
g €2° for which F,(g) is at its absolute minimum. The space ¢ is the comple-
tion of & with respect to the norm | dg 2= ll6gll*+ lldog |2, in which dg is
viewed as a complex N X N matrix (in ref. [8] one works on R® and a slightly
different norm is used, so as to eliminate the constant gauge transformations). Let
A° C A be the set where the minimum is unique, i.e. if 4 € A° then F,(g) > F (1)
for all non-constant g. Both A® and A are convex [8,9], for let Agy Ag € A% A)
then

||[g](51‘1(1)+ (1 _S)A(z))”2 = sAqy + (1 _S)A(z)l|2

=s(1[&lAw N7 = 1A 17) + (1 =5)(Ig]Ap 1> = 1 4pl17)  (27)

shows that sA;, + (1 —s) A, € A%(A) for s €[0, 1]. Also clearly A =0 =0¢& A°.
In ref. [9] it was proved that the boundary of A° (3A°) is contained in A, and that
A is closed (apply the “Frist step” lemma [9] to A” and A), which is basically a
continuity argument. Alternatively, take 4 € A — A°, and use eq. (27) for Ag =0
and A, = A, which implies that s4 € A for all 5,0<s <1 and hence A €9A".
Thus the boundary still exists of transverse gauge fields 4 such that F,(g) reaches
its absolute minimum at g = 1, but this minimum need not be unique or might be
on the Gribov horizon.

To analyse these two options, take 4 € (2 — A, then the ray s4 will cross the
boundary of A where necessarily an absolute minimum turns into a relative
minimum. At the boundary F,(g) therefore has degenerate absolute minima, that
are related by in general large gauge transformations. We will call these points on
A regular boundary points. The remaining points of the boundary will necessarily
be on the Gribov horizon and are called singular boundary points. That the set of
regular boundary points is non-empty is easily established by taking the example of
A =[gl0 for g homotopically non-trivial, such that 4 is on the Gribov horizon.
The path s4 will pass dA at (necessarily) a regular point (as the absolute minimum
of F, does not occur at constant gauge functions, but at g~ !, where it vanishes).
The gauge transformation that relates the two copies at the boundary of A is
essentially g~! and is thus homotopically non-trivial (as mentioned before, in the
torus example the fundamental modular domain restricted to the abelian constant
modes is given by |C, | <7, modulo the action of the Weyl group C —» —C and all
boundary points are easily seen to be regular [5,6]). Strictly speaking therefore,
also A is not a fundamental modular domain. Yet it will be, once we have
appropriately identified the boundary points. It is these boundary identifications
that will give the fundamental modular domain the topology of the full configura-
tion space which is the basis of Singer’s [20] argument why for gauge theories on a
compact three- or four-dimensional manifold M, there necessarily have to be
gauge copies.
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Observe that homotopical non-trivial gauge transformations are in one-to-one
correspondence with non-contractable loops in configuration space, which give rise
to conserved quantum numbers. The quantum numbers are like the Bloch mo-
menta in a periodic potential and have to be representations of the homotopy
group of gauge transformations. On the fundamental modular domain the non-
contractable loops arise through identifications of boundary points (as is quite
explicit for the torus in the zero-momentum sector). Although slightly more
hidden, the fundamental modular domain will therefore contain all the informa-
tion relevant for the topological quantum numbers (i.c. it does not have to be “put
in by hand”). Sufficient accurate knowledge of the boundary identifications will
allow, however, for an efficient and natural projection on the various superselec-
tion sectors (i.e. by choosing the appropriate “Bloch wave functionals”). All these
features were at the heart of the finite-volume analysis on the torus [5] and we see
that they can in principle naturally be extended to the full theory, thereby
including the desired 6-dependence. In ref. [6] we proposed formulating the
hamiltonian theory on coordinate patches with homotopically non-trivial gauge
transformations as transition functions. We can shrink these patches almost to A
(and their associated gauge copies, with the homotopically non-trivial gauge
transformations that relate the inequivalent classical vacua). If there would be no
singular boundary points we would avoid any points on the Gribov horizon,
thereby defining open sets that do cover the whole configuration space. These two
formulations are therefore equivalent.

However, it is essential to note that the topology of the configuration space is
not described entirely by non-contractable loops. One also needs to consider
non-contractable spheres of any dimension. It is the non-contractable spheres that
in general will be responsible for singular boundary points in the fundamental
modular domain. As the interior is convex, non-contractable d-spheres can only
arise if the boundary contains a (d — 1)-sphere on which all points are identified.
These correspond to gauge orbits for which F, is degenerate along this (d — 1)-
sphere embedded in . Thus, these A necessarily coincide with the horizon. One
can introduce a regular coordinate patche in the neighborhood of these singular
points to eliminate the singularities, as observed by Singer and Nahm [20,21]. In
this case, though, transition functions can not be described in terms of gauge
transformations [6]. For example, when G = SU(2) these non-contractable spheres
do actually occur [20]. Thus it seems that we cannot avoid singular boundary points
(as was suggested by fig. 1 of ref. [11]). We do not claim that our arguments
present a proof for the existence of singular boundary points, as we implicitly
assumed that the topology of configuration space is unaffected by the completion
with respect to the norm || A4 ||. These issues can be quite intricate, as for example
the winding number of a C! gauge transformation, when defined through

l 3
v(8) = 5 fMTr((g—l dg)’). (28)
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is not continuous in the norm || 8g || ;. However, continuity is sufficient to define
homotopy types. Relevant for this issue is the Sobolev embedding theorem
w c Ck for k<m —n/p (see e.g. ref. [22]), where n is the dimension of the
manifold, W)" is the Sobolev space of functions for which the first m distributional
derivatives are in L”, and C* is the set of k times continuously differentiable
functions. In the one-dimensional case, functions in W," for p>1, m>1 are
guaranteed to be continuous (as can be easily deduced explicitly by using Holder’s
inequality). In the present case n =3, m =1 and p = 2, which unfortunately does
not imply continuity. Indeed, for example, one can construct a series of maps
g, :S* = SU(2) - SU(2) that for all n have winding number zero but converges in
the norm | 8g|l; to the identity map with winding number one. Yet, one must
remember that the gauge fields in the fundamental modular domain satisfy the
Coulomb condition (in the weak sense) from which one might deduce stronger
smoothness properties. Thus, it is possible that using more sophisticated results
from functional analysis will allow one to make stronger claims than we are willing
to commit ourselves to here. One should address these issues primarily in the light
of the physically more relevant dynamical questions and in that context we
certainly intend to come back to this in the future.

In conclusion, it might be that the “hole” in configuration space, due to a
non-contractable loop or sphere, is of zero size in the norm || A|l. We consider
this unlikely, but cannot exclude it. Actually, it might be the mechanism through
which lattice gauge theories in the continuum limit reproduce the various topologi-
cal sectors associated with the winding numbers. By this we mean that by
demanding the fields to be “smooth”, we will “cut” the necessary holes in
configuration space. This requires an appropriate understanding of what it means
to take the continuum limit, for which the “dislocations” [23] play an important
role. Concerning gauge fixing in lattice gauge theory we only wish to remark that
one can similarly impose a Coulomb (or Landau) type gauge through an action
principle [24]. Our statement that A requires identifications at the boundary is
equally valid in this case. Also one has to realize that, although there are no
homotopically non-trivial gauge transformations associated with the winding num-
ber, twisted gauge transformations [4] are still well defined and cannot be de-
formed to the identity.

5. Discussion

We have reconsidered the proposed [8,10-12] fundamental modular domain A
consisting of the absolute minima of the norm ||[g]A4 || on a gauge orbit and shown
it is a fundamental modular domain provided necessary gauge identifications at the
boundary are taken into account. As these identifications determine uniquely the
topology of the configuration space, it can be argued, due to the presence of
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non-contractable spheres in the configuration space (this is true both for three-
and four-dimensional compact manifolds M over which the gauge theory is
defined) that in general there will be so-called singular boundary points, on which
the Faddeev—Popov determinant will vanish. One can still attempt to formulate
the standard hamiltonian [25] on this fundamental modular domain. Usually one
rescales the wave functional with \/det’(FP(A)) which will be strictly positive
everywhere, expect at a subset of the boundary to the fundamental modular
domain of codimension 1, where its vanishing is associated to a coordinate
singularity due to a non-contractable sphere in configuration space. As topological
quantum numbers are only associated to non-contractable loops, it might be that it
is sufficient to simply demand the (rescaled) wave functional to vanish at the
singular boundary points. This requires further study as subtle effects can compli-
cate the issue, especially in the presence of fermions. We only need to remind the
reader of the global SU(2) anomaly [26], which on a three-dimensional manifold M
will be associated with a two-dimensional non-contractable sphere in configuration
space. In this context we can recommend ref. [27] for a clear description of the
issue of anomalies in the hamiltonian formulation.

The issue of gauge copies has played an important role in the analysis of the
spectrum of the low-energy states for SU(2) gauge theory on the torus in a finite
volume. As was mentioned before, in the sector of the abelian constant modes
A, =(C,/2L)7;, which forms the “vacuum or toron valley” along which the
classical energy vanishes, A is described by |C,| <m. The gauge transforma-
tion that maps C,= —m to C, = is given by g, = exp(—mir;x,/L), which
due to its anti-periodicity is homotopically non-trivial and provides the required
boundary identifications. In this subsector all boundary points are easily seen to be
regular. The “Bloch momenta” label 't Hooft’s electric flux quantum numbers [4]
Y(C, = —m) =exp(mie,) ¥(C, = 7). Note that the phase factor is not arbitrary,
but + 1. This is because g(zk) is homotopically trivial. It thus looks like as if we have
to put the topological structure in by hand after all, however, one should realize
that considering a slice of A will obscure some of the topological features. A loop
that winds around the slice twice is contractable in A as soon as it is allowed to
leave the slice. Indeed including the lowest modes transverse to this slice will make
the Z, nature of the relevant homotopy group evident [5,6]. It shows that not
dynamically motivated truncations can obscure things. For example, a recent
reduction to spherically symmetric gauge fields {28] is only of limited value if the
non-spherical fluctuations (which can in principle lead to Gribov horizons) are not
taken into account.

In weak coupling Liischer [29] showed unambiguously that the wave functionals
are localized around A =0, that they are normalizable and that the spectrum is
discrete. In this limit the spectrum is insensitive to the boundary identifications
(giving rise to a degeneracy in the topological quantum numbers). At stronger
coupling the wave functional spreads out over the vacuum valley and the boundary
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conditions drastically change the spectrum [5]. In supersymmetric gauge theory the
situation is even more dramatic. In the bosonic case, what localizes the wave
functional in weak coupling is an induced potential barrier due to the zero-point
fluctuations of the modes transverse to the vacuum valley. Due to the supersymme-
try this induced barrier is expected to be canceled exactly by the fermionic
contribution and the wave functional is expected to spread out over the whole
vacuum valley. The problem is, however, that transverse fluctuations become
singular near 4 = 0, preventing a reduction to the vacuum valley. As in the bosonic
sector one can hope that a truncation to the zero-momentum sector will be
possible, but as the wave functional is expected to spread out over the vacuum
valley and as the gauge copies that thus arise will bring one outside of the
zero-momentum sector, this would not be a consistent truncation either. Indeed, it
was rigorously proven in ref. [13] that the spectrum of the zero-momentum
Yang—Mills hamiltonian is continuous down to zero energy. Apart from the fact
that such a continuous spectrum would make the Witten index ill defined, it is not
compatible with the fact that the theory was originally defined in a finite volume.
We consider this as a strong indication for the spreading of the wave functional
beyond the Gribov copies. The appropriate identifications due to these copies
should lead to the desired discrete spectrum. In the bosonic sector there is a
dynamical reduction to a finite number of degrees of freedom [5,6]. But in the
fermionic sector it requires one to construct vacuum Dirac bundles that incorpo-
rate the identifications at the boundary of the fundamental modular domain. Our
problem is, that this does not seem to allow for a dynamical reduction to a finite
number of degrees of freedom. As the results of ref. [14] rely on the truncation to
the zero-momentum sector, without addressing the Gribov copy problem, we do
not understand how the results in that paper can solve the problem of constructing
the zero-energy states (unfortunately the construction of the wave function in ref.
[14] is rather implicit and incomplete, which makes it hard to pin down exactly
what might make it unsuitable as a zero-energy ground-state wave function). Thus
it will remain an interesting and unfortunately open problem, whose solution will
shed light on the discrepancy between the naive Witten index calculation [30] on
the torus for O(N) (N > 6) (giving an index equal to the rank of O(N) plus one)
and the value deduced from the gluino condensate calculations in an infinite
volume [31] (vielding the value N — 2). When it persists, this would imply that the
Witten index in this case will have discontinuities, which will have interesting
consequences for the non-perturbative vacuum in these theories.
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