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Inspired by an unambiguousobservationof Gribov copieson the lattice an old continuum
exampledueto Henyeyis re-analysedin termsof bifurcationsat the Gribov horizon. This gives
yet anotherproof that thereare in generalGribov copieswithin the horizon. Using resultsby
Semenov-Tyan-Shanskii,Franke,Dell’Antonio andZwanzigeron a possiblefundamentalmodu-
lar domainwe arguethat its boundaryhasboth Gribov copiesand points that coincide with the
Gribov horizon.

1. Introduction

Oneway stronginteractionsin non-abe!iangaugetheoriesmanifestthemselves
is by a spreadingof the wave functiona!soversuch a !argeportionof configuration
space,that the issue of Gribov copies[1] can no !onger be ignored. To have a

chanceto understandthe non-perturbativedynamicsof the low-energyphysics a
betterunderstandingof the physical configurationspaceis essentia!,particularly
for describinghow physics dependson the quantumnumbersassociatedto the
homotopica!ly non-trivia! gaugetransformations.Theseissuesare intimately con-
nectedto the dynamicalquestionsinvo!ving tunnellingbetweendifferentvacua.To

make this a !itt!e more explicit we review an o!d argumentdueto Jackiwet al. [21
in somewhatmore genera!ity. (In much of this paperwe will be primarily inter-
ested in the hamiltonian formulation, in which case the gaugefields are defined
over a three-dimensionalspace,but some of the discussionis relevant for the
four-dimensionalsituation too.) Let g be a homotopicallynon-trivial gaugetrans-
formation, such that A, = = —iga,g~satisfiesthe Coulomb gauge8~A,= 0
(where throughout this paper 0 will denote the zero connection).Then the
Faddeev—Popovoperator(our gaugefields will be hermitian Lie algebraelements
andadX(Y) [X, Y])

FP(A) = —0~D,(A)= —9,(c9~+ i ad A) (1)
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has a vanishingeigenvalue.The argumentis simple: Constantgaugetransforma-
tions leave the gaugecondition invariant. The obviously relatedzero modes,that
correspondto constantLie algebraelements,are removedby definingthe theory
moduloconstantgaugetransformationand demandingthe wave functionals to be
trivial representationsof the gaugegroup G. As g is a homotopicallynon-trivial
gaugetransformation, gXg’ cannot be constant for all constant Lie algebra

elementsX, but it is neverthelessa zeromodeof FP(A). Thus the Gribov horizon
will contain gauge copies of the classical vacuum, making it more urgent to
understandthe problemof gaugefixing.

It seemedthereforethat Gribov copiesare always associatedto homotopically
non-trivial gaugetransformations.It was first demonstratedin an exampleby
Henyey [31that this is not always true. But probably the mostsimple exampleis
provided by gaugefields on the torus in the abelianzero-momentumsector.For
definitenesslet us takeG = SU(2) (with the Pauli matricesT~asgeneratorsof the
algebra and L the size of the torus) and A, = (C1/2L)r3, then the gauge
transformation = exp(—lTixkr3/L)mapsCk to Ck + 2ir. As ~(k) is anti-peri-
odic it is homotopicallynon-trivial (they are ‘t Hooft’s twisted gaugetransforma-
tions [4]). However, g~)will map Ck to Ck + 4ir. As this gaugetransformationis
periodic andabelian,it is contractableto the identity andprovidesan exampleof

gaugecopiesby homotopically trivial gaugetransformations.This examplealso
proves that in generalthereare gaugecopieswithin the Gribov horizon, which
occurs [5,6] at I Ck I = 2~.For exampleC = D + (—ir, 0, 0) is a gaugecopy of
C = D + (~r,0, 0) and both occur insidethe horizon if I <~. (It would seem
the simplestcasearisesby takingD = 0, however,in that casebothconfigurations
are relatedby a constantgaugetransformation,which are to be divided out.)

Still, onemight conjecture(as in the aboveexample)thatsuch copieswithin the
horizon are always associatedto homotopicallynon-trivial gaugetransformations.
Henyey’s[3] examplewill be shownto providean explicit exampleof gaugecopies
within the horizon, that arerelatedby homotopicallytrivial gaugetransformations
(andthat are relatedto a copy outsidethe horizon). In sect. 1 we will first give an
argumentbasedon Morse theory that in certain casesshows how, when moving

from inside the horizon to outside (where the lowest eigenvalueof FP(A) flips
sign) two additional copieswill be createdfor which FP(A) is positive and which
arethereforeinsidethe horizon.As thesecopiescoalesceat thehorizon, the gauge
transformationrelating the two can be deformedto the identity. Our interest in
this examplewas stirred by an unambiguousobservationof Gribov copieson a
lattice [7]. The structureof the relevantgaugetransformationswas analysedand
someof themwould havenon-zerowinding number,whereasotherswere typically

of the form expectedfrom ref. [3].
ThatthereareGribov copieswithin the Gribov horizonwasfirst demonstrated

by Semenov-Tyan-Shanskiiand Franke [81 and analysed in more detail by

Dell’Antonio and Zwanziger[9,10].Theseauthorsalso provide a recipe that will
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(almost) uniquely fix an elementof the gaugeorbit. In sect. 4 we make more
precisein what sensethis forms a fundamentalmodulardomain.The interior is a
convexsubsetof the transverseconnections,that containsno Gribov copies.The
boundarywill containGribov copies,but can at mostcoincidewith the horizonon
a subsetof the boundaryof codimension one. The gaugetransformationsthat
relatethe copiesprovidesthe identificationsat the boundarythat makesit into a
fundamentalmodular domain for configurationspace.Theseconsiderationsare
both relevant for the hamiltonian formulation and for the recent path integral
formulation on this fundamentalmodulardomainby Zwanziger[11], Parinelloand
Jona-Lasinio[12]. In the caseof SU(2) gaugetheoryon the torus the intersection
of this fundamentalmodulardomainwith theconstantabeliangaugefields is given
by I Ck I ~ ~ and ~(k) providesthe identification of the (opposite)points on the
boundary.In this casethe boundaryis regular,but we will argue that in general
so-calledsingularboundarypoints (i.e. those that coincidewith the horizon) do
occur.

It should be mentioned that for the torus in the presenceof fields in the
fundamentalrepresentation(quarks) only periodic gauge transformationsare
allowed. In that case it is easily seenthat the intersectionof the fundamental
modular domain with the constantabelian gaugefields is given by the domain

I Ck I ~ 2i7-, whoseboundarycoincideswith the Gribov horizon. Nevertheless,this
domain is a coveringspaceof the domain I Ck I ~ ~ andfields in the fundamental
representationcan be definedon the latter if allowed to be multi-valued (an
alternative formulation in terms of coordinatepatchesis describedin ref. [6]).
Later we will seethat evenfor puregaugetheories,the wave functionalsare still
multi-valued,but in that casethe multi-valuednessis restrictedto a phasefactor
determinedby the periodicity condition that arises as a consequenceof the
identificationsat the boundaryof the fundamentalmodulardomain.The relevant
“Bloch momenta”give the topological quantumnumbers.

In sect.5 we concludewith a discussionon the implicationsfor the hamiltonian

formulation. We also re-emphasize[13] that for supersymmetricgaugetheorieson
a torus the Gribov copiesareessentialfor a properevaluationof the Witten index,
despitethe fact that onecantakethe couplingconstant(and hencethe volume)as
small as onelikes. The problemremainsopen (despitetheclaim madein ref. [14])
andturns out to be related to the non-trivial issueof constructingDirac vacuum
bundles that incorporatethe identifications associatedto the Gribov copies. It
seemsto require one to introduce a multi-valued vacuum wave functional that
incorporatesthe non-conservationof chiral particlenumber, inducedby the chiral
U(1) anomaly[15]. Notethat thismulti-valuednessis againof a different natureas
discussedin the previousparagraph(the fermions in supersymmetricgaugetheo-
ries are in the adjoint representation).Theseissuescertainlydeservefurther study.
However,this paperwill concentrateon the puregaugesector.
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2. Morsetheoryand bifurcation of copies at the horizon

The Coulombgaugecondition ä,A1 = 0 canbe formulatedin termsof anaction
principle [8,9,16](M is the manifold overwhich the gaugetheory is defined,which
we will mostly takethreedimensionalandcompact.Forl~l~we assumethe fields to
havean asymptoticsthat allows compactificationto the threesphere.)

I( g; A) I~[g]A 112 = f Tr({[ g]A~}
2)= f Tr({A~+ ig ‘a~g}2), (2)

M M

whosecritical points satisfythe gaugeconditionandwhosehessianis preciselythe
Faddeev—Popovoperator.This is mosteasily establishedby observingthat

I(hg;A)=I(h;[g]A). (3)

Writing h = eX andusing

1 —exp(—ad X)
e~8 eX= (aX)

adX

=a,X+ ~[a
1x,X] + ~-[a1x,x], x] + ..., (4)

onefinds

I(eX; A) = IA 1I2_ 2if Tr(X8~A~)+ f Tr(XtFP(A)X)

M M

+ 1(1 X], aix]) + .... (5)

We note that for gEG a constantgroup element I(g; A)=I(1; A), thus F~(g)
definedby

F~(g)=I(g; A) (6)

is for genericA a Morse function [18] on .~‘/G,where ~‘ is the group of local
gaugetransformations,i.e. the setof functions g(x) that mapM to G. (For Morse
theoryin relationto supersymmetricquantummchanics,seeref. [19].)The critical
pointsof the Morsefunction are preciselythegaugefunctions g for which [g]A is

transverse(i.e. 3~[g]A~= 0.) The hessianof the Morsefunction at the critical point
is precisely the Faddeev—Popovoperator FP([g]A). The Morse index ~ for the
critical points,is definedas the numberof negativeeigenvaluesof the hessian.As
FA dependscontinuouslyon A (in the norm implicitly defined in eq. (2)), the
alternatingsum of the Morse indices over the critical points (which is the Euler
characteristicof the manifold on which FA is defined) is conserved.
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This argumentneedsto be treatedwith caution, as .~‘/Gis not compactand
therewill in generalbe infinitely many critical points.Nevertheless,the propertyis
topological in natureand is invariantundercontinuousdeformationsof FA. If we
will be interestedin a local neighborhoodof a particularcritical point, we canif
necessarydeform FA such that when changingA, therewill only happensome-
thing to the critical points in this particularneighborhood.As the type of noneof
the othercritical pointswill change,the changeis finite and the alternatingsum
over the critical points in the chosenneighborhoodwill be conserved.However, in
general singularitiesoccur at reducible connections(these are connectionsfor
which thereexists a non-trivial gaugefunction g, such that [g]A =A). Thus ~‘

doesnot act freely and althoughdividing out the constantgaugetransformations
will removesomeof thesingularities,it canbe shownthat ~‘/G doesnot act freely
either. Nevertheless,the presenceof the remainingsingularitiesdoes not affect
our arguments.(For example,for SU(2) gaugetheoryon S3 it can be shown that
up to gaugetransformationsA = 0 is the only reducibleconnection.)

The Gribov region 12°is definedas the set of transversegaugefields for which
the Faddeev—Popovoperatoris (strictly) positive. Its boundary(312, 12 12°u312)
is the Gribov horizon,wherethe lowest eigenvaluevanishes.It is well known that
Q0 is convex[8,17].This is essentiallybecauseFP(A) is linear in A. Thus if A(

1)

and A(2) are in fl0

FP(SA(I) + (1 — s)A(2)) = s FP(A(J)) + (1 — s)FP(A(2))> 0 (7)

for all s E [0, 1]. Thus, if A is on the horizon, the Morseindex js(sA) will be zero
for 0 ~s <1 andone for s> 1, at leastin a small neighborhoodof s = 1. Let us
assumethat as s approachesonefrom below,thereis a sufficiently small neighbor-
hood of the identity in ~‘/G such that Fjg) has no further extrema,except the
oneat g = 1. The only way the alternatingsumof Morse indicescanbe preserved
is (when s increasesbeyondone) if two additional extrema arecreated,that are

bothlocal minima, seefig. 1. Thus for s> 1 FA hasextremaat g0(s)= 1, g1(s)and

g2(s), where lim~1g1(s)=lim~,1g2(s)=1, such that g1121 are homotopically
trivial gaugetransformations.Clearly [g(12}(s)]sAE 12°and are thus points inside
the Gribov horizon(insideandoutsideis of coursewell definedsince U is convex)
that are relatedby a homotopicallytrivial gaugetransformation.

Thus under the assumptionthat g = 1 is the only extremum of F.~ in a
sufficiently small neighborhoodin ~‘/G therewill be a bifurcation at the horizon
of solutions to the Coulomb gaugecondition into two stable and one unstable
solution.The assumptionjust mentioned,however,is easily seento imply that the

third-ordertermin eq.(5) hasto vanishat the horizonfor X the zeromodeof the
hessian(apart from a factor ~ this term coincideswith the definition of ~.t in ref.
[9]). Genericallythis will not be the case,in which instancetherewill be a saddle
point that coalesceswith the local minimumat the horizonand the situationis as
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F~(g)

~ ~ _-~ A

(a)

(b)

(c)
Fig. 1. Herewe sketchthebifurcation at thehorizon by threedifferent representations.In (a)we show
what happensto F~(g)whenwe passthehorizon(h), (b) is thewell-known bifurcation picture,wheres
standsfor stable(a local minimum)and u standsfor unstable(a saddlepoint). Finally, in (c) we sketch

thesituationregardingtheGribov region.

sketchedin fig. 2, i.e. the saddlepoint with Morse index 1 will turn into a local
minimum, suchthat the alternatingsum of the Morse indicesis againconserved.
Note that, for s> 1 this local minimum is a homotopicallytrivial copy of the saddle
point sA, such that the region just outside the Gribov horizon has copiesjust
insidethe Gribov horizon,which is whatwasalreadyprovedby Gribov [1]. In refs.

[8,9] it is, however,proventhat if the third-orderterm of eq. (5) at the horizon is
non-zerofor X the zeromode of the hessian,then sA for 0 © 1—s <e (with e
sufficiently small) cannotbe an absoluteminimum of F,A andhence also in this
casetherewill be a gaugecopy within the horizon (in generalby a large,possibly
homotopicallynon-trivial gaugetransformation).

3. The explicit example

As the Morse theory argumentsof sect. 2 are formal and not easily made
rigorous, it is useful to consideran explicit example,where all the featuresof the
bifurcationcanbe checkedin detail. We will considerHenyey’sexample[3] of an
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F~(g)

~

(a)

U

Fig. 2. Here we sketchthegenericsituationat the horizon(h), whena (local)minimum coalesceswith a
saddlepoint.

axial symmetric abeliangaugefield for SU(2)gaugetheoryon l~,whichobviously
satisfies31A, = 0,

A=a(r,O)çbr3, ~=(—sin~,cos4,0),

where (r, 0, 4) aresphericalcoordinates.The following gaugetransformation:

g = exp(a(cos~T1 + sin c~T2)) (8)

will leave the Coulomb gaugecondition invariant if andonly if [3]

2r
2 sin2 03,~a+ sin(2a)(2a(r, 0)r sin 8 — 1) = 0. (9)

Ratherthen solving this equationfor a, Henyey’s strategywas to choosea and
solve for a(r, 8). He took

a(r, 0) =b(r)r sin 8, (10)

which through eq.(9) yields

d2b(r) 4 db(r)

1 b(r)+r2sin2O 2dr r dr
a(r, 8) = 2r sin 0 — sin(2rb(r) sin 0) (11)
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defining a propergaugefield, provided b(r) satisfiesthefollowing threeconditions
[3]: (i) it is regularat the origin with vanishingfirst derivative(db(0)/dr = 0); (ii)

2rb(r) <i~ for all r; (iii) r3b(r) is bounded.
We note, as expected,that g comesalways into pairsas a is invariantundera

changeof sign of b. Thus for this exampleg
1 = g~= g, cf. fig. 1. To investigate

the bifurcation structureof the Gribov copies,we replaceb by f3b, with 13 a
constant.It satisfiesthe above-mentionedconditionsprovided I f3 I ~ 1. Explicitly
we thereforehave

A(/3) =a(13)~r~,

d
2b 4db

b+r2sin20 —+———
1 dr2 rdr

a(f3)
2r sin 0 /3 sin(2r/3bsin 0)

g(/3) = exp(if3rb sin 0(e’~’r+e”~r+)). (12)

As g(0) is the identity, the two gaugecopies[g( ±/3)]A(f3)will coalesceat /3 = 0,

andit shouldbe such that FP(A(0)) has a zeromode.We evenknow in advance

what this zeromodeshouldbe

~9g
cx —(0) = br sin 0(e”~’r++e’4’T). (13)

This is easily checkedexplicitly. Introducingthe function f(r) by

a(/3=0) 1 d2b 4db
f(r)=— rsin0 ~ (14)

onefinds

FP(A(0))X
0= _(a7X~_if(r)[r3,a4X0})=(—a7+2f(r))Xo=0.

Wenow addressthe issueof the spectrumof FP(A(f3)) for /3 * 0. We do this in
perturbationtheory to order /32, restrictingourselvesto the mode that coincides

with X0 at /3 = 0. As

/ia
FP(A(f3)) =FP(A(0)) ~

2r sin adr
38~+..., (15)

with

zia = ~a,~a(13 = 0) = — ~b
2r sin 0(2 +fr2 sin2 0), (16)
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the relevanteigenvalueis obtainedfrom first-orderperturbationtheory. With the
innerproduct(X I Y) = fM Tr(X~Y)this becomes(using somepartial integrations
in the laststep)to secondorder in /3

/32 L~ia
adr33 1X0)

(X0IX0) rsin0

p
2 fdr dO r4b4 sin3 0(2+f(r)r2 sin2 0)

fdr dO r4b2 sin3 0

(dr2b2 2fdr r2 r2b4 +
2132 ), dr

(17)
fdrr4b2

We thus confirm that A(13) always correspondsto an unstable solution to the
gaugecondition.

It remainsto show that the correspondingeigenvaluesfor the Gribov copies,
[g(/3)]A(/3), stay positive.Explicitly we find

[g(f3)]A(/3) =A~(f3)+A($),

= {a(P) + sin2(/3a)(r 8 - 2a(/3))}~r3~

sin(2f3a) sin(213a)
A(p) = _~{ 2/3a D(A(p))(X~)+ (i - 2/3a )x

0 aln(a)}.

(18)

One easily verifies that A (/3) doesnot contributeto secondorderin /3, since

[A(p), aX0] =0. (19)

Thus to secondorder in /3 the eigenvalueA’ of FP([g(/3)]A(/3)), that reducesto
zeroat /3 = 0, is given by

p
2 2Lia

I adr
3 a X0) = —2A (20)

(XOIXO> rsinO
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wherewe usedthe remarkablecoincidencethat (A+ a

sin2(/3a)
a~(f3)=a(p) ~ a~ zla=a(p=0) _21324a+O(f34). (21)

We thusconfirm the bifurcation picture,but in general A(f3 = 0) neednot be on

the Gribov horizon as FP(A(/3 = 0)) might havenegativeeigenvalues.To seethis
note that

FP(A(0)) = —a~+if(r)adr
33~ (22)

commuteswith adi-3, L~and L
2. Thuswe candecomposethe eigenfunctionsas

X=X+(r)Y,m(O, ~)r~+X~(r)Y
17~(O, 4)r.+X3(r)Y,,~(O, 4)r3. (23)

Restrictedto X3 the hessianis positivedefinite andonly the “charged”sectorwill
be relevant,for which the hessianreducesto

1 d d 1(1+1)
H1~=_—~~a--r

2~---+ r2 —2mf(r) . (24)

For given m and / this is a one-dimensionalpotential problem. It has a zero
eigenvaluefor I = —m = 1, with X~=b. Thus, if b hasnodesthereare lower(and
hencenegative)eigenvalues.

As an examplewithout a node,we take[3]

—3 2 15r~
b(r)=K(r2+r~) ~, f(r)= - 2• (25)

(r~+r2)

The hamiltonian (24) can only have negativeeigenvalues if its potential can
becomenegative.This only leaves(1, m)= (2, —2) and(1, — 1). As b hasno nodes
H

11 ~ 0, whereasH2,2 — H1 ~ 0 provesthat also H2,2 ~ 0. In conclusion,eq.
(25) provides an examplefor which A(j3 = 0) is at the Gribov horizon, which

concludesthis section.

4. The fundamental modular domain

Let us considerthe set

A={AIF~(g)~FÁ(1), VgE.~’}. (26)

Clearly one has A a subsetof 12. Furthermore,it wasprovenby Semenov-Tyan-
Shanskii and Franke [8] and Dell’Antonio and Zwanziger[10] that A covers all
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gaugeorbits. That is, givena connectionA (with finite norm II A II), thereexists a
g E ~ for which F~(g)is at its absoluteminimum. The space~ is the comple-
tion of ~‘ with respectto the norm II ~g II~2= II II 2 + IId~g112, in which 5g is
viewed as a complex N x N matrix (in ref. [8] one works on ~ and a slightly
different norm is used,so as to eliminatethe constantgaugetransformations).Let
A°cA be the set wherethe minimum is unique, i.e. if A E A°then F~(g)> F,~(l)
for all non-constantg. Both A°and A are convex[8,9], for let A(1), A(2)E A°(A)
then

II[g](sA(1) + (1— s)A(2))112_ II sA(I) + (1 — s)A(2)112

1 2 2\ 1 2 2\

=s~II[g]A(1)II — IIA(1)II + (1 —s)~II[g]A(2)II — IIA(2)II j (27)

shows that sA(l) + (1 — s)A(2)E A°(A)for s E [0, 1]. Also clearly A = 0 = 0 EA°.

In ref. [9] it wasprovedthat the boundaryof A°(3A°) is containedin A, andthat
A is closed(apply the “Frist step” lemma [9] to A°and A), which is basicallya
continuity argument.Alternatively, take A E A — A°,anduse eq.(27) for A(I) = 0
and A(2) =A, which implies that sA EA° for all s, 0 ~ s < 1 and hence A E r9A

0.
Thus the boundarystill existsof transversegaugefields A suchthat F~(g)reaches

its absoluteminimum at g = 1, but this minimum neednot be uniqueor might be
on the Gribov horizon.

To analysethesetwo options, take A E U — A, then the ray sA will crossthe
boundary of A where necessarilyan absolute minimum turns into a relative
minimum. At the boundaryF~(g)thereforehas degenerateabsoluteminima, that
are relatedby in generallargegaugetransformations.We will call thesepointson
3A regular boundarypoints. The remainingpointsof the boundarywill necessarily
be on the Gribov horizonand arecalled singular boundarypoints. That the set of
regularboundarypoints is non-emptyis easily establishedby taking the exampleof

A = [g]0 for g homotopicallynon-trivial, such that A is on the Gribov horizon.
The path sA will pass3A at (necessarily)a regularpoint (asthe absoluteminimum
of FA doesnot occur at constantgaugefunctions,but at g ~, where it vanishes).
The gaugetransformationthat relatesthe two copies at the boundaryof A is
essentiallyg and is thushomotopicallynon-trivial (as mentionedbefore, in the
torus examplethe fundamentalmodulardomain restrictedto the abelianconstant

modesis givenby I Ck I ~ ~ modulothe actionof the Weyl groupC —p — C andall
boundarypoints are easily seento be regular [5,6]). Strictly speakingtherefore,
also A is not a fundamentalmodular domain. Yet it will be, once we have
appropriatelyidentified the boundarypoints. It is theseboundaryidentifications
that will give the fundamentalmodulardomain the topologyof the full configura-
tion spacewhich is the basisof Singer’s[20] argumentwhy for gaugetheorieson a
compact three- or four-dimensionalmanifold M, there necessarilyhave to be
gaugecopies.
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Observethat homotopicalnon-trivial gaugetransformationsare in one-to-one
correspondencewith non-contractableloopsin configurationspace,which give rise
to conservedquantum numbers.The quantum numbersare like the Bloch mo-
mentain a periodic potential and haveto be representationsof the homotopy
group of gaugetransformations.On the fundamentalmodular domain the non-
contractableloops arise through identifications of boundarypoints (as is quite
explicit for the torus in the zero-momentumsector). Although slightly more
hidden, the fundamentalmodular domain will thereforecontain all the informa-

tion relevantfor the topologicalquantumnumbers(i.e. it doesnot haveto be “put
in by hand”). Sufficient accurateknowledgeof the boundary identificationswill
allow, however, for an efficient and naturalprojection on the varioussuperselec-
tion sectors(i.e. by choosingthe appropriate“Bloch wave functionals”).All these
featureswereat the heartof thefinite-volumeanalysison thetorus [5] andwesee
that they can in principle naturally be extended to the full theory, thereby
including the desired 0-dependence.In ref. [6] we proposedformulating the
hamiltonian theory on coordinatepatcheswith homotopically non-trivial gauge
transformationsas transition functions.We can shrink thesepatchesalmostto A
(and their associatedgauge copies, with the homotopically non-trivial gauge
transformationsthat relate the inequivalentclassicalvacua). If therewould be no
singular boundarypoints we would avoid any points on the Gribov horizon,
therebydefining opensetsthat do cover the whole configurationspace.Thesetwo
formulationsare thereforeequivalent.

However, it is essentialto note that the topologyof the configurationspaceis
not describedentirely by non-contractableloops. One also needsto consider
non-contractablespheresof anydimension.It is the non-contractablespheresthat
in generalwill be responsiblefor singular boundarypoints in the fundamental
modular domain.As the interior is convex, non-contractabled-spherescan only
arise if the boundarycontainsa (d — 1)-sphereon which all points are identified.
Thesecorrespondto gaugeorbits for which FA is degeneratealong this (d — 1)-
sphereembeddedin ~‘. Thus, theseA necessarilycoincidewith the horizon.One
can introducea regular coordinatepatchein the neighborhoodof thesesingular
points to eliminate the singularities,as observedby Singer and Nahm [20,21].In
this case,though, transition functions can not be describedin terms of gauge
transformations[6]. For example,when G = SU(2) thesenon-contractablespheres
do actuallyoccur [20].Thus it seemsthat we cannotavoid singularboundarypoints
(as was suggestedby fig. 1 of ref. [11]). We do not claim that our arguments
presenta proof for the existenceof singular boundarypoints, as we implicitly
assumedthat the topologyof configurationspaceis unaffectedby the completion
with respectto the norm II A II. Theseissuescanbe quite intricate,as for example
the winding numberof a C’ gaugetransformation,when definedthrough

v(g)=
24~2fMTr(~ dg)

3), (28)
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is not continuousin the norm II 6g II,. However, continuity is sufficient to define
homotopy types. Relevant for this issue is the Sobolev embedding theorem
W~c Ck for k <m — n/p (see e.g. ref. [22]), where n is the dimensionof the
manifold,W,~is the Sobolevspaceof functionsfor which the first m distributional
derivativesare in L”, and C” is the set of k times continuouslydifferentiable
functions. In the one-dimensionalcase, functions in WJ~”for p> 1, m ~ 1 are
guaranteedto be continuous(as canbe easilydeducedexplicitly by usingHolder’s
inequality). In the presentcasen = 3, m = 1 and p = 2, which unfortunatelydoes

not imply continuity. Indeed, for example,one can construct a seriesof maps
g~:S~ SU(2)—~ SU(2) that for all n havewinding numberzerobut convergesin
the norm II 5g II to the identity map with winding numberone. Yet, one must
rememberthat the gaugefields in the fundamentalmodular domain satisfy the

Coulomb condition (in the weak sense)from which one might deducestronger
smoothnessproperties.Thus, it is possible that using more sophisticatedresults
from functionalanalysiswill allow oneto makestrongerclaims thanwe arewilling
to commit ourselvesto here.Oneshouldaddresstheseissuesprimarily in the light
of the physically more relevant dynamical questionsand in that context we
certainly intend to comebackto this in the future.

In conclusion, it might be that the “hole” in configuration space,due to a
non-contractableloop or sphere,is of zero size in the norm II A II. We consider
this unlikely, but cannotexclude it. Actually, it might be the mechanismthrough
which lattice gaugetheoriesin the continuumlimit reproducethe varioustopologi-

cal sectors associatedwith the winding numbers. By this we mean that by
demanding the fields to be “smooth”, we will “cut” the necessaryholes in
configurationspace.This requiresan appropriateunderstandingof what it means
to take the continuumlimit, for which the “dislocations” [23] play an important
role. Concerninggaugefixing in lattice gaugetheorywe only wish to remarkthat
one can similarly impose a Coulomb (or Landau) type gaugethrough an action

principle [24]. Our statementthat A requiresidentifications at the boundary is
equally valid in this case.Also one has to realize that, although there are no
homotopicallynon-trivial gaugetransformationsassociatedwith the winding num-
ber, twisted gaugetransformations[4] are still well defined and cannotbe de-

formed to the identity.

5. Discussion

We havereconsideredthe proposed[8,10—12]fundamentalmodular domain A
consistingof the absoluteminima of the norm II[g]A II on a gaugeorbit andshown
it is a fundamentalmodulardomainprovided necessarygaugeidentificationsat the
boundaryare taken into account.As theseidentificationsdetermineuniquely the
topology of the configuration space, it can be argued,due to the presenceof
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non-contractable spheres in the configuration space (this is true both for three-

and four-dimensional compact manifolds M over which the gauge theory is
defined)that in generaltherewill be so-calledsingularboundarypoints,on which
the Faddeev—Popovdeterminantwill vanish. One can still attempt to formulate
the standard hamiltonian [25]on this fundamental modular domain. Usually one
rescalesthe wave functional with i~(FP(A)) which will be strictly positive
everywhere, expect at a subset of the boundary to the fundamental modular
domain of codimension 1, where its vanishing is associatedto a coordinate
singularitydueto a non-contractablespherein configurationspace.As topological
quantumnumbersareonly associatedto non-contractableloops, it might be that it
is sufficient to simply demandthe (resealed)wave functional to vanish at the
singularboundarypoints.This requiresfurther studyassubtleeffectscancompli-
cate the issue,especiallyin thepresenceof fermions.We only needto remindthe
readerof the global SU(2) anomaly[26],which on a three-dimensionalmanifold M
will be associatedwith a two-dimensionalnon-contractablespherein configuration
space.In this context we can recommendref. [27] for a clear description of the
issueof anomaliesin the hamiltonianformulation.

The issue of gaugecopies has playedan important role in the analysisof the

spectrumof the low-energystatesfor SU(2) gaugetheoryon the torus in a finite
volume. As was mentionedbefore, in the sectorof the abelian constantmodes
Ak = (Ck/2L)T3, which forms the “vacuum or toron valley” along which the

classicalenergyvanishes,A is describedby I Ck I ~ ~. The gauge transforma-
tion that maps Ck = —~rto Ck = iT is given by g(k) = exp(—irii-3xk/L), which
due to its anti-periodicity is homotopically non-trivial and providesthe required
boundaryidentifications.In thissubsectorall boundarypoints areeasilyseento be

regular.The “Bloch momenta”label ‘t Hooft’s electric flux quantumnumbers[4]
1If(C~= —ir) = exp(irie~)hII(Ck = ~r). Note that the phasefactor is not arbitrary,

but ±1. This is because g~%,~1is homotopically trivial. It thus looks like as if we have
to put the topological structurein by hand after all, however,one should realize

that consideringa slice of A will obscuresomeof the topological features.A loop
that winds aroundthe slice twice is contractablein A as soonas it is allowed to
leavethe slice. Indeedincludingthe lowest modestransverseto this slicewill make
the ~2 nature of the relevant homotopygroup evident [5,6]. It shows that not
dynamically motivated truncationscan obscure things. For example, a recent
reductionto sphericallysymmetric gaugefields [28] is only of limited value if the
non-sphericalfluctuations(which can in principle leadto Gribov horizons)arenot
takeninto account.

In weak coupling Lüscher[29]showedunambiguouslythat the wave functionals
are localized around A = 0, that they are normalizableand that the spectrumis
discrete.In this limit the spectrumis insensitive to the boundaryidentifications
(giving rise to a degeneracyin the topological quantum numbers).At stronger
coupling the wavefunctional spreadsout over the vacuumvalleyandthe boundary
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conditionsdrasticallychangethe spectrum[5]. In supersymmetricgaugetheorythe
situation is even more dramatic. In the bosonic case,what localizes the wave
functional in weak coupling is an induced potential barrier due to the zero-point
fluctuations of the modes transverse to the vacuum valley. Due to the supersymme-
try this induced barrier is expected to be canceledexactly by the fermionic
contribution and the wave functional is expectedto spreadout over the whole
vacuum valley. The problem is, however, that transversefluctuations become
singularnearA = 0, preventinga reductionto the vacuumvalley. As in the bosonic
sector one can hope that a truncation to the zero-momentumsector will be
possible,but as the wave functional is expectedto spreadout over the vacuum
valley and as the gaugecopies that thus arise will bring one outside of the
zero-momentumsector,thiswould notbe a consistenttruncationeither. Indeed,it
was rigorously proven in ref. [13] that the spectrum of the zero-momentum
Yang—Mills hamiltonianis continuousdown to zero energy.Apart from the fact
that sucha continuousspectrumwould makethe Witten index ill defined, it is not
compatiblewith the fact that the theorywasoriginally defined in a finite volume.
We considerthis as a strong indication for the spreadingof the wave functional
beyond the Gribov copies. The appropriateidentifications due to thesecopies
should lead to the desireddiscrete spectrum.In the bosonic sector there is a
dynamical reduction to a finite number of degrees of freedom [5,6]. But in the
fermionic sectorit requiresoneto constructvacuumDirac bundlesthat incorpo-
ratethe identificationsat the boundaryof the fundamentalmodular domain.Our
problem is, that this doesnot seemto allow for a dynamicalreductionto a finite
numberof degreesof freedom.As the resultsof ref. [14] rely on the truncationto
the zero-momentumsector, without addressingthe Gribov copy problem,we do
not understandhow the results in that papercansolve the problemof constructing
the zero-energystates(unfortunatelythe constructionof the wave function in ref.
[14] is rather implicit and incomplete,which makes it hard to pin down exactly
what might make it unsuitableas a zero-energyground-statewave function). Thus

it will remainan interestingandunfortunatelyopen problem,whose solution will
shedlight on the discrepancybetweenthe naiveWitten index calculation[30] on
the torus for 0(N) (N> 6) (giving an index equal to the rankof 0(N) plus one)
and the value deduced from the gluino condensatecalculations in an infinite
volume [31] (yielding the value N — 2). Whenit persists,this would imply that the
Witten index in this case will have discontinuities,which will have interesting
consequencesfor the non-perturbativevacuumin thesetheories.
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