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This paperoutlinesthe strategy for computingthe 0-dependencein non-abeliangauge
theoriesbeyonda semiclassicalor steepestdescentapproximation.It involves isolatingthe
relevantdegreesof freedomincluding the sphaleronconfiguration for tunnelling across
a classicalpotential barrier. Two approachesare discussedin the context of spherical
geometries.Thefirst is basedon a hamiltonianversionof thestreamlineor valleyequation.
The second,which in our opinion is far more efficient, is basedon implementing 0-
dependencethroughappropriateboundaryconditions in configurationspace.In a good
approximationthesecan be formulated at the level of 1 5 (+ 3 gauge) modes,that are
degenerateto lowest orderin perturbationtheory, while keepingall othermodesgaussian.

1. Introduction

Tunnellingthroughclassicalpotentialbarriershasbeenan importantsource
of information for non-perturbativebehaviour in non-abeliangauge theo-
ries [1,21. Recentlythis attractedmuch attentionin the context of the elec-
troweaksector[31also.In mostsituationstheeffect of tunnellingis computed
througha steepestdescentor semiclassicalapproximation.This is reasonable
as long as the energyof the statesfor which thesenon-perturbativecontri-
butions are to be computedis below the minimal barrierenergy. The saddle
point correspondingto this minimal barrierenergyis what becameknown as
a sphaleron[41.Onewould, however,alsowish to know the non-perturbative
contributionsif the energiesare comparableto andhigher thanthe sphaleron
energies. In the electroweaksector this is doneby extrapolatingthe results
obtainedfrom the steepestdescentcalculations,basedon a perturbativeex-
pansionaround the instantons (i.e. the classicalsolutions of the euclidean
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equationsof motion that connectthe two “nearest” classical vacuumcon-
figurations). In QCD or non-abeliangaugetheoriessimilar steepestdescent
approximationsare plaguedby infrareddivergences[1,51,dueto the integra-
tion overthe instantonscaleparameter.Becauseof the interactingnatureof the
infraredmodesit is mostsensibleto formulatethe theory in afinite volume [6-
91. Studyingthe low-energy dynamicsof the non-abeliangaugetheoriescan
now be performedperturbatively,as asymptoticfreedommakesthe effective
couplingsmall for smallvolumes.Whatone discoverswhenoneincreasesthe
volume, is that wave functionalsstartto spreadout over configurationspace
anddegeneraciesdue to a multiple classicalvacuumstructurewill be lifted
progressively.This line of approachhasbeenparticularly fruitful if we make
the volume finite by imposingperiodicboundaryconditions [6,81. Thishasa
richerclassicalvacuumstructurethanfor examplein sphericalcompactifica-
tion [7]. In the absenceof fermions the 0-parameteris therelevantquantum
numberto connectthe wave functionalsin the variousvacua,whereasin the
torus geometryonehasin additionelectric flux quantumnumbers[91e e
(7LG is the centerof the gaugegroupG). As long as the volume (andthusthe
effectivecouplingconstant)is sosmallthat the energiesof the low-lying states
are well below all sphaleronenergies,perturbationtheorywill be appropriate.
(Thesphaleronenergyassociatedto e

1 is quantuminduced[81, acomplication
that is irrelevant for our presentarguments).At increasingvolume, energies
will becomecomparableto the electric flux sphaleronenergybut will remain
smallwith respectto the 0-sphaleronenergy.For the torus geometrythis is at
volumesbetween(O.2fm)

3 and (0.8fm)3, the scalebeingset by the physical
string tension. In this so called intermediatevolume domain the low-lying
spectrumwas analyticallycomputed [8] and for SU (2) agreesperfectly with
the mostaccurateMonteCarlo calculations[10] (with statisticalerrorsof ap-
proximately2%). A similar analysiswas performedfor SU (3) [11]. The main
ideawas to isolatethe degreesof freedomthat include the relevantsphaleron
configurationsand to derivean effectivehamiltonianfor these6 (+3 gauge)
degreesof freedom. Thiseffective hamiltoniandeviatesfrom the one derived
for the perturbativeanalysis[6] only by imposingboundaryconditionson the
wavefunctionsat the sphaleronconfigurations.

These computationsessentiallygo beyond a semiclassicalapproximation
and have clearly demonstratedthat extrapolatingthe result obtainedfrom
suchan approximation [121 to the domainwhereenergiesarecomparableto
the sphaleronenergyis inappropriate.Of courseone can alwaysa posteriori
matchsomeparametersof the semiclassicalapproximationto get a betterfit
to the actualresults,but the problemis thatonly very limited knowledgeabout
the analytic structurein the coupling constantof the relevant amplitudesis
available,makingextrapolationunreliableto a large degree.Thus, the claims
of largecrosssectionsat high energiesfor (B + L )-violating processesin the
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electroweaksector [3] will remaincontroversialas long as theyare basedon
the steepestdescentapproximationof instantoncontributions [13]. The main
emphasisof this paper is, however, towardsthe QCD applications,but we
hopethatourtechniqueswill ultimately be applicablein the morecomplicated
settingof the electroweaktheory also.

The comparisonof the analyticintermediatevolumecomputationswith the
latticeMonteCarlo resultsdemonstratethat theeffectivehamiltonianbecomes
unreliableat volumesbigger than (0.8fm)3 and it is most natural to assume
that this is due to energiesbecomingcomparableto the 0-sphaleronenergy.
Thiswas confirmedby aMonte Carlo investigationof the topological suscep-
tibility [14] (the secondderivative of the ground stateenergywith respect
to 0), which showeda nearabrupt onsetabovea volume of approximately
(0.8fm)3. It is thereforemost naturalto enlargethe numberof degreesof free-
domto alsoincludethe 0-sphaleron.This seeminglystraightforwardextension
was severelyhamperedby a technicalobstruction.Neitherthe sphaleron,nor
theinstantonsareexplicitly knownfor thetorus geometry.Therehasbeenover
theyearsvariousfruitless attemptsto constructinstantonson T4 andonecan
actuallyprove [15] that for unit topological chargeno regularinstantonexists.
It is importantto stress,as this result hasoften been interpretedincorrectly,
that this does not imply absenceof regularinstantonsfor the (spatial) torus
geometryif the time direction is not compactifiedtoo. A similar situationex-
ists for a simpleone-dimensionaldouble-wellH = —~92/Ox2+ ~22(x2—1)2,

whose instanton (or kink) equation,dx/dt = ±2(x2— 1), has no solutions
with x(T) = —x(—T)= ±1,unlessT approachesinfinity.

There are two important reasonsto stick to the torus geometry. One is
practical,as it allows for comparisonswith latticeMonteCarlo results,some-
thing that should not be abandonedtoo easily. It allows one to test the
approximationsin the analytic approach,whereasfor the lattice it is a test
of lattice artifacts [12c]. The second,equally important reason is physical
in nature. It was speculatedat variousoccasionsthat the vacuummight be
unstableunder domainformation [16]. In the torus geometrythis issue can
be addressedmost efficiently. The main reasonis that cubic domainsare
space-filling.Demonstratingthat the vacuumenergydensityhas a minimum
at somevalueof the volume in the torus geometry, is sufficient to establish
that the vacuumis unstablewith respectto domain formation. It doesnot
necessarilymeanthat cubic (or for thatmatter rectangular)domainshavethe
lowestenergies,but thereis “phenomenological”evidencethat the truthmight
not be far off from that. If we assumethe domainsto be typically of a size
around (0.8fm)3, the intermediatevolume resultsimply in a domain-sized
vacuumascalarand tensorglueball massanda string tensionthat agreewith
the Monte Carlo resultsin volumes beyond (2—3fm)3. For more detailswe
refer to the discussionin refs. [17,18].
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Nevertheless,mainly due to the absenceof the exact 0-sphaleronand in-
stantonsolutionsin thetorus geometry,which areindispensableguidesto the
relevantdegreesof freedom, attemptsto include the 0 dependencein this
geometryhaveup to now remainedfruitless. We have thereforedecidedto
temporarilyshift our interestto asphericalgeometry.After all, ultimately the
spatialgeometryshould be irrelevant for the infinite-volume limit. Though
we do not expect to be able to consider the infinite-volume limit within
our calculationalframework, the fact that on S3 we know the sphaleronand
all instantonconfigurations,will makeit a useful laboratoryto consider the
0-dependencebeyond the semiclassicalapproximation. Gaugetheory in a
sphericalgeometrywas studiedextensively in the pastby Cutkosky andcol-
laborators[71.At the perturbativelevel our resultsagree,the only difference
is our way of parametrizingthe fields to allow for amoreeffectivedescription
of the sphaleronandinstantons.However, non-perturbativelywe follow quite
a different route.

The remainderof this paperwill discussthe technicaldetailsof our strat-
egy to include the 0-dependencefor the sphericalgeometry.To keepthings
transparentwe considerpureSU(2) gaugetheory.Generalizationsto arbitrary
gaugegroupsis in principle (but not necessarilyin practice) straightforward.
Including chiral fermions (in the fundamentalrepresentationof the gauge
group) is lessstraightforwardbut might presenta manageablechallengein the
hamiltonianapproachwhenonetakesinto accountthatthe relevantDiracvac-
uumdoesnot respectthe symmetryunderlargegaugetransformations[19], as
thesetransformationsdueto the chiral anomaly[1] do not preserveparticle
number(0 canindeedbe rotatedawayby a chiral transformation[1,2]). We
leave that to future investigations(for a few additional remarkswe refer to
ref. [20]).

In sect.2 we give the generalSU(2) instantonconfigurationsfor the four-
dimensionalmanifold S3 x ll~,obtainedby a conformal transformationfrom
the well known instanton solutions on R~(or S4) [21]. We will isolate
the sphaleronfrom this and demonstrateit is indeed only unstablein the
tunnelling direction. In sect. 3 we first discussa toy model to demonstrate
that accurateresults can be obtainedby deriving an effective hamiltonian
in the tunnelling degreesof freedom.In its lowest approximationthis would
for the gaugecaselead to a lagrangianin termsof the S instantonmoduli
parameters,muchlike the descriptionof monopole—monopolescattering[22].
In that casethe potentialvanishesandthe kineticterm follows from the metric
of the relevantmonopole parameterspace,which is known explicitly [231.
Higher-ordercorrectionsarethenobtainedby integratingout all othermodes.

In sect. 4 we discussthe hamiltonianversionof the streamlineor valley
equation[24], which needsto besatisfiedto integrateout the irrelevantmodes.
The instantonparameterswill not in general satisfy the valley equation.We
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show that a solution of the valley equationwhich containsthe instanton
parametersin lowest order, doesnot yield a satisfactoryresult either dueto
singularities.Among other things, complicationsarise due to the spherical
symmetry of the sphaleronmode. But the single mode that contains this
sphalerondoessatisfy the valley equationand the perpendiculardegreesof
freedomcanbe integratedout consistently.In sect.S we showhowthis is done,
avoidingthe problemassociatedwith zeroeigenvaluesfor the ghost.Fromthe
toy model of sect. 3 one knows that the adiabaticone-loopapproximationis
governedby aparameterthat remainsfinite as the couplingconstantgoes to
zero. The main reasonis that thereis no separationof time scalesbetween
the tunnelling andperturbativemodesin the perturbativeregions.All modes
should in principle be treatedmoreor less at the samefooting. Nevertheless,
closeto the sphaleronthe modesin the tunnelling direction shoulddominate.

In sect. 6 this hybrid betweenthe perturbativeand tunnelling modesis
achievedby first consideringthose 18 perturbativemodesthataredegenerate
in lowest order in perturbationtheory and contain all relevant sphalerons
and classical vacua. The 0-dependenceis included by imposing boundary
conditions,similar to what was donefor the torus geometrywith the constant
modes[8]. Our analysiswill be basedon the intersectionof these 18 modes
with the boundary of the fundamentalmodular domain, as was discussed
in general terms in ref. [20]. For the torus geometrythe constantmodes
were responsiblefor an infinite degeneracyin lowest order in perturbation
theory. The low-energy dynamics could then be describedby an effective
hamiltonian [6] in the constantmodes,through Bloch’s method [25]. The
above mentioned boundary conditions could be implemented in a finite-
dimensionalsetting. In the spherical geometry, the modes that carry the
boundaryconditionsdo not even havethe lowest energy.Here the boundary
conditionsneedto be implementedat the first step in perturbationtheory.
Ratherthantaking for the wave functional a productof gaussians,one takes
for the 18 modes,that areto lowest orderdegenerateandcarry the sphaleron
degreesof freedom, wave functions that suitably incorporate 0-dependence
through boundary conditions. All other modes are kept gaussianand one
performsperturbationtheoryas usual.Detailsof this proposalwill be worked
out in future publications. In the last sectionwe only give a rough outline
andmention someof the issuesthat require special care. We endwith some
concludingremarks.Sometechnicalresultsare collectedin appendicesA—D.

2. The instantonsandsphaleronon S3 x

It is not too difficult to constructall instantonsof unit topological charge
on S3 x l~.This is becausethe self-dualityequationsare conformallyinvariant
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and S3 x R is conformally equivalent to S4 = D~.Let x,~e D~have the
radial decompositionr2 = ~ n~= x,~/r.The conformalequivalenceis then
specifiedby redefiningtime through r = Rexp(t/R) suchthat

dx~= exp(2t/R)(dt2+ R2dn~), (1)

wheredn~representsthe metric of the unit three-sphereof volume 2m2. The
vectorpotential for the instantonis thensimply obtainedby identifying the
connectionone-forms

A~(t,n)dn~+ Ao(t,n)dt = ApdxIAIX Rexp(t/R)~~ (2)

We will achievemuch simplification in our subsequentcomputationsby
usingquaternions[261

X=X,L7P=Xt, u~=—~ij=it~, a
4=o4=l. (3)

The a1, are unit quaternionsin their 2 x 2 matrix representation,with r1 the
usualPauli matrices.Equallyusefulwill be the (anti)self-dual‘t Hooft symbols
t~iand i~[1] definedthrough

— a~a1,=
2l?1~vta,

cT
1,a~—,a,,~= 2ji~vta. (4)

Unlessspecifieddifferently, indices~u,v,... will run from 1 to 4 anda,b,...
and i, j,... will run from 1 to 3. We alsointroducea dreibeinon S

3 in terms
of ~ (from now onwardswe takeR = 1; R-dependencecan beeasilyreinstated
on dimensionalgrounds)

e~°= ~7~nv. (5)

Treating ~ as a four-dimensionalantisymmetricorthogonalmatrix, it is
easily seenfrom eq. (4) that

= _CabcllC_ôab, (6a)

which implies the completenessrelations
aa ab_~c
1,e~ fl1~fl,,— ‘JIW, ~ —

whereasthe spin connectionw follows from

e~0~e~= aae~= ~h/1ôab + eabce~ —n,~ö0b— (Dabce~j. (7)

Flat indices will henceforthbe indicatedby i, I, k,... to not confusethem
with the SU(2) algebraindices.

On !l~’the mostgeneralinstantonis given by [1,21,26]

(~Lx+ b))~d~
A1,dx1, Im~1+ I~x+ b12) (8)

whereb1, and,~arethe instantonpositionandscaleparameters.They form the
so-calledfive-dimensionalmoduli space.Note that our conventionsare such
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that A1, is antihermitian.A basisof the Lie algebrais providedby ita/2 = baa.
Using eq. (2) oneeasilyobtainsthe instantonsolutionson 53 x ~ in explicit
form:

isb~’r — .(s
2-~-sb.n)r

1+s(bA’r)1
A1——i

1+s
2+b2+2sb’n l+b2+s2+2sb•n

where b is the threevector obtainedby contractingb
1, with the dreibein e~,

i.e. 1, = b e ands = 2et. We observethat the scaleparameterof the R” (or
S

4) instantonsis relatedto the time parameterof the S3 x D~instantons.On
the other hand, the length of b

1, canbe seenas the parameterthat describes
the size of the instantonson 53 x It At b = 0, A1 = —is

2(l + s2)’r~and
A

0 = 0; it representsfor each time a constant,rotationally invariant ~
acompensatinggaugetransformation)field configuration.It is conveneii~tc
rewrite

ie.’r .(u + en)T+CAr
A0= , A=—i , (10)

2(l+&n) 2(l-f-~.n)
with

— 2s
2 — 2sb

1, (11)
U~ l+b

2+s2’ 1,~ l+b2+s2~
It describestunnellingfrom A = 0 at t = —oc to A = —i~at t = oc. At t =

it is a gaugecopy of A = 0 with agaugetransformation[Q ]A = QAQ +
QOQ 1, where Q = n a is a gauge function with unit winding number. In
generalthis gaugetransformationmaps instantonsto anti-instantons,with u
replacedby 2 — u, as follows from

naOan~a=—i’ra, n~ae~ranã~=e~ra,~ (12)

This is the way time reversalsymmetry is implementedon the parameter
space.The lagrangian,when restrictedto the instantons,must thereforebe
invariantunderu —i 2 — u. Indeed,

F
11 = O~AJ—aJA1+2WIJkAk+[A,,A1]

— 2ie1Jkrks
2

— (l+s2+b2+2sb.n)2

— ie~Jkrk(U(2—U)—e2) (13)
— 2(1 +e~n)2

yields apotentialwith the desiredsymmetry*

V — —~ T ‘F2’ — 48m2(l + s2 + b2)s4 — 3m2(u(2— u) .~2)2— r~~‘ — — (1 ..~2)5/2
S3 ((1 + b2 + s2)2 — 4s2b2)~ (14)

* The angularintegrationscanbe reducedto J’ d~sin2 w/ (p + q cos~e) ‘~andcanbe expressed

in termsof f~’d~’sin2~,/(p + qcos~’)= r/(p + .~/p2— q2), which will also be useful further
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Note that we have not only put R = 1, but also g = 1, where g is the
couplingconstant.To restorethe properdependenceon the couplingconstant
the lagrangianis divided by g2. Onealso easilyverifiesthe anti-self-duality

F
01 = ~1A1— 81A0 + [A0,A,] = s85A1 — ~,A0+ [A0,A1] = ~1JkFjk.

(15)

The changefrom self-dual to anti-self-dualis becausewe chooseto label x1,
by (x1,x2,x3,x4),whereasfor S

3 x ~ we label time by an index 0.
We now want to identify the sphaleron.In most rigour it is defined in

terms of a mini-max procedure.Take any path y connectingA
1 = 0 and

A = n aa1n ~ anddeterminethe maximumVm(Y) of the classicalpotential
energyalong the path.Taking the minimum of Vm(y) with respectto all y
defines the sphaleron.By constructionthe sphaleronis a saddlepoint with
preciselyone unstablemode. Although not required, it is natural to assume
the sphaleroncan be found by restricting y to the instantons.In an obvious
notation Yr(u) describesasubsetof paths,which from eq. (14) havemaximal
energyVm(ye) = 3,~2[\/(l ~ at u = 1. From eq. (11) we see that e

2
rangesbetween0 and 1. The sphaleronis henceexpectedto coincide with
Ak = —irk!2. Its curvature,F

11 = i.~jjktk/
2,follows from eq. (13). Oneeasily

verifiesit is indeeda saddlepoint for V on the spaceof all connections:

D,F
11 = 8~F,1+ WJkF,k + [A,,F,1] = 0. (16)

Nextweshouldestablishthatexpansionof V aroundthis candidatesphaleron
hasas only unstablemodeöA1 = a1, correspondingto the tunnelling direction.
For laterpurposeswe will slightly generalizethisanalysisby expandingaround

—iur~/2and A~°~0, which correspondsto e = 0. We use the
backgroundgaugefixing on the variablesÔA,,

D~°~öA1(l3~+ adA~°~)ôA1a15A, + [A,~°~,oA1]= 0. (17)

The fieldsareconsideredtime-independentandthe expansionof V is identical
to that of the full lagrangian,provided öA0 0 and30öA1 0. Fromeq. (1)
we also see that EIl’~ (rememberthat we have put R = 1) has a vierbein

= rn1,,~ = re~, which allows us to immediatelycopy the stability analysis
from ‘t Hooft’s ~ analysisin the radial representation.We shift t such that
s = r andfind

_~fTr{Fi~+ 2(D~O)öA1)2}= ~föA?M~J~öA~+ O(ôA
3),

M~Jb= r2e,~M~e~, (18)
where the operatorM

1,~is identical to ‘t Hooft’s expression(eq. (2.22) of
the first paperin ref. [1]), hence (u = 2s

2/(l + s2) = 2r2/(1 + r2))

= ((2L
1+uT)

2+l)ô
11+2u(2—u)T.Stj,

S~= 2e~(S~)1,0e~~, (19)



P. vanBaa!, ND. Han Dass/ Theta dependence 193

with [1]

= ~ =

= ad(ra/2), T
1~~= ~abc,

(S~)1,u= 11,v, S~= —ie~~1. (20)

It is alsousefulto consider [1]

—

1—a ~ (ç’a~ — —a ‘21
2 — °‘ 2’I°’ — 2 ~

since

L2 — 2
2—1ic’a~ —j — ç’a 221 2’ e1,~ 2,1,~e~—

which shows that S
3 still hasSO(4) (SU(2) x SU(2))/Z

2 symmetrygen-
eratedby L1 and L2, althoughthe SO(4) symmetryof the tangentframes is
brokento SO(3). Hence,whereasS1 andS2 havespin ~, S hasspin 1.

To verify thatM hasonly oneunstablemode,werewrite it in two different
ways:

M = 2(L1 +S+T)
2+2(u—l)(Li+T)2+2(2—u)Lf

+2(u— l)(2—u)T.S—2u(2—u), (23)

M=2u(Li+S+T)2—2(u—l)(Li+S)2+2L~

—2u(u—l)T•S—2u(2—u). (24)

The candidatesphaleroncorrespondsto u = 1, wherethe spectrumof M is
easily derivedin explicit form. The singlet with S + T = L

1 = L2 = 0, has
M(u = 1) = —2 and correspondsto the tunnelling mode. All other modes
haveM(u = 1) > 0. Note that applyingeq. (23) for u = 0 and eq. (24)
for u = 2, oneverifies thatM > 0 at the classicalvacua. Thus A, = —1r1/2
satisfiesall criteria for the sphaleron.We cannot rigorously excludethat there
is no sphaleronwith lower energy.However, such a configuration,if it exists,
is conjecturedto be separatedfrom the classicalvacuaby an energybarrier
much higher thanthe sphaleronenergyof 3~~2(the dependenceon g andR
is restoredby dividing by g

2R) andneednot concernushere.Nevertheless,
dueto the sphaleron’shighly symmetricform it is not unreasonableto assume
that thereare no sphaleronswith less energy.

3. Reductionto the moduli parameters

We first consider a simple toy model to demonstratethat an effective
hamiltonianin the tunnellingdegreesof freedomcangive very accurateresults
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evenat energiesabovethe sphaleronenergy,

/02 02’~H = —~g2(~—~+ ~—~) + ~(x2—1)2 + 2w2(x)y2. (25)

The minima of the potentialoccur at x = ±1, y = 0 and the sphaleron
correspondsto x = y = 0, with an energy ~. We can derive an effective
hamiltonian in the tunnelling degree of freedomby integrating out the y
degreeof freedomin an adiabaticapproximation

Heff = ~g2 + ~(x2 — 1)2 + gw(x). (26)

In table 1 wecompareourresultsobtainedfrom a high precisionRayleigh—Ritz
analysisfor both equations(25) and (26), choosingw(x) = ax2 + b. Tech-
niquesidenticalto thosedescribedin appendixB of the first paperin ref. [8]
were used.Lower boundswere computedas in sect. 5 of the samereference.
The energysplit of the groundstateis comparedto the semiclassicalprediction
as derived from eq. (26), i.e. AE

0 = 8\/~7irexp(—~g’+ 2a). We have
takena = b = 1 anda = 3, b = 1. One observesa nearperfectagreement,
evenwheretheenergiesaremuchhigherthanthe sphaleronenergy.Onemight
anticipatethe semiclassicalapproximationfor theground-stateenergysplit due
to tunnelling, derivedfrom eqs. (25) and (26), to be identicalup to relativeer-
rorsthat vanishas somepowerof g. This is certainlysuggestedby table1. How-
ever,for w

2(x) = — v(v + 1) (1 — x2) it was shown[27] that eq. (25) yields
a ground stateenergy-splitof AE

0 = 8J2g(2v+ l)/cos(vm)exp(—4g’),
whereaseq. (26) gives AE0 = 8[4g

2(l — k)1”(l +

wherek2 = 4v (ii + 1) > 1. Theseresults are accurateup to relativeerrors
that vanish as a power of g. Only for k very close to 1 the two resultswill
start to differ significantly. Nevertheless,the relativeerror in computingthe
semiclassicalresult from eq. (26), as comparedto eq. (25), doesnot vanish
as a power of g. The reasonis that the time scalefor the fluctuationsin the
y-directionis comparableto the time scalefor the x-fluctuationsandthe adia-
batic approximationinvolved in derivingeq. (26) is governedby a parameter
that does not vanishas g —~ 0. To correct for this, higher-derivativeterms
haveto enterthe effective hamiltonian.This should in principle be feasible,
althoughit is not very practical.

Still, the mostnaturalstrategywould be to derive an effective hamiltonian
or lagrangianbasedon the moduli parameters(s,b

1,) or (u, ~ introduced
in the previoussection.A priori there is no reasonto suspectthe adiabatic
approximationto bebad, sinceat A = 0 all modesarequadratic(unlike in the
torus geometry[6,8]), as canbe seenfrom eq. (24) at u = 0. In lowest order
the effective lagrangianis obtainedby restrictingthe full Yang—Mills action
S = _~fdtfs3Tr(F~~) to theinstantonmoduli space,eq. (9) or (10), where
the parameters(s, b1,) and (u, ~1,) are now consideredas arbitrary functions



P. vanBaa!, ND. Hani Dass/ Thetadependence 195

TABLE 1

The spectrumfor the hamiltonian of eq. (25) [denoted by f in the first column], with
w(x) = ax2 + b, as comparedto the spectrumfor the effective hamiltonian of eq. (26)
[denotedby e]. Energy levels are labelled by the parity underx — —x and the last column
comparestheground-stateenergysplit zlE

0 E~—E~with the semiclassicalresultderivedfrom
eq. (26), i.e. WKB = 8(2g/m)’/

2exp(_4g~+ 2a). All the digits displayedaresignificant.

a=l, b=l
g E~ E~ E~ E~ E

1 E~ AE0/WKB

0.07f 0.203913 0.329881 0.444434 0.203913 0.329890 0.444933 0.824
0.07e 0.203674 0.329806 0.444497 0.203674 0.329815 0.444999 0.828523
0.08f 0.232003 0.373217 0.496612 0.232004 0.373295 0.499910 0.8010
0.08e 0.231693 0.373121 0.496681 0.231694 0.373200 0.499995 0.804366
0.lOf 0.287343 0.455645 0.581230 0.287361 0.457204 0.608842 0.754446
0.lOe 0.286864 0.455504 0.581303 0.286883 0.457068 0.608999 0.756140
0.50f 1.07977 2.06444 3.46392 1.44538 2.79115 4.40555 0.157774
0.50e 1.07362 2.06399 3.62257 1.43613 2.79554 4.52717 0.156437
l.OOf 2.05168 5.20259 7.06059 3.43401 7.28025 1.01147 0.111187
l.OOe 2.03018 5.22785 9.63091 3.39984 7.32237 1.21192 0.110167

a=3, b=l

0.07f 0.319200 0.432434 0.526924 0.319201 0.432632 0.533333 0.4859
0.07e 0.318516 0.431953 0.526706 0.318518 0.432152 0.533135 0.495291
0.08f 0.359561 0.482468 0.571896 0.359579 0.483967 0.595335 0.43398
0.08e 0.358657 0.481854 0.571720 0.358676 0.483360 0.595168 0.440739
0.lOf 0.435852 0.564875 0.661462 0.436300 0.581781 0.729033 0.339584
0.l0e 0.434417 0.564106 0.661392 0.434868 0.580958 0.729042 0.342075
0.50f 1.32849 2.84047 3.95723 2.04007 3.77051 5.63556 0.562421
0.50e 1.31046 2.84923 4.78421 2.01298 3.77879 5.85457 0.555258
l.00f 2.64386 7.18664 8.55272 4.96345 1.00281 1.37669 0.341722
1.OOe 2.57941 7.39351 1.29745 4.86979 1.01043 1.59855 0.337419

of time. Choosingb1, time independentand s = ,~.etwill indeeddescribethe
instantonsolution of the truncatedlagrangian,as we will demonstratenow.

We have alreadycomputedthe potential in eq. (14) and we are left with
computingthe kinetic term. As the moduli spaceis a gauge invariantobject
we shouldeliminateall gaugedegreesof freedom.The kinetic term is therefore
determinedby the metric on the moduli space,which follows from truncating
the riemannianmetric of the full configurationspace.Ifs is the invariant line
elementonehas [28]

= — f Tr(A1 —DjD~
2DkAk)2, (27)

J
53

whereD, = 0, + adA, is the covariantderivativeandD;
2 denotesthe Green

function for the covariantlaplacianD~(our indicesare flat indices and that
the spin connectionwill not enterin eq. (27)). Alternately,this canbewritten
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as .2 = — f Tr(A? + D1AID
2DkAk). (28)

For the moduli space

DA — 31(u— l)e•i~ iii(e.’r) — i(u— 1)e.ne.’r ie. (~A’r)

112(l+e.n)2 2(l+~•n)2 (l+e.n)3 2(l+e.n)2~
(29)

Unfortunately,all our attemptsto exactly invert the covariantlaplacianhave
failed. Nevertheless,some explicit information can be extractedby using
eq. (15), which implies

sD~(O
3A~)= D,~A0. (30)

Writing the riemannianmetric in termsof the moduli parameterss and b1,
this gives

goo~
2+ 2g

01,~b1,+ g1,0b1,b~,

g00 = Tr{(85A1)
2 +s’(Dt8~At)Ao} =

g
01, = —f Tr{(O5Al)(3b5A~)+ s’(D1065A1)Ao}= s(s

2+b2+ 1)’

(31)

with V the potential as given in eq. (14). Evaluationof eq. (31) involves
angularintegralssimilar to thoseencounteredin evaluatingeq. (14). (Seethe
remarksmadethere.)The metric componentsgpv canonly becomputedin an
expansionin powersof b, to which we will returnin sect.4. We can, however,
with this result verify that b

1, = 0 and s = )Let is indeedan instantonsolution
for the truncatedmoduli lagrangian (with time imaginary)

Lmod = gooi
2 + 2go

1,.~b1,+ g1,~b1,b~+ V, (32)

sincewe can split off squares:

L 2b1,b1, 1mod = V — (1 + b
2 + s2) ±

+ (g
1,p— (1 b222)bPbv±8~Q~ (33)whereQ is definedthrough13Q V ~9Q b1,V (34)

Os — 4i~
2s’ Ob

1, — 2ir
2(1 + b2 + s2)
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Using the explicit form of V in eq. (14), one easilyverifiesthatQ is integrable.

Fixing an irrelevantadditiveconstantthroughQ (0,0) = 0, integrationyields
b — 1 s2—l—b2 .11 S2Q(s, ) — 2 + ~(l + b2 + s2)2— 4s2b2 ~ + (1 + b2 + s2)2 — 4s2b2

(35)

from which one finds, as it should be, that Q(oc,b) — Q(0,b) = 1, which
is the instanton“charge”. One also verifies that Q(l,0) = ~. The “charge”
of the sphaleronrelative to the vacuumis half the instanton“charge” [4].
Finally, it should be needlessto point out that b

1, = 0, s = ~le~
tuniquely

solvesthe equationsof motion of Lmod.
As mentionedbefore, we have beenunable to computeg

1,0 exactly. For
metrics on moduli spacesquite a lot is known. Their significance in the
physicsof gauge theorieswas first recognizedin ref. [22] for the monopole
scatteringproblem. In that case (in the BPS limit) there is no poten-
tial energy and all the dynamics is determinedby the metric. Due to its
large symmetry and the use of a hyperKählerstructure, the exact metric
(a four-dimensionalself-dual Einstein manifold not known before) could
be constructedin termsof elliptic functions. Earlier, Donaldsonhad been
using instanton moduli space to study the differential geometryof four-
manifolds [29]. The relevantmetric in the four-dimensionalcontext is of
the same form as eq. (27), except that we now integrate over the four-
dimensionalcompact manifold and the indices i, j,k,... run from 1 to 4.
Although eq. (30) is also valid in this four-dimensionalcontext of S

3 x D~,
allowing one to compute the g

00 and g01, componentsof the metric, fail-
ure to construct the exact Greenfunction for the covariant laplacian pre-
vented us from computing g1,0 in the four-dimensionalcontext too. The
Greenfunction is required to project on the horizontal (transverse)direc-
tions. This projection is not preservedunder conformal transformations.For
~“ the semiclassicalcomputationis considerablysimplified using the fact
that position parametersare related to translationsand the scaleparameter
to scale transformations,avoiding explicit use of a metric on the moduli
space.The semiclassicalresult [1,5], however,suffers from infrareddiver-
gencesin the integrationover the scaleparameter.On the other hand, the
semiclassicalinstantoncalculationfor S

4 is well defined [301. In that case,
an SO(S) symmetry of the moduli spaceavoidsthe explicit useof the met-
ric. Later, the samesymmetrywas also crucial for constructingthe explicit
form of the metric [31,32], independentlyused to derive the semiclassical
instantoncontribution [31] (it would be a useful check to verify if both
results agree).It is not excluded,however, that for the S3 x ~ geometryit
is impossibleto computethe semiclassicalinstantoncontribution in closed
form.
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Nevertheless, a lot is implicitly known about the metric properties of mod-
uli spacefor a large classof four-dimensionalmanifolds [29]. In particular
theredo in generaloccur pointswith curvaturesingularities(the CP2-cones)
associatedto reducibleconnections(theseare connectionsleft invariant by
a non-trivial subgroupof the gaugegroup). In the four-dimensionalcontext
quite detailedinformationaboutthe natureof the singularityis available [33].
Both for the three-dimensionalmonopoleandfour-dimensionalinstantonbun-
dles, the field strengthis non-vanishing,in which casethesesingularitiesare
relatively mild [29]. As A = 0 andits gaugecopiesarereducibleconnections,
we should anticipatecurvaturesingularitiesat thesepoints (u = = 0 and
u = 2,e = 0), which will be investigatedin sect. 4.

4. The valley equation

Our strategyso far hasbeento includeall moduli parametersin the effective
theory,to stayas closeas possibleto the parameterizationusedin the semiclas-
sical computation.As we haveseen,this is partly guaranteedby the fact that
the instantonsarealso part of the effective theory in this approach.But it is
necessaryto be able to integrateout all othermodes,differentfrom the moduli
parameters,consistently.As ourbackground[eqs. (9) and (10)] is not a solu-
tion of the equationsof motion,this requiresspecialcare.Due to the arbitrary
time dependenceof the moduli parameterswe should demandthe quantum
modesto be chosensuchthatboth the kinetic andthe potentialpartscontain
no termslinear in the quantummodes.Thus,writing A, = A, (u,6) + q, and
choosingthe backgroundgauge (eq. (17)) D,q, = (0, + adA,(u,6))q,= 0, c~
needsto be perpendicularto A,, i.e. f5~Tr(A,4’1) = 0. As the time dependence
is arbitrary this implies q, has to be perpendicularto the tangentsof the
moduli space

‘~ / OA,\ ‘~ /J Tr(,~~j___)=J Tr(~qj_—)=0. (36)
S~ Ou s~

The linear term in thepotentialpart is proportionalto f53 Tr(q~D,F11),which
in the light of eq. (36) and the backgroundgauge condition canonly vanish
simultaneouslyif

DF,1 = ~ + + DA, (37)

where,~ and)~,dependexclusively on the moduli parameters,whereasA is
an arbitraryLie algebravaluedfunctionon 53• This equationis well knownas
the valley or the streamlineequation [24], developedin the four-dimensional
context in order to consistentlyexpandaround configurationsthat are not
stationary.We thereforeconsidereq. (37) as the hamiltonianversionof the
valley equation.
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Apart from removing the term linear in the quantum modes it is also
important that the zero-point energy of the quantumfluctuations is posi-
tive for all quantummodes.Equivalently, the effective hamiltonianshould
contain all modesthat would be unstablesomewhere.The notion of sta-
bility is obscured,however,by the fact that the spectrumof the quadratic
part of the energy functional (the hessianfor V) dependson the choice
of coordinates,unlessit belongsto a stationarypoint. This is why the no-
tion of an unstablemanifold [34] is so useful. Unstable manifolds are as-
sociated to saddlepoints and are obtainedby following the gradient lines
in the unstabledirections. As the instantonsare exactly devised to fol-
low thesegradients, the subset (u,6 = 0) of the moduli spacecoincides
with the unstablemanifold associatedwith the sphaleron.It seems,how-
ever, when expandingthe potentialV on the moduli spacewith respectto
8,

V(u,e) = 3m2u2(2—u)2+ ~m2u(2—u)(l —S(u—1)2)62 +O(e~),
(38)

that the 6-direction becomesunstablefor (u — 1)2 < .~. As we pointed out,
this can be misleading, as the spectrumof the hessianis only well defined
(i.e coordinateindependent)at u = 0, 1, 2. Indeed the configurations
A,(u,0) = —iur,/2 satisfythe valleyequation,as DF,

1 = —iu(u—l)(u—2)r1
(in eq. (37), take )~1, = 0, A = 0 and )~o = 2u(u — l)(u — 2)). One
can integrate out all other modes consistentlyif the quadraticfluctuation
operatorM(u) constructedin eq. (19) (see also eqs. (23) and (24)) is
positive definite in the subsetof modes that are perpendicularto the tun-
nelling mode,ÔA, = a,. It is proven in appendixA that this is indeed the
case.Therewe also show that the non-linearityof A(u,6) is responsiblefor
the seeminglyadditional unstablebehaviourin the e direction in eq. (38).
In our subsequentanalysis this will also becomeclear without fixing the
gauge.

We will now investigatewhetherwecan, nevertheless,consistentlytakethee-
modeinto accountin the effective theory.Therationalebeingto try andstayas
close aspossibleto the semiclassicalresult, despitethe fact thatour toy model
at the beginningof sect.3 hasshownthata simpleone-loopcorrectionwill not
be sufficient to reproducethe semiclassicalenergysplit up to relativeerrorsthat
vanish as g —* 0. It will, however,provide importantinformationabout the
embeddingof thetunnellingandsphaleronconfigurationsin the configuration
space.Thus we needto investigatewhetherthe moduli parameterssatisfythe
valley equation.Observethat A can be easily determinedin terms of the
parameters2o and)~fl,sinceD1 (D,F,1) = — ~ [F,~,F11 I = 0, such that

D~A= —).oDI(OUAJ)—)L1,DI(OCAI). (39)
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Solvingfor A requiresinvertingthe covariantlaplacian,which we wereunable
to do in closed form. Hencewe will solve the valley equationby expanding
aroundA(u,0) in powersof e.

First we note that the valley equation has two symmetries.Namely lo-
cal field dependentgaugetransformationsandcoordinatetransformationson
the moduli parameters:(u,e) —+ (u’(u,e),&’(u,e)), with the constraintthat
u’(u,O) = u, 6’(u,O) = 0. Under suchacoordinatetransformation,A trans-
forms like a scalar and 2~.(cv = 0, . . . , 4) as a vector with respectto the
moduli spacecoordinates.The ,~,however,remainunchangedundera gauge
transformationA, = [Q ]A, QA,Q1 + Q0

1Q’, whereas

= QAQ~—)LOQOUQ’ —21,Qa~Q* (40)

The mostgeneralexpansionaroundA (u, 0) is given by

A = if’r+ ig(e Ar) + ihe(e.r), (41)

with (expandingA to third order in e)

f=-~u+f1(e.n)+f0(6.n)
2+fo(6.6)

+fi(e.n)3 +fi(e.n)(ee) +O(2~),

g=g
1+go(e.n)+g1(e.n)

2+~
1(6.e)+O(6

3),
h = ho+h

1(6•n)-~-O(6
2),

= i~i~+ (c 6)A(
2) + O(e~),

1 11 1 \1 \ r~1 5~
It1, = Vt(3) + ~6~6)/L(4))61, +~—‘tC j,

A = A1 + (6. n)A2 + (6 . n)
2A

3 + (& . e)A4 + O(e~). (42)

To third order thereare 19 unknowncoefficients,that arefunctionsof u only.
SinceD,F11, in termsof f, ~ and h (being rathercomplicatedfunctionsof
f, g andh), hasthe sameform as eq. (41),

D,F,3 = ifr1 + i~(e Ar)1 + ih6~(e.T), (43)

we haveonemore equationthanthere are parametersin f, g and h. The
additional equationarises since f (e = 0) = —~uwas fixed. This leaves
sevencoefficients undetermined,which are howeverremovedby the seven
independentparametersthat describethe gaugeandcoordinateinvarianceof
our ansatzto the desiredorder in e:

u’ = u + (e~e)0~ + O(e~),

= (02 + (6.2)03)81, + O(e~),

Q = exp(it9e.r),

0 = 04 + (e. n)05 + (6. n)
20

6 + (6.6)07 + O(e~). (44)
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It is left to the readerto verify that taking

—2(g..1 + (u—l)f.i) —(f_i + (u—l)g..1) 4

02= u(2—u) 0~= u(2—u) ( ~
implies that eq. (41) agrees with A(u,e) up to first order in 6, or

f—i = ~(u— 1), g_1 = —.~. (46)

Note that this might introduce coordinatesingularitiesat u = 0 or 2. For
the choice of eq. (46) the transformationis appropriately inert. In case
g_1 + (u — l)f..i = 0, eq. (45) should not be used. However, since in
the latter caseeq. (41) correspondsto [Q ]A (U, 0) to linear order in e (with
Q = exp[if_i (e . ‘r)]), 61, would not representan additionaldegreeof freedom,
such thatwe cansafely ignore this case.Onecaneliminatethe five additional
redundantparametersas follows: First choose0~to eliminatefo, then 05 to
removeh0, subsequentlywe pick 06, 07 and 03 to eliminateh1, ~ andfi.

After considerablebut straightforward(computer-assisted)algebrawe can
solve all ~(i) and A, algebraicallyin termsof the remaining fE and gj. For
the latter, there remain four equationslinear in fl and g,, and their first
derivatives,which can all be solvedexplicitly, albeit in closed form only for
fo and g0. In appendixB we will givetheseexplicit solutions.Herewe will be
satisfiedwith discussingthe result for fo andgo, as our subsequentarguments,
partly due to some good fortune, will not require the explicit solutions for
fi and gi. Introducing a = u — 1 (such that time reversalcorrespondsto
a —~ —a) f~and g0 are determinedby the equations

2clfo(a) 2 32a(l —a da + 2(2—a )fo(a) + 8ago(a) = 3a

2~(1~2)d~o(a)+2(2—3a
2)go(a)+4afo(a)= ~(l—3a2). (47)

Comparingeqs. (41), (42) and (10), the moduli spaceconfigurationcorre-
spondsto (note that it has indeedf..~= ~ (u — 1), g_

1 = — ~, fo = fi =

= h, = 0)

fo(a) = —~a, g0(a) = (48)

andoneimmediatelyverifies that it doesnot satisfy eq. (47). The important
conclusionis thereforethat the moduli spaceconnectiondoes not satisfy the
valley equation.

Nevertheless, a solution of the valley equation can be found (it can be
shownthat this canbe extendedto arbitraryorder in 6). Explicitly, eq. (47)
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Fig. 1. The functions f
0(a) andg0(a) for the solution of thevalley equation,given in eq. (49)

(full curves),comparedto their valuesfor the moduli space,eq. (48) (dashedcurves).At the
scaleof the figure it is not visible thatboth curvesdo not changesign for the samevalue of a.

is solved by

c1(l + 3a
2) (47 + 70a2 + 3a4) (3 + a2)(Sarcsina—c

2)
go(a) = a

2(l —a2)3!2 — l2a2(l —a2) — 2a(l —a2)3!2

(143— 32a2 + 9a4) 4c
1fo(a) = l2a(l —a

2) — a(l —a2)3!2

(3 + 6a2 —a4)(Sarcsina—c
2) 49

+ 4a
2(l—a2)3/2 ‘ ( )

where c
1 and c2 are constantsof integration. It coincideswith eq. (48) at

a
2 = 1 if we choose c

1 = 5m/2 and c2 = 0, in which case both f0(a)
and g0(a) become singular at a = 0. To make fo (a) and g0 (a) regu-
lar at a = 0, one is required to choose ci = ~ and c2 = 0, in which
case f0(a) = —~a+ 0(a

3) and g
0(a) = + 0(a

2), with singular be-
haviour at a2 = 1. For the latter case, fo and go are plotted in fig. 1,
together with the moduli space expressions of eq. (48). It will depend on
the nature of these singularities if the effective theory basedon the solu-
tion of the valley equationpresentsa well definedreduction. In particular,
thesesingularities might be merely coordinate singularities,possibly intro-
duced through eq. (45). As we have discussedin sect. 3, we do indeed
anticipatesingularities at a2 = 1 (u = 0 and 2). The only safe way to
decide on the natureof the singularitiesis to computethe riemanniancur-
vature tensor.Since R~kl is the sum of squares(contraction over all flat
indices 1,1,k, I is implied), each RlJkl is finite iff R~klis finite. This also
implies that any other scalar invariant will remain finite. We will com-
pute the curvature for arbitrary u at e = 0, for which it is sufficient to
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know go0, g01, and g1,1, to secondorder in 2. Appendix C will provide
some of the details involved in the computation,especially in expanding
the inversecovariant laplacian. Here we only list the results in terms of
the functions fi and g,, such that they can be used for both the moduli
and the valley case. In the following we prefer to use (a,e1,) as coordi-
nates:

= g0oà
2 + 2g

01,àê1, + ~

g00 = 3m2{l + (e.e)(2(l ±2a
2)

=

3~2{a(2+a) _fo(a)}61,+O(e3)~

g1,~ = 2~2{~1,~(~~ + (e e)cl) + 21,6~c2}+ O(e~), (SO)

where

~(—3—a
2+ 89a4— 13a6)

g — + ~a(29—17a2)(l +a2)fo(a) +a2(a2—7)(l +3a2)g
0(a)

— (3 + a
2)(l + 2a2)2

+ ~(5 + 3a2)f~2(a) + ~afo(a)go(a) + 4g~(a)

(3 + a2)

- (1 -a2)(3f
1(a) + g1(a))

2(1 + 2a
2)

+ 100a2 + 55a4— l4a6)
— —a(l +a2)(13+ 11a2)fo(a)+a2(—l7—a2+6a4)go(a)

2 — (3 + a2)(l + 2a2)2

+ 4(8 + 3a2)f
0

2(a) + 4afo(a)go(a) + 2g~(a)
(3 + a2)

— (1 —a2)(3f
1(a)+ g1(a)) 51

(l+2a2) . ( )

Before presentingthe riemanniancurvaturethere are two important obser-
vations.First, the transformation

= {l + 3~t’~~t)~(e.6)}e1, (52)

allows us to remove f~andgi from the metric to the relevant order in c; they
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will thusnot appearin the curvature.Secondly,the transformation

~ i I , __________

a=u—l=a+~1fo(a)—2j(e.e) (53)
removes to this order the term g01,. One easily verifies that for general j and

g1

V(a,6)=3m2(l_a2)2+~(l_a2)(l_3a2+4afo(a))(e.6)+O(e4),

(54)

which for u = a + 1, fo(a) = —~acoincides with the moduli space result of

eq. (38). Remarkably, eq. (53) is seen to transform the potential into

V(a’,c) = 3~2(1 — a/
2)2 + ~(l — a12)2 1 + 4a’ (6.6) + O(e~),(55)

2 l+2a’

which is independent of f, and g, to the displayedorderandhasa positive
coefficient for the part quadratic in 6. We thus confirm that the 6 mode can
be integrated out quadratically,in agreementwith theanalysisin appendixA.

Finally we present the curvature at 6 = 0. It has only two independent
components,

Rm~n~= ômnRi, Rmnpq = (ômqönp — ômpônq )Rjj, (56)

all others vanish if not related to these by the usual symmetries in permuting
the indices. The indices m, n,p,q run from 1 to 4; together with 0 they form
the flat indices associated to the metric of eq. (50). In our conventions a
sphere has a positive Ricci scalar R Rpqpq. The quantities R

1 and R11 are
given by

4

R1 = (1 + 2a
2)2’

R — 2(—3 + 62a2 + 34a4 + 87a6 + 157a8 — l6a’°)
“ — 3(1 —a2)4(3 + a2)(l + a2)2

8a(2—a2)(S + 7a2)fo(a) + 16a2(l — 13a2)go(a)
+ 3(l—a2)4(3+a2)

(8(5 + 3a2)fo(a)2 + 64afo(a)g
0(a) + 96g0a)

2)(l + 2a2)2

+ 9(1—a2)4(3+a2)

(57)

For the moduli space,eq. (48) implies

2(1 + 79a2 + l49a4 + 88a6 + 16a8)R
11 = 2 2 2 2 2 (58)

3(1—a) (3+a )(l +2a
The conclusionis that both the moduli andvalley casehave real curvature
singularitiesat a

2 = 1, i.e. at the perturbativevacua. The valley casewill
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furthermorehaveacurvaturesingularity at a = 0, unless we take in eq. (49)
c1 = ~.4andc2 = 0. But for that choice, the curvaturesingularityat a

2 = 1 is
proportionalto (1 — a2)7.

A singularity at A = 0 was anticipated, due to the fact that the gauge
group has beendivided out. For example in the Coulomb gauge 0

1A, =

0, the hamiltonian [35] is regular at A = 0, because the constant gauge
transformationsare not fixed. Instead,onedemandsthe wave functionalto be
a singlet under this remaining gauge symmetry. We could prove thatneitherin
the moduli, nor in the valley case, is it possible to remove the singularity in this
way. One source of additional singular behaviour arises due to the rotational
invarianceof the tunnelling pathwith 6 = 0. This will be demonstrated in
sect. 5 by embedding it in the constant modes (i.e. L~= 0). Another source is,
that at a

2 = 1, the e mode is a pure gauge (explainingwhy V is quartic, rather
than quadratic in c, at a2 = 1). Weshould thus conclude that, mainly due to
non-linearities and a singular embedding of the tunnelling path, including the
6 modeis an ill-posedproblem.However, it is consistent to expand around the
one-parametertunnelling path through the sphaleron(6 = 0), henceforthto
be called the sphaleronpath, as it satisfiesthe hamiltonianvalleyequationand
all zero-pointfrequenciesfor the fluctuationsperpendicularto this sphaleron
pathare real. In the nextsectionwewill showhow onedeals in this framework
with the coordinatesingularityat the classicalvacua.

5. Reductionto the sphaleronmode

In this sectionwe analysethe embeddingof the unstablemanifold, A, =

—iu/2r,, within the set of modeswith L~= 0, which we will call constant
modes.They are labelledby

A = ic?ra/2. (59)

This subsectorwas analysedbefore [12,36] by decomposingc? in threegauge
modes,three angular modesandthree“radial” modes.We follow the notation
of Koller andvan Baal [12],

c~= (60)

where ~, ij e SO(3). If T
1 arethe gauge generatorsassociatedto ~ andL, the

rotationgeneratorsbelongingto i~,one finds the hamiltonianrestrictedto the
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constantmodesto be

71(c) = ~2 +

— g2f13~3 1 v~(Lk+Tk)2 (
1~kTk)

2

— — 4ir
2 J Ox, ~ — ~ i~j~k X

1 — x~ + x + x1

~V(x) (61)

with J thejacobianassociatedto the changeof variables.Explicitly

J=fJIx?—xII. (62)
1>1

To avoid doublecounting,onerestrictsx, to the doublecone(or diabolo)

0 ti ±x1 ~ ±x2s~±x3. (63)

The potentialV (c), which differs for the sphericalgeometryfrom the one
in the torus case [12], is both gauge and rotational invariant and can be
expressedentirely in termsof the x, coordinates,

~-~V(c) = 2c~c?+ 6detc+ ~ {(c~c~)2- (c~c~)2}

= 2x~+ 6flx, + ~ (64)
l>j

Expandingaroundthe sphaleronpathwe write

c?=~uö,a+~, tr(~)~~~=0, (65)

and first follow the steps relevant to integratingout ~ in a quadraticap-
proximation.This can be immediatelytakenfrom the analysisin sect. 2, by
restrictingeqs. (19), (23) and (24) to L~= 0. The frequenciesof the per-
pendicular~ fluctuationsare thus readoff from eqs. (A.5) and (A.6). They
arelabelledby k, the spin quantumnumberfor K T + S,

k = 1: = 4u
2 — 6u + 4 (triplet),

k = 2: = 6u + 4 (quintet). (66)

This overcountsthe numberof degreesof freedom,which is compensatedby
the ghosts.For ~ = 0 one easilydeduces

= -D~= (2L
1 + uT)

2. (67)

Note that its spectrum is easily found in explicit form when writing

M~=2(2—u)L~+2u(Li+T)2—2u(2—u), (68)
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andis positivedefiniteeverywhere,exceptat u = 0 (the L~= 0 mode) and at
u = 2 (the (L1 + T) 2 = 0 mode), which are associatedwith theperturbative
vacua.It is yet anotherway to demonstratethat theseare singularpoints, as
discussedextensivelybefore.The quadraticapproximationfor integratingout
the modesperpendicularto the sphaleronpath, is well definedfor all modes
with non-zero zero-point frequencies.Thus, problemscan only arise in the
ghost sectornear the classicalvacua. For example, restrictedto L? = 0 we
havethreegaugemodesand

= u
2 (triplet). (69)

The adiabaticquadraticapproximationwill fail at u = 0, but is expectedto
be valid for large values of u. In that caseone obtainsan effective potential
by summingall zero-point frequencies

Veff 4wi + ~co
2—3co~= W6u+4+3~/u2_4u+ l—31u1. (70)

Theseresultscould of coursebe deriveddirectly from expandingeq. (64)

in termsof the ~ modesaroundthe sphaleronpath,
V(c) = 3m

2u2(2— u)2 + ~~2(4 + 2u2)tr(~)+ i~2(6u— 2u2)tr(~)+
(71)

We decompose~ in a triplet antisymmetricpart (~(a)) and in a quintet
tracelesssymmetricpart (a(s)). As usualthe norm of a gaugefield is givenby
1111112 = _f~

3T~~4~LWe find

V(c) = 3ir
2u2(2—u)2 + ~w~Hë~~I2+ ~ 12. (72)

Also thekinetic term is diagonal,since

II~lI2 = 3~2~2+ ~ + ~) 112. (73)

From these two equations one easily reproduces eq. (70).
The decomposition of eq. (60) allows us to rigorously eliminate the gauge

degrees of freedom, which we will only address in the sector of constant
modes. Gauge invariance is imposed by putting T2 = 0 and the angular
degrees of freedom are integrated out by putting L2 = 0. This reduces the
problemto threedimensions,but we now seethat the sphaleronmode,which
hasx

1 = x2 = x3, correspondsto the most singularconfiguration. There,the
jacobian.1’ hasa zero of third order,see eq. (62). It is howeveracoordinate
singularity and can be removedby scaling the wave function by v~.The
rescaledwave function hasto vanish as ~ in particular at the sphaleron
path (a similar situation arises in the torus geometry [8,12]). After this
rescalingwe find for the reducedhamiltonian

g
2 82 g2 ~ x?+x

1
2 V(x) 74

— 4j~2Ox2 4212 d (x2 — x2)2 + g2
I J
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We now decomposex, in termsof the sphaleronandperpendiculardegreesof
freedom

= —u + cx,y
1 + /3~y2, ~ = ~ = >a1fl1 = 0,

~a~=~fl~=1, (75)

with restrictionson y1 andY2 implied by eq. (63). Thesecanalsobe readoff
from

= flI(aj—cvi)yi + (fl1—/31)y21 fl12u + cvkyi + flkY2I. (76)
i>j k

We expandthe potentialV(x) to secondorder in y,

(77)

Thefact thatthereducedwavefunction is requiredto vanishfor cvkyl+ flkY2 =

—2u will only have exponentiallysmall effects (proportional to exp(—y~ü)
for someconstant ‘) andcanbe ignoredfor large u. To leading order in w1,
integrating out the yj modes is achievedby computingthe ground statefor
the two-dimensionalhamiltonian*

1 02 ~2 --2 9 (i~?+ j~2)2

= ~ <(~~)2 + (y1 + y2) — 4~2(~2— 3~2)2 j’ (78)
with a wave function that vanishes as where

~=~i(~?-3~), ~ Th~y (79)

Remarkably,a direct computationshowsthat ‘P(j~)= i~/Yexp(~~5~?)is the
ground statewith an energy wi. In leading order this, as it should, coincides
with eq. (70).

In principle, integrating out the y, modes is well defined, but even if
the adiabaticapproximationholds all the way down to u = 0 and u = 2,
it is very difficult to reliably determine the effective potential, due to the
complicatedstructureof eq. (76). It would giveusaone-dimensionaleffective
hamiltonianon the interval [0, 2], which whenperiodically extendedallows
a straightforwardimplication of 0-dependence.Care is however required in
extendingthe effective wave function to u = 0 and 2, due to the rescaling
with ~ We will not pursuethis any further as it would only allow us to
computethe groundstateenergyin each0-sector.That no glueballexcitations
areexpectedto be reliably included,canbe seenby consideringthe spectrum
in lowest order in perturbationtheory. It can be readoff from eq. (24) at
U = 0,

M(u = 0) = 2L~+ 2(L1 + S)
2. (80)

* For definitenesswe choose°k = ~/~sin(4irk) and /l~ = ~/jcos(4irk).
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The sphaleronmode has M = 4 (L~= L~= 0). However, it is not the
lowest mode,which is obtainedby takingL~= L~= (L1 + 5)2 = ~. These
12 transverse (O,A1 = 0) eigenmodes are described in terms of three constant
four-vectors~(a) by

A = i~~Tr(~ {w .nt+w~A~}) , (81)

which coincides with the 6-mode at the sphaleron, if ~ = —e~(cf.
eqs. (A.14) and(A.15)).

When we are interestedin the glueball spectrum, all perturbativemodes
should be treatedat moreequalfooting. The sphaleronconfigurationsare the
onesthat shouldbe mostsensitiveto the 0-dependence.Sect.6 will show how
this canbe formulatedwithout affecting the perturbativeresults.

6. Imposingboundaryconditions

The nine constantmodeswith L~= 0 are degeneratewith the ninemodes
that satisfyL~= 2 and L1 + S = 0. These 18 perturbativelydegeneratemodes
with M = 4 will featureprominentlyin the following, for reasonsthat will
becomeclear shortly. The additional nine modesare easily seen to be given
by

A. — ‘rz —

III — —p,r~~c, — ‘1 “b’

whered~is constant and V e SO(3) (an S
3-dependentrotationof the tangent

frame)

Vb = ~Tr(n.~a
1n.aa6). (83)

Using

= ~ (84)

it is easilyverified that indeed V ~ SO(3). One can also readily checkthat
L1 + S vanisheson these modes,using the following identity (proven in
appendixD):

L~n.örbn.a= —Sg~n.a~r~n.a. (85)

Notethat all 18 modesare transverse

O1c~= O,~= 0. (86)

Crucial is now to observethat the modesc and E we have isolated,do not
only contain the sphaleronmodeA, = —iur1/2,but also the moderelatedto
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this by the gaugetransformationwith winding number—1, Q = n ~ (compare
the discussionbetweeneqs. (11) and (12))

n.~(_iu~L)n.a+n.~O1n.a= —n.~(—i(2—u)~)n.a

= _i(2_u)V/~L. (87)

This gaugetransformationmaps c,a = —uö~to d~°= (u — 2)o~.Thus the 18
modescontain threeperturbativevacuaand two sphaleronmodes

c,°= —uô~, d~= —vö,’
1. (88)

The sphaleronscorrespondto respectivelyu = 1 andv = 1. This will be
confirmedby computingthe classicalpotentialfor A = i(c? — ~)r

0/2.
As a first step to computethe potentialV (A), we evaluatethe magnetic

field

Bk = ~6lJkFij = Bk(c) + V~B1(d) + Bk(c,d), (89)

with (cf. eq. (13))

Ta

Bk(c) —2c~~,+ ~6IJk[c1,cj], cm
Bk(d) —

2dk + ~6lJk[dI,df], d
1

Bk (c, d)
6ijk [c

1,~i1]= —6,jkV7 [c,,d~], ~. ~ (90)

To computethe potential,the non-trivial integralsover S
3 will involve

f V~= 0, fS~VbVd = ~~5acöbd. (91)

The secondidentity requiresa proof, which is deferredto appendixD. One
finds now

V(c,d) m_f Tr(B~)= V(c) +V(d) + ~{c 2(d~)2~(c~d1)2}

(92)

(cf. eq. (64) for the definition of V(c)). Observethat the potential hasan
SO(3)x SO(3) rotationalinvariance.This is not accidental.It is aconsequence
of thefact that L

2 actson n ~ Tb n . a as a gauge transformation (see appendix
D for aderivation

L~n~~rbn•a=—T’
2n•ã~rbn•a, (93)

from which it is easily verified that L
2 acts on d as a rotation,

L~ = _Vk(Sad)k (94)

Generally,the potentialwill rapidly increasein all directionsexceptfor the
directionsof the two sphalerons.It is only in the latterdirectionsthatwe wish
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to implement,beyond the semiclassicalapproximation,the effect of a non-
zero valueof 0. We do this herethroughappropriateboundaryconditionsin
configurationspace.This is not too differentfrom what was donein the torus
geometry[8,18]. A moregeneralpoint of view was advocatedin ref. [20]. As
we haveseen,the variousperturbativevacuaare mappedontoeachotherby
gaugetransformationswith non-zerowinding number.The hamiltonianin the
Coulombgauge[35] is regularatA = 0. It canbe extendedup to the Gribov
horizon, wherethe vanishingof the Faddeev—Popovdeterminantdet’ (Mgh)

M~m—O1D1(A) (95)

(the prime indicatesthat the determinantis evaluatedon the subspacewith
L~~ 0) makes it singular. The perturbativevacuadefinedby u = 2 or v = 2
(all other modesvanishing) have vanishing Faddeev—Popovdeterminants.
Around each,a hamiltonianis definedby conjugatingthe hamiltonianaround
A = 0 with the gaugefunctionthat mapsthesevacuato A = 0. Whereconfig-
urationsoverlap,the transitionfunction is preciselythis gaugetransformation.
This constructionwas discussedin detail in ref. [18].

Alternatively [20] oneimposesboundaryconditionson the boundaryOA of
the fundamentalmodulardomainA. The fundamentalmodulardomain is the
convexset of transversegaugepotential,which are such that the function ‘A

definedon the spaceof local gaugetransformationshasits absoluteminimum
at the unit gaugefunction. This function ‘A is simply the norm of the gauge
transformedvectorpotential

IA(Q) = I[Q]A(g) = II [Q]A11
2= —f Tr(A

1 —Q’01Q)
2, g e G.

S3 (96)

We remind the readerof the fact that stationarityof this functional implies
the Coulombgaugecondition andthat the hessianis given by eq. (95). The
boundaryof the fundamentalmodulardomainis definedby thosetransverse
configurationswherethe absoluteminimum at* Q = g is degenerate with an
absoluteminimum at Q

0 ~ g. The other minimum correspondsto another
point, [fl0 ]A, on 011. Obviously, the two points on 011 are relatedby the
gaugetransformationQ0. Underthis identificationthe wave functional picks
up a phase exp(in0) where n is the winding number of the gauge function Q0,

n(Q) = _i._~.fTr(Q_idQ)3. (97)

Oneexplicitly verifiesthat the two sphalerons,

= ~ A~
2~= in ~1~-n a, (98)

* As in eq. (96), g denotesan arbitraryconstantgaugefunction.
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are conjugatepoints on 011, as A~2~= [n .~]AWand I~(g)is identical for
both fields. As c and~ areorthogonal,one evenhas

I~~~(l)= 11c112 + I~II2 = 11c112 + 11d112. (99)
A useful further ingredientto study boundary identifications is the Chern—

Simons functional

Q(A) = ~_i.fTr(AiBi—~6iJkA1AJAk). (100)

Oneeasily showsthatalongthe tunnellingpath [eq. (9)] Q (A (s,b)) coincides
with Q(s,b), as given in eq. (35). Furthermore

Q(c) = ~(c~c,’~+detc), Q(c—I) = Q(c)—Q(d). (101)

Note thatthe perturbativevacuahave integerand the sphaleronshalf-integer
Chern—Simonsvaluesandthat

Q([Q]A) = Q(A) + n(Q). (102)

In the following HA denotesthe subspaceof modeswith an eigenvalue2

for M (u = 0) (eq. (80)) and HA denotesits restriction to the transverse
modesO

1A~= —2iL’1A1 = 0. As [L~,M(u = 0)] = 0, this projection is
well defined. We haveseenearlier that H3 = H3 and H4 = H4. As long as
the energiesremaincomparableto the sphaleronenergy,the wave functional
will decay rapidly in all directions of configuration space~AHA,except in
the directions of the two sphaleron modes that connect the two perturbative
vacuanearestto A = 0. These sphaleronmodesare containedin H4. We
thereforetake all the modesin HA for 2 ~ 4 gaussian,ignoring the boundary
conditionsat HA fl OA. Boundary conditionswill be formulated exclusively
in H4 fl 011. However, only at the sphalerons,the boundarymap identifies
pointswithin H4 (namelymappingonesphaleroninto the other). To seethis
(the various symmetriesallow us to removegaugeand rotational degreesof
freedom ) take c, = ix,r,/2. Applying the gaugetransformationQ = n
yields A, = in.~’(x~—2)r,n.a/2.It still hasL~= L~= 2, but it is easilyseen
that (Li + S)

2A, = 0, iff x
1 = x2 = x3. Nevertheless,also on H4 the wave

functional decaysrapidly in all directionsaway from the sphalerons.Hence,
except for the sphalerons,the points on 011 couple the various subspaces
HA under the boundaryidentification, but in all thesedirectionsboundary
conditionsare irrelevant. It implies, that to a good approximation,the wave
functional nearthe sphaleronA i) canbe decomposedas

‘I’(A) = ~~i(u)x1~i(PiA), (103)

andnearthe sphaleronA~
2~as

‘I’(A) = ~,
2(v)x1~1(F2A), (104)
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where (seeeq. (98))

um——Lj I Tr(A1A~’~),v = ~ f Tr(A1A~
2~) (105)

3m JS~ 3m J~3

arethe componentsof A alongthe sphaleronmodes,whereas

A(1) r
P

1(A) = A + —i- I Tr(A1A~) (106)
3m J53 3

projectsonto the directionsperpendicularto thesemodes.The 0-dependence
is implementedby imposing

~‘i(l) = eIO~2(l). (107)

If x factoriseson H4 ~ fl~,the boundaryconditioncanbe formulatedentirely
within H4. We will call this conditionthe sphaleronfactorisationproperty.It is
very likely to be justified as near the sphaleronsthe time scalefor fluctuations
along the sphaleron path is much longer than the time scale associated to
the perpendicular fluctuations. Much like in the torus case [8], one can in
principle check a posteriori in how far this adiabatic decomposition is valid
at the sphalerons.

Under the sphaleron factorisation hypothesis one is insensitive to replacing
OAflH4 by 0A4, provided both coincide near, and at, the sphalerons and
0114 encloses 011 fl H4 (as otherwisethe wave functional at A ~ 0114 could
be appreciable, whereas it is negligible at {~tALuE ~+}flOA) Pointsnear
A(i) areto be identified with pointsnearA~

2~on 0114. Oneknows quite a lot
about011. We alreadymentionedthat A is convex [20,37], but furthermore,
it was shown that in each direction in configuration space the Gribov horizon,
and thereforealso the boundaryof the fundamentalmodulardomain,is at a
finite distancefrom the origin [38]. HenceOAflHA is compact. It is in itself
an interestingproblemto find 011 restricted to, say, H

3 ~ H4. But under the
sphaleronfactorisationhypothesisa preciseknowledgeis not really required.
All we wish to state here is that one might suspect that 011 fl H4 is given by
IQ(c — ~)l= .~. This is false, as Q vanishes along the line c = d; a line which
intersects OA.

In general,we haveto construct0A4such that it is preservedunderrotations
andconstantgaugetransformations.It is most suitableto haveit alsoinvariant
under interchangingc andd, in which casewe canimplement the boundary
conditionby

~P(c,d) = e1O~I1(d,c), (c,d) eO4,’~. (108)

As is indicated in fig. 2, we take two disconnected branches for 0114, this is
to ensurethat the closed loop, that occurs by identifying two points on the
boundary,will be non-contractable.Otherwise0 would not be agood quantum
number. In particular, 0114 should avoid the line where c = d, else it will
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Fig. 2. Theequipotentiallines of theclassicalpotential (seeeq. (92)), restrictedto the sphaleron
modesof eq. (88). The outermost contour correspondsto an energy roughly ten times the
sphaleronenergy.The classicalvacuaare indicatedby thelarge dots, the tunnellingpathsthrough
the sphaleronsby the dashedlines. Boundaryconditions (eq. (108)) are implementedon the fat
curves (eq. (109)), which nearthe spahaleronscoincidewith the boundaryof the fundamental

modulardomain.

force the wave function (rigorously) to zero there. In fig. 2 we have also
plottedthe equipotentiallinesup to an energyten timesthat of thesphaleron,
using the potential of eq. (92), restricted to the sphaleron modes of eq. (88).
Observe the very steep rise of the potential in the direction perpendicular to
the sphaleron paths. Just to give an explicit example, fig. 2 is based on the
choice

OA~= {(c,d)I(11d112- 11c112) = 3(_l)1m2}. (109)

such that 0114 intersects the sphaleron path perpendicularly*. Note that it
satisfies the crucial requirement,that gaugeandrotational invarianceare not
broken by the boundary conditions. This completes our discussion of how we
implementthe 0-dependence.Sect.7 explainshow this shouldbeincorporated
in future calculationsof the glueball spectrum.

* Partof thetrueboundaryof thefundamentalmodulardomain,restrictedto thespacerepresented

in fig. 2, aswell as the Gribov horizon,were recentlyconstructedin ref. [43].
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7. Discussionand conclusions

In sect.6 we haveintroducedour proposalfor includingthe 0-dependence
on the glueballspectrum.It is implementedas follows: in perturbationtheory,
to lowest order,all modesare quadraticand the spectrumis given by M
M (u = 0) = 2L~+ 2(Li + S)2 with eigenvalues2 (their precisevalues
are presentlyirrelevant).Using the Yang—Mills hamiltonianin the coulomb
gauge [35], the physicalHilbert spaceis givenby the transversemodeseAHA,
wherefiA is the nA-dimensionalsubspaceof transversefields with eigenvalue
2. The hamiltonianis given by [6,7,35]

= 4g~ff p_i!2m~(x)pi!2K(x,y)~pi!2m9(y)p_i!2+ ~i~f(B~(x))2.

(110)

The momentaof the transverse fields are expressed in terms of the electric
field (which is canonicallyconjugateto the gaugefield) as

m~(x)=E~(x)_Ok4_iOlE~(x). (111)

Furthermore, A’ denotesthe Green function for the laplacianon S3, p =

det’(—OkDk) is the Faddeev—PopovdeterminantandK(x,y) is the kernel

K(x,y),
1 = ô11ô3(x—y)+adAj(OzDi)_iA(OmDm)~adAj. (112)

In leadingorder 7-1 is given by

7o= ~g~f m~(x)2+_~f A?(x)MI~A~(x). (113)
S~ g0 s~

Standardperturbation theory is performed in terms of the Fock space
that consistsof the occupation numbersfor each oscillator. Our proposal
to implement the 0-dependenceis to replacein H4 the harmonic oscillator
wave functions by the eigenfunctionsthat satisfy the 0-dependentboundary
conditionsof eq. (108). Detailswill be workedout in the future. Theenergies
of the modesin H4 are no longer proportionalto the particle numberand
matrix elementsthat involve field componentsin H4 will be morecomplicated.
However,only a few modessuffer this complicationandperturbationtheoryis
rigorouslyembedded,as the effectsof theboundaryconditionsaresuppressed
exponentiallyin the inverse coupling constant.There are no obstaclesto
formulatedimensionalregularisation.One addsthe 6 extradimensions,for
example,in the form of a symmetrictorus TC of sizeR. Nevertheless,oneneeds
to demonstratethat all infinities can be appropriatelyabsorbedin coupling
constantand field renormalisations.As the ultraviolet divergenciesare due
to the high-energy modes,which are rigorously treatedas in perturbation
theory, this renormalisationshould causeno major problems,provided we
formulatethe boundaryconditionsfor H4 in termsof the renormalisedfields.
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The presentproposal is well defined, without ambiguities. It preservesall
symmetries,most importantly including the topologicalsymmetry,which is
crucial in the domain where 0-dependencebecomesappreciable.In sect. 1
we havealreadyindicatedwhy the rewardsof this endeavourmight be worth
its price. Ultimately, of course,the aim would be to take the infinite-volume
limit, and above all understand the origin of colour confinement. We believe
this is presentlystill too ambitious,but we havelearnedthat the boundaryof
the fundamentalmodulardomain dominatesto a large extendthe dynamics
for the low-lying spectrum.

We should mention the alternativeapproachesto include the non-trivial
issues associatedto the presenceof Gribov copies. Closely related to the
methodsfollowed here, Vohwinkel is attemptingto addressthis in the torus
geometry, by analysing the contributionof the first few higher momentum
modes [39]. Other attemptsthat havebeenunder developmentfor quite a
few yearsnow canbe found in the works of Cutkosky and collaborators [7].
Like in the present paper they use the hamiltonian formulation in a spherical
geometry. In ref. [40] an accountof the presentstatusis given. Zwanziger
andcollaborators[38] are approachingthe problemfrom the euclideanpath
integral end, largely in the contextof lattice gauge theory. A recentpaper
incorporatesthe restrictionto the fundamentalmodulardomainandcontains
a reviewof most of the earlier results [411.

In conclusion,this paperhas exploredways of incorporating0-dependence
in the glueball spectrumand the vacuumenergy,that essentiallygo beyond
the semiclassicalapproximation.In principle,althoughratherimpractical,vac-
uumenergiescan be obtainedfrom expandingaroundthe (single) tunnelling
path that goes through the mountain pass (sphaleron)separatingtwo val-
leys (classicalvacua). Glueballscanonly be includedby treatingperturbative
modesmore or lessat the samefooting. But 18 modes,degeneratein lowest
quadraticorder (but not of lowestenergy) are singledout for implementing
the 0-dependencethroughboundaryconditions,derived from the properties
of the boundaryof the Coulomb-gaugefundamentalmodulardomain. Time
will be the judge of the feasibility of the proposedprogramme.We herewith
restour case.
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AppendixA

Here we prove that the fluctuation operatorM, defined in eq. (19), is
positive definite on all statesperpendicularto the sphaleronmode a1. We
repeathereeqs. (23) and (24), using u = 1 + aandadda third way to write
eq. (19):

M=2{(Li+S+T)2+a(Li+T)2

+(l_a)L~+a(l_a)T.S_(l_a2)}, (A.l)

M=2{(a+l)(Li+S+T)2_a(Li+S)2

+L~—a(a+ l)T.S_(l_a2)}, (A.2)

M=a(2Li+S+T)2+2{(l_a)(Li+S+T)2

+(l_a)L~+a(l_a)T.S+a2+a_l}. (A.3)

Since M commuteswith L~= L~,we can study the spectrum restricted to
each value of l~,whereL~= l~(Li + 1).

For 1, ~ 2, eq. (A.l) showsthatM ~

41i(li — 1—a) + 6a2—4a + 2 ~
at 1 ? a ? 0, whereas for —l ~ a ~ 0, eq. (A.2) allows us to bound M by
6a2 + 2 + 4l,(li — 1) — a(41i —8) ~ 2. For l~= 0 we have

M(li = 0) = 6a2—2+ (2 +a—a2)(T+S)2, (A.4)

which containsthe sphaleronmodeat K T + S = 0,

M(li=k=O)=6a2—2, (A.5)

whereas the k = 1 triplet and k = 2 quintet have positive eigenvaluesfor
—l ~ a ~ 1:

M(li = O,k = 1) = 4a2 + 2a + 2, M(Ii = O,k = 2) = 10 + 6a.
(A.6)

When l~= or 4, the operators(Li + S + T)2, (L
1 + T) 2, (L ~+ 5)

2and
L~are all boundedfrom belowby ~,whereas T S ~ —2. Using eq. (A. 1) for
a ~ 0 and eq. (A.2) for a ( 0, one easily deduces M ~ 6a2 — 41a1 + 1 ~
Finally, only for l~= 1 eq. (A.3) will be required. For a ? 0 it implies
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M ? 6a2 — 6a + 2 ~ .~. For —l ~ a ~ 0, we can use eq. (A.2), from which
M ~ 6a2 + 4a + 2 ~ 4. This completes the proof of the positivity of M for
all modes perpendicular to the sphaleron mode and for a2 ~ 1.

It is worthwhile to analyseapotentiallydisturbingproblemassociatedwith
gauge fixing. When the background field does not satisfy the equations of
motion, it seems superficially that longitudinal and transverse modes couple,
which would destroy gauge invariance. This comes about when one splits the
fluctuations in transverse and longitudinal modes. Their respective projection
operatorsareP and Q = 1 — P with

(Qq), = D,D~2D
1q1. (A.7)

One easilyverifies that (with q~a Lie algebravaluedfunction on S
3),

iD
1q~= (2L~+ (1 + a)T~)q~, (A.8)

(MD)1 = —D1D~— ad(D1F~,), (A.9)

which implies that PMQ ~ 0, since

(MQ),3 = —D1D1 — ad(DkFkI)D[
2D

1. (A.lO)

Only when DkFk, = 0 one has

M,1 = (PMP),1 - D,D~. (A.1l)

The resolutionof this apparentdiscrepancylies in the fact that a variation
in the direction of the gauge orbit contains a quadratic term in the gauge
parameter that, combined with the term proportional to the non-vanishing
equation of motion term, cancels against what comes from the seemingly
offending second term in eq. (A.lO). A gauge variation with Q = exp(—X)
is given by

= [Q]A, — A = e_XDjeX = D,X + ~[D1X,X] + 0(X
3). (A.l2)

Varying the potentialV gives

ÔV = f 2Tr(D~Fk~q~)—Tr(qi(M~J+D
1D1)q1). (A.13)

As D, ( DkF,j) = 0, the first term in eq. (A. 13) contributes at second order

f83 Tr(DkFk, [D1X,X]), whereasthe secondtermcontributes,usingeq. (A.9),
f53Tr((D1X)ad(D1F11)X).The two are easilyseento cancel.

We endthis appendixwith explicitly demonstratingthe positivity of M in
the 6-direction (therebyconfirming that the seeminginstability of V in this
directionis causedby the non-linearities).The two-dimensionalspacespanned
by (~~q(i) = ~q(

2)~~and1, =

q(i) = V’~(6.n)’r, q(2) = (eAr), (A.14)
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is left invariant by M. The reduced2 x 2 matrix for M on this basisis

(if) — (6a2 + 1 2a~ A 15

2a 2 4a +1)

with eigenvalues2 = 1 + 5a2±~/a2(a2+ 8). Thesearepositivefor all a.

Appendix B

The purpose of this appendix is to list the solution of the valley equation,
eq. (37), when expanding A, around —iuz

1/2 to third order in the four-vector
61,. Its expansion is given in eqs. (41) and (42). Up to its symmetries, the
valley equation is solved by (u = a + 1)

f=-~(l+a)+~a(6.n)+fo(6.n)
2+fi(e.n)3, (B.l)

g = —~ + go(6•n) + g
1(6.n)

2, (B.2)

h = 0, (B.3)

= —2a(l—a2)+ (4fo+4ago—3a)(6.6), (B.4)

21, = (1 + 4a2)6
1,

+ 4(afo+a
2go+3afi+ (1 +2a2)gt)~() (B.5)1—a

A = ~a + (2fo — 4a)(6.n) + (a + 2fo + 2ago + 3fi)(6.n)2

2(fo-i-a~o+3fi+3a~i)() (B.6)
1 — a2

The remainingfour equationsarefirst-order differential equationsfor fo, go,
f, and g

1,

2a(l _a2)~ + 2(2—a
2)fo+ 8ag

0—3a
3 = 0, (B.7)

2a(l — a2)~~+ 2(2 — 3a2)g
0 + 4afo + 4(3a

2 —1) = 0, (B.8)

2a(1 _a2)~Li~+ 2(5 — 3a2)f
1

+lOagi +4(2—3a
2)f

0—4ago+a(2+a
2) = 0, (B.9)

2a(l _a2)~! + 10(1 —a2)gi

+6afi +6(l—a2)go+ ~(l—7a2) = 0. (B.lO)

A considerable simplification is achieved by defining

F
0 = 2’ G0 = ~a

2g
0~1—a

2, Fi =

1a
5~

2, G1 = a
5g

1.
a (B.ll)
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We find

dF0 8G0 3a
4

= 0, (B.12)(1—a2)2 2(1_a2)3!2

dG
0 3a(l—3a

2)—+Fo— =0, (B.l3)da 8V1—a2

dF~ 5G
1 2a

2(2—3a2)F
0

—+
da (1—a

2)2 + (1—a2)3!2
4a3G

0 a
5(2+a2)

(1—a2)5!2+ 2(1—a2)2 = 0, (B.14)
dG

1 + 3F, + 6a
2G

0 a
4(1 — 7a2)

da \/Fa2 + 4(1—a2) = 0, (B.15)

which reduceto

(1—a2)2 = V~, 2~=8, 2~= 15. (B.16)

Theseare solvedthroughthe Legendreequation

(1—a2)O~Q~—2aOaQ~+(v(v+1)—j2(l—a2Y’)Q~=O.(B.17)

The homogeneoussolutionsareeasily foundto be

GW — 1 + 3a2 G~2~— a(3 + a2)0 — 1—a2 0 — 3(1 —a2)

G~— a(1 + a2) = ~(1 + 6a2 + a4) (B.18)
— (1—a2)3!2’ (1—a2)3!2

The inhomogeneous solutions now follow from

G
1(a) = G~(

2’(a)J G (a)J/(a)da_G,”)(a)J G~21(a)J~~(a)da.

(B.l9)

One easilyverifiesthat

3(1 — 9a2 + 2a4)
8(1 —a2)3!2

a3(—13 + 84a2 — 53a4) 2a2(5 — 6a2)Fo
Vi=

4(1 —a2)2 + (1—a2)3!2

2a(—6+ 7a2 — 3a4)Go
+ (B.2O)(1—a2)5!2

Unlike for G~,we canexpressG
0 in termsof elementaryfunctions:

47 + 7Oa
2 + 3a4 — 5a(3 + a2)arcsina

G
0 = — _____ (B.21)

24~f~~2 4(1—a
2)
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Appendix C

In this appendixwe discussin some more detail the computationof the
riemannianmetric andcurvature.The metric ,~2is definedby eqs. (27) and
(28). The only tricky part in the calculations involves the Green function for
the covariantlaplacian.It acts on D1A1, which for the ansatz of eq. (41) has
the form (U = a + 1)

D1A1 = iXi(i.t) + iX2(~.n)(e.~)+ iX3e. (àAr)

+iX4(e.e)(e.1~)+ iXsa(e.’r), (C.!)

with, to the relevantorder in 6,

Xi = 4a+ (—a+2fo—2ago)(6-n)

+(—2fo + 2ago + 3fi —2ag1)(e.n)
2 + O(6~),

X
2=(a+2fo—2ago)+(4fo+6fi—4agi)(8.fl)+O(6

2),

X3 = —~ + 2g
0(6 . n) + 0(62), X4 = 0, Xs = + 0(6). (C.2)

As a direct computation shows, D~(D,A,) is againof the form of eq. (C. 1):

D~(D1A1)= j77i(~~)+ i772(é•n)(e.~)+ !7738~(èA~)

+il)4(e.à)(e.T) + iil5à(e.T), (C.3)

with

= ~

+2(e. n)
2X4— (3~~+ 2x2 + 4(1 + 2f)X3) _~ + 8f(l + f))x i,

12 = (e.e)(x~’—8g2x2—2~~)+ (6n)(—5x~+8gx2+8x4)—2x~+8g~i

—2(3 + 4f(l + f))X2 + 4(1 + 2f)X3,

‘13 = (e.e)(x~’—4g2x3)+ (6•n)(—5~~+4g~3—2(l+2f)X4)

—2(1 + 2f)x~ — 2f’Xi + 2(1 + 2f)X2— 4(1 + 2f(1 + f))X3,

= (e.e)(x~’—8g2x4)+ ~

—2(1 +2f)X~—2f’X3—(5+8f(l +f))X4,

~is= (e .e)(~~8g2~~)+ (6• n)(8g~~—Sx~)—(3 + 8f(l + f))~s,
(C.4)

whereX dependon the S3 coordinatesthrough (6 . n) only (which holds
equally well for f, g and h). The prime denotesderivationwith respectto

n). We can truncate~7,to the sameorderas was donefor Xi in eq. (C.2),

and introduce the nine-dimensional basis:

Z
1, = {è.r,6.nè.r,(6.n)

2~.r,è.ne.’r,6.nà.ne.T,e.(àA’r),

e•ne•(èA’r),e.èe.r,àe.r}. (C.5)
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With respectto this basisD,A, = b1,Z1,, with b1, readoff from eq. (C.2). For
themoduli space

fo = —a/2, go = 1/2, fi = a/2, gi = —1/2. (C.6)

Taking~i=ci+c2(6.n)+c3(6•n)
2,~

2=c4+c5(6.n),~3=c6+c7(e.n),
X4 = c8 andX5 = c9, eq. (C.3) canbe written as

D~(c1,Z1,)= Z1,A1,0c~, (C.7)

After sometediousalgebraone finds for the 9 x 9 matrix A

—(i+2a

2+e2) 0 2e2 —2e2 0 a~2 —2ae2 0 0

4a2 —2(2-i-a2) 0 —2 0 4a 0 0 0

i—2a2-i-8afo 4a2 —9—2a2 2 —2 —5a 6a 2 0

—4 —2 0 —2(2-i-a2) 0 —4a 0 0 0

8g
0 —4 —4 —4(i—a

2) —9—2a2 4a —4a 8 0

—a 2a 0 —2a 0 —2(1-i-a2) 0 0 0

—4f
0 —3a 4a 2a —2a —2-i-4a

2 —7—2a2 2a 0

—i 0 0 2 2 —a 2a —3—2a2 0

o o 0 0 0 0 0 0 —l—2a2

(C.8)

which can be inverted, if necessary,with an algebraic manipulation pro-
gramme.We will not presentthat result here.Using

L, 0 L
2 0 L3 0 0 L5 L6

0 L2 0 L3 0 0 0 0 0
L2 0 0 0 0 0 0 0 0

1 ~ 0 L3 0 L2 0 0 0 0 0Tr(Z1,Z~)= L3 0 0 0 0 0 0 0 0 ~ (C.9)
~ S

3 0000 OL
400 0

000000000
L5 0 0 0 0 0 0 0 0
L6 0 0 0 0 0 0 0 L7

with

r 3~2=

r 5 2~2 11
= ~61,6V —

r i 22 1 ~L~3 = ~61,6l1 —

L4 = 6~6~— (~1,é1,)
2,

r 71 ~2 i 2~2
= ~61,61,j + ~261,6V’

L
6 =

r 3~22
L~7 ~ae1,,
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(only those terms were kept that will contribute to g1,~, go1, and g00 to second
order in 6) one straightforwardly computes

f Tr(D1A1D[
2D

1A1) = b1,L1,UA~bA. (C.l

The computationof — fs3 Tr(A~), which is left to the reader, completes the
evaluationof the metric. The resultsare collectedin eqs. (50) and (51).

We definethe riemanniancurvatureby

R~ = OA]7i~ — O7I~ + I~F~17— ~ (C.12)

It is mosteasyto extractthe Christoffel symbolsfrom the equationsof motion

(x°= a, x
1, = ~ derivedfrom the metric tensor

~ + = 0. (C.13)

This fixes all our conventions.Since we will compute R for 6 = 0, it is
sufficient to evaluate F to first order in 6. As this computation is standard, it
will not be reproducedhere.The result is collectedin eqs. (56)—(58).

AppendixD

This appendixcollectsthe proofsof eqs. (85), (92) and (93). The following
identitieswill be useful:

a ta 1a 1 — —

L
1 n1, = ~e1, = ~1,~n1. = ~{a1,a.n — a~na1,, Ta}, (D.1)

a
1—a 1—a i — —

L
2n1, = ~e1, = ~ = ~{a1,a.n—a•na1,,ra}, (D.2)

a1,xa1, = ~1,x71,= —2~, x xAaA, (D.3)

= ~1,xa1,= 2(x + ~) = 4Rex. (D.4)

For eq. (D.1), see eqs. (4), (5) and (20), for eq. (D.2) alsoeqs. (12) and
(21) are relevant. Eqs. (D.3) and (D.4) are proven by using explicitly the
SU(2) algebra properties. Note that eq. (D.3) applies also to a product of
quaternions, as this is again a quaternion. Furthermore, eq. (D.4) implies

= a1,aaã1,= 0. (D.5)

We now turn to the proofof eq. (85):

L~na’rbn a = ~W1,e~Tbn a + h.c.)

= ~1,{a1,ö~.n — a nö~1,,aa}ö~bna — h.c.

= ~ na0~6n . a + 2(aaa . n)tabn . a) — h.c.
= ~. n[Ta,rb]a n = ieabca nz~an. (D.6)
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Next we address the proof of eq. (93)

L~n. ~Tbn a = ~(ë~1,Tbn a + h.c.)

= 4{~1,a n — ~ na1,,aa}ö1,ãbn a — h.c.

= 4(—2(a naa)t — 6aa~~n)~6na — h.c.

= ~[Ta,nWT6na]. (D.7)

Finally we prove the second identity in eq. (91). From the isotropy of 53 one
easily deduces

n1,n~= ~ J~f n1,nvnAna= ~(ô1,vôAa+ö1,Aöva +ô1,O~VA),
21 21 S

3 (D8)

suchthat

lfVbV~~ =

+ ~Tr(a
1, -~--a~rb)Tr(a~

i_Ta _Tc
(D.9)

The first term vanishes (see eq. (D.5)), on the second we can apply the
completenessconditionof eq. (84),whereasfor the third weusethata~®a~=
—a~®~ + 2a0 ® a0. For a~®ö~we can again use eq. (84). Therefore,

1 bd
V~J~= ~Tr(aba1,a0aCa1,ad)

21

— ~Tr(ab~1,aaadö~pac)

+~Tr(aaab~1,)Tr(acad~1,). (D.10)

As ~1,® = a1, ®a1,, we can repeat the last step on the last term. Using also
eqs. (D.3) and (D.4) we find

= ~Tr(ab(aaac + (aaac)t)ad) + ~Tr(abadaaac)

71 ~
3

—,~Tr(aaabacad) + ,~Tr(aaab)Tr(acad)

= ~ôacöbd — ~Tr([ab,ac]adaa) + ~abôcd = 4ôacôbd.

(D.1l)
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