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This paper outlines the strategy for computing the #-dependence in non-abelian gauge
theories beyond a semiclassical or steepest descent approximation. It involves isolating the
relevant degrees of freedom including the sphaleron configuration for tunnelling across
a classical potential barrier. Two approaches are discussed in the context of spherical
geometries. The first is based on a hamiltonian version of the streamline or valley equation.
The second, which in our opinion is far more efficient, is based on implementing 8-
dependence through appropriate boundary conditions in configuration space. In a good
approximation these can be formulated at the level of 15 (43 gauge) modes, that are
degenerate to lowest order in perturbation theory, while keeping all other modes gaussian.

1. Introduction

Tunnelling through classical potential barriers has been an important source
of information for non-perturbative behaviour in non-abelian gauge theo-
ries [1,2]. Recently this attracted much attention in the context of the elec-
troweak sector [3] also. In most situations the effect of tunnelling is computed
through a steepest descent or semiclassical approximation. This is reasonable
as long as the energy of the states for which these non-perturbative contri-
butions are to be computed is below the minimal barrier energy. The saddle
point corresponding to this minimal barrier energy is what became known as
a sphaleron [4]. One would, however, also wish to know the non-perturbative
contributions if the energies are comparable to and higher than the sphaleron
energies. In the electroweak sector this is done by extrapolating the results
obtained from the steepest descent calculations, based on a perturbative ex-
pansion around the instantons (i.e. the classical solutions of the euclidean
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equations of motion that connect the two “nearest” classical vacuum con-
figurations). In QCD or non-abelian gauge theories similar steepest descent
approximations are plagued by infrared divergences [1,5], due to the integra-
tion over the instanton scale parameter. Because of the interacting nature of the
infrared modes it is most sensible to formulate the theory in a finite volume [6-
9]. Studying the low-energy dynamics of the non-abelian gauge theories can
now be performed perturbatively, as asymptotic freedom makes the effective
coupling small for small volumes. What one discovers when one increases the
volume, is that wave functionals start to spread out over configuration space
and degeneracies due to a multiple classical vacuum structure will be lifted
progressively. This line of approach has been particularly fruitful if we make
the volume finite by imposing periodic boundary conditions [6,8]. This has a
richer classical vacuum structure than for example in spherical compactifica-
tion [7]. In the absence of fermions the §-parameter is the relevant quantum
number to connect the wave functionals in the various vacua, whereas in the
torus geometry one has in addition electric flux quantum numbers [9] ¢; € Zg
(Zg 1s the center of the gauge group G). As long as the volume (and thus the
effective coupling constant) is so small that the energies of the low-lying states
are well below all sphaleron energies, perturbation theory will be appropriate.
(The sphaleron energy associated to e; is quantum induced [8], a complication
that is irrelevant for our present arguments). At increasing volume, energies
will become comparable to the electric flux sphaleron energy but will remain
small with respect to the f-sphaleron energy. For the torus geometry this is at
volumes between (0.2fm)3 and (0.8fm)3, the scale being set by the physical
string tension. In this so called intermediate volume domain the low-lying
spectrum was analytically computed [8] and for SU(2) agrees perfectly with
the most accurate Monte Carlo calculations [10] (with statistical errors of ap-
proximately 2%). A similar analysis was performed for SU(3) [11]. The main
idea was to isolate the degrees of freedom that include the relevant sphaleron
configurations and to derive an effective hamiltonian for these 6 (+3 gauge)
degrees of freedom. This effective hamiltonian deviates from the one derived
for the perturbative analysis [6] only by imposing boundary conditions on the
wave functions at the sphaleron configurations.

These computations essentially go beyond a semiclassical approximation
and have clearly demonstrated that extrapolating the result obtained from
such an approximation [12] to the domain where energies are comparable to
the sphaleron energy is inappropriate. Of course one can always a posteriori
match some parameters of the semiclassical approximation to get a better fit
to the actual results, but the problem is that only very limited knowledge about
the analytic structure in the coupling constant of the relevant amplitudes is
available, making extrapolation unreliable to a large degree. Thus, the claims
of large cross sections at high energies for (B + L)-violating processes in the
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electroweak sector [3] will remain controversial as long as they are based on
the steepest descent approximation of instanton contributions [13]. The main
emphasis of this paper is, however, towards the QCD applications, but we
hope that our techniques will ultimately be applicable in the more complicated
setting of the electroweak theory also.

The comparison of the analytic intermediate volume computations with the
lattice Monte Carlo results demonstrate that the effective hamiltonian becomes
unreliable at volumes bigger than (0.8fm)3 and it is most natural to assume
that this is due to energies becoming comparable to the #-sphaleron energy.
This was confirmed by a Monte Carlo investigation of the topological suscep-
tibility [14] (the second derivative of the ground state energy with respect
to #), which showed a near abrupt onset above a volume of approximately
(0.8 fm)3. It is therefore most natural to enlarge the number of degrees of free-
dom to also include the #-sphaleron. This seemingly straightforward extension
was severely hampered by a technical obstruction. Neither the sphaleron, nor
the instantons are explicitly known for the torus geometry. There has been over
the years various fruitless attempts to construct instantons on T4 and one can
actually prove [15] that for unit topological charge no regular instanton exists.
It is important to stress, as this result has often been interpreted incorrectly,
that this does not imply absence of regular instantons for the (spatial) torus
geometry if the time direction is not compactified too. A similar situation ex-
ists for a simple one-dimensional double-well H = —1$382/9x? + 1A2(x?—1)2,
whose instanton (or kink) equation, dx/d¢ = +A(x? — 1), has no solutions
with x(T) = —x(—T) = £1, unless 7 approaches infinity.

There are two important reasons to stick to the torus geometry. One is
practical, as it allows for comparisons with lattice Monte Carlo results, some-
thing that should not be abandoned too easily. It allows one to test the
approximations in the analytic approach, whereas for the lattice it is a test
of lattice artifacts [12c]. The second, equally important reason is physical
in nature. It was speculated at various occasions that the vacuum might be
unstable under domain formation [16]. In the torus geometry this issue can
be addressed most efficiently. The main reason is that cubic domains are
space-filling. Demonstrating that the vacuum energy density has a minimum
at some value of the volume in the torus geometry, is sufficient to establish
that the vacuum is unstable with respect to domain formation. It does not
necessarily mean that cubic (or for that matter rectangular) domains have the
lowest energies, but there is “phenomenological” evidence that the truth might
not be far off from that. If we assume the domains to be typically of a size
around (0.8fm)3, the intermediate volume results imply in a domain-sized
vacuum a scalar and tensor glueball mass and a string tension that agree with
the Monte Carlo results in volumes beyond (2-3fm)3. For more details we
refer to the discussion in refs. [17,18].
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Nevertheless, mainly due to the absence of the exact #-sphaleron and in-
stanton solutions in the torus geometry, which are indispensable guides to the
relevant degrees of freedom, attempts to include the 6§ dependence in this
geometry have up to now remained fruitless. We have therefore decided to
temporarily shift our interest to a spherical geometry. After all, ultimately the
spatial geometry should be irrelevant for the infinite-volume limit. Though
we do not expect to be able to consider the infinite-volume limit within
our calculational framework, the fact that on S? we know the sphaleron and
all instanton configurations, will make it a useful laboratory to consider the
0-dependence beyond the semiclassical approximation. Gauge theory in a
spherical geometry was studied extensively in the past by Cutkosky and col-
laborators [7]. At the perturbative level our results agree, the only difference
is our way of parametrizing the fields to allow for a more effective description
of the sphaleron and instantons. However, non-perturbatively we follow quite
a different route.

The remainder of this paper will discuss the technical details of our strat-
egy to include the #-dependence for the spherical geometry. To keep things
transparent we consider pure SU (2) gauge theory. Generalizations to arbitrary
gauge groups is in principle (but not necessarily in practice) straightforward.
Including chiral fermions (in the fundamental representation of the gauge
group) is less straightforward but might present a manageable challenge in the
hamiltonian approach when one takes into account that the relevant Dirac vac-
uum does not respect the symmetry under large gauge transformations [19], as
these transformations due to the chiral anomaly [1] do not preserve particle
number (6 can indeed be rotated away by a chiral transformation [1,2]). We
leave that to future investigations (for a few additional remarks we refer to
ref. [20]).

In sect. 2 we give the general SU(2) instanton configurations for the four-
dimensional manifold S? x R, obtained by a conformal transformation from
the well known instanton solutions on R* (or S*) [21]. We will isolate
the sphaleron from this and demonstrate it is indeed only unstable in the
tunnelling direction. In sect. 3 we first discuss a toy model to demonstrate
that accurate results can be obtained by deriving an effective hamiltonian
in the tunnelling degrees of freedom. In its lowest approximation this would
for the gauge case lead to a lagrangian in terms of the 5 instanton moduli
parameters, much like the description of monopole-monopole scattering [22].
In that case the potential vanishes and the kinetic term follows from the metric
of the relevant monopole parameter space, which is known explicitly [23].
Higher-order corrections are then obtained by integrating out all other modes.

In sect. 4 we discuss the hamiltonian version of the streamline or valley
equation [24], which needs to be satisfied to integrate out the irrelevant modes.
The instanton parameters will not in general satisfy the valley equation. We
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show that a solution of the valley equation which contains the instanton
parameters in lowest order, does not yield a satisfactory result either due to
singularities. Among other things, complications arise due to the spherical
symmetry of the sphaleron mode. But the single mode that contains this
sphaleron does satisfy the valley equation and the perpendicular degrees of
freedom can be integrated out consistently. In sect. 5 we show how this is done,
avoiding the problem associated with zero eigenvalues for the ghost. From the
toy model of sect. 3 one knows that the adiabatic one-loop approximation is
governed by a parameter that remains finite as the coupling constant goes to
zero. The main reason is that there is no separation of time scales between
the tunnelling and perturbative modes in the perturbative regions. All modes
should in principle be treated more or less at the same footing. Nevertheless,
close to the sphaleron the modes in the tunnelling direction should dominate.
In sect. 6 this hybrid between the perturbative and tunnelling modes is
achieved by first considering those 18 perturbative modes that are degenerate
in lowest order in perturbation theory and contain all relevant sphalerons
and classical vacua. The #-dependence is included by imposing boundary
conditions, similar to what was done for the torus geometry with the constant
modes [8]. Our analysis will be based on the intersection of these 18 modes
with the boundary of the fundamental modular domain, as was discussed
in general terms in ref. [20]. For the torus geometry the constant modes
were responsible for an infinite degeneracy in lowest order in perturbation
theory. The low-energy dynamics could then be described by an effective
hamiltonian [6] in the constant modes, through Bloch’s method [25]. The
above mentioned boundary conditions could be implemented in a finite-
dimensional setting. In the spherical geometry, the modes that carry the
boundary conditions do not even have the lowest energy. Here the boundary
conditions need to be implemented at the first step in perturbation theory.
Rather than taking for the wave functional a product of gaussians, one takes
for the 18 modes, that are to lowest order degenerate and carry the sphaleron
degrees of freedom, wave functions that suitably incorporate #-dependence
through boundary conditions. All other modes are kept gaussian and one
performs perturbation theory as usual. Details of this proposal will be worked
out in future publications. In the last section we only give a rough outline
and mention some of the issues that require special care. We end with some
concluding remarks. Some technical results are collected in appendices A-D.

2. The instantons and sphaleron on S® x R

It is not too difficult to construct all instantons of unit topological charge
on S3 x R. This is because the self-duality equations are conformally invariant
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and S? x R is conformally equivalent to S* = R* Let x, € R* have the
radial decomposition 7> = x2, n, = x,/r. The conformal equivalence is then
specified by redefining time through r = Rexp(¢/R) such that

dx2 = exp(2t/R) (df> + R%dn2), (1)

where dnfl represents the metric of the unit three-sphere of volume 272. The
vector potential for the instanton is then simply obtained by identifying the
connection one-forms

Ay (t,n)dn, + Ag(t,n)dt = A,dx,|

We will achieve much simplification in our subsequent computations by
using quaternions [26]

xp=Rexp(t/R)ny * (2)

X=Xﬂ0'#=5C_T, Oi=—0;=1IT;, 04=04=1. (3)

The o, are unit quaternions in their 2 x 2 matrix representation, with 7; the
usual Pauli matrices. Equally useful will be the (anti)self-dual 't Hooft symbols
n and 77 [1] defined through

Ou0, — 0,0, = 21'11,‘},,1,,,

Gu0, — 0,0y = 20N, Ta- (4)
Unless specified differently, indices y,v,... will run from 1 to 4 and a, 5, ...
and i, j,--- will run from 1 to 3. We also introduce a dreibein on S? in terms

of n (from now onwards we take R = 1; R-dependence can be easily reinstated
on dimensional grounds)

ey = NNy - 5)

Treating #* as a four-dimensional antisymmetric orthogonal matrix, it is
easily seen from eq. (4) that

1°n® = —€abe — Gab> (6a)
which implies the completeness relations
egel + nun, = Gy, efe] = dap, (6b)

whereas the spin connection « follows from
e,‘}a,,eﬁ = Baefj = —Nyu0gp + Eapc€y = —Nylap — Wapc, - (7)

Flat indices will henceforth be indicated by i,j, k,... to not confuse them
with the SU(2) algebra indices.

On R* the most general instanton is given by [1,21,26]
{ Ax + b)Adx\
\1+ |Ax + b2/
where b, and A are the instanton position and scale parameters. They form the
so-called five-dimensional moduli space. Note that our conventions are such

(8)

Audxu =Im
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that 4, is antihermitian. A basis of the Lie algebra is provided by i7,/2 = %oa.
Using eq. (2) one easily obtains the instanton solutions on S3 x R in explicit
form:

ish-t (P 4shom)t+s(bAT)
TT1xs2+b2+2b-n° J T T 1 4b2+s242sb-n
where b is the three vector obtained by contracting b, with the dreibein e,i,
iie. b = b-e and s = ie’. We observe that the scale parameter of the R* (or
S4) instantons is related to the time parameter of the S? x R instantons. On
the other hand, the length of b, can be seen as the parameter that describes
the size of the instantons on S3 x R. At b = 0, 4; = —is?(1 + s*)~!7; and
Ay = 0; it represents for each time a constant, rotationally invariant <a“=r
a compensating gauge transformation) field configuration. It is convern eu’ tc
rewrite

Ao , (9)

et Autenlrtehr
- = - 1
b= T ¥eny T 20 +enm (10)

with
252 2sb,

= == =-—*% 11
ETrbprs *T1xbits? (1)
It describes tunnelling from 4 =0 att = —c0to 4 = —itatt = 0. Attt = ©

it is a gauge copy of 4 = 0 with a gauge transformation [Q]4 = QA4Q~' +
Q082! where 2 = n -0 is a gauge function with unit winding number. In
general this gauge transformation maps instantons to anti-instantons, with u
replaced by 2 — u, as follows from

N-09n-C = —ity, N-0eLTN-T =28yls €,= rTZ,,nl,. (12)
This is the way time reversal symmetry is implemented on the parameter
space. The lagrangian, when restricted to the instantons, must therefore be
invariant under ¥ — 2 — u. Indeed,
Fij = 0idj — 0;4; + 20,1 Ak + [4is 4]
Zi_‘c"i;UJ&z.
(1 + 52+ b2+ 2sb-n)2
et (w2 —u) —e?)

2(1 + ¢ n)? (13)
yields a potential with the desired symmetry*
2 2 2y 4 2 ) — 222
=—%/Tr(F,—3-)= 48n-(1 + s +b)s" : =37z (11(2_ qu\)me) _
8 ((1 + b2 4 52)2 — 452b2)2 ST (14)

* The angular integrations can be reduced to foﬂ dy sin? w/(p + gcosw)? and can be expressed

in terms of fon dysin? w/(p + geosw) = n/(p + \/p?— q2), which will also be useful further
on.
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Note that we have not only put R = 1, but also g = 1, where g is the
coupling constant. To restore the proper dependence on the coupling constant
the lagrangian is divided by g2. One also easily verifies the anti-self-duality

Fy = O A; — 8; Ay + [Ao,A,'] = sO;A; — 6,-A0 + [Ao,Ai] = _%8iijjk .
(15)
The change from self-dual to anti-self-dual is because we choose to label x,
by (xi, X2, X3, X4), whereas for S* x R we label time by an index 0.

We now want to identify the sphaleron. In most rigour it is defined in
terms of a mini-max procedure. Take any path y connecting 4; = 0 and
A; = n-00;n -7 and determine the maximum V,,,(y) of the classical potential
energy along the path. Taking the minimum of Vn(y) with respect to all y
defines the sphaleron. By construction the sphaleron is a saddle point with
precisely one unstable mode. Although not required, it is natural to assume
the sphaleron can be found by restricting y to the instantons. In an obvious
notation y, (1) describes a_subset of paths, which from eq. (14) have maximal
energy Vm(y:) = 37%/\/(1 —¢2) at u = 1. From eq. (11) we see that &
ranges between 0 and 1. The sphaleron is hence expected to coincide with

Ay = —ity /2. Its curvature, Fi; = ig;jxTx/2, follows from eq. (13). One easily
verifies it is indeed a saddle point for V on the space of all connections:
DiF;j = 0iF;j + w;jxFix + [4;, Fij] = 0. (16)

Next we should establish that expansion of V around this candidate sphaleron
has as only unstable mode d 4; = g;, corresponding to the tunnelling direction.
For later purposes we will slightly generalize this analysis by expanding around

A,(CO) = —iut,/2 and A(()O) = 0, which corresponds to ¢ = 0. We use the
background gauge fixing on the variables § A;,
DV64; = (8 + adA V)64, = 6,64; + [AV,64,1 = 0. (17)

The fields are considered time-independent and the expansion of V is identical
to that of the full lagrangian, provided é 4y = 0 and 8,6 4; = 0. From eq. (1)
we also see that R* (remember that we have put R = 1) has a vierbein
€y = rny, e, = re}, which allows us to immediately copy the stability analysis
from *t Hooft’s R* analysis in the radial representation. We shift ¢ such that
s = r and find

—%/SsTr{F,% +2(DV54,)%) = %/53 SATMIS AL 4 O(54°),

M = rlelMibe], (18)
where the operator M,, is identical to ’t Hooft’s expression (eq. (2.22) of
the first paper in ref. [1]), hence (u = 2s2/(1 + %) = 2r2/(1 + r?))

M = (QLy 4+ uT)? + 1)+ 2u(2—w)T - S i},
S¢ = 2e, (S e, (19)
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with [1]
Lé = —in“ x*9, = ia
1 2wy v ) as
T% = ad(7,/2), T = ~iggpc,
i .
(S?);w = _57721/; Slaj = —1&aij - (20)
It is also useful to consider [1]
i I_
5= —zﬁz,,x”au, (5w = —Enfw, (21)
since
L =L} 22 (SHwel =S8, (22)

which shows that S* still has SO(4) ~ (SU(2) x SU(2))/Z, symmetry gen-
erated by L; and L,, although the SO(4) symmetry of the tangent frames is
broken to SO(3). Hence, whereas .§; and §; have spin %, S has spin 1.

To verify that M has only one unstable mode, we rewrite it in two different
ways:

M=2L+S+T)+2(u- 1)L+ T)*+22-u)L?
+2u-1)QR-w)T-S-2u(2-u), (23)
M=2u(L+8S +T)>=2(u—-1)(L;+8)>+2L?

2uu-1)T-S-2u(2-u). (24)

The candidate sphaleron corresponds to # = 1, where the spectrum of M is
easily derived in explicit form. The singlet with S + T = L{ = L, = 0, has

M(u = 1) = -2 and corresponds to the tunnelling mode. All other modes
have M(u = 1) > 0. Note that applying eq. (23) for u = 0 and eq. (24)
for u = 2, one verifies that M > 0 at the classical vacua. Thus 4, = —it;/2

satisfies all criteria for the sphaleron. We can not rigorously exclude that there
is no sphaleron with lower energy. However, such a configuration, if it exists,
is conjectured to be separated from the classical vacua by an energy barrier
much higher than the sphaleron energy of 372 (the dependence on g and R
is restored by dividing by gZR) and need not concern us here. Nevertheless,
due to the sphaleron’s highly symmetric form it is not unreasonable to assume
that there are no sphalerons with less energy.

3. Reduction to the moduli parameters

We first consider a simple toy model to demonstrate that an effective
hamiltonian in the tunnelling degrees of freedom can give very accurate results
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even at energies above the sphaleron energy,
0r 92

H=-1lp2( = 4+ ~_

28 (6 2t 52

The minima of the potential occur at x = +1, y = 0 and the sphaleron
corresponds to x = y = 0, with an energy % We can derive an effective

hamiltonian in the tunnelling degree of freedom by integrating out the y
degree of freedom in an adiabatic approximation

) + 1(x* - D% 4 207 (x)y?. (25)

82
Hyy = —%gzm + 3212 4 go(x). (26)

In table 1 we compare our results obtained from a high precision Rayleigh-Ritz
analysis for both equations (25) and (26), choosing w(x) = ax? + b. Tech-
niques identical to those described in appendix B of the first paper in ref. [8]
were used. Lower bounds were computed as in sect. 5 of the same reference.
The energy split of the ground state is compared to the semiclassical prediction
as derived from eq. (26), i.e. 4Ey) = 8,/2g/7texp(—§g'1 + 2a). We have
taken a = b = 1 and @ = 3, b = 1. One observes a near perfect agreement,
even where the energies are much higher than the sphaleron energy. One might
anticipate the semiclassical approximation for the ground-state energy split due
to tunnelling, derived from eqgs. (25) and (26), to be identical up to relative er-
rors that vanish as some power of g. This is certainly suggested by table 1. How-
ever, for w?(x) = 1 —v (v + 1) (1—x2) it was shown [27] that eq. (25) yields
a ground state energy-split of 4Ey = 8,/2g(2v + 1)/ cos(vm) exp(—3g~1),
whereas eq. (26) gives 4Ey = 8[4g2(1 — k)!=F(1 + k)!'+¥1/4%exp(-38~1),
where kZ = 4v(v + 1) > 1. These results are accurate up to relative errors
that vanish as a power of g. Only for k very close to 1 the two results will
start to differ significantly. Nevertheless, the relative error in computing the
semiclassical result from eq. (26), as compared to eq. (25), does not vanish
as a power of g. The reason is that the time scale for the fluctuations in the
y-direction is comparable to the time scale for the x-fluctuations and the adia-
batic approximation involved in deriving eq. (26) is governed by a parameter
that does not vanish as g — 0. To correct for this, higher-derivative terms
have to enter the effective hamiltonian. This should in principle be feasible,
although it is not very practical.

Still, the most natural strategy would be to derive an effective hamiltonian
or lagrangian based on the moduli parameters (s,b,) or (u,¢,) introduced
in the previous section. A priori there is no reason to suspect the adiabatic
approximation to be bad, since at 4 = 0 all modes are quadratic (unlike in the
torus geometry [6,8]), as can be seen from eq. (24) at u = 0. In lowest order
the effective lagrangian is obtained by restricting the full Yang-Mills action
S = —% Jdt Jg Tr(F,f,,) to the instanton moduli space, eq. (9) or (10), where
the parameters (s,b,) and (u,¢,) are now considered as arbitrary functions
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TABLE 1
The spectrum for the hamiltonian of eq. (25) [denoted by f in the first column], with
w(x) = ax? + b, as compared to the spectrum for the effective hamiltonian of eq. (26)

[denoted by e]. Energy levels are labelled by the parity under x — —x and the last column
compares the ground-state energy split AEy = E; - E(')* with the semiclassical result derived from

eq. (26), i.e. WKB = 8(2g/n)'/2exp(~$g~! + 2a). All the digits displayed are significant.

a=1, b=1

g E} E} E} Ey Ef E; AEy/WKB

0.07f 0.203913  0.329881 0.444434 0.203913  0.329890  0.444933  0.824
0.07e 0.203674 0.329806 0.444497 0.203674 0.329815  0.444999  0.828523
0.08f 0.232003 0.373217 0.496612 0.232004 0.373295 0.499910 0.8010
0.08¢ 0.231693 0.373121 0.496681 0.231694 0.373200 0.499995  0.804366
0.10f  0.287343  0.455645 0.581230 0.287361 0.457204 0.608842  0.754446
0.10e  0.286864 0.455504 0.581303 0.286883 0.457068 0.608999  0.756140
0.50f 1.07977 2.06444 3.46392 1.44538 2.79115 4.40555 0.157774
0.50e  1.07362 2.06399 3.62257 1.43613 2.79554 4.52717 0.156437
1.00f  2.05168 5.20259 7.06059 3.43401 7.28025 1.01147 0.111187
1.00e  2.03018 5.22785 9.63091 3.39984 7.32237 1.21192 0.110167

a=3, b=1

0.07f 0319200 0.432434 0.526924 0.319201  0.432632  0.533333  0.4859
0.07¢  0.318516 0.431953 0.526706 0.318518 0.432152 0.533135 0.495291
0.08f 0.359561 0.482468 0.571896  0.359579 0.483967 0.595335 0.43398
0.08¢ 0.358657 0.481854 0.571720 0.358676  0.483360 0.595168  0.440739
0.10f  0.435852  0.564875 0.661462 0.436300 0.581781 0.729033  0.339584
0.10e  0.434417 0.564106 0.661392  0.434868 0.580958 0.729042  0.342075
0.50f  1.32849 2.84047 3.95723 2.04007 3.77051 5.63556 0.562421
0.50e  1.31046 2.84923 4.78421 2.01298 3.77879 5.85457 0.555258
1.00f  2.64386 7.18664 8.55272 4.96345 1.00281 1.37669 0.341722
1.00e  2.57941 7.39351 1.29745 4.86979 1.01043 1.59855 0.337419

of time. Choosing b, time independent and s = Ae’ will indeed describe the
instanton solution of the truncated lagrangian, as we will demonstrate now.
We have already computed the potential in eq. (14) and we are left with
computing the kinetic term. As the moduli space is a gauge invariant object
we should eliminate all gauge degrees of freedom. The kinetic term is therefore
determined by the metric on the moduli space, which follows from truncating
the riemannian metric of the full configuration space. If 5 is the invariant line
element one has [28]
§° = - 3Tr(A,- — DiD7 2Dy Ay ), (27)
s
where D; = 9; 4+ adA; is the covariant derivative and Dj_2 denotes the Green

function for the covariant laplacian DJZ- (our indices are flat indices and that
the spin connection will not enter in eq. (27)). Alternately, this can be written
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as
s° = = | Tr(4? + D;A;D*DyAy). (28)
S3
For the moduli space
. Ji(u—1e-t iu(e-t) u—1)-ne-x ig- (8 AT)
D;4; = — _ _ ]
2(1+¢e-n)2  2(1 +¢-n)? (1+¢-n)3 2(1 +¢-n)?
(29)
Unfortunately, all our attempts to exactly invert the covariant laplacian have

failed. Nevertheless, some explicit information can be extracted by using
eq. (15), which implies

SD,‘(asAi) = D,—ZAO . (30)

Writing the riemannian metric in terms of the moduli parameters s and b,
this gives
.2

5§ = g00~§2 + 2g0,u5:b/1 + g,uububt/ s

V

g0 = — /S TH{(@,40° + 57 (DA do) = 3
s(s2+b24+1)°

31)

with V the potential as given in eq. (14). Evaluation of eq. (31) involves
angular integrals similar to those encountered in evaluating eq. (14). (See the
remarks made there.) The metric components g, can only be computed in an
expansion in powers of b, to which we will return in sect. 4. We can, however,
with this result verify that b, = 0 and s = e’ is indeed an instanton solution
for the truncated moduli lagrangian (with time imaginary)

Zou = — /S Tr{(@5A) (9n,45) + 57 (D, ) Ao} =

Lo = g00~5:2 + 2gOu~§bu + g;wbuby +V, (32)
since we can split off squares:
. 2
s 2b,b,
fmod = "(rm*‘
4Vbub,, s - 2 2
+ (&uu"W) bubuign Q; (33)

where Q is defined through
9Q v 20 bV

ds ~ 4nis’ 9b, ~  2m*(1 + b2 + 52)

(34)
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Using the explicit form of V in eq. (14), one easily verifies that Q is integrable.
Fixing an irrelevant additive constant through @(0,0) = 0, integration yields

(s,b) = } so1-b 1+ s }
olay =12+ VAT +s0)2—as2p2 |*° (1 4+ b2 +52)2—ds2h? |~
(35)

from which one finds, as it should be, that Q(oc,b) — Q(0,b) = 1, which
is the instanton “charge”. One also verifies that Q(1,0) = % The “charge”
of the sphaleron relative to the vacuum is half the instanton “charge” [4].
Finally, it should be needless to point out that b, = 0, s = Ae*’ uniquely
solves the equations of motion of L.

As mentioned before, we have been unable to compute g, exactly. For
metrics on moduli spaces quite a lot is known. Their significance in the
physics of gauge theories was first recognized in ref. [22] for the monopole
scattering problem. In that case (in the BPS limit) there is no poten-
tial energy and all the dynamics is determined by the metric. Due to its
large symmetry and the use of a hyperKéahler structure, the exact metric
(a four-dimensional self-dual Einstein manifold not known before) could
be constructed in terms of elliptic functions. Earlier, Donaldson had been
using instanton moduli space to study the differential geometry of four-
manifolds [29]. The relevant metric in the four-dimensional context is of
the same form as eq. (27), except that we now integrate over the four-
dimensional compact manifold and the indices i, j,k,... run from 1 to 4.
Although eq. (30) is also valid in this four-dimensional context of S3 x R,
allowing one to compute the gy and gg, components of the metric, fail-
ure to construct the exact Green function for the covariant laplacian pre-
vented us from computing g, in the four-dimensional context too. The
Green function is required to project on the horizontal (transverse) direc-
tions. This projection is not preserved under conformal transformations. For
R* the semiclassical computation is considerably simplified using the fact
that position parameters are related to translations and the scale parameter
to scale transformations, avoiding explicit use of a metric on the moduli
space. The semiclassical result [1,5], however, suffers from infrared diver-
gences in the integration over the scale parameter. On the other hand, the
semiclassical instanton calculation for S* is well defined [30]. In that case,
an SO(5) symmetry of the moduli space avoids the explicit use of the met-
ric. Later, the same symmetry was also crucial for constructing the explicit
form of the metric [31,32], independently used to derive the semiclassical
instanton contribution [31] (it would be a useful check to verify if both
results agree). It is not excluded, however, that for the S* x R geometry it
is impossible to compute the semiclassical instanton contribution in closed
form.
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Nevertheless, a lot is implicitly known about the metric properties of mod-
uli space for a large class of four-dimensional manifolds [29]. In particular
there do in general occur points with curvature singularities (the CP,-cones)
associated to reducible connections (these are connections left invariant by
a non-trivial subgroup of the gauge group). In the four-dimensional context
quite detailed information about the nature of the singularity is available [33].
Both for the three-dimensional monopole and four-dimensional instanton bun-
dles, the field strength is non-vanishing, in which case these singularities are
relatively mild [29]. As 4 = 0 and its gauge copies are reducible connections,
we should anticipate curvature singularities at these points (¥ = ¢ = 0 and
u = 2,& = 0), which will be investigated in sect. 4.

4. The valley equation

Our strategy so far has been to include all moduli parameters in the effective
theory, to stay as close as possible to the parameterization used in the semiclas-
sical computation. As we have seen, this is partly guaranteed by the fact that
the instantons are also part of the effective theory in this approach. But it is
necessary to be able to integrate out all other modes, different from the moduli
parameters, consistently. As our background [egs. (9) and (10)] is not a solu-
tion of the equations of motion, this requires special care. Due to the arbitrary
time dependence of the moduli parameters we should demand the quantum
modes to be chosen such that both the kinetic and the potential parts contain
no terms linear in the quantum modes. Thus, writing A; = A4;{(u,¢) + g; and
choosing the background gauge (eq. (17)) D;q; = (8; + adA4;(u,€))g; = 0, g;
needs to be perpendicular to 4, i.e. fi Tr(4;¢;) = 0. As the time dependence
is arbitrary this implies ¢; has to be perpendicular to the tangents of the

moduli space
0A4;\ 04i\ _
A}Tr (qla—u‘) = A}Tr (q188”> =0. (36)

The linear term in the potential part is proportional to fg; Tr(g;D;Fi;), which
in the light of eq. (36) and the background gauge condition can only vanish
simultaneously if

DiEj = 10% + lug—fﬂl
where Ag and A, depend exclusively on the moduli parameters, whereas A is
an arbitrary Lie algebra valued function on S3. This equation is well known as
the valley or the streamline equation [24], developed in the four-dimensional
context in order to consistently expand around configurations that are not
stationary. We therefore consider eq. (37) as the hamiltonian version of the
valley equation.

+ Di4, (37)
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Apart from removing the term linear in the quantum modes it is also
important that the zero-point energy of the quantum fluctuations is posi-
tive for all quantum modes. Equivalently, the effective hamiltonian should
contain all modes that would be unstable somewhere. The notion of sta-
bility is obscured, however, by the fact that the spectrum of the quadratic
part of the energy functional (the hessian for V) depends on the choice
of coordinates, unless it belongs to a stationary point. This is why the no-
tion of an unstable manifold [34] is so useful. Unstable manifolds are as-
sociated to saddle points and are obtained by following the gradient lines
in the unstable directions. As the instantons are exactly devised to fol-
low these gradients, the subset (#,&é = 0) of the moduli space coincides
with the unstable manifold associated with the sphaleron. It seems, how-
ever, when expanding the potential ¥V on the moduli space with respect to
€,

V(u,e) = 3n2u?(2—u)? + 3n%u2 - u) (1 - 5(u—-1)?)e? + O(eY),
(38)

that the e-direction becomes unstable for (¥ — 1)2 < % As we pointed out,
this can be misleading, as the spectrum of the hessian is only well defined
(i.e coordinate independent) at u = 0, 1, 2. Indeed the configurations
A;(u,0) = —iut;/2 satisfy the valley equation, as D F;; = —iu(u—1)(u—2)1;
(in eq. (37), take 4, = 0, 4 = 0 and Ay = 2u(u — 1)(u — 2)). One
can integrate out all other modes consistently if the quadratic fluctuation
operator M(u) constructed in eq. (19) (see also eqgs. (23) and (24)) is
positive definite in the subset of modes that are perpendicular to the tun-
nelling mode, d4; = ;. It is proven in appendix A that this is indeed the
case. There we also show that the non-linearity of 4(u,&) is responsible for
the seemingly additional unstable behaviour in the ¢ direction in eq. (38).
In our subsequent analysis this will also become clear without fixing the
gauge.

We will now investigate whether we can, nevertheless, consistently take the ¢-
mode into account in the effective theory. The rationale being to try and stay as
close as possible to the semiclassical result, despite the fact that our toy model
at the beginning of sect. 3 has shown that a simple one-loop correction will not
be sufficient to reproduce the semiclassical energy split up to relative errors that
vanish as g — 0. It will, however, provide important information about the
embedding of the tunnelling and sphaleron configurations in the configuration
space. Thus we need to investigate whether the moduli parameters satisfy the
valley equation. Observe that A4 can be easily determined in terms of the
parameters Ao and A, since D;(D;F;;) = —%[Fl'j,Fl‘j] = 0, such that

DjA = —AoD;(8yA;) — AuD;j (e, A;) . (39)
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Solving for A requires inverting the covariant laplacian, which we were unable
to do in closed form. Hence we will solve the valley equation by expanding
around A(u,0) in powers of &.

First we note that the valley equation has two symmetries. Namely lo-
cal field dependent gauge transformations and coordinate transformations on
the moduli parameters: (u,&) — (¥’ (u,¢€),¢ (u,e)), with the constraint that
w'(u,0) = u, &(u,0) = 0. Under such a coordinate transformation, A trans-
forms like a scalar and A, (o = 0,...,4) as a vector with respect to the
moduli space coordinates. The 4,, however, remain unchanged under a gauge
transformation 4; = [Q2]4; = QA4,Q2°! + 26,2, whereas

A=Q04027" — Q8,07 —1,006,Q7". (40)
The most general expansion around A (u,0) is given by
A=ift+iglent) + ihe(e-1), (41)
with (expanding 4 to third order in &)

o= ~Lu+ fole-n) + fle-n)? + fole-e)
+file-n) + file-n)(e-g) +0O(eY),

g =g 1+ & n)+gen?+g e +0(E),

h = ho+ hi(e-n) + O(e?),

Ao = Aq) + (e-€)A) + O(e?),

A = () + (e-8)Aw)ey + O(e%),

A=A+ (€-n)Ay + (¢-n)2 A5 + (- €) 44 + O(&’) . (42)
To third order there are 19 unknown coefficients, that are functions of # only.

Since D;Fj;, in terms of f , £ and h (being rather complicated functions of
f, g and h), has the same form as eq. (41),

DiFi; = ift; + ig(e At); + ihej(e-T), (43)

we have one more equation than there are parameters in f, g and 4. The
additional equation arises since f(¢ = 0) = —%u was fixed. This leaves
seven coefficients undetermined, which are however removed by the seven
independent parameters that describe the gauge and coordinate invariance of
our ansatz to the desired order in &:

u+ (e-€)0; + O(e*),

~

u =

g, = (62 + (g-€)03)e, + O(%),

Q = exp(iPe-71),

O = 04+ (6-n)0s + (£-n)%06 + (e-8)87 + O(?). (44)
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It is left to the reader to verify that taking

2(g + (-1 1) (a1 + (u-1)g_y)

= = 4
02 u(2 —u) - O u(2 —u) (43)
implies that eq. (41) agrees with A(u, &) up to first order in ¢, or
fa=3w-1), g,=-1. (46)

Note that this might introduce coordinate singularities at ¥ = 0 or 2. For
the choice of eq. (46) the transformation is appropriately inert. In case
g1+ (u—-1)f1 = 0, eq. (45) should not be used. However, since in
the latter case eq. (41) corresponds to [2]A(u,0) to linear order in ¢ (with
Q = explif_,(e-1)]), &, would not represent an additional degree of freedom,
such that we can safely ignore this case. One can eliminate the five additional
redundant parameters as follows: First choose 6, to eliminate fy, then 65 to
remove /g, subsequently we pick 8¢, 67 and 63 to eliminate k;, g, and fi.

After considerable but straightforward (computer-assisted) algebra we can
solve all 4(;) and A; algebraically in terms of the remaining f; and g;. For
the latter, there remain four equations linear in f; and g;, and their first
derivatives, which can all be solved explicitly, albeit in closed form only for
fo and go. In appendix B we will give these explicit solutions. Here we will be
satisfied with discussing the result for f; and gy, as our subsequent arguments,
partly due to some good fortune, will not require the explicit solutions for
f1 and g;. Introducing a = u — 1 (such that time reversal corresponds to
a — —a) fy and gy are determined by the equations

2a(1 dﬁ)(“) +2(2-a*) fyla) + 8ago(a) = 3a3,

2a(1 )ng(a)

+2(2-3a%)go(a) + 4afo(a) = 3(1-3a%). (47)
Comparing eqs. (41), (42) and (10), the moduli space conﬁguration corre-
sponds to (note that it has indeed f_; = J(u—1), g1 = -} , fo=h =
g1 =h =0)

fola) = —3a, gola) =} (48)

and one immediately verifies that it does not satisfy eq. (47). The important
conclusion is therefore that the moduli space connection does not satisfy the
valley equation.

Nevertheless, a solution of the valley equation can be found (it can be
shown that this can be extended to arbitrary order in ¢). Explicitly, eq. (47)
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Fig. 1. The functions fy(a) and go(a) for the solution of the valley equation, given in eq. (49)
(full curves), compared to their values for the moduli space, eq. (48) (dashed curves). At the
scale of the figure it is not visible that both curves do not change sign for the same value of a.

is solved by
a(l +3a%) (474 704> + 3a*) (3 + a?)(Sarcsina — ¢;)

$@) = Fa—ayr T T nai-a) 2a(1 - a?)%? ’
(143 - 3242 4 9a%) 4¢
fola) = 12a(1 — a?) Ca(l—a?)i2

(3 + 6a* — a*)(Sarcsina — ¢;)

4q%(1 — a2)3/2 ’

where ¢; and ¢, are constants of integration. It coincides with eq. (48) at
a* = 1 if we choose ¢, = 57/2 and ¢; = 0, in which case both fy(a)
and go(a) become singular at ¢ = 0. To make fy(a) and gy(a) regu-
lar at a = 0, one is required to choose c¢; = % and ¢, = 0, in which
case fo(a) = —la + O(a®) and go(a) = % + O(a?), with singular be-
haviour at a> = 1. For the latter case, f and gy are plotted in fig. 1,
together with the moduli space expressions of eq. (48). It will depend on
the nature of these singularities if the effective theory based on the solu-
tion of the valley equation presents a well defined reduction. In particular,
these singularities might be merely coordinate singularities, possibly intro-
duced through eq. (45). As we have discussed in sect. 3, we do indeed
anticipate singularities at a> = 1 (¢ = 0 and 2). The only safe way to
decide on the nature of the singularities is to compute the riemannian cur-
vature tensor. Since Rzz’jkl is the sum of squares (contraction over all flat
indices i, j,k,/ is implied), each R;j is finite iff Rl?jk, is finite. This also
implies that any other scalar invariant will remain finite. We will com-
pute the curvature for arbitrary u at ¢ = 0, for which it is sufficient to

(49)
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know go, &o, and g, to second order in &. Appendix C will provide
some of the details involved in the computation, especially in expanding
the inverse covariant laplacian. Here we only list the results in terms of
the functions f; and g;, such that they can be used for both the moduli
and the valley case. In the following we prefer to use (a,e,) as coordi-
nates:

.2 ) .. « .
s = good” + 2g0,ua8,u + Suvéuéy,

a’ dfo(a)
800 =3n2{1+(£-£)(2(1+2a2)-— ga )}+0(e4),

2
goy = 3n* {Ma—) —JB(a)}e# + O(&?),

2(1 + 2a2)
—_ 1232
gu = 277 {a,w (2-a) 2)25 + (a-a)gl) +e,,eyg2} + 0@, (50)
where
L(-3-a* + 894" — 134°)
; + 1a(29-17a%) (1 + a®) fo(a) + a*(a®> = 7) (1 + 3a?) gy(a)
1 =

(3 +a?) (1 + 2a%)?

N 15 + 3a) fH(a) + Safo(a)go(a) + 4g2(a)
(3 + a?)

_(1-a*)(3fila) + g1(a))
2(1 + 2a?) ’

1(3 4+ 100a? + 55a* — 14a°)
—a(l+a*)(13 + 11a*) fo(a) + a® (=17 - a® + 6a*) gy(a)
(3 + a?)(1 + 2a2)?
. 2(8 + 3a%) fi(a) + $afo(a)go(a) + 283 (a)
(3 + a2)

_(1-d*)(3fi(a) + g1(a))
(1 + 2a?) '

G

(51)

Before presenting the riemannian curvature there are two important obser-
vations. First, the transformation

p 3fi(a) + gi(a)
eﬂ={1+ 13(1—a21) (e-s)}su (52)

allows us to remove f; and g, from the metric to the relevant order in ¢; they
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will thus not appear in the curvature. Secondly, the transformation

"2 +a?)
a=u-1=a+3ifi@)-22*2 )L ¢ 53
1{00a) - SEE S (ee) (53)
removes to this order the term gg,. One easily verifies that for general f; and
8i

2
V(a,e) = 3n*(1 —a%)* + 3’%(1 —a®)(1-3a% +4afy(a))(e-¢) + O(eY),
(54)

which foru =a + 1, fyla) = —%a coincides with the moduli space result of
eq. (38). Remarkably, eq. (53) is seen to transform the potential into

/ 2 2y 3 221 + 4a’

V(a,e) =3n°(l —-a'" )" + -—2—(1—a ) 13247

which is independent of f; and g; to the displayed order and has a positive

coefficient for the part quadratic in &. We thus confirm that the ¢ mode can

be integrated out quadratically, in agreement with the analysis in appendix A.

Finally we present the curvature at ¢ = 0. It has only two independent
components,

RmOnO = 6mnRI » Rmnpq = (5mq5np - mpénq )RII ) (56)

all others vanish if not related to these by the usual symmetries in permuting
the indices. The indices m, n, p,q run from 1 to 4; together with 0 they form
the flat indices associated to the metric of eq. (50). In our conventions a
sphere has a positive Ricci scalar R = Rp,,,. The quantities R; and Ry; are
given by

(e-€) + O(e*), (55)

4
(1 4 2a2)?°
2(-3 + 62a* + 34a* + 87ab + 157a® — 16a'?)
3(1 —a2)4(3 + a2)(1 + a?)?
8a(2—a?)(5 + 7a?) fy(a) + 16a%(1 — 13a?) gy(a)
* 31 -a) (3 + @)

Ry =

Ry =

0 0 0 0

+ 9(1 —a?)*(3 + a?)
(57)
For the moduli space, eq. (48) implies
2 4 6 8
Ry = 2(1 + 79a“ + 149a* + 88a® + 16a4°) (58)

3(1-a2)2(3 + a?) (1 + 2a?)?
The conclusion is that both the moduli and valley case have real curvature
singularities at a*> = 1, i.e. at the perturbative vacua. The valley case will
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furthermore have a curvature singularity at ¢ = 0, unless we take in eq. (49)
= % and c; = 0. But for that choice, the curvature singularity at > = 1 is
proportional to (1 —a2)~".

A singularity at 4 = 0 was anticipated, due to the fact that the gauge
group has been divided out. For example in the Coulomb gauge 9;4;, =
0, the hamiltonian [35] is regular at 4 = 0, because the constant gauge
transformations are not fixed. Instead, one demands the wave functional to be
a singlet under this remaining gauge symmetry. We could prove that neither in
the moduli, nor in the valley case, is it possible to remove the singularity in this
way. One source of additional singular behaviour arises due to the rotational
invariance of the tunnelling path with ¢ = 0. This will be demonstrated in
sect. 5 by embedding it in the constant modes (i.e. L? = 0). Another source is,
that at @? = 1, the ¢ mode is a pure gauge (explaining why V is quartic, rather
than quadratic in ¢, at a> = 1). We should thus conclude that, mainly due to
non-linearities and a singular embedding of the tunnelling path, including the
¢ mode is an ill-posed problem. However, it is consistent to expand around the
one-parameter tunnelling path through the sphaleron (¢ = 0), henceforth to
be called the sphaleron path, as it satisfies the hamiltonian valley equation and
all zero-point frequencies for the fluctuations perpendicular to this sphaleron
path are real. In the next section we will show how one deals in this framework
with the coordinate singularity at the classical vacua.

5. Reduction to the sphaleron mode
In this section we analyse the embedding of the unstable manifold, 4; =

—iu/2t;, within the set of modes with L% = 0, which we will call constant
modes. They are labelled by

A; = ictty/2. (59)

This subsector was analysed before [12,36] by decomposing c? in three gauge
modes, three angular modes and three “radial” modes. We follow the notation
of Koller and van Baal [12],

3
¢t = Exyny, (60)
b=1

where &, € SO(3). If T ; are the gauge generators associated to £ and i,- the
rotation generators belonging to #, one finds the hamiltonian restricted to the
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constant modes to be
g* 07 V(c)

H(c) = _m——acfﬂ + 2
5 -~ ~ ~ o~
i R ( )+ ( )
472 {J Ix;” 0x; 4 i;gk X — X; X + X
Vix

e (61)

with J the jacobian associated to the change of variables. Explicitly
J =[] 1x? - x3. (62)

i>j
To avoid double counting, one restricts x; to the double cone (or diabolo)
0< +x; € £x; € +x3. (63)

The potential V(c), which differs for the spherical geometry from the one
in the torus case [12], is both gauge and rotational invariant and can be
expressed entirely in terms of the x; coordinates,

1
2—7[2V(C) = 2C?Cf~z + 6detc + %{(C?C?)z _ (C?Cf)z}
i>j
Expanding around the sphaleron path we write

¢t = —udf + ¢}, tr(c) = ZE{ =0, (65)
i

and first follow the steps relevant to integrating out ¢ in a quadratic ap-
proximation. This can be immediately taken from the analysis in sect. 2, by
restricting eqgs. (19), (23) and (24) to L? = 0. The frequencies of the per-
pendicular ¢ fluctuations are thus read off from egs. (A.5) and (A.6). They
are labelled by k, the spin quantum number for K =T + §,
k=1: w?=4u>—-6u+4 (triplet),
=2: w3=06u+4 (quintet) . (66)

This overcounts the number of degrees of freedom, which is compensated by
the ghosts. For ¢ = 0 one easily deduces

Mg, = —=D? = (2L + uT)?. (67)
Note that its spectrum is easily found in explicit form when writing

Mg =2Q—-u)L? + 2u(L+ T)2 = 2u(2 - u), (68)
gh
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and is positive definite everywhere, except at ¥ = 0 (the L% = 0 mode) and at
u = 2 (the (L + T)? = 0 mode), which are associated with the perturbative
vacua. It is yet another way to demonstrate that these are singular points, as
discussed extensively before. The quadratic approximation for integrating out
the modes perpendicular to the sphaleron path, is well defined for all modes
with non-zero zero-point frequencies. Thus, problems can only arise in the
ghost sector near the classical vacua. For example, restricted to Lf = 0 we
have three gauge modes and

wéh = u? (triplet) . (69)

The adiabatic quadratic approximation will fail at ¥ = 0, but is expected to
be valid for large values of u. In that case one obtains an effective potential
by summing all zero-point frequencies

Vet = 301 + 302 — 3wgn = 3V6u + 4 + 3y/ut— 3u+ 1 —3Jul. (70)

These results could of course be derived directly from expanding eq. (64)
in terms of the ¢ modes around the sphaleron path,

Vic) = 3n%ul (2 — u)? + 72(4 + 2u)tr (&¢7) + n2(6u — 2u)tr(¢?) + O(&3).
(71)

We decompose ¢ in a triplet antisymmetric part (¢®®) and in a quintet
traceless symmetric part (¢®). As usual the norm of a gauge field is given by
1 4]|% = — f; Tr(4?). We find

V(e) =372 (2 - u)? + Jot | E@ |2 + Sd||c@ 2. (72)

Also the kinetic term is diagonal, since

. . :v(ﬂ) :V(S)
lcll? = 3n%2 + ||c |17+ [l |I% (73)

From these two equations one easily reproduces eq. (70).

The decomposition of eq. (60) allows us to rigorously eliminate the gauge
degrees of freedom, which we will only address in the sector of constant
modes. Gauge invariance is imposed by putting T2 = 0 and the angular
degrees of freedom are integrated out by putting L?> = 0. This reduces the
problem to three dimensions, but we now see that the sphaleron mode, which
has x; = x; = X3, corresponds to the most singular configuration. There, the
jacobian 7 has a zero of third order, see eq. (62). It is however a coordinate
singularity and can be removed by scaling the wave function by 7. The
rescaled wave function has to vanish as /7, in particular at the sphaleron
path (a similar situation arises in the torus geometry [8,12]). After this
rescaling we find for the reduced hamiltonian

2 2 2
o g 0 -.L_.)i}. V()C)

i>j
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We now decompose x; in terms of the sphaleron and perpendicular degrees of
freedom

Xi=-u+ay+ By, Yo=Y Bi=> afi=0,
Yal=S =1, (75)

with restrictions on y; and y, implied by eq. (63). These can also be read off
from

J = Hl(aj —a)yr + (Bj— Byl H|2u + oy + Bd.  (76)

i>j k
We expand the potential V(x) to second order in y;
V(x) =371% 2 —u)? + B2t} +»3) + 0G%). (77)

The fact that the reduced wave function is required to vanish for a; y; + frys =
—2u will only have exponentially small effects (proportional to exp(—y/u)
for some constant y) and can be ignored for large u. To leading order in w,,
integrating out the y; modes is achieved by computing the ground state for
the two-dimensional hamiltonian*

~ a? ~ ~ 9(3? + y3)?
HG) = o=+ G} + ) - =2, (78)
2 oy = TP 4pl(57 - 373)2
with a wave function that vanishes as v/ .J where
PN ~ ~ /2w
T =035, yi=="L, (79)

7—1 *

Remarkably, a direct computation shows that ‘f’()?) = \/? exp(—%;?iz) is the
ground state with an energy %wl. In leading order this, as it should, coincides
with eq. (70).

In principle, integrating out the y; modes is well defined, but even if
the adiabatic approximation holds all the way down to u = 0 and u = 2,
it is very difficult to reliably determine the effective potential, due to the
complicated structure of eq. (76). It would give us a one-dimensional effective
hamiltonian on the interval [0,2], which when periodically extended allows
a straightforward implication of 6-dependence. Care is however required in
extending the effective wave function to ¥ = 0 and 2, due to the rescaling
with /7. We will not pursue this any further as it would only allow us to
compute the ground state energy in each #-sector. That no glueball excitations
are expected to be reliably included, can be seen by considering the spectrum
in lowest order in perturbation theory. It can be read off from eq. (24) at
U= 0,

M(u=0)=2L+2(L,+8)>. (80)

* For definiteness we choose ay = ﬁsin(%nk) and B = \/gcos(%nk).
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The sphaleron mode has M = 4 (L% = L% = 0). However, it is not the
lowest mode, which is obtained by taking L = L} = (L, + S§)? = 3. These
12 transverse (9;4; = 0) eigenmodes are described in terms of three constant
four-vectors w,ﬁ“) by

A= ig%"Tr(%" {w<a>-nr+w<a>/\1}), (81)

which coincides with the e-mode at the sphaleron, if w,ﬂk ) = —g, (cf.

eqs. (A.14) and (A.15)).

When we are interested in the glueball spectrum, all perturbative modes
should be treated at more equal footing. The sphaleron configurations are the
ones that should be most sensitive to the #-dependence. Sect. 6 will show how
this can be formulated without affecting the perturbative results.

6. Imposing boundary conditions

The nine constant modes with L2 = 0 are degenerate with the nine modes
that satisfy L% = 2and L+ S = 0. These 18 perturbatively degenerate modes
with M = 4 will feature prominently in the following, for reasons that will
become clear shortly. The additional nine modes are easily seen to be given
by

A = =58, & = VP, (82)

where df is constant and ¥ € SO(3) (an S3-dependent rotation of the tangent
frame)

VP = iTr(n-Goin-aay). (83)

Using
4
3" 058 (7,)70 = 26,505, , (84)
u=1

it is easily verified that indeed V' € SO(3). One can also readily check that
L, + § vanishes on these modes, using the following identity (proven in
appendix D):

Lin-otyn-0=-Sin-g1.n-o. (85)
Note that all 18 modes are transverse
8,'6'? = 8,-8? = 0. (86)

Crucial is now to observe that the modes ¢ and ¢ we have isolated, do not
only contain the sphaleron mode 4; = —iut;/2, but also the mode related to
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this by the gauge transformation with winding number —1, Q = n- (compare
the discussion between egs. (11) and (12))

_ . T = =i E )
n-o( zuz)n c+n-co;n-0 =—n a( (2 u)z)n o
= —i(2—u)V/%. (87)
This gauge transformation maps ¢/ = —udf to d? = (u —2)J?. Thus the 18
modes contain three perturbative vacua and two sphaleron modes
c? = ~udf, df = -véf. (88)

The sphalerons correspond to respectively ¥ = 1 and v = 1. This will be
confirmed by computing the classical potential for 4; = i(c? —¢%)14/2.

As a first step to compute the potential V(A), we evaluate the magnetic
field

By = jeiiFyj = Bi(c) + V! B/(d) + Bi(c,d), (89)
with (cf. eq. (13))
Bi(c) = —2¢c + ekl ¢, ¢ = iC?%",
Bi(d) = —2d; + L& [dind)], d; = z'd,.alz‘i,
Bi(c,d) = —ex[ci, ] = —&ijx Viesd], e = laa% (90)

To compute the potential, the non-trivial integrals over S will involve
2n?
3 3

The second identity requires a proof, which is deferred to appendix D. One
finds now

Vie,d) = —/SSTr (B2) = viey + vid) + 2—;{2— {(en2@)? - (crap)?}

(92)

(cf. eq. (64) for the definition of V(c)). Observe that the potential has an
SO(3)xSO(3) rotational invariance. This is not accidental. It is a consequence
of the fact that L, acts on n-G 7,1 -0 as a gauge transformation (see appendix
D for a derivation )

Vb=, / vevd = 2 g 8. 91)
S3

Lin-ctyn-0=-Tn-c1t4n-0, (93)
from which it is easily verified that L, acts on 4 as a rotation,
Lie; = —V¥ (S (94)

Generally, the potential will rapidly increase in all directions except for the
directions of the two sphalerons. It is only in the latter directions that we wish
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to implement, beyond the semiclassical approximation, the effect of a non-
zero value of 6. We do this here through appropriate boundary conditions in
configuration space. This is not too different from what was done in the torus
geometry [8,18]. A more general point of view was advocated in ref. [20]. As
we have seen, the various perturbative vacua are mapped onto each other by
gauge transformations with non-zero winding number. The hamiltonian in the
Coulomb gauge [35] is regular at A = 0. It can be extended up to the Gribov
horizon, where the vanishing of the Faddeev-Popov determinant det’ (Magp)

Mgy = —8iDi (4) (95)

(the prime indicates that the determinant is evaluated on the subspace with
L? # 0) makes it singular. The perturbative vacua defined by u = 2 or v = 2
(all other modes vanishing) have vanishing Faddeev-Popov determinants.
Around each, a hamiltonian is defined by conjugating the hamiltonian around
A = 0 with the gauge function that maps these vacua to A = 0. Where config-
urations overlap, the transition function is precisely this gauge transformation.
This construction was discussed in detail in ref. [18].

Alternatively [20] one imposes boundary conditions on the boundary 4 of
the fundamental modular domain 4. The fundamental modular domain is the
convex set of transverse gauge potential, which are such that the function 7,4
defined on the space of local gauge transformations has its absolute minimum
at the unit gauge function. This function 7, is simply the norm of the gauge
transformed vector potential

10(Q) = o (g) = [[[Q14]% = —/S Tr(4 - Q-'8,2)%, g€G.
’ (96)

We remind the reader of the fact that stationarity of this functional implies
the Coulomb gauge condition and that the hessian is given by eq. (95). The
boundary of the fundamental modular domain is defined by those transverse
configurations where the absolute minimum at* 2 = g is degenerate with an
absolute minimum at 2, # g. The other minimum corresponds to another
point, [2y]A4, on dA4. Obviously, the two points on 94 are related by the
gauge transformation £2;. Under this identification the wave functional picks
up a phase exp(inf) where n is the winding number of the gauge function £,

1
2472

One explicitly verifies that the two sphalerons,

n(R) = /SS Tr(Q'dQ)’. (97)

Aj(.z) = in-EEn-a, (98)

(1) :
Aj = —1 3

?7

* As in eq. (96), g denotes an arbitrary constant gauge function.
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are conjugate points on 94, as 4A® = [n-5)4"Y) and I,(g) is identical for
both fields. As ¢ and ¢ are orthogonal, one even has

I_~(1) = [lcll®> + el = llell®> + 111>, (99)

A useful further ingredient to study boundary identifications is the Chern—
Simons functional

1
0(4) = W/SSTr(A,-Bi L Aidi A (100)

One easily shows that along the tunnelling path [eq. (9)] Q(A(s, b)) coincides
with Q(s,b), as given in eq. (35). Furthermore

Q(c) = 7(cfc? + dete), Q(c-7) = Q(c)—Q(d). (101)

Note that the perturbative vacua have integer and the sphalerons half-integer
Chern-Simons values and that

Q([2]4) = Q(4) + n(Q2). (102)

In the following H; denotes the subspace of modes with an eigenvalue A
for M(u = 0) (eq. (80)) and I?I,l denotes its restriction to the transverse
modes 9;4; = —2iL{4; = 0. As [L{,M(u = 0)] = 0, this projection is
well defined. We have seen earlier that ﬁ3 = Hj and ﬁ4 = H,. As long as
the energies remain comparable to the sphaleron energy, the wave functional
will decay rapidly in all directions of configuration space @, H;, except in
the directions of the two sphaleron modes that connect the two perturbative
vacua nearest to0 A = 0. These sphaleron modes are contained in ﬁ4. We
therefore take all the modes in H; for A # 4 gaussian, ignoring the boundary
conditions at ﬁmaA. Boundary conditions will be formulated exclusively
in ﬁ4ﬂaA. However, only at the sphalerons, the boundary map identifies
points within ﬁ4 {namely mapping one sphaleron into the other). To see this
(the various symmetries allow us to remove gauge and rotational degrees of
freedom ) take ¢; = ix;t;/2. Applying the gauge transformation 2 = n.-o7
yields A, = in-o(x;—2)t;n-0/2. It still has L% = L% = 2, but it is easily seen
that (L + S )2A1~ = 0, iff x; = x; = x3. Nevertheless, also on ﬁ4 the wave
functional decays rapidly in all directions away from the sphalerons. Hence,
except for the sphalerons, the points on 04 couple the various subspaces
H; under the boundary identification, but in all these directions boundary
conditions are irrelevant. It implies, that to a good approximation, the wave
functional near the sphaleron A1) can be decomposed as

¥(4) = o1 ()2 (P14), (103)
and near the sphaleron 4 as

Y(4) = 2(V)x w1 (P24), (104)
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where (see eq. (98))

_ 1 4 _ 1 / 4D
u=—3—n2/SJTr(A]A}. ) v =g [T (105)

are the components of A4 along the sphaleron modes, whereas
A0 (W)
Pi(A) =4+ ——/ Tr(4;4;") (106)
37[2 q3 J

projects onto the directions perpendicular to these modes. The 8-dependence
is implemented by imposing

p1(1) = ey, (1). (107)

If x factorises on H, & ﬁj, the boundary condition can be formulated entirely
within Hy. We will call this condition the sphaleron factorisation property. It is
very likely to be justified as near the sphalerons the time scale for fluctuations
along the sphaleron path is much longer than the time scale associated to
the perpendicular fluctuations. Much like in the torus case [8], one can in
principle check a posteriori in how far this adiabatic decomposition is valid
at the sphalerons.

Under the sphaleron factorisation hypothesis one is insensitive to replacing
o4 ﬂﬁ4 by 04,4, provided both coincide near, and at, the sphalerons and
844 encloses 8Aﬂﬁ4 (as otherwise the wave functional at 4 € 84,4 could
be appreciable, whereas it is negligible at {uAd|u € R*}{84). Points near
AWM are to be identified with points near 42> on 8.44. One knows quite a lot
about 04. We already mentioned that A is convex [20,37], but furthermore,
it was shown that in each direction in configuration space the Gribov horizon,
and therefore also the boundary of the fundamental modular domain, is at a
finite distance from the origin [38]. Hence 84 H; is compact. It is in itself
an interesting problem to find 84 restricted to, say, ﬁ3 @ FI4. But under the
sphaleron factorisation hypothesis a precise knowledge is not really required.
All we wish to state here is that one might suspect that 04 ﬂf-L is given by
|Q(c—¢)| = 1. This is false, as Q vanishes along the line ¢ = d; a line which
intersects 9.A.

In general, we have to construct 344 such that it is preserved under rotations
and constant gauge transformations. It is most suitable to have it also invariant
under interchanging ¢ and d, in which case we can implement the boundary
condition by

Y(c,d) = e?¥(d,c), (c,d)eadal". (108)

As is indicated in fig. 2, we take two disconnected branches for 844, this is
to ensure that the closed loop, that occurs by identifying two points on the
boundary, will be non-contractable. Otherwise 8 would not be a good quantum
number. In particular, 34, should avoid the line where ¢ = d, else it will
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Fig. 2. The equipotential lines of the classical potential (see eq. (92)), restricted to the sphaleron

modes of eq. (88). The outermost contour corresponds to an energy roughly ten times the

sphaleron energy. The classical vacua are indicated by the large dots, the tunnelling paths through

the sphalerons by the dashed lines. Boundary conditions (eq. (108)) are implemented on the fat

curves (eq. (109)), which near the spahalerons coincide with the boundary of the fundamental
modular domain.

force the wave function (rigorously) to zero there. In fig. 2 we have also
plotted the equipotential lines up to an energy ten times that of the sphaleron,
using the potential of eq. (92), restricted to the sphaleron modes of eq. (88).
Observe the very steep rise of the potential in the direction perpendicular to
the sphaleron paths. Just to give an explicit example, fig. 2 is based on the
choice

04" = {(e.d)(Id]|* = Ilel|”) = 3(-D)'n’}. (109)

such that 04, intersects the sphaleron path perpendicularly*. Note that it
satisfies the crucial requirement, that gauge and rotational invariance are not
broken by the boundary conditions. This completes our discussion of how we
implement the 6-dependence. Sect. 7 explains how this should be incorporated
in future calculations of the glueball spectrum.

* Part of the true boundary of the fundamental modular domain, restricted to the space represented
in fig. 2, as well as the Gribov horizon, were recently constructed in ref. [43].
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7. Discussion and conclusions

In sect. 6 we have introduced our proposal for including the #-dependence
on the glueball spectrum. It is implemented as follows: in perturbation theory,
to lowest order, all modes are quadratic and the spectrum is given by M =
M(u = 0) = 2L§ + 2(L; + 8)? with eigenvalues A (their precise values
are presently irrelevant). Using the Yang-Mills hamiltonian in the coulomb
gauge [35], the physical Hilbert space is given by the transverse modes GBAI/-L,
where I/-\I,l is the n;-dimensional subspace of transverse fields with eigenvalue
A. The hamiltonian is given by [6,7,35]

_ 1
H = %g()// p2a8 (x) p' P K (x,y) % p'PPrl () p !/ +5?/3(B,?(x))2.
0 /S

(110)

The momenta of the transverse fields are expressed in terms of the electric
field (which is canonically conjugate to the gauge field) as

¢ (x) = Ef(x) — 47 'O E (x). (111)

Furthermore, 4~! denotes the Green function for the laplacian on S3, p =
det’ (-8, Dy ) is the Faddeev—Popov determinant and K (x, y) is the kernel

K(x,y)ij = 6;;03(x —y) + adA4; (9, D;) ' 4(8,sDyn) " 'ad4;.  (112)

In leading order H is given by
Hy = %gg/ 8 (x)? + 212/ AL (xX)MP 4L (x) . (113)
S3

Standard perturbation theory is performed in terms of the Fock space
that consists of the occupation numbers for each oscillator. Our proposal
to implement the 6-dependence is to replace in ﬁ4 the harmonic oscillator
wave functions by the eigenfunctions that satisfy the 6-dependent boundary
conditions of eq. (108). Details will be worked out in the future. The energies
of the modes in ﬁ4 are no longer proportional to the particle number and
matrix elements that involve field components in H; will be more complicated.
However, only a few modes suffer this complication and perturbation theory is
rigorously embedded, as the effects of the boundary conditions are suppressed
exponentially in the inverse coupling constant. There are no obstacles to
formulate dimensional regularisation. One adds the & extra dimensions, for
example, in the form of a symmetric torus T¢ of size R. Nevertheless, one needs
to demonstrate that all infinities can be appropriately absorbed in coupling
constant and field renormalisations. As the ultraviolet divergencies are due
to the high-energy modes, which are rigorously treated as in perturbation
theory, this renormalisation should cause no major problems, provided we
formulate the boundary conditions for H, in terms of the renormalised fields.
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The present proposal is well defined, without ambiguities. It preserves all
symmetries, most importantly including the topological symmetry, which is
crucial in the domain where f-dependence becomes appreciable. In sect. 1
we have already indicated why the rewards of this endeavour might be worth
its price. Ultimately, of course, the aim would be to take the infinite-volume
limit, and above all understand the origin of colour confinement. We believe
this is presently still too ambitious, but we have learned that the boundary of
the fundamental modular domain dominates to a large extend the dynamics
for the low-lying spectrum.

We should mention the alternative approaches to include the non-trivial
issues associated to the presence of Gribov copies. Closely related to the
methods followed here, Vohwinkel is attempting to address this in the torus
geometry, by analysing the contribution of the first few higher momentum
modes [39]. Other attempts that have been under development for quite a
few years now can be found in the works of Cutkosky and collaborators [7].
Like in the present paper they use the hamiltonian formulation in a spherical
geometry. In ref. [40] an account of the present status is given. Zwanziger
and collaborators [38] are approaching the problem from the euclidean path
integral end, largely in the context of lattice gauge theory. A recent paper
incorporates the restriction to the fundamental modular domain and contains
a review of most of the earlier results [41].

In conclusion, this paper has explored ways of incorporating #-dependence
in the glueball spectrum and the vacuum energy, that essentially go beyond
the semiclassical approximation. In principle, although rather impractical, vac-
uum energies can be obtained from expanding around the (single) tunnelling
path that goes through the mountain pass (sphaleron) separating two val-
leys (classical vacua). Glueballs can only be included by treating perturbative
modes more or less at the same footing. But 18 modes, degenerate in lowest
quadratic order (but not of lowest energy) are singled out for implementing
the #-dependence through boundary conditions, derived from the properties
of the boundary of the Coulomb-gauge fundamental modular domain. Time
will be the judge of the feasibility of the proposed programme. We herewith
rest our case.
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Appendix A

Here we prove that the fluctuation operator M, defined in eq. (19), is
positive definite on all states perpendicular to the sphaleron mode o;,. We
repeat here eqs. (23) and (24), using ¥ = 1 + a and add a third way to write
eq. (19):

M = 2{(L1 +S+T) 4+all,+T)?
+(1—a)Lf+a(l—a)T-S—(l—az)}, (A.1)
M=2{@a+ DA +S+ T -al,+$)’

+L%—a(a+1)T-s—(1—a2)}, (A.2)
M=a@Li+S+ D+ 2{(1-a)(Li+S+T)?
+(1—a)L%+a(1—a)T-s+a2+a-1}. (A.3)

Since M commutes with L% = L%, we can study the spectrum restricted to
each value of /;, where L? = [;(/, + 1).

For /; > 2, eq. (A.1) shows that M > 4/;(/; -1 —-a) + 6a’?—4a +2 >
at 1 = a > 0, whereas for -1 < a € 0, eq. (A.2) allows us to bound M b
6a’> +2+4l,(I;—1)—a(4l,—8) = 2. For /; = 0 we have

(RTINS

MU =0)=6a>-2+ (2 +a—a’)(T +5)2, (A.4)
which contains the sphaleron mode at K =T + S = 0,
M =k =0) =6a>-2, (A.5)

whereas the k = 1 triplet and & = 2 quintet have positive eigenvalues for
-l<ax<l:

MU =0k=1)=4a>+2a+2, MU =0k=2)=10+6a.
(A.6)
When /; = § or 3, the operators (L; + 8 + T)% (L, + T)2 (L,+ §) *and
Lf are all bounded from below by %, whereas T-§ > —2. Using eq. (A.1) for

a > 0 and eq. (A.2) for a < 0, one easily deduces M > 6a —4|a| + 1 > 1.
Finally, only for /; = 1 eq. (A.3) will be required. For a > 0 it implies
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M > 6a®—-6a+ 2> 3. For -1 < a <0, we can use eq. (A.2), from which
M>6a+4a+2 > %. This completes the proof of the positivity of M for
all modes perpendicular to the sphaleron mode and for a2 < 1.

It is worthwhile to analyse a potentially disturbing problem associated with
gauge fixing. When the background field does not satisfy the equations of
motion, it seems superficially that longitudinal and transverse modes couple,
which would destroy gauge invariance. This comes about when one splits the
fluctuations in transverse and longitudinal modes. Their respective projection
operators are P and Q = 1 — P with

(Qq)i = D:D[*Djg;. (A.7)
One easily verifies that (with ¢ a Lie algebra valued function on S?),
iDjp = L, + (1 + a)T/)¢, (A.8)
(MD); = —D;D} —ad(D,F;;), (A.9)
which implies that PMQ # 0, since
(MQ)i;j = —D;D; — ad(DyFy;) D *D; . (A.10)

Only when D, Fy; = 0 one has
M;‘j = (PMP)ij —DiDj. (A-ll)

The resolution of this apparent discrepancy lies in the fact that a variation
in the direction of the gauge orbit contains a quadratic term in the gauge
parameter that, combined with the term proportional to the non-vanishing
equation of motion term, cancels against what comes from the seemingly
offending second term in eq. (A.10). A gauge variation with 2 = exp(—X)
is given by

gi = [Q]4; — 4; = e *DieX = D;X + L[D;X,X] + O(X?). (A.12)

Varying the potential V gives
5V = / ITr(Dy Fuigr) — Tr(ai (Myj + DiD;)a;) - (A.13)
S

As D;(DyFij) = 0, the first term in eq. (A.13) contributes at second order
f53 Tr(DFy;[D; X, X1), whereas the second term contributes, using eq. (A.9),
fs3 Tr((D;X)ad(D;Fj;)X). The two are easily seen to cancel.

We end this appendix with explicitly demonstrating the positivity of M in
the g-direction (thereby confirming that the seeming instability of V in this
direction is caused by the non-linearities). The two-dimensional space spanned
by (lgV || = l1¢@ ) and [, = 3)

q(l) — \/E(g.n)‘r, q(z) = (eAT), (A.14)
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is left invariant by M. The reduced 2 x 2 matrix for M on this basis is

. 6a> +1 2av2
n =
M ( 2av2 4a + 1) (A.15)

with eigenvalues A = 1 + 5a% + v/a2(a? + 8). These are positive for all a.

Appendix B

The purpose of this appendix is to list the solution of the valley equation,
€q.(37), when expanding 4; around —iut;/2 to third order in the four-vector
eu. Its expansion is given in egs. (41) and (42). Up to its symmetries, the
valley equation is solved by (t = a + 1)

f=-i0+a)+ia n)+ fole-n)* + file-n)?, (B.1)
g =—5+ge n)+glen)?, (B.2)
h =0, (B.3)
Ao = —2a(l —a®) + (4fy + 4ago —3a)(e-¢), (B.4)

Ay = (1 +4a?)e,
2 2
+{1 N 4(afy + a*go +13fj;112+ (1 + 2a )gl)}(g_g)gﬂ’ (B.5)
A4 =3a+ 2fs—3a)(e-n) + (a+2fy +2ag + 3f1)(e-n)?

2(fo +ago + 3/1 + 3ag))

(/o g(;_a{l BV (e-e). (B.6)
The remaining four equations are first-order differential equations for fj, go,
Ji and g,

+

2a(l — a* )df0 +2(2—-a*>)fy + 8agy—3a® = 0, (B.7)

2a(1 - a)dg0+2(2 3a’)go + 4afo + 3(3a*-1) = 0, (B.8)

2a(1 - fl +2(5-3a%)fi
+10ag1 +4(2-3a%)fy—4agy + a2 +a*) =0, (B.9)

2a(1 —a )dg1 +10(1 —a)g
+6af, +6(1 —a*)go + 5(1-74%) = 0. (B.10)

A considerable simplification is achieved by defining

a? T3 a’
Fy = %, Gy = %azgo l-a?, F = I-_Lalz’ G, = asg1~
—a (B.11)



220 P. van Baal, N.D. Hari Dass / Theta dependence

We find
dfp , _ 8Gy 3
—(g+ (1-a?)?  2(0 —a2)32 ~— 0, (B.12)
dGo 3a(l - 3a?)
Gz Th-—Sr/7/— =0 B.13
7 B W, w1 (B.13)
dF, 5G, 2222 — 38\ F,
da " (1-a2)? + (1—a2)3
443Gy a2 + a?)
_(1—a2)5/2 + T0-a?)? = 0, (B.14)
dé, 6a’Gy | a*(1-74%)
E{+3Fl+ Vl—a2 4(1_a2) =0, (B.15)
which reduce to
2 A:iG;
aaGi_ (1 _a2)2 = V;’, AO = 8, A’l = 15_ (B-16)

These are solved through the Legendre equation
(1-a*)0}0" - 2a0,Q4 + (v(v + 1) — p*(1 —a*)"")Q! = 0. (B.17)

The homogeneous solutions are easily found to be

¢ — 1+ 342 G _ a(3 +a?)

0 = T=ar 0 T 30 -a2)’

ay _ a(l +d%) @ _ (1 +6a®+a*)

O =y O =T (B.18)

The inhomogeneous solutions now follow from

G, (a) = G}z)(a)/ ¢V @vi@di-6" @ [ ¢®@v@)da.
0 0

(B.19)
One easily verifies that
. 3(1 = 9a% + 2a%)
©T TR -apr
Vo a’(—13 + 84a% - 53a*) 2a*(5-6a)F
b= 4(1-a2)? Ty
2a(=6 + 12> - 3a*)G,
i (B.20)
(1= a2)52
Unlike for G, we can express Gy in terms of elementary functions:
Go = _ 47 + 704 + 3a* _Sa(3 + a?)arcsina (B.21)

24V1 - a2 4(1 —a?)
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Appendix C

In this appendix we discuss in some more detail the computation of the
riemannian metric and curvature. The metric &2 is defined by eqs. (27) and
(28). The only tricky part in the calculations involves the Green function for
the covariant laplacian. It acts on D;A4;, which for the ansatz of eq. (41) has
the form (u = a + 1)

Did; = ixi(é-7) + ix2(é-n)(e-7) + ixse- (EAT)
+ixs(e-e)(e-t) + ixsale-1), (C.1)

with, to the relevant order in &,

X1 = 3a+4 (-a+2fy—2agy)(e-n)

+(=2fo + 2ag0 + 3/1 —2ag)) (e -n)? + O(e?),

X2 = (a+2f5—2ag0) + (4fo + 61— 4dag))(e-n) + O(e?),

X3 =—3+28/(-n) +0("), 24=0, ys=-3+0().(C2)
As a direct computation shows, D,z(DiAi) is again of the form of eq. (C.1):

D} (Did;) = ini(&-7) + iny(€-n)(e-1) + ime- (8AT)
+ins(e-&)(e-1) + insa(e 1), (C.3)
with
nmo= (e-&)(x{ —4g%1 +4gx2+2(1 + 2f x5+ 2f x3—4g(e-n)xq)
+2(e-n)xa— Gri+ 202+ 40+ 2 1) — B+ 8+ f)x 1,
my = (e-&)(xy —88%x2—2x4) + (¢-n)(=5x5+ 8gx2+ 8x 4 —2x |+ 8gx .
=23+ 4/ (1 + )2+ 4 + 21 )x3,
ns = (g-8) (x5 —48%x3) + (e-n)(=5x5+ 4gx3—2(1 + 21 )x4)
201+ 21 =2f"x1+ 201 + 2 ) x2—4(1 + 21 (1 + f))xs,
ne = (e-&)(x§ —88%4) + (¢-n)(12gxa—Tx}) —4g% 1+ 2x}—48x 2
20+ 2/ 5= 2f"x3—= S+ 8f (1 + f))x4,
(8-8) (x5 —88%s) + (e-n)(8gxs—5x5) — B+ 8 (L + f)xs,
(C.4)

where x; depend on the S? coordinates through (g - n) only (which holds
equally well for f, g and 4). The prime denotes derivation with respect to
(¢-n). We can truncate #; to the same order as was done for x; in eq. (C.2),
and introduce the nine-dimensional basis:

Ns

Z, ={é¢-t,¢-ne-t,(e-n)e-1,6-ne-1,6-né-ne-t,e- (&A1),

e-ne-(eNt),e-ee-t,ae-1}. (C.5)
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With respect to this basis D;4; = b,Z,, with b, read off from eq. (C.2). For
the moduli space

fo=-al2, g=1/2, fi=a/2, g =—1/2. (C.6)

Taking x| = ¢| + c2(e-n) + ¢c3(6-n)%, x2 = ca+cs(e-n), x3= co+ c7(e-n),
X4 = cg and x5 = Cg, €q. (C.3) can be written as

D}y Z,) = ZyAuco, (C.7)

After some tedious algebra one finds for the 9 x 9 matrix A

— (1424 +¢%) 0 2¢? —2¢% 0 ag? —2ae* 0 0
4q° —2(2+4a?) 0 -2 0 4a 0 0 0
1-24%+8afy 442 —9-24° 2 -2 —5a 6a 2 0
-4 -2 0 -202+d% 0 —4q 0 0 0
820 —4 —4  —4(1-a%) -9-24° 4a —4g 8 0
—a 2a 0 —2a 0 -2(1+44®> 0O 0 0
—afy —3a 4a 2a —2a —2+4a® -7-2a% 2a 0
-1 0 0 2 2 —a 2a -3-22* 0
0 0 0 0 0 0 0 0 —1-2a%
(C.3)

which can be inverted, if necessary, with an algebraic manipulation pro-
gramme. We will not present that result here. Using

L 0 L, 0 Ly 0 0Ls Lg

0L, 0L O 000 O
I, 0 00 0 000 O
. 0L; 0L, 0O 000 O
2—5/Tr(ZuZV)= Ly 0 0 00000 0 |=L,, (C9
s 000O0O0LOOO
0000O0O0OO0O0O
Ly 0 0 00 000 O
Ly 0 0 0 0 000 L,
with
L1=§éﬁ,
Ly = 1626 — & (e48))

7
6

L6 = %deﬂéu,

L; = 34% (C.10)
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(only those terms were kept that will contribute to g, go, and ggo to second
order in ¢) one straightforwardly computes
— | Tr(DiAiD;?D;A;) = buLy A Mh;. (C.11)
SS
The computation of — fs3 Tr(A'f), which is left to the reader, completes the

evaluation of the metric. The results are collected in egs. (50) and (51).
We define the riemannian curvature by

RY =8Il — 8,I}) + T'I - TALS. (C.12)

Ao~ Vo
It is most easy to extract the Christoffel symbols from the equations of motion
(x% = a, x* = ¢*) derived from the metric tensor
X4 4 Thx'x* = 0. (C.13)

This fixes all our conventions. Since we will compute R for ¢ = 0, it is
sufficient to evaluate I” to first order in €. As this computation is standard, it
will not be reproduced here. The result is collected in egs. (56)-(58).

Appendix D

This appendix collects the proofs of egs. (85), (92) and (93). The following
identities will be useful:

Li{n, = %el‘j = %n,‘},,n,, = %{a,ﬁ'n —0-nG,uTa}, (D.1)
Lin, = %‘Z = éﬁz,,n,, = 4{0u0 - n—7T-no,1a}, (D.2)
OuX0, = 0uX0, = —2X, X = X0, (D.3)
OuXG,y = 0uXx0, = 2(x +X) = 4Rex. (D.4)

For eq. (D.1), see eqgs. (4), (5) and (20), for eq. (D.2) also eqgs. (12) and
(21) are relevant. Egs. (D.3) and (D.4) are proven by using explicitly the
SU(2) algebra properties. Note that eq. (D.3) applies also to a product of
quaternions, as this is again a quaternion. Furthermore, eq. (D.4) implies

OuTaGy = 0,0,0, = 0. (D.5)
We now turn to the proof of eq. (85):
i

Lin-Gyn-0 = 5(oue 1m0 + hc.)

N

6,{0,0-n—0-n6,0,}0,n-0 —h.c.
(6G - nooun -0 + 2(g,0 -n)tan-0) —h.c.

M= oo|— oo]—
Ql

nlta,Tp]l0 N = i€y 0 -NT.0-N. (D.6)
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Next we address the proof of eq. (93)

_ U g
Lin-Gtyn-0 = z(eﬁaurbn-a + h.c.)

= HTuo -n—T 10, 0,)G,Tpn-0 —hec.
= $(=2(0 - no,)! — 60, -n)Tyn- o - h.c.
= ~L{tgn-Tryn-al. (D.7)

Finally we prove the second identity in eq. (91). From the isotropy of S3 one
easily deduces

1 1
prz /s Mt = 30 7 /S Rty tine = 2 (Gudio + Giadvo + Qo) ,

(D.8)
such that
1 byd 1 — Ta —_ T
272 Jss VoVe = 5Tt(0u50,1)Tr(Gy 5 0,74)
+2L4Tr(aﬂ%ayrb)Tr(a,%aﬂrd)
+ ok (a‘ﬂ%a,rb)Tr(aﬂ%ayrd) . (D.9)

The first term vanishes (see eq. (D.5)), on the second we can apply the
completeness condition of eq. (84), whereas for the third we use that g, ®0, =
-0, ®0, + 209 ® 0p. For g, ® &, we can again use eq. (84). Therefore,

1 J _
2—712/53 Vive = LTr(6y6,6,6:6,04)

— % Tr(048 404045 40¢)
+ 5 T1(0,045,) Tr(0.045 ) . (D.10)
As 0, ®0, = 0, ® g,, we can repeat the last step on the last term. Using also
eqs. (D.3) and (D.4) we find
1
272 /53 V2VA = LTr(oy (040, + (0.00)1)0,) + %4Tr(0464040)
— 2 T1(04050:04) + % Tr(040,)Tr(0.04)

= +04c00a — 2 T1(10p,0:16404) + £64p00d = $0acOpd -
(D.11)
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