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Lattice artefactsare used,throughmodified lattice actions,asa tool to find thelargest
instantonsin a toroidal geometry[0,L]

3 x [0, T] for T —f x. It is conjecturedthat the
largestinstantonis associatedwith tunnellingthrougha sphaleron.Existenceof instantons
with at leasteight parameterscanbe provenwith the helpof twisted boundaryconditions
in thetime direction. Numerical resultsfor SU(2) gauge theoryobtainedby cooling are
presentedto demonstratethe viability of the method.

1. Introduction

Sincethetimeofthediscoveryofinstantons[1] in non-abeliangaugetheories,
as vacuumto vacuumquantummechanicaltunnellingevents [2], their role in
strongly interactingtheorieshasbeencontroversial,both in the continuum [3]
andin thelatticeformulation[4]. Forthecontinuumthishasbeenmainlydueto
applyingsemiclassicaltechniques,which cannotbejustified atstrongcoupling.
In thelatticeformulationthemainproblemswere theinstantonslocalisedatthe
scaleof the latticecut-off for whichtopologicalchargecannotbedefinedunam-
biguously [5], andwhich haveactionsconsiderablylower thanthe continuum
actionof 8ir2. Strictly speaking,thereare no locally stablesolutionson a lat-
tice usingthe standardWilson action [6], becausethis latticeactiondecreases
whenthe instantonbecomesmore localized [7], as we will demonstratealso
from analyticconsiderations.On atrial anderror basis,different (improved)
latticeactionswereconsidered,someofthem indeedgiving rise to stablelattice
solutions[8]. Thispaperwill providethe properframeworkto understandthe
stability.

It is not too difficult to understandthe reasonof the instability. At finite
lattice sizesthe lattice actiondeviatesfrom the continuumandthis deviation
is largerfor strongerfields. For the Wilson action, as wewill show,the lattice
artefactsmaketheactiondecreaseas comparedto thecontinuum.In thecon-
tinuum,instantonshaveascale(orsize) parameterp, on which the actiondoes
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not depend.But thesmallerp becomes,thelargerthefieldsget,whichmakesthe
latticeactiondecrease.On dimensionalgroundsone easilyarguesthat (gener-
ically) S1att(a,p) = 8ir

2(l + (a/p)2d
2+ O(a/p)

4) for p >> a, which will be
demonstratedin moredetail furtheron. For the Wilson action [6] d

2 < 0, ex-
plainingtheinstability.Hence,onesimplymodifiestheaction,suchthatd2 > 0,
in orderto get stablesolutionsfor themaximalvalueof p allowedby thevolume
[0,L ] ~,which is keptfinite. As we areinterestedin theclassicalsolutionsto the
equationsof motion,the modifiedactionneednotbeof thetypeof animproved
action [9], for which typically onewants to achieved2 = 0, as in that case(as
wewill show)the (a/p)4 term might still destabilizethe solution.

We deliberatelywantto keepd2 > 0, whichwe will hencecall over-improve-
ment.The reasonis, thatour motivationfor embarkingon this projectwas to
find the instantonswith the largestscalep. This presumablywill correspondto
tunnellingover the lowestenergybarrier, separatingtwo classicalvacua.The
configurationthat correspondsto the lowestbarrierheight is thenconjectured
to beasphaleron(whichexistsdueto the factthatwekeepthevolumefinite). A
sphaleron[10] isby definitionasaddlepoint ofthe energyfunctionalwith pre-
ciselyone unstabledirection,which correspondsto the directionof tunnelling.
In thisway we usethe instantonsto mapout the partof the energyfunctional
relevantfor the dynamicalregion wherea semiclassicalanalysisof tunnelling
amplitudeswill breakdown. We referto a pilot study[11] on S

3 x 11 for readers
interestedin this issue,andfor an explanationof therelevanceof the geometry
T3 x R which is studiedin this paper.This geometryallows us to find the in-
stantonsusingthe latticeapproximation.For simplicity we restrictourselvesto
SU(2)puregaugetheories.

2. On the existenceof continuum solutions

The geometryT3 x D~,in particularin a lattice formulation,canbe seenas
alimiting caseof an asymmetricfour torus [0,L]3 x [0, T]. The only known
solutionshaveconstantcurvature[12] andhencecannotcorrespondto vacuum
to vacuumtunnelling,furthermoretheirtopologicalchargeisatleast2. Actually,
it canbe provenrigorously [13], that for T finite, no regularcharge-1 self-dual
solutionscan existon a four-torus (we will illustratethis with our numerical
results).As soonasweallow for twistedboundaryconditions[14], existenceof
minimal non-trivial topologicalchargeinstantonsolutionscanbe proven.One
distinguishestwo cases,dependingonthepropertiesof thetwist tensor~ E 12.

When~~ n,~n~
0= 1 mod2, thetopologicalchargeishalf-integer.Themin-

imal actionallowedby the topologicalboundis therefore4ir
2, correspondingto

topologicalcharge1/2. As twist is alsowell definedon the lattice [15], andin
the abovesituation(callednon-orthogonaltwist) doesnot allow for zero-action
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configurations,theseinstantonscannot“fall through the lattice”. Indeed,the
index theorempredictsin this casefour parameters(8 x topological charge),
which haveto correspondto the positionparameters.The charge-1/2 instan-
ton hencehasfixed sizeandcannotshrink dueto latticeartefacts.Impressively
accurateresults [16] were obtainedfor this caseusingthe well knowncooling
method [7,17] to find a solution of the (lattice) equationsof motion, whose
smoothnessandscalingwith the latticevolumeleavesno roomto doubt it pro-
videsan accurateapproximationto the continuumsolutionwith action4ir2. In
the continuum,existenceof smoothnon-trivial (but not necessarilyself-dual)
solutionswasprovenby Sedlacek[18], whereastheorem3.2.1.of ref. [19] states
thatthe moduli spaceof self-dual solutionsis isomorphicwith a four-torus.

When ~ = 0mod2, also called an orthogonaltwist, there are
“twist-eating” [15] configurations,i.e. configurationsthathavezeroactionand
arecompatiblewith twistedboundaryconditions(seealsoref. [21]). ForSU(2),
it isnot too difficult to showthataslongas~ ~ 0 mod2 for some~ andii, this
twist eatingconfigurationis unique [22], up to a globalgaugetransformation
if a twist is introducedas in ref. [15,16] andmultiplicationwith elementsof
the centerof the gaugegroup.With twistedboundaryconditionsas originally
definedby ‘t Hooft [14], suchaglobal gaugetransformationwouldevenchange
the boundaryconditions,and as an SO(3) bundlethe twist-eatingconfigura-
tion is unique. (For SU(N) it can be proven [23] that out of the N4 center
elementsthat can multiply the twist, only N2 give rise to gaugeinequivalent
configurations.)Underthis condition it canbe shown [19] that therearein-
stantonsolutionswith 8 parameters(its moduli space,when dividing out the
trivial translationparameters,is evenrelatedto a K3 surface[19,20]) using
Taubes’ [24] techniqueof glueing a localizedinstanton (with scale,position
and global gauge parameters)to the “twist-eating” flat connection (i.e. zero
actionconfiguration).As the latter is not invariant underglobal gauge trans-
formations,theglobal gaugeparametersof the localizedinstantonsaregenuine
parametersof the moduli space(seealso ref. [25]).

The reasontwistedboundaryconditionsareuseful, is that at finite T there
areno exactinstantonson T4 with periodicboundaryconditions,but thereare
exact solutionsfor anynon-trivial twist in the timedirection.As T —~ ~ these
solutionsare alsosolutionson T3 x R. This comesaboutas follows. Sinceat
T —+ oc the actioncanonly stayfinite if for ti —+ oc theenergydensitygoesto
zero,wededucefrom avanishingmagneticenergythatup to a gauge

A~(x,t—+±oc) = iC~c~
3/2L, (1)

whereC)~E [0,4m] (A0 = 0) parametrizesthe vacuumor toronvalley [26],
whosegaugeinvariantobservablesarebestdescribedby the Polyakov-lineex-
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pectationvalues

/ pL
Pm ~Tr(Pex~(j A(x,t)dx,) ) = cos(C1/2), (2)

0 J

(for theproperdefinitonin the presenceof twist, seeref. [16].) In thevacuum
valley, P1 is spaceindependentandthe vanishingof the electricenergyat t
±ooalso requiresP, (or C~)to beasymptoticallytime independent.Instanton
solutionson T

3 x R arehencecharacterizedby the boundaryconditionsC,±at
t —p ±oc.It isthesegeneralinstantonsthatarephysicallyrelevant.It isnot clear
if solutionsexistwith arbitraryboundaryvalues.ApproachingT —* oo, by using
periodicboundaryconditions (which would imposeC~= C[ mod4ir up to a
periodicgaugetransformation)doesnot allowusto proveexistence.As longasT
is finite thereareno solutions[13] andthe proofof non-existencebreaksdown
as T —p ~ On theotherhand,with twist in the time direction,n

0~= 1, even
at T finite thereis in the continuuman eight parameterset of exactinstanton
solutions,which atT —~ oo will correspondto C~= (2ir — C[) mod4ir (again
up to a periodicgaugetransformation).Forlocalizedinstantons,asymptotically
thefield hasto coincidewith the uniqueflat connection,whichfixesthepossible
values of C,~ to ir, but at the other extreme, as the instanton in the spatial
direction extendsup to the “boundary” of the torus, theregions t —~ + oc and
t —~ —oo nolongerareconnected,whichwill relaxthefact thatP, = 0 (C~= ir).
Althoughwehaveno proof, it is reasonableto assumethattheeight parameters
for the instantonscloseto themaximalsizearedescribedby p, the four position
parametersandthethreevacuumvalley parametersC,+ (or C[). Note that for
P, —~ 0 as t —p ~ the solutionis bothcompatiblewith twistedandperiodic
boundaryconditionsat infinite T. In any casewe have now learnedthat on

x P (i.e. with free boundaryconditionsatt —~ ±oc)thereare,at leasteight
andat mostelevencontinuousparametersthatdescribethe instantonsolutions
for vacuumto vacuumtunnelling.

3. The lattice actions and cooling

Let usstartwith discussingthe standardWilson action [6]

S=~Tr(1_~)= ~
xj~,v xjt,v (3)

whereU,~(x) areSU(2) groupelementson the link that runsfrom x to x + ~,

the latterbeingthe unit vector in the jt direction.To derive the equationsof
motion,we observethatS dependson U~(x) throughthe expression

S(U~(x))= Tr(l — U~(x)U,t(x))+ Tr(1 — U,~(x)U~(x)), (4)
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where

U~(x)=

= ~(U0(x)U~(x + i”)Uj(x + 1à) +
v~p

xU~(x+~c—ii~)), (5)

whichisindependentofU~(x).Hence,S(e~vU~(x))_S(U~(x)) = 0(X
2) for

any Lie algebra element X, implies

Tr[o~(U~(x)U~t(x)— U~(x)U,~(x))]= 0, (6)

wherea~arethe Pauli matrices.This is easilyseento imply that U,~(x) U~(x)
is a multiple of theidentity, andas ~ is the sumof SU (2) matrices,it canbe
written as U~= a

0 + ia a, with a~E P
4. If we define iIU~Ii= (a,~)V2,eq. (6)

is seento imply

U~(x)= ±U~(x)/iiU~(x)iI. (7)

As we are only interestedin stablesolutions(i.e. local minimaof the action),
the plus sign in eq. (7) is the relevantone. The processof iteratively finding
the solution to theequationsof motion is calledcooling [17], as in all casesit
is devised such that the action is lowered after each iteration. The easiestis to
simply choose U,~(x) = U,~(x) / ii U,~(x) sincethefixed pointofthisiterationis
clearlya solutionto the equationsof motion.An optimalway to sweepthrough
the lattice is to divide for each~uthe links U~(x) in two mutually exclusive
checkerboardpatternsH,~suchthat all links on a particularpattern11,~(i.e.
for fixed i and

1u) canbe changedsimultaneously,which is awell knowntrick
to vectorizethis procedure.At the costof roughly a factortwo in memory-use,
vectorizationis alsoachievedfor the modifiedactionwe haveconsideredso far
for ournumericalsimulations:

S(e)= ~ ~Tr(l—~fI)+ ~j~~Tr(l_v~ . (8)
Xj1,I/ X,/1,I1

Themeaningofthe parametere will becomeclearin thenextsection.Foreaseof
ournumericalstudieswe havenot consideredmodifiedsingleplaquetteactions
(seealsothe nextsectionfor adiscussionon the adjoint andMantonactions).

4. Lattice artefacts

To calculatethe effect of the discretizationon the solutionsof the equations
of motion we first takea smoothcontinuumconfiguration (not necessarilya
solution) A~(x). Fordefinitenesswe put L = 1, and IsT~the numberof lattice
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pointsin the spatialdirectionsuchthata = 1/N5. We put thisconfigurationon
the latticeby defining:

U~(x)=Pexp(jAp(x+si~)ds). (9)

Thevalueoftheplaquettethuscorrespondsto paralleltransportaroundasquare
andcaneasilybeprovento begivenby [27] (D~= O,~+ A~(x) thecovariant
derivative in the fundamental representation)

Tr(~) = Tr(ea)eae_0De_~~~~). (10)

The proof simply amountsto observingthatifA~(x) = A~,i.e. A~isspace-time
independent, then

Tr(~~) = ~

and eq. (10) is the only way to makethis formula gaugeinvariantunder ar-
bitrary (i.e. x-dependent)gaugetransformations.Usingthe Campbell—Baker—
Hausdorifformula,eq. (10) canbe expressedin termsof productsof covariant
derivativesD,~(in the adjoint representation)actingon the curvature~
[D~,D~,] = ôpAv~vAp+ [A~,A~], e.g.~ = [D~,[D~,D~]].Astheac-
tion involvesasumover all x, ~uandii, thingscanbe considerablysimplified
by computing,whatwe will call, the cloveraverage

(Tr (çi) )clover = ~Tr ($If~)
= ~Tr [e_0~e_a~e ~ + ~

+ ~ + ee~e_aJ)se_~~~]

= Tr [1 + ~-F,~~(x)- ~ ((v~F~~(x))2+ (V~F~~(x))2)

+~ ~ + ~ ((v~F~~(x))2+ (V~F~~(x))2)

+ ~ (x)D~F~~(x) — (V~V~F~~(x) )2}]

+0(a’°) + total derivativeterms, (11)

for which the multiple Campbell—Baker—Hausdorffexpansionof eq. (10) is
required to 0(a

6), obtained with the aid of the symbolic manipulation program
FORM [28]. Thecloveraverageallowsoneto ignore manyterms (all thoseodd
in any of the indices) in evaluating the trace of the exponent.
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Eq. (11) wasalsoderivedusingthenon-abelianStokesformula [29] (S~ 1)

U~~(x) Up(x)Up(x+j1)U~t(x+ii)U~t(x)
~l ,.1

= Pexp a2 j ds / dtF~~(x+as/i+ath)
Jo Jo

1 + ~ ft~ ds~Jl dt
1 a

2F~~(x+ as
1/i + at11)

n=li=l 0 0

x...a
2.’F~~(x+as~/i+at~i’), (12)

whereJ~.(y) equals~ (y) up to the backtrackingloopthat connectsy to x,
or

fS pt
V(s,t) = Pexp a / A~(x+ a~/i)d,~Pexp a / A~(x+ as/i + a1i~)d1

Jo Jo
.F~~(x+ as/i + ati~’)= V(s,t)F~~(x+ as/i + ati))Vt(s,t). (13)

To obtainthe resultof eq. (11) onenow expands~ (x + as/i + ati) around
thepointx, makinguseof the identity

~nj~m~- j —

(JpL/ji Jpj)~,.4J— p p1/

Note that the orderingof the covariantderivativesin the r.h.s.of eq. (14) is
essential.Also crucial is that the pathordering U(s,t) P exp(fA(u)du)
(where A(t) = ê~A~(x+ tê) for some unit vectorê) is compatiblewith the
covariant derivative, i.e. ê~D~(x + sé )U(s, t) = 0 = ê~D~(x + tê) Ut (s,t)
(in this respectwehavecorrectedtheformulain ref. [29]). InsertingtheTaylor
expansion of.P~

1/(x + as/i + a&) with respectto (s,t) in eq. (12), gives the
result of eq. (11). A very useful check is that the symmetryimpliedby U~(x) =

U~(x), not explicit atintermediatesteps of the calculation, is respected by the
final result.

Using eq. (9,11), one finds to 0(a’°)for the modified actionS(e)

5(e) = Tr [çF,~. + ~6 (v~F~1/xn2+ (D1/F~1/(x))2)
x,p,1i

(l5e-12)a
8 {F;

1/(x) + ~((v~F~1/(x))2+ (D~F~1/(x))2)

~ — ~(V~D1/F~1/(x))2}] . (15)

Obviously, S(e = 1) correspondsto the Wilson action, and the sign of the
leadinglatticeartefactsare simply reversedby changingthe sign of e. Most of
the numericalresultswere obtainedfor e = —1, but c is useful in the initial
cooling from a random configuration. By keeping e > 0 as long as S > 8ir

2,
andonly switchingto e = —1 when S -~ 8ir2, we canavoid the solutionto get
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stuck at higher topologicalcharges.Oncewe set e = —1, we haveyet to see
an instanton fall through the lattice. We will comeback to theseissueswhen
discussing the numericalresults.Also note that, as Trad(U) = iTr(U)i2 — 1,
one finds that the Wilson action in the adjoint representation(Sad) satisfies
5ad = 4S(e = 1) + 0(a8) anddoesnot allow us to changethe sign of thea6
term. The same holds for the Manton action [30] which by definition agreesto
0(a8) with the Wilson action.

In the past, more complicated improved actions were considered [9,31], for
which we will present the result similar to eq. (15), as it allows us to predict
whether or not theygive rise to stablesolutions [8]. It alsoallows comparison
with earlier results by Lüscher and Weisz [31] obtainedfrom a perturbative
analysis. In the following, the coefficientsin front of the c

1 are to match with
the definitions of ref. [31]. The averages (...) aresimilar to the clover average
above,but include now alsoaveragingover all orientationsof the loops. After
somealgebraonefinds

S({c~}) ~Tr{co(l-D) -2c1(l-I : I)
+4c2 + ~c3

= —~(c0+ 8c1 + 16c2 + 8c3) ~ Tr(F~1/(x))
x,p,u

6 C3+a (c2 + -~-) ~ Tr(V~F~A(x)D1/F1/A(x))
x~u,u,A

6
+ 20c1 + 4c2 —4c3)~ Tr(D~F~1/(x))

2
x,p,v

+a6~ ~ Tr((V~F
1/~)

2) + 0(a8) . (16)
x,p,ii,2

Onecanthereforeachievetree-levelimprovementby choosing[31] co + 8c
1 +

16c2 + 8c3 = 1, c0 + 20c1 + 4c2 — 4c3 = 0 andc2 = c3 = 0. Note that the
condition c2 + c3/ 3 = 0 only appliesoff-shell, sinceon-shell

~ Tr(V~F~A(x)V1/F1/A(x))= 0.
x,p,v,)~

IwasakiandYoshié [8] consideredcoolingfor the Symanzikimprovedaction,
that is c0 = ~, c1 = —~ and c2,3 = 0, for which the a

6 term vanishes. The a8
term will have to be computed to settle stability. Fromeq. (15) one seesthat
the a6 term has a definitesign. This is no longerthe casefor the a8 term.The
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same holds for the Symanzik improved action:

Ssymanzik = Tr [_çF,~x + ~ {i~.(x) + ~
x,p,v

+ ~(V~F~
1/)2}] + 0(a

10). (17)

To decidein thesecasesif the lattice admitsastable solution (i.e. its action
increaseswith decreasingp), onecancomputethelatticeactionusingexplicitly
the topologicalcharge-i instantonsolution with scale p. Eqs. (15)—(17) are
only valid as long as a << p because for p -~ a the expansion in powers of a
no longer converges.Forp <<L to a good approximation we can substitutethe
infinite-volumecontinuuminstantonsolution:

~a Xvaa

A~(x)= ‘(x2+ 2)’ (18)

with ,~, the self-dual ‘t Hooft tensor [33]. When p —~ L the solution will of
course be modified by the boundary effect. Substituting eq. (18) we find

S(e) = 87r2{l_~(a/p)2_ lS~~i2(a/p)4+O(a/p)6},

Ssymaflzjk = 8ir 1—~-~(a/p) +O(a/p) , (19)

we thus confirm the observation of IwasakiandYoshié [8] that the Symanzik
tree-level improved action hasno stableinstantonsolutions.SinceS(e = 0) =

8ir2{l + ~ (a/pY1 + O(a/p)6} wepredict even ate = 0 thelatticeto havestable
solutions, which we have verified for the casewith twistedboundaryconditions
in the time direction (seebelow).

Iwasaki and Yoshié [8] also consideredcooling for Wilson’schoice[32] (W)
of c

0 = 4.376,c1 = —0.252,c2= Oandc3 = —0.l7andfor (R)co = 9,c1 = —1
and c2 = = 0. To 0(a

8) these actions effectively correspondrespectivelyto
e = —2.704 and e = —11, whichfor thecase(W) we computedby substituting
the continuum instanton solution. Indeed, they seestability up to 250sweepsin
both cases.

5. Non-leading lattice artefact corrections

In presenting eq. (19) we have repiaced the sum over the lattice pointsby
an integral andignoredthe fact thaton the latticethe equationsof motion are
modified. Both effects turn out to be small, the first exponentialin p/a, the
other gives a correction to the expression for S (e) in eq. (19) proportional to
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e2(a/p)4 (whereasthe correctionto S5ymanzikis proportionalto (a/p)8,which
alsoholdsfor S(e = 0)).

We wishto compute>~f(x) = >~f(na), for whichwe canuseits Fourier
decomposition

a4~f(x)= a4 > ~eil~mj(k)
X nEZ4 k

= a4NS3Nt~ !~-~ = ~ fe2~r~~~10f(x)d4x.
pEZ4 pEZ4 (20)

The terms with p ~ 0 give the error onemakes,whenreplacingthe latticesum
by an integral. For a << p << L and f(x) = —~Tr(F,~

1/(x+ xo)) one finds
explicitly (usingeq. (18))

~ Tr(F,~1/(x+ xo))

= 8ir
2 1 + ~ 27r2p2(p/a)2cos(2irp-xo/a)K

2(2iripip/a)
pEZ

4\{0}

= 8ir2 [1_ 8m2(p/a)3/2e_2~P/a(l+ 0(a/p))] , (21)

(with K
2 themodified Bessel function [34]). Here we have taken x0 to coincide

with apoint on the dual lattice, 2x~’ = a for all ~u,as this minimizes the action.
To estimate the shift in the equations of motion dueto the latticeartefacts,

we again consider p >> a, suchthatthe actioncan, in agood approximation,be
given by

~(e,A~) = ~Jd4x{_~Tr(F,~1/(x)) + ~f~-Tr((VpFpu(x))2)

—a~~
5~‘2)Tr[F,~

1/(x) +

+~D~Fpv(X)Vu~Fp1/(X)— ~(vpv1/Fp1/(x))2] } + 0(a
6),

(22)

which implies the equations of motion

>DVFUP = ea2H~+ 0(a4),

+ ~[F~
1/,V~F~1/]+ 1i~V~D1/F1/~).

(23)

As eq. (22) breaksthescaleinvariance,therewill in generalnotbesolutionsclose
to eq. (18). Variation with respectto p no longerleavestheactioninvariant.Still,
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sincethis variation corresponds to a near zero-mode, it makessenseto expect
quasi-stabilityundercooling.Theactionchangesonly slowly in the directionof
this near zero-mode but is predominantly lowered in those directions that leave
the curvature square integrable and are spannedby the non-zeromodesof the
quadratic fluctuation operator for the action, which in the background gauge
corresponds to

MAn = + 2adFA0. (24)

If P is the projectionoperatoron the normalizablenon-zeromodesof M one
has(atp= 1)

~ = ~ + ea
2PM~,,’PH

1/+ 0(a
4) A~°~+ ea2A~+ 0(a4),

H~(x)= (1 yi(x) + (1 +x2)5~’ (25)

whereH~(x) is evaluatedby substitutingfor A~L°~(x) the continuumsolution
A,, (x) given in eq. (18).Forconvenienceweintroducedthequantitiesw ~1,j)(x):

= i~,i,,°
1/X1/aa, w~

2’312~(x)= !~?1p0vXvcya(X2_6x~),

w2’512~(x)= i>?,~
1/x1/rJa(3x

2— 3x,~— 5x~), (26)

which are eigenfunctionsof the angularmomentumoperatorsL~and J2 (as
defined in ref. [33] L~= —~i,i~

1/x,,91/,ja = L~+ ad(a0/2)).To compute
M~,JPH1/ onecanusefor M~jtheexplicit expression[35]

M~ ATh(Vu)

(in the gauge V,,(PH,,) = 0). The result, which canbe verified by applying
M,,1/, is foundto be

JW—
1PH — (log(i + x2) — 1 1 ‘\ (l/2~l/2)(

— ~ 5(1 + x2)2 3(1 +x2)3 + 10(1 + x2)) WP X

(2log(l + x2) 6 + 3x2 — X4 \~ (3/2,3/2)
+ ~5x8(l + x2)2 — 15x6(l + x2)3) ç~,, (x)

(2(3 + 5x2)log(l + x2) 6 + l3x2 + 4x4’\ (3/2,5/2)

+ ~ 5x8(l + x2)2 — 5x6(1 + x2)3 ) ~ (x

(27)

The algebraicmanipulationprogramMathematica[36] wasusefulin obtaining
andcheckingtheseresults.Despiteits appearance,thisresultisregularatx —p 0.
However, it contains a non-normalizable deformation (since ~,(1/2,1/2) (x ) / (1 +
x2) = —A~°~(x)), whichwouldmaketheactiondivergeandshouldberemoved
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by projecting on normalizable deformations:

41) = PM~,’PHV= M~PHV— 23+i7x2~l/
2,l/2)()

8 (1/2,1/2)

M,,VA~’~= H,, — 5(1 + x
2)3 (28)

Oneeasily verifiesthat4~)andM,,
1/A,Y~are both squareintegrableandor-

thogonalto the zero-modeOA~°~/Opi~1= 2~
2”2~(x)/(1+ x2)2.

We cannow substitute~ = ~ + ca2A~+ 0(a4) in eq. (15), to obtain
the shift in theaction. It will be usefulfor verifying eq. (32) if we evaluate

= ~(~A~°~) — 2ee~a4fd4xTr(4’)(x)Hp(x))

+e2a4Jd4xTr(A~(x)M~uA~(x))+ 0(a6). (29)

The equations of motion for A,’~
1

0~whereusedto simplify the term linear in the

shift ~ — A,~J°~= ea2A~+ 0(a4),which makesit evidentthat the0(a4)
term in ~ will only contribute 0(a6) to eq. (29). To evaluatethe actionused
for cooling, one simply equates ~ to e. Evaluating the integrals, reintroducing
the p dependenceusingtrivial dimensionalarguments,gives

S A(e) — 8 2 a 2 l5~—12 284e~ l79e2 a(e, ‘~ — ~r ~ —~(•~) — 210 + 2625 — 5250

+O(~)6} . (30)

At e = = —1 the shift dueto the modified equations of motion in the (a/p )4

term is 58%.
Strictly speaking our expression for the p-dependence of the lattice action is

only valid for p/a ~ 2 andp << L, sincewe are usingthe continuuminfinite
volume solution as the zero-order approximation. But even for p L/2 it is not
unreasonable to expect the order of magnitude of the corrections to be given by
eqs. (21) and (30).

6. Numericalresultsanddiscussion

This section discusses thenumericalresultsobtainedasdescribedin section3,
mainly to illustrate the viability of our ideas. Amore detailed andcarefulanalysis
will be left for a future publication. So far we have worked mainly on lattices of
size N~xN~,with N

5 = 7 or 8 and with N~= 3N5 to 4N5. At e = —1 (see eq. (8))
we settle to an action near 8ir

2, andwehave seenstability for up to 6000 sweeps.
The sameis true for e = 0 in the presenceof atwist (but not without twist,
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TABLE 1

Numericalresultsobtainedby cooling with S(e) andtwist n
01 = (1, 1, 1).

N~)< N5 a S1,<1 S1><2
52x2 51x3

73 x 21 —1 0.982591 0.957050 0.928823 0.918105
73 x 21 0 0.982287 0.956437 0.927908 0.917109
8~x 24 —l 0.986720 0.967122 0.945887 0.936619
8~x 24 0 0.986529 0.966736 0.945310 0.935976

where our configuration ultimately decays to the vacuum at e = 0, but notethat
in thatcasethereareno regularinstantonsolutions).Apart from thetotalaction
we compute separately the sumover the n x mplaquettes,denotedby S,~x m and
averaging over the two orientations if n ~ m.S~x m is normalized by dividing
by 8n2n2m2,suchthat for an infinite latticeandp/a —~ oc, Snxm—* 1. Whenwe
perform cooling with the action of eq. (8) we should take A,, = A~°~+ ea2A~
in calculatingSnx m• Eq. (11) for Six 1 easily leadsto thegeneralresultfor Snx

by inserting for eachindex jt (ii) a factor n(m). Togetherwith eq. (29) one
deduces,that to 0(a6)

(n2+m2) 2
2 csa

/ 22 m4+n4 n+m 2” 4

—~mnfl
1— 2 P2+ 2 CY_eö,)a (31)

up to thediscretizationerrorimplied by eq. (21),whichfor the latticeswe are
consideringcanbeestimatedto be not biggerthan 10—6. This formulaholdsfor
sufficiently smoothconfigurations,i.e. csa

2 << 1, evenif the configurationhas
non-vanishingactionover the entire spatialvolume. It is theseconfigurations
thatare of interestto usandwhich deviateconsiderablyfrom localizedinstan-
tons (eq.(18)) for whichp <<L. Fromeqs. (19, 30) we easilydeducefor those
localizedinstantonsthe results

2 a
2 4 a4 a4csa = .~(—) , flia = ~ , fl~a =

~ 284 a4 ~ 179 a4
ya = ~~—) , öa = ~~(—) . (32)

From the numerical results we have obtained Six!, Six 2, 52x 2 andSix 3 on two
lattices of size respectively 73 x 21 and8~x 24, for e = 0 and e = —1 with a
twist n0, = (1, 1, 1) (see table 1). From these we extract the coefficients in eq.
(31), whose values are summarized in table 2 (the error due to neglecting the
0(a

6) term is of the order of (n6 + m6)(csa2)3).
It is interestingto analysethe untwistedcasein more detailto illustratethe

difficulty in having self-dual solutionsatfinite T. In fig. 1 aweplot the total dcc-
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TABLE 2

Coefficientsappearingin eq. (31) extractedfrom the numericalresultsin table 1, using Six i,

S2x2 and S
1,~2(the latterat a = —i only).

N, x N, 0a
2 y/~2

73 x 21 0.01761 0.96 0.63 0.66 0.32
8~x 24 0.01340 1.01 0.64 0.71 0.35
p << L 0.2(a/p)2 1.15 0.79 2.70 0.85

~2.2

C ‘ (b)

(c) (d)
5. Ut

C
2 C3 ~0

~ iU...... .:~‘ 1— 0•

‘~ —1 0 1 —1 0 1

t t

Fig. 1. Numerical results (after scalingappropriatelywith N,) for the caseof an 8~x 24 lattice
without twist, obtained from over-improved cooling at a = — 1. In (a)theelectric (ea(t) triangles)
and magnetic (ea(1) squares)energiesareplotted. In the upperpart of this figure the tails are
plotted at an enlargedscale. In (b-d) are plotted C~(t) 2a cos(P1 (t)) through two distinct

spatialpointson the lattice.

tric andmagnetic energies (E,B (t), in fig. lb the Polyakov line P1 (t) through two
particular points x andsimilarly for P23 (t) in figs. 1 c,d. Wesee two features that
are intimately related. First, where EB (t) —* 0, the electric energy EE(t) —+ const.
Second for the same t values where this occurs C,(t) (P,(t) = cos(C,(t)/2))is
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75~ 6

(a) (b)

50 — 4 • $ •

~E,B C~
25 2 ~

~ ~

—1 0 1 —1 0 1
t t

6 ‘~t#•_ 6 - .sfhtta_

(c) :~ (d)

4. 4-

C2 C3 -

—1 0 1 —1 0 1
t t

Fig. 2. Numericalresults(afterscalingappropriatelywith N,) for the casesof a73 x 21 (squares)
andan 8~x 24 (triangles) latticewith twist n0, = (1, 1, 1), obtainedfrom over-improvedcooling
at a = —1. Fig. 2acontainsfour datasets.Two for E~(t) with theabovementionedsymbolsand
two (crossesfor N, = 7 andstarsfor N, = 8) for E~,(t). Figs. 2b—d exhibit C1(t), through the

spatial latticepoint with maximal at I = 0.

linearin t and x independent.Thesearepreciselythe equationsof motionwhen
restrictingto the vacuumvalley. Classicallymotionon this valley, which itself
hasthegeometryof athree-torus,is free.On the latticethismotion isdescribed
by theaction

~ . (33)

One easily checksthat the values of Ck (t + 1) — Ck (t) obtained from figs.
1 b—dquite accurately reproduce through eq. (33) the valuefor SE(t). Clearly
the electric tail destroysthe self-duality. Suppose that at T —+ oc the solution
describestunnellingfrom CI toC~andc’j~~ ~‘I~thenatfinite T theperiodic
boundaryconditionsforce C1 (t) to linearly interpolatebetweenC7 and C[ over
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atime T — T0, if T0 is the time intervalover which Sg(t)~ 0. Thus the action,
evenin the continuum,would bebigger than 8ir

2 by a number proportional to
1 / (T—T

0) exceptwhentherearesolutionswith C[ = C,~for T —* oc.Thesecan
certainlynot be excluded,in particularas C~= C[ = ~ris compatiblewith a
twist n01 = 1, but if thesearevery localizedinstantons,thelatticeartefactsmight
maketheir actionso big, that the latticewill preferthe leastlocalizedsolutions
with C,~~ CI. If T is not big enoughthelatticewill findacompromisebetween
thesetwo cases.ThereareindicationsthatthelargestinstantonprefersC,~~ CI
andfrom the numericalresultswith twist n0~= (1, 1, 1) presentedin fig. 2, the
preferredvaluesseemto be suchthattwo of the C1 go from 0 to 2m andonegoes
from 2m/3to 47E/3. We compare(afterappropriatescalingwith N~)for N, = 7
and8, usingover-improvedcoolingate = —1, in fig.2athe electricandmagnetic
energyprofiles, andin figs. 2b—d the valuesof C1 2acos(P1), at the spatial
latticepointwithmaximalenergy(tobeprecise,with maximalEj

1).Fromthiswe
deduce 5E = 5B to a high accuracy, consistentwith self-duality,andtheexcellent
scalingwith N,. The results in fig. 2 are obtainedafter roughly 6600 cooling
sweeps,which is necessarysincethe dependenceof the latticeactionon C~is
ratherweak (at e = 0 too weak to observe)andthe configurationonly slowly
reaches the minimum of the lattice action. Wehave verified that the approach
to thisminimumis exponential,as is illustratedin fig. 3, whereweplot thetotal
actionandthe maximumof EB(t) (i.e. S~(O))as a functionof the numberof
coolingsweeps.We seeindeedthatthemaximalenergyalongthetunnellingpath
decreasesundercooling,which is mainly dueto the increasingsize,as otherwise
the actionshoulddependmore stronglyon the numberof coolingsweeps.(For
the Wilson actiononeseesadramaticincreaseof E~(0) undercooling, until
the actionsuddenlydropsto zero.) With boundaryconditionsthatfix the link
variablesat t = 0 andt = T to the vacuumconfigurations,the approachto the
minimumactionis muchfaster.

Elsewherewe will publishamoredetailedanalysisof the scalingproperties,
as well as testingour conjectureto beableto find a sphaleron.Also numerical
resultswith fixed boundaryconditions,that allow us to investigateif solutions
existfor arbitraryC,~will be presentedelsewhere.This papermainlyservedthe
purposeto describethe formalism,anddemonstratethelargeamountof control
obtainedin thisway in studyinginstantonsolutionson atorus.

It would be interestingto repeatthis analysisfor the two-dimensional0(3)
model, forwhich the instantonson a torusareexactlyknown [37], in the light
of the “perfect” lattice action recentlyconsideredby HasenfratzandNieder-
mayer [38]. But as we have shown, appropriatedeviationsfrom a “perfect”
actioncanbe quitehelpful.

Finally, over-improvementmightbe anefficient tool to measurethetopolog-
ical susceptibility,as the action to generatea statisticalensembleneednot be
thesameas the oneusedto measurethe topologicalcharge.
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1.0143 (a)

S/8ii2

1.0140 $

74.8 - (b)

~B(0) “ $

2000 4000 6000 8000

sweep

Fig. 3. The history of theactionS(a= —1) andthe maximal magneticenergye
5(I = 0) as a

functionof the numberof cooling sweepsfor an 8~x 24 latticewith twist n01 = (1, 1, 1), together
with their exponentialfits. Theshort lines on the right indicatetheasymptoticvaluesfollowing

from thesefits.
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