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Abstract 

We study the properties of the electroweak sphaleron on a finite lattice. The cooling algorithm 
for saddle points is used to obtain the static classical solutions of the SU(2)-Higgs field theory. 
Results are presented for MH = cxz, Mw, 3 ~Mw. After performing finite size scaling we find 
good agreement with the results obtained from variational approaches. Of relevance for numerical 
determinations of the transition rate is that the lattice artefacts are surprisingly small for Mw 
MH. 

1. Introduction 

In this paper we will study the sphaleron solutions for the SU(2)-Higgs  field theory, 

using the lattice approximation and an algorithm to find saddle-point solutions. The 

sphaleron is a solution of  the static equations of  motion, i.e. a stationary point of  the 

energy functional, which has precisely one unstable direction. This direction corresponds 
to the tunnelling path associated to the (approximate) instanton. Due to the spherical 

symmetry, variational analysis using a radial ansatz has provided accurate results quite 

some time ago [ 1,2]. However, due to the recent interest of  studying the sphaleron 

transition rates on a lattice [ 3 ], the question arises how big the lattice artefacts are for 

the particular sizes of  lattices that are employed in the numerical analysis. The lattice 

destroys the rotational invariance and a variational analysis does no longer seem very 

practical. Furthermore, in the absence of  rotational symmetry in the continuum, the 

method discussed can be used with the same ease. 

We have reported earlier [7] on the sphaleron solutions where the length of  the 

Higgs field is frozen. In the unitary gauge this means that we only need to consider 

gauge degrees of  freedom. We recall that above M n  = 12Mw the sphaleron undergoes 
a series of  bifurcations [ 8],  acquiring at each bifurcation an additional negative mode, 
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while new solutions, so-called deformed sphalerons split off. For infinite Mn, where the 
model is identical to the gauged non-linear sigma model, there is an infinite number 

of solutions ranging in energy from 5.41Mw/aw to the energy of the lowest deformed 
sphaleron 5.07Mw/aw, which has only one negative mode (the number of  unstable 
modes increases with increasing energy). These solutions are related to the electroweak 
skyrmions [9]. 

Here we will include the scalar field in the analysis to allow study of the electroweak 

sphalerons (at Ow = 0) for a more interesting range of parameters. We will report 
results for MH = Mw and Mn = 3Mw, the latter value corresponding to Mn ~ 60 GeV, 

the present experimental bound for the Higgs mass [ 10]. Since for finite values of the 
Higgs self-coupling the scalar field is allowed to vanish at the centre, these solutions 
are smoother (have smaller lattice artefacts) than for the electroweak skyrmions. We 

first present the new algorithm to find the extremum of the energy functional, based 
on minimizing the square of  the equations of motion. A careful analysis of the finite 

size scaling is performed, to allow for a reliable extrapolation to the infinite volume 
limit. The results agree accurately with those obtained from the variational analysis. 

For Mr4 = Mw the lattice artefacts are to a good degree described by the formula 
E = Eo - 0.3(aMw) 2 - 0.3(aMw) 4, whereas the volume corrections are described by 
3.641 + 18.1(MwL)- le  -MwL (the infinite volume variational result [8] is 3.6417) all 

in units of  Mw/aw,  where aw = g2/47"r is the electroweak fine-structure constant. 

In the light of  the recent interest in the dynamical lattice calculations for the rate of 
the baryon number violating processes [3] it is useful to gain a better understanding 

on the lattice properties of the electroweak sphaleron. In particular we will see that 
on a lattice the value of the scalar field does not exactly go to zero in the centre of  

the solution. Also our finite size scaling analysis is useful in its own right, as lattice 

simulations are always performed in a finite volume. Finally, the accurate information 
on the lattice corrections in the classical energy of the electroweak sphaleron will be a 

useful ingredient for comparing lattice results to semiclassical calculations [4-6].  These 
semiclassical results will be modified by the fact that both the quantum fluctuations 

and the classical saddle point for a lattice deviate from their continuum analogue. In 
particular the change in the classical energy, Csph, will dominate in this dependence 
on the lattice spacing, as the energy occurs in the exponent, being proportional to 

exp(--Csph/T) (at small temperatures T). 

2. The model  

The dynamical variables for the SU(2)-Higgs model on the lattice are the gauge 
group variables V~,(x), defined on the link that runs from x to x +/2 ,  and the Higgs 
field in the fundamental representation of SU(2) (a complex two-component spinor) 
defined on the site x. This Higgs field can be represented by its length p(x)  (in the 
continuum this neutral Higgs field will be denoted by ~b(x) ) and a SU(2) matrix t r (x) ,  
which is associated to the gauge degree of freedom and can be reabsorbed into the links 
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via the change of variables [ 11 ] 

U~(x) = ,r(x)V~,(x)~rt(x + ~). (1) 

This gives the Higgs model in the unitary gauge. The lattice action is (U~(x) = ~-K)  

S=g_~a4 ~ a "  { ~  Tr ( l - ~ ) - K ~ - - ~ p ( x ) p ( x + ~ ) T r ( U ~ ( x ) )  

+ p2(x) + a(p2(x)  - 1) 2 - Co / . (2) 

For n -- 4 (n = 3) the continuum action (energy) functional is recovered by rescaling the 
fields and coupling constants. Introducing a lattice spacing a, to convert to dimensionful 
parameters, one first scales the fields to get the correct normalizations for the kinetic 
terms, 

U~(x) =exp(aA~(x )  ), a u ( x )  = - i g a ~ ( x )  2 ,  p2(x) = aZg2q~ 2 (x),  (3) 

where r ,  are the Pauli matrices. The continuum parameters Mw, MH and A are given by 

- gZA (aMw) 2 - Kv2 (aMH) 2 4Av2 (4) 
4K 2' 2 ' -- K ' 

with v the lattice vacuum expectation value 

v2_ 8 K + 2 k - -  1 
2a (5) 

Introducing the parameters 

~: =_ 2M2w a2, r ~ Mn /Mw,  (6) 

one can eliminate A and K in favour of these more physical parameters 

r2K 2 --(32 -- ~r 2) + ~/(32 -- Rr2) 2 + 16r 2 
A -  8 ' K = 2r 2 (7) 

Note that for r --+ oo, v ~ 1 and K --+ ~c. 

In this paper we are interested in the energy functional, with Uo(x) = 1, and all fields 
time independent. Note that restricting the sums over the indices to three dimensions 
leaves an extra term --2Kp2(x) from the time component of the hopping term. We 

have chosen our conventions such that the gauge coupling constant can be factored out, 
allowing us to express the energies in units of Mw/~w,  

Mw ~ x  { ~  ~ ( 1 _ i ] ~ )  £ -  2 r r a w v / ~  Tr - K Z p ( x ) p ( x + f z ) T r ( U u ( x )  ) 
# 

-+- (1 -- 2K)p2(x) + a(p2(x)  -- 1) 2 - C o ~  • (8) 
J 
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From now on all indices are assumed to run over the values 1 to 3. The constant Co 

normalizes the vacuum (Uu(x) =- 1 and p(x) =- v) energy to zero, 

Co = (1 - 8K)v 2 + A(v 2 - l)  2 = A -  ½(aMt4)2(aMw) 2. (9) 

For ease of  reference we quote the continuum expression for the energy functional in the 

unitary gauge using our conventions (Fu, = a~A~ - a~Au + [ Au, A~] =- - igF~'a /2)  

1 fd3x lTr (F~ . , )2  [ E= ~g2 

+ f d3x [½(0/z~) 2-1~  Tr ( a  u)2 ~b2 + ,~ (~b 2 - M2/8,~)2] , ( 10) 

3. Cooling 

Cooling algorithms [ 12] are designed to find a solution for the equations of  motion 
associated to a local minimum of the energy functional. It is relatively easy to write 
down the lattice equations of  motion. In particular it should be noted that the energy 

functional depends linearly on the links. One finds 

au~x)E ~ U~(x)CJ~(x) - O~(x)U~(x) = o, 

{ l  - 2K+ 2A(p2(x) - I ) }  - /5(x)  =0, (11) ap(x)E (x p(x) 

where 

O~,(X)=½KP(X)p(x+#)+O~,(x;O), Ou(x;O)= + , (12) 

~(x) = ½ K Z p ( x  +/2) Tr (U~,(x) ) + p(x - /2 )  Tr (Uu(x - / 2 )  ). (13) 

F, 

The equations of  motion for the links are solved by 

Uu(x ) = +Ou(x) /llOu(x)[[. (14) 

The positive sign is to be taken in order for the solution to have a smooth continuum 
limit. The solution for the scalar field p(x) is given by the root of a cubic polynomial. 
If  1 - 2K -- 2A ~> 0, equivalent to the condition (aMH) 2 <~ 12, there is only one real 

root, p(x) = ps(~(x) ), where 

P"(P) = + 6A + 1 - ~  

+ _ g__ + ~ ( i s )  
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Cooling is performed by iterating these equations, i.e. replacing the link and the scalar 
field by the right-hand side of these equations, sweeping in a particular order through 
the lattice. With only nearest-neighbour interactions, checkerboard-type updates are most 
efficient and allow for vectorization of the algorithm. We use this cooling to first bring 
a random configuration down to one that is smooth. But since the solutions we are 
interested in have an unstable direction, we should switch to an algorithm that does not 
make the solution decay along the unstable direction (to the vacuum). This is achieved 
by taking the square of the equations of motion as the minimizing functional [ 13], and 
devising an efficient algorithm for minimization [ 14,7]. There are of course more so- 
phisticated algorithms to avoid decay along an unstable direction, but they tend to require 
information on the Hessian of the energy functional, which is expensive for large lattices. 

4. Saddle-point cooling 

We define S by summing the squares of the equations of motion, (0Ut,(x)~) 2 and 
(0p(x)£) 2, 

x,lt 

+ f  (p(x) [1 - 2x + 2a(pZ(x) - 1)] - ~(x) )2} ,  (16) 

where f is an arbitrary positive constant. One can show that in the continuum limit 

(DuFf,, -- a~,Fl,~ + [Ag, Ft,,] ) 

2 f d3x[ Tr (D~,F w, - ¼A,tb2)2 I 3--j 

_ ~ f  1 2 _1 ,i//2 ,-hi 2 + d3x [O~qb - 4~b 3 + ~ Tr (ag)~b + 2""Hv'j , (17) 

which has the dimension of M~v. Consequently, we will quote values of S in units of 
M 3 / a w .  For r finite, K has a non-zero limit when a ~ 0 (e.g. K(a = 0, r = 1) = 
0.1245), we therefore took f = 1. Saddle-point cooling introduced in Ref. [14] is 
designed to minimize S down to its minimal value of zero. The value of S is a direct 
measure for how close the cooled configuration is to an exact lattice solution. 

Finding an algorithm to minimize S is more complicated due to the quadratic depen- 
dence on the link variables. It is not possible to analytically find the minimum of ,~ as 
a function of a single given link, keeping all others (and p(x ) )  fixed. If f = 0, where 
the scalar degree of freedom is absent, the following algorithm [ 14,7] always lowers S: 

M(Uu(x)  ) - Wtz(x) (18) 
= IIM(U (x) ) - W,,(x)ll" 

We use the same algorithm here and add the prescription for updating the scalar field. 
The definitions of Wu(x) and M(U~(x)  ) (specifying the parts of S linear and quadratic 
in Uu(x),  respectively) will be split according to 
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M(Uz,(x) ) = M(°)(U~z(x) ) + M(1)(U~(x) ) + fM (2) (U~(x) )$ 

W#(x) = W(°)(x) + W(1)(x) + fW(2)(x), (19) 

where the index 0 stands for the pure gauge part (K = 0, see Ref. [14])$ the index 1 
for the K-dependent term arising through the modified link equations of motion [7]$ cf. 
Eqs. ( 11 ), (12) ,  and the index 2 stands for the part that comes from the scalar equations 
of motion. Using the notation of V~(x)  for the 2(n - 1) staples in Eq. (12) ,  we have 

M(°)(Uu(x) ) + M(')(Utz(x) ) --=2Tr (U~z(x)(flu(x) ) Ou(x) 

+6 Z Tr (Ug(x)V;(x) t) V;(x)$ 
Ot 

K 2 
U(2)(U~,(x)) -- ---~ {p2(x) + p2(x +/2)} Tr (Vt,(x)),  (20) 

and 
tz 

a ~  - b  x 
a , b --b .-I- tz 

Iz a /.t a Iz t z 

+2 ~ b - - b  + b  - -  $ 

X trl X a x 
a ~  --/.t 

b .~ 4-1x, -4- a 

a ~ i / . t  x 

I,* * ! ) } -F p ( x ) p ( X . + .  ~l)(:t --xai ) x ~ "  t 

= , ~  ~ p(x + £ + a)U.(x){p(x + a)(I - V~(x + a) )U1(x + fO 
a~ q-I~ 

-q'-p(x "~ f.£) U # ( x  @ a)  ( I  - Uta (x  "~ ].~) 2 )  } 

+p(x)p(x  + &) (1 - U2a(X) )Uu(x + &)Ufa (x + ~) , 

K W~2)(x)=Kp(x) -~ ~ p(x+£+a)Tr(U, , (x+£))  
a ~  --Ix 

- -p(x  + / 2 )  (1 -- 2 K + 2 A ( p 2 ( x + f * )  - 1))} 

+ K p ( x  + f~) -~ ~ - ~ p ( x  + a) Tr(U~(x)  ) 
a~tz 

- -p (x )  ( 1 - 2K + 2A(p2(x)  -- 1) ) }, (21) 
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with the unit vectors a, b C {-4-7 . . . . .  +h}, and the convention U-a(X) =- Uta(X-a). We 
only give the explicit form for W~l)(x) and W(u2)(x), referring for W~°)(x) to Eq. (19) 
of Ref. [ 14]. To implement this algorithm it is useful to point out that W(u°)(x) can be 
obtained by a sum over all links in each staple of U#(x;0) (see Eq. (12)), with each 
link Ue replaced by the sum over 2Ue(Utp -Up),  where Ue are plaquettes that end at this 
particular link, not overlapping with the original staple. Likewise, W~l)(x) can be ob- 
tained as a sum over all links in each staple of Ou(x; 0), with each link Ue(y) replaced 
by Kp (y) p (y ÷ g) (I  -- U~ (y)) .  Alternatively, one can describe W~ (°) (x) + W~ (1) (x) 
by summing over all links in each staple of 01,(x;0), replacing each link Ue(y) with 
2U~ (y) {/Jet (y) g/~ (y) - [U t (y)O~(y) ]t }, where 0~(y) is defined as Oe(y) in Eq. (12), 
deleting in its sum over staples the one staple that will have a link in common with the 
link (x ,x+fz) .  For infinite Higgs self-coupling one puts p(x) _= 1, and f = 0 to obtain 
the algorithm of Ref. [7]. This is consistent with the fact that Wu(2) (x) - M  (2) (Uiz(x) ) o( 
K ( p ( X ) O p ( x + ~ ) E W p ( x W ~ ) O p ( x ) t . .  c )  vanishes when the scalar equations of motion are en- 
forced. Note that accidentally Ref. [7] only listed the last of the three terms in wu(l)(x). 

To verify the convergence of this part of the algorithm, we note that S changes by 
the following exact amount [ 14] : 

1 
Wr (&U*~(x){[IM(U**(x)) W~(x)ll&Uz,(x) ~S(Uu(x) ) -  2a3g------- 5 

+M(SU~(x))}) .  (22) 

For finite values of a, M(Ut~(x)) is no longer positive. Nevertheless, for f = 1 and 
smooth configurations (near the continuum limit) one easily sees that M(2)(U~(x)) 
scales to zero, and 6S ,.~ -1121[&Ull2/(g2a3), see Ref. [ 14] (below Eq. (24)). 

To complete the description of the algorithm for the general case, we have to specify 
how to update the scalar field. We found that the ordinary cooling, where we replace 
p(x) by ps(~(x)) (Eq. (15)), worked well. The apparent reason is that the unstable 
mode is dominated by the gauge part of the energy functional. For large values of MH 
this is no longer expected to be the case. We have also devised an updating of the 
scalar field that is guaranteed to lower S. Considering only the part Sp~x) that depends 
on p(x), we find up to irrelevant constant factors, 

Sp(x) = {p(x) [1 - 2g + 2a(p2(x) - 1)] - /5 (x)  } 2 + B(x)p(x)  + C(x)pZ(x), 

(23) 

where 

B(x) K~_ , { f - lp (x+a)  Tr[(1 2 -t = -ut,(x)lU'~(x;O)] 
gl 

- [p(x + &) ( 1 - 2t, c + 2A(p2(x + gt) - 1) ) 

K 
- 2  ~ p ( x + a + b )  Tr(Ub(x+a))]Tr(Ua(x))}  

b~ -a  

(24) 
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and 

K 2 
C(x)  = -~ Z { f - l  p2(x + &) Tr ( l - U~(x) ) + Tr2(Ua(x) ) }. 

(1 

(25) 

As before we take h ,b  c {+]  . . . . .  +h} and use the convention U-a(x)  - Uta(X- gt) 
and 0 _ , ( x ; 0 )  -= gJ](x - a ;0) .  Note that S is a sixth order polynomial in p(x) .  We 

will show that under very mild conditions S is a convex function of p(x) .  This greatly 

simplifies the problem of minimizing ,~ with respect to p(x) ,  using ordinary Newton- 
Raphson. Provided (aMn)  2 ~< 12, the second derivative of S with respect to p(x)  has 

a unique minimum at pro(x) =- ~ / ~ p s ( k / ~ ( x ) ) ,  with Ps defined as in Eq. (15). At 
this minimum 

2 ^ 1 6 (  1 - 2 K  - 2 A )  3 - 2 7 , ~ / 5 2 ( x )  + 3 A  [ 8 (  1 - 2 K  - 2 , ~ ) p m ( X )  - 3 / 5 ( x ) ]  2 

{Op(x)S}min = 8(1 - 2K - 2A) 

+ 2 C ( x ) .  (26) 

As C(x)  >1 0, this is always positive provided 27A/52(x) < 16( 1 - 2K - 2A) 3, or 

(~(x)) 2 128(1 - (aMH)2/12) 3 
--6--~KvJ < 9(aMu)  2 (27) 

Since ~ ( x ) / ( 6 x v )  <<. ~ (x ) / v ,  where ,6(x) is the average over the nearest neighbours, 
we conclude that in all practical cases S is indeed a convex function of p(x) .  The 
unique minimum of Eq. (23) is rapidly found by the iteration 

^ 2 p' ( x) = p( x) - sOp(x) S/ap(x) S, (28) 

where s is a free parameter used to speed up the algorithm (the standard value being 

s = 1). The convexity guarantees that S is always strictly lowered, unless p(x)  is 
already at its minimum, like for Eq. (18). For each sweep one performs both iterations 
only once for each site (one does not gain speed by multiple iterations per site, as the 
convergence of the algorithm is determined by the lowest eigenvalue of the square of  
the Hessian of the energy functional [ 14]). 

Although the algorithm may seem difficult to implement, its main advantage is that it 
is deterministic, with a good understanding of its convergence [ 14]. Most importantly, 

the stringent tests that ,~ must always decrease under saddle-point cooling, and the 
condition that for a solution S must vanish to a high degree of accuracy, are guarantees 
that the algorithm was programmed correctly. Also the test for convexity of S was never 
seen to be violated after initial ordinary cooling. Testing the algorithm without this 
initial cooling is, even in the absence of the scalar field, not very useful as it tends to 
get trapped in dislocations when starting from a random configuration. This is avoided 
by ordinary cooling due to the choice of positive sign in Eq. (14). 
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5. Finite size scaling 

To obtain infinite volume results in the continuum one needs to first extrapolate at a 
fixed volume LMw = NV/-~/2 to the continuum by taking the limit ~ = 2(aMw) 2 --, 0, 
which is achieved by fitting to 

£( MwL, k) = gsph( MwL) + g,i ( MwL)~/2  + £2( MwL)k2/4 + . . .  (29) 

For small enough lattice spacings this extrapolation can be done accurately. Subsequently 

one extrapolates these continuum results to an infinite volume. The more information 

one has available on the asymptotic behaviour of £(L) ,  the more accurate one can 
extract £sp~ - -  gsp h((X3)" Introducing the shifted field ~ = ~b - (8A)-I/2MH, we denote 

by (fi,,@) the infinite volume solution [8] and by (SLA,SL~O) the correction due to 

the periodic boundary conditions. The linearized equations of motion are those of non- 
interacting massive vector and scalar fields. For the vector field the linearized equations 

of motion impose cgiAa(x) = 0 and the most general rotationally covariant solutions are 

given by 

A~'(x) ~ Cw{cos(~)eiaj0iK(rMw) + sin(6)Mwleibjeabk0j0kK(rMw)}/~/~w, 

exp(--r)  
¢ ( x )  -- CHMHK(rM,)/v/-d-w, K(r)  - , (30) 

r 

where ~ is non-zero for the deformed sphalerons [8] (MH > 12Mw) and zero for the 

ordinary sphalerons (Mn  < 12Mw). These functions describe the solution ( ,~,~) at 

large distances r - Ilxll - '  ~ .  At distances ½L ) R >> M -1 from the centre of the 
solution, the fields satisfy the linearized equations of motion up to relative errors of the 
order of e -MR, where M is the smallest of the two masses in the problem. In this region 

the solution can be described by periodic copies 

(A(x) ,q~(x) )  = Z (.A(x + n L ) , ~ ( x  + nL)) .  (31) 
nEZ 3 

Our approach was motivated by the more complicated analysis on finite size scaling in 
the quantum theory [ 15,16], where the information on the interaction region is encoded 

in the phase shifts. In the non-interacting regions the free field equations apply, whose 
solutions can be adapted to both the periodic boundary conditions and the scattering 
data; tbr a review see Ref. [17]. Here only the "effective charge" of the scalar and 

vector field is all that remains of the complicated interactions in the core region. 
We will now split the energy density V(A+6LA, ~+6Lq~) into V(A, ~3) and terms lin- 

ear and quadratic in the shifted fields. Higher order terms are suppressed to O(e-3ML/2). 
To this order the term quadratic in the shifted fields, sums with the zeroth order term 
to the energy of the sphaleron in an infinite volume, after integration over the periodic 
box. This is because the dominating contribution for the quadratic term comes from the 
region near the boundary of the periodic box where one can neglect the interactions 
between the copies. T o  O(e -3ML/2) all volume dependence is therefore determined by 
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the term linear in the shift of the fields, for which we can use the (A,~)  equations of  
motion, leaving only a boundary term 

L/2 

~sph(L) = ~pC~ h + f d3x Oj(6LAa(X)Pyi(X) + 6Lq~Cgj~) -k- O(e--3ML/2). 
-L/2 

(32) 

The surface integral is evaluated using Eq. (31 ), together with the explicit expressions 
of Eq. (30). Each of the six faces of the cube gives the same contribution to the surface 

integral. We extend the integral over one face to the whole plane, at the expense of an 
error of O(e-VSML). To this order only the nearest copy will contribute and we can 

ignore the non-linear term in the expression for the field strength. With y = x - 1L, one 
has 

_ oo O ( e - V " { M L )  ~sph(L) -- ~sph at- ~ £ ( L )  + , (33)  

6C(2Xl ) -  6aw f dx2dx3 {,Aa(y)(31e4~(x) - cgi,m~(x) ) q-q~(y)31~(x) }. 

Using a2K(rM) = M2K(rM), the integrand between curly brackets can be simplified 

to 

C~v{cos2(~3)OiK(y) [~i1692 @ 0i0 1 ] K ( x )  -~ sin2(~)OiK(x) [~ilOk 2 "4- OiOl ] K ( y )  

"~'½~,ilk sin(Z8) [ Mw~OiK(y)OkK(x) - OiOaK(y)OkOaK(x) /Mwl } 

+C~M~K(y)01K( x). (34) 

Performing the surface integral one easily sees that the term proportional to sin(26) is 

a total derivative with respect to x2 and x3, whereas at Xl = ½L the other terms reduce 
after some partial integrations to ( K ' ( r )  = dK(r)/dr) 

Sg(L)= 3L f dxe/x3 { 

-2cos(28) C2 M3 K'(rMw)K(rMw) }. (35) 

With r 2 = ¼L 2 + x~ + x~ = 1L2 + s 2 and sds = rdr, and the fact that the integrand is a 

total derivative in r, we get the following exact result: 

6g(L) = 24~'cos(26)C2w Mw exp(-MwL) 12~c2nMH e x p ( - M H L )  (36) 
aw MwL aw MHL 

The dimensionless constants t~, Cw and CN are expected to depend on the ratio M~I/Mw. 
We have thus found the remarkable result that subleading corrections are not power- 
like (as was assumed in Ref. [7] ), but exponential. With the help of these asymptotic 
expansions we will be able to extract g ~  to rather high accuracy from our data. 
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6. Results 

As is usual in lattice gauge theories, or in any discretization technique for that matter, 

there are two conflicting sources of numerical errors. On the one hand, the correlation 

length ( 1/M) should be much larger than the lattice spacing to minimize lattice artefacts, 

on the other it should be much smaller than L = aN to minimize finite size errors. 

For small values of aMw the electroweak sphaleron tends to develop additional un- 

stable modes. There are two reasons due to finite volume effects. The first reason is that 

the rotational invariance will only be approximate such that the energy functional will 

no longer be flat as a function of the rotational moduli. As saddle-point cooling works 

irrespective of the number of unstable modes, the solution might be attracted to a saddle 

point with additional (usually small) negative eigenvalues of the Hessian. Secondly, the 

saddle point associated to the pure gauge finite volume sphaleron [ 14], obtained by 

putting K = 0, will be lighter than the electroweak sphaleron for small volumes. At finite 

values of the Higgs self-coupling the pure gauge finite volume sphaleron remains an 
1 2 2 3 exact solution by putting p(x) = 0. It has an energy 72.605/(g2L) + ~MwMt4L /g2. 

We observed at values of MwL below the crossing in energy of these distinct solutions 

that the electroweak sphaleron acquires additional unstable modes. On the other hand, 

the finite volume sphaleron acquires extra unstable modes for larger volumes. Close in- 

spection reveals that the changes do not occur exactly at the crossing. The same remarks 

hold at infinite M~/ where the crossing in energy between the electroweak skyrmion 

(deformed sphaleron) and the finite volume sphaleron occurs at MwL ,~ 2.5. Note that 

at infinite Higgs self-coupling this finite volume sphaleron solution will be deformed, as 

in this case we have no freedom to choose p(x) = 0 to make the gauge field massless. 

For large values of aMw both translational and rotational invariance will be broken by 

the coarseness of the lattice. This will cause the energy functional to develop spurious 

saddle points and one might get trapped in one with additional negative modes, as 

tor the breakdown of rotational invariance due to a finite volume. We typically will 

choose aMw such that the eigenvalues of the Hessian associated to the approximate 

zero modes are not too big. For finite values of the Higgs self-coupling another feature 

will cause problems at large values of aMw, associated to an enhanced gauge symmetry 
of the solution. In the unitary gauge the energy functional is generally only invariant 

under global gauge rotations. However, suppose that the exact lattice solution will have 

p(0)  = 0, as is true in the continuum. It is then easily seen that the hopping term 

of the energy functional is insensitive to all links connected to the origin. The energy 

functional is therefore invariant under a gauge transformation that is non-trivial at x = 0 

only, as this does not affect the plaquette contribution to the energy. In particular at no 

expense in energy one can flip the sign of the trace of the links connected to the origin. 
In the way we prepared the configurations this will not occur if all links are close to 

the identity. But at moderately large lattice spacing or small volumes p(0) is no longer 

exactly zero. The hopping term now depends weakly on the gauge transformation at 
the origin. This tends to favour a negative value of the trace for only one of the links 
connected to the origin. (From this we also found solutions with the trace of all links 
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(b) (e) 

lO~~y i 0 ~  

x x (a) (b) (C) 

Fig. I. The scalar field (top) and the energy density (bottom) in a plane through the centre of the electroweak 
sphalerons for (a) MH = oo at MwL = 2.53, (b) MH = Mw and (c) MH = 3Mw, both at MwL = 4.0. 

The energy density is normalized to its peak value (0.093, 0.025 and O.Ol6M4/aw, respectively) and the 
scalar field p to its expectation value v ( (b)  Pmin/V = 0.238 and pmax/V = 0.908, (c) Pmin/V = 0.165 and 
pmax/V = 0.718 ). 

positive, with almost identical energies.) Initially, a negative value for the trace of  one 

of the links mislead us to believe that we were dealing with dislocations. 
Putting all constraints in we found for MH = c~ the window of allowed values to be 

MwL ~ 2.5, aMw <~ 0.40, for MH = Mw the window is MwL >~ 3.8, aMw <<. 0.60 

and for M H  = 3 Mw it is MwL >~ 4.0, aMw <. 0.65. 
Fig. 1 gives the energy density profiles of the electroweak sphaleron at each of the 

three Higgs masses. We should not directly use Eq. (2),  but first average over all 

directions of the links connected to a point x (without affecting the total energy), in 
order to compute the energy density at this point. Note that for MH = cx~ the solution 
is very much more peaked in the core region and will have larger lattice artefacts. The 

behaviour in the tail region is similar to the case where Mw = MH. For MH = 3Mw 

this tail region is dominated by the decay of the scalar field. Also plotted in Fig. 1 

is the behaviour of p ( x ) / v  for MH = Mw and MH = 3Mw at MwL = 4. Because 
of finite volume effects the scalar field does not exactly equal its expectation value at 
the boundary. Likewise it does not quite go to zero at the centre, which is also due to 

finite lattice spacing errors. To be precise we find for MH = Mw, Pmin = 0.238v and 
3 M Pmax = 0.908v, whereas for MH = ~ w, Pmin = 0.165v and Pmax = 0.718v, see Fig. 1. 

The way we obtained the required configurations was by first constructing a sphaleron 

for the frozen-length Higgs model, starting at N = 8. All links at the boundary were first 
put to the identity, which serves the purpose of positioning the solution in the centre 
of the lattice and of lifting the energy of the finite volume sphaleron by a considerable 
amount. The latter helps avoid getting trapped in that solution. Centering the energy 
profile will reduce the probability of getting stuck in a saddle point with spurious 
unstable modes due to the breakdown of translational and rotational invariance. We then 
release the frozen boundary condition and compute the Hessian after cooling to verify 
that we have one unstable mode only. This way the maximal energy density occurs at the 
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Fig. 2. C o n t i n u u m  ex t r apo l a t ed  va lues  for  £sph as a funct ion o f  the  phys ica l  v o l u m e  MwL, c o m b i n e d  wi th  fits 

to the  finite v o l u m e  b e h a v i o u r  for  ( a )  MH = o0,  ( b )  Mtt  = Mw and  ( c )  MH = ~Mw. 

centre of  a plaquette, see Fig. 1. The solutions where the maximum occurs at a lattice 

point are higher in energy. One can now change the lattice spacing in small steps to 

scan the desired range of  parameters. For N = 12 and 16 the initial configurations were 

generated from the one at N = 8, by embedding it in the large lattice (links parallel to 
the boundary remain constant and those perpendicular to the boundary are put to unity) 

and adjusting the lattice spacing. For Mw = M n  we generated the sphalerons for N = 8 
from the frozen-length sphaleron (in not too small a volume) by adding the scalar field, 

set to its expectation value v. Varying the lattice spacing in small steps allows one again 
to scan the desired range of  parameters. Finally, the sphalerons with Mtl = 0.75Mw 

were generated from the ones with Mw = MH by simply adjusting the parameters. 
In Table 1 we present the results for the sphaleron energies, the negative eigenvalue 

for the N = 8 Hessian, the fit to the lattice spacing dependence (Eq. (29) )  and to 

the volume dependence (Eq. (36 ) ) .  We list the variational results [8] for £s~ as £v. 
For the frozen-length Higgs model [7] we have here performed some further cooling 

down to S < l O - S M 3 / a w  for N = 16 (and one or two orders of  magnitude smaller 
for N = 8 and 12), to justify the five digit accuracy (estimated errors in the last 
digit given between brackets).  As was to be expected, one finds appreciable lattice 
artefacts for the case Mr4 = c~. On the other hand, they are comfortably small for 
Mtt  .~ Mw.  To demonstrate this further we also computed at Mw = Mtl  and N = 8 

the energies for a M w  = 0.644, 0.663, 0.788 and 0.825 giving £ = 3.493, 3.476, 3.355 
and 3.305Mw/cew,  respectively. These are solutions with a negative trace for one of the 
links, as described above, which is why we did not use these values for the finite size 
scaling. Nevertheless, it shows that even for these rather coarse lattices, the error in the 
sphaleron energy is only 10%, which was somewhat surprising. For these solutions the 
lattice artefacts are described well by the fit to the lattice spacing dependence given in 

the table (at M w L  = 4.8 for Mw = M n ) .  

Fig. 2 compares the fit to Eq. (36) with the continuum extrapolated lattice data. Our 
results for £s~ are in very good agreement with the variational analysis [ 8],  particularly 
for Mw = M m  where we achieve an accuracy of  better than 0.05%. For M n  = oo, a 
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Table 1 
Lattice data for the sphaleron energies g,  the negative eigenvalue of the Hessian on a 83 lattice, the fit to the 
lattice spacing dependence, and volume dependence. We give as many digits as we believe to be significant. 
The variational result is denoted by Cv 

8 to 2 
MH = O0 Mw/a w --M---~W 

LMw N = 8  N= 12 N=16  N = 8  8sfl, E l 82 
Mw /aw Mw /etW Mw /aw 

2.5298 5.2041(2) 5.4153(3) 5.4699(4) 5.846 5.525 -1.89 --13.2 
2.7713 5.0117(1) 5.2598(2) 5.3258(4) 5.442 5.395 -2.00 --9.9 
2.8823 4.9352(1) 5.2001(3) 5.2728(4) 5.325 5.351 -2.15 --8.1 
2.9933 4.8645(1) 5.1459(3) 5.2263(5) 5.250 5.316 -2.34 --6.3 
3.2000 4.7446(1) 5.0549(4) 5.1535(5) 5.231 5.273 -2.87 --2.7 

e--MwL 8v = 5.0707 Mw/awS~fl'CL) = 5.09(1) + 13.6(5) M w L  ' Mw/aw 

8 to 2 
MH = Mw Mw a'~ w --M---~W 

8s#l 81 82 
LMw N = 8 N = 12 N = 16 N = 8 Mw/aw Mw/aw Mw/aw 

3.8000 3.6564(1) 3.7090(I) 3.7261(8) 2.371 3.747 -0.36 -0.18 
4.0000 3.6249(1) 3.6830(1) 3.7013(5) 2.313 3.723 -0.34 -0.22 
4.1600 3.6026(1) 3.6657(1) 3.6852(4) 2.287 3.708 -0.33 -0.24 
4.2208 3.5946(1) 3.6597(2) 3.6798(5) 2.281 3.704 -0.33 -0.24 
4.4000 3.5724(1) 3.6440(1) 3.6660(5) 2.280 3.692 -0.33 -0.23 
4.6000 3.5490(1) 3.6290(1) 3.6527(4) 2.308 3.680 -0.31 -0.27 
4.8000 3.5258(1) 3.6160(1) 3.6418(4) 2.380 3.671 -0.29 -0.30 

e--MwL 8v = 3 . 6 4 1 7  8,~,(L) = 3.6406(6) + 18.1(2) Mwt. ' Mw/aw MW/ctW 

MH :¢ 8 w 2 = ~Mw E 
8 8 E 

LMw N = 8  N = I 2  N = I 6  N = 8  

4.0000 3.4193(2) 3.4578(2) 3.4703(4) 1.916 3.486 --0.24 --0.11 
4.4000 3.4078(2) 3.4585(2) 3.4743(3) 1.886 3.493 --0.24 --0.15 
4.8000 3.3925(1) 3.4584(1) 3.4782(3) 1.934 3.501 --0.24 --0.17 
5.2000 3.3699(2) 3.4565(2) 3.4807(3) 2.100 3.507 --0.23 --0.23 

• - Ev = 3.5355 8~ph(L) = 3.530(3) + 2 4 ( 4 ) @  -- 12(2) e~t:~L MW/,~W Mw/aw 

much better fit with Cs~ = 5.075(5)Mw/aw is obtained when dropping the largest- 
volume data point. This was the only case where the energy is lowered significantly 
as compared to Ref. [7] ,  seemingly because we are unable to avoid being trapped 
in saddle points with additional unstable modes at N ~> 12. Note that at some point 
subleading exponential corrections will start to become relevant too. For MH = Mw, 
dropping the last point gives Es~ = 3.6412(8)Mw/aw, whereas for Mtt = ¼Mw we find 
3.535Mw/otw. The values of  C 2 and cos (28 )C  2 obtained from these fits (cf. Table 1) 
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agree with what one can roughly extract from the figures of Ref. [8]. 
An alternative method for studying the electroweak sphaleron on the lattice is being 

considered by Ambjcrn and Krasnitz, using the Chern-Simons functional to constrain 
the cooling [ 18]. It has the advantage of allowing ordinary cooling rather than saddle- 
point cooling and might also be used for computing the energy along the tunnelling path. 
In the continuum the sphaleron has a Chern-Simons number of a half (compared to 
the trivial vacuum). Its disadvantage is that implementing the Chern-Simons functional 
on a lattice, the electroweak sphaleron will only approximately be characterized by a 
Chern-Simons number of exactly one half. As the tunnelling rate depends exponentially 
on the sphaleron energy, our results might be particularly useful in numerical checks of 
the semiclassical determination [4] of the tunnelling rate at small temperatures [3,5] 
(for the Abelian Higgs model in 1+1 dimensions see Ref. [6] ), as our method gives 
the exact saddle-point solution for the sphaleron on a lattice. 
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