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Abstract 

We present the detailed derivation of the charge-l periodic instantons - or calorons - with 
non-trivial holonomy for SU(2). We use a suitable combination of the Nahm transformation and 
ADHM techniques. Our results rely on our ability to compute explicitly the relevant Green’s 
function in terms of which the solution can be conveniently expressed. We also discuss the 
properties of the moduli space, Iw” x S’x Taub-NUT/& and its metric, relating the holonomy 
to the Taub-NUT mass parameter. We comment on the monopole constituent description of these 
calorons, how to retrieve topological charge in the context of abelian projection and possible 
applications to QCD. @ 1998 Elsevier Science B.V. 
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1. Introduction 

Instantons [ 1 ] and Bogomolny-Prasad-Sommerfield (BPS) monopoles [ 21 possess 

remarkable properties. They exist as exact solutions with arbitrary charges and with an 

action or energy, proportional to their integer charge. Therefore the multi-charge solutions 

can be seen as built from constituents of unit charge. Indeed, for BPS monopoles 

the absence of an interaction energy can be understood - for large separation - as a 

cancellation between the electro-magnetic and scalar interactions [ 3,4]. 

Instantons are self-dual solutions with finite action. For non-compact manifolds, the 

solutions must approach vacua in the non-compact directions. Due to the topology of 

the base manifold, these vacua can be non-trivial and can give rise to extra parameters 

for these self-dual solutions. For periodic instantons on R3 x S’, also called calorons, the 

vacuum label is given by the eigenvalues of the Polyakov loop (holonomy) around S’ 

at spatial infinity. Equivalently, one may consider this vacuum as the background field 
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on which the solution is superposed. In this respect, they are very similar to monopole 

solutions in broken gauge theories, a non-trivial vacuum generally breaking the gauge 

symmetry. 

Calorons can be seen to have as constituents BPS monopoles [ 5,6] (N for Su( N) ) , 

as follows from Nahm’s work [ 71. The constituents are such that the net magnetic and 

electric charge of the caloron vanishes. Unlike for the ordinary multi-monopoles, the BPS 

constituents are hence of opposite charge, and thus have an attractive electro-magnetic 

interaction. Nevertheless, also here exact solutions exist with an action that does not 

depend on the parameters, though the solutions become static only for large separations. 

In order to have this non-trivial situation the Polyakov loop at spatial infinity has to 

be non-trivial, breaking the gauge invariance spontaneously. The eigenvalues of this 

Polyakov loop uniquely fix the masses of the constituent monopoles. Their separation - 

not surprisingly - is related to the scale parameter of the caloron solution. 

In this paper we study periodic SU(2) instantons with topological charge 1 and arbi- 

trary holonomy [ 81. Its purpose is to provide the necessary details for this construction. 

Central to our success in providing explicit and relatively simple new solutions is the 

construction of the relevant Green’s function. In the context of the Nahm transforma- 

tion, introduced here as the Fourier transform of the Atiyah-Drinfeld-Hitchin-Manin 

( ADHM) data [ 11, this can be reduced to a quantum mechanical problem on the circle 

with a piecewise constant potential and well-defined delta function singularities related 

to the holonomy. We find compact expressions for the gauge field and action density of 

the solution and investigate the properties of the caloron. The moduli space is described 

in terms of the constituent monopoles, which in our approach appear as explicit lumps 

in the action density. Furthermore, we relate the constituent monopole nature of these 

instantons to work by Taubes in which he showed how to make gauge configurations 

with non-trivial topological charge out of monopole fields [ 91. 

Independently, the recent work in Ref. [ lo] has taken the constituent monopole 

description [ 5-71 as the starting point, suitably superposing two BPS monopole solutions 

to form a caloron solution. 

Periodic instantons have been discussed first in the context of finite-temperature field 

theory [ 11,121, where the period (7) is the inverse temperature in euclidean field 

theory. A non-trivial value of the Polyakov loop will modify the vacuum fluctuations 

and thereby leads to a non-zero vacuum energy density as compared to a trivial Polyakov 

loop. It was on the basis of this observation that calorons with non-trivial holonomy 

were deemed irrelevant in the infinite-volume limit [ 121. It should be emphasised 

though, that the semi-classical one-instanton calculation is no longer considered a reliable 

approximation, At finite temperature A0 can be seen to play the role of a Higgs field 

and in a strongly interacting environment one could envisage regions with this Higgs 

field pointing predominantly in a certain direction, and nevertheless having at infinity a 

trivial Higgs field. Given a finite density of periodic instantons, in an infinite volume 

solutions with non-trivial holonomy (in some average sense) may well have a role to 

play. 
In our construction of the charge-l caloron with non-trivial Polyakov loop, we pick a 
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particular gauge. In the periodic gauge, the spatial components of the vacuum connection 

at infinity can be gauged to zero. The A0 component can only be gauged to a constant, 

e.g. A0 = 2~-ioJ • ~'/T (with ~',~ the Pauli matrices), when the total magnetic charge is 
vanishing. This connection has obviously a non-trivial Polyakov loop at infinity 

T 

79(x) =Pexp(/Ao(x,xo)dxo)--~e 27r/'°r (1) 
x,.] / 

0 

(P  stands for path ordering). Alternatively, connections on ]R 3 × S 1 can be formulated 
by embedding them in R 4 and demanding periodicity modulo gauge transformations. 
Gauging with a non-periodic gauge transformation g(x, xo) = e 27rix°°~'z/7-, starting from 

the periodic gauge with zero A i and constant A0 = 2~rio~. r/T at infinity, sets all gauge 
fields to zero at infinity. In that case we have 

A~( x, Xo + 7-) = eZzri°~"r A # (  x ,  x o ) e  -2~ri~°'7, (2)  

with 7- the period in the imaginary time direction, i.e. the inverse temperature. Clearly, 
e 27ri°~'z ~ g o ( X )  is the transition function or cocycle. Using the proper expression for the 

Polyakov loop along a path traversing the boundary between coordinate patches [ 13]. 

7- 

79(x)=Pexp(fAo(x, xo)dxo)go(x), (3) 

0 

we find the same value for the holonomy in this gauge, the holonomy at infinity now 

solely being carried by the cocycle go(x). It is in this so-called "algebraic" gauge that 
we will calculate the generalised caloron solutions. 

The charge-k instantons o n  ]~4 are given by the ADHM construction [ 1 ]. The Nahm 

transformation forms a modification of this approach, initially introduced by Nahm to 
study BPS monopoles [ 14,15]. Later developments culminated in the Nahm duality 
transformation on generalised tori, which forms a powerful tool for studying self-du- 
al connections. Also caloron solutions can be treated along these lines [7]. The Nahm 
transtormation is outlined in Section 2. We summarise in Section 3 the details of the 

ADHM formalism necessary for our construction of the caloron in Section 4. We make 
it evident how the two approaches are related by Fourier transformation. By relying on 
the ADHM construction we profit from the vast knowledge on multi-instanton calculus 

within this formalism. Section 4 forms the calculational core of this paper, in which we 
derive the gauge potential and a particularly simple expression for the action density. 

The various properties and symmetries of the caloron are unraveled in Section 5. In 
Section 6 we describe the moduli space of the caloron. In Section 7 we discuss the 
relation to Taubes' work, abelian projection [16] and possible applications to QCD. 

For the benefit of the reader let us point out what is new in this paper with respect 
to the Letter [8], where we announced our results. Section 4 contains the result for 
the Green's function, crucial for the construction of the new caloron solution; Section 5 
contains a more in-depth discussion of the properties; the details of the computation 
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for the metric in Section 6, useful in their own right, make precise how the Nahm 

transformation preserves the metric properties of  the moduli space. Finally in Section 7 

a completely new application of  the new caloron solutions in the context of  QCD is 
presented (we have been able to establish similar results for SU(3)  as well [61] ,  even 

extending to arbitrary SU(n), where the caloron has n BPS constituents). 

2. The N a h m  transformation 

We will consider a U(n) bundle E with self-dual gauge connection A u on a four- 

manifold M = R4/H, with instanton number k. Here H is a subgroup of  translation 

symmetries under which the physics is invariant. When H is a four-dimensional lattice, 

M will be the four-torus [ 17]. Other four-manifolds are obtained by taking appropriate 

limits [ 18]. We demand the gauge potential to be invariant modulo gauge transforma- 
tions under the action of  H. 

An essential ingredient in Nahm's  construction [ 15 ] is to add a curvature free abelian 

connection, -2zrizudx u, to the gauge field and to study the Weyl operator 

Dz(A) = o'uD~z(A), D~(A) = -O-~,D~z(A), D~z(A) = 3 u + A u -  2zriz u. (4) 

o" u = (12, i~') and O" u = o-~ = (12 , - i~ ' )  are unit quaternions. As compared to usual 

conventions [17,18],  we replaced z by - z  to facilitate matching with the ADHM 

construction. When A is without flat factors (WFF, meaning that the vector bundle E 

does not split in E ¢ G L for any fiat line bundle L),  then Dz(A) will have a trivial 

kernel [19] .  For such gauge fields Gz (x, y) = (D~ (A)Dz ( A ) ) - l  is well defined. The 

index theorem [20,21] shows that there are k normalisable zero-modes of  the Weyl 
operator D~(A), for each value of  z E / f /=  ]~4/f / ,  /~ = {Z C ~41Z "y E Z, Vy E n } ,  

cf. Ref. [ 18]. We can therefore define a U(k) connection on the space ,(/, 

M 

where ~p~ (x) ,  i = 1 . . . . .  k form an orthonormal basis for the Nahm bundle/~ of  fermionic 

zero-modes. This is called the Nahm transformed connection. 

The Weitzenb6ck identity [ 19] states 

1 - Up D~(A)Dz(A) =-(DUz (A)D~z (A) + ~TupF (x)),  (6) 

- -  - - ~ l  a where r/u p = ~Tupo- a = 6-[uo%] is the anti-selfdual and r/up = ~?upO'a = tr[gO-p] the self- 
dual ' t  Hooft  tensor [22] (note that in our conventions time is labelled by Xo rather than 
x4, and to conform with anti-selfduality of  ~ we define e1230 = 1). As F is self-dual, 

the second term will vanish, and hence D~(A)Dz(A) and Gz (x, y) commute with the 

quaternions. This has profound consequences for the curvature associated to the Nahm 
connection. One finds [ 18] 
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Pu"(z)=87"r2 / dxdyOtz(xlGz(x'y)rl"~bz(Y) 
M x M  

0 
+47ri f dSa(x) dy O-~uO~(x)o-aO-~lG~(x,y)~z(y), 

c)Mx M 

631 

(7) 

where ~z denotes the matrix with the zero-modes ~p~ as columns. Here we used that G 
commutes with the quaternions. The first term is clearly self-dual. The boundary term 

shows possible deviations from self-duality, which occur at the points z for which the 
zero-modes do not decay exponentially in the non-compact directions. In these directions 

the connection necessarily approaches a vacuum for the action to be finite. These vacua 
are labelled by the eigenvalues of the Polyakov loops Pi = P exp fc, Audxg along the 
circles Ci corresponding to the compact directions. In the case that e 2zriz becomes equal 

to one of these eigenvalues, the component of A~ - 2zrizu along Ci in Eq. (4) will 
develop a zero eigenvalue when approaching infinity. This gives rise to a surviving 
boundary term in Eq. (7) and as a result a deviation from self-duality, precisely for 
these specific points. As the deviations occur in single points, they will be expressible 

in delta functions. Hence, Pu~ is self-dual almost everywhere. For the non-compact 
directions /z, the zg dependence of ~ (x) is a plane wave factor, and hence A is z~ 
independent. Note that the U(k) symmetry in the space of zero-modes associated to A 

is mapped onto a gauge symmetry for A. On the other hand, gauge transformations on 
A leave A unchanged. 

For the tbur-torus T 4 the boundary terms are absent and instantons are mapped onto 
instantons. It can be shown, using the family index theorem, that under this Nahm 
transformation a U(n) connection with topological charge k is mapped onto a U(k) 
connection with topological charge n. The Nahm transformation on T 4 squares to the 

identity [ 17]. More explicitly, the dual Weyl operator D'x(,4) = -6-u(O ~ + Au - 2zrix~,) 
has n zero-modes, 

/3~(A)~f~(z) = 0 ,  i = l  . . . . .  n, (8) 

in terms of which the original connection Au(x) is reconstructed 

• [ 0 ^j 
A ~ ( x ) =  a d z  ~txi(z)~x~ ~x(z)" (9) 

~t 

This suggests to use the Nahm transformation in the construction of self-dual connec- 
tions on modified tori, in situations when one can explicitly find the dual connection 
A. Generally one expects this to be feasible when the Nahm transformed bundle is 
simpler than the original, in particular when 291 is of lower dimension than M. Another 
simplification arises for the case of topological charge k = 1, since in that case the 
Nahm connection A is abelian. Because of the boundary terms, the second Nahm trans- 
formation will have to be modified by properly handling the singularities. The extreme 
case is M = IR a, H = 0, where the dual manifold M is just a point and the pair formed 
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by the dual Weyl operator and singularities reduce to matrices which precisely give the 

ADHM data [ 7,18,19,23 ]. The Nahm transformation o n  ] R 4 / H  encompasses the ADHM 

construction. 

We will now consider the Nahm transformation for calorons (using the classical scale 

invariance of  the self-duality equations, we can choose 7- = 1 such that H = Z) and 

monopoles in the BPS limit ( H  = R) .  For the latter, A0 is interpreted as the Higgs field. 

Thus we can unify these two cases by considering them as connections on IR 3 x S 1. The 

connections for R 3 × S 1 are topologically classified according to their behaviour at the 

boundary, S 2 × S J. We give a short summary of  the classification presented in Ref. [ 12]. 

For the action to be finite, it is necessary that the connections go to a vacuum at spatial 

infinity. Generally, gauge vacua are labelled by the conjugacy classes of  representations 

of  maps of  the first homotopy group to the gauge group [ 19]. For S 2 × S t, we can 

characterise each vacuum by a gauge equivalence class of  an element of  the gauge 

group. Using a gauge transformation, this element can be chosen diagonal. The vacuum 

at infinity is related to the holonomy along the S 1 (or Polyakov loop), Eq. (1) in the 

periodic gauge. The difference of  a closed Wilson loop evaluated along two curves C 

and C ~ is related with the flux through the surface swept out by the curves interpolating 

between C and C' .  Hence, at spatial infinity where the curvature vanishes, a small 

deformation of  the path C around which the holonomy is measured does not influence 

P ( x ) .  Only the homotopy of  C is important, and the holonomy at spatial infinity is 

a topological invariant. Therefore, at spatial infinity the eigenvalues of  79(x) become 

constants, 

T ' ( x )  --~ V(~)exp[2~r id iag(# l  . . . . .  / z n ) ] V - l ( ~ ) ,  Z # i = 0 ,  (10) 
i 

and we have, up to an R-dependent gauge transformation V, 

A0 = 27ridiag(/zt . . . . .  t z n ) - i d i a g ( k l  . . . . .  k , , ) / 2 r + O ( r - 2 ) ,  S k i = O .  (11) 
i 

The gauge transformation V induces a map from S 2 to the factor group G / H a ,  with 

Ho~ the isotropy group of  exp[2~ridiag(/zl . . . . .  /z,,) ]. For SU(n) these maps V(~) --, 

SU(n)/Ho~ are classified according to the fundamental group of  H a .  Generically, H ~  

consists of  several U ( I )  and SU(N ) ,  N > 1 subgroups. Each U(1)  gives rise to a 
monopole winding number, related to the integers ki. 

The other topological quantum number is related to the homotopy class of  the map 
3M = S 2 x S l --* SU(n) which occurs in the gauge transformation connecting the 

behaviour near the origin to that at infinity, which is classified by the instanton number 

k ~ "rr3(SU(n)) = Z. Gauge connections on R 3 × S l are therefore classified by Izi, ki 
and k. We will consider the situation where the net magnetic charges of  the solution 
vanish, ki = 0. For n o n - z e r o  ki the situation is as for the (static) BPS monopoles, where 

the dimension of  the space of  fermionic zero-modes depends on z. The jumps occur 
exactly where z =/zi ,  according to the Callias-Bott-Seeley theorem [21] (the situation 

of  non-maximal symmetry breaking, where two or more ].z i coincide, is more involved). 
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For a periodic instanton with no net magnetic charges the fermionic zero-modes are 

associated to the instanton winding number k in the usual way. Hence, the rank of  

the Nahm transformed gauge potential is k and as the z dependence of  the fermionic 
zero-modes is that of  a plane wave, ¢ z o , z ( X )  = e21rix 'Z~zo.O(X),  one finds ,~, to be z 

independent. The dual space /Q is an interval on the real line, with coordinate z0 : z. 

For monopoles, this interval is [/~1,p,,] (when we order/~i ~ #i+1). For calorons z 
is the coordinate on the dual circle and ,3 is periodic. The Nahm transformed curvature 
reduces to 

d 
Foi(z) = -~zAi + [Ao, Ai], F i j ( z )  = [f~i, A j ] .  (12) 

Using the self-duality of  the first term in Eq. (7),  and the fact that the second term of 

this equation is zero almost everywhere, except for possible delta function singularities 

at z = P.i one finds 

Z 
P 

These are the celebrated Nahm equations. Any ,4~,(z) obeying the Nahm equation of  

the right dimensionalities and singularity structure gives rise to a BPS monopole or 

caloron. For monopoles this is generally proven using twistor methods [ 15,24], but for 

SU(2)  monopoles there exist direct proofs of  the equivalence, without an intermediate 

twistor step [25] .  For calorons the construction was formulated in Ref. [7] and the 

twistor method for these periodic instantons was given in Ref. [5] ,  but a relation with 

existence theorems or a full circle reciprocity proof as it exists for monopoles and for 
instantons on R 4 and T 4 s e e m s  not to be present. 

For the k = 1 SU(2)  caloron, ,4~ is a U(1)  connection on the circle with two 

singularities corresponding to the holonomy. Note that here/x2 = -p- i  = w, with w =- 

Iwl E [0, 1].  The magnetic components of  P vanish and hence non-zero values and 

singularities are only assumed by the electric components F0i. By the Nahm equations 
is forced to be piecewise constant. We will give the explicit ADHM construction ['or 

these calorons and show among other things that all aspects suggested in Ref. [7] arise 

automatically. 

3. The ADHM construction 

We first summarise the ADHM construction [ 1,26] for charge-k SU(2) instantons 

on R a. Generalisation to higher groups is well known but will detract one from the 
simplicity of  our construction. The ADHM data consist of  a quaternionic row vector 

3. = (3.1 . . . . .  3.~.) and a quaternionic, symmetric k x k matrix B (Am -: A~rr~ and 
/ t  p, /L /.L 

Bin.,, = B , ,m  C B ...... ~ B ...... rr~, with 3.m E R and R).  These objects are comprised in 

A ( x )  = B - x  " 



fx  = ( A ( x ) t a ( x ) )  -~ 

and a scalar function 

¢ ( x )  = 1 + AGx At. 
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Here, the quaternion x = xutru denotes the position variable and a k x k unit matrix 

is implicit in our notation. For later use, we define A = A(x  = 0). The ADHM gauge 

potential is given by 

A/~(x) = v t (x)O/~v(x),  (15) 

where v ( x )  is a (k + 1)-dimensional quaternionic vector, the normalised solution to 

A t ( x ) v ( x )  = 0. (16) 

For this construction to give a self-dual potential Aa, A(x )  has to satisfy the ADHM 

constraints. These demand that A t ( x ) A ( x )  be real quaternionic (i.e. commutes with 

the quaternions) and invertible. It is sufficient for this to hold at x = 0, i.e. AtA = 

B t B  -I-/it A must be real quaternionic and invertible. Furthermore, (B - x) should have 

a trivial kernel, except for k values of x, where v ( x )  and, as a consequence, A ~ ( x )  are 

singular. This can be shown to be a gauge singularity and implements the non-triviality 

of the bundle and reflects the topological nature of these solutions. 

This construction gives all instantons on R 4. The following transformations 

A-+ /IT - l ,  B ---~ TBT - I ,  T E O ( k ) ,  

a--,ga, gE SU(2), (17) 

both leave the quadratic ADHM constraint untouched. The first does not change Au(x),  

whereas the second induces a global gauge transformation. Local gauge transformations 

arise from the U(2) symmetry v ( x )  ~ v ( x ) g ( x )  in the solution space ofEq. (16). One 

must divide out these symmetries in order to obtain all gauge inequivalent solutions. 

This reduces the dimension of the space of gauge inequivalent solutions to 8 k ( - 3 ) ,  

depending on whether or not the global gauge degrees of freedom are included as 

moduli. Considering the g as moduli, the moduli space is an 8k-dimensional hyper- 

K~ihler manifold [ 19]. 

Many aspects featuring in the construction above have their counterparts in the Nahm 

transformation. The reality constraint is similar to the vanishing of the imaginary quater- 

nions in the Weitzenb6ck formula, which leads to the self-duality of the Nahm connec- 

tion. The symmetries in the ADHM construction can be traced back to the triviality of 

the gauge action in the Nahm transformation and the unitary symmetry of the fermionic 
zero-modes. We define two matrix inverses, the analogues of the Green's functions, 

E]I~ kXk, G x = ( ( B - x ) t ( B - x ) )  - l  E H  kxk, (18) 

(19) 

These Green's functions f x  and Gx are related, as can be seen from the expansion of 

fx in terms of Gx, 



ZC. Kraan, P. van Baal/Nuclear Physics B 533 (1998) 627-659 635 

oo 

f x  = ( G x  ~ + AtA) -~ = G x -  Gxh t Z ( - A G x A t ) " A G . ~  = G x -  ¢b -~ (x)Gx/~tAG., .  
n=O 

(20) 

Acting on Eq. (20) with /l t on the right and/or  with A on the left, yields 

G. ,A t= fb (x ) f~ .A  t, ~ b ( x ) = ( 1 - A f x A t )  - '  (21) 

To solve for t,(x) in Eq. (16), we introduce (a matrix of  spinors) u ( x ) ,  and obtain 

( - 1  ) u ( x ) = ( B t _ x t ) _ , h t  (22) l,(x) =4~-'/2(x) u ( x )  ' 

where ~b(x) = 1 + AGxA t = 1 + u t ( x ) u ( x )  accounts for the normalisation of  t?(x). In 

terms of  these quantities, the gauge potential reads 

A ~ ( x )  = ½~-J (x ) (u t ( x ) c91 ,u (x )  - c ~ u t ( x ) u ( x )  ). (23) 

To show that the connection is indeed sell-dual is best seen from using F = dA + A A A. 

where A = A~dx~ and F = ½F~,,dx~ A dxv. With A = L~t(x)dt,'(x) one finds 

F = dt :t ( x )  A d v ( x )  - dt~ t (x)t~'(x) A c t (x)dt~(x)  

= dt~ t ( x )  (1 - v ( x )  @ t~ ' t ( x ) ) d v ( x ) .  (24) 

As 1 t ' (x )  ® r 't ( x )  is the projection on the orthogonal complement of  the kernel of  

A t ( x )  (since A t ( x ) v ( x )  = 0), we can use that I - t,(x) @ t.'t(x) = A ( x ) f ~ A t ( x ) .  

Substituting this in the expression for F and using that 

A t (x)dt~,(x) = - d x ~  3A] ( x )  v ( x )  = dx t ( b t e ( x ) )  
UXtt 

( dx  _ o-~dx~, bt t:( x)  - qS-I/2( x ) u (  x)  ), we find [26] 

F = ( l . , t ( x )b )dx  A f : , .dx t (b t t ; (x ) ) .  (25) 

The crucial observation is now that the quadratic ADHM constraint implies that .)c 

commutes with the quaternions and that d x A d x  t = rlz,~dxgAdx~, much like in the Nahm 

transformation where the Weitzenb6ck identity, Eq. (6),  guarantees that D~ ( A ) D :  (A)  

commutes with the quaternions. We thus find [23] 

F ~ , ( x )  = 2¢b -~ ( x )u t ( x )~ lu~ f .~u(x ) ,  (26) 

which is self-dual due to the seft-duality of  r/~,, = O-lg0-, I. 
In the case at hand, Eq. (23) is of  little practical use as it stands. We therefore 

rearrange it such that we can express Au in terms of evaluations of the Green's function 
.fx. Using 3~(B  t - -  x ~ )  -1  = (B t - x t ) - J0 - t , (B  t - x t )  -1. = (B - x ) G x O ~ ( B  - x ) G , ,  

we get 
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An(x  ) =dp -1 (x) AGx~In.(B - x)~Gx At. (27) 

We substitute GxA t = ck(X)fxat, Eq. (21) ,  and noting that 

O~fx I =O.Gx 1 = - 2 ( B  - x)v,  (OnfxJ) fx  = - f x~Onfx ,  (28) 

we arrive at the following compact  result for the gauge potential (see also Ref. [27] ) :  

An(x  ) = ½q~(x)O. (A~:/nvfxAt) , (29) 

using once again that fx  commutes with the quaternions. When ¢/n~ is moved through 

A, one finds an expression for A n in terms of (derivatives of) "expectation values" of  

the Green's  function fx,  

An(x  ) = ½dp( x)~r.fln.O'#Oudpa ~, (30) 

where 

dPal3(X) = qb/za(x) = (,~afxa~). (31) 

At this point we can make contact with the well-known ' t  Hooft  ansatz [28].  This 

forms a subclass of  the A D H M  construction with .~ real (Am = o'0p.,) and Bm,n = 
8m,.Ym diagonal, corresponding to k instantons with scales Pm at positions Ym. This 
5k-dimensional family trivially satisfies the ADHM constraints. In this simpler situation 

the gauge potential can be written even in terms of a single scalar potential ~b(x) = 
1 -  1 + ~k  p2/ lx -  Ykl 2 as An(x)  = ~r/n~O. log qS(x), since ~b0o(x) = 1 - ~ b  -1 (x) .  

For the action density, the following expression can be found in the literature [ 29,23 ] 

t rF2 ( x ) =  2 2 - 0 ~ a .  logdet  fx.  (32) 

This expression is regular everywhere. We can rewrite Eq. (32) using Eqs. (20) and 

(28) as 

t r F ~ ( x )  : 1 "~ 2"9 2 O2021ogd?(x) (33) - 7 vnv . log det Gx + 

l The factor ~ is due to Gx being considered as a quaternionic and fx  as a real k × k 
matrix. For the ' t  Hooft  ansatz, O21ogdetGx vanishes, except for delta functions at 

x = Yk, and we retrieve the known result [28] ,  t r F ~  = 0~0~ log~b(x),  which is indeed 
singular at these points (inadvertently in Section 2 of  Ref. [8] ,  t rF~ .  was given with 
the wrong sign). 

4. The  construct ion  o f  the caloron 

In this section we describe the ADHM construction of caloron solutions with non- 
trivial holonomy. This will be a two-step process. Crucial will be the interpretation of the 
A D H M  data as the Fourier coefficients of  the Weyl operator in the Nahm transformation. 
In our strategy, we build the caloron as an infinite, periodic (gauge-twisted) chain of  
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instantons. It will be shown how we can realise this within the ADHM construction, 
by solving the quadratic constraint on the ADHM data. To find A u ( x )  we use again 

a Fourier transform to construct f x ( z ,  z ' ) ,  the Green's  function of an ordinary second- 
order differential equation, which allows for the determination of ~b,~(x) = ( , ~ , f ~ , ~ ) ,  
see Eq. (30) .  

The boundary conditions A ~ ( x  + 7-) = e2~i~°'TA#(x)e -2rriw''r are satisfied when 

u k ( x  + 7") = Uk-1 (X)  exp(--27ri to.  70, (34) 

as is seen from Eq. (23) .  This is implemented by the periodicity constraints 

-'~k+l = e27ri°~'7,~k, B ( x  + 7-),,,,,, = B ( x ) m - l , , , - t ,  (35) 

where B ( x )  = B - x. It now follows that 

Bm+1,,,+l = Bin,,, + 7-6m,,, (36) 

the inhomogeneous part of  which is solved by having . . . .  - 2 7 - , - 7 - ,  0, 7-, 27- . . . .  on 

the diagonal of  B. We still have to determine the remainder of  B, called A (anticipating 
its interpretation as Nahm connection),  that contains its off-diagonal entries. In order to 

satisfy Eq. (35) ,  A has to be of  a convolutive type ,,~,,,.,, = -4m-,,, such that 

A k = e27rik~°'~, ~ = pq,  B,,,,,, = 7-m~m,n + ~tm-,,. (37) 

Here ( is an arbitrary quaternion. Its length p = I#l is the scale parameter of  the caloron. 
The SU(2)  element q = # / p  describes its combined spatial and gauge orientation. The 
diagonal of  ,3 ...... is necessarily constant, .4J, i, ~g _= (,  and plays the role of  the position of 
the caloron. The ADHM data can now be readily interpreted as describing a periodic 
array of instantons, with temporal spacing 7- and relative gauge orientation e 2~ri°~'r, with 

off-diagonal terms to account for the non-linear constraints. To simplify notations, we 

use the scale invariance of the self-duality equations to set 7- = 1. On dimensional 

grounds one can easily reinstate the proper 7- dependence when required. 
When we perform the Fourier transformation, B will be transformed into a Weyl 

operator, ,~ and ,~t,~ into delta function singularities and u ( x )  into a spinor (to be more 
precise a 2 × 2 matrix with as columns ^i ~Px, cf. Section 2): 

B ..... ( x )eZ . r r i (mz_nz ' )  _ ¢~(Z - Z t)  D x ( S ' )  
• 2zri ' 

I I I , I I  

d 
D, . ( z  ) = o ~ D ~ ( z )  = ~z + f t ( z  ) - 2zrix, 

~-~A,,,e 2~imz : A ( z ) ,  ) l ( z )  : ( P + 8 ( z  - w )  + P - f i ( z  + r o ) ) ( ,  

' "  t,~: : ½(1 + co . ~-), 

I l l , I t  
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Z Um(X)e27rimz = ~tx( Z ) .  (38) 
m 

All these objects are defined on S l, or more appropriately from the Nahm perspective, 
on ~;~4//) _ ]t~4/(]I~3 X Z ) .  Note that ,4(z)  = o-u.4~(z) = 27ri~mexp(27rimz)Am, 
such that from the symmetry of A,,,,, ( implying A,, = ft.-m) it follows that .g.u(z) is 

imaginary such that the differential operator L)x(Z) is exactly the dual Weyl operator 
/)x(-'~) introduced in Section 2 (to agree with the notation there we have - unlike in 
Ref. [ 8] - included a factor 27ri in our definitions). Combining these features, we can 
interpret the Fourier transform of  the ADHM construction as the inverse (or second) 

Nahm transformation. 
The symmetries in the A D H M  construction for periodic instantons lead to a U(1)  

gauge symmetry for ,g,~(z). In order for Eq. (17) to preserve the periodicity con- 
straint (35) ,  T has to be of  a convolutive type, Tm,n = T,,,-n. Defining the periodic 
function ~ ( z )  = ~mexp(27r imz)7" , l  and using the fact that T is orthogonal (T£,_1, = 
T,,-m and ~-~k Tk+,Tk = 6n,0), one concludes that ~ (z )  c U(1 ) .  A gauge transformation 
with ~( z ) leaves .4i ( z ) invariant and transforms A0 ( z ) to 1{0 ( z ) - d log ~(z ) /dz .  Note 
that / ]0(z)  can be gauged away, apart from a constant (as the Polyakov loop is gauge 

invariant). Hence we may choose fi, o(z ) = 2¢ri~0. 
To implement  the quadratic ADHM constraint after Fourier transformation we note 

that any complex 2 x 2 matrix W can be decomposed as W = W~,c% and that [ W,, o-~] = 0 
can be implemented by requiring Im W = 0, provided we define Im W =_ 1 [ W-r2Wtr2 ]. 

I[W + r2Wtr2] = l t r W  = Wo. Thus, the quadratic ADHM Also note that R e W  = 
constraint can be formulated as 

Im( / )~  ( z ) / ) x ( Z  ) + 4rr2z](z ) ) = 0. (39) 

l - ^ From the Weitzenb6ck formula b~ ( z )/3x ( z )  = - (/3x ~ ( z )/3x ~ ( z )  + 7 rh,~ Ft,~) (compare  
with Eq. ( 6 ) )  we find 

d ^ 
gr~u,F~,,( z ) = = ~ z A ( Z ) = l -  ^ _ i m / 3 x t ( Z ) b x ( Z )  4¢r2imzi(z)  

= 2rr2(~& • "rg") (~$(Z -- m) -- c$(Z + o9)), (40) 

using Eq. (39) and F / j (z )  = 0. This leads to [30] 

i t (z)  = o'uYtu(z) = 2 r r i [ ( +  ¢ r ( ( & .  o ' s r )oo , (z)  ], (41) 

where (see Fig. l)  

O,o(z) = (XI . . . .  l ( z )  - 2o9). (42) 

Here Xl,,.bl ( z )  = 1 if z c [a,  b] and 0 elsewhere, properly defined on the circle. We 
have arranged 27ri( = f d z  fi~(z), such that B(x)  has a single zero-mode for x = (,  
to agree with the interpretation of ( as the position (centre of  mass) of  the caioron. 
Fourier transforming back, we retrieve the matrix representation of B(x)  
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4% 

2 1  z -~j 
1-{0 1 

- 2  

Fig. 1. The function (%(z). 

Bm.,,(x) = (m + ~ - X)~m.n + (& " t r (  s in(2~'(m - n)to) (1 - t~m.n). (43) 
m - n  

The moduli space is thus parametrised by the caloron position ( and by its scale and 
orientation s r = pq, with ~0 C S 1, ~ E R 3, p E JR + and q E SU(2) .  

We end this first step in the construction by noting that the delta function singularities 

arise precisely as predicted by the general properties of  the Nahm transformation, dis- 

cussed in Section 2 and that ,4(z ) constructed in this section solves the Nahm equations, 
whereby we have found all self-dual solutions for R 3 × S t . 

For the second step we have to find the Green's function fx. For further notational 
simplification we absorb ( by a translation (we have already used the scale invariance 

to fix 7- = 1) such that after a Fourier transformation the definition of  fx, Eq. (18),  
can be cast into a differential equation for fx(z,  z') - ~ ..... fm'ne2m(mz-nz'), 

2-Tridz xo + s 2 x I  . . . .  I ( Z )  +rZxI,o.l-,ol(Z) 

} + ~ ( ~ ( Z - ~ O )  +8(Z + w ) )  f x ( z , z ' )  =6(Z- -Z ' ) .  (44) 

Here, the radii r and s are given by 

r 2 = ½tr(x • r + 2¢rwp2~d) • 7q) 2, 

s 2 = ½tr(x.  7 - 2¢rtbp20& • 7q) 2, (oh = ½ - o~), (45) 

and can be interpreted as the respective centre of  mass radii of  the two constituent 

monopoles of  the caloron. Note that ~d~ • ~-q shows how global gauge rotations are to 

be correlated to spatial rotations so as to keep the holonomy unchanged. We will come 

back to this in the next section. The symmetries of  At(x)A(x)  imply for the Green's 

function f~ (z, z ' )  the following relations: 

f~(z , z ' )  = f x ( - z , - z ' ) *  = f x ( - Z ' , - z ) =  fx(Z' ,Z)*. (46) 

In particular we have f~(w,w)  = f x ( - W , - t o )  E ]R and f x ( W , - t o )  = f x ( - W , w ) * .  
The Green's function is that of  ordinary quantum mechanics on a circle with a piecewise 
constant potential and delta function singularities of  strength ½p2 at the jumping points 

z = ±to. It can thus be constructed in the usual straightforward (but tedious) method 

of  matching the value of  the Green's function and its derivative (up to the appropriate 

jumps) at z = 4-0) and z = z ~. The result reads 
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f x ( Z , Z ' )  =XI . . . .  ] (Z ' )  (X[ . . . .  I ( z ) f J ( z , z ' , r , s ,  to) 

+XI ~o,1-,,,1 ( z ) f ° ( z ,  z ' ,  r, s, w ) )  

~ , z  - 7 , s , r ,  go) 

+XI . . . .  I(z ) f~'. (z ' ,  z, r, s, to)*) .  (47) 

In the following the diagonal component fdx(Z, z ~) is only defined strictly for z, z '  E 
[ - w , w ]  and the off-diagonal component f ° ( z , z ' )  only for z E [to, 1 - w ]  and z '  E 
I - w ,  w].  For z or z '  outside of these intervals, one first has to map back to the interval 
[ - w ,  1 - w],  using periodicity. 

^d Z t, 2rrixo(z--z')  _ ( • • t f'~(Z, r , s , w )  = e ' ' r r (rsg , )  e -2rr'x°slgn(z-z ) r s inh(27rs l z  - z ' l )  

- s  - l  cosh(2crs(z + z ' )  ) 

x [rrp2rcosh(4rrrgo) + ½(r 2 - s 2 + "/7"2p 4) sinh(arrr&)] 

+ s  - j  c o s h ( 2 7 r s ( 2 w -  Iz - z ' l ) )  

1 2 s 2 sinh(4crr&)] x [rrp2rcosh(4rrrgo) + ~ ( r  + ÷ 7"/'2p 4) 

+ s inh(2rrs(2w - Iz - z t [ ) )  

× [ rcosh(arrra))  + rrp 2 s inh(a~r&)]  }, 

f~'.( z, z ¢, r, s, to) = e27rix~(z-z')7"r( rs~l ) - '  

{rrp 2 sinh(2rrr(  1 - z - to) ) sinh(2~-s(z '  + w) ) x 

+ r c o s h ( 2 r r r ( z  - 1 + to)) s inh(2crs(z '  + to)) 

- s s i n h ( 2 r r r ( z  - I + to)) cosh(2r rs (z '  + to)) 

+e-2~ixo [s sinh(2~-r(z - w) ) c o s h ( 2 ~ s ( z '  - w) ) 

- r  cosh(  27rr( z - to))  sinh(27rs(z '  - w) )  

-7"rp 2 sinh(Zq'rr(z - w))  sinh(ZT"rs(z' - w) ) ]  }, (48) 

where we have introduced the scalar function 

~b = - cos(27"rxo) + cosh(4"rrr5)) cosh(4~-sto) 

( r  2 ÷ s 2 ÷ 77"2p 4) 
-~ s inh(4rr r~)  sinh(4crsto) 

2rs  

+r rp  2 (s -1 sinh(4rrsto) cosh(4rrr&) + r - l  sinh(4rrr&) cosh(47"rsto)). (49) 

In particular, 

L ( to,  - - t o )  = TT( r S ~  ) - l e a~rix°~° { e -  2~iX°r sinh ( 4 qrsto ) + s sinh(47"rr&) } ,  

to, to) = 7 r ( r s ~ )  - l  {s sinh(47rr6J) cosh(4~sto)  + r sinh(47rsto) cosh(47"rr6J) 

+~p2  sinh(47"rr&) sinh(47"rsw) } (so) 
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and (see Eq. (21 ) ) 

q~(x)  = (1 -- A f . r A t )  - ]  = (1 - p 2 f x ( O ) , ¢ o ) ) - '  = ~ / ~ ,  ( 5 1 )  

where 

= - cos(27"rx0) + cosh(47rr6)) cosh(47"rso~) 

( r  2 q- S 2 _ ,/7-2p 4 ) 
q- sinh (4err&) sinh(47rso~). (52) 

2rs 

We now use Eqs. (30) ,  (31) to determine Au. The scalar functions ~b,~ are all 
defined in terms of fx(W, i w ) .  To get compact  expressions, we introduce the complex 
function 

X p2fx(~O , --0))  47rixo°~77"P2 {e--2rriXas - I  sinh(47rs¢o) + r - I  sinh(47rr&) } . 

(53 

We choose to in the z-direction and q = 1, which can always be achieved by performing 
a suitable gauge and spatial rotation. We find for those functions &,~ that are non-zero 

1 I ~ - - I  q ~ o o = 5 ( 1 - q ~ - + R e x ) ,  ~ b 3 3 = ½ ( 1  - - R e x ) ,  q~o3=(b3o=½Imx,  

( 5 4 )  

where 

such that with the use of  Eq. (30) (for a matrix W, R e W -  ½ ( W +  Wt ) )  

i_3 ½ Re a ~  = ~r/~,r3O~,log~b + _ .-2 )(TI + ir2)cg,,X). (55) 

For ~o = 0 this reduces to the Harrington-Shepard solution of the caloron with trivial 
holonomy, since in that case X = 1 - ~-J. 

The s e l f  duality of  Eq. (55) follows from Eq. (26),  but has also been checked nu- 
merically. In the asymptotic regime of large distances Ixl, 

" 2 7 "  t • t e-2~lxllz-z [÷2~'lxo(z-;: ) .L(z, a') ~ ~ , (56) 

(with Iz - z I] the obvious distance function on the circle) from which it follows that 

A~ tends to zero at spatial infinity. The holonomy at spatial infinity is then fully carried 
by the cocycle, and equals e e~ri'°'r as required. The non-trivial holonomy becomes even 

more transparent in the periodic gauge by performing a gauge transformation g(x )  = 
e -2"iX°'°7. This yields 

i ~ i (-1 
= ( r/~ v cr /gv) ( ' r j  + i'r2)(O~, + Auper ~¢/)z~,r30,,1ogq5 + ~ b R e  - "-9 4¢riwa,,.o)y() 

+6~,.o27riwr3, (57) 
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f(  =_ e-47rix°~° X = 77"P2 { e-2~riX°s - I  sinh(4zrsw) + r - l  sinh(4crr&)} (58) 
V- 

In this gauge we immediately read off the constant background field at spatial infinity, 
APer = 2zri~o • r~u,0, responsible for the holonomy in the periodic gauge. This concludes 
the construction of the caloron solution. 

To use Eq. (32) for the action density we have to regularise the determinant, which for 
calorons diverges. However, 3 u log det f x  turns out to be finite. With the help of Eq. (28) 
we find 

O ~ l o g d e t f x = O ~ , T r l o g f x =  lT r / )xUfx  = r r t  --Trtl faz z,-~zlim £)Ux(Z) f x (Z ,Z '  ) , (59) 

S 1 

where Tr denotes the Hiibert space trace. We use point-splitting to define 

d ^ z' ' ( l im d ^ a z  d ^ ) z'=z - - ; - - fx(z  + e,  z ' )  + lim - e, z ' )  (60) lim -dT f x  ( z ' )  =- -~ \ , 1 o  ,1o dz  f x (  z ' Z t "---*Z . . 

in accordance with the Fej6r theorem for the convergence of Fourier series, see e.g. 
Ref. [31]. Careful inspection shows that 

Tr/3~ fx = -Tri0~ log ~,, (61) 

leading to the following miraculously simple result: 

- t r  F ~  (x) = O~ 02 log det fx = -O~ 02 log ~,. (62) 

Note that ~ is positive definite and smooth, despite its appearance. The same applies 
for Eq. (62). The action density i 2 - g t r F ~ , ( x )  takes its maximal value at x0 = 0. We 
have verified Eq. (62) numerically, using Eq. (55). Since the action density is a total 
derivative, one can express the total action in terms of a surface integral at spatial infinity. 
Using that 3~log~b = 4zr/[x[ + O([x[-4) ,  one easily verifies that for the topological 
charge 

, /  l /  
k - t rF  A F -  d4xtrF2u~(x)  = 1 (63) 

87r 2 16~r 2 ' 

In Appendix A we give the expression for the Green's function Gx, from which it 
follows that 

2 2 1 c ~ 2 , 9 2  0~, 0, log det Gx = - ~ v u ~ log ~ , (64) 

in accordance with Eq. (33) and Eq. (51). 

5. Properties of  the caloron solution 

We first discuss the issue of orientations in colour and real space. In general only the 
centre Z2 of the group of global gauge transformations will leave the gauge potential 
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invariant. The framing - embedding of the solution in colour space - is in general not 

invariant under global gauge rotations. For non-trivial holonomy (w6J 4: 0, or 79 4 : ± 1  

at infinity), also the holonomy is not invariant under such global gauge rotations, except 
for a U( 1 ) subgroup generated by & - 7, which in the monopole terminology generates 

the unbroken gauge symmetry. For each choice of the holonomy - which can not change 

under continuous deformations - we have a separate caloron parameter space. We note 

that the spatial orientation is given by the preferred axis that appears in the formula tot 

the action density and in the definition of the two radii r and s, Eq. (45). The action 

density has an axial symmetry around & defined through 

~ . 7 = OCo . 7q  = ~?o . 7 ( /  p% (65) 

When q is part of the U(1) subgroup generated by 69.7, it does not affect the orientation 

of the solution, and indeed can be pulled through in Eq. (37), to be identified with the 
global gauge invariance of Eq. (17) associated to this residual U( I ) .  The dimension 

of the moduli space of gauge inequivalent  solutions at fixed holonomy, including the 

position of the caloron described by (u, is thus 7 for non-trivial and 5 for trivial 

holonomy. A global residual U(1) gauge transformation (or a global SU(2) gauge 

transformation in case of trivial holonomy), however, does change the framing of the 

solutions and the moduli space of framed calorons is eight-dimensional. Including these 

global gauge degrees of freedom will reveal the hyper-K~ihler structure of the moduli 

space, to be discussed in the next section. 

Since a global gauge transformation leaves h invariant, we can best describe the 
parameters of the solutions for the choice where ~b = ~3, i.e. ~ is pointing in the 

positive x3-direction. Due to the residual gauge group, to any point on the two sphere 
defined by the symmetry axes of the caloron solution, a full U( I )  can be associated. 

This gives the Hopf fibration of S 3 = SU(2) over S 2, the fiber being U( 1 ). Using Euler 

angles we may choose the parametrisation 

q = e i T ~ - e i ( ~ - ° ) ~ e - i ~ ,  0 ~< T ~ 4~, 0 ~< ~ ~< 27r, 0 ~< 0 ~< 7"r, (66) 

which leads, for & = ~3, to the axis of axial symmetry h = (cos 0, sin 0 sin ¢, sin 0 cos ¢).  

The variable T describes the residual U( 1 ) gauge group generated by T3(= &- 7). With 

q = qu°b (Iql -- 1) we can introduce the Maurer-Cartan one-forms 

~V i i 1 5 tSi.ik ~Yj ( 6 7  ) = 2~7~,,q~dq~, d ~ i  = A ,S k. 

In terms of the Euler angles these read 

~'1 = cos T sin Od~p - sin TdO, 

~ = sin T sin Od~ + cos TdO, 

.$3 = d T  + cos Odq< (68) 

In order to visualise the caloron solution, we use Eq. (62). A time-slice of the 
caloron shows that it generically consists of two lumps. In Fig. 2 we study the time 
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w = 0 w = 0.25 

-6.4 -0.2 o 0.2 0.4 -0'.4 -0.2 o 0.2 0.4 

Fig. 2. Time evolution of the caloron solution. During one period (7- = 1), we plot the "energy" as a function 
of time, E(t)  -- -(l/167r 2) fR 3 trF 2, for p = 0.1,0.2,0.3,0.5, 1.0, 2.0. For small values of p, the caloron 
is short-lived and instanton-like, whereas for large values, p > 1, the profile flattens and the caloron becomes 
static and monopole-like. 

dependence for various values of  p. For small p the caloron approaches the ordinary 

single instanton solution, with no dependence on w, as p --* 0 is equivalent to 7- ~ oo. 

Finite size effects set in when the size of  the instanton becomes of  the order of  the 

compactification length 7-, i.e. when the caloron bites in its own tail. This occurs at 
l roughly p = ~T. At this point, for ~o& :# 0 (i.e. the holonomy 79 :# + l ) ,  two lumps 

are formed, whose separation grows as 7rp2/7-  (cf. Eq. (45)) .  At large p the solution 

spreads out over the entire circle in the euclidean time direction and becomes static in 

the limit p --~ oo. So for large p the lumps are well separated, see Fig. 3. When far apart 

they become spherically symmetric. As they are static and self-dual they are necessarily 

BPS monopoles. One can show in this limit that they have unit, but opposite, magnetic 

charges and that the two lumps have spatial scales proportional to respectively 1/& and 

l/o~ (see Section 7). Their action densities (or energy densities in this static limit) 

scale with ffj4 and w 4. After integration, this results in monopole masses of  respectively 

167r2fo/7- and 167few/7- for the two lumps, their mass ratio is therefore &/w. The total 

energy, simply obtained by addition, indeed conforms with the unit topological charge 

of  the solution. For w = 0 or w = ½, the second lump is absent and the solution is 
spherically symmetric. For generic oJ, the solution has only an axial symmetry around 

the axis h connecting the two lumps. For w = ¼, the lumps are equally sized, and the 

solution has a mirror symmetry in the plane perpendicular to ~, see Fig. 4. 

These aspects can be readily retrieved by inspecting Eq. (55),  and in particular (62),  

for the limit of  large p and realising that r and s are the centre off mass radii of  
the constituent monopoles. If  p is small, the caloron is best described in terms of  the 

instanton picture, whereas for large p the two-monopole picture is more appropriate. 

For the constituent picture of  oppositely charged BPS monopoles to be correct, the field 

has to behave like a magnetic (and electric) dipole at large distances. Indeed one easily 
finds that the field strength decays as l / ix]  3 for distances much larger than yrp2/7- .  

Note that for o) = 0 we have the standard Harrington-Shepard caloron [ 11 ], which in 
the limit of  large p was already shown by Rossi [32] to become the standard BPS 
monopole (after a singular gauge transformation). 
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Fig. 3. Shown are caloron profiles for ~o = 0.125 (7- = 1), with p = 0.8, 1.2, 1.6 (from bottom to top). This 
illustrates the growing separation of the two lumps with p. Once the constituents are separated, the lumps are 
spherically symmetric and do not change their shape upon further separation. Vertically is plotted the action 
density at xo = 0, on equal logarithmic scales for all profiles. They were cut off at an action density below 
1/(2e2) .  

41 ,  
Fig. 4. Profiles for calorons at w = 0, 0.125, 0.25 (from left to right) with p = 7- = 1. The axis connecting the 
lumps, separated by a distance 7r (for w @ 0), corresponds to the direction of h. The other direction indicates 
the distance to this axis, making use of the axial symmetry of the solutions. The mass ratio of the two lumps 
is approximately ~o/~, i.e. zero (no second lump),  a third and one (equal masses),  for the respective values 
of oJ. Vertically is plotted the action density at x0 = 0, on equal logarithmic scales for all profiles. They were 
cut off at an action density below l / ( 2 e ) .  
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Interpreting the Nahm data (Eq. (41))  as the juxtaposition of two sub-intervals of 
lengths 2w and 2& respectively, with constant Nahm connections ,4(z),  leads to a 
more indirect way of understanding the composite nature of the caloron. Indeed, ,4 = 0 

gives the standard BPS monopole, adding a constant merely translates the solution in 
space. Thus, each interval gives rise to a BPS monopole on R 3 x S l, and we can in 

a good approximation add the two connections corresponding to the two sub-intervals. 

The p2 dependence of J,(z ) explains the large separation of the constituent lumps for 
large p. As the lengths of the intervals are given by the asymptotic Higgs vacuum 

expectation value of the corresponding monopoles, the mass ratio th/(o of the lumps 
is easily explained by noting that the mass of a BPS monopole is proportional to the 
Higgs vacuum expectation value. The above interpretation underlies the approach taken 
in Ref. [10]. The expression for the gauge potential given there is precisely the sum 
alluded to above, plus gauge-like terms and gauge transformations required for gluing 
them together. 

6. The moduli  space 

The moduli space A4 of the caloron solutions has as its coordinates s c and (.  We 
should include the global gauge degrees of freedom (SU(2) for trivial and U(1) for 

non-trivial holonomies), so as to make the solution space hyper-K/ihler. The moduli 
space of these so-called framed calorons is a product of the base manifold R 3 × S 1, 
parametrised by ( and the (Taub-NUT) space parametrised by ( ,  forming the non-trivial 

part of the moduli space and describing the relative coordinates of the two constituent 
monopoles, quite similar to that for the two-monopole moduli space [33]. It should be 
noted that s r --~ - ( ,  corresponding to the centre of the SU(2),  leaves A~ (x) invariant, 
such that we have to mod-out this symmetry to obtain the space of framed calorons. 

The metric on this space is given by the Riemannian metric on the gauge theory 
configuration space, restricted to the space of solutions. The metric is then given by 
(~M ~ = 8u, being the flat metric on M = R 3 x S 1 ) 

g.M (Z,  Z ' )  = gM tr ( Z t ~ ( x ) Z ; ( x ) ) .  (69) 

M 

with Z~ and Z~ two vectors tangent to the space of caloron solutions. The gauge 
structure requires them to be transverse to gauge deformations, thereby satisfying the 
background (or Coulomb) gauge condition 

D ~ ( A ) Z ~  = 0. (70) 

The requirement that A~ + Z u is self-dual leads to the so-called deformation equations 

DluZu I = ½e#val~DlaZ#l, (71) 

and in the algebraic gauge we have to require in addition (see Eq. (2))  
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Z u ( x  + 1) = eZ~i°J'¢Z~(x)e-Z~ri'°¢. (72) 

The tangent vectors (zero-modes) can be found by varying the caloron solution 

with respect to the coordinates ( and 6, which will automatically satisfy the deforma- 
tion equation (71) and periodicity (72), but generally one has to apply an infinitesi- 
mal gauge transformation (/,, compatible with Eq. (72), to transform to the Coulomb 
gauge, Eq. (70). Hence, 

Z~ : 6rA~ + D ~  r, (73) 

where the label r indicates the parameters (or coordinates) of the moduli space. For the 
metric (Eq. (69))  to exist, zero-modes should of course be normalisable. 

For instantons on ]~4, the zero-modes can be determined within the ADHM formal- 
ism [29]. Thus one can calculate the metric in terms of the ADHM data. This reflects 
the fact that the Nahm transformation (and the ADHM construction) is a hyper-K~ihler 

isometry [ 19,17]. We have 

- = C, (74) 
3B Y 

and for the calorons, in addition periodicity (Eq. (72)) requires 

Y,,,.,, = Ym-I,,,-I, Cm+l : e2•"°'¢ Cm. (75) 

In terms of the deformation C of the ADHM data, the zero-mode reads [29] 

Z u = ~, , t (x)CO-ufxu(x)q~-l /2(x)  - dp- ' l /Z(x)ut(x) fxo-~Ctl , , (x)  (76) 

and 

D~ Z~( x)  : <b-lut (x)fxO'u (Ct  A( x)  -- At ( x ) C )  OufxU(X) .  (77) 

(Note that for W = W~,o" u, cr~WO" u = 4W0 = 2tr W.) Combining the deformation of the 
quadratic ADHM constraint (as the imaginary part) with the Coulomb gauge condition 

(as the real part), imposes 

( A t ( x ) C )  : ( A t ( x ) C ) ' .  (78) 

To satisfy the Coulomb gauge condition, the real part of this equation being equivalent 

to 

tr(A t ( x ) C  - C t A ( x ) )  : 0, (79) 

one has only the T invariance of Eq. (17) available (i.e. the U(1) gauge invariance 
of A), since a global gauge rotation would distort the framing. We write T E O ( k )  

as T = e x p ( - 6 X ) ,  with 6X' = - 6 X .  Like T, also 6X has to satisfy 6Xm,, = 6Xm--,,, 

and can be interpreted as the Fourier coefficients of a gauge function 6~,(z) on the 
circle. We now write the zero-modes C in ADHM language as a variation of A plus a 
compensating gauge transformation, 
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Fig. 5. The function f~ Oo,(z')dz'. 

C = 6 A + 6 x A ,  6 x A = (  A6X ) [B, SX] " (80) 

Inserting this into Eq. (79)  we find 

tr ( ( ~ d t )  d - At 6A - 2i$XA + [B1, SX] B - B t [B, t$X]) = 0, (81) 

where we used that [A, SX] = 0, since the gauge symmetry (described by 8X) is 
2 " abelian. After Fourier transformation, with 6(z - z~)62(z)  = ~m,n v o .,(mz-nz ) - l m , n ~  

this equation reads 

d2t$X(z)-- + I~r12(6(z - to) + 8(z + to) )Sf((z ) 
47r 2 dz 2 

= 2 p 2 ( 8 ( z  - o9) - 6 ( z  + o)) )go.  ~ ,  (82) 

using that with the help of  the Maurer-Cartan one-forms, Eq. (67),  we can write 

tr ((Ss@ - ( 8 ( ) &  • o') = 4&ar/~,(~,6sr~ = 2p2& • .,~. (83) 

The solution to the differential equation for 6Yi(z) gives the infinitesimal gauge trans- 

formation needed to go to Coulomb gauge. One finds 

z 

/ ' , tSX(z) = -27"r2ip269 • .~(1 q- 8"rr2totbp2) - I  O~o(z )dz , 

0 

(84) 

which is a zig-zag wave (see Fig. 5) ,  vanishing at 2z E Z and taking its extremal values 
at z = +o9, 

6f(o~ -- :k~f((-t-w) = -4iT-r2wgop2go. X( 1 + 87r2w&p 2) - I. (85) 

Note that for the variations with respect to the caloron position, ~:, no compensating 
gauge transformation is needed• 

In order to evaluate the metric, Eq. (69) ,  it is sufficient to compute g.M(Z, Z)  for 
Z related to an arbitrary deformation of  the moduli parameters, as determined by C in 
Eqs. (80) and (84) .  For this we employ the following relation due to Osborn [29]:  
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1 2 t r (Z~(x )Zu(x ) )  = -~O trTr ( c t ( 2  - A ( x ) f x A t ( x ) ) C f ~ )  (86) 

-- 1 2 (2(ctc  + - - 7 0  trTr Y t Y ) f x  

- ( c t  a + Y* B(x)  ) fx(  ktc + Bt ( x ) r )  fx) , 

which is derived from Eq. (76), making use of Eq. (78). We introduce the Fourier 
transforms O(z) - Y'~'~,,, e2rrin'Zcm and ~'(z), with 6 ( z - z ' ) ~ ' ( z )  = ~ . , , .  e2cri(mz-"z')Y~ ...... 

such that 

~(z)  = 6A(z)  + A ( z )~X ( z )  = P+6(z - to)(6(  + (~f(o,) 

+P_6(z  + o9)(~( - ~f(o~), 

?(z)= ~ 6~(z) + 62(z) 

= tSs ~ q- 77" (($~& • or# + ~ & -  0"~$( -- p 2 & .  X ( 1  + 8rr2to&l(I  2) - I )  O,o(Z ). 

(87) 

We may use the special structure of 6(z)  and A(z) (Eq. (38)) - formed out of the 
combinations 6( z T w ) P i ,  with p2 + = P~ and P± PT = 0 - to deduce 

~t(z)e(z') = a ( z  - z ' ) ~ t ( z ) < ~ ) ,  

~t(z)~(z') = 6 ( z  - z ' ) e t ( z )<~ .> ,  (h) - ,f h(z)dz (88) 

For calorons, this allows us to turn Osborn's equation into 

tr(Z~(x)Zz,(x)  ) = - 0 2 / d z  tr ([~'t (z )~ ' (z )  + ~t(z)(~)] fx (z ,  z))  

St 

+ _e2 / dz az'  tr ( [ C ( z ) +  3 ) x ( z ) ] f x ( z , z ' ) [ Y ~ ( z ' ) + C * ( z '  ~ ' ) ] f x ( z  , z ) ) ,  

S ~ 

(89) 

with 

Y.,-(z) = (2¢ri)-J~'t(Z)Dx(Z),  C(z)  = dt(z)(A).  (90) 

When integrating over space-time, the 002 part does not contribute due to periodicity. 
The integral is therefore reduced to a boundary term at spatial infinity, Ix I -~ ~ .  In 
this l imi t  p2 can be neglected and the two radii r and s in Eq. (45) become equal. In 
particular in this limit the potential in Eq. (44) equals ]xl 2, independent of z. From this 
one concludes that asymptotically fx (z, z ' )  becomes a function of z - z' and therefore 
that D x ( z ) f x ( z ,  z')Dtx(Z') = 4¢r26(z - z ' )  + O( r -1 ) .  This can also be deduced from 
the asymptotic form of f x (z ,  z') in Eq. (56), which implies fx(z ,  z) = or~r+ O(r  2). 
Thus 
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dz' tr[33. ( z ) f x ( Z ,  z')ff:tx(Z')fx(z ', z )1 = tr[ ~'t ( z )~ ' ( z  )f~(z, z ) ] ,  

S t 

to be combined with the first term in Eq. (89).  Using Eq. (88) ,  we also have 

t ^ ^2 dz tr[C(z)fx(z,z ')dt(z ') fx(Z' ,Z)] = tr[(Ot}( .A}(.At)~(z)fx(z,z)]  = O ( r - 2 ) ,  

S 1 

and 

! ^ 
2rri dz tr[y(z) fx(z ,z ' )Ct(z ' ) fx(Z' ,Z)]  

S ~ 

= ~ tr[Y t (z)Dx(z) fx(z, so)) (~*)(d)psfx(s~o, z) ], 
s=-4- 

which after integration over z is 69( r -2) .  Only those terms that are O(r -l)  will 

contribute and we obtain the following remarkably simple result: 

g~(Z,  Z )  = 2rr2tr((~'t~ ") + 2(~t)(~)) .  (91) 

Inserting Eq. (87) gives the metric (we put & = 23) 

ds 2 = 27r 2 {2d(z,d( u + (1 + 87"r2wc, bp  2 ) (4dp 2 q- p2 (272 q_ 2722)) 

+p2(  1 + 8¢r2a~&p 2) - I Z 2 } .  (92) 

The first part describes the fiat metric of  the base manifold R 3 × S l, the remainder forms 

the non-trivial part of  the metric. They separate because f Oo,(z)dz = 0, see Eq. (42) .  
We introduce a "radial" coordinate X and "mass" parameter M 

X 2 ---- 87"/'2p 2, M -2 = 16to&, (93) 

and rewrite the non-trivial part of  the moduli space metric as 

( X2 ) ( X2 ) -1 1 2 2 1 2 ds 2 =  1 + ~  (dX 2 + a x  (X, +272))+aX 1 + ~  X 2. (94) 

This metric is the Taub-NUT metric [34] as given in Ref. [35].  It is a self-dual Einstein 

manifold [36,37] and is hyper-K/ihler [33,38].  The latter property is inherited from the 
hyper-K/ihler structure of  the base manifold IR 3 x S t, preserved by the self-duality 
equations [ 19]. Therefore, the SU(2)  moduli space for calorons becomes 

J~framed ---- (~3)<  S 1 ) x Taub-NUT/Z2.  (95) 

Note that Z2 corresponds with ~" = q = +1,  i.e. the centre of  the SU(2)  gauge group. 
With s r ---+ - s  r leaving the gauge fields unchanged, this gives rise to an orbifold singu- 
larity (at ~ = 0) and (IR 3 × S l ) x Taub-NUT is a double cover of  -A4eramea. 

For small p or ~o, when X 2 / M  2 ---+ O, the metric becomes that of  ~R 4, since a(Z~l 2 +272 +2 
272) (see Eq. (67) )  is the metric on the unit three-sphere. With p --+ 0 corresponding 
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to T ---, cx~, this describes the moduli space of  a charge- 1 instanton on R 4, whereas for 

w -- 0 we have the standard Harrington-Shepard caloron moduli space. In both cases 

this is parametrised by the scale and SU(2)  group orientation (to make the moduli 
space hyper-K~ihler) and ,~framed : ~t~4 × ~4/~_~2, see Refs. [ 19,39]. 

For large p (i.e. large X),  or equivalently for 7- --~ 0, Taub-NUT space is a squashed 
S 3, that is S 2 × S 1, with S 1 a non-trivial (Hopf)  fibration over S 2. This is best studied 

by introducing a radial coordinate R through X 2 = 8MR, which brings the Taub-NUT 

metric to the form [36] 

ds 2= 1 + - -  (dR 2 + R 2(dO 2+sin 20drip 2)) 

+ 4 M  2 1 + (dT+cosOddp) 2 (96) 

also familiar from the (spatial part of  the) Kaluza-Klein monopole solution [40].  Since 

7' ~?_ [0, 4zr] we read off from the asymptotic form of the metric that the compactification 
radius equals 4M. At large p, .A/lframed is therefore of the form (R 3 × S 1 ) × (•3 × ,S I )/Z~. 

It is natural to view this as the product space of two single BPS monopole moduli spaces. 

The first R 3 represents the centre of mass and the second the relative coordinates. The 

first S ~ corresponds to x0 and can be seen as a global U( 1 ). The other gives the relative 

U(1)  orientation on which the Z2 acts. This Z2 does not act on the positions, as the 

monopoles have in general different masses and are hence not identical objects. A similar 

description is valid for the SU(2)  two-monopole moduli space, see Refs. [41,33]. At 

large separations its metric is precisely of the Taub-NUT form, but with a negative 
mass parameter M, as was shown by Manton [42] ,  using the asymptotic form of the 

interactions. The complete metric was constructed by Atiyah and Hitchin (see Ref. [ 33] ) 
in terms of  elliptic integrals, using its symmetries and hyper-K~ihler structure. 

Finally it is interesting to note that the moduli space of  an SU(3)  monopole with 

maximal symmetry breaking to U( 1 ) x U( 1 ) and charges ( 1, 1 ) (see Refs. [43,44] ) is 

Taub-NUT with a positive mass parameter, as for the caloron. This is not surprising, as 

its Nahm data are precisely those of  the caloron. For an SU(3)  monopole with maximal 

symmetry breaking there are two sub-intervals [/Zl,/Z2] and [/x2,/z3]. On each sub- 

interval, A has dimension one and is therefore constant, due to the Nahm equations. The 

matching at #2, implied by the delta function singularity, is of the correct form (defining 
1 "~ ~p-) ,  and implies we can identify /zj with /z3 (defining 7-) with correct matching as 

well. As the metric can be formulated in terms of  the Nahm data, we would indeed 

expect the metric to be the same. 

7. Discussion 

The interpretation of  the ADHM data for a periodic instanton as the Fourier co- 

efficients of  the Nahm-transformed Weyl operator extends naturally to higher charges 

and other gauge groups [45].  For charge-I calorons in SU(N) the determination o1' 
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O 
Fig. 6. The non-contractible loop is constructed from two oppositely charged monopoles by rotating one of 
them, as indicated on the left. On the right is a closed monopole line, rotating its frame when completing the 
circle, 

the Green's function remains a problem of quantum mechanics on the circle with a 
piecewise constant potential [61] (on N sub-intervals, separated by delta functions). 

Also our formalism to compute the metric on the moduli space can be generalised. Due 
to the relation with the ADHM approach, one may wonder [6] whether there is some 
advantage in obtaining monopole solutions from the calorons by sending certain scales 

to infinity [62] - in the limit of which the solution becomes static and constituents 
separate. For higher charges the Nahm bundle is no longer abelian and the construction 
is more complicated. For generalisations to further compactifications, e.g. R2 x T 2 and 
]R × T 3 (see Ref. [ 18] ), note that the 't Hooft ansatz [28] diverges when summing over 
more than one direction. This will correspond to all holonomies trivial and one may 
well have no solutions in that case. A dramatic particular example of a non-existence 

proof for charge-1 instantons is T 4, see Ref. [ 17], a situation where indeed an existence 

proof of Taubes [46] does not hold. 
We now recall briefly Taubes' arguments for building gauge fields with topological 

charge 1 out of monopole fields [9,47]. Although his construction was within the 
standard model with a genuine Higgs field, the same argument applies to the caloron 
case, using A0 as the Higgs field. As we saw in Section 2 (Eqs. (10), ( 11 )) ,  non-trivial 

SU(2) monopole fields can be classified by the winding number kj = -k2  of maps from 
S 2 to S U ( 2 ) / U ( 1 )  N S 2. We consider at this point configurations at a fixed time t, 

= {Au(x)} .  In the sector where the net winding vanishes we study a one-parameter 
family of configurations, q't = {Au(x ,  t)} (the parameter can, but need not, be seen as 
the time t).  When this configuration is made out of monopoles with opposite charges, 
in a suitable gauge the isospin orientations behave as shown in Fig. 6, sufficiently far 

from the core of both monopoles. We note that the arrows match in the "throat" of 
the configuration. This remains true if we rotate only one of the monopoles around the 
axis of the throat. Clearly, the net magnetic winding remains zero, but the fields of 
two monopoles will no longer cancel when brought together, despite the fact that the 
long-range abelian components do cancel. The non-contractible loop is now constructed 
by letting t affect a full rotation. 

Taubes describes this by creating a monopole-anti-monopole pair, bringing them far 
apart, rotating one of them over a full rotation and finally bringing them together 
to annihilate. The four-dimensional configuration constructed this way is topologically 
non-trivial. Since an anti-monopole travelling forward in time is a monopole travelling 
backwards in time, we can describe the same as a closed monopole line (or loop). 
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It represents a topologically non-trivial configuration when the monopole makes a lull 

rotation while moving along the closed monopole line (see Fig. 6). The non-trivial 
topology discussed by Taubes [9] ( r r l (M0(S2;S2) )  = Z)  is just the Hopf  fibration, 
except that now it is more natural to see S l as the base manifold and S 2 as the fibre, 
which rotates (twists) while moving along the circle formed by the closed monopole 
line. The only topological invariant available to characterise this homotopy type is 
precisely the Pontryagin index. 

We mentioned that the short-range components of  the fields can not be fully canceled 
due to the non-trivial "twist" along the monopole line, so they have to be responsible 

for the Pontryagin index. Indeed, in the computation of the total topological charge of 
2 21og~p (Eq. (63) )  the massive component  our configurations as the integral over 8~8, 

of  the field gives rise to 

¢9 = 2e4~(rc°+"'°) (1 + C9(Ix ] - l ) )  = 2e2~lxl(1 + (9(]xl - I  ) ) ,  

c)~ 2 log 4t = 4z ' / lx l  + O ( I x l - 4 ) ,  (97) 

and thus yields the surviving boundary term, but at the same time does not contribute 

to the action density, since a2lx[ -1 = 0. 
We now inspect more closely the monopole content of  our calorons. For this we 

choose p / 7 -  large, such that the monopoles are well separated and static. We have two 

world lines of  monopoles running in opposite directions (due to their opposite charges),  
closed due to the periodic boundary conditions. At smaller separations the solutions are 

far from static, with the attractive force driving the constituents together, after which they 
annihilate. In that case the world lines form a single closed monopole line, as mentioned 

above. It should be noted, though, that for small p / 7 -  the constituents become rather 
extended. Nevertheless, such closed monopole lines are characterised by rotation of the 

local monopole  field over precisely one full rotation when completing the circle, since 
our solution has unit topological charge. It prevents the field from decaying to the trivial 
configuration. It is this "twist" that provides the closed monopole line its stability. 

Before continuing, we observe that the calorons are given in a singular gauge, as is 
usual for the A D H M  construction. The function ~ (Eq. (52))  has an isolated zero at 

x = 0. This can be traced to the zero-mode in B - x, responsible for the non-trivial 

topology of the solution. This singularity is easily seen to be removed by a gauge 
transformation, locally of  the form x / l x  ] ( v i ew ing  x as a quaternion). We now assume 
that cog~ # 0 and consider the region outside the core of  both monopoles, i.e. rg2 > 1 

and so) > 1. In this region 

q5 = r + s + 77"P 2 + O(e-S~-min( ..... ~ ) ) ,  
r + s - 7"rp 2 

~" = ( r  +s~'p2) 24¢rp2 {re-4rrrC°e-27rix" + se -4rrs''} (1 + O ( e  -Scrmin( ..... ' ~ ) ) ) .  (98) 

Substituting this in Eq. (57) we find the solution to be time independent and abelian, 

up to exponential correction 
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i 
Ao = ~7"303 log ~b + 27"riwr3, 

i 
Ek = Fko = ~7"30kC93 log gb, 

i 
At, = ~-3et`j3aj log ~,  

i (0k03 log gb ~t`30~ log ~b) Bk = ekLjcgiA j = ~7"3 -- . 

(99) 

For convenience we rotated a to ~3. Self-duality, E = B, requires log q~ to be harmonic. 
We first note that when neglecting the exponential corrections, ~b -1 vanishes on the 

interval -2~-p2~o ~< x3 ~< 2~p2r3 at Xl = x2 --- 0 (we denote the characteristic function on 

this interval by X~,(x3)). A careful analysis reveals c~j 2 log ~b = -4~3(Xl )~(x2)xo , (x3)  
(that it vanishes away from the zeros of ~b - l  follows by a direct computation). The 

i 2 t e r m  --~'/ '3~k3 a) log o~ in the expression for the magnetic field corresponds precisely 

to the Dirac string singularity, carrying the return flux. One finds that akEk = 0t`Bk = 
~q'3~302 log gb = 27riT"3(63(s ) - ~ 3 ( r ) ) ,  when ignoring this return flux, which in the full 
theory is absent [48] (indeed as noted before ~b - t  has only an isolated zero at x = 0, 
corresponding to a gauge singularity). 

Finally, to confirm our expectations it remains to identify the rotation of one of the 
monopoles so as to guarantee the topologically non-trivial nature of the configuration. In- 

specting the behaviour in the core region of the monopoles, described by )~ in Eq. (98), 

gives the following factorisation: 

,~ = X(1)(r) + e-2~rix°x(2)(s ). (lOO) 

While one of the monopoles has a static core, the other has a time-dependent phase 

rotation - equivalent to a (gauge) rotation - precisely of the type required to form a 
non-contractible loop, as the phase makes a full rotation when closing by the periodic 
boundary conditions in the time direction. 

Although interpreting A0 as the Higgs field allows one to introduce monopoles in pure 
gauge theory, there are some subtle differences. In the static limit the BPS equations 

imply Fio = DiAo and we would be tempted to call the solution a dyon. In the Higgs 
model dyons are constructed by taking A0 proportional to the Higgs field ~ [2,49]. By 
a time-dependent gauge transformation A0 can be gauged to zero. This gauge transfor- 
mation is generated by Ao, precisely the unbroken generator, as A0 is proportional to 
the Higgs field. The resulting electric field is now given by OoAi and is not quantised. In 
the Higgs model Bi  = Di  q5 and Ei = -cgoAi .  In pure gauge theory it makes, however, no 
sense to separate D i ~  = D i A o  f r o m  OoAi. Gauge invariance requires that they occur in 
the combination Fi0 = D i A o  - OoAi. The electric field is necessarily fixed and quantised 
as soon as we interpret A0 as the Higgs field. Nevertheless, we can consider dyons also 
in pure gauge theories, but for this we have to add a term proportional to OF[ ~ to the 
lagrangian [50]. The electric charge is now proportional to 0, so no longer quantised. 
But, unlike in the Higgs model, it is the same for all monopoles. 

We note that in the Higgs model the construction of the non-contractible loop generates 
an electric charge due to the (gauge) rotation along the closed monopole line, when 
interpreting the loop parameter as time. The electric charge is proportional to the rate 
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of rotation and can vary along the monopole line. However, integrated along a closed 
monopole line the charge is fixed and proportional to the number of rotations, which 

hence plays the role of a winding number. In pure gauge theory this winding can not 
be read off from the long-range field components, but for both cases the fields in the 
core are responsible for the Pontryagin number (an abelian field can not contribute to 
this topological charge). 

There is a natural context in which the analogy with the Higgs model is more precise. 
For this we have to add time as a fifth dimension, such that four-dimensional space 
is compactified on a circle. In the limit of zero compactification radius (7- -~ 0) our 

solutions become genuine monopoles and can obtain dyonic charges in the sense of Julia 
and Zee [49]. It is in this context that Taub-NUT metric describes the scattering of 
oppositely charged monopoles on R 3 x S 1, in exactly the same way as the Atiyah-Hitchin 
metric describes the scattering of like-charged monopoles on R 3 [51,33], 

Monopoles appear also in the context of 't Hooft's abelian projection [ 16] as (gauge) 

singularities. The lesson we have learned from the above analysis is that in order to 
include the non-trivial topological charge, important for fermion zero-modes, breaking 
of the axial U(1)  symmetry [22] and presumably for chiral symmetry breaking, one 

needs to keep some information on the behaviour near the core of these monopoles. 
This allows one to combine the attractiveness of the dual superconductor picture of 
confinement [52] in terms of monopole degrees of freedom, with the success of the 

instanton liquid model [53]. There have been many attempts to make an effective 
monopole model for the long-range confining properties of QCD, see e.g. Ref. 154]. 
Also there have been many studies in lattice gauge theory, using the idea of abelian 
projection implemented by the so-called maximal abelian gauge [55], in order to extract 

the monopole content of the theory. It was observed that the string tension is saturated 
by the monopole fields [56]. More recently it was found that alter abelian projection 

instantons contain closed monopole lines [57]. As emphasised in Ref. [58], in the light 
of Taubes' construction this was to be expected. Here we have shown in more detail 
how one can make fields with non-zero topological charge out of monopole degrees of 
freedom, with as example the well defined setting of calorons with non-trivial Polyakov 
loop. What is minimally required is a frame associated to each monopole, whose rotation 
is a topological invariant for closed monopole lines. Such closed monopole lines can 
shrink, but one will be left over with what represents an instanton. It would be interesting 
to build a hybrid model based on the instanton liquid and monopoles, and see how 
successful it is in capturing the appropriate phenomenology. 

To conclude, it is sensible to take the monopole content of instantons serious in 

the broader context sketched here. Our gauge-invariant method of investigating the 
monopoles inside an instanton is somewhat destructive (but reversible). First we heat 
the instanton just a little. Then we add a non-trivial value of the Polyakov loop at 
infinity, without disturbing the instanton significantly (true for 7- sufficiently large). 
Now we have to squeeze (or heat) it hard. Out come the two constituent monopoles, 
in a direction determined by the choice we have made for the Polyakov loop at infinity 
(which does not change under heating). The new caloron solutions can be studied 
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on the lattice by taking all links in the time direction, at the spatial boundary of the 
lattice, equal to U0 = e x p ( 2 ~ i ~ .  ~'/No) (in lattice units 7- equals No). One can look 
for solutions using improved cooling [59] (to prevent calorons to disappear due to 
scaling violations). When interested in seeing the monopole constituents one may just 

as well take the time direction to be one lattice spacing (No = 1). The lattice study 
of Ref. [60] hints at regular monopole solutions in pure gauge theory, although with a 

vanishing electric component, not what we would expect for our constituents. 
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Appendix A 

= ( 8 * ( x ) B ( x ) )  - t ,  In this appendix we present the result for the Green's function Gx 

which after Fourier transformation satisfies the equation 

2 z r i d z  xo + s 2 x l  . . . .  l ( z )  + r  Xf,o.J-,ol(z) 

} • - G x ( z , z  ) = 8 ( z - z ' ) ,  (A.1) 2 69 ~ ' (6 ( z  09) - 8 ( z  + 0 9 ) )  ^ ' 

with r and s given as in Eq. (45). Its solution is given by 

4x (Z ,Z ' )  =xl-o~,o~l(z') ( x l - o , , o , ~ ( z ) ~ ( z , z ' , r , s , 0 9 )  
^ 0  I 

+Xl,o,l-o,1 (Z)Gx(z,  Z , r, s, o2)) 

+xt~ ,~-o~(z ' )  (xto~,l-~j (z)~(  ½ - z, ½ - z ' , s , r ,  co)* 

+Xt . . . .  ](z )G° (z ' ,  Z, r, s, 09)*). (A.2) 

Like for fx the diagonal component Gdx(z, z t )  is only defined strictly for z , z  ~ C 

[-09, w] and the off-diagonal component G°(z ,z  ~) only for z E [09, 1 - 09] and 
z ~ E [-09, 09]. For z or z ~ outside of these intervals, one first has to map back to the 
interval [-09, 1 - w ] ,  using periodicity. 

Gxd(Z, z ' ,  r, s, 09) = e2Z'ix°(z-z)'n'(rsCt) -1 {e-ZTrix°sign(z-Z')rsinh(27"rslz - z ' [ )  

+ s  -1 sinh(47"rr&)[zrsp2?o • 7"sinh(2rrs(z + z ' ) )  

-[-½(S 2 --  r 2 -b 77"2p 4) cosh(2zrs(z + z ' ) )  

+½(s  2 + r 2 _ ~2p4) cosh(2zrs(209 - [Z - z ' l ) ) ]  

+ r  cosh(47"rr6)) s inh(2z r s (2w-  Iz - z ' l ) )} ,  
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G~ ( Z, z ' ,  r, s, o9) = e2~rix°(z- z')'rr( rs~b -I  

× {¢rp2& • ~-s inh(27rr(1  - z - co) )  s i n h ( 2 ¢ r s ( z '  + co))  

+ r c o s h ( 2 7 r r ( z  - 1 + co))  s i n h ( 2 7 r s ( z '  + co) )  

- s s i n h ( 2 7 r r ( z  - 1 + co))  cosh(2"rrs(z  ~ + co) )  

×e-2~iX°[s s inh(27rr ( z  - w ) )  cosh(27"rs(z'  - co))  

- r c o s h ( 2 ~ ' r ( z  - co)) s i n h ( 2 7 r s ( z  ~ - co))  

+rrp2& • z s i n h ( 2 7 r r ( z  - co) )  s i n h ( 2 7 r s ( z '  - c o ) ) ] } .  ( A . 3 )  

In particular, 

G ~ ( c o , - c o )  = ~ ( r s ~ ) - l e  4~rix°°j {e-2~iX°rsinh(47rsco) + s s inh(47rr6))  } ,  ( A . 4 )  

( +co,  :l:w) = 7r( r s~  ) - t { s sinh (47rr6J) cosh  (47rsco) 

+ r  s inh(47rsco)  cosh(4zrr69)  ± qT"p2~ • 7" s i n h ( 4 z r r ~ )  s i n h ( 4 7 r s c o ) } .  

which  can be used to verify Eq. ( 6 4 )  and Eq. ( 5 1 ) ,  as derived from Eq. ( 1 9 ) .  
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